e2e0215404c39cf92b4037d837cc8d88502612ae
[mesa.git] / src / gallium / auxiliary / util / u_vbuf.c
1 /**************************************************************************
2 *
3 * Copyright 2011 Marek Olšák <maraeo@gmail.com>
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "util/u_vbuf.h"
29
30 #include "util/u_dump.h"
31 #include "util/u_format.h"
32 #include "util/u_inlines.h"
33 #include "util/u_memory.h"
34 #include "util/u_upload_mgr.h"
35 #include "translate/translate.h"
36 #include "translate/translate_cache.h"
37 #include "cso_cache/cso_cache.h"
38 #include "cso_cache/cso_hash.h"
39
40 struct u_vbuf_elements {
41 unsigned count;
42 struct pipe_vertex_element ve[PIPE_MAX_ATTRIBS];
43
44 unsigned src_format_size[PIPE_MAX_ATTRIBS];
45
46 /* If (velem[i].src_format != native_format[i]), the vertex buffer
47 * referenced by the vertex element cannot be used for rendering and
48 * its vertex data must be translated to native_format[i]. */
49 enum pipe_format native_format[PIPE_MAX_ATTRIBS];
50 unsigned native_format_size[PIPE_MAX_ATTRIBS];
51
52 /* This might mean two things:
53 * - src_format != native_format, as discussed above.
54 * - src_offset % 4 != 0 (if the caps don't allow such an offset). */
55 uint32_t incompatible_elem_mask; /* each bit describes a corresp. attrib */
56 /* Which buffer has at least one vertex element referencing it
57 * incompatible. */
58 uint32_t incompatible_vb_mask_any;
59 /* Which buffer has all vertex elements referencing it incompatible. */
60 uint32_t incompatible_vb_mask_all;
61 /* Which buffer has at least one vertex element referencing it
62 * compatible. */
63 uint32_t compatible_vb_mask_any;
64 /* Which buffer has all vertex elements referencing it compatible. */
65 uint32_t compatible_vb_mask_all;
66
67 /* Which buffer has at least one vertex element referencing it
68 * non-instanced. */
69 uint32_t noninstance_vb_mask_any;
70
71 void *driver_cso;
72 };
73
74 enum {
75 VB_VERTEX = 0,
76 VB_INSTANCE = 1,
77 VB_CONST = 2,
78 VB_NUM = 3
79 };
80
81 struct u_vbuf {
82 struct u_vbuf_caps caps;
83
84 struct pipe_context *pipe;
85 struct translate_cache *translate_cache;
86 struct cso_cache *cso_cache;
87 struct u_upload_mgr *uploader;
88
89 /* This is what was set in set_vertex_buffers.
90 * May contain user buffers. */
91 struct pipe_vertex_buffer vertex_buffer[PIPE_MAX_ATTRIBS];
92 unsigned nr_vertex_buffers;
93
94 /* Saved vertex buffers. */
95 struct pipe_vertex_buffer vertex_buffer_saved[PIPE_MAX_ATTRIBS];
96 unsigned nr_vertex_buffers_saved;
97
98 /* Vertex buffers for the driver.
99 * There are no user buffers. */
100 struct pipe_vertex_buffer real_vertex_buffer[PIPE_MAX_ATTRIBS];
101 int nr_real_vertex_buffers;
102 boolean vertex_buffers_dirty;
103
104 /* The index buffer. */
105 struct pipe_index_buffer index_buffer;
106
107 /* Vertex elements. */
108 struct u_vbuf_elements *ve, *ve_saved;
109
110 /* Vertex elements used for the translate fallback. */
111 struct pipe_vertex_element fallback_velems[PIPE_MAX_ATTRIBS];
112 /* If non-NULL, this is a vertex element state used for the translate
113 * fallback and therefore used for rendering too. */
114 boolean using_translate;
115 /* The vertex buffer slot index where translated vertices have been
116 * stored in. */
117 unsigned fallback_vbs[VB_NUM];
118
119 /* Which buffer is a user buffer. */
120 uint32_t user_vb_mask; /* each bit describes a corresp. buffer */
121 /* Which buffer is incompatible (unaligned). */
122 uint32_t incompatible_vb_mask; /* each bit describes a corresp. buffer */
123 /* Which buffer has a non-zero stride. */
124 uint32_t nonzero_stride_vb_mask; /* each bit describes a corresp. buffer */
125 };
126
127 static void *
128 u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
129 const struct pipe_vertex_element *attribs);
130 static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso);
131
132
133 void u_vbuf_get_caps(struct pipe_screen *screen, struct u_vbuf_caps *caps)
134 {
135 caps->format_fixed32 =
136 screen->is_format_supported(screen, PIPE_FORMAT_R32_FIXED, PIPE_BUFFER,
137 0, PIPE_BIND_VERTEX_BUFFER);
138
139 caps->format_float16 =
140 screen->is_format_supported(screen, PIPE_FORMAT_R16_FLOAT, PIPE_BUFFER,
141 0, PIPE_BIND_VERTEX_BUFFER);
142
143 caps->format_float64 =
144 screen->is_format_supported(screen, PIPE_FORMAT_R64_FLOAT, PIPE_BUFFER,
145 0, PIPE_BIND_VERTEX_BUFFER);
146
147 caps->format_norm32 =
148 screen->is_format_supported(screen, PIPE_FORMAT_R32_UNORM, PIPE_BUFFER,
149 0, PIPE_BIND_VERTEX_BUFFER) &&
150 screen->is_format_supported(screen, PIPE_FORMAT_R32_SNORM, PIPE_BUFFER,
151 0, PIPE_BIND_VERTEX_BUFFER);
152
153 caps->format_scaled32 =
154 screen->is_format_supported(screen, PIPE_FORMAT_R32_USCALED, PIPE_BUFFER,
155 0, PIPE_BIND_VERTEX_BUFFER) &&
156 screen->is_format_supported(screen, PIPE_FORMAT_R32_SSCALED, PIPE_BUFFER,
157 0, PIPE_BIND_VERTEX_BUFFER);
158
159 caps->buffer_offset_unaligned =
160 !screen->get_param(screen,
161 PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY);
162
163 caps->buffer_stride_unaligned =
164 !screen->get_param(screen,
165 PIPE_CAP_VERTEX_BUFFER_STRIDE_4BYTE_ALIGNED_ONLY);
166
167 caps->velem_src_offset_unaligned =
168 !screen->get_param(screen,
169 PIPE_CAP_VERTEX_ELEMENT_SRC_OFFSET_4BYTE_ALIGNED_ONLY);
170
171 caps->user_vertex_buffers =
172 screen->get_param(screen, PIPE_CAP_USER_VERTEX_BUFFERS);
173 }
174
175 struct u_vbuf *
176 u_vbuf_create(struct pipe_context *pipe,
177 struct u_vbuf_caps *caps)
178 {
179 struct u_vbuf *mgr = CALLOC_STRUCT(u_vbuf);
180
181 mgr->caps = *caps;
182 mgr->pipe = pipe;
183 mgr->cso_cache = cso_cache_create();
184 mgr->translate_cache = translate_cache_create();
185 memset(mgr->fallback_vbs, ~0, sizeof(mgr->fallback_vbs));
186
187 mgr->uploader = u_upload_create(pipe, 1024 * 1024, 4,
188 PIPE_BIND_VERTEX_BUFFER);
189
190 return mgr;
191 }
192
193 /* u_vbuf uses its own caching for vertex elements, because it needs to keep
194 * its own preprocessed state per vertex element CSO. */
195 static struct u_vbuf_elements *
196 u_vbuf_set_vertex_elements_internal(struct u_vbuf *mgr, unsigned count,
197 const struct pipe_vertex_element *states)
198 {
199 struct pipe_context *pipe = mgr->pipe;
200 unsigned key_size, hash_key;
201 struct cso_hash_iter iter;
202 struct u_vbuf_elements *ve;
203 struct cso_velems_state velems_state;
204
205 /* need to include the count into the stored state data too. */
206 key_size = sizeof(struct pipe_vertex_element) * count + sizeof(unsigned);
207 velems_state.count = count;
208 memcpy(velems_state.velems, states,
209 sizeof(struct pipe_vertex_element) * count);
210 hash_key = cso_construct_key((void*)&velems_state, key_size);
211 iter = cso_find_state_template(mgr->cso_cache, hash_key, CSO_VELEMENTS,
212 (void*)&velems_state, key_size);
213
214 if (cso_hash_iter_is_null(iter)) {
215 struct cso_velements *cso = MALLOC_STRUCT(cso_velements);
216 memcpy(&cso->state, &velems_state, key_size);
217 cso->data = u_vbuf_create_vertex_elements(mgr, count, states);
218 cso->delete_state = (cso_state_callback)u_vbuf_delete_vertex_elements;
219 cso->context = (void*)mgr;
220
221 iter = cso_insert_state(mgr->cso_cache, hash_key, CSO_VELEMENTS, cso);
222 ve = cso->data;
223 } else {
224 ve = ((struct cso_velements *)cso_hash_iter_data(iter))->data;
225 }
226
227 assert(ve);
228 pipe->bind_vertex_elements_state(pipe, ve->driver_cso);
229 return ve;
230 }
231
232 void u_vbuf_set_vertex_elements(struct u_vbuf *mgr, unsigned count,
233 const struct pipe_vertex_element *states)
234 {
235 mgr->ve = u_vbuf_set_vertex_elements_internal(mgr, count, states);
236 }
237
238 void u_vbuf_destroy(struct u_vbuf *mgr)
239 {
240 unsigned i;
241
242 for (i = 0; i < mgr->nr_vertex_buffers; i++) {
243 pipe_resource_reference(&mgr->vertex_buffer[i].buffer, NULL);
244 }
245 for (i = 0; i < mgr->nr_real_vertex_buffers; i++) {
246 pipe_resource_reference(&mgr->real_vertex_buffer[i].buffer, NULL);
247 }
248
249 translate_cache_destroy(mgr->translate_cache);
250 u_upload_destroy(mgr->uploader);
251 cso_cache_delete(mgr->cso_cache);
252 FREE(mgr);
253 }
254
255 static void
256 u_vbuf_translate_buffers(struct u_vbuf *mgr, struct translate_key *key,
257 unsigned vb_mask, unsigned out_vb,
258 int start_vertex, unsigned num_vertices,
259 int start_index, unsigned num_indices, int min_index,
260 boolean unroll_indices)
261 {
262 struct translate *tr;
263 struct pipe_transfer *vb_transfer[PIPE_MAX_ATTRIBS] = {0};
264 struct pipe_resource *out_buffer = NULL;
265 uint8_t *out_map;
266 unsigned i, out_offset;
267
268 /* Get a translate object. */
269 tr = translate_cache_find(mgr->translate_cache, key);
270
271 /* Map buffers we want to translate. */
272 for (i = 0; i < mgr->nr_vertex_buffers; i++) {
273 if (vb_mask & (1 << i)) {
274 struct pipe_vertex_buffer *vb = &mgr->vertex_buffer[i];
275 unsigned offset = vb->buffer_offset + vb->stride * start_vertex;
276 uint8_t *map;
277
278 if (vb->buffer->user_ptr) {
279 map = vb->buffer->user_ptr + offset;
280 } else {
281 unsigned size = vb->stride ? num_vertices * vb->stride
282 : sizeof(double)*4;
283
284 if (offset+size > vb->buffer->width0) {
285 size = vb->buffer->width0 - offset;
286 }
287
288 map = pipe_buffer_map_range(mgr->pipe, vb->buffer, offset, size,
289 PIPE_TRANSFER_READ, &vb_transfer[i]);
290 }
291
292 /* Subtract min_index so that indexing with the index buffer works. */
293 if (unroll_indices) {
294 map -= vb->stride * min_index;
295 }
296
297 tr->set_buffer(tr, i, map, vb->stride, ~0);
298 }
299 }
300
301 /* Translate. */
302 if (unroll_indices) {
303 struct pipe_index_buffer *ib = &mgr->index_buffer;
304 struct pipe_transfer *transfer = NULL;
305 unsigned offset = ib->offset + start_index * ib->index_size;
306 uint8_t *map;
307
308 assert(ib->buffer && ib->index_size);
309
310 if (ib->buffer->user_ptr) {
311 map = ib->buffer->user_ptr + offset;
312 } else {
313 map = pipe_buffer_map_range(mgr->pipe, ib->buffer, offset,
314 num_indices * ib->index_size,
315 PIPE_TRANSFER_READ, &transfer);
316 }
317
318 /* Create and map the output buffer. */
319 u_upload_alloc(mgr->uploader, 0,
320 key->output_stride * num_indices,
321 &out_offset, &out_buffer,
322 (void**)&out_map);
323
324 switch (ib->index_size) {
325 case 4:
326 tr->run_elts(tr, (unsigned*)map, num_indices, 0, out_map);
327 break;
328 case 2:
329 tr->run_elts16(tr, (uint16_t*)map, num_indices, 0, out_map);
330 break;
331 case 1:
332 tr->run_elts8(tr, map, num_indices, 0, out_map);
333 break;
334 }
335
336 if (transfer) {
337 pipe_buffer_unmap(mgr->pipe, transfer);
338 }
339 } else {
340 /* Create and map the output buffer. */
341 u_upload_alloc(mgr->uploader,
342 key->output_stride * start_vertex,
343 key->output_stride * num_vertices,
344 &out_offset, &out_buffer,
345 (void**)&out_map);
346
347 out_offset -= key->output_stride * start_vertex;
348
349 tr->run(tr, 0, num_vertices, 0, out_map);
350 }
351
352 /* Unmap all buffers. */
353 for (i = 0; i < mgr->nr_vertex_buffers; i++) {
354 if (vb_transfer[i]) {
355 pipe_buffer_unmap(mgr->pipe, vb_transfer[i]);
356 }
357 }
358
359 /* Setup the new vertex buffer. */
360 mgr->real_vertex_buffer[out_vb].buffer_offset = out_offset;
361 mgr->real_vertex_buffer[out_vb].stride = key->output_stride;
362
363 /* Move the buffer reference. */
364 pipe_resource_reference(
365 &mgr->real_vertex_buffer[out_vb].buffer, NULL);
366 mgr->real_vertex_buffer[out_vb].buffer = out_buffer;
367 }
368
369 static boolean
370 u_vbuf_translate_find_free_vb_slots(struct u_vbuf *mgr,
371 unsigned mask[VB_NUM])
372 {
373 unsigned type;
374 unsigned fallback_vbs[VB_NUM];
375 /* Set the bit for each buffer which is incompatible, or isn't set. */
376 uint32_t unused_vb_mask =
377 mgr->ve->incompatible_vb_mask_all | mgr->incompatible_vb_mask |
378 ~((1 << mgr->nr_vertex_buffers) - 1);
379
380 memset(fallback_vbs, ~0, sizeof(fallback_vbs));
381
382 /* Find free slots for each type if needed. */
383 for (type = 0; type < VB_NUM; type++) {
384 if (mask[type]) {
385 uint32_t index;
386
387 if (!unused_vb_mask) {
388 /* fail, reset the number to its original value */
389 mgr->nr_real_vertex_buffers = mgr->nr_vertex_buffers;
390 return FALSE;
391 }
392
393 index = ffs(unused_vb_mask) - 1;
394 fallback_vbs[type] = index;
395 if (index >= mgr->nr_real_vertex_buffers) {
396 mgr->nr_real_vertex_buffers = index + 1;
397 }
398 /*printf("found slot=%i for type=%i\n", index, type);*/
399 }
400 }
401
402 memcpy(mgr->fallback_vbs, fallback_vbs, sizeof(fallback_vbs));
403 return TRUE;
404 }
405
406 static boolean
407 u_vbuf_translate_begin(struct u_vbuf *mgr,
408 int start_vertex, unsigned num_vertices,
409 int start_instance, unsigned num_instances,
410 int start_index, unsigned num_indices, int min_index,
411 boolean unroll_indices)
412 {
413 unsigned mask[VB_NUM] = {0};
414 struct translate_key key[VB_NUM];
415 unsigned elem_index[VB_NUM][PIPE_MAX_ATTRIBS]; /* ... into key.elements */
416 unsigned i, type;
417
418 int start[VB_NUM] = {
419 start_vertex, /* VERTEX */
420 start_instance, /* INSTANCE */
421 0 /* CONST */
422 };
423
424 unsigned num[VB_NUM] = {
425 num_vertices, /* VERTEX */
426 num_instances, /* INSTANCE */
427 1 /* CONST */
428 };
429
430 memset(key, 0, sizeof(key));
431 memset(elem_index, ~0, sizeof(elem_index));
432
433 /* See if there are vertex attribs of each type to translate and
434 * which ones. */
435 for (i = 0; i < mgr->ve->count; i++) {
436 unsigned vb_index = mgr->ve->ve[i].vertex_buffer_index;
437
438 if (!mgr->vertex_buffer[vb_index].stride) {
439 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
440 !(mgr->incompatible_vb_mask & (1 << vb_index))) {
441 continue;
442 }
443 mask[VB_CONST] |= 1 << vb_index;
444 } else if (mgr->ve->ve[i].instance_divisor) {
445 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
446 !(mgr->incompatible_vb_mask & (1 << vb_index))) {
447 continue;
448 }
449 mask[VB_INSTANCE] |= 1 << vb_index;
450 } else {
451 if (!unroll_indices &&
452 !(mgr->ve->incompatible_elem_mask & (1 << i)) &&
453 !(mgr->incompatible_vb_mask & (1 << vb_index))) {
454 continue;
455 }
456 mask[VB_VERTEX] |= 1 << vb_index;
457 }
458 }
459
460 assert(mask[VB_VERTEX] || mask[VB_INSTANCE] || mask[VB_CONST]);
461
462 /* Find free vertex buffer slots. */
463 if (!u_vbuf_translate_find_free_vb_slots(mgr, mask)) {
464 return FALSE;
465 }
466
467 /* Initialize the translate keys. */
468 for (i = 0; i < mgr->ve->count; i++) {
469 struct translate_key *k;
470 struct translate_element *te;
471 unsigned bit, vb_index = mgr->ve->ve[i].vertex_buffer_index;
472 bit = 1 << vb_index;
473
474 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
475 !(mgr->incompatible_vb_mask & (1 << vb_index)) &&
476 (!unroll_indices || !(mask[VB_VERTEX] & bit))) {
477 continue;
478 }
479
480 /* Set type to what we will translate.
481 * Whether vertex, instance, or constant attribs. */
482 for (type = 0; type < VB_NUM; type++) {
483 if (mask[type] & bit) {
484 break;
485 }
486 }
487 assert(type < VB_NUM);
488 assert(translate_is_output_format_supported(mgr->ve->native_format[i]));
489 /*printf("velem=%i type=%i\n", i, type);*/
490
491 /* Add the vertex element. */
492 k = &key[type];
493 elem_index[type][i] = k->nr_elements;
494
495 te = &k->element[k->nr_elements];
496 te->type = TRANSLATE_ELEMENT_NORMAL;
497 te->instance_divisor = 0;
498 te->input_buffer = vb_index;
499 te->input_format = mgr->ve->ve[i].src_format;
500 te->input_offset = mgr->ve->ve[i].src_offset;
501 te->output_format = mgr->ve->native_format[i];
502 te->output_offset = k->output_stride;
503
504 k->output_stride += mgr->ve->native_format_size[i];
505 k->nr_elements++;
506 }
507
508 /* Translate buffers. */
509 for (type = 0; type < VB_NUM; type++) {
510 if (key[type].nr_elements) {
511 u_vbuf_translate_buffers(mgr, &key[type], mask[type],
512 mgr->fallback_vbs[type],
513 start[type], num[type],
514 start_index, num_indices, min_index,
515 unroll_indices && type == VB_VERTEX);
516
517 /* Fixup the stride for constant attribs. */
518 if (type == VB_CONST) {
519 mgr->real_vertex_buffer[mgr->fallback_vbs[VB_CONST]].stride = 0;
520 }
521 }
522 }
523
524 /* Setup new vertex elements. */
525 for (i = 0; i < mgr->ve->count; i++) {
526 for (type = 0; type < VB_NUM; type++) {
527 if (elem_index[type][i] < key[type].nr_elements) {
528 struct translate_element *te = &key[type].element[elem_index[type][i]];
529 mgr->fallback_velems[i].instance_divisor = mgr->ve->ve[i].instance_divisor;
530 mgr->fallback_velems[i].src_format = te->output_format;
531 mgr->fallback_velems[i].src_offset = te->output_offset;
532 mgr->fallback_velems[i].vertex_buffer_index = mgr->fallback_vbs[type];
533
534 /* elem_index[type][i] can only be set for one type. */
535 assert(type > VB_INSTANCE || elem_index[type+1][i] == ~0);
536 assert(type > VB_VERTEX || elem_index[type+2][i] == ~0);
537 break;
538 }
539 }
540 /* No translating, just copy the original vertex element over. */
541 if (type == VB_NUM) {
542 memcpy(&mgr->fallback_velems[i], &mgr->ve->ve[i],
543 sizeof(struct pipe_vertex_element));
544 }
545 }
546
547 u_vbuf_set_vertex_elements_internal(mgr, mgr->ve->count,
548 mgr->fallback_velems);
549 mgr->using_translate = TRUE;
550 return TRUE;
551 }
552
553 static void u_vbuf_translate_end(struct u_vbuf *mgr)
554 {
555 unsigned i;
556
557 /* Restore vertex elements. */
558 mgr->pipe->bind_vertex_elements_state(mgr->pipe, mgr->ve->driver_cso);
559 mgr->using_translate = FALSE;
560
561 /* Unreference the now-unused VBOs. */
562 for (i = 0; i < VB_NUM; i++) {
563 unsigned vb = mgr->fallback_vbs[i];
564 if (vb != ~0) {
565 pipe_resource_reference(&mgr->real_vertex_buffer[vb].buffer, NULL);
566 mgr->fallback_vbs[i] = ~0;
567 }
568 }
569 mgr->nr_real_vertex_buffers = mgr->nr_vertex_buffers;
570 }
571
572 #define FORMAT_REPLACE(what, withwhat) \
573 case PIPE_FORMAT_##what: format = PIPE_FORMAT_##withwhat; break
574
575 static void *
576 u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
577 const struct pipe_vertex_element *attribs)
578 {
579 struct pipe_context *pipe = mgr->pipe;
580 unsigned i;
581 struct pipe_vertex_element driver_attribs[PIPE_MAX_ATTRIBS];
582 struct u_vbuf_elements *ve = CALLOC_STRUCT(u_vbuf_elements);
583 uint32_t used_buffers = 0;
584
585 ve->count = count;
586
587 memcpy(ve->ve, attribs, sizeof(struct pipe_vertex_element) * count);
588 memcpy(driver_attribs, attribs, sizeof(struct pipe_vertex_element) * count);
589
590 /* Set the best native format in case the original format is not
591 * supported. */
592 for (i = 0; i < count; i++) {
593 enum pipe_format format = ve->ve[i].src_format;
594
595 ve->src_format_size[i] = util_format_get_blocksize(format);
596
597 used_buffers |= 1 << ve->ve[i].vertex_buffer_index;
598
599 if (!ve->ve[i].instance_divisor) {
600 ve->noninstance_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
601 }
602
603 /* Choose a native format.
604 * For now we don't care about the alignment, that's going to
605 * be sorted out later. */
606 if (!mgr->caps.format_fixed32) {
607 switch (format) {
608 FORMAT_REPLACE(R32_FIXED, R32_FLOAT);
609 FORMAT_REPLACE(R32G32_FIXED, R32G32_FLOAT);
610 FORMAT_REPLACE(R32G32B32_FIXED, R32G32B32_FLOAT);
611 FORMAT_REPLACE(R32G32B32A32_FIXED, R32G32B32A32_FLOAT);
612 default:;
613 }
614 }
615 if (!mgr->caps.format_float16) {
616 switch (format) {
617 FORMAT_REPLACE(R16_FLOAT, R32_FLOAT);
618 FORMAT_REPLACE(R16G16_FLOAT, R32G32_FLOAT);
619 FORMAT_REPLACE(R16G16B16_FLOAT, R32G32B32_FLOAT);
620 FORMAT_REPLACE(R16G16B16A16_FLOAT, R32G32B32A32_FLOAT);
621 default:;
622 }
623 }
624 if (!mgr->caps.format_float64) {
625 switch (format) {
626 FORMAT_REPLACE(R64_FLOAT, R32_FLOAT);
627 FORMAT_REPLACE(R64G64_FLOAT, R32G32_FLOAT);
628 FORMAT_REPLACE(R64G64B64_FLOAT, R32G32B32_FLOAT);
629 FORMAT_REPLACE(R64G64B64A64_FLOAT, R32G32B32A32_FLOAT);
630 default:;
631 }
632 }
633 if (!mgr->caps.format_norm32) {
634 switch (format) {
635 FORMAT_REPLACE(R32_UNORM, R32_FLOAT);
636 FORMAT_REPLACE(R32G32_UNORM, R32G32_FLOAT);
637 FORMAT_REPLACE(R32G32B32_UNORM, R32G32B32_FLOAT);
638 FORMAT_REPLACE(R32G32B32A32_UNORM, R32G32B32A32_FLOAT);
639 FORMAT_REPLACE(R32_SNORM, R32_FLOAT);
640 FORMAT_REPLACE(R32G32_SNORM, R32G32_FLOAT);
641 FORMAT_REPLACE(R32G32B32_SNORM, R32G32B32_FLOAT);
642 FORMAT_REPLACE(R32G32B32A32_SNORM, R32G32B32A32_FLOAT);
643 default:;
644 }
645 }
646 if (!mgr->caps.format_scaled32) {
647 switch (format) {
648 FORMAT_REPLACE(R32_USCALED, R32_FLOAT);
649 FORMAT_REPLACE(R32G32_USCALED, R32G32_FLOAT);
650 FORMAT_REPLACE(R32G32B32_USCALED, R32G32B32_FLOAT);
651 FORMAT_REPLACE(R32G32B32A32_USCALED,R32G32B32A32_FLOAT);
652 FORMAT_REPLACE(R32_SSCALED, R32_FLOAT);
653 FORMAT_REPLACE(R32G32_SSCALED, R32G32_FLOAT);
654 FORMAT_REPLACE(R32G32B32_SSCALED, R32G32B32_FLOAT);
655 FORMAT_REPLACE(R32G32B32A32_SSCALED,R32G32B32A32_FLOAT);
656 default:;
657 }
658 }
659
660 driver_attribs[i].src_format = format;
661 ve->native_format[i] = format;
662 ve->native_format_size[i] =
663 util_format_get_blocksize(ve->native_format[i]);
664
665 if (ve->ve[i].src_format != format ||
666 (!mgr->caps.velem_src_offset_unaligned &&
667 ve->ve[i].src_offset % 4 != 0)) {
668 ve->incompatible_elem_mask |= 1 << i;
669 ve->incompatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
670 } else {
671 ve->compatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
672 }
673 }
674
675 ve->compatible_vb_mask_all = ~ve->incompatible_vb_mask_any & used_buffers;
676 ve->incompatible_vb_mask_all = ~ve->compatible_vb_mask_any & used_buffers;
677
678 /* Align the formats to the size of DWORD if needed. */
679 if (!mgr->caps.velem_src_offset_unaligned) {
680 for (i = 0; i < count; i++) {
681 ve->native_format_size[i] = align(ve->native_format_size[i], 4);
682 }
683 }
684
685 ve->driver_cso =
686 pipe->create_vertex_elements_state(pipe, count, driver_attribs);
687 return ve;
688 }
689
690 static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso)
691 {
692 struct pipe_context *pipe = mgr->pipe;
693 struct u_vbuf_elements *ve = cso;
694
695 pipe->delete_vertex_elements_state(pipe, ve->driver_cso);
696 FREE(ve);
697 }
698
699 void u_vbuf_set_vertex_buffers(struct u_vbuf *mgr, unsigned count,
700 const struct pipe_vertex_buffer *bufs)
701 {
702 unsigned i;
703
704 mgr->user_vb_mask = 0;
705 mgr->incompatible_vb_mask = 0;
706 mgr->nonzero_stride_vb_mask = 0;
707
708 for (i = 0; i < count; i++) {
709 const struct pipe_vertex_buffer *vb = &bufs[i];
710 struct pipe_vertex_buffer *orig_vb = &mgr->vertex_buffer[i];
711 struct pipe_vertex_buffer *real_vb = &mgr->real_vertex_buffer[i];
712
713 pipe_resource_reference(&orig_vb->buffer, vb->buffer);
714
715 real_vb->buffer_offset = orig_vb->buffer_offset = vb->buffer_offset;
716 real_vb->stride = orig_vb->stride = vb->stride;
717
718 if (vb->stride) {
719 mgr->nonzero_stride_vb_mask |= 1 << i;
720 }
721
722 if (!vb->buffer) {
723 pipe_resource_reference(&real_vb->buffer, NULL);
724 continue;
725 }
726
727 if ((!mgr->caps.buffer_offset_unaligned && vb->buffer_offset % 4 != 0) ||
728 (!mgr->caps.buffer_stride_unaligned && vb->stride % 4 != 0)) {
729 mgr->incompatible_vb_mask |= 1 << i;
730 pipe_resource_reference(&real_vb->buffer, NULL);
731 continue;
732 }
733
734 if (vb->buffer->user_ptr) {
735 mgr->user_vb_mask |= 1 << i;
736 pipe_resource_reference(&real_vb->buffer, NULL);
737 continue;
738 }
739
740 pipe_resource_reference(&real_vb->buffer, vb->buffer);
741 }
742
743 for (i = count; i < mgr->nr_vertex_buffers; i++) {
744 pipe_resource_reference(&mgr->vertex_buffer[i].buffer, NULL);
745 }
746 for (i = count; i < mgr->nr_real_vertex_buffers; i++) {
747 pipe_resource_reference(&mgr->real_vertex_buffer[i].buffer, NULL);
748 }
749
750 mgr->nr_vertex_buffers = count;
751 mgr->nr_real_vertex_buffers = count;
752 mgr->vertex_buffers_dirty = TRUE;
753 }
754
755 void u_vbuf_set_index_buffer(struct u_vbuf *mgr,
756 const struct pipe_index_buffer *ib)
757 {
758 struct pipe_context *pipe = mgr->pipe;
759
760 if (ib && ib->buffer) {
761 assert(ib->offset % ib->index_size == 0);
762 pipe_resource_reference(&mgr->index_buffer.buffer, ib->buffer);
763 mgr->index_buffer.offset = ib->offset;
764 mgr->index_buffer.index_size = ib->index_size;
765 } else {
766 pipe_resource_reference(&mgr->index_buffer.buffer, NULL);
767 }
768
769 pipe->set_index_buffer(pipe, ib);
770 }
771
772 static void
773 u_vbuf_upload_buffers(struct u_vbuf *mgr,
774 int start_vertex, unsigned num_vertices,
775 int start_instance, unsigned num_instances)
776 {
777 unsigned i;
778 unsigned nr_velems = mgr->ve->count;
779 unsigned nr_vbufs = mgr->nr_vertex_buffers;
780 struct pipe_vertex_element *velems =
781 mgr->using_translate ? mgr->fallback_velems : mgr->ve->ve;
782 unsigned start_offset[PIPE_MAX_ATTRIBS];
783 unsigned end_offset[PIPE_MAX_ATTRIBS] = {0};
784
785 /* Determine how much data needs to be uploaded. */
786 for (i = 0; i < nr_velems; i++) {
787 struct pipe_vertex_element *velem = &velems[i];
788 unsigned index = velem->vertex_buffer_index;
789 struct pipe_vertex_buffer *vb = &mgr->vertex_buffer[index];
790 unsigned instance_div, first, size;
791
792 /* Skip the buffers generated by translate. */
793 if (index == mgr->fallback_vbs[VB_VERTEX] ||
794 index == mgr->fallback_vbs[VB_INSTANCE] ||
795 index == mgr->fallback_vbs[VB_CONST]) {
796 continue;
797 }
798
799 assert(vb->buffer);
800
801 if (!vb->buffer->user_ptr) {
802 continue;
803 }
804
805 instance_div = velem->instance_divisor;
806 first = vb->buffer_offset + velem->src_offset;
807
808 if (!vb->stride) {
809 /* Constant attrib. */
810 size = mgr->ve->src_format_size[i];
811 } else if (instance_div) {
812 /* Per-instance attrib. */
813 unsigned count = (num_instances + instance_div - 1) / instance_div;
814 first += vb->stride * start_instance;
815 size = vb->stride * (count - 1) + mgr->ve->src_format_size[i];
816 } else {
817 /* Per-vertex attrib. */
818 first += vb->stride * start_vertex;
819 size = vb->stride * (num_vertices - 1) + mgr->ve->src_format_size[i];
820 }
821
822 /* Update offsets. */
823 if (!end_offset[index]) {
824 start_offset[index] = first;
825 end_offset[index] = first + size;
826 } else {
827 if (first < start_offset[index])
828 start_offset[index] = first;
829 if (first + size > end_offset[index])
830 end_offset[index] = first + size;
831 }
832 }
833
834 /* Upload buffers. */
835 for (i = 0; i < nr_vbufs; i++) {
836 unsigned start, end = end_offset[i];
837 struct pipe_vertex_buffer *real_vb;
838 uint8_t *ptr;
839
840 if (!end) {
841 continue;
842 }
843
844 start = start_offset[i];
845 assert(start < end);
846
847 real_vb = &mgr->real_vertex_buffer[i];
848 ptr = mgr->vertex_buffer[i].buffer->user_ptr;
849
850 u_upload_data(mgr->uploader, start, end - start, ptr + start,
851 &real_vb->buffer_offset, &real_vb->buffer);
852
853 real_vb->buffer_offset -= start;
854 }
855 }
856
857 static boolean u_vbuf_need_minmax_index(struct u_vbuf *mgr)
858 {
859 /* See if there are any per-vertex attribs which will be uploaded or
860 * translated. Use bitmasks to get the info instead of looping over vertex
861 * elements. */
862 return ((mgr->user_vb_mask | mgr->incompatible_vb_mask |
863 mgr->ve->incompatible_vb_mask_any) &
864 mgr->ve->noninstance_vb_mask_any & mgr->nonzero_stride_vb_mask) != 0;
865 }
866
867 static boolean u_vbuf_mapping_vertex_buffer_blocks(struct u_vbuf *mgr)
868 {
869 /* Return true if there are hw buffers which don't need to be translated.
870 *
871 * We could query whether each buffer is busy, but that would
872 * be way more costly than this. */
873 return (~mgr->user_vb_mask & ~mgr->incompatible_vb_mask &
874 mgr->ve->compatible_vb_mask_all & mgr->ve->noninstance_vb_mask_any &
875 mgr->nonzero_stride_vb_mask) != 0;
876 }
877
878 static void u_vbuf_get_minmax_index(struct pipe_context *pipe,
879 struct pipe_index_buffer *ib,
880 const struct pipe_draw_info *info,
881 int *out_min_index,
882 int *out_max_index)
883 {
884 struct pipe_transfer *transfer = NULL;
885 const void *indices;
886 unsigned i;
887 unsigned restart_index = info->restart_index;
888
889 if (ib->buffer->user_ptr) {
890 indices = ib->buffer->user_ptr +
891 ib->offset + info->start * ib->index_size;
892 } else {
893 indices = pipe_buffer_map_range(pipe, ib->buffer,
894 ib->offset + info->start * ib->index_size,
895 info->count * ib->index_size,
896 PIPE_TRANSFER_READ, &transfer);
897 }
898
899 switch (ib->index_size) {
900 case 4: {
901 const unsigned *ui_indices = (const unsigned*)indices;
902 unsigned max_ui = 0;
903 unsigned min_ui = ~0U;
904 if (info->primitive_restart) {
905 for (i = 0; i < info->count; i++) {
906 if (ui_indices[i] != restart_index) {
907 if (ui_indices[i] > max_ui) max_ui = ui_indices[i];
908 if (ui_indices[i] < min_ui) min_ui = ui_indices[i];
909 }
910 }
911 }
912 else {
913 for (i = 0; i < info->count; i++) {
914 if (ui_indices[i] > max_ui) max_ui = ui_indices[i];
915 if (ui_indices[i] < min_ui) min_ui = ui_indices[i];
916 }
917 }
918 *out_min_index = min_ui;
919 *out_max_index = max_ui;
920 break;
921 }
922 case 2: {
923 const unsigned short *us_indices = (const unsigned short*)indices;
924 unsigned max_us = 0;
925 unsigned min_us = ~0U;
926 if (info->primitive_restart) {
927 for (i = 0; i < info->count; i++) {
928 if (us_indices[i] != restart_index) {
929 if (us_indices[i] > max_us) max_us = us_indices[i];
930 if (us_indices[i] < min_us) min_us = us_indices[i];
931 }
932 }
933 }
934 else {
935 for (i = 0; i < info->count; i++) {
936 if (us_indices[i] > max_us) max_us = us_indices[i];
937 if (us_indices[i] < min_us) min_us = us_indices[i];
938 }
939 }
940 *out_min_index = min_us;
941 *out_max_index = max_us;
942 break;
943 }
944 case 1: {
945 const unsigned char *ub_indices = (const unsigned char*)indices;
946 unsigned max_ub = 0;
947 unsigned min_ub = ~0U;
948 if (info->primitive_restart) {
949 for (i = 0; i < info->count; i++) {
950 if (ub_indices[i] != restart_index) {
951 if (ub_indices[i] > max_ub) max_ub = ub_indices[i];
952 if (ub_indices[i] < min_ub) min_ub = ub_indices[i];
953 }
954 }
955 }
956 else {
957 for (i = 0; i < info->count; i++) {
958 if (ub_indices[i] > max_ub) max_ub = ub_indices[i];
959 if (ub_indices[i] < min_ub) min_ub = ub_indices[i];
960 }
961 }
962 *out_min_index = min_ub;
963 *out_max_index = max_ub;
964 break;
965 }
966 default:
967 assert(0);
968 *out_min_index = 0;
969 *out_max_index = 0;
970 }
971
972 if (transfer) {
973 pipe_buffer_unmap(pipe, transfer);
974 }
975 }
976
977 void u_vbuf_draw_vbo(struct u_vbuf *mgr, const struct pipe_draw_info *info)
978 {
979 struct pipe_context *pipe = mgr->pipe;
980 int start_vertex, min_index;
981 unsigned num_vertices;
982 boolean unroll_indices = FALSE;
983
984 /* Normal draw. No fallback and no user buffers. */
985 if (!mgr->incompatible_vb_mask &&
986 !mgr->ve->incompatible_elem_mask &&
987 !mgr->user_vb_mask) {
988 /* Set vertex buffers if needed. */
989 if (mgr->vertex_buffers_dirty) {
990 pipe->set_vertex_buffers(pipe, mgr->nr_real_vertex_buffers,
991 mgr->real_vertex_buffer);
992 mgr->vertex_buffers_dirty = FALSE;
993 }
994
995 pipe->draw_vbo(pipe, info);
996 return;
997 }
998
999 if (info->indexed) {
1000 /* See if anything needs to be done for per-vertex attribs. */
1001 if (u_vbuf_need_minmax_index(mgr)) {
1002 int max_index;
1003
1004 if (info->max_index != ~0) {
1005 min_index = info->min_index;
1006 max_index = info->max_index;
1007 } else {
1008 u_vbuf_get_minmax_index(mgr->pipe, &mgr->index_buffer, info,
1009 &min_index, &max_index);
1010 }
1011
1012 assert(min_index <= max_index);
1013
1014 start_vertex = min_index + info->index_bias;
1015 num_vertices = max_index + 1 - min_index;
1016
1017 /* Primitive restart doesn't work when unrolling indices.
1018 * We would have to break this drawing operation into several ones. */
1019 /* Use some heuristic to see if unrolling indices improves
1020 * performance. */
1021 if (!info->primitive_restart &&
1022 num_vertices > info->count*2 &&
1023 num_vertices-info->count > 32 &&
1024 !u_vbuf_mapping_vertex_buffer_blocks(mgr)) {
1025 /*printf("num_vertices=%i count=%i\n", num_vertices, info->count);*/
1026 unroll_indices = TRUE;
1027 }
1028 } else {
1029 /* Nothing to do for per-vertex attribs. */
1030 start_vertex = 0;
1031 num_vertices = 0;
1032 min_index = 0;
1033 }
1034 } else {
1035 start_vertex = info->start;
1036 num_vertices = info->count;
1037 min_index = 0;
1038 }
1039
1040 /* Translate vertices with non-native layouts or formats. */
1041 if (unroll_indices ||
1042 mgr->incompatible_vb_mask ||
1043 mgr->ve->incompatible_elem_mask) {
1044 /* XXX check the return value */
1045 u_vbuf_translate_begin(mgr, start_vertex, num_vertices,
1046 info->start_instance, info->instance_count,
1047 info->start, info->count, min_index,
1048 unroll_indices);
1049 }
1050
1051 /* Upload user buffers. */
1052 if (mgr->user_vb_mask) {
1053 u_vbuf_upload_buffers(mgr, start_vertex, num_vertices,
1054 info->start_instance, info->instance_count);
1055 }
1056
1057 /*
1058 if (unroll_indices) {
1059 printf("unrolling indices: start_vertex = %i, num_vertices = %i\n",
1060 start_vertex, num_vertices);
1061 util_dump_draw_info(stdout, info);
1062 printf("\n");
1063 }
1064
1065 unsigned i;
1066 for (i = 0; i < mgr->nr_vertex_buffers; i++) {
1067 printf("input %i: ", i);
1068 util_dump_vertex_buffer(stdout, mgr->vertex_buffer+i);
1069 printf("\n");
1070 }
1071 for (i = 0; i < mgr->nr_real_vertex_buffers; i++) {
1072 printf("real %i: ", i);
1073 util_dump_vertex_buffer(stdout, mgr->real_vertex_buffer+i);
1074 printf("\n");
1075 }
1076 */
1077
1078 u_upload_unmap(mgr->uploader);
1079 pipe->set_vertex_buffers(pipe, mgr->nr_real_vertex_buffers,
1080 mgr->real_vertex_buffer);
1081
1082 if (unlikely(unroll_indices)) {
1083 struct pipe_draw_info new_info = *info;
1084 new_info.indexed = FALSE;
1085 new_info.index_bias = 0;
1086 new_info.min_index = 0;
1087 new_info.max_index = info->count - 1;
1088 new_info.start = 0;
1089
1090 pipe->draw_vbo(pipe, &new_info);
1091 } else {
1092 pipe->draw_vbo(pipe, info);
1093 }
1094
1095 if (mgr->using_translate) {
1096 u_vbuf_translate_end(mgr);
1097 }
1098 mgr->vertex_buffers_dirty = TRUE;
1099 }
1100
1101 void u_vbuf_save_vertex_elements(struct u_vbuf *mgr)
1102 {
1103 assert(!mgr->ve_saved);
1104 mgr->ve_saved = mgr->ve;
1105 }
1106
1107 void u_vbuf_restore_vertex_elements(struct u_vbuf *mgr)
1108 {
1109 if (mgr->ve != mgr->ve_saved) {
1110 struct pipe_context *pipe = mgr->pipe;
1111
1112 mgr->ve = mgr->ve_saved;
1113 pipe->bind_vertex_elements_state(pipe,
1114 mgr->ve ? mgr->ve->driver_cso : NULL);
1115 }
1116 mgr->ve_saved = NULL;
1117 }
1118
1119 void u_vbuf_save_vertex_buffers(struct u_vbuf *mgr)
1120 {
1121 util_copy_vertex_buffers(mgr->vertex_buffer_saved,
1122 &mgr->nr_vertex_buffers_saved,
1123 mgr->vertex_buffer,
1124 mgr->nr_vertex_buffers);
1125 }
1126
1127 void u_vbuf_restore_vertex_buffers(struct u_vbuf *mgr)
1128 {
1129 unsigned i;
1130
1131 u_vbuf_set_vertex_buffers(mgr, mgr->nr_vertex_buffers_saved,
1132 mgr->vertex_buffer_saved);
1133 for (i = 0; i < mgr->nr_vertex_buffers_saved; i++) {
1134 pipe_resource_reference(&mgr->vertex_buffer_saved[i].buffer, NULL);
1135 }
1136 mgr->nr_vertex_buffers_saved = 0;
1137 }