Merge branch 'master' of ../mesa into vulkan
[mesa.git] / src / gallium / auxiliary / util / u_vbuf.c
1 /**************************************************************************
2 *
3 * Copyright 2011 Marek Olšák <maraeo@gmail.com>
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * This module uploads user buffers and translates the vertex buffers which
30 * contain incompatible vertices (i.e. not supported by the driver/hardware)
31 * into compatible ones, based on the Gallium CAPs.
32 *
33 * It does not upload index buffers.
34 *
35 * The module heavily uses bitmasks to represent per-buffer and
36 * per-vertex-element flags to avoid looping over the list of buffers just
37 * to see if there's a non-zero stride, or user buffer, or unsupported format,
38 * etc.
39 *
40 * There are 3 categories of vertex elements, which are processed separately:
41 * - per-vertex attribs (stride != 0, instance_divisor == 0)
42 * - instanced attribs (stride != 0, instance_divisor > 0)
43 * - constant attribs (stride == 0)
44 *
45 * All needed uploads and translations are performed every draw command, but
46 * only the subset of vertices needed for that draw command is uploaded or
47 * translated. (the module never translates whole buffers)
48 *
49 *
50 * The module consists of two main parts:
51 *
52 *
53 * 1) Translate (u_vbuf_translate_begin/end)
54 *
55 * This is pretty much a vertex fetch fallback. It translates vertices from
56 * one vertex buffer to another in an unused vertex buffer slot. It does
57 * whatever is needed to make the vertices readable by the hardware (changes
58 * vertex formats and aligns offsets and strides). The translate module is
59 * used here.
60 *
61 * Each of the 3 categories is translated to a separate buffer.
62 * Only the [min_index, max_index] range is translated. For instanced attribs,
63 * the range is [start_instance, start_instance+instance_count]. For constant
64 * attribs, the range is [0, 1].
65 *
66 *
67 * 2) User buffer uploading (u_vbuf_upload_buffers)
68 *
69 * Only the [min_index, max_index] range is uploaded (just like Translate)
70 * with a single memcpy.
71 *
72 * This method works best for non-indexed draw operations or indexed draw
73 * operations where the [min_index, max_index] range is not being way bigger
74 * than the vertex count.
75 *
76 * If the range is too big (e.g. one triangle with indices {0, 1, 10000}),
77 * the per-vertex attribs are uploaded via the translate module, all packed
78 * into one vertex buffer, and the indexed draw call is turned into
79 * a non-indexed one in the process. This adds additional complexity
80 * to the translate part, but it prevents bad apps from bringing your frame
81 * rate down.
82 *
83 *
84 * If there is nothing to do, it forwards every command to the driver.
85 * The module also has its own CSO cache of vertex element states.
86 */
87
88 #include "util/u_vbuf.h"
89
90 #include "util/u_dump.h"
91 #include "util/u_format.h"
92 #include "util/u_inlines.h"
93 #include "util/u_memory.h"
94 #include "util/u_upload_mgr.h"
95 #include "translate/translate.h"
96 #include "translate/translate_cache.h"
97 #include "cso_cache/cso_cache.h"
98 #include "cso_cache/cso_hash.h"
99
100 struct u_vbuf_elements {
101 unsigned count;
102 struct pipe_vertex_element ve[PIPE_MAX_ATTRIBS];
103
104 unsigned src_format_size[PIPE_MAX_ATTRIBS];
105
106 /* If (velem[i].src_format != native_format[i]), the vertex buffer
107 * referenced by the vertex element cannot be used for rendering and
108 * its vertex data must be translated to native_format[i]. */
109 enum pipe_format native_format[PIPE_MAX_ATTRIBS];
110 unsigned native_format_size[PIPE_MAX_ATTRIBS];
111
112 /* Which buffers are used by the vertex element state. */
113 uint32_t used_vb_mask;
114 /* This might mean two things:
115 * - src_format != native_format, as discussed above.
116 * - src_offset % 4 != 0 (if the caps don't allow such an offset). */
117 uint32_t incompatible_elem_mask; /* each bit describes a corresp. attrib */
118 /* Which buffer has at least one vertex element referencing it
119 * incompatible. */
120 uint32_t incompatible_vb_mask_any;
121 /* Which buffer has all vertex elements referencing it incompatible. */
122 uint32_t incompatible_vb_mask_all;
123 /* Which buffer has at least one vertex element referencing it
124 * compatible. */
125 uint32_t compatible_vb_mask_any;
126 /* Which buffer has all vertex elements referencing it compatible. */
127 uint32_t compatible_vb_mask_all;
128
129 /* Which buffer has at least one vertex element referencing it
130 * non-instanced. */
131 uint32_t noninstance_vb_mask_any;
132
133 void *driver_cso;
134 };
135
136 enum {
137 VB_VERTEX = 0,
138 VB_INSTANCE = 1,
139 VB_CONST = 2,
140 VB_NUM = 3
141 };
142
143 struct u_vbuf {
144 struct u_vbuf_caps caps;
145
146 struct pipe_context *pipe;
147 struct translate_cache *translate_cache;
148 struct cso_cache *cso_cache;
149 struct u_upload_mgr *uploader;
150
151 /* This is what was set in set_vertex_buffers.
152 * May contain user buffers. */
153 struct pipe_vertex_buffer vertex_buffer[PIPE_MAX_ATTRIBS];
154 uint32_t enabled_vb_mask;
155
156 /* Saved vertex buffer. */
157 unsigned aux_vertex_buffer_slot;
158 struct pipe_vertex_buffer aux_vertex_buffer_saved;
159
160 /* Vertex buffers for the driver.
161 * There are usually no user buffers. */
162 struct pipe_vertex_buffer real_vertex_buffer[PIPE_MAX_ATTRIBS];
163 uint32_t dirty_real_vb_mask; /* which buffers are dirty since the last
164 call of set_vertex_buffers */
165
166 /* The index buffer. */
167 struct pipe_index_buffer index_buffer;
168
169 /* Vertex elements. */
170 struct u_vbuf_elements *ve, *ve_saved;
171
172 /* Vertex elements used for the translate fallback. */
173 struct pipe_vertex_element fallback_velems[PIPE_MAX_ATTRIBS];
174 /* If non-NULL, this is a vertex element state used for the translate
175 * fallback and therefore used for rendering too. */
176 boolean using_translate;
177 /* The vertex buffer slot index where translated vertices have been
178 * stored in. */
179 unsigned fallback_vbs[VB_NUM];
180
181 /* Which buffer is a user buffer. */
182 uint32_t user_vb_mask; /* each bit describes a corresp. buffer */
183 /* Which buffer is incompatible (unaligned). */
184 uint32_t incompatible_vb_mask; /* each bit describes a corresp. buffer */
185 /* Which buffer has a non-zero stride. */
186 uint32_t nonzero_stride_vb_mask; /* each bit describes a corresp. buffer */
187 };
188
189 static void *
190 u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
191 const struct pipe_vertex_element *attribs);
192 static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso);
193
194 static const struct {
195 enum pipe_format from, to;
196 } vbuf_format_fallbacks[] = {
197 { PIPE_FORMAT_R32_FIXED, PIPE_FORMAT_R32_FLOAT },
198 { PIPE_FORMAT_R32G32_FIXED, PIPE_FORMAT_R32G32_FLOAT },
199 { PIPE_FORMAT_R32G32B32_FIXED, PIPE_FORMAT_R32G32B32_FLOAT },
200 { PIPE_FORMAT_R32G32B32A32_FIXED, PIPE_FORMAT_R32G32B32A32_FLOAT },
201 { PIPE_FORMAT_R16_FLOAT, PIPE_FORMAT_R32_FLOAT },
202 { PIPE_FORMAT_R16G16_FLOAT, PIPE_FORMAT_R32G32_FLOAT },
203 { PIPE_FORMAT_R16G16B16_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT },
204 { PIPE_FORMAT_R16G16B16A16_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT },
205 { PIPE_FORMAT_R64_FLOAT, PIPE_FORMAT_R32_FLOAT },
206 { PIPE_FORMAT_R64G64_FLOAT, PIPE_FORMAT_R32G32_FLOAT },
207 { PIPE_FORMAT_R64G64B64_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT },
208 { PIPE_FORMAT_R64G64B64A64_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT },
209 { PIPE_FORMAT_R32_UNORM, PIPE_FORMAT_R32_FLOAT },
210 { PIPE_FORMAT_R32G32_UNORM, PIPE_FORMAT_R32G32_FLOAT },
211 { PIPE_FORMAT_R32G32B32_UNORM, PIPE_FORMAT_R32G32B32_FLOAT },
212 { PIPE_FORMAT_R32G32B32A32_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
213 { PIPE_FORMAT_R32_SNORM, PIPE_FORMAT_R32_FLOAT },
214 { PIPE_FORMAT_R32G32_SNORM, PIPE_FORMAT_R32G32_FLOAT },
215 { PIPE_FORMAT_R32G32B32_SNORM, PIPE_FORMAT_R32G32B32_FLOAT },
216 { PIPE_FORMAT_R32G32B32A32_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
217 { PIPE_FORMAT_R32_USCALED, PIPE_FORMAT_R32_FLOAT },
218 { PIPE_FORMAT_R32G32_USCALED, PIPE_FORMAT_R32G32_FLOAT },
219 { PIPE_FORMAT_R32G32B32_USCALED, PIPE_FORMAT_R32G32B32_FLOAT },
220 { PIPE_FORMAT_R32G32B32A32_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
221 { PIPE_FORMAT_R32_SSCALED, PIPE_FORMAT_R32_FLOAT },
222 { PIPE_FORMAT_R32G32_SSCALED, PIPE_FORMAT_R32G32_FLOAT },
223 { PIPE_FORMAT_R32G32B32_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT },
224 { PIPE_FORMAT_R32G32B32A32_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
225 { PIPE_FORMAT_R16_UNORM, PIPE_FORMAT_R32_FLOAT },
226 { PIPE_FORMAT_R16G16_UNORM, PIPE_FORMAT_R32G32_FLOAT },
227 { PIPE_FORMAT_R16G16B16_UNORM, PIPE_FORMAT_R32G32B32_FLOAT },
228 { PIPE_FORMAT_R16G16B16A16_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
229 { PIPE_FORMAT_R16_SNORM, PIPE_FORMAT_R32_FLOAT },
230 { PIPE_FORMAT_R16G16_SNORM, PIPE_FORMAT_R32G32_FLOAT },
231 { PIPE_FORMAT_R16G16B16_SNORM, PIPE_FORMAT_R32G32B32_FLOAT },
232 { PIPE_FORMAT_R16G16B16A16_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
233 { PIPE_FORMAT_R16_USCALED, PIPE_FORMAT_R32_FLOAT },
234 { PIPE_FORMAT_R16G16_USCALED, PIPE_FORMAT_R32G32_FLOAT },
235 { PIPE_FORMAT_R16G16B16_USCALED, PIPE_FORMAT_R32G32B32_FLOAT },
236 { PIPE_FORMAT_R16G16B16A16_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
237 { PIPE_FORMAT_R16_SSCALED, PIPE_FORMAT_R32_FLOAT },
238 { PIPE_FORMAT_R16G16_SSCALED, PIPE_FORMAT_R32G32_FLOAT },
239 { PIPE_FORMAT_R16G16B16_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT },
240 { PIPE_FORMAT_R16G16B16A16_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
241 { PIPE_FORMAT_R8_UNORM, PIPE_FORMAT_R32_FLOAT },
242 { PIPE_FORMAT_R8G8_UNORM, PIPE_FORMAT_R32G32_FLOAT },
243 { PIPE_FORMAT_R8G8B8_UNORM, PIPE_FORMAT_R32G32B32_FLOAT },
244 { PIPE_FORMAT_R8G8B8A8_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
245 { PIPE_FORMAT_R8_SNORM, PIPE_FORMAT_R32_FLOAT },
246 { PIPE_FORMAT_R8G8_SNORM, PIPE_FORMAT_R32G32_FLOAT },
247 { PIPE_FORMAT_R8G8B8_SNORM, PIPE_FORMAT_R32G32B32_FLOAT },
248 { PIPE_FORMAT_R8G8B8A8_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
249 { PIPE_FORMAT_R8_USCALED, PIPE_FORMAT_R32_FLOAT },
250 { PIPE_FORMAT_R8G8_USCALED, PIPE_FORMAT_R32G32_FLOAT },
251 { PIPE_FORMAT_R8G8B8_USCALED, PIPE_FORMAT_R32G32B32_FLOAT },
252 { PIPE_FORMAT_R8G8B8A8_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
253 { PIPE_FORMAT_R8_SSCALED, PIPE_FORMAT_R32_FLOAT },
254 { PIPE_FORMAT_R8G8_SSCALED, PIPE_FORMAT_R32G32_FLOAT },
255 { PIPE_FORMAT_R8G8B8_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT },
256 { PIPE_FORMAT_R8G8B8A8_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
257 };
258
259 boolean u_vbuf_get_caps(struct pipe_screen *screen, struct u_vbuf_caps *caps)
260 {
261 unsigned i;
262 boolean fallback = FALSE;
263
264 /* I'd rather have a bitfield of which formats are supported and a static
265 * table of the translations indexed by format, but since we don't have C99
266 * we can't easily make a sparsely-populated table indexed by format. So,
267 * we construct the sparse table here.
268 */
269 for (i = 0; i < PIPE_FORMAT_COUNT; i++)
270 caps->format_translation[i] = i;
271
272 for (i = 0; i < Elements(vbuf_format_fallbacks); i++) {
273 enum pipe_format format = vbuf_format_fallbacks[i].from;
274
275 if (!screen->is_format_supported(screen, format, PIPE_BUFFER, 0,
276 PIPE_BIND_VERTEX_BUFFER)) {
277 caps->format_translation[format] = vbuf_format_fallbacks[i].to;
278 fallback = TRUE;
279 }
280 }
281
282 caps->buffer_offset_unaligned =
283 !screen->get_param(screen,
284 PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY);
285 caps->buffer_stride_unaligned =
286 !screen->get_param(screen,
287 PIPE_CAP_VERTEX_BUFFER_STRIDE_4BYTE_ALIGNED_ONLY);
288 caps->velem_src_offset_unaligned =
289 !screen->get_param(screen,
290 PIPE_CAP_VERTEX_ELEMENT_SRC_OFFSET_4BYTE_ALIGNED_ONLY);
291 caps->user_vertex_buffers =
292 screen->get_param(screen, PIPE_CAP_USER_VERTEX_BUFFERS);
293
294 if (!caps->buffer_offset_unaligned ||
295 !caps->buffer_stride_unaligned ||
296 !caps->velem_src_offset_unaligned ||
297 !caps->user_vertex_buffers) {
298 fallback = TRUE;
299 }
300
301 return fallback;
302 }
303
304 struct u_vbuf *
305 u_vbuf_create(struct pipe_context *pipe,
306 struct u_vbuf_caps *caps, unsigned aux_vertex_buffer_index)
307 {
308 struct u_vbuf *mgr = CALLOC_STRUCT(u_vbuf);
309
310 mgr->caps = *caps;
311 mgr->aux_vertex_buffer_slot = aux_vertex_buffer_index;
312 mgr->pipe = pipe;
313 mgr->cso_cache = cso_cache_create();
314 mgr->translate_cache = translate_cache_create();
315 memset(mgr->fallback_vbs, ~0, sizeof(mgr->fallback_vbs));
316
317 mgr->uploader = u_upload_create(pipe, 1024 * 1024, 4,
318 PIPE_BIND_VERTEX_BUFFER);
319
320 return mgr;
321 }
322
323 /* u_vbuf uses its own caching for vertex elements, because it needs to keep
324 * its own preprocessed state per vertex element CSO. */
325 static struct u_vbuf_elements *
326 u_vbuf_set_vertex_elements_internal(struct u_vbuf *mgr, unsigned count,
327 const struct pipe_vertex_element *states)
328 {
329 struct pipe_context *pipe = mgr->pipe;
330 unsigned key_size, hash_key;
331 struct cso_hash_iter iter;
332 struct u_vbuf_elements *ve;
333 struct cso_velems_state velems_state;
334
335 /* need to include the count into the stored state data too. */
336 key_size = sizeof(struct pipe_vertex_element) * count + sizeof(unsigned);
337 velems_state.count = count;
338 memcpy(velems_state.velems, states,
339 sizeof(struct pipe_vertex_element) * count);
340 hash_key = cso_construct_key((void*)&velems_state, key_size);
341 iter = cso_find_state_template(mgr->cso_cache, hash_key, CSO_VELEMENTS,
342 (void*)&velems_state, key_size);
343
344 if (cso_hash_iter_is_null(iter)) {
345 struct cso_velements *cso = MALLOC_STRUCT(cso_velements);
346 memcpy(&cso->state, &velems_state, key_size);
347 cso->data = u_vbuf_create_vertex_elements(mgr, count, states);
348 cso->delete_state = (cso_state_callback)u_vbuf_delete_vertex_elements;
349 cso->context = (void*)mgr;
350
351 iter = cso_insert_state(mgr->cso_cache, hash_key, CSO_VELEMENTS, cso);
352 ve = cso->data;
353 } else {
354 ve = ((struct cso_velements *)cso_hash_iter_data(iter))->data;
355 }
356
357 assert(ve);
358
359 if (ve != mgr->ve)
360 pipe->bind_vertex_elements_state(pipe, ve->driver_cso);
361
362 return ve;
363 }
364
365 void u_vbuf_set_vertex_elements(struct u_vbuf *mgr, unsigned count,
366 const struct pipe_vertex_element *states)
367 {
368 mgr->ve = u_vbuf_set_vertex_elements_internal(mgr, count, states);
369 }
370
371 void u_vbuf_destroy(struct u_vbuf *mgr)
372 {
373 struct pipe_screen *screen = mgr->pipe->screen;
374 unsigned i;
375 unsigned num_vb = screen->get_shader_param(screen, PIPE_SHADER_VERTEX,
376 PIPE_SHADER_CAP_MAX_INPUTS);
377
378 mgr->pipe->set_index_buffer(mgr->pipe, NULL);
379 pipe_resource_reference(&mgr->index_buffer.buffer, NULL);
380
381 mgr->pipe->set_vertex_buffers(mgr->pipe, 0, num_vb, NULL);
382
383 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
384 pipe_resource_reference(&mgr->vertex_buffer[i].buffer, NULL);
385 }
386 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
387 pipe_resource_reference(&mgr->real_vertex_buffer[i].buffer, NULL);
388 }
389 pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, NULL);
390
391 translate_cache_destroy(mgr->translate_cache);
392 u_upload_destroy(mgr->uploader);
393 cso_cache_delete(mgr->cso_cache);
394 FREE(mgr);
395 }
396
397 static enum pipe_error
398 u_vbuf_translate_buffers(struct u_vbuf *mgr, struct translate_key *key,
399 unsigned vb_mask, unsigned out_vb,
400 int start_vertex, unsigned num_vertices,
401 int start_index, unsigned num_indices, int min_index,
402 boolean unroll_indices)
403 {
404 struct translate *tr;
405 struct pipe_transfer *vb_transfer[PIPE_MAX_ATTRIBS] = {0};
406 struct pipe_resource *out_buffer = NULL;
407 uint8_t *out_map;
408 unsigned out_offset, mask;
409
410 /* Get a translate object. */
411 tr = translate_cache_find(mgr->translate_cache, key);
412
413 /* Map buffers we want to translate. */
414 mask = vb_mask;
415 while (mask) {
416 struct pipe_vertex_buffer *vb;
417 unsigned offset;
418 uint8_t *map;
419 unsigned i = u_bit_scan(&mask);
420
421 vb = &mgr->vertex_buffer[i];
422 offset = vb->buffer_offset + vb->stride * start_vertex;
423
424 if (vb->user_buffer) {
425 map = (uint8_t*)vb->user_buffer + offset;
426 } else {
427 unsigned size = vb->stride ? num_vertices * vb->stride
428 : sizeof(double)*4;
429
430 if (offset+size > vb->buffer->width0) {
431 size = vb->buffer->width0 - offset;
432 }
433
434 map = pipe_buffer_map_range(mgr->pipe, vb->buffer, offset, size,
435 PIPE_TRANSFER_READ, &vb_transfer[i]);
436 }
437
438 /* Subtract min_index so that indexing with the index buffer works. */
439 if (unroll_indices) {
440 map -= (ptrdiff_t)vb->stride * min_index;
441 }
442
443 tr->set_buffer(tr, i, map, vb->stride, ~0);
444 }
445
446 /* Translate. */
447 if (unroll_indices) {
448 struct pipe_index_buffer *ib = &mgr->index_buffer;
449 struct pipe_transfer *transfer = NULL;
450 unsigned offset = ib->offset + start_index * ib->index_size;
451 uint8_t *map;
452
453 assert((ib->buffer || ib->user_buffer) && ib->index_size);
454
455 /* Create and map the output buffer. */
456 u_upload_alloc(mgr->uploader, 0,
457 key->output_stride * num_indices,
458 &out_offset, &out_buffer,
459 (void**)&out_map);
460 if (!out_buffer)
461 return PIPE_ERROR_OUT_OF_MEMORY;
462
463 if (ib->user_buffer) {
464 map = (uint8_t*)ib->user_buffer + offset;
465 } else {
466 map = pipe_buffer_map_range(mgr->pipe, ib->buffer, offset,
467 num_indices * ib->index_size,
468 PIPE_TRANSFER_READ, &transfer);
469 }
470
471 switch (ib->index_size) {
472 case 4:
473 tr->run_elts(tr, (unsigned*)map, num_indices, 0, 0, out_map);
474 break;
475 case 2:
476 tr->run_elts16(tr, (uint16_t*)map, num_indices, 0, 0, out_map);
477 break;
478 case 1:
479 tr->run_elts8(tr, map, num_indices, 0, 0, out_map);
480 break;
481 }
482
483 if (transfer) {
484 pipe_buffer_unmap(mgr->pipe, transfer);
485 }
486 } else {
487 /* Create and map the output buffer. */
488 u_upload_alloc(mgr->uploader,
489 key->output_stride * start_vertex,
490 key->output_stride * num_vertices,
491 &out_offset, &out_buffer,
492 (void**)&out_map);
493 if (!out_buffer)
494 return PIPE_ERROR_OUT_OF_MEMORY;
495
496 out_offset -= key->output_stride * start_vertex;
497
498 tr->run(tr, 0, num_vertices, 0, 0, out_map);
499 }
500
501 /* Unmap all buffers. */
502 mask = vb_mask;
503 while (mask) {
504 unsigned i = u_bit_scan(&mask);
505
506 if (vb_transfer[i]) {
507 pipe_buffer_unmap(mgr->pipe, vb_transfer[i]);
508 }
509 }
510
511 /* Setup the new vertex buffer. */
512 mgr->real_vertex_buffer[out_vb].buffer_offset = out_offset;
513 mgr->real_vertex_buffer[out_vb].stride = key->output_stride;
514
515 /* Move the buffer reference. */
516 pipe_resource_reference(
517 &mgr->real_vertex_buffer[out_vb].buffer, NULL);
518 mgr->real_vertex_buffer[out_vb].buffer = out_buffer;
519
520 return PIPE_OK;
521 }
522
523 static boolean
524 u_vbuf_translate_find_free_vb_slots(struct u_vbuf *mgr,
525 unsigned mask[VB_NUM])
526 {
527 unsigned type;
528 unsigned fallback_vbs[VB_NUM];
529 /* Set the bit for each buffer which is incompatible, or isn't set. */
530 uint32_t unused_vb_mask =
531 mgr->ve->incompatible_vb_mask_all | mgr->incompatible_vb_mask |
532 ~mgr->enabled_vb_mask;
533
534 memset(fallback_vbs, ~0, sizeof(fallback_vbs));
535
536 /* Find free slots for each type if needed. */
537 for (type = 0; type < VB_NUM; type++) {
538 if (mask[type]) {
539 uint32_t index;
540
541 if (!unused_vb_mask) {
542 return FALSE;
543 }
544
545 index = ffs(unused_vb_mask) - 1;
546 fallback_vbs[type] = index;
547 /*printf("found slot=%i for type=%i\n", index, type);*/
548 }
549 }
550
551 for (type = 0; type < VB_NUM; type++) {
552 if (mask[type]) {
553 mgr->dirty_real_vb_mask |= 1 << fallback_vbs[type];
554 }
555 }
556
557 memcpy(mgr->fallback_vbs, fallback_vbs, sizeof(fallback_vbs));
558 return TRUE;
559 }
560
561 static boolean
562 u_vbuf_translate_begin(struct u_vbuf *mgr,
563 int start_vertex, unsigned num_vertices,
564 int start_instance, unsigned num_instances,
565 int start_index, unsigned num_indices, int min_index,
566 boolean unroll_indices)
567 {
568 unsigned mask[VB_NUM] = {0};
569 struct translate_key key[VB_NUM];
570 unsigned elem_index[VB_NUM][PIPE_MAX_ATTRIBS]; /* ... into key.elements */
571 unsigned i, type;
572 unsigned incompatible_vb_mask = mgr->incompatible_vb_mask &
573 mgr->ve->used_vb_mask;
574
575 int start[VB_NUM] = {
576 start_vertex, /* VERTEX */
577 start_instance, /* INSTANCE */
578 0 /* CONST */
579 };
580
581 unsigned num[VB_NUM] = {
582 num_vertices, /* VERTEX */
583 num_instances, /* INSTANCE */
584 1 /* CONST */
585 };
586
587 memset(key, 0, sizeof(key));
588 memset(elem_index, ~0, sizeof(elem_index));
589
590 /* See if there are vertex attribs of each type to translate and
591 * which ones. */
592 for (i = 0; i < mgr->ve->count; i++) {
593 unsigned vb_index = mgr->ve->ve[i].vertex_buffer_index;
594
595 if (!mgr->vertex_buffer[vb_index].stride) {
596 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
597 !(incompatible_vb_mask & (1 << vb_index))) {
598 continue;
599 }
600 mask[VB_CONST] |= 1 << vb_index;
601 } else if (mgr->ve->ve[i].instance_divisor) {
602 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
603 !(incompatible_vb_mask & (1 << vb_index))) {
604 continue;
605 }
606 mask[VB_INSTANCE] |= 1 << vb_index;
607 } else {
608 if (!unroll_indices &&
609 !(mgr->ve->incompatible_elem_mask & (1 << i)) &&
610 !(incompatible_vb_mask & (1 << vb_index))) {
611 continue;
612 }
613 mask[VB_VERTEX] |= 1 << vb_index;
614 }
615 }
616
617 assert(mask[VB_VERTEX] || mask[VB_INSTANCE] || mask[VB_CONST]);
618
619 /* Find free vertex buffer slots. */
620 if (!u_vbuf_translate_find_free_vb_slots(mgr, mask)) {
621 return FALSE;
622 }
623
624 /* Initialize the translate keys. */
625 for (i = 0; i < mgr->ve->count; i++) {
626 struct translate_key *k;
627 struct translate_element *te;
628 unsigned bit, vb_index = mgr->ve->ve[i].vertex_buffer_index;
629 bit = 1 << vb_index;
630
631 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
632 !(incompatible_vb_mask & (1 << vb_index)) &&
633 (!unroll_indices || !(mask[VB_VERTEX] & bit))) {
634 continue;
635 }
636
637 /* Set type to what we will translate.
638 * Whether vertex, instance, or constant attribs. */
639 for (type = 0; type < VB_NUM; type++) {
640 if (mask[type] & bit) {
641 break;
642 }
643 }
644 assert(type < VB_NUM);
645 assert(translate_is_output_format_supported(mgr->ve->native_format[i]));
646 /*printf("velem=%i type=%i\n", i, type);*/
647
648 /* Add the vertex element. */
649 k = &key[type];
650 elem_index[type][i] = k->nr_elements;
651
652 te = &k->element[k->nr_elements];
653 te->type = TRANSLATE_ELEMENT_NORMAL;
654 te->instance_divisor = 0;
655 te->input_buffer = vb_index;
656 te->input_format = mgr->ve->ve[i].src_format;
657 te->input_offset = mgr->ve->ve[i].src_offset;
658 te->output_format = mgr->ve->native_format[i];
659 te->output_offset = k->output_stride;
660
661 k->output_stride += mgr->ve->native_format_size[i];
662 k->nr_elements++;
663 }
664
665 /* Translate buffers. */
666 for (type = 0; type < VB_NUM; type++) {
667 if (key[type].nr_elements) {
668 enum pipe_error err;
669 err = u_vbuf_translate_buffers(mgr, &key[type], mask[type],
670 mgr->fallback_vbs[type],
671 start[type], num[type],
672 start_index, num_indices, min_index,
673 unroll_indices && type == VB_VERTEX);
674 if (err != PIPE_OK)
675 return FALSE;
676
677 /* Fixup the stride for constant attribs. */
678 if (type == VB_CONST) {
679 mgr->real_vertex_buffer[mgr->fallback_vbs[VB_CONST]].stride = 0;
680 }
681 }
682 }
683
684 /* Setup new vertex elements. */
685 for (i = 0; i < mgr->ve->count; i++) {
686 for (type = 0; type < VB_NUM; type++) {
687 if (elem_index[type][i] < key[type].nr_elements) {
688 struct translate_element *te = &key[type].element[elem_index[type][i]];
689 mgr->fallback_velems[i].instance_divisor = mgr->ve->ve[i].instance_divisor;
690 mgr->fallback_velems[i].src_format = te->output_format;
691 mgr->fallback_velems[i].src_offset = te->output_offset;
692 mgr->fallback_velems[i].vertex_buffer_index = mgr->fallback_vbs[type];
693
694 /* elem_index[type][i] can only be set for one type. */
695 assert(type > VB_INSTANCE || elem_index[type+1][i] == ~0);
696 assert(type > VB_VERTEX || elem_index[type+2][i] == ~0);
697 break;
698 }
699 }
700 /* No translating, just copy the original vertex element over. */
701 if (type == VB_NUM) {
702 memcpy(&mgr->fallback_velems[i], &mgr->ve->ve[i],
703 sizeof(struct pipe_vertex_element));
704 }
705 }
706
707 u_vbuf_set_vertex_elements_internal(mgr, mgr->ve->count,
708 mgr->fallback_velems);
709 mgr->using_translate = TRUE;
710 return TRUE;
711 }
712
713 static void u_vbuf_translate_end(struct u_vbuf *mgr)
714 {
715 unsigned i;
716
717 /* Restore vertex elements. */
718 mgr->pipe->bind_vertex_elements_state(mgr->pipe, mgr->ve->driver_cso);
719 mgr->using_translate = FALSE;
720
721 /* Unreference the now-unused VBOs. */
722 for (i = 0; i < VB_NUM; i++) {
723 unsigned vb = mgr->fallback_vbs[i];
724 if (vb != ~0) {
725 pipe_resource_reference(&mgr->real_vertex_buffer[vb].buffer, NULL);
726 mgr->fallback_vbs[i] = ~0;
727
728 /* This will cause the buffer to be unbound in the driver later. */
729 mgr->dirty_real_vb_mask |= 1 << vb;
730 }
731 }
732 }
733
734 static void *
735 u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
736 const struct pipe_vertex_element *attribs)
737 {
738 struct pipe_context *pipe = mgr->pipe;
739 unsigned i;
740 struct pipe_vertex_element driver_attribs[PIPE_MAX_ATTRIBS];
741 struct u_vbuf_elements *ve = CALLOC_STRUCT(u_vbuf_elements);
742 uint32_t used_buffers = 0;
743
744 ve->count = count;
745
746 memcpy(ve->ve, attribs, sizeof(struct pipe_vertex_element) * count);
747 memcpy(driver_attribs, attribs, sizeof(struct pipe_vertex_element) * count);
748
749 /* Set the best native format in case the original format is not
750 * supported. */
751 for (i = 0; i < count; i++) {
752 enum pipe_format format = ve->ve[i].src_format;
753
754 ve->src_format_size[i] = util_format_get_blocksize(format);
755
756 used_buffers |= 1 << ve->ve[i].vertex_buffer_index;
757
758 if (!ve->ve[i].instance_divisor) {
759 ve->noninstance_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
760 }
761
762 format = mgr->caps.format_translation[format];
763
764 driver_attribs[i].src_format = format;
765 ve->native_format[i] = format;
766 ve->native_format_size[i] =
767 util_format_get_blocksize(ve->native_format[i]);
768
769 if (ve->ve[i].src_format != format ||
770 (!mgr->caps.velem_src_offset_unaligned &&
771 ve->ve[i].src_offset % 4 != 0)) {
772 ve->incompatible_elem_mask |= 1 << i;
773 ve->incompatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
774 } else {
775 ve->compatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
776 }
777 }
778
779 ve->used_vb_mask = used_buffers;
780 ve->compatible_vb_mask_all = ~ve->incompatible_vb_mask_any & used_buffers;
781 ve->incompatible_vb_mask_all = ~ve->compatible_vb_mask_any & used_buffers;
782
783 /* Align the formats and offsets to the size of DWORD if needed. */
784 if (!mgr->caps.velem_src_offset_unaligned) {
785 for (i = 0; i < count; i++) {
786 ve->native_format_size[i] = align(ve->native_format_size[i], 4);
787 driver_attribs[i].src_offset = align(ve->ve[i].src_offset, 4);
788 }
789 }
790
791 ve->driver_cso =
792 pipe->create_vertex_elements_state(pipe, count, driver_attribs);
793 return ve;
794 }
795
796 static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso)
797 {
798 struct pipe_context *pipe = mgr->pipe;
799 struct u_vbuf_elements *ve = cso;
800
801 pipe->delete_vertex_elements_state(pipe, ve->driver_cso);
802 FREE(ve);
803 }
804
805 void u_vbuf_set_vertex_buffers(struct u_vbuf *mgr,
806 unsigned start_slot, unsigned count,
807 const struct pipe_vertex_buffer *bufs)
808 {
809 unsigned i;
810 /* which buffers are enabled */
811 uint32_t enabled_vb_mask = 0;
812 /* which buffers are in user memory */
813 uint32_t user_vb_mask = 0;
814 /* which buffers are incompatible with the driver */
815 uint32_t incompatible_vb_mask = 0;
816 /* which buffers have a non-zero stride */
817 uint32_t nonzero_stride_vb_mask = 0;
818 uint32_t mask = ~(((1ull << count) - 1) << start_slot);
819
820 /* Zero out the bits we are going to rewrite completely. */
821 mgr->user_vb_mask &= mask;
822 mgr->incompatible_vb_mask &= mask;
823 mgr->nonzero_stride_vb_mask &= mask;
824 mgr->enabled_vb_mask &= mask;
825
826 if (!bufs) {
827 struct pipe_context *pipe = mgr->pipe;
828 /* Unbind. */
829 mgr->dirty_real_vb_mask &= mask;
830
831 for (i = 0; i < count; i++) {
832 unsigned dst_index = start_slot + i;
833
834 pipe_resource_reference(&mgr->vertex_buffer[dst_index].buffer, NULL);
835 pipe_resource_reference(&mgr->real_vertex_buffer[dst_index].buffer,
836 NULL);
837 }
838
839 pipe->set_vertex_buffers(pipe, start_slot, count, NULL);
840 return;
841 }
842
843 for (i = 0; i < count; i++) {
844 unsigned dst_index = start_slot + i;
845 const struct pipe_vertex_buffer *vb = &bufs[i];
846 struct pipe_vertex_buffer *orig_vb = &mgr->vertex_buffer[dst_index];
847 struct pipe_vertex_buffer *real_vb = &mgr->real_vertex_buffer[dst_index];
848
849 if (!vb->buffer && !vb->user_buffer) {
850 pipe_resource_reference(&orig_vb->buffer, NULL);
851 pipe_resource_reference(&real_vb->buffer, NULL);
852 real_vb->user_buffer = NULL;
853 continue;
854 }
855
856 pipe_resource_reference(&orig_vb->buffer, vb->buffer);
857 orig_vb->user_buffer = vb->user_buffer;
858
859 real_vb->buffer_offset = orig_vb->buffer_offset = vb->buffer_offset;
860 real_vb->stride = orig_vb->stride = vb->stride;
861
862 if (vb->stride) {
863 nonzero_stride_vb_mask |= 1 << dst_index;
864 }
865 enabled_vb_mask |= 1 << dst_index;
866
867 if ((!mgr->caps.buffer_offset_unaligned && vb->buffer_offset % 4 != 0) ||
868 (!mgr->caps.buffer_stride_unaligned && vb->stride % 4 != 0)) {
869 incompatible_vb_mask |= 1 << dst_index;
870 pipe_resource_reference(&real_vb->buffer, NULL);
871 continue;
872 }
873
874 if (!mgr->caps.user_vertex_buffers && vb->user_buffer) {
875 user_vb_mask |= 1 << dst_index;
876 pipe_resource_reference(&real_vb->buffer, NULL);
877 continue;
878 }
879
880 pipe_resource_reference(&real_vb->buffer, vb->buffer);
881 real_vb->user_buffer = vb->user_buffer;
882 }
883
884 mgr->user_vb_mask |= user_vb_mask;
885 mgr->incompatible_vb_mask |= incompatible_vb_mask;
886 mgr->nonzero_stride_vb_mask |= nonzero_stride_vb_mask;
887 mgr->enabled_vb_mask |= enabled_vb_mask;
888
889 /* All changed buffers are marked as dirty, even the NULL ones,
890 * which will cause the NULL buffers to be unbound in the driver later. */
891 mgr->dirty_real_vb_mask |= ~mask;
892 }
893
894 void u_vbuf_set_index_buffer(struct u_vbuf *mgr,
895 const struct pipe_index_buffer *ib)
896 {
897 struct pipe_context *pipe = mgr->pipe;
898
899 if (ib) {
900 assert(ib->offset % ib->index_size == 0);
901 pipe_resource_reference(&mgr->index_buffer.buffer, ib->buffer);
902 memcpy(&mgr->index_buffer, ib, sizeof(*ib));
903 } else {
904 pipe_resource_reference(&mgr->index_buffer.buffer, NULL);
905 }
906
907 pipe->set_index_buffer(pipe, ib);
908 }
909
910 static enum pipe_error
911 u_vbuf_upload_buffers(struct u_vbuf *mgr,
912 int start_vertex, unsigned num_vertices,
913 int start_instance, unsigned num_instances)
914 {
915 unsigned i;
916 unsigned nr_velems = mgr->ve->count;
917 struct pipe_vertex_element *velems =
918 mgr->using_translate ? mgr->fallback_velems : mgr->ve->ve;
919 unsigned start_offset[PIPE_MAX_ATTRIBS];
920 unsigned end_offset[PIPE_MAX_ATTRIBS];
921 uint32_t buffer_mask = 0;
922
923 /* Determine how much data needs to be uploaded. */
924 for (i = 0; i < nr_velems; i++) {
925 struct pipe_vertex_element *velem = &velems[i];
926 unsigned index = velem->vertex_buffer_index;
927 struct pipe_vertex_buffer *vb = &mgr->vertex_buffer[index];
928 unsigned instance_div, first, size, index_bit;
929
930 /* Skip the buffers generated by translate. */
931 if (index == mgr->fallback_vbs[VB_VERTEX] ||
932 index == mgr->fallback_vbs[VB_INSTANCE] ||
933 index == mgr->fallback_vbs[VB_CONST]) {
934 continue;
935 }
936
937 if (!vb->user_buffer) {
938 continue;
939 }
940
941 instance_div = velem->instance_divisor;
942 first = vb->buffer_offset + velem->src_offset;
943
944 if (!vb->stride) {
945 /* Constant attrib. */
946 size = mgr->ve->src_format_size[i];
947 } else if (instance_div) {
948 /* Per-instance attrib. */
949 unsigned count = (num_instances + instance_div - 1) / instance_div;
950 first += vb->stride * start_instance;
951 size = vb->stride * (count - 1) + mgr->ve->src_format_size[i];
952 } else {
953 /* Per-vertex attrib. */
954 first += vb->stride * start_vertex;
955 size = vb->stride * (num_vertices - 1) + mgr->ve->src_format_size[i];
956 }
957
958 index_bit = 1 << index;
959
960 /* Update offsets. */
961 if (!(buffer_mask & index_bit)) {
962 start_offset[index] = first;
963 end_offset[index] = first + size;
964 } else {
965 if (first < start_offset[index])
966 start_offset[index] = first;
967 if (first + size > end_offset[index])
968 end_offset[index] = first + size;
969 }
970
971 buffer_mask |= index_bit;
972 }
973
974 /* Upload buffers. */
975 while (buffer_mask) {
976 unsigned start, end;
977 struct pipe_vertex_buffer *real_vb;
978 const uint8_t *ptr;
979
980 i = u_bit_scan(&buffer_mask);
981
982 start = start_offset[i];
983 end = end_offset[i];
984 assert(start < end);
985
986 real_vb = &mgr->real_vertex_buffer[i];
987 ptr = mgr->vertex_buffer[i].user_buffer;
988
989 u_upload_data(mgr->uploader, start, end - start, ptr + start,
990 &real_vb->buffer_offset, &real_vb->buffer);
991 if (!real_vb->buffer)
992 return PIPE_ERROR_OUT_OF_MEMORY;
993
994 real_vb->buffer_offset -= start;
995 }
996
997 return PIPE_OK;
998 }
999
1000 static boolean u_vbuf_need_minmax_index(struct u_vbuf *mgr)
1001 {
1002 /* See if there are any per-vertex attribs which will be uploaded or
1003 * translated. Use bitmasks to get the info instead of looping over vertex
1004 * elements. */
1005 return (mgr->ve->used_vb_mask &
1006 ((mgr->user_vb_mask | mgr->incompatible_vb_mask |
1007 mgr->ve->incompatible_vb_mask_any) &
1008 mgr->ve->noninstance_vb_mask_any & mgr->nonzero_stride_vb_mask)) != 0;
1009 }
1010
1011 static boolean u_vbuf_mapping_vertex_buffer_blocks(struct u_vbuf *mgr)
1012 {
1013 /* Return true if there are hw buffers which don't need to be translated.
1014 *
1015 * We could query whether each buffer is busy, but that would
1016 * be way more costly than this. */
1017 return (mgr->ve->used_vb_mask &
1018 (~mgr->user_vb_mask & ~mgr->incompatible_vb_mask &
1019 mgr->ve->compatible_vb_mask_all & mgr->ve->noninstance_vb_mask_any &
1020 mgr->nonzero_stride_vb_mask)) != 0;
1021 }
1022
1023 static void u_vbuf_get_minmax_index(struct pipe_context *pipe,
1024 struct pipe_index_buffer *ib,
1025 boolean primitive_restart,
1026 unsigned restart_index,
1027 unsigned start, unsigned count,
1028 int *out_min_index,
1029 int *out_max_index)
1030 {
1031 struct pipe_transfer *transfer = NULL;
1032 const void *indices;
1033 unsigned i;
1034
1035 if (ib->user_buffer) {
1036 indices = (uint8_t*)ib->user_buffer +
1037 ib->offset + start * ib->index_size;
1038 } else {
1039 indices = pipe_buffer_map_range(pipe, ib->buffer,
1040 ib->offset + start * ib->index_size,
1041 count * ib->index_size,
1042 PIPE_TRANSFER_READ, &transfer);
1043 }
1044
1045 switch (ib->index_size) {
1046 case 4: {
1047 const unsigned *ui_indices = (const unsigned*)indices;
1048 unsigned max_ui = 0;
1049 unsigned min_ui = ~0U;
1050 if (primitive_restart) {
1051 for (i = 0; i < count; i++) {
1052 if (ui_indices[i] != restart_index) {
1053 if (ui_indices[i] > max_ui) max_ui = ui_indices[i];
1054 if (ui_indices[i] < min_ui) min_ui = ui_indices[i];
1055 }
1056 }
1057 }
1058 else {
1059 for (i = 0; i < count; i++) {
1060 if (ui_indices[i] > max_ui) max_ui = ui_indices[i];
1061 if (ui_indices[i] < min_ui) min_ui = ui_indices[i];
1062 }
1063 }
1064 *out_min_index = min_ui;
1065 *out_max_index = max_ui;
1066 break;
1067 }
1068 case 2: {
1069 const unsigned short *us_indices = (const unsigned short*)indices;
1070 unsigned max_us = 0;
1071 unsigned min_us = ~0U;
1072 if (primitive_restart) {
1073 for (i = 0; i < count; i++) {
1074 if (us_indices[i] != restart_index) {
1075 if (us_indices[i] > max_us) max_us = us_indices[i];
1076 if (us_indices[i] < min_us) min_us = us_indices[i];
1077 }
1078 }
1079 }
1080 else {
1081 for (i = 0; i < count; i++) {
1082 if (us_indices[i] > max_us) max_us = us_indices[i];
1083 if (us_indices[i] < min_us) min_us = us_indices[i];
1084 }
1085 }
1086 *out_min_index = min_us;
1087 *out_max_index = max_us;
1088 break;
1089 }
1090 case 1: {
1091 const unsigned char *ub_indices = (const unsigned char*)indices;
1092 unsigned max_ub = 0;
1093 unsigned min_ub = ~0U;
1094 if (primitive_restart) {
1095 for (i = 0; i < count; i++) {
1096 if (ub_indices[i] != restart_index) {
1097 if (ub_indices[i] > max_ub) max_ub = ub_indices[i];
1098 if (ub_indices[i] < min_ub) min_ub = ub_indices[i];
1099 }
1100 }
1101 }
1102 else {
1103 for (i = 0; i < count; i++) {
1104 if (ub_indices[i] > max_ub) max_ub = ub_indices[i];
1105 if (ub_indices[i] < min_ub) min_ub = ub_indices[i];
1106 }
1107 }
1108 *out_min_index = min_ub;
1109 *out_max_index = max_ub;
1110 break;
1111 }
1112 default:
1113 assert(0);
1114 *out_min_index = 0;
1115 *out_max_index = 0;
1116 }
1117
1118 if (transfer) {
1119 pipe_buffer_unmap(pipe, transfer);
1120 }
1121 }
1122
1123 static void u_vbuf_set_driver_vertex_buffers(struct u_vbuf *mgr)
1124 {
1125 struct pipe_context *pipe = mgr->pipe;
1126 unsigned start_slot, count;
1127
1128 start_slot = ffs(mgr->dirty_real_vb_mask) - 1;
1129 count = util_last_bit(mgr->dirty_real_vb_mask >> start_slot);
1130
1131 pipe->set_vertex_buffers(pipe, start_slot, count,
1132 mgr->real_vertex_buffer + start_slot);
1133 mgr->dirty_real_vb_mask = 0;
1134 }
1135
1136 void u_vbuf_draw_vbo(struct u_vbuf *mgr, const struct pipe_draw_info *info)
1137 {
1138 struct pipe_context *pipe = mgr->pipe;
1139 int start_vertex, min_index;
1140 unsigned num_vertices;
1141 boolean unroll_indices = FALSE;
1142 uint32_t used_vb_mask = mgr->ve->used_vb_mask;
1143 uint32_t user_vb_mask = mgr->user_vb_mask & used_vb_mask;
1144 uint32_t incompatible_vb_mask = mgr->incompatible_vb_mask & used_vb_mask;
1145 struct pipe_draw_info new_info;
1146
1147 /* Normal draw. No fallback and no user buffers. */
1148 if (!incompatible_vb_mask &&
1149 !mgr->ve->incompatible_elem_mask &&
1150 !user_vb_mask) {
1151
1152 /* Set vertex buffers if needed. */
1153 if (mgr->dirty_real_vb_mask & used_vb_mask) {
1154 u_vbuf_set_driver_vertex_buffers(mgr);
1155 }
1156
1157 pipe->draw_vbo(pipe, info);
1158 return;
1159 }
1160
1161 new_info = *info;
1162
1163 /* Fallback. We need to know all the parameters. */
1164 if (new_info.indirect) {
1165 struct pipe_transfer *transfer = NULL;
1166 int *data;
1167
1168 if (new_info.indexed) {
1169 data = pipe_buffer_map_range(pipe, new_info.indirect,
1170 new_info.indirect_offset, 20,
1171 PIPE_TRANSFER_READ, &transfer);
1172 new_info.index_bias = data[3];
1173 new_info.start_instance = data[4];
1174 }
1175 else {
1176 data = pipe_buffer_map_range(pipe, new_info.indirect,
1177 new_info.indirect_offset, 16,
1178 PIPE_TRANSFER_READ, &transfer);
1179 new_info.start_instance = data[3];
1180 }
1181
1182 new_info.count = data[0];
1183 new_info.instance_count = data[1];
1184 new_info.start = data[2];
1185 pipe_buffer_unmap(pipe, transfer);
1186 new_info.indirect = NULL;
1187 }
1188
1189 if (new_info.indexed) {
1190 /* See if anything needs to be done for per-vertex attribs. */
1191 if (u_vbuf_need_minmax_index(mgr)) {
1192 int max_index;
1193
1194 if (new_info.max_index != ~0) {
1195 min_index = new_info.min_index;
1196 max_index = new_info.max_index;
1197 } else {
1198 u_vbuf_get_minmax_index(mgr->pipe, &mgr->index_buffer,
1199 new_info.primitive_restart,
1200 new_info.restart_index, new_info.start,
1201 new_info.count, &min_index, &max_index);
1202 }
1203
1204 assert(min_index <= max_index);
1205
1206 start_vertex = min_index + new_info.index_bias;
1207 num_vertices = max_index + 1 - min_index;
1208
1209 /* Primitive restart doesn't work when unrolling indices.
1210 * We would have to break this drawing operation into several ones. */
1211 /* Use some heuristic to see if unrolling indices improves
1212 * performance. */
1213 if (!new_info.primitive_restart &&
1214 num_vertices > new_info.count*2 &&
1215 num_vertices - new_info.count > 32 &&
1216 !u_vbuf_mapping_vertex_buffer_blocks(mgr)) {
1217 unroll_indices = TRUE;
1218 user_vb_mask &= ~(mgr->nonzero_stride_vb_mask &
1219 mgr->ve->noninstance_vb_mask_any);
1220 }
1221 } else {
1222 /* Nothing to do for per-vertex attribs. */
1223 start_vertex = 0;
1224 num_vertices = 0;
1225 min_index = 0;
1226 }
1227 } else {
1228 start_vertex = new_info.start;
1229 num_vertices = new_info.count;
1230 min_index = 0;
1231 }
1232
1233 /* Translate vertices with non-native layouts or formats. */
1234 if (unroll_indices ||
1235 incompatible_vb_mask ||
1236 mgr->ve->incompatible_elem_mask) {
1237 if (!u_vbuf_translate_begin(mgr, start_vertex, num_vertices,
1238 new_info.start_instance,
1239 new_info.instance_count, new_info.start,
1240 new_info.count, min_index, unroll_indices)) {
1241 debug_warn_once("u_vbuf_translate_begin() failed");
1242 return;
1243 }
1244
1245 if (unroll_indices) {
1246 new_info.indexed = FALSE;
1247 new_info.index_bias = 0;
1248 new_info.min_index = 0;
1249 new_info.max_index = new_info.count - 1;
1250 new_info.start = 0;
1251 }
1252
1253 user_vb_mask &= ~(incompatible_vb_mask |
1254 mgr->ve->incompatible_vb_mask_all);
1255 }
1256
1257 /* Upload user buffers. */
1258 if (user_vb_mask) {
1259 if (u_vbuf_upload_buffers(mgr, start_vertex, num_vertices,
1260 new_info.start_instance,
1261 new_info.instance_count) != PIPE_OK) {
1262 debug_warn_once("u_vbuf_upload_buffers() failed");
1263 return;
1264 }
1265
1266 mgr->dirty_real_vb_mask |= user_vb_mask;
1267 }
1268
1269 /*
1270 if (unroll_indices) {
1271 printf("unrolling indices: start_vertex = %i, num_vertices = %i\n",
1272 start_vertex, num_vertices);
1273 util_dump_draw_info(stdout, info);
1274 printf("\n");
1275 }
1276
1277 unsigned i;
1278 for (i = 0; i < mgr->nr_vertex_buffers; i++) {
1279 printf("input %i: ", i);
1280 util_dump_vertex_buffer(stdout, mgr->vertex_buffer+i);
1281 printf("\n");
1282 }
1283 for (i = 0; i < mgr->nr_real_vertex_buffers; i++) {
1284 printf("real %i: ", i);
1285 util_dump_vertex_buffer(stdout, mgr->real_vertex_buffer+i);
1286 printf("\n");
1287 }
1288 */
1289
1290 u_upload_unmap(mgr->uploader);
1291 u_vbuf_set_driver_vertex_buffers(mgr);
1292
1293 pipe->draw_vbo(pipe, &new_info);
1294
1295 if (mgr->using_translate) {
1296 u_vbuf_translate_end(mgr);
1297 }
1298 }
1299
1300 void u_vbuf_save_vertex_elements(struct u_vbuf *mgr)
1301 {
1302 assert(!mgr->ve_saved);
1303 mgr->ve_saved = mgr->ve;
1304 }
1305
1306 void u_vbuf_restore_vertex_elements(struct u_vbuf *mgr)
1307 {
1308 if (mgr->ve != mgr->ve_saved) {
1309 struct pipe_context *pipe = mgr->pipe;
1310
1311 mgr->ve = mgr->ve_saved;
1312 pipe->bind_vertex_elements_state(pipe,
1313 mgr->ve ? mgr->ve->driver_cso : NULL);
1314 }
1315 mgr->ve_saved = NULL;
1316 }
1317
1318 void u_vbuf_save_aux_vertex_buffer_slot(struct u_vbuf *mgr)
1319 {
1320 struct pipe_vertex_buffer *vb =
1321 &mgr->vertex_buffer[mgr->aux_vertex_buffer_slot];
1322
1323 pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, vb->buffer);
1324 memcpy(&mgr->aux_vertex_buffer_saved, vb, sizeof(*vb));
1325 }
1326
1327 void u_vbuf_restore_aux_vertex_buffer_slot(struct u_vbuf *mgr)
1328 {
1329 u_vbuf_set_vertex_buffers(mgr, mgr->aux_vertex_buffer_slot, 1,
1330 &mgr->aux_vertex_buffer_saved);
1331 pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, NULL);
1332 }