gallium/util: s/Elements/ARRAY_SIZE/
[mesa.git] / src / gallium / auxiliary / util / u_vbuf.c
1 /**************************************************************************
2 *
3 * Copyright 2011 Marek Olšák <maraeo@gmail.com>
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * This module uploads user buffers and translates the vertex buffers which
30 * contain incompatible vertices (i.e. not supported by the driver/hardware)
31 * into compatible ones, based on the Gallium CAPs.
32 *
33 * It does not upload index buffers.
34 *
35 * The module heavily uses bitmasks to represent per-buffer and
36 * per-vertex-element flags to avoid looping over the list of buffers just
37 * to see if there's a non-zero stride, or user buffer, or unsupported format,
38 * etc.
39 *
40 * There are 3 categories of vertex elements, which are processed separately:
41 * - per-vertex attribs (stride != 0, instance_divisor == 0)
42 * - instanced attribs (stride != 0, instance_divisor > 0)
43 * - constant attribs (stride == 0)
44 *
45 * All needed uploads and translations are performed every draw command, but
46 * only the subset of vertices needed for that draw command is uploaded or
47 * translated. (the module never translates whole buffers)
48 *
49 *
50 * The module consists of two main parts:
51 *
52 *
53 * 1) Translate (u_vbuf_translate_begin/end)
54 *
55 * This is pretty much a vertex fetch fallback. It translates vertices from
56 * one vertex buffer to another in an unused vertex buffer slot. It does
57 * whatever is needed to make the vertices readable by the hardware (changes
58 * vertex formats and aligns offsets and strides). The translate module is
59 * used here.
60 *
61 * Each of the 3 categories is translated to a separate buffer.
62 * Only the [min_index, max_index] range is translated. For instanced attribs,
63 * the range is [start_instance, start_instance+instance_count]. For constant
64 * attribs, the range is [0, 1].
65 *
66 *
67 * 2) User buffer uploading (u_vbuf_upload_buffers)
68 *
69 * Only the [min_index, max_index] range is uploaded (just like Translate)
70 * with a single memcpy.
71 *
72 * This method works best for non-indexed draw operations or indexed draw
73 * operations where the [min_index, max_index] range is not being way bigger
74 * than the vertex count.
75 *
76 * If the range is too big (e.g. one triangle with indices {0, 1, 10000}),
77 * the per-vertex attribs are uploaded via the translate module, all packed
78 * into one vertex buffer, and the indexed draw call is turned into
79 * a non-indexed one in the process. This adds additional complexity
80 * to the translate part, but it prevents bad apps from bringing your frame
81 * rate down.
82 *
83 *
84 * If there is nothing to do, it forwards every command to the driver.
85 * The module also has its own CSO cache of vertex element states.
86 */
87
88 #include "util/u_vbuf.h"
89
90 #include "util/u_dump.h"
91 #include "util/u_format.h"
92 #include "util/u_inlines.h"
93 #include "util/u_memory.h"
94 #include "util/u_upload_mgr.h"
95 #include "translate/translate.h"
96 #include "translate/translate_cache.h"
97 #include "cso_cache/cso_cache.h"
98 #include "cso_cache/cso_hash.h"
99
100 struct u_vbuf_elements {
101 unsigned count;
102 struct pipe_vertex_element ve[PIPE_MAX_ATTRIBS];
103
104 unsigned src_format_size[PIPE_MAX_ATTRIBS];
105
106 /* If (velem[i].src_format != native_format[i]), the vertex buffer
107 * referenced by the vertex element cannot be used for rendering and
108 * its vertex data must be translated to native_format[i]. */
109 enum pipe_format native_format[PIPE_MAX_ATTRIBS];
110 unsigned native_format_size[PIPE_MAX_ATTRIBS];
111
112 /* Which buffers are used by the vertex element state. */
113 uint32_t used_vb_mask;
114 /* This might mean two things:
115 * - src_format != native_format, as discussed above.
116 * - src_offset % 4 != 0 (if the caps don't allow such an offset). */
117 uint32_t incompatible_elem_mask; /* each bit describes a corresp. attrib */
118 /* Which buffer has at least one vertex element referencing it
119 * incompatible. */
120 uint32_t incompatible_vb_mask_any;
121 /* Which buffer has all vertex elements referencing it incompatible. */
122 uint32_t incompatible_vb_mask_all;
123 /* Which buffer has at least one vertex element referencing it
124 * compatible. */
125 uint32_t compatible_vb_mask_any;
126 /* Which buffer has all vertex elements referencing it compatible. */
127 uint32_t compatible_vb_mask_all;
128
129 /* Which buffer has at least one vertex element referencing it
130 * non-instanced. */
131 uint32_t noninstance_vb_mask_any;
132
133 void *driver_cso;
134 };
135
136 enum {
137 VB_VERTEX = 0,
138 VB_INSTANCE = 1,
139 VB_CONST = 2,
140 VB_NUM = 3
141 };
142
143 struct u_vbuf {
144 struct u_vbuf_caps caps;
145
146 struct pipe_context *pipe;
147 struct translate_cache *translate_cache;
148 struct cso_cache *cso_cache;
149 struct u_upload_mgr *uploader;
150
151 /* This is what was set in set_vertex_buffers.
152 * May contain user buffers. */
153 struct pipe_vertex_buffer vertex_buffer[PIPE_MAX_ATTRIBS];
154 uint32_t enabled_vb_mask;
155
156 /* Saved vertex buffer. */
157 unsigned aux_vertex_buffer_slot;
158 struct pipe_vertex_buffer aux_vertex_buffer_saved;
159
160 /* Vertex buffers for the driver.
161 * There are usually no user buffers. */
162 struct pipe_vertex_buffer real_vertex_buffer[PIPE_MAX_ATTRIBS];
163 uint32_t dirty_real_vb_mask; /* which buffers are dirty since the last
164 call of set_vertex_buffers */
165
166 /* The index buffer. */
167 struct pipe_index_buffer index_buffer;
168
169 /* Vertex elements. */
170 struct u_vbuf_elements *ve, *ve_saved;
171
172 /* Vertex elements used for the translate fallback. */
173 struct pipe_vertex_element fallback_velems[PIPE_MAX_ATTRIBS];
174 /* If non-NULL, this is a vertex element state used for the translate
175 * fallback and therefore used for rendering too. */
176 boolean using_translate;
177 /* The vertex buffer slot index where translated vertices have been
178 * stored in. */
179 unsigned fallback_vbs[VB_NUM];
180
181 /* Which buffer is a user buffer. */
182 uint32_t user_vb_mask; /* each bit describes a corresp. buffer */
183 /* Which buffer is incompatible (unaligned). */
184 uint32_t incompatible_vb_mask; /* each bit describes a corresp. buffer */
185 /* Which buffer has a non-zero stride. */
186 uint32_t nonzero_stride_vb_mask; /* each bit describes a corresp. buffer */
187 };
188
189 static void *
190 u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
191 const struct pipe_vertex_element *attribs);
192 static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso);
193
194 static const struct {
195 enum pipe_format from, to;
196 } vbuf_format_fallbacks[] = {
197 { PIPE_FORMAT_R32_FIXED, PIPE_FORMAT_R32_FLOAT },
198 { PIPE_FORMAT_R32G32_FIXED, PIPE_FORMAT_R32G32_FLOAT },
199 { PIPE_FORMAT_R32G32B32_FIXED, PIPE_FORMAT_R32G32B32_FLOAT },
200 { PIPE_FORMAT_R32G32B32A32_FIXED, PIPE_FORMAT_R32G32B32A32_FLOAT },
201 { PIPE_FORMAT_R16_FLOAT, PIPE_FORMAT_R32_FLOAT },
202 { PIPE_FORMAT_R16G16_FLOAT, PIPE_FORMAT_R32G32_FLOAT },
203 { PIPE_FORMAT_R16G16B16_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT },
204 { PIPE_FORMAT_R16G16B16A16_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT },
205 { PIPE_FORMAT_R64_FLOAT, PIPE_FORMAT_R32_FLOAT },
206 { PIPE_FORMAT_R64G64_FLOAT, PIPE_FORMAT_R32G32_FLOAT },
207 { PIPE_FORMAT_R64G64B64_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT },
208 { PIPE_FORMAT_R64G64B64A64_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT },
209 { PIPE_FORMAT_R32_UNORM, PIPE_FORMAT_R32_FLOAT },
210 { PIPE_FORMAT_R32G32_UNORM, PIPE_FORMAT_R32G32_FLOAT },
211 { PIPE_FORMAT_R32G32B32_UNORM, PIPE_FORMAT_R32G32B32_FLOAT },
212 { PIPE_FORMAT_R32G32B32A32_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
213 { PIPE_FORMAT_R32_SNORM, PIPE_FORMAT_R32_FLOAT },
214 { PIPE_FORMAT_R32G32_SNORM, PIPE_FORMAT_R32G32_FLOAT },
215 { PIPE_FORMAT_R32G32B32_SNORM, PIPE_FORMAT_R32G32B32_FLOAT },
216 { PIPE_FORMAT_R32G32B32A32_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
217 { PIPE_FORMAT_R32_USCALED, PIPE_FORMAT_R32_FLOAT },
218 { PIPE_FORMAT_R32G32_USCALED, PIPE_FORMAT_R32G32_FLOAT },
219 { PIPE_FORMAT_R32G32B32_USCALED, PIPE_FORMAT_R32G32B32_FLOAT },
220 { PIPE_FORMAT_R32G32B32A32_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
221 { PIPE_FORMAT_R32_SSCALED, PIPE_FORMAT_R32_FLOAT },
222 { PIPE_FORMAT_R32G32_SSCALED, PIPE_FORMAT_R32G32_FLOAT },
223 { PIPE_FORMAT_R32G32B32_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT },
224 { PIPE_FORMAT_R32G32B32A32_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
225 { PIPE_FORMAT_R16_UNORM, PIPE_FORMAT_R32_FLOAT },
226 { PIPE_FORMAT_R16G16_UNORM, PIPE_FORMAT_R32G32_FLOAT },
227 { PIPE_FORMAT_R16G16B16_UNORM, PIPE_FORMAT_R32G32B32_FLOAT },
228 { PIPE_FORMAT_R16G16B16A16_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
229 { PIPE_FORMAT_R16_SNORM, PIPE_FORMAT_R32_FLOAT },
230 { PIPE_FORMAT_R16G16_SNORM, PIPE_FORMAT_R32G32_FLOAT },
231 { PIPE_FORMAT_R16G16B16_SNORM, PIPE_FORMAT_R32G32B32_FLOAT },
232 { PIPE_FORMAT_R16G16B16A16_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
233 { PIPE_FORMAT_R16_USCALED, PIPE_FORMAT_R32_FLOAT },
234 { PIPE_FORMAT_R16G16_USCALED, PIPE_FORMAT_R32G32_FLOAT },
235 { PIPE_FORMAT_R16G16B16_USCALED, PIPE_FORMAT_R32G32B32_FLOAT },
236 { PIPE_FORMAT_R16G16B16A16_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
237 { PIPE_FORMAT_R16_SSCALED, PIPE_FORMAT_R32_FLOAT },
238 { PIPE_FORMAT_R16G16_SSCALED, PIPE_FORMAT_R32G32_FLOAT },
239 { PIPE_FORMAT_R16G16B16_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT },
240 { PIPE_FORMAT_R16G16B16A16_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
241 { PIPE_FORMAT_R8_UNORM, PIPE_FORMAT_R32_FLOAT },
242 { PIPE_FORMAT_R8G8_UNORM, PIPE_FORMAT_R32G32_FLOAT },
243 { PIPE_FORMAT_R8G8B8_UNORM, PIPE_FORMAT_R32G32B32_FLOAT },
244 { PIPE_FORMAT_R8G8B8A8_UNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
245 { PIPE_FORMAT_R8_SNORM, PIPE_FORMAT_R32_FLOAT },
246 { PIPE_FORMAT_R8G8_SNORM, PIPE_FORMAT_R32G32_FLOAT },
247 { PIPE_FORMAT_R8G8B8_SNORM, PIPE_FORMAT_R32G32B32_FLOAT },
248 { PIPE_FORMAT_R8G8B8A8_SNORM, PIPE_FORMAT_R32G32B32A32_FLOAT },
249 { PIPE_FORMAT_R8_USCALED, PIPE_FORMAT_R32_FLOAT },
250 { PIPE_FORMAT_R8G8_USCALED, PIPE_FORMAT_R32G32_FLOAT },
251 { PIPE_FORMAT_R8G8B8_USCALED, PIPE_FORMAT_R32G32B32_FLOAT },
252 { PIPE_FORMAT_R8G8B8A8_USCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
253 { PIPE_FORMAT_R8_SSCALED, PIPE_FORMAT_R32_FLOAT },
254 { PIPE_FORMAT_R8G8_SSCALED, PIPE_FORMAT_R32G32_FLOAT },
255 { PIPE_FORMAT_R8G8B8_SSCALED, PIPE_FORMAT_R32G32B32_FLOAT },
256 { PIPE_FORMAT_R8G8B8A8_SSCALED, PIPE_FORMAT_R32G32B32A32_FLOAT },
257 };
258
259 boolean u_vbuf_get_caps(struct pipe_screen *screen, struct u_vbuf_caps *caps)
260 {
261 unsigned i;
262 boolean fallback = FALSE;
263
264 /* I'd rather have a bitfield of which formats are supported and a static
265 * table of the translations indexed by format, but since we don't have C99
266 * we can't easily make a sparsely-populated table indexed by format. So,
267 * we construct the sparse table here.
268 */
269 for (i = 0; i < PIPE_FORMAT_COUNT; i++)
270 caps->format_translation[i] = i;
271
272 for (i = 0; i < ARRAY_SIZE(vbuf_format_fallbacks); i++) {
273 enum pipe_format format = vbuf_format_fallbacks[i].from;
274
275 if (!screen->is_format_supported(screen, format, PIPE_BUFFER, 0,
276 PIPE_BIND_VERTEX_BUFFER)) {
277 caps->format_translation[format] = vbuf_format_fallbacks[i].to;
278 fallback = TRUE;
279 }
280 }
281
282 caps->buffer_offset_unaligned =
283 !screen->get_param(screen,
284 PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY);
285 caps->buffer_stride_unaligned =
286 !screen->get_param(screen,
287 PIPE_CAP_VERTEX_BUFFER_STRIDE_4BYTE_ALIGNED_ONLY);
288 caps->velem_src_offset_unaligned =
289 !screen->get_param(screen,
290 PIPE_CAP_VERTEX_ELEMENT_SRC_OFFSET_4BYTE_ALIGNED_ONLY);
291 caps->user_vertex_buffers =
292 screen->get_param(screen, PIPE_CAP_USER_VERTEX_BUFFERS);
293
294 if (!caps->buffer_offset_unaligned ||
295 !caps->buffer_stride_unaligned ||
296 !caps->velem_src_offset_unaligned ||
297 !caps->user_vertex_buffers) {
298 fallback = TRUE;
299 }
300
301 return fallback;
302 }
303
304 struct u_vbuf *
305 u_vbuf_create(struct pipe_context *pipe,
306 struct u_vbuf_caps *caps, unsigned aux_vertex_buffer_index)
307 {
308 struct u_vbuf *mgr = CALLOC_STRUCT(u_vbuf);
309
310 mgr->caps = *caps;
311 mgr->aux_vertex_buffer_slot = aux_vertex_buffer_index;
312 mgr->pipe = pipe;
313 mgr->cso_cache = cso_cache_create();
314 mgr->translate_cache = translate_cache_create();
315 memset(mgr->fallback_vbs, ~0, sizeof(mgr->fallback_vbs));
316
317 mgr->uploader = u_upload_create(pipe, 1024 * 1024,
318 PIPE_BIND_VERTEX_BUFFER,
319 PIPE_USAGE_STREAM);
320
321 return mgr;
322 }
323
324 /* u_vbuf uses its own caching for vertex elements, because it needs to keep
325 * its own preprocessed state per vertex element CSO. */
326 static struct u_vbuf_elements *
327 u_vbuf_set_vertex_elements_internal(struct u_vbuf *mgr, unsigned count,
328 const struct pipe_vertex_element *states)
329 {
330 struct pipe_context *pipe = mgr->pipe;
331 unsigned key_size, hash_key;
332 struct cso_hash_iter iter;
333 struct u_vbuf_elements *ve;
334 struct cso_velems_state velems_state;
335
336 /* need to include the count into the stored state data too. */
337 key_size = sizeof(struct pipe_vertex_element) * count + sizeof(unsigned);
338 velems_state.count = count;
339 memcpy(velems_state.velems, states,
340 sizeof(struct pipe_vertex_element) * count);
341 hash_key = cso_construct_key((void*)&velems_state, key_size);
342 iter = cso_find_state_template(mgr->cso_cache, hash_key, CSO_VELEMENTS,
343 (void*)&velems_state, key_size);
344
345 if (cso_hash_iter_is_null(iter)) {
346 struct cso_velements *cso = MALLOC_STRUCT(cso_velements);
347 memcpy(&cso->state, &velems_state, key_size);
348 cso->data = u_vbuf_create_vertex_elements(mgr, count, states);
349 cso->delete_state = (cso_state_callback)u_vbuf_delete_vertex_elements;
350 cso->context = (void*)mgr;
351
352 iter = cso_insert_state(mgr->cso_cache, hash_key, CSO_VELEMENTS, cso);
353 ve = cso->data;
354 } else {
355 ve = ((struct cso_velements *)cso_hash_iter_data(iter))->data;
356 }
357
358 assert(ve);
359
360 if (ve != mgr->ve)
361 pipe->bind_vertex_elements_state(pipe, ve->driver_cso);
362
363 return ve;
364 }
365
366 void u_vbuf_set_vertex_elements(struct u_vbuf *mgr, unsigned count,
367 const struct pipe_vertex_element *states)
368 {
369 mgr->ve = u_vbuf_set_vertex_elements_internal(mgr, count, states);
370 }
371
372 void u_vbuf_destroy(struct u_vbuf *mgr)
373 {
374 struct pipe_screen *screen = mgr->pipe->screen;
375 unsigned i;
376 unsigned num_vb = screen->get_shader_param(screen, PIPE_SHADER_VERTEX,
377 PIPE_SHADER_CAP_MAX_INPUTS);
378
379 mgr->pipe->set_index_buffer(mgr->pipe, NULL);
380 pipe_resource_reference(&mgr->index_buffer.buffer, NULL);
381
382 mgr->pipe->set_vertex_buffers(mgr->pipe, 0, num_vb, NULL);
383
384 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
385 pipe_resource_reference(&mgr->vertex_buffer[i].buffer, NULL);
386 }
387 for (i = 0; i < PIPE_MAX_ATTRIBS; i++) {
388 pipe_resource_reference(&mgr->real_vertex_buffer[i].buffer, NULL);
389 }
390 pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, NULL);
391
392 translate_cache_destroy(mgr->translate_cache);
393 u_upload_destroy(mgr->uploader);
394 cso_cache_delete(mgr->cso_cache);
395 FREE(mgr);
396 }
397
398 static enum pipe_error
399 u_vbuf_translate_buffers(struct u_vbuf *mgr, struct translate_key *key,
400 unsigned vb_mask, unsigned out_vb,
401 int start_vertex, unsigned num_vertices,
402 int start_index, unsigned num_indices, int min_index,
403 boolean unroll_indices)
404 {
405 struct translate *tr;
406 struct pipe_transfer *vb_transfer[PIPE_MAX_ATTRIBS] = {0};
407 struct pipe_resource *out_buffer = NULL;
408 uint8_t *out_map;
409 unsigned out_offset, mask;
410
411 /* Get a translate object. */
412 tr = translate_cache_find(mgr->translate_cache, key);
413
414 /* Map buffers we want to translate. */
415 mask = vb_mask;
416 while (mask) {
417 struct pipe_vertex_buffer *vb;
418 unsigned offset;
419 uint8_t *map;
420 unsigned i = u_bit_scan(&mask);
421
422 vb = &mgr->vertex_buffer[i];
423 offset = vb->buffer_offset + vb->stride * start_vertex;
424
425 if (vb->user_buffer) {
426 map = (uint8_t*)vb->user_buffer + offset;
427 } else {
428 unsigned size = vb->stride ? num_vertices * vb->stride
429 : sizeof(double)*4;
430
431 if (offset+size > vb->buffer->width0) {
432 size = vb->buffer->width0 - offset;
433 }
434
435 map = pipe_buffer_map_range(mgr->pipe, vb->buffer, offset, size,
436 PIPE_TRANSFER_READ, &vb_transfer[i]);
437 }
438
439 /* Subtract min_index so that indexing with the index buffer works. */
440 if (unroll_indices) {
441 map -= (ptrdiff_t)vb->stride * min_index;
442 }
443
444 tr->set_buffer(tr, i, map, vb->stride, ~0);
445 }
446
447 /* Translate. */
448 if (unroll_indices) {
449 struct pipe_index_buffer *ib = &mgr->index_buffer;
450 struct pipe_transfer *transfer = NULL;
451 unsigned offset = ib->offset + start_index * ib->index_size;
452 uint8_t *map;
453
454 assert((ib->buffer || ib->user_buffer) && ib->index_size);
455
456 /* Create and map the output buffer. */
457 u_upload_alloc(mgr->uploader, 0,
458 key->output_stride * num_indices, 4,
459 &out_offset, &out_buffer,
460 (void**)&out_map);
461 if (!out_buffer)
462 return PIPE_ERROR_OUT_OF_MEMORY;
463
464 if (ib->user_buffer) {
465 map = (uint8_t*)ib->user_buffer + offset;
466 } else {
467 map = pipe_buffer_map_range(mgr->pipe, ib->buffer, offset,
468 num_indices * ib->index_size,
469 PIPE_TRANSFER_READ, &transfer);
470 }
471
472 switch (ib->index_size) {
473 case 4:
474 tr->run_elts(tr, (unsigned*)map, num_indices, 0, 0, out_map);
475 break;
476 case 2:
477 tr->run_elts16(tr, (uint16_t*)map, num_indices, 0, 0, out_map);
478 break;
479 case 1:
480 tr->run_elts8(tr, map, num_indices, 0, 0, out_map);
481 break;
482 }
483
484 if (transfer) {
485 pipe_buffer_unmap(mgr->pipe, transfer);
486 }
487 } else {
488 /* Create and map the output buffer. */
489 u_upload_alloc(mgr->uploader,
490 key->output_stride * start_vertex,
491 key->output_stride * num_vertices, 4,
492 &out_offset, &out_buffer,
493 (void**)&out_map);
494 if (!out_buffer)
495 return PIPE_ERROR_OUT_OF_MEMORY;
496
497 out_offset -= key->output_stride * start_vertex;
498
499 tr->run(tr, 0, num_vertices, 0, 0, out_map);
500 }
501
502 /* Unmap all buffers. */
503 mask = vb_mask;
504 while (mask) {
505 unsigned i = u_bit_scan(&mask);
506
507 if (vb_transfer[i]) {
508 pipe_buffer_unmap(mgr->pipe, vb_transfer[i]);
509 }
510 }
511
512 /* Setup the new vertex buffer. */
513 mgr->real_vertex_buffer[out_vb].buffer_offset = out_offset;
514 mgr->real_vertex_buffer[out_vb].stride = key->output_stride;
515
516 /* Move the buffer reference. */
517 pipe_resource_reference(
518 &mgr->real_vertex_buffer[out_vb].buffer, NULL);
519 mgr->real_vertex_buffer[out_vb].buffer = out_buffer;
520
521 return PIPE_OK;
522 }
523
524 static boolean
525 u_vbuf_translate_find_free_vb_slots(struct u_vbuf *mgr,
526 unsigned mask[VB_NUM])
527 {
528 unsigned type;
529 unsigned fallback_vbs[VB_NUM];
530 /* Set the bit for each buffer which is incompatible, or isn't set. */
531 uint32_t unused_vb_mask =
532 mgr->ve->incompatible_vb_mask_all | mgr->incompatible_vb_mask |
533 ~mgr->enabled_vb_mask;
534
535 memset(fallback_vbs, ~0, sizeof(fallback_vbs));
536
537 /* Find free slots for each type if needed. */
538 for (type = 0; type < VB_NUM; type++) {
539 if (mask[type]) {
540 uint32_t index;
541
542 if (!unused_vb_mask) {
543 return FALSE;
544 }
545
546 index = ffs(unused_vb_mask) - 1;
547 fallback_vbs[type] = index;
548 unused_vb_mask &= ~(1 << index);
549 /*printf("found slot=%i for type=%i\n", index, type);*/
550 }
551 }
552
553 for (type = 0; type < VB_NUM; type++) {
554 if (mask[type]) {
555 mgr->dirty_real_vb_mask |= 1 << fallback_vbs[type];
556 }
557 }
558
559 memcpy(mgr->fallback_vbs, fallback_vbs, sizeof(fallback_vbs));
560 return TRUE;
561 }
562
563 static boolean
564 u_vbuf_translate_begin(struct u_vbuf *mgr,
565 int start_vertex, unsigned num_vertices,
566 int start_instance, unsigned num_instances,
567 int start_index, unsigned num_indices, int min_index,
568 boolean unroll_indices)
569 {
570 unsigned mask[VB_NUM] = {0};
571 struct translate_key key[VB_NUM];
572 unsigned elem_index[VB_NUM][PIPE_MAX_ATTRIBS]; /* ... into key.elements */
573 unsigned i, type;
574 unsigned incompatible_vb_mask = mgr->incompatible_vb_mask &
575 mgr->ve->used_vb_mask;
576
577 int start[VB_NUM] = {
578 start_vertex, /* VERTEX */
579 start_instance, /* INSTANCE */
580 0 /* CONST */
581 };
582
583 unsigned num[VB_NUM] = {
584 num_vertices, /* VERTEX */
585 num_instances, /* INSTANCE */
586 1 /* CONST */
587 };
588
589 memset(key, 0, sizeof(key));
590 memset(elem_index, ~0, sizeof(elem_index));
591
592 /* See if there are vertex attribs of each type to translate and
593 * which ones. */
594 for (i = 0; i < mgr->ve->count; i++) {
595 unsigned vb_index = mgr->ve->ve[i].vertex_buffer_index;
596
597 if (!mgr->vertex_buffer[vb_index].stride) {
598 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
599 !(incompatible_vb_mask & (1 << vb_index))) {
600 continue;
601 }
602 mask[VB_CONST] |= 1 << vb_index;
603 } else if (mgr->ve->ve[i].instance_divisor) {
604 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
605 !(incompatible_vb_mask & (1 << vb_index))) {
606 continue;
607 }
608 mask[VB_INSTANCE] |= 1 << vb_index;
609 } else {
610 if (!unroll_indices &&
611 !(mgr->ve->incompatible_elem_mask & (1 << i)) &&
612 !(incompatible_vb_mask & (1 << vb_index))) {
613 continue;
614 }
615 mask[VB_VERTEX] |= 1 << vb_index;
616 }
617 }
618
619 assert(mask[VB_VERTEX] || mask[VB_INSTANCE] || mask[VB_CONST]);
620
621 /* Find free vertex buffer slots. */
622 if (!u_vbuf_translate_find_free_vb_slots(mgr, mask)) {
623 return FALSE;
624 }
625
626 /* Initialize the translate keys. */
627 for (i = 0; i < mgr->ve->count; i++) {
628 struct translate_key *k;
629 struct translate_element *te;
630 unsigned bit, vb_index = mgr->ve->ve[i].vertex_buffer_index;
631 bit = 1 << vb_index;
632
633 if (!(mgr->ve->incompatible_elem_mask & (1 << i)) &&
634 !(incompatible_vb_mask & (1 << vb_index)) &&
635 (!unroll_indices || !(mask[VB_VERTEX] & bit))) {
636 continue;
637 }
638
639 /* Set type to what we will translate.
640 * Whether vertex, instance, or constant attribs. */
641 for (type = 0; type < VB_NUM; type++) {
642 if (mask[type] & bit) {
643 break;
644 }
645 }
646 assert(type < VB_NUM);
647 assert(translate_is_output_format_supported(mgr->ve->native_format[i]));
648 /*printf("velem=%i type=%i\n", i, type);*/
649
650 /* Add the vertex element. */
651 k = &key[type];
652 elem_index[type][i] = k->nr_elements;
653
654 te = &k->element[k->nr_elements];
655 te->type = TRANSLATE_ELEMENT_NORMAL;
656 te->instance_divisor = 0;
657 te->input_buffer = vb_index;
658 te->input_format = mgr->ve->ve[i].src_format;
659 te->input_offset = mgr->ve->ve[i].src_offset;
660 te->output_format = mgr->ve->native_format[i];
661 te->output_offset = k->output_stride;
662
663 k->output_stride += mgr->ve->native_format_size[i];
664 k->nr_elements++;
665 }
666
667 /* Translate buffers. */
668 for (type = 0; type < VB_NUM; type++) {
669 if (key[type].nr_elements) {
670 enum pipe_error err;
671 err = u_vbuf_translate_buffers(mgr, &key[type], mask[type],
672 mgr->fallback_vbs[type],
673 start[type], num[type],
674 start_index, num_indices, min_index,
675 unroll_indices && type == VB_VERTEX);
676 if (err != PIPE_OK)
677 return FALSE;
678
679 /* Fixup the stride for constant attribs. */
680 if (type == VB_CONST) {
681 mgr->real_vertex_buffer[mgr->fallback_vbs[VB_CONST]].stride = 0;
682 }
683 }
684 }
685
686 /* Setup new vertex elements. */
687 for (i = 0; i < mgr->ve->count; i++) {
688 for (type = 0; type < VB_NUM; type++) {
689 if (elem_index[type][i] < key[type].nr_elements) {
690 struct translate_element *te = &key[type].element[elem_index[type][i]];
691 mgr->fallback_velems[i].instance_divisor = mgr->ve->ve[i].instance_divisor;
692 mgr->fallback_velems[i].src_format = te->output_format;
693 mgr->fallback_velems[i].src_offset = te->output_offset;
694 mgr->fallback_velems[i].vertex_buffer_index = mgr->fallback_vbs[type];
695
696 /* elem_index[type][i] can only be set for one type. */
697 assert(type > VB_INSTANCE || elem_index[type+1][i] == ~0);
698 assert(type > VB_VERTEX || elem_index[type+2][i] == ~0);
699 break;
700 }
701 }
702 /* No translating, just copy the original vertex element over. */
703 if (type == VB_NUM) {
704 memcpy(&mgr->fallback_velems[i], &mgr->ve->ve[i],
705 sizeof(struct pipe_vertex_element));
706 }
707 }
708
709 u_vbuf_set_vertex_elements_internal(mgr, mgr->ve->count,
710 mgr->fallback_velems);
711 mgr->using_translate = TRUE;
712 return TRUE;
713 }
714
715 static void u_vbuf_translate_end(struct u_vbuf *mgr)
716 {
717 unsigned i;
718
719 /* Restore vertex elements. */
720 mgr->pipe->bind_vertex_elements_state(mgr->pipe, mgr->ve->driver_cso);
721 mgr->using_translate = FALSE;
722
723 /* Unreference the now-unused VBOs. */
724 for (i = 0; i < VB_NUM; i++) {
725 unsigned vb = mgr->fallback_vbs[i];
726 if (vb != ~0) {
727 pipe_resource_reference(&mgr->real_vertex_buffer[vb].buffer, NULL);
728 mgr->fallback_vbs[i] = ~0;
729
730 /* This will cause the buffer to be unbound in the driver later. */
731 mgr->dirty_real_vb_mask |= 1 << vb;
732 }
733 }
734 }
735
736 static void *
737 u_vbuf_create_vertex_elements(struct u_vbuf *mgr, unsigned count,
738 const struct pipe_vertex_element *attribs)
739 {
740 struct pipe_context *pipe = mgr->pipe;
741 unsigned i;
742 struct pipe_vertex_element driver_attribs[PIPE_MAX_ATTRIBS];
743 struct u_vbuf_elements *ve = CALLOC_STRUCT(u_vbuf_elements);
744 uint32_t used_buffers = 0;
745
746 ve->count = count;
747
748 memcpy(ve->ve, attribs, sizeof(struct pipe_vertex_element) * count);
749 memcpy(driver_attribs, attribs, sizeof(struct pipe_vertex_element) * count);
750
751 /* Set the best native format in case the original format is not
752 * supported. */
753 for (i = 0; i < count; i++) {
754 enum pipe_format format = ve->ve[i].src_format;
755
756 ve->src_format_size[i] = util_format_get_blocksize(format);
757
758 used_buffers |= 1 << ve->ve[i].vertex_buffer_index;
759
760 if (!ve->ve[i].instance_divisor) {
761 ve->noninstance_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
762 }
763
764 format = mgr->caps.format_translation[format];
765
766 driver_attribs[i].src_format = format;
767 ve->native_format[i] = format;
768 ve->native_format_size[i] =
769 util_format_get_blocksize(ve->native_format[i]);
770
771 if (ve->ve[i].src_format != format ||
772 (!mgr->caps.velem_src_offset_unaligned &&
773 ve->ve[i].src_offset % 4 != 0)) {
774 ve->incompatible_elem_mask |= 1 << i;
775 ve->incompatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
776 } else {
777 ve->compatible_vb_mask_any |= 1 << ve->ve[i].vertex_buffer_index;
778 }
779 }
780
781 ve->used_vb_mask = used_buffers;
782 ve->compatible_vb_mask_all = ~ve->incompatible_vb_mask_any & used_buffers;
783 ve->incompatible_vb_mask_all = ~ve->compatible_vb_mask_any & used_buffers;
784
785 /* Align the formats and offsets to the size of DWORD if needed. */
786 if (!mgr->caps.velem_src_offset_unaligned) {
787 for (i = 0; i < count; i++) {
788 ve->native_format_size[i] = align(ve->native_format_size[i], 4);
789 driver_attribs[i].src_offset = align(ve->ve[i].src_offset, 4);
790 }
791 }
792
793 ve->driver_cso =
794 pipe->create_vertex_elements_state(pipe, count, driver_attribs);
795 return ve;
796 }
797
798 static void u_vbuf_delete_vertex_elements(struct u_vbuf *mgr, void *cso)
799 {
800 struct pipe_context *pipe = mgr->pipe;
801 struct u_vbuf_elements *ve = cso;
802
803 pipe->delete_vertex_elements_state(pipe, ve->driver_cso);
804 FREE(ve);
805 }
806
807 void u_vbuf_set_vertex_buffers(struct u_vbuf *mgr,
808 unsigned start_slot, unsigned count,
809 const struct pipe_vertex_buffer *bufs)
810 {
811 unsigned i;
812 /* which buffers are enabled */
813 uint32_t enabled_vb_mask = 0;
814 /* which buffers are in user memory */
815 uint32_t user_vb_mask = 0;
816 /* which buffers are incompatible with the driver */
817 uint32_t incompatible_vb_mask = 0;
818 /* which buffers have a non-zero stride */
819 uint32_t nonzero_stride_vb_mask = 0;
820 uint32_t mask = ~(((1ull << count) - 1) << start_slot);
821
822 /* Zero out the bits we are going to rewrite completely. */
823 mgr->user_vb_mask &= mask;
824 mgr->incompatible_vb_mask &= mask;
825 mgr->nonzero_stride_vb_mask &= mask;
826 mgr->enabled_vb_mask &= mask;
827
828 if (!bufs) {
829 struct pipe_context *pipe = mgr->pipe;
830 /* Unbind. */
831 mgr->dirty_real_vb_mask &= mask;
832
833 for (i = 0; i < count; i++) {
834 unsigned dst_index = start_slot + i;
835
836 pipe_resource_reference(&mgr->vertex_buffer[dst_index].buffer, NULL);
837 pipe_resource_reference(&mgr->real_vertex_buffer[dst_index].buffer,
838 NULL);
839 }
840
841 pipe->set_vertex_buffers(pipe, start_slot, count, NULL);
842 return;
843 }
844
845 for (i = 0; i < count; i++) {
846 unsigned dst_index = start_slot + i;
847 const struct pipe_vertex_buffer *vb = &bufs[i];
848 struct pipe_vertex_buffer *orig_vb = &mgr->vertex_buffer[dst_index];
849 struct pipe_vertex_buffer *real_vb = &mgr->real_vertex_buffer[dst_index];
850
851 if (!vb->buffer && !vb->user_buffer) {
852 pipe_resource_reference(&orig_vb->buffer, NULL);
853 pipe_resource_reference(&real_vb->buffer, NULL);
854 real_vb->user_buffer = NULL;
855 continue;
856 }
857
858 pipe_resource_reference(&orig_vb->buffer, vb->buffer);
859 orig_vb->user_buffer = vb->user_buffer;
860
861 real_vb->buffer_offset = orig_vb->buffer_offset = vb->buffer_offset;
862 real_vb->stride = orig_vb->stride = vb->stride;
863
864 if (vb->stride) {
865 nonzero_stride_vb_mask |= 1 << dst_index;
866 }
867 enabled_vb_mask |= 1 << dst_index;
868
869 if ((!mgr->caps.buffer_offset_unaligned && vb->buffer_offset % 4 != 0) ||
870 (!mgr->caps.buffer_stride_unaligned && vb->stride % 4 != 0)) {
871 incompatible_vb_mask |= 1 << dst_index;
872 pipe_resource_reference(&real_vb->buffer, NULL);
873 continue;
874 }
875
876 if (!mgr->caps.user_vertex_buffers && vb->user_buffer) {
877 user_vb_mask |= 1 << dst_index;
878 pipe_resource_reference(&real_vb->buffer, NULL);
879 continue;
880 }
881
882 pipe_resource_reference(&real_vb->buffer, vb->buffer);
883 real_vb->user_buffer = vb->user_buffer;
884 }
885
886 mgr->user_vb_mask |= user_vb_mask;
887 mgr->incompatible_vb_mask |= incompatible_vb_mask;
888 mgr->nonzero_stride_vb_mask |= nonzero_stride_vb_mask;
889 mgr->enabled_vb_mask |= enabled_vb_mask;
890
891 /* All changed buffers are marked as dirty, even the NULL ones,
892 * which will cause the NULL buffers to be unbound in the driver later. */
893 mgr->dirty_real_vb_mask |= ~mask;
894 }
895
896 void u_vbuf_set_index_buffer(struct u_vbuf *mgr,
897 const struct pipe_index_buffer *ib)
898 {
899 struct pipe_context *pipe = mgr->pipe;
900
901 if (ib) {
902 assert(ib->offset % ib->index_size == 0);
903 pipe_resource_reference(&mgr->index_buffer.buffer, ib->buffer);
904 memcpy(&mgr->index_buffer, ib, sizeof(*ib));
905 } else {
906 pipe_resource_reference(&mgr->index_buffer.buffer, NULL);
907 }
908
909 pipe->set_index_buffer(pipe, ib);
910 }
911
912 static enum pipe_error
913 u_vbuf_upload_buffers(struct u_vbuf *mgr,
914 int start_vertex, unsigned num_vertices,
915 int start_instance, unsigned num_instances)
916 {
917 unsigned i;
918 unsigned nr_velems = mgr->ve->count;
919 struct pipe_vertex_element *velems =
920 mgr->using_translate ? mgr->fallback_velems : mgr->ve->ve;
921 unsigned start_offset[PIPE_MAX_ATTRIBS];
922 unsigned end_offset[PIPE_MAX_ATTRIBS];
923 uint32_t buffer_mask = 0;
924
925 /* Determine how much data needs to be uploaded. */
926 for (i = 0; i < nr_velems; i++) {
927 struct pipe_vertex_element *velem = &velems[i];
928 unsigned index = velem->vertex_buffer_index;
929 struct pipe_vertex_buffer *vb = &mgr->vertex_buffer[index];
930 unsigned instance_div, first, size, index_bit;
931
932 /* Skip the buffers generated by translate. */
933 if (index == mgr->fallback_vbs[VB_VERTEX] ||
934 index == mgr->fallback_vbs[VB_INSTANCE] ||
935 index == mgr->fallback_vbs[VB_CONST]) {
936 continue;
937 }
938
939 if (!vb->user_buffer) {
940 continue;
941 }
942
943 instance_div = velem->instance_divisor;
944 first = vb->buffer_offset + velem->src_offset;
945
946 if (!vb->stride) {
947 /* Constant attrib. */
948 size = mgr->ve->src_format_size[i];
949 } else if (instance_div) {
950 /* Per-instance attrib. */
951 unsigned count = (num_instances + instance_div - 1) / instance_div;
952 first += vb->stride * start_instance;
953 size = vb->stride * (count - 1) + mgr->ve->src_format_size[i];
954 } else {
955 /* Per-vertex attrib. */
956 first += vb->stride * start_vertex;
957 size = vb->stride * (num_vertices - 1) + mgr->ve->src_format_size[i];
958 }
959
960 index_bit = 1 << index;
961
962 /* Update offsets. */
963 if (!(buffer_mask & index_bit)) {
964 start_offset[index] = first;
965 end_offset[index] = first + size;
966 } else {
967 if (first < start_offset[index])
968 start_offset[index] = first;
969 if (first + size > end_offset[index])
970 end_offset[index] = first + size;
971 }
972
973 buffer_mask |= index_bit;
974 }
975
976 /* Upload buffers. */
977 while (buffer_mask) {
978 unsigned start, end;
979 struct pipe_vertex_buffer *real_vb;
980 const uint8_t *ptr;
981
982 i = u_bit_scan(&buffer_mask);
983
984 start = start_offset[i];
985 end = end_offset[i];
986 assert(start < end);
987
988 real_vb = &mgr->real_vertex_buffer[i];
989 ptr = mgr->vertex_buffer[i].user_buffer;
990
991 u_upload_data(mgr->uploader, start, end - start, 4, ptr + start,
992 &real_vb->buffer_offset, &real_vb->buffer);
993 if (!real_vb->buffer)
994 return PIPE_ERROR_OUT_OF_MEMORY;
995
996 real_vb->buffer_offset -= start;
997 }
998
999 return PIPE_OK;
1000 }
1001
1002 static boolean u_vbuf_need_minmax_index(const struct u_vbuf *mgr)
1003 {
1004 /* See if there are any per-vertex attribs which will be uploaded or
1005 * translated. Use bitmasks to get the info instead of looping over vertex
1006 * elements. */
1007 return (mgr->ve->used_vb_mask &
1008 ((mgr->user_vb_mask |
1009 mgr->incompatible_vb_mask |
1010 mgr->ve->incompatible_vb_mask_any) &
1011 mgr->ve->noninstance_vb_mask_any &
1012 mgr->nonzero_stride_vb_mask)) != 0;
1013 }
1014
1015 static boolean u_vbuf_mapping_vertex_buffer_blocks(const struct u_vbuf *mgr)
1016 {
1017 /* Return true if there are hw buffers which don't need to be translated.
1018 *
1019 * We could query whether each buffer is busy, but that would
1020 * be way more costly than this. */
1021 return (mgr->ve->used_vb_mask &
1022 (~mgr->user_vb_mask &
1023 ~mgr->incompatible_vb_mask &
1024 mgr->ve->compatible_vb_mask_all &
1025 mgr->ve->noninstance_vb_mask_any &
1026 mgr->nonzero_stride_vb_mask)) != 0;
1027 }
1028
1029 static void u_vbuf_get_minmax_index(struct pipe_context *pipe,
1030 struct pipe_index_buffer *ib,
1031 boolean primitive_restart,
1032 unsigned restart_index,
1033 unsigned start, unsigned count,
1034 int *out_min_index,
1035 int *out_max_index)
1036 {
1037 struct pipe_transfer *transfer = NULL;
1038 const void *indices;
1039 unsigned i;
1040
1041 if (ib->user_buffer) {
1042 indices = (uint8_t*)ib->user_buffer +
1043 ib->offset + start * ib->index_size;
1044 } else {
1045 indices = pipe_buffer_map_range(pipe, ib->buffer,
1046 ib->offset + start * ib->index_size,
1047 count * ib->index_size,
1048 PIPE_TRANSFER_READ, &transfer);
1049 }
1050
1051 switch (ib->index_size) {
1052 case 4: {
1053 const unsigned *ui_indices = (const unsigned*)indices;
1054 unsigned max_ui = 0;
1055 unsigned min_ui = ~0U;
1056 if (primitive_restart) {
1057 for (i = 0; i < count; i++) {
1058 if (ui_indices[i] != restart_index) {
1059 if (ui_indices[i] > max_ui) max_ui = ui_indices[i];
1060 if (ui_indices[i] < min_ui) min_ui = ui_indices[i];
1061 }
1062 }
1063 }
1064 else {
1065 for (i = 0; i < count; i++) {
1066 if (ui_indices[i] > max_ui) max_ui = ui_indices[i];
1067 if (ui_indices[i] < min_ui) min_ui = ui_indices[i];
1068 }
1069 }
1070 *out_min_index = min_ui;
1071 *out_max_index = max_ui;
1072 break;
1073 }
1074 case 2: {
1075 const unsigned short *us_indices = (const unsigned short*)indices;
1076 unsigned max_us = 0;
1077 unsigned min_us = ~0U;
1078 if (primitive_restart) {
1079 for (i = 0; i < count; i++) {
1080 if (us_indices[i] != restart_index) {
1081 if (us_indices[i] > max_us) max_us = us_indices[i];
1082 if (us_indices[i] < min_us) min_us = us_indices[i];
1083 }
1084 }
1085 }
1086 else {
1087 for (i = 0; i < count; i++) {
1088 if (us_indices[i] > max_us) max_us = us_indices[i];
1089 if (us_indices[i] < min_us) min_us = us_indices[i];
1090 }
1091 }
1092 *out_min_index = min_us;
1093 *out_max_index = max_us;
1094 break;
1095 }
1096 case 1: {
1097 const unsigned char *ub_indices = (const unsigned char*)indices;
1098 unsigned max_ub = 0;
1099 unsigned min_ub = ~0U;
1100 if (primitive_restart) {
1101 for (i = 0; i < count; i++) {
1102 if (ub_indices[i] != restart_index) {
1103 if (ub_indices[i] > max_ub) max_ub = ub_indices[i];
1104 if (ub_indices[i] < min_ub) min_ub = ub_indices[i];
1105 }
1106 }
1107 }
1108 else {
1109 for (i = 0; i < count; i++) {
1110 if (ub_indices[i] > max_ub) max_ub = ub_indices[i];
1111 if (ub_indices[i] < min_ub) min_ub = ub_indices[i];
1112 }
1113 }
1114 *out_min_index = min_ub;
1115 *out_max_index = max_ub;
1116 break;
1117 }
1118 default:
1119 assert(0);
1120 *out_min_index = 0;
1121 *out_max_index = 0;
1122 }
1123
1124 if (transfer) {
1125 pipe_buffer_unmap(pipe, transfer);
1126 }
1127 }
1128
1129 static void u_vbuf_set_driver_vertex_buffers(struct u_vbuf *mgr)
1130 {
1131 struct pipe_context *pipe = mgr->pipe;
1132 unsigned start_slot, count;
1133
1134 start_slot = ffs(mgr->dirty_real_vb_mask) - 1;
1135 count = util_last_bit(mgr->dirty_real_vb_mask >> start_slot);
1136
1137 pipe->set_vertex_buffers(pipe, start_slot, count,
1138 mgr->real_vertex_buffer + start_slot);
1139 mgr->dirty_real_vb_mask = 0;
1140 }
1141
1142 void u_vbuf_draw_vbo(struct u_vbuf *mgr, const struct pipe_draw_info *info)
1143 {
1144 struct pipe_context *pipe = mgr->pipe;
1145 int start_vertex, min_index;
1146 unsigned num_vertices;
1147 boolean unroll_indices = FALSE;
1148 uint32_t used_vb_mask = mgr->ve->used_vb_mask;
1149 uint32_t user_vb_mask = mgr->user_vb_mask & used_vb_mask;
1150 uint32_t incompatible_vb_mask = mgr->incompatible_vb_mask & used_vb_mask;
1151 struct pipe_draw_info new_info;
1152
1153 /* Normal draw. No fallback and no user buffers. */
1154 if (!incompatible_vb_mask &&
1155 !mgr->ve->incompatible_elem_mask &&
1156 !user_vb_mask) {
1157
1158 /* Set vertex buffers if needed. */
1159 if (mgr->dirty_real_vb_mask & used_vb_mask) {
1160 u_vbuf_set_driver_vertex_buffers(mgr);
1161 }
1162
1163 pipe->draw_vbo(pipe, info);
1164 return;
1165 }
1166
1167 new_info = *info;
1168
1169 /* Fallback. We need to know all the parameters. */
1170 if (new_info.indirect) {
1171 struct pipe_transfer *transfer = NULL;
1172 int *data;
1173
1174 if (new_info.indexed) {
1175 data = pipe_buffer_map_range(pipe, new_info.indirect,
1176 new_info.indirect_offset, 20,
1177 PIPE_TRANSFER_READ, &transfer);
1178 new_info.index_bias = data[3];
1179 new_info.start_instance = data[4];
1180 }
1181 else {
1182 data = pipe_buffer_map_range(pipe, new_info.indirect,
1183 new_info.indirect_offset, 16,
1184 PIPE_TRANSFER_READ, &transfer);
1185 new_info.start_instance = data[3];
1186 }
1187
1188 new_info.count = data[0];
1189 new_info.instance_count = data[1];
1190 new_info.start = data[2];
1191 pipe_buffer_unmap(pipe, transfer);
1192 new_info.indirect = NULL;
1193 }
1194
1195 if (new_info.indexed) {
1196 /* See if anything needs to be done for per-vertex attribs. */
1197 if (u_vbuf_need_minmax_index(mgr)) {
1198 int max_index;
1199
1200 if (new_info.max_index != ~0) {
1201 min_index = new_info.min_index;
1202 max_index = new_info.max_index;
1203 } else {
1204 u_vbuf_get_minmax_index(mgr->pipe, &mgr->index_buffer,
1205 new_info.primitive_restart,
1206 new_info.restart_index, new_info.start,
1207 new_info.count, &min_index, &max_index);
1208 }
1209
1210 assert(min_index <= max_index);
1211
1212 start_vertex = min_index + new_info.index_bias;
1213 num_vertices = max_index + 1 - min_index;
1214
1215 /* Primitive restart doesn't work when unrolling indices.
1216 * We would have to break this drawing operation into several ones. */
1217 /* Use some heuristic to see if unrolling indices improves
1218 * performance. */
1219 if (!new_info.primitive_restart &&
1220 num_vertices > new_info.count*2 &&
1221 num_vertices - new_info.count > 32 &&
1222 !u_vbuf_mapping_vertex_buffer_blocks(mgr)) {
1223 unroll_indices = TRUE;
1224 user_vb_mask &= ~(mgr->nonzero_stride_vb_mask &
1225 mgr->ve->noninstance_vb_mask_any);
1226 }
1227 } else {
1228 /* Nothing to do for per-vertex attribs. */
1229 start_vertex = 0;
1230 num_vertices = 0;
1231 min_index = 0;
1232 }
1233 } else {
1234 start_vertex = new_info.start;
1235 num_vertices = new_info.count;
1236 min_index = 0;
1237 }
1238
1239 /* Translate vertices with non-native layouts or formats. */
1240 if (unroll_indices ||
1241 incompatible_vb_mask ||
1242 mgr->ve->incompatible_elem_mask) {
1243 if (!u_vbuf_translate_begin(mgr, start_vertex, num_vertices,
1244 new_info.start_instance,
1245 new_info.instance_count, new_info.start,
1246 new_info.count, min_index, unroll_indices)) {
1247 debug_warn_once("u_vbuf_translate_begin() failed");
1248 return;
1249 }
1250
1251 if (unroll_indices) {
1252 new_info.indexed = FALSE;
1253 new_info.index_bias = 0;
1254 new_info.min_index = 0;
1255 new_info.max_index = new_info.count - 1;
1256 new_info.start = 0;
1257 }
1258
1259 user_vb_mask &= ~(incompatible_vb_mask |
1260 mgr->ve->incompatible_vb_mask_all);
1261 }
1262
1263 /* Upload user buffers. */
1264 if (user_vb_mask) {
1265 if (u_vbuf_upload_buffers(mgr, start_vertex, num_vertices,
1266 new_info.start_instance,
1267 new_info.instance_count) != PIPE_OK) {
1268 debug_warn_once("u_vbuf_upload_buffers() failed");
1269 return;
1270 }
1271
1272 mgr->dirty_real_vb_mask |= user_vb_mask;
1273 }
1274
1275 /*
1276 if (unroll_indices) {
1277 printf("unrolling indices: start_vertex = %i, num_vertices = %i\n",
1278 start_vertex, num_vertices);
1279 util_dump_draw_info(stdout, info);
1280 printf("\n");
1281 }
1282
1283 unsigned i;
1284 for (i = 0; i < mgr->nr_vertex_buffers; i++) {
1285 printf("input %i: ", i);
1286 util_dump_vertex_buffer(stdout, mgr->vertex_buffer+i);
1287 printf("\n");
1288 }
1289 for (i = 0; i < mgr->nr_real_vertex_buffers; i++) {
1290 printf("real %i: ", i);
1291 util_dump_vertex_buffer(stdout, mgr->real_vertex_buffer+i);
1292 printf("\n");
1293 }
1294 */
1295
1296 u_upload_unmap(mgr->uploader);
1297 u_vbuf_set_driver_vertex_buffers(mgr);
1298
1299 pipe->draw_vbo(pipe, &new_info);
1300
1301 if (mgr->using_translate) {
1302 u_vbuf_translate_end(mgr);
1303 }
1304 }
1305
1306 void u_vbuf_save_vertex_elements(struct u_vbuf *mgr)
1307 {
1308 assert(!mgr->ve_saved);
1309 mgr->ve_saved = mgr->ve;
1310 }
1311
1312 void u_vbuf_restore_vertex_elements(struct u_vbuf *mgr)
1313 {
1314 if (mgr->ve != mgr->ve_saved) {
1315 struct pipe_context *pipe = mgr->pipe;
1316
1317 mgr->ve = mgr->ve_saved;
1318 pipe->bind_vertex_elements_state(pipe,
1319 mgr->ve ? mgr->ve->driver_cso : NULL);
1320 }
1321 mgr->ve_saved = NULL;
1322 }
1323
1324 void u_vbuf_save_aux_vertex_buffer_slot(struct u_vbuf *mgr)
1325 {
1326 struct pipe_vertex_buffer *vb =
1327 &mgr->vertex_buffer[mgr->aux_vertex_buffer_slot];
1328
1329 pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, vb->buffer);
1330 memcpy(&mgr->aux_vertex_buffer_saved, vb, sizeof(*vb));
1331 }
1332
1333 void u_vbuf_restore_aux_vertex_buffer_slot(struct u_vbuf *mgr)
1334 {
1335 u_vbuf_set_vertex_buffers(mgr, mgr->aux_vertex_buffer_slot, 1,
1336 &mgr->aux_vertex_buffer_saved);
1337 pipe_resource_reference(&mgr->aux_vertex_buffer_saved.buffer, NULL);
1338 }