7e7010f407ff41e98c200509b25c89dbc94f1f5f
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`Double Opcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Instruction Set
27 ---------------
28
29 Core ISA
30 ^^^^^^^^^^^^^^^^^^^^^^^^^
31
32 These opcodes are guaranteed to be available regardless of the driver being
33 used.
34
35 .. opcode:: ARL - Address Register Load
36
37 .. math::
38
39 dst.x = \lfloor src.x\rfloor
40
41 dst.y = \lfloor src.y\rfloor
42
43 dst.z = \lfloor src.z\rfloor
44
45 dst.w = \lfloor src.w\rfloor
46
47
48 .. opcode:: MOV - Move
49
50 .. math::
51
52 dst.x = src.x
53
54 dst.y = src.y
55
56 dst.z = src.z
57
58 dst.w = src.w
59
60
61 .. opcode:: LIT - Light Coefficients
62
63 .. math::
64
65 dst.x = 1
66
67 dst.y = max(src.x, 0)
68
69 dst.z = (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0
70
71 dst.w = 1
72
73
74 .. opcode:: RCP - Reciprocal
75
76 This instruction replicates its result.
77
78 .. math::
79
80 dst = \frac{1}{src.x}
81
82
83 .. opcode:: RSQ - Reciprocal Square Root
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{\sqrt{|src.x|}}
90
91
92 .. opcode:: EXP - Approximate Exponential Base 2
93
94 .. math::
95
96 dst.x = 2^{\lfloor src.x\rfloor}
97
98 dst.y = src.x - \lfloor src.x\rfloor
99
100 dst.z = 2^{src.x}
101
102 dst.w = 1
103
104
105 .. opcode:: LOG - Approximate Logarithm Base 2
106
107 .. math::
108
109 dst.x = \lfloor\log_2{|src.x|}\rfloor
110
111 dst.y = \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}}
112
113 dst.z = \log_2{|src.x|}
114
115 dst.w = 1
116
117
118 .. opcode:: MUL - Multiply
119
120 .. math::
121
122 dst.x = src0.x \times src1.x
123
124 dst.y = src0.y \times src1.y
125
126 dst.z = src0.z \times src1.z
127
128 dst.w = src0.w \times src1.w
129
130
131 .. opcode:: ADD - Add
132
133 .. math::
134
135 dst.x = src0.x + src1.x
136
137 dst.y = src0.y + src1.y
138
139 dst.z = src0.z + src1.z
140
141 dst.w = src0.w + src1.w
142
143
144 .. opcode:: DP3 - 3-component Dot Product
145
146 This instruction replicates its result.
147
148 .. math::
149
150 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
151
152
153 .. opcode:: DP4 - 4-component Dot Product
154
155 This instruction replicates its result.
156
157 .. math::
158
159 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
160
161
162 .. opcode:: DST - Distance Vector
163
164 .. math::
165
166 dst.x = 1
167
168 dst.y = src0.y \times src1.y
169
170 dst.z = src0.z
171
172 dst.w = src1.w
173
174
175 .. opcode:: MIN - Minimum
176
177 .. math::
178
179 dst.x = min(src0.x, src1.x)
180
181 dst.y = min(src0.y, src1.y)
182
183 dst.z = min(src0.z, src1.z)
184
185 dst.w = min(src0.w, src1.w)
186
187
188 .. opcode:: MAX - Maximum
189
190 .. math::
191
192 dst.x = max(src0.x, src1.x)
193
194 dst.y = max(src0.y, src1.y)
195
196 dst.z = max(src0.z, src1.z)
197
198 dst.w = max(src0.w, src1.w)
199
200
201 .. opcode:: SLT - Set On Less Than
202
203 .. math::
204
205 dst.x = (src0.x < src1.x) ? 1 : 0
206
207 dst.y = (src0.y < src1.y) ? 1 : 0
208
209 dst.z = (src0.z < src1.z) ? 1 : 0
210
211 dst.w = (src0.w < src1.w) ? 1 : 0
212
213
214 .. opcode:: SGE - Set On Greater Equal Than
215
216 .. math::
217
218 dst.x = (src0.x >= src1.x) ? 1 : 0
219
220 dst.y = (src0.y >= src1.y) ? 1 : 0
221
222 dst.z = (src0.z >= src1.z) ? 1 : 0
223
224 dst.w = (src0.w >= src1.w) ? 1 : 0
225
226
227 .. opcode:: MAD - Multiply And Add
228
229 .. math::
230
231 dst.x = src0.x \times src1.x + src2.x
232
233 dst.y = src0.y \times src1.y + src2.y
234
235 dst.z = src0.z \times src1.z + src2.z
236
237 dst.w = src0.w \times src1.w + src2.w
238
239
240 .. opcode:: SUB - Subtract
241
242 .. math::
243
244 dst.x = src0.x - src1.x
245
246 dst.y = src0.y - src1.y
247
248 dst.z = src0.z - src1.z
249
250 dst.w = src0.w - src1.w
251
252
253 .. opcode:: LRP - Linear Interpolate
254
255 .. math::
256
257 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
258
259 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
260
261 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
262
263 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
264
265
266 .. opcode:: CND - Condition
267
268 .. math::
269
270 dst.x = (src2.x > 0.5) ? src0.x : src1.x
271
272 dst.y = (src2.y > 0.5) ? src0.y : src1.y
273
274 dst.z = (src2.z > 0.5) ? src0.z : src1.z
275
276 dst.w = (src2.w > 0.5) ? src0.w : src1.w
277
278
279 .. opcode:: DP2A - 2-component Dot Product And Add
280
281 .. math::
282
283 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
284
285 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
286
287 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
288
289 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
290
291
292 .. opcode:: FRC - Fraction
293
294 .. math::
295
296 dst.x = src.x - \lfloor src.x\rfloor
297
298 dst.y = src.y - \lfloor src.y\rfloor
299
300 dst.z = src.z - \lfloor src.z\rfloor
301
302 dst.w = src.w - \lfloor src.w\rfloor
303
304
305 .. opcode:: CLAMP - Clamp
306
307 .. math::
308
309 dst.x = clamp(src0.x, src1.x, src2.x)
310
311 dst.y = clamp(src0.y, src1.y, src2.y)
312
313 dst.z = clamp(src0.z, src1.z, src2.z)
314
315 dst.w = clamp(src0.w, src1.w, src2.w)
316
317
318 .. opcode:: FLR - Floor
319
320 This is identical to :opcode:`ARL`.
321
322 .. math::
323
324 dst.x = \lfloor src.x\rfloor
325
326 dst.y = \lfloor src.y\rfloor
327
328 dst.z = \lfloor src.z\rfloor
329
330 dst.w = \lfloor src.w\rfloor
331
332
333 .. opcode:: ROUND - Round
334
335 .. math::
336
337 dst.x = round(src.x)
338
339 dst.y = round(src.y)
340
341 dst.z = round(src.z)
342
343 dst.w = round(src.w)
344
345
346 .. opcode:: EX2 - Exponential Base 2
347
348 This instruction replicates its result.
349
350 .. math::
351
352 dst = 2^{src.x}
353
354
355 .. opcode:: LG2 - Logarithm Base 2
356
357 This instruction replicates its result.
358
359 .. math::
360
361 dst = \log_2{src.x}
362
363
364 .. opcode:: POW - Power
365
366 This instruction replicates its result.
367
368 .. math::
369
370 dst = src0.x^{src1.x}
371
372 .. opcode:: XPD - Cross Product
373
374 .. math::
375
376 dst.x = src0.y \times src1.z - src1.y \times src0.z
377
378 dst.y = src0.z \times src1.x - src1.z \times src0.x
379
380 dst.z = src0.x \times src1.y - src1.x \times src0.y
381
382 dst.w = 1
383
384
385 .. opcode:: ABS - Absolute
386
387 .. math::
388
389 dst.x = |src.x|
390
391 dst.y = |src.y|
392
393 dst.z = |src.z|
394
395 dst.w = |src.w|
396
397
398 .. opcode:: RCC - Reciprocal Clamped
399
400 This instruction replicates its result.
401
402 XXX cleanup on aisle three
403
404 .. math::
405
406 dst = (1 / src.x) > 0 ? clamp(1 / src.x, 5.42101e-020, 1.884467e+019) : clamp(1 / src.x, -1.884467e+019, -5.42101e-020)
407
408
409 .. opcode:: DPH - Homogeneous Dot Product
410
411 This instruction replicates its result.
412
413 .. math::
414
415 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
416
417
418 .. opcode:: COS - Cosine
419
420 This instruction replicates its result.
421
422 .. math::
423
424 dst = \cos{src.x}
425
426
427 .. opcode:: DDX - Derivative Relative To X
428
429 .. math::
430
431 dst.x = partialx(src.x)
432
433 dst.y = partialx(src.y)
434
435 dst.z = partialx(src.z)
436
437 dst.w = partialx(src.w)
438
439
440 .. opcode:: DDY - Derivative Relative To Y
441
442 .. math::
443
444 dst.x = partialy(src.x)
445
446 dst.y = partialy(src.y)
447
448 dst.z = partialy(src.z)
449
450 dst.w = partialy(src.w)
451
452
453 .. opcode:: KILP - Predicated Discard
454
455 discard
456
457
458 .. opcode:: PK2H - Pack Two 16-bit Floats
459
460 TBD
461
462
463 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
464
465 TBD
466
467
468 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
469
470 TBD
471
472
473 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
474
475 TBD
476
477
478 .. opcode:: RFL - Reflection Vector
479
480 .. math::
481
482 dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x
483
484 dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y
485
486 dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z
487
488 dst.w = 1
489
490 .. note::
491
492 Considered for removal.
493
494
495 .. opcode:: SEQ - Set On Equal
496
497 .. math::
498
499 dst.x = (src0.x == src1.x) ? 1 : 0
500
501 dst.y = (src0.y == src1.y) ? 1 : 0
502
503 dst.z = (src0.z == src1.z) ? 1 : 0
504
505 dst.w = (src0.w == src1.w) ? 1 : 0
506
507
508 .. opcode:: SFL - Set On False
509
510 This instruction replicates its result.
511
512 .. math::
513
514 dst = 0
515
516 .. note::
517
518 Considered for removal.
519
520
521 .. opcode:: SGT - Set On Greater Than
522
523 .. math::
524
525 dst.x = (src0.x > src1.x) ? 1 : 0
526
527 dst.y = (src0.y > src1.y) ? 1 : 0
528
529 dst.z = (src0.z > src1.z) ? 1 : 0
530
531 dst.w = (src0.w > src1.w) ? 1 : 0
532
533
534 .. opcode:: SIN - Sine
535
536 This instruction replicates its result.
537
538 .. math::
539
540 dst = \sin{src.x}
541
542
543 .. opcode:: SLE - Set On Less Equal Than
544
545 .. math::
546
547 dst.x = (src0.x <= src1.x) ? 1 : 0
548
549 dst.y = (src0.y <= src1.y) ? 1 : 0
550
551 dst.z = (src0.z <= src1.z) ? 1 : 0
552
553 dst.w = (src0.w <= src1.w) ? 1 : 0
554
555
556 .. opcode:: SNE - Set On Not Equal
557
558 .. math::
559
560 dst.x = (src0.x != src1.x) ? 1 : 0
561
562 dst.y = (src0.y != src1.y) ? 1 : 0
563
564 dst.z = (src0.z != src1.z) ? 1 : 0
565
566 dst.w = (src0.w != src1.w) ? 1 : 0
567
568
569 .. opcode:: STR - Set On True
570
571 This instruction replicates its result.
572
573 .. math::
574
575 dst = 1
576
577
578 .. opcode:: TEX - Texture Lookup
579
580 .. math::
581
582 coord = src0
583
584 bias = 0.0
585
586 dst = texture_sample(unit, coord, bias)
587
588 for array textures src0.y contains the slice for 1D,
589 and src0.z contain the slice for 2D.
590 for shadow textures with no arrays, src0.z contains
591 the reference value.
592 for shadow textures with arrays, src0.z contains
593 the reference value for 1D arrays, and src0.w contains
594 the reference value for 2D arrays.
595 There is no way to pass a bias in the .w value for
596 shadow arrays, and GLSL doesn't allow this.
597 GLSL does allow cube shadows maps to take a bias value,
598 and we have to determine how this will look in TGSI.
599
600 .. opcode:: TXD - Texture Lookup with Derivatives
601
602 .. math::
603
604 coord = src0
605
606 ddx = src1
607
608 ddy = src2
609
610 bias = 0.0
611
612 dst = texture_sample_deriv(unit, coord, bias, ddx, ddy)
613
614
615 .. opcode:: TXP - Projective Texture Lookup
616
617 .. math::
618
619 coord.x = src0.x / src.w
620
621 coord.y = src0.y / src.w
622
623 coord.z = src0.z / src.w
624
625 coord.w = src0.w
626
627 bias = 0.0
628
629 dst = texture_sample(unit, coord, bias)
630
631
632 .. opcode:: UP2H - Unpack Two 16-Bit Floats
633
634 TBD
635
636 .. note::
637
638 Considered for removal.
639
640 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
641
642 TBD
643
644 .. note::
645
646 Considered for removal.
647
648 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
649
650 TBD
651
652 .. note::
653
654 Considered for removal.
655
656 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
657
658 TBD
659
660 .. note::
661
662 Considered for removal.
663
664 .. opcode:: X2D - 2D Coordinate Transformation
665
666 .. math::
667
668 dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y
669
670 dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w
671
672 dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y
673
674 dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w
675
676 .. note::
677
678 Considered for removal.
679
680
681 .. opcode:: ARA - Address Register Add
682
683 TBD
684
685 .. note::
686
687 Considered for removal.
688
689 .. opcode:: ARR - Address Register Load With Round
690
691 .. math::
692
693 dst.x = round(src.x)
694
695 dst.y = round(src.y)
696
697 dst.z = round(src.z)
698
699 dst.w = round(src.w)
700
701
702 .. opcode:: BRA - Branch
703
704 pc = target
705
706 .. note::
707
708 Considered for removal.
709
710 .. opcode:: CAL - Subroutine Call
711
712 push(pc)
713 pc = target
714
715
716 .. opcode:: RET - Subroutine Call Return
717
718 pc = pop()
719
720
721 .. opcode:: SSG - Set Sign
722
723 .. math::
724
725 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
726
727 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
728
729 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
730
731 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
732
733
734 .. opcode:: CMP - Compare
735
736 .. math::
737
738 dst.x = (src0.x < 0) ? src1.x : src2.x
739
740 dst.y = (src0.y < 0) ? src1.y : src2.y
741
742 dst.z = (src0.z < 0) ? src1.z : src2.z
743
744 dst.w = (src0.w < 0) ? src1.w : src2.w
745
746
747 .. opcode:: KIL - Conditional Discard
748
749 .. math::
750
751 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
752 discard
753 endif
754
755
756 .. opcode:: SCS - Sine Cosine
757
758 .. math::
759
760 dst.x = \cos{src.x}
761
762 dst.y = \sin{src.x}
763
764 dst.z = 0
765
766 dst.w = 1
767
768
769 .. opcode:: TXB - Texture Lookup With Bias
770
771 .. math::
772
773 coord.x = src.x
774
775 coord.y = src.y
776
777 coord.z = src.z
778
779 coord.w = 1.0
780
781 bias = src.z
782
783 dst = texture_sample(unit, coord, bias)
784
785
786 .. opcode:: NRM - 3-component Vector Normalise
787
788 .. math::
789
790 dst.x = src.x / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
791
792 dst.y = src.y / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
793
794 dst.z = src.z / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
795
796 dst.w = 1
797
798
799 .. opcode:: DIV - Divide
800
801 .. math::
802
803 dst.x = \frac{src0.x}{src1.x}
804
805 dst.y = \frac{src0.y}{src1.y}
806
807 dst.z = \frac{src0.z}{src1.z}
808
809 dst.w = \frac{src0.w}{src1.w}
810
811
812 .. opcode:: DP2 - 2-component Dot Product
813
814 This instruction replicates its result.
815
816 .. math::
817
818 dst = src0.x \times src1.x + src0.y \times src1.y
819
820
821 .. opcode:: TXL - Texture Lookup With explicit LOD
822
823 .. math::
824
825 coord.x = src0.x
826
827 coord.y = src0.y
828
829 coord.z = src0.z
830
831 coord.w = 1.0
832
833 lod = src0.w
834
835 dst = texture_sample(unit, coord, lod)
836
837
838 .. opcode:: BRK - Break
839
840 TBD
841
842
843 .. opcode:: IF - If
844
845 TBD
846
847
848 .. opcode:: ELSE - Else
849
850 TBD
851
852
853 .. opcode:: ENDIF - End If
854
855 TBD
856
857
858 .. opcode:: PUSHA - Push Address Register On Stack
859
860 push(src.x)
861 push(src.y)
862 push(src.z)
863 push(src.w)
864
865 .. note::
866
867 Considered for cleanup.
868
869 .. note::
870
871 Considered for removal.
872
873 .. opcode:: POPA - Pop Address Register From Stack
874
875 dst.w = pop()
876 dst.z = pop()
877 dst.y = pop()
878 dst.x = pop()
879
880 .. note::
881
882 Considered for cleanup.
883
884 .. note::
885
886 Considered for removal.
887
888
889 Compute ISA
890 ^^^^^^^^^^^^^^^^^^^^^^^^
891
892 These opcodes are primarily provided for special-use computational shaders.
893 Support for these opcodes indicated by a special pipe capability bit (TBD).
894
895 XXX so let's discuss it, yeah?
896
897 .. opcode:: CEIL - Ceiling
898
899 .. math::
900
901 dst.x = \lceil src.x\rceil
902
903 dst.y = \lceil src.y\rceil
904
905 dst.z = \lceil src.z\rceil
906
907 dst.w = \lceil src.w\rceil
908
909
910 .. opcode:: I2F - Integer To Float
911
912 .. math::
913
914 dst.x = (float) src.x
915
916 dst.y = (float) src.y
917
918 dst.z = (float) src.z
919
920 dst.w = (float) src.w
921
922
923 .. opcode:: NOT - Bitwise Not
924
925 .. math::
926
927 dst.x = ~src.x
928
929 dst.y = ~src.y
930
931 dst.z = ~src.z
932
933 dst.w = ~src.w
934
935
936 .. opcode:: TRUNC - Truncate
937
938 .. math::
939
940 dst.x = trunc(src.x)
941
942 dst.y = trunc(src.y)
943
944 dst.z = trunc(src.z)
945
946 dst.w = trunc(src.w)
947
948
949 .. opcode:: SHL - Shift Left
950
951 .. math::
952
953 dst.x = src0.x << src1.x
954
955 dst.y = src0.y << src1.x
956
957 dst.z = src0.z << src1.x
958
959 dst.w = src0.w << src1.x
960
961
962 .. opcode:: SHR - Shift Right
963
964 .. math::
965
966 dst.x = src0.x >> src1.x
967
968 dst.y = src0.y >> src1.x
969
970 dst.z = src0.z >> src1.x
971
972 dst.w = src0.w >> src1.x
973
974
975 .. opcode:: AND - Bitwise And
976
977 .. math::
978
979 dst.x = src0.x & src1.x
980
981 dst.y = src0.y & src1.y
982
983 dst.z = src0.z & src1.z
984
985 dst.w = src0.w & src1.w
986
987
988 .. opcode:: OR - Bitwise Or
989
990 .. math::
991
992 dst.x = src0.x | src1.x
993
994 dst.y = src0.y | src1.y
995
996 dst.z = src0.z | src1.z
997
998 dst.w = src0.w | src1.w
999
1000
1001 .. opcode:: MOD - Modulus
1002
1003 .. math::
1004
1005 dst.x = src0.x \bmod src1.x
1006
1007 dst.y = src0.y \bmod src1.y
1008
1009 dst.z = src0.z \bmod src1.z
1010
1011 dst.w = src0.w \bmod src1.w
1012
1013
1014 .. opcode:: XOR - Bitwise Xor
1015
1016 .. math::
1017
1018 dst.x = src0.x \oplus src1.x
1019
1020 dst.y = src0.y \oplus src1.y
1021
1022 dst.z = src0.z \oplus src1.z
1023
1024 dst.w = src0.w \oplus src1.w
1025
1026
1027 .. opcode:: UCMP - Integer Conditional Move
1028
1029 .. math::
1030
1031 dst.x = src0.x ? src1.x : src2.x
1032
1033 dst.y = src0.y ? src1.y : src2.y
1034
1035 dst.z = src0.z ? src1.z : src2.z
1036
1037 dst.w = src0.w ? src1.w : src2.w
1038
1039
1040 .. opcode:: UARL - Integer Address Register Load
1041
1042 Moves the contents of the source register, assumed to be an integer, into the
1043 destination register, which is assumed to be an address (ADDR) register.
1044
1045
1046 .. opcode:: IABS - Integer Absolute Value
1047
1048 .. math::
1049
1050 dst.x = |src.x|
1051
1052 dst.y = |src.y|
1053
1054 dst.z = |src.z|
1055
1056 dst.w = |src.w|
1057
1058
1059 .. opcode:: SAD - Sum Of Absolute Differences
1060
1061 .. math::
1062
1063 dst.x = |src0.x - src1.x| + src2.x
1064
1065 dst.y = |src0.y - src1.y| + src2.y
1066
1067 dst.z = |src0.z - src1.z| + src2.z
1068
1069 dst.w = |src0.w - src1.w| + src2.w
1070
1071
1072 .. opcode:: TXF - Texel Fetch (as per NV_gpu_shader4), extract a single texel
1073 from a specified texture image. The source sampler may
1074 not be a CUBE or SHADOW.
1075 src 0 is a four-component signed integer vector used to
1076 identify the single texel accessed. 3 components + level.
1077 src 1 is a 3 component constant signed integer vector,
1078 with each component only have a range of
1079 -8..+8 (hw only seems to deal with this range, interface
1080 allows for up to unsigned int).
1081 TXF(uint_vec coord, int_vec offset).
1082
1083
1084 .. opcode:: TXQ - Texture Size Query (as per NV_gpu_program4)
1085 retrieve the dimensions of the texture
1086 depending on the target. For 1D (width), 2D/RECT/CUBE
1087 (width, height), 3D (width, height, depth),
1088 1D array (width, layers), 2D array (width, height, layers)
1089
1090 .. math::
1091
1092 lod = src0
1093
1094 dst.x = texture_width(unit, lod)
1095
1096 dst.y = texture_height(unit, lod)
1097
1098 dst.z = texture_depth(unit, lod)
1099
1100
1101 .. opcode:: CONT - Continue
1102
1103 TBD
1104
1105 .. note::
1106
1107 Support for CONT is determined by a special capability bit,
1108 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1109
1110
1111 Geometry ISA
1112 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1113
1114 These opcodes are only supported in geometry shaders; they have no meaning
1115 in any other type of shader.
1116
1117 .. opcode:: EMIT - Emit
1118
1119 TBD
1120
1121
1122 .. opcode:: ENDPRIM - End Primitive
1123
1124 TBD
1125
1126
1127 GLSL ISA
1128 ^^^^^^^^^^
1129
1130 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1131 opcodes is determined by a special capability bit, ``GLSL``.
1132
1133 .. opcode:: BGNLOOP - Begin a Loop
1134
1135 TBD
1136
1137
1138 .. opcode:: BGNSUB - Begin Subroutine
1139
1140 TBD
1141
1142
1143 .. opcode:: ENDLOOP - End a Loop
1144
1145 TBD
1146
1147
1148 .. opcode:: ENDSUB - End Subroutine
1149
1150 TBD
1151
1152
1153 .. opcode:: NOP - No Operation
1154
1155 Do nothing.
1156
1157
1158 .. opcode:: NRM4 - 4-component Vector Normalise
1159
1160 This instruction replicates its result.
1161
1162 .. math::
1163
1164 dst = \frac{src.x}{src.x \times src.x + src.y \times src.y + src.z \times src.z + src.w \times src.w}
1165
1166
1167 ps_2_x
1168 ^^^^^^^^^^^^
1169
1170 XXX wait what
1171
1172 .. opcode:: CALLNZ - Subroutine Call If Not Zero
1173
1174 TBD
1175
1176
1177 .. opcode:: IFC - If
1178
1179 TBD
1180
1181
1182 .. opcode:: BREAKC - Break Conditional
1183
1184 TBD
1185
1186 .. _doubleopcodes:
1187
1188 Double ISA
1189 ^^^^^^^^^^^^^^^
1190
1191 The double-precision opcodes reinterpret four-component vectors into
1192 two-component vectors with doubled precision in each component.
1193
1194 Support for these opcodes is XXX undecided. :T
1195
1196 .. opcode:: DADD - Add
1197
1198 .. math::
1199
1200 dst.xy = src0.xy + src1.xy
1201
1202 dst.zw = src0.zw + src1.zw
1203
1204
1205 .. opcode:: DDIV - Divide
1206
1207 .. math::
1208
1209 dst.xy = src0.xy / src1.xy
1210
1211 dst.zw = src0.zw / src1.zw
1212
1213 .. opcode:: DSEQ - Set on Equal
1214
1215 .. math::
1216
1217 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1218
1219 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1220
1221 .. opcode:: DSLT - Set on Less than
1222
1223 .. math::
1224
1225 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1226
1227 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1228
1229 .. opcode:: DFRAC - Fraction
1230
1231 .. math::
1232
1233 dst.xy = src.xy - \lfloor src.xy\rfloor
1234
1235 dst.zw = src.zw - \lfloor src.zw\rfloor
1236
1237
1238 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1239
1240 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1241 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1242 :math:`dst1 \times 2^{dst0} = src` .
1243
1244 .. math::
1245
1246 dst0.xy = exp(src.xy)
1247
1248 dst1.xy = frac(src.xy)
1249
1250 dst0.zw = exp(src.zw)
1251
1252 dst1.zw = frac(src.zw)
1253
1254 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1255
1256 This opcode is the inverse of :opcode:`DFRACEXP`.
1257
1258 .. math::
1259
1260 dst.xy = src0.xy \times 2^{src1.xy}
1261
1262 dst.zw = src0.zw \times 2^{src1.zw}
1263
1264 .. opcode:: DMIN - Minimum
1265
1266 .. math::
1267
1268 dst.xy = min(src0.xy, src1.xy)
1269
1270 dst.zw = min(src0.zw, src1.zw)
1271
1272 .. opcode:: DMAX - Maximum
1273
1274 .. math::
1275
1276 dst.xy = max(src0.xy, src1.xy)
1277
1278 dst.zw = max(src0.zw, src1.zw)
1279
1280 .. opcode:: DMUL - Multiply
1281
1282 .. math::
1283
1284 dst.xy = src0.xy \times src1.xy
1285
1286 dst.zw = src0.zw \times src1.zw
1287
1288
1289 .. opcode:: DMAD - Multiply And Add
1290
1291 .. math::
1292
1293 dst.xy = src0.xy \times src1.xy + src2.xy
1294
1295 dst.zw = src0.zw \times src1.zw + src2.zw
1296
1297
1298 .. opcode:: DRCP - Reciprocal
1299
1300 .. math::
1301
1302 dst.xy = \frac{1}{src.xy}
1303
1304 dst.zw = \frac{1}{src.zw}
1305
1306 .. opcode:: DSQRT - Square Root
1307
1308 .. math::
1309
1310 dst.xy = \sqrt{src.xy}
1311
1312 dst.zw = \sqrt{src.zw}
1313
1314
1315 .. _resourceopcodes:
1316
1317 Resource Access Opcodes
1318 ^^^^^^^^^^^^^^^^^^^^^^^^
1319
1320 Those opcodes follow very closely semantics of the respective Direct3D
1321 instructions. If in doubt double check Direct3D documentation.
1322
1323 .. opcode:: LOAD - Simplified alternative to the "SAMPLE" instruction.
1324 Using the provided integer address, LOAD fetches data
1325 from the specified buffer/texture without any filtering.
1326 The source data may come from any resource type other
1327 than CUBE.
1328 LOAD dst, address, resource
1329 e.g.
1330 LOAD TEMP[0], TEMP[1], RES[0]
1331 The 'address' is specified as unsigned integers. If the
1332 'address' is out of range [0...(# texels - 1)] the
1333 result of the fetch is always 0 in all components.
1334 As such the instruction doesn't honor address wrap
1335 modes, in cases where that behavior is desirable
1336 'sample' instruction should be used.
1337 address.w always provides an unsigned integer mipmap
1338 level. If the value is out of the range then the
1339 instruction always returns 0 in all components.
1340 address.yz are ignored for buffers and 1d textures.
1341 address.z is ignored for 1d texture arrays and 2d
1342 textures.
1343 For 1D texture arrays address.y provides the array
1344 index (also as unsigned integer). If the value is
1345 out of the range of available array indices
1346 [0... (array size - 1)] then the opcode always returns
1347 0 in all components.
1348 For 2D texture arrays address.z provides the array
1349 index, otherwise it exhibits the same behavior as in
1350 the case for 1D texture arrays.
1351 The exeact semantics of the source address are presented
1352 in the table below:
1353 resource type X Y Z W
1354 ------------- ------------------------
1355 PIPE_BUFFER x ignored
1356 PIPE_TEXTURE_1D x mpl
1357 PIPE_TEXTURE_2D x y mpl
1358 PIPE_TEXTURE_3D x y z mpl
1359 PIPE_TEXTURE_RECT x y mpl
1360 PIPE_TEXTURE_CUBE not allowed as source
1361 PIPE_TEXTURE_1D_ARRAY x idx mpl
1362 PIPE_TEXTURE_2D_ARRAY x y idx mpl
1363
1364 Where 'mpl' is a mipmap level and 'idx' is the
1365 array index.
1366
1367
1368 .. opcode:: LOAD_MS - Just like LOAD but allows fetch data from
1369 multi-sampled surfaces.
1370
1371 .. opcode:: SAMPLE - Using provided address, sample data from the
1372 specified texture using the filtering mode identified
1373 by the gven sampler. The source data may come from
1374 any resource type other than buffers.
1375 SAMPLE dst, address, resource, sampler
1376 e.g.
1377 SAMPLE TEMP[0], TEMP[1], RES[0], SAMP[0]
1378
1379 .. opcode:: SAMPLE_B - Just like the SAMPLE instruction with the
1380 exception that an additiona bias is applied to the
1381 level of detail computed as part of the instruction
1382 execution.
1383 SAMPLE_B dst, address, resource, sampler, lod_bias
1384 e.g.
1385 SAMPLE_B TEMP[0], TEMP[1], RES[0], SAMP[0], TEMP[2].x
1386
1387 .. opcode:: SAMPLE_C - Similar to the SAMPLE instruction but it
1388 performs a comparison filter. The operands to SAMPLE_C
1389 are identical to SAMPLE, except that tere is an additional
1390 float32 operand, reference value, which must be a register
1391 with single-component, or a scalar literal.
1392 SAMPLE_C makes the hardware use the current samplers
1393 compare_func (in pipe_sampler_state) to compare
1394 reference value against the red component value for the
1395 surce resource at each texel that the currently configured
1396 texture filter covers based on the provided coordinates.
1397 SAMPLE_C dst, address, resource.r, sampler, ref_value
1398 e.g.
1399 SAMPLE_C TEMP[0], TEMP[1], RES[0].r, SAMP[0], TEMP[2].x
1400
1401 .. opcode:: SAMPLE_C_LZ - Same as SAMPLE_C, but LOD is 0 and derivatives
1402 are ignored. The LZ stands for level-zero.
1403 SAMPLE_C_LZ dst, address, resource.r, sampler, ref_value
1404 e.g.
1405 SAMPLE_C_LZ TEMP[0], TEMP[1], RES[0].r, SAMP[0], TEMP[2].x
1406
1407
1408 .. opcode:: SAMPLE_D - SAMPLE_D is identical to the SAMPLE opcode except
1409 that the derivatives for the source address in the x
1410 direction and the y direction are provided by extra
1411 parameters.
1412 SAMPLE_D dst, address, resource, sampler, der_x, der_y
1413 e.g.
1414 SAMPLE_D TEMP[0], TEMP[1], RES[0], SAMP[0], TEMP[2], TEMP[3]
1415
1416 .. opcode:: SAMPLE_L - SAMPLE_L is identical to the SAMPLE opcode except
1417 that the LOD is provided directly as a scalar value,
1418 representing no anisotropy. Source addresses A channel
1419 is used as the LOD.
1420 SAMPLE_L dst, address, resource, sampler
1421 e.g.
1422 SAMPLE_L TEMP[0], TEMP[1], RES[0], SAMP[0]
1423
1424
1425 .. opcode:: GATHER4 - Gathers the four texels to be used in a bi-linear
1426 filtering operation and packs them into a single register.
1427 Only woth with 2D, 2D array, cubemaps, and cubemaps arrays.
1428 For 2D textures, only the addressing modes of the sampler and
1429 the top level of any mip pyramid are used. Set W to zero.
1430 It behaves like the SAMPLE instruction, but a filtered
1431 sample is not generated. The four samples that contribute
1432 to filtering are places into xyzw in cunter-clockwise order,
1433 starting with the (u,v) texture coordinate delta at the
1434 following locations (-, +), (+, +), (+, -), (-, -), where
1435 the magnitude of the deltas are half a texel.
1436
1437
1438 .. opcode:: RESINFO - query the dimensions of a given input buffer.
1439 dst receives width, height, depth or array size and
1440 number of mipmap levels. The dst can have a writemask
1441 which will specify what info is the caller interested
1442 in.
1443 RESINFO dst, src_mip_level, resource
1444 e.g.
1445 RESINFO TEMP[0], TEMP[1].x, RES[0]
1446 src_mip_level is an unsigned integer scalar. If it's
1447 out of range then returns 0 for width, height and
1448 depth/array size but the total number of mipmap is
1449 still returned correctly for the given resource.
1450 The returned width, height and depth values are for
1451 the mipmap level selected by the src_mip_level and
1452 are in the number of texels.
1453 For 1d texture array width is in dst.x, array size
1454 is in dst.y and dst.zw are always 0.
1455
1456 .. opcode:: SAMPLE_POS - query the position of a given sample.
1457 dst receives float4 (x, y, 0, 0) indicated where the
1458 sample is located. If the resource is not a multi-sample
1459 resource and not a render target, the result is 0.
1460
1461 .. opcode:: SAMPLE_INFO - dst receives number of samples in x.
1462 If the resource is not a multi-sample resource and
1463 not a render target, the result is 0.
1464
1465
1466 Explanation of symbols used
1467 ------------------------------
1468
1469
1470 Functions
1471 ^^^^^^^^^^^^^^
1472
1473
1474 :math:`|x|` Absolute value of `x`.
1475
1476 :math:`\lceil x \rceil` Ceiling of `x`.
1477
1478 clamp(x,y,z) Clamp x between y and z.
1479 (x < y) ? y : (x > z) ? z : x
1480
1481 :math:`\lfloor x\rfloor` Floor of `x`.
1482
1483 :math:`\log_2{x}` Logarithm of `x`, base 2.
1484
1485 max(x,y) Maximum of x and y.
1486 (x > y) ? x : y
1487
1488 min(x,y) Minimum of x and y.
1489 (x < y) ? x : y
1490
1491 partialx(x) Derivative of x relative to fragment's X.
1492
1493 partialy(x) Derivative of x relative to fragment's Y.
1494
1495 pop() Pop from stack.
1496
1497 :math:`x^y` `x` to the power `y`.
1498
1499 push(x) Push x on stack.
1500
1501 round(x) Round x.
1502
1503 trunc(x) Truncate x, i.e. drop the fraction bits.
1504
1505
1506 Keywords
1507 ^^^^^^^^^^^^^
1508
1509
1510 discard Discard fragment.
1511
1512 pc Program counter.
1513
1514 target Label of target instruction.
1515
1516
1517 Other tokens
1518 ---------------
1519
1520
1521 Declaration
1522 ^^^^^^^^^^^
1523
1524
1525 Declares a register that is will be referenced as an operand in Instruction
1526 tokens.
1527
1528 File field contains register file that is being declared and is one
1529 of TGSI_FILE.
1530
1531 UsageMask field specifies which of the register components can be accessed
1532 and is one of TGSI_WRITEMASK.
1533
1534 Interpolate field is only valid for fragment shader INPUT register files.
1535 It specifes the way input is being interpolated by the rasteriser and is one
1536 of TGSI_INTERPOLATE.
1537
1538 If Dimension flag is set to 1, a Declaration Dimension token follows.
1539
1540 If Semantic flag is set to 1, a Declaration Semantic token follows.
1541
1542 CylindricalWrap bitfield is only valid for fragment shader INPUT register
1543 files. It specifies which register components should be subject to cylindrical
1544 wrapping when interpolating by the rasteriser. If TGSI_CYLINDRICAL_WRAP_X
1545 is set to 1, the X component should be interpolated according to cylindrical
1546 wrapping rules.
1547
1548 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
1549
1550
1551 Declaration Semantic
1552 ^^^^^^^^^^^^^^^^^^^^^^^^
1553
1554 Vertex and fragment shader input and output registers may be labeled
1555 with semantic information consisting of a name and index.
1556
1557 Follows Declaration token if Semantic bit is set.
1558
1559 Since its purpose is to link a shader with other stages of the pipeline,
1560 it is valid to follow only those Declaration tokens that declare a register
1561 either in INPUT or OUTPUT file.
1562
1563 SemanticName field contains the semantic name of the register being declared.
1564 There is no default value.
1565
1566 SemanticIndex is an optional subscript that can be used to distinguish
1567 different register declarations with the same semantic name. The default value
1568 is 0.
1569
1570 The meanings of the individual semantic names are explained in the following
1571 sections.
1572
1573 TGSI_SEMANTIC_POSITION
1574 """"""""""""""""""""""
1575
1576 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
1577 output register which contains the homogeneous vertex position in the clip
1578 space coordinate system. After clipping, the X, Y and Z components of the
1579 vertex will be divided by the W value to get normalized device coordinates.
1580
1581 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
1582 fragment shader input contains the fragment's window position. The X
1583 component starts at zero and always increases from left to right.
1584 The Y component starts at zero and always increases but Y=0 may either
1585 indicate the top of the window or the bottom depending on the fragment
1586 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
1587 The Z coordinate ranges from 0 to 1 to represent depth from the front
1588 to the back of the Z buffer. The W component contains the reciprocol
1589 of the interpolated vertex position W component.
1590
1591 Fragment shaders may also declare an output register with
1592 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
1593 the fragment shader to change the fragment's Z position.
1594
1595
1596
1597 TGSI_SEMANTIC_COLOR
1598 """""""""""""""""""
1599
1600 For vertex shader outputs or fragment shader inputs/outputs, this
1601 label indicates that the resister contains an R,G,B,A color.
1602
1603 Several shader inputs/outputs may contain colors so the semantic index
1604 is used to distinguish them. For example, color[0] may be the diffuse
1605 color while color[1] may be the specular color.
1606
1607 This label is needed so that the flat/smooth shading can be applied
1608 to the right interpolants during rasterization.
1609
1610
1611
1612 TGSI_SEMANTIC_BCOLOR
1613 """"""""""""""""""""
1614
1615 Back-facing colors are only used for back-facing polygons, and are only valid
1616 in vertex shader outputs. After rasterization, all polygons are front-facing
1617 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
1618 so all BCOLORs effectively become regular COLORs in the fragment shader.
1619
1620
1621 TGSI_SEMANTIC_FOG
1622 """""""""""""""""
1623
1624 Vertex shader inputs and outputs and fragment shader inputs may be
1625 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
1626 a fog coordinate in the form (F, 0, 0, 1). Typically, the fragment
1627 shader will use the fog coordinate to compute a fog blend factor which
1628 is used to blend the normal fragment color with a constant fog color.
1629
1630 Only the first component matters when writing from the vertex shader;
1631 the driver will ensure that the coordinate is in this format when used
1632 as a fragment shader input.
1633
1634
1635 TGSI_SEMANTIC_PSIZE
1636 """""""""""""""""""
1637
1638 Vertex shader input and output registers may be labeled with
1639 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
1640 in the form (S, 0, 0, 1). The point size controls the width or diameter
1641 of points for rasterization. This label cannot be used in fragment
1642 shaders.
1643
1644 When using this semantic, be sure to set the appropriate state in the
1645 :ref:`rasterizer` first.
1646
1647
1648 TGSI_SEMANTIC_GENERIC
1649 """""""""""""""""""""
1650
1651 All vertex/fragment shader inputs/outputs not labeled with any other
1652 semantic label can be considered to be generic attributes. Typical
1653 uses of generic inputs/outputs are texcoords and user-defined values.
1654
1655
1656 TGSI_SEMANTIC_NORMAL
1657 """"""""""""""""""""
1658
1659 Indicates that a vertex shader input is a normal vector. This is
1660 typically only used for legacy graphics APIs.
1661
1662
1663 TGSI_SEMANTIC_FACE
1664 """"""""""""""""""
1665
1666 This label applies to fragment shader inputs only and indicates that
1667 the register contains front/back-face information of the form (F, 0,
1668 0, 1). The first component will be positive when the fragment belongs
1669 to a front-facing polygon, and negative when the fragment belongs to a
1670 back-facing polygon.
1671
1672
1673 TGSI_SEMANTIC_EDGEFLAG
1674 """"""""""""""""""""""
1675
1676 For vertex shaders, this sematic label indicates that an input or
1677 output is a boolean edge flag. The register layout is [F, x, x, x]
1678 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
1679 simply copies the edge flag input to the edgeflag output.
1680
1681 Edge flags are used to control which lines or points are actually
1682 drawn when the polygon mode converts triangles/quads/polygons into
1683 points or lines.
1684
1685 TGSI_SEMANTIC_STENCIL
1686 """"""""""""""""""""""
1687
1688 For fragment shaders, this semantic label indicates than an output
1689 is a writable stencil reference value. Only the Y component is writable.
1690 This allows the fragment shader to change the fragments stencilref value.
1691
1692
1693 Declaration Resource
1694 ^^^^^^^^^^^^^^^^^^^^^^^^
1695
1696 Follows Declaration token if file is TGSI_FILE_RESOURCE.
1697
1698 DCL RES[#], resource, type(s)
1699
1700 Declares a shader input resource and assigns it to a RES[#]
1701 register.
1702
1703 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
1704 2DArray.
1705
1706 type must be 1 or 4 entries (if specifying on a per-component
1707 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
1708
1709
1710 Properties
1711 ^^^^^^^^^^^^^^^^^^^^^^^^
1712
1713
1714 Properties are general directives that apply to the whole TGSI program.
1715
1716 FS_COORD_ORIGIN
1717 """""""""""""""
1718
1719 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
1720 The default value is UPPER_LEFT.
1721
1722 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
1723 increase downward and rightward.
1724 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
1725 increase upward and rightward.
1726
1727 OpenGL defaults to LOWER_LEFT, and is configurable with the
1728 GL_ARB_fragment_coord_conventions extension.
1729
1730 DirectX 9/10 use UPPER_LEFT.
1731
1732 FS_COORD_PIXEL_CENTER
1733 """""""""""""""""""""
1734
1735 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
1736 The default value is HALF_INTEGER.
1737
1738 If HALF_INTEGER, the fractionary part of the position will be 0.5
1739 If INTEGER, the fractionary part of the position will be 0.0
1740
1741 Note that this does not affect the set of fragments generated by
1742 rasterization, which is instead controlled by gl_rasterization_rules in the
1743 rasterizer.
1744
1745 OpenGL defaults to HALF_INTEGER, and is configurable with the
1746 GL_ARB_fragment_coord_conventions extension.
1747
1748 DirectX 9 uses INTEGER.
1749 DirectX 10 uses HALF_INTEGER.
1750
1751 FS_COLOR0_WRITES_ALL_CBUFS
1752 """"""""""""""""""""""""""
1753 Specifies that writes to the fragment shader color 0 are replicated to all
1754 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
1755 fragData is directed to a single color buffer, but fragColor is broadcast.
1756
1757
1758 Texture Sampling and Texture Formats
1759 ------------------------------------
1760
1761 This table shows how texture image components are returned as (x,y,z,w) tuples
1762 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
1763 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
1764 well.
1765
1766 +--------------------+--------------+--------------------+--------------+
1767 | Texture Components | Gallium | OpenGL | Direct3D 9 |
1768 +====================+==============+====================+==============+
1769 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
1770 +--------------------+--------------+--------------------+--------------+
1771 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
1772 +--------------------+--------------+--------------------+--------------+
1773 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
1774 +--------------------+--------------+--------------------+--------------+
1775 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
1776 +--------------------+--------------+--------------------+--------------+
1777 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
1778 +--------------------+--------------+--------------------+--------------+
1779 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
1780 +--------------------+--------------+--------------------+--------------+
1781 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
1782 +--------------------+--------------+--------------------+--------------+
1783 | I | (i, i, i, i) | (i, i, i, i) | N/A |
1784 +--------------------+--------------+--------------------+--------------+
1785 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
1786 | | | [#envmap-bumpmap]_ | |
1787 +--------------------+--------------+--------------------+--------------+
1788 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
1789 | | | [#depth-tex-mode]_ | |
1790 +--------------------+--------------+--------------------+--------------+
1791 | S | (s, s, s, s) | unknown | unknown |
1792 +--------------------+--------------+--------------------+--------------+
1793
1794 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
1795 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
1796 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.