8f6033fdaeef8482c1b822daba2689e932df6297
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = \lfloor src.x\rfloor
52
53 dst.y = \lfloor src.y\rfloor
54
55 dst.z = \lfloor src.z\rfloor
56
57 dst.w = \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: CND - Condition
276
277 .. math::
278
279 dst.x = (src2.x > 0.5) ? src0.x : src1.x
280
281 dst.y = (src2.y > 0.5) ? src0.y : src1.y
282
283 dst.z = (src2.z > 0.5) ? src0.z : src1.z
284
285 dst.w = (src2.w > 0.5) ? src0.w : src1.w
286
287
288 .. opcode:: DP2A - 2-component Dot Product And Add
289
290 .. math::
291
292 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
293
294 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
295
296 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
297
298 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
299
300
301 .. opcode:: FRC - Fraction
302
303 .. math::
304
305 dst.x = src.x - \lfloor src.x\rfloor
306
307 dst.y = src.y - \lfloor src.y\rfloor
308
309 dst.z = src.z - \lfloor src.z\rfloor
310
311 dst.w = src.w - \lfloor src.w\rfloor
312
313
314 .. opcode:: CLAMP - Clamp
315
316 .. math::
317
318 dst.x = clamp(src0.x, src1.x, src2.x)
319
320 dst.y = clamp(src0.y, src1.y, src2.y)
321
322 dst.z = clamp(src0.z, src1.z, src2.z)
323
324 dst.w = clamp(src0.w, src1.w, src2.w)
325
326
327 .. opcode:: FLR - Floor
328
329 This is identical to :opcode:`ARL`.
330
331 .. math::
332
333 dst.x = \lfloor src.x\rfloor
334
335 dst.y = \lfloor src.y\rfloor
336
337 dst.z = \lfloor src.z\rfloor
338
339 dst.w = \lfloor src.w\rfloor
340
341
342 .. opcode:: ROUND - Round
343
344 .. math::
345
346 dst.x = round(src.x)
347
348 dst.y = round(src.y)
349
350 dst.z = round(src.z)
351
352 dst.w = round(src.w)
353
354
355 .. opcode:: EX2 - Exponential Base 2
356
357 This instruction replicates its result.
358
359 .. math::
360
361 dst = 2^{src.x}
362
363
364 .. opcode:: LG2 - Logarithm Base 2
365
366 This instruction replicates its result.
367
368 .. math::
369
370 dst = \log_2{src.x}
371
372
373 .. opcode:: POW - Power
374
375 This instruction replicates its result.
376
377 .. math::
378
379 dst = src0.x^{src1.x}
380
381 .. opcode:: XPD - Cross Product
382
383 .. math::
384
385 dst.x = src0.y \times src1.z - src1.y \times src0.z
386
387 dst.y = src0.z \times src1.x - src1.z \times src0.x
388
389 dst.z = src0.x \times src1.y - src1.x \times src0.y
390
391 dst.w = 1
392
393
394 .. opcode:: ABS - Absolute
395
396 .. math::
397
398 dst.x = |src.x|
399
400 dst.y = |src.y|
401
402 dst.z = |src.z|
403
404 dst.w = |src.w|
405
406
407 .. opcode:: DPH - Homogeneous Dot Product
408
409 This instruction replicates its result.
410
411 .. math::
412
413 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
414
415
416 .. opcode:: COS - Cosine
417
418 This instruction replicates its result.
419
420 .. math::
421
422 dst = \cos{src.x}
423
424
425 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
426
427 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
428 advertised. When it is, the fine version guarantees one derivative per row
429 while DDX is allowed to be the same for the entire 2x2 quad.
430
431 .. math::
432
433 dst.x = partialx(src.x)
434
435 dst.y = partialx(src.y)
436
437 dst.z = partialx(src.z)
438
439 dst.w = partialx(src.w)
440
441
442 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
443
444 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
445 advertised. When it is, the fine version guarantees one derivative per column
446 while DDY is allowed to be the same for the entire 2x2 quad.
447
448 .. math::
449
450 dst.x = partialy(src.x)
451
452 dst.y = partialy(src.y)
453
454 dst.z = partialy(src.z)
455
456 dst.w = partialy(src.w)
457
458
459 .. opcode:: PK2H - Pack Two 16-bit Floats
460
461 TBD
462
463
464 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
465
466 TBD
467
468
469 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
470
471 TBD
472
473
474 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
475
476 TBD
477
478
479 .. opcode:: SEQ - Set On Equal
480
481 .. math::
482
483 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
484
485 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
486
487 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
488
489 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
490
491
492 .. opcode:: SFL - Set On False
493
494 This instruction replicates its result.
495
496 .. math::
497
498 dst = 0.0F
499
500 .. note::
501
502 Considered for removal.
503
504
505 .. opcode:: SGT - Set On Greater Than
506
507 .. math::
508
509 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
510
511 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
512
513 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
514
515 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
516
517
518 .. opcode:: SIN - Sine
519
520 This instruction replicates its result.
521
522 .. math::
523
524 dst = \sin{src.x}
525
526
527 .. opcode:: SLE - Set On Less Equal Than
528
529 .. math::
530
531 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
532
533 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
534
535 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
536
537 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
538
539
540 .. opcode:: SNE - Set On Not Equal
541
542 .. math::
543
544 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
545
546 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
547
548 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
549
550 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
551
552
553 .. opcode:: STR - Set On True
554
555 This instruction replicates its result.
556
557 .. math::
558
559 dst = 1.0F
560
561
562 .. opcode:: TEX - Texture Lookup
563
564 for array textures src0.y contains the slice for 1D,
565 and src0.z contain the slice for 2D.
566
567 for shadow textures with no arrays (and not cube map),
568 src0.z contains the reference value.
569
570 for shadow textures with arrays, src0.z contains
571 the reference value for 1D arrays, and src0.w contains
572 the reference value for 2D arrays and cube maps.
573
574 for cube map array shadow textures, the reference value
575 cannot be passed in src0.w, and TEX2 must be used instead.
576
577 .. math::
578
579 coord = src0
580
581 shadow_ref = src0.z or src0.w (optional)
582
583 unit = src1
584
585 dst = texture\_sample(unit, coord, shadow_ref)
586
587
588 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
589
590 this is the same as TEX, but uses another reg to encode the
591 reference value.
592
593 .. math::
594
595 coord = src0
596
597 shadow_ref = src1.x
598
599 unit = src2
600
601 dst = texture\_sample(unit, coord, shadow_ref)
602
603
604
605
606 .. opcode:: TXD - Texture Lookup with Derivatives
607
608 .. math::
609
610 coord = src0
611
612 ddx = src1
613
614 ddy = src2
615
616 unit = src3
617
618 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
619
620
621 .. opcode:: TXP - Projective Texture Lookup
622
623 .. math::
624
625 coord.x = src0.x / src0.w
626
627 coord.y = src0.y / src0.w
628
629 coord.z = src0.z / src0.w
630
631 coord.w = src0.w
632
633 unit = src1
634
635 dst = texture\_sample(unit, coord)
636
637
638 .. opcode:: UP2H - Unpack Two 16-Bit Floats
639
640 TBD
641
642 .. note::
643
644 Considered for removal.
645
646 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
647
648 TBD
649
650 .. note::
651
652 Considered for removal.
653
654 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
655
656 TBD
657
658 .. note::
659
660 Considered for removal.
661
662 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
663
664 TBD
665
666 .. note::
667
668 Considered for removal.
669
670
671 .. opcode:: ARR - Address Register Load With Round
672
673 .. math::
674
675 dst.x = round(src.x)
676
677 dst.y = round(src.y)
678
679 dst.z = round(src.z)
680
681 dst.w = round(src.w)
682
683
684 .. opcode:: SSG - Set Sign
685
686 .. math::
687
688 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
689
690 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
691
692 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
693
694 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
695
696
697 .. opcode:: CMP - Compare
698
699 .. math::
700
701 dst.x = (src0.x < 0) ? src1.x : src2.x
702
703 dst.y = (src0.y < 0) ? src1.y : src2.y
704
705 dst.z = (src0.z < 0) ? src1.z : src2.z
706
707 dst.w = (src0.w < 0) ? src1.w : src2.w
708
709
710 .. opcode:: KILL_IF - Conditional Discard
711
712 Conditional discard. Allowed in fragment shaders only.
713
714 .. math::
715
716 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
717 discard
718 endif
719
720
721 .. opcode:: KILL - Discard
722
723 Unconditional discard. Allowed in fragment shaders only.
724
725
726 .. opcode:: SCS - Sine Cosine
727
728 .. math::
729
730 dst.x = \cos{src.x}
731
732 dst.y = \sin{src.x}
733
734 dst.z = 0
735
736 dst.w = 1
737
738
739 .. opcode:: TXB - Texture Lookup With Bias
740
741 for cube map array textures and shadow cube maps, the bias value
742 cannot be passed in src0.w, and TXB2 must be used instead.
743
744 if the target is a shadow texture, the reference value is always
745 in src.z (this prevents shadow 3d and shadow 2d arrays from
746 using this instruction, but this is not needed).
747
748 .. math::
749
750 coord.x = src0.x
751
752 coord.y = src0.y
753
754 coord.z = src0.z
755
756 coord.w = none
757
758 bias = src0.w
759
760 unit = src1
761
762 dst = texture\_sample(unit, coord, bias)
763
764
765 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
766
767 this is the same as TXB, but uses another reg to encode the
768 lod bias value for cube map arrays and shadow cube maps.
769 Presumably shadow 2d arrays and shadow 3d targets could use
770 this encoding too, but this is not legal.
771
772 shadow cube map arrays are neither possible nor required.
773
774 .. math::
775
776 coord = src0
777
778 bias = src1.x
779
780 unit = src2
781
782 dst = texture\_sample(unit, coord, bias)
783
784
785 .. opcode:: DIV - Divide
786
787 .. math::
788
789 dst.x = \frac{src0.x}{src1.x}
790
791 dst.y = \frac{src0.y}{src1.y}
792
793 dst.z = \frac{src0.z}{src1.z}
794
795 dst.w = \frac{src0.w}{src1.w}
796
797
798 .. opcode:: DP2 - 2-component Dot Product
799
800 This instruction replicates its result.
801
802 .. math::
803
804 dst = src0.x \times src1.x + src0.y \times src1.y
805
806
807 .. opcode:: TXL - Texture Lookup With explicit LOD
808
809 for cube map array textures, the explicit lod value
810 cannot be passed in src0.w, and TXL2 must be used instead.
811
812 if the target is a shadow texture, the reference value is always
813 in src.z (this prevents shadow 3d / 2d array / cube targets from
814 using this instruction, but this is not needed).
815
816 .. math::
817
818 coord.x = src0.x
819
820 coord.y = src0.y
821
822 coord.z = src0.z
823
824 coord.w = none
825
826 lod = src0.w
827
828 unit = src1
829
830 dst = texture\_sample(unit, coord, lod)
831
832
833 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
834
835 this is the same as TXL, but uses another reg to encode the
836 explicit lod value.
837 Presumably shadow 3d / 2d array / cube targets could use
838 this encoding too, but this is not legal.
839
840 shadow cube map arrays are neither possible nor required.
841
842 .. math::
843
844 coord = src0
845
846 lod = src1.x
847
848 unit = src2
849
850 dst = texture\_sample(unit, coord, lod)
851
852
853 .. opcode:: PUSHA - Push Address Register On Stack
854
855 push(src.x)
856 push(src.y)
857 push(src.z)
858 push(src.w)
859
860 .. note::
861
862 Considered for cleanup.
863
864 .. note::
865
866 Considered for removal.
867
868 .. opcode:: POPA - Pop Address Register From Stack
869
870 dst.w = pop()
871 dst.z = pop()
872 dst.y = pop()
873 dst.x = pop()
874
875 .. note::
876
877 Considered for cleanup.
878
879 .. note::
880
881 Considered for removal.
882
883
884 .. opcode:: BRA - Branch
885
886 pc = target
887
888 .. note::
889
890 Considered for removal.
891
892
893 .. opcode:: CALLNZ - Subroutine Call If Not Zero
894
895 TBD
896
897 .. note::
898
899 Considered for cleanup.
900
901 .. note::
902
903 Considered for removal.
904
905
906 Compute ISA
907 ^^^^^^^^^^^^^^^^^^^^^^^^
908
909 These opcodes are primarily provided for special-use computational shaders.
910 Support for these opcodes indicated by a special pipe capability bit (TBD).
911
912 XXX doesn't look like most of the opcodes really belong here.
913
914 .. opcode:: CEIL - Ceiling
915
916 .. math::
917
918 dst.x = \lceil src.x\rceil
919
920 dst.y = \lceil src.y\rceil
921
922 dst.z = \lceil src.z\rceil
923
924 dst.w = \lceil src.w\rceil
925
926
927 .. opcode:: TRUNC - Truncate
928
929 .. math::
930
931 dst.x = trunc(src.x)
932
933 dst.y = trunc(src.y)
934
935 dst.z = trunc(src.z)
936
937 dst.w = trunc(src.w)
938
939
940 .. opcode:: MOD - Modulus
941
942 .. math::
943
944 dst.x = src0.x \bmod src1.x
945
946 dst.y = src0.y \bmod src1.y
947
948 dst.z = src0.z \bmod src1.z
949
950 dst.w = src0.w \bmod src1.w
951
952
953 .. opcode:: UARL - Integer Address Register Load
954
955 Moves the contents of the source register, assumed to be an integer, into the
956 destination register, which is assumed to be an address (ADDR) register.
957
958
959 .. opcode:: SAD - Sum Of Absolute Differences
960
961 .. math::
962
963 dst.x = |src0.x - src1.x| + src2.x
964
965 dst.y = |src0.y - src1.y| + src2.y
966
967 dst.z = |src0.z - src1.z| + src2.z
968
969 dst.w = |src0.w - src1.w| + src2.w
970
971
972 .. opcode:: TXF - Texel Fetch
973
974 As per NV_gpu_shader4, extract a single texel from a specified texture
975 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
976 four-component signed integer vector used to identify the single texel
977 accessed. 3 components + level. Just like texture instructions, an optional
978 offset vector is provided, which is subject to various driver restrictions
979 (regarding range, source of offsets).
980 TXF(uint_vec coord, int_vec offset).
981
982
983 .. opcode:: TXQ - Texture Size Query
984
985 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
986 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
987 depth), 1D array (width, layers), 2D array (width, height, layers).
988 Also return the number of accessible levels (last_level - first_level + 1)
989 in W.
990
991 For components which don't return a resource dimension, their value
992 is undefined.
993
994
995 .. math::
996
997 lod = src0.x
998
999 dst.x = texture\_width(unit, lod)
1000
1001 dst.y = texture\_height(unit, lod)
1002
1003 dst.z = texture\_depth(unit, lod)
1004
1005 dst.w = texture\_levels(unit)
1006
1007 .. opcode:: TG4 - Texture Gather
1008
1009 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
1010 filtering operation and packs them into a single register. Only works with
1011 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
1012 addressing modes of the sampler and the top level of any mip pyramid are
1013 used. Set W to zero. It behaves like the TEX instruction, but a filtered
1014 sample is not generated. The four samples that contribute to filtering are
1015 placed into xyzw in clockwise order, starting with the (u,v) texture
1016 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
1017 where the magnitude of the deltas are half a texel.
1018
1019 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
1020 depth compares, single component selection, and a non-constant offset. It
1021 doesn't allow support for the GL independent offset to get i0,j0. This would
1022 require another CAP is hw can do it natively. For now we lower that before
1023 TGSI.
1024
1025 .. math::
1026
1027 coord = src0
1028
1029 component = src1
1030
1031 dst = texture\_gather4 (unit, coord, component)
1032
1033 (with SM5 - cube array shadow)
1034
1035 .. math::
1036
1037 coord = src0
1038
1039 compare = src1
1040
1041 dst = texture\_gather (uint, coord, compare)
1042
1043 .. opcode:: LODQ - level of detail query
1044
1045 Compute the LOD information that the texture pipe would use to access the
1046 texture. The Y component contains the computed LOD lambda_prime. The X
1047 component contains the LOD that will be accessed, based on min/max lod's
1048 and mipmap filters.
1049
1050 .. math::
1051
1052 coord = src0
1053
1054 dst.xy = lodq(uint, coord);
1055
1056 Integer ISA
1057 ^^^^^^^^^^^^^^^^^^^^^^^^
1058 These opcodes are used for integer operations.
1059 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1060
1061
1062 .. opcode:: I2F - Signed Integer To Float
1063
1064 Rounding is unspecified (round to nearest even suggested).
1065
1066 .. math::
1067
1068 dst.x = (float) src.x
1069
1070 dst.y = (float) src.y
1071
1072 dst.z = (float) src.z
1073
1074 dst.w = (float) src.w
1075
1076
1077 .. opcode:: U2F - Unsigned Integer To Float
1078
1079 Rounding is unspecified (round to nearest even suggested).
1080
1081 .. math::
1082
1083 dst.x = (float) src.x
1084
1085 dst.y = (float) src.y
1086
1087 dst.z = (float) src.z
1088
1089 dst.w = (float) src.w
1090
1091
1092 .. opcode:: F2I - Float to Signed Integer
1093
1094 Rounding is towards zero (truncate).
1095 Values outside signed range (including NaNs) produce undefined results.
1096
1097 .. math::
1098
1099 dst.x = (int) src.x
1100
1101 dst.y = (int) src.y
1102
1103 dst.z = (int) src.z
1104
1105 dst.w = (int) src.w
1106
1107
1108 .. opcode:: F2U - Float to Unsigned Integer
1109
1110 Rounding is towards zero (truncate).
1111 Values outside unsigned range (including NaNs) produce undefined results.
1112
1113 .. math::
1114
1115 dst.x = (unsigned) src.x
1116
1117 dst.y = (unsigned) src.y
1118
1119 dst.z = (unsigned) src.z
1120
1121 dst.w = (unsigned) src.w
1122
1123
1124 .. opcode:: UADD - Integer Add
1125
1126 This instruction works the same for signed and unsigned integers.
1127 The low 32bit of the result is returned.
1128
1129 .. math::
1130
1131 dst.x = src0.x + src1.x
1132
1133 dst.y = src0.y + src1.y
1134
1135 dst.z = src0.z + src1.z
1136
1137 dst.w = src0.w + src1.w
1138
1139
1140 .. opcode:: UMAD - Integer Multiply And Add
1141
1142 This instruction works the same for signed and unsigned integers.
1143 The multiplication returns the low 32bit (as does the result itself).
1144
1145 .. math::
1146
1147 dst.x = src0.x \times src1.x + src2.x
1148
1149 dst.y = src0.y \times src1.y + src2.y
1150
1151 dst.z = src0.z \times src1.z + src2.z
1152
1153 dst.w = src0.w \times src1.w + src2.w
1154
1155
1156 .. opcode:: UMUL - Integer Multiply
1157
1158 This instruction works the same for signed and unsigned integers.
1159 The low 32bit of the result is returned.
1160
1161 .. math::
1162
1163 dst.x = src0.x \times src1.x
1164
1165 dst.y = src0.y \times src1.y
1166
1167 dst.z = src0.z \times src1.z
1168
1169 dst.w = src0.w \times src1.w
1170
1171
1172 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1173
1174 The high 32bits of the multiplication of 2 signed integers are returned.
1175
1176 .. math::
1177
1178 dst.x = (src0.x \times src1.x) >> 32
1179
1180 dst.y = (src0.y \times src1.y) >> 32
1181
1182 dst.z = (src0.z \times src1.z) >> 32
1183
1184 dst.w = (src0.w \times src1.w) >> 32
1185
1186
1187 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1188
1189 The high 32bits of the multiplication of 2 unsigned integers are returned.
1190
1191 .. math::
1192
1193 dst.x = (src0.x \times src1.x) >> 32
1194
1195 dst.y = (src0.y \times src1.y) >> 32
1196
1197 dst.z = (src0.z \times src1.z) >> 32
1198
1199 dst.w = (src0.w \times src1.w) >> 32
1200
1201
1202 .. opcode:: IDIV - Signed Integer Division
1203
1204 TBD: behavior for division by zero.
1205
1206 .. math::
1207
1208 dst.x = src0.x \ src1.x
1209
1210 dst.y = src0.y \ src1.y
1211
1212 dst.z = src0.z \ src1.z
1213
1214 dst.w = src0.w \ src1.w
1215
1216
1217 .. opcode:: UDIV - Unsigned Integer Division
1218
1219 For division by zero, 0xffffffff is returned.
1220
1221 .. math::
1222
1223 dst.x = src0.x \ src1.x
1224
1225 dst.y = src0.y \ src1.y
1226
1227 dst.z = src0.z \ src1.z
1228
1229 dst.w = src0.w \ src1.w
1230
1231
1232 .. opcode:: UMOD - Unsigned Integer Remainder
1233
1234 If second arg is zero, 0xffffffff is returned.
1235
1236 .. math::
1237
1238 dst.x = src0.x \ src1.x
1239
1240 dst.y = src0.y \ src1.y
1241
1242 dst.z = src0.z \ src1.z
1243
1244 dst.w = src0.w \ src1.w
1245
1246
1247 .. opcode:: NOT - Bitwise Not
1248
1249 .. math::
1250
1251 dst.x = \sim src.x
1252
1253 dst.y = \sim src.y
1254
1255 dst.z = \sim src.z
1256
1257 dst.w = \sim src.w
1258
1259
1260 .. opcode:: AND - Bitwise And
1261
1262 .. math::
1263
1264 dst.x = src0.x \& src1.x
1265
1266 dst.y = src0.y \& src1.y
1267
1268 dst.z = src0.z \& src1.z
1269
1270 dst.w = src0.w \& src1.w
1271
1272
1273 .. opcode:: OR - Bitwise Or
1274
1275 .. math::
1276
1277 dst.x = src0.x | src1.x
1278
1279 dst.y = src0.y | src1.y
1280
1281 dst.z = src0.z | src1.z
1282
1283 dst.w = src0.w | src1.w
1284
1285
1286 .. opcode:: XOR - Bitwise Xor
1287
1288 .. math::
1289
1290 dst.x = src0.x \oplus src1.x
1291
1292 dst.y = src0.y \oplus src1.y
1293
1294 dst.z = src0.z \oplus src1.z
1295
1296 dst.w = src0.w \oplus src1.w
1297
1298
1299 .. opcode:: IMAX - Maximum of Signed Integers
1300
1301 .. math::
1302
1303 dst.x = max(src0.x, src1.x)
1304
1305 dst.y = max(src0.y, src1.y)
1306
1307 dst.z = max(src0.z, src1.z)
1308
1309 dst.w = max(src0.w, src1.w)
1310
1311
1312 .. opcode:: UMAX - Maximum of Unsigned Integers
1313
1314 .. math::
1315
1316 dst.x = max(src0.x, src1.x)
1317
1318 dst.y = max(src0.y, src1.y)
1319
1320 dst.z = max(src0.z, src1.z)
1321
1322 dst.w = max(src0.w, src1.w)
1323
1324
1325 .. opcode:: IMIN - Minimum of Signed Integers
1326
1327 .. math::
1328
1329 dst.x = min(src0.x, src1.x)
1330
1331 dst.y = min(src0.y, src1.y)
1332
1333 dst.z = min(src0.z, src1.z)
1334
1335 dst.w = min(src0.w, src1.w)
1336
1337
1338 .. opcode:: UMIN - Minimum of Unsigned Integers
1339
1340 .. math::
1341
1342 dst.x = min(src0.x, src1.x)
1343
1344 dst.y = min(src0.y, src1.y)
1345
1346 dst.z = min(src0.z, src1.z)
1347
1348 dst.w = min(src0.w, src1.w)
1349
1350
1351 .. opcode:: SHL - Shift Left
1352
1353 The shift count is masked with 0x1f before the shift is applied.
1354
1355 .. math::
1356
1357 dst.x = src0.x << (0x1f \& src1.x)
1358
1359 dst.y = src0.y << (0x1f \& src1.y)
1360
1361 dst.z = src0.z << (0x1f \& src1.z)
1362
1363 dst.w = src0.w << (0x1f \& src1.w)
1364
1365
1366 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1367
1368 The shift count is masked with 0x1f before the shift is applied.
1369
1370 .. math::
1371
1372 dst.x = src0.x >> (0x1f \& src1.x)
1373
1374 dst.y = src0.y >> (0x1f \& src1.y)
1375
1376 dst.z = src0.z >> (0x1f \& src1.z)
1377
1378 dst.w = src0.w >> (0x1f \& src1.w)
1379
1380
1381 .. opcode:: USHR - Logical Shift Right
1382
1383 The shift count is masked with 0x1f before the shift is applied.
1384
1385 .. math::
1386
1387 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1388
1389 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1390
1391 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1392
1393 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1394
1395
1396 .. opcode:: UCMP - Integer Conditional Move
1397
1398 .. math::
1399
1400 dst.x = src0.x ? src1.x : src2.x
1401
1402 dst.y = src0.y ? src1.y : src2.y
1403
1404 dst.z = src0.z ? src1.z : src2.z
1405
1406 dst.w = src0.w ? src1.w : src2.w
1407
1408
1409
1410 .. opcode:: ISSG - Integer Set Sign
1411
1412 .. math::
1413
1414 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1415
1416 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1417
1418 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1419
1420 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1421
1422
1423
1424 .. opcode:: FSLT - Float Set On Less Than (ordered)
1425
1426 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1427
1428 .. math::
1429
1430 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1431
1432 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1433
1434 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1435
1436 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1437
1438
1439 .. opcode:: ISLT - Signed Integer Set On Less Than
1440
1441 .. math::
1442
1443 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1444
1445 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1446
1447 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1448
1449 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1450
1451
1452 .. opcode:: USLT - Unsigned Integer Set On Less Than
1453
1454 .. math::
1455
1456 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1457
1458 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1459
1460 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1461
1462 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1463
1464
1465 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1466
1467 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1468
1469 .. math::
1470
1471 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1472
1473 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1474
1475 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1476
1477 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1478
1479
1480 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1481
1482 .. math::
1483
1484 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1485
1486 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1487
1488 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1489
1490 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1491
1492
1493 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1494
1495 .. math::
1496
1497 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1498
1499 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1500
1501 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1502
1503 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1504
1505
1506 .. opcode:: FSEQ - Float Set On Equal (ordered)
1507
1508 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1509
1510 .. math::
1511
1512 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1513
1514 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1515
1516 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1517
1518 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1519
1520
1521 .. opcode:: USEQ - Integer Set On Equal
1522
1523 .. math::
1524
1525 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1526
1527 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1528
1529 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1530
1531 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1532
1533
1534 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1535
1536 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1537
1538 .. math::
1539
1540 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1541
1542 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1543
1544 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1545
1546 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1547
1548
1549 .. opcode:: USNE - Integer Set On Not Equal
1550
1551 .. math::
1552
1553 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1554
1555 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1556
1557 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1558
1559 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1560
1561
1562 .. opcode:: INEG - Integer Negate
1563
1564 Two's complement.
1565
1566 .. math::
1567
1568 dst.x = -src.x
1569
1570 dst.y = -src.y
1571
1572 dst.z = -src.z
1573
1574 dst.w = -src.w
1575
1576
1577 .. opcode:: IABS - Integer Absolute Value
1578
1579 .. math::
1580
1581 dst.x = |src.x|
1582
1583 dst.y = |src.y|
1584
1585 dst.z = |src.z|
1586
1587 dst.w = |src.w|
1588
1589 Bitwise ISA
1590 ^^^^^^^^^^^
1591 These opcodes are used for bit-level manipulation of integers.
1592
1593 .. opcode:: IBFE - Signed Bitfield Extract
1594
1595 See SM5 instruction of the same name. Extracts a set of bits from the input,
1596 and sign-extends them if the high bit of the extracted window is set.
1597
1598 Pseudocode::
1599
1600 def ibfe(value, offset, bits):
1601 offset = offset & 0x1f
1602 bits = bits & 0x1f
1603 if bits == 0: return 0
1604 # Note: >> sign-extends
1605 if width + offset < 32:
1606 return (value << (32 - offset - bits)) >> (32 - bits)
1607 else:
1608 return value >> offset
1609
1610 .. opcode:: UBFE - Unsigned Bitfield Extract
1611
1612 See SM5 instruction of the same name. Extracts a set of bits from the input,
1613 without any sign-extension.
1614
1615 Pseudocode::
1616
1617 def ubfe(value, offset, bits):
1618 offset = offset & 0x1f
1619 bits = bits & 0x1f
1620 if bits == 0: return 0
1621 # Note: >> does not sign-extend
1622 if width + offset < 32:
1623 return (value << (32 - offset - bits)) >> (32 - bits)
1624 else:
1625 return value >> offset
1626
1627 .. opcode:: BFI - Bitfield Insert
1628
1629 See SM5 instruction of the same name. Replaces a bit region of 'base' with
1630 the low bits of 'insert'.
1631
1632 Pseudocode::
1633
1634 def bfi(base, insert, offset, bits):
1635 offset = offset & 0x1f
1636 bits = bits & 0x1f
1637 mask = ((1 << bits) - 1) << offset
1638 return ((insert << offset) & mask) | (base & ~mask)
1639
1640 .. opcode:: BREV - Bitfield Reverse
1641
1642 See SM5 instruction BFREV. Reverses the bits of the argument.
1643
1644 .. opcode:: POPC - Population Count
1645
1646 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1647
1648 .. opcode:: LSB - Index of lowest set bit
1649
1650 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1651 bit of the argument. Returns -1 if none are set.
1652
1653 .. opcode:: IMSB - Index of highest non-sign bit
1654
1655 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1656 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1657 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1658 (i.e. for inputs 0 and -1).
1659
1660 .. opcode:: UMSB - Index of highest set bit
1661
1662 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1663 set bit of the argument. Returns -1 if none are set.
1664
1665 Geometry ISA
1666 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1667
1668 These opcodes are only supported in geometry shaders; they have no meaning
1669 in any other type of shader.
1670
1671 .. opcode:: EMIT - Emit
1672
1673 Generate a new vertex for the current primitive into the specified vertex
1674 stream using the values in the output registers.
1675
1676
1677 .. opcode:: ENDPRIM - End Primitive
1678
1679 Complete the current primitive in the specified vertex stream (consisting of
1680 the emitted vertices), and start a new one.
1681
1682
1683 GLSL ISA
1684 ^^^^^^^^^^
1685
1686 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1687 opcodes is determined by a special capability bit, ``GLSL``.
1688 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1689
1690 .. opcode:: CAL - Subroutine Call
1691
1692 push(pc)
1693 pc = target
1694
1695
1696 .. opcode:: RET - Subroutine Call Return
1697
1698 pc = pop()
1699
1700
1701 .. opcode:: CONT - Continue
1702
1703 Unconditionally moves the point of execution to the instruction after the
1704 last bgnloop. The instruction must appear within a bgnloop/endloop.
1705
1706 .. note::
1707
1708 Support for CONT is determined by a special capability bit,
1709 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1710
1711
1712 .. opcode:: BGNLOOP - Begin a Loop
1713
1714 Start a loop. Must have a matching endloop.
1715
1716
1717 .. opcode:: BGNSUB - Begin Subroutine
1718
1719 Starts definition of a subroutine. Must have a matching endsub.
1720
1721
1722 .. opcode:: ENDLOOP - End a Loop
1723
1724 End a loop started with bgnloop.
1725
1726
1727 .. opcode:: ENDSUB - End Subroutine
1728
1729 Ends definition of a subroutine.
1730
1731
1732 .. opcode:: NOP - No Operation
1733
1734 Do nothing.
1735
1736
1737 .. opcode:: BRK - Break
1738
1739 Unconditionally moves the point of execution to the instruction after the
1740 next endloop or endswitch. The instruction must appear within a loop/endloop
1741 or switch/endswitch.
1742
1743
1744 .. opcode:: BREAKC - Break Conditional
1745
1746 Conditionally moves the point of execution to the instruction after the
1747 next endloop or endswitch. The instruction must appear within a loop/endloop
1748 or switch/endswitch.
1749 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1750 as an integer register.
1751
1752 .. note::
1753
1754 Considered for removal as it's quite inconsistent wrt other opcodes
1755 (could emulate with UIF/BRK/ENDIF).
1756
1757
1758 .. opcode:: IF - Float If
1759
1760 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1761
1762 src0.x != 0.0
1763
1764 where src0.x is interpreted as a floating point register.
1765
1766
1767 .. opcode:: UIF - Bitwise If
1768
1769 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1770
1771 src0.x != 0
1772
1773 where src0.x is interpreted as an integer register.
1774
1775
1776 .. opcode:: ELSE - Else
1777
1778 Starts an else block, after an IF or UIF statement.
1779
1780
1781 .. opcode:: ENDIF - End If
1782
1783 Ends an IF or UIF block.
1784
1785
1786 .. opcode:: SWITCH - Switch
1787
1788 Starts a C-style switch expression. The switch consists of one or multiple
1789 CASE statements, and at most one DEFAULT statement. Execution of a statement
1790 ends when a BRK is hit, but just like in C falling through to other cases
1791 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1792 just as last statement, and fallthrough is allowed into/from it.
1793 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1794
1795 Example::
1796
1797 SWITCH src[0].x
1798 CASE src[0].x
1799 (some instructions here)
1800 (optional BRK here)
1801 DEFAULT
1802 (some instructions here)
1803 (optional BRK here)
1804 CASE src[0].x
1805 (some instructions here)
1806 (optional BRK here)
1807 ENDSWITCH
1808
1809
1810 .. opcode:: CASE - Switch case
1811
1812 This represents a switch case label. The src arg must be an integer immediate.
1813
1814
1815 .. opcode:: DEFAULT - Switch default
1816
1817 This represents the default case in the switch, which is taken if no other
1818 case matches.
1819
1820
1821 .. opcode:: ENDSWITCH - End of switch
1822
1823 Ends a switch expression.
1824
1825
1826 Interpolation ISA
1827 ^^^^^^^^^^^^^^^^^
1828
1829 The interpolation instructions allow an input to be interpolated in a
1830 different way than its declaration. This corresponds to the GLSL 4.00
1831 interpolateAt* functions. The first argument of each of these must come from
1832 ``TGSI_FILE_INPUT``.
1833
1834 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1835
1836 Interpolates the varying specified by src0 at the centroid
1837
1838 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1839
1840 Interpolates the varying specified by src0 at the sample id specified by
1841 src1.x (interpreted as an integer)
1842
1843 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1844
1845 Interpolates the varying specified by src0 at the offset src1.xy from the
1846 pixel center (interpreted as floats)
1847
1848
1849 .. _doubleopcodes:
1850
1851 Double ISA
1852 ^^^^^^^^^^^^^^^
1853
1854 The double-precision opcodes reinterpret four-component vectors into
1855 two-component vectors with doubled precision in each component.
1856
1857 Support for these opcodes is XXX undecided. :T
1858
1859 .. opcode:: DADD - Add
1860
1861 .. math::
1862
1863 dst.xy = src0.xy + src1.xy
1864
1865 dst.zw = src0.zw + src1.zw
1866
1867
1868 .. opcode:: DDIV - Divide
1869
1870 .. math::
1871
1872 dst.xy = src0.xy / src1.xy
1873
1874 dst.zw = src0.zw / src1.zw
1875
1876 .. opcode:: DSEQ - Set on Equal
1877
1878 .. math::
1879
1880 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1881
1882 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1883
1884 .. opcode:: DSLT - Set on Less than
1885
1886 .. math::
1887
1888 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1889
1890 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1891
1892 .. opcode:: DFRAC - Fraction
1893
1894 .. math::
1895
1896 dst.xy = src.xy - \lfloor src.xy\rfloor
1897
1898 dst.zw = src.zw - \lfloor src.zw\rfloor
1899
1900
1901 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1902
1903 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1904 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1905 :math:`dst1 \times 2^{dst0} = src` .
1906
1907 .. math::
1908
1909 dst0.xy = exp(src.xy)
1910
1911 dst1.xy = frac(src.xy)
1912
1913 dst0.zw = exp(src.zw)
1914
1915 dst1.zw = frac(src.zw)
1916
1917 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1918
1919 This opcode is the inverse of :opcode:`DFRACEXP`.
1920
1921 .. math::
1922
1923 dst.xy = src0.xy \times 2^{src1.xy}
1924
1925 dst.zw = src0.zw \times 2^{src1.zw}
1926
1927 .. opcode:: DMIN - Minimum
1928
1929 .. math::
1930
1931 dst.xy = min(src0.xy, src1.xy)
1932
1933 dst.zw = min(src0.zw, src1.zw)
1934
1935 .. opcode:: DMAX - Maximum
1936
1937 .. math::
1938
1939 dst.xy = max(src0.xy, src1.xy)
1940
1941 dst.zw = max(src0.zw, src1.zw)
1942
1943 .. opcode:: DMUL - Multiply
1944
1945 .. math::
1946
1947 dst.xy = src0.xy \times src1.xy
1948
1949 dst.zw = src0.zw \times src1.zw
1950
1951
1952 .. opcode:: DMAD - Multiply And Add
1953
1954 .. math::
1955
1956 dst.xy = src0.xy \times src1.xy + src2.xy
1957
1958 dst.zw = src0.zw \times src1.zw + src2.zw
1959
1960
1961 .. opcode:: DRCP - Reciprocal
1962
1963 .. math::
1964
1965 dst.xy = \frac{1}{src.xy}
1966
1967 dst.zw = \frac{1}{src.zw}
1968
1969 .. opcode:: DSQRT - Square Root
1970
1971 .. math::
1972
1973 dst.xy = \sqrt{src.xy}
1974
1975 dst.zw = \sqrt{src.zw}
1976
1977
1978 .. _samplingopcodes:
1979
1980 Resource Sampling Opcodes
1981 ^^^^^^^^^^^^^^^^^^^^^^^^^
1982
1983 Those opcodes follow very closely semantics of the respective Direct3D
1984 instructions. If in doubt double check Direct3D documentation.
1985 Note that the swizzle on SVIEW (src1) determines texel swizzling
1986 after lookup.
1987
1988 .. opcode:: SAMPLE
1989
1990 Using provided address, sample data from the specified texture using the
1991 filtering mode identified by the gven sampler. The source data may come from
1992 any resource type other than buffers.
1993
1994 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
1995
1996 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
1997
1998 .. opcode:: SAMPLE_I
1999
2000 Simplified alternative to the SAMPLE instruction. Using the provided
2001 integer address, SAMPLE_I fetches data from the specified sampler view
2002 without any filtering. The source data may come from any resource type
2003 other than CUBE.
2004
2005 Syntax: ``SAMPLE_I dst, address, sampler_view``
2006
2007 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2008
2009 The 'address' is specified as unsigned integers. If the 'address' is out of
2010 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2011 components. As such the instruction doesn't honor address wrap modes, in
2012 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2013 address.w always provides an unsigned integer mipmap level. If the value is
2014 out of the range then the instruction always returns 0 in all components.
2015 address.yz are ignored for buffers and 1d textures. address.z is ignored
2016 for 1d texture arrays and 2d textures.
2017
2018 For 1D texture arrays address.y provides the array index (also as unsigned
2019 integer). If the value is out of the range of available array indices
2020 [0... (array size - 1)] then the opcode always returns 0 in all components.
2021 For 2D texture arrays address.z provides the array index, otherwise it
2022 exhibits the same behavior as in the case for 1D texture arrays. The exact
2023 semantics of the source address are presented in the table below:
2024
2025 +---------------------------+----+-----+-----+---------+
2026 | resource type | X | Y | Z | W |
2027 +===========================+====+=====+=====+=========+
2028 | ``PIPE_BUFFER`` | x | | | ignored |
2029 +---------------------------+----+-----+-----+---------+
2030 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2031 +---------------------------+----+-----+-----+---------+
2032 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2033 +---------------------------+----+-----+-----+---------+
2034 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2035 +---------------------------+----+-----+-----+---------+
2036 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2037 +---------------------------+----+-----+-----+---------+
2038 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2039 +---------------------------+----+-----+-----+---------+
2040 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2041 +---------------------------+----+-----+-----+---------+
2042 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2043 +---------------------------+----+-----+-----+---------+
2044
2045 Where 'mpl' is a mipmap level and 'idx' is the array index.
2046
2047 .. opcode:: SAMPLE_I_MS
2048
2049 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2050
2051 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2052
2053 .. opcode:: SAMPLE_B
2054
2055 Just like the SAMPLE instruction with the exception that an additional bias
2056 is applied to the level of detail computed as part of the instruction
2057 execution.
2058
2059 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2060
2061 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2062
2063 .. opcode:: SAMPLE_C
2064
2065 Similar to the SAMPLE instruction but it performs a comparison filter. The
2066 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2067 additional float32 operand, reference value, which must be a register with
2068 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2069 current samplers compare_func (in pipe_sampler_state) to compare reference
2070 value against the red component value for the surce resource at each texel
2071 that the currently configured texture filter covers based on the provided
2072 coordinates.
2073
2074 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2075
2076 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2077
2078 .. opcode:: SAMPLE_C_LZ
2079
2080 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2081 for level-zero.
2082
2083 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2084
2085 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2086
2087
2088 .. opcode:: SAMPLE_D
2089
2090 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2091 the source address in the x direction and the y direction are provided by
2092 extra parameters.
2093
2094 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2095
2096 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2097
2098 .. opcode:: SAMPLE_L
2099
2100 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2101 directly as a scalar value, representing no anisotropy.
2102
2103 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2104
2105 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2106
2107 .. opcode:: GATHER4
2108
2109 Gathers the four texels to be used in a bi-linear filtering operation and
2110 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2111 and cubemaps arrays. For 2D textures, only the addressing modes of the
2112 sampler and the top level of any mip pyramid are used. Set W to zero. It
2113 behaves like the SAMPLE instruction, but a filtered sample is not
2114 generated. The four samples that contribute to filtering are placed into
2115 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2116 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2117 magnitude of the deltas are half a texel.
2118
2119
2120 .. opcode:: SVIEWINFO
2121
2122 Query the dimensions of a given sampler view. dst receives width, height,
2123 depth or array size and number of mipmap levels as int4. The dst can have a
2124 writemask which will specify what info is the caller interested in.
2125
2126 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2127
2128 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2129
2130 src_mip_level is an unsigned integer scalar. If it's out of range then
2131 returns 0 for width, height and depth/array size but the total number of
2132 mipmap is still returned correctly for the given sampler view. The returned
2133 width, height and depth values are for the mipmap level selected by the
2134 src_mip_level and are in the number of texels. For 1d texture array width
2135 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2136 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2137 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2138 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2139 resinfo allowing swizzling dst values is ignored (due to the interaction
2140 with rcpfloat modifier which requires some swizzle handling in the state
2141 tracker anyway).
2142
2143 .. opcode:: SAMPLE_POS
2144
2145 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2146 indicated where the sample is located. If the resource is not a multi-sample
2147 resource and not a render target, the result is 0.
2148
2149 .. opcode:: SAMPLE_INFO
2150
2151 dst receives number of samples in x. If the resource is not a multi-sample
2152 resource and not a render target, the result is 0.
2153
2154
2155 .. _resourceopcodes:
2156
2157 Resource Access Opcodes
2158 ^^^^^^^^^^^^^^^^^^^^^^^
2159
2160 .. opcode:: LOAD - Fetch data from a shader resource
2161
2162 Syntax: ``LOAD dst, resource, address``
2163
2164 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
2165
2166 Using the provided integer address, LOAD fetches data
2167 from the specified buffer or texture without any
2168 filtering.
2169
2170 The 'address' is specified as a vector of unsigned
2171 integers. If the 'address' is out of range the result
2172 is unspecified.
2173
2174 Only the first mipmap level of a resource can be read
2175 from using this instruction.
2176
2177 For 1D or 2D texture arrays, the array index is
2178 provided as an unsigned integer in address.y or
2179 address.z, respectively. address.yz are ignored for
2180 buffers and 1D textures. address.z is ignored for 1D
2181 texture arrays and 2D textures. address.w is always
2182 ignored.
2183
2184 .. opcode:: STORE - Write data to a shader resource
2185
2186 Syntax: ``STORE resource, address, src``
2187
2188 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
2189
2190 Using the provided integer address, STORE writes data
2191 to the specified buffer or texture.
2192
2193 The 'address' is specified as a vector of unsigned
2194 integers. If the 'address' is out of range the result
2195 is unspecified.
2196
2197 Only the first mipmap level of a resource can be
2198 written to using this instruction.
2199
2200 For 1D or 2D texture arrays, the array index is
2201 provided as an unsigned integer in address.y or
2202 address.z, respectively. address.yz are ignored for
2203 buffers and 1D textures. address.z is ignored for 1D
2204 texture arrays and 2D textures. address.w is always
2205 ignored.
2206
2207
2208 .. _threadsyncopcodes:
2209
2210 Inter-thread synchronization opcodes
2211 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2212
2213 These opcodes are intended for communication between threads running
2214 within the same compute grid. For now they're only valid in compute
2215 programs.
2216
2217 .. opcode:: MFENCE - Memory fence
2218
2219 Syntax: ``MFENCE resource``
2220
2221 Example: ``MFENCE RES[0]``
2222
2223 This opcode forces strong ordering between any memory access
2224 operations that affect the specified resource. This means that
2225 previous loads and stores (and only those) will be performed and
2226 visible to other threads before the program execution continues.
2227
2228
2229 .. opcode:: LFENCE - Load memory fence
2230
2231 Syntax: ``LFENCE resource``
2232
2233 Example: ``LFENCE RES[0]``
2234
2235 Similar to MFENCE, but it only affects the ordering of memory loads.
2236
2237
2238 .. opcode:: SFENCE - Store memory fence
2239
2240 Syntax: ``SFENCE resource``
2241
2242 Example: ``SFENCE RES[0]``
2243
2244 Similar to MFENCE, but it only affects the ordering of memory stores.
2245
2246
2247 .. opcode:: BARRIER - Thread group barrier
2248
2249 ``BARRIER``
2250
2251 This opcode suspends the execution of the current thread until all
2252 the remaining threads in the working group reach the same point of
2253 the program. Results are unspecified if any of the remaining
2254 threads terminates or never reaches an executed BARRIER instruction.
2255
2256
2257 .. _atomopcodes:
2258
2259 Atomic opcodes
2260 ^^^^^^^^^^^^^^
2261
2262 These opcodes provide atomic variants of some common arithmetic and
2263 logical operations. In this context atomicity means that another
2264 concurrent memory access operation that affects the same memory
2265 location is guaranteed to be performed strictly before or after the
2266 entire execution of the atomic operation.
2267
2268 For the moment they're only valid in compute programs.
2269
2270 .. opcode:: ATOMUADD - Atomic integer addition
2271
2272 Syntax: ``ATOMUADD dst, resource, offset, src``
2273
2274 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2275
2276 The following operation is performed atomically on each component:
2277
2278 .. math::
2279
2280 dst_i = resource[offset]_i
2281
2282 resource[offset]_i = dst_i + src_i
2283
2284
2285 .. opcode:: ATOMXCHG - Atomic exchange
2286
2287 Syntax: ``ATOMXCHG dst, resource, offset, src``
2288
2289 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2290
2291 The following operation is performed atomically on each component:
2292
2293 .. math::
2294
2295 dst_i = resource[offset]_i
2296
2297 resource[offset]_i = src_i
2298
2299
2300 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2301
2302 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2303
2304 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2305
2306 The following operation is performed atomically on each component:
2307
2308 .. math::
2309
2310 dst_i = resource[offset]_i
2311
2312 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2313
2314
2315 .. opcode:: ATOMAND - Atomic bitwise And
2316
2317 Syntax: ``ATOMAND dst, resource, offset, src``
2318
2319 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2320
2321 The following operation is performed atomically on each component:
2322
2323 .. math::
2324
2325 dst_i = resource[offset]_i
2326
2327 resource[offset]_i = dst_i \& src_i
2328
2329
2330 .. opcode:: ATOMOR - Atomic bitwise Or
2331
2332 Syntax: ``ATOMOR dst, resource, offset, src``
2333
2334 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2335
2336 The following operation is performed atomically on each component:
2337
2338 .. math::
2339
2340 dst_i = resource[offset]_i
2341
2342 resource[offset]_i = dst_i | src_i
2343
2344
2345 .. opcode:: ATOMXOR - Atomic bitwise Xor
2346
2347 Syntax: ``ATOMXOR dst, resource, offset, src``
2348
2349 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2350
2351 The following operation is performed atomically on each component:
2352
2353 .. math::
2354
2355 dst_i = resource[offset]_i
2356
2357 resource[offset]_i = dst_i \oplus src_i
2358
2359
2360 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2361
2362 Syntax: ``ATOMUMIN dst, resource, offset, src``
2363
2364 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2365
2366 The following operation is performed atomically on each component:
2367
2368 .. math::
2369
2370 dst_i = resource[offset]_i
2371
2372 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2373
2374
2375 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2376
2377 Syntax: ``ATOMUMAX dst, resource, offset, src``
2378
2379 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2380
2381 The following operation is performed atomically on each component:
2382
2383 .. math::
2384
2385 dst_i = resource[offset]_i
2386
2387 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2388
2389
2390 .. opcode:: ATOMIMIN - Atomic signed minimum
2391
2392 Syntax: ``ATOMIMIN dst, resource, offset, src``
2393
2394 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2395
2396 The following operation is performed atomically on each component:
2397
2398 .. math::
2399
2400 dst_i = resource[offset]_i
2401
2402 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2403
2404
2405 .. opcode:: ATOMIMAX - Atomic signed maximum
2406
2407 Syntax: ``ATOMIMAX dst, resource, offset, src``
2408
2409 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2410
2411 The following operation is performed atomically on each component:
2412
2413 .. math::
2414
2415 dst_i = resource[offset]_i
2416
2417 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2418
2419
2420
2421 Explanation of symbols used
2422 ------------------------------
2423
2424
2425 Functions
2426 ^^^^^^^^^^^^^^
2427
2428
2429 :math:`|x|` Absolute value of `x`.
2430
2431 :math:`\lceil x \rceil` Ceiling of `x`.
2432
2433 clamp(x,y,z) Clamp x between y and z.
2434 (x < y) ? y : (x > z) ? z : x
2435
2436 :math:`\lfloor x\rfloor` Floor of `x`.
2437
2438 :math:`\log_2{x}` Logarithm of `x`, base 2.
2439
2440 max(x,y) Maximum of x and y.
2441 (x > y) ? x : y
2442
2443 min(x,y) Minimum of x and y.
2444 (x < y) ? x : y
2445
2446 partialx(x) Derivative of x relative to fragment's X.
2447
2448 partialy(x) Derivative of x relative to fragment's Y.
2449
2450 pop() Pop from stack.
2451
2452 :math:`x^y` `x` to the power `y`.
2453
2454 push(x) Push x on stack.
2455
2456 round(x) Round x.
2457
2458 trunc(x) Truncate x, i.e. drop the fraction bits.
2459
2460
2461 Keywords
2462 ^^^^^^^^^^^^^
2463
2464
2465 discard Discard fragment.
2466
2467 pc Program counter.
2468
2469 target Label of target instruction.
2470
2471
2472 Other tokens
2473 ---------------
2474
2475
2476 Declaration
2477 ^^^^^^^^^^^
2478
2479
2480 Declares a register that is will be referenced as an operand in Instruction
2481 tokens.
2482
2483 File field contains register file that is being declared and is one
2484 of TGSI_FILE.
2485
2486 UsageMask field specifies which of the register components can be accessed
2487 and is one of TGSI_WRITEMASK.
2488
2489 The Local flag specifies that a given value isn't intended for
2490 subroutine parameter passing and, as a result, the implementation
2491 isn't required to give any guarantees of it being preserved across
2492 subroutine boundaries. As it's merely a compiler hint, the
2493 implementation is free to ignore it.
2494
2495 If Dimension flag is set to 1, a Declaration Dimension token follows.
2496
2497 If Semantic flag is set to 1, a Declaration Semantic token follows.
2498
2499 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2500
2501 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2502
2503 If Array flag is set to 1, a Declaration Array token follows.
2504
2505 Array Declaration
2506 ^^^^^^^^^^^^^^^^^^^^^^^^
2507
2508 Declarations can optional have an ArrayID attribute which can be referred by
2509 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2510 if no ArrayID is specified.
2511
2512 If an indirect addressing operand refers to a specific declaration by using
2513 an ArrayID only the registers in this declaration are guaranteed to be
2514 accessed, accessing any register outside this declaration results in undefined
2515 behavior. Note that for compatibility the effective index is zero-based and
2516 not relative to the specified declaration
2517
2518 If no ArrayID is specified with an indirect addressing operand the whole
2519 register file might be accessed by this operand. This is strongly discouraged
2520 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2521
2522 Declaration Semantic
2523 ^^^^^^^^^^^^^^^^^^^^^^^^
2524
2525 Vertex and fragment shader input and output registers may be labeled
2526 with semantic information consisting of a name and index.
2527
2528 Follows Declaration token if Semantic bit is set.
2529
2530 Since its purpose is to link a shader with other stages of the pipeline,
2531 it is valid to follow only those Declaration tokens that declare a register
2532 either in INPUT or OUTPUT file.
2533
2534 SemanticName field contains the semantic name of the register being declared.
2535 There is no default value.
2536
2537 SemanticIndex is an optional subscript that can be used to distinguish
2538 different register declarations with the same semantic name. The default value
2539 is 0.
2540
2541 The meanings of the individual semantic names are explained in the following
2542 sections.
2543
2544 TGSI_SEMANTIC_POSITION
2545 """"""""""""""""""""""
2546
2547 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2548 output register which contains the homogeneous vertex position in the clip
2549 space coordinate system. After clipping, the X, Y and Z components of the
2550 vertex will be divided by the W value to get normalized device coordinates.
2551
2552 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2553 fragment shader input contains the fragment's window position. The X
2554 component starts at zero and always increases from left to right.
2555 The Y component starts at zero and always increases but Y=0 may either
2556 indicate the top of the window or the bottom depending on the fragment
2557 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2558 The Z coordinate ranges from 0 to 1 to represent depth from the front
2559 to the back of the Z buffer. The W component contains the reciprocol
2560 of the interpolated vertex position W component.
2561
2562 Fragment shaders may also declare an output register with
2563 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2564 the fragment shader to change the fragment's Z position.
2565
2566
2567
2568 TGSI_SEMANTIC_COLOR
2569 """""""""""""""""""
2570
2571 For vertex shader outputs or fragment shader inputs/outputs, this
2572 label indicates that the resister contains an R,G,B,A color.
2573
2574 Several shader inputs/outputs may contain colors so the semantic index
2575 is used to distinguish them. For example, color[0] may be the diffuse
2576 color while color[1] may be the specular color.
2577
2578 This label is needed so that the flat/smooth shading can be applied
2579 to the right interpolants during rasterization.
2580
2581
2582
2583 TGSI_SEMANTIC_BCOLOR
2584 """"""""""""""""""""
2585
2586 Back-facing colors are only used for back-facing polygons, and are only valid
2587 in vertex shader outputs. After rasterization, all polygons are front-facing
2588 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2589 so all BCOLORs effectively become regular COLORs in the fragment shader.
2590
2591
2592 TGSI_SEMANTIC_FOG
2593 """""""""""""""""
2594
2595 Vertex shader inputs and outputs and fragment shader inputs may be
2596 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2597 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2598 to compute a fog blend factor which is used to blend the normal fragment color
2599 with a constant fog color. But fog coord really is just an ordinary vec4
2600 register like regular semantics.
2601
2602
2603 TGSI_SEMANTIC_PSIZE
2604 """""""""""""""""""
2605
2606 Vertex shader input and output registers may be labeled with
2607 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2608 in the form (S, 0, 0, 1). The point size controls the width or diameter
2609 of points for rasterization. This label cannot be used in fragment
2610 shaders.
2611
2612 When using this semantic, be sure to set the appropriate state in the
2613 :ref:`rasterizer` first.
2614
2615
2616 TGSI_SEMANTIC_TEXCOORD
2617 """"""""""""""""""""""
2618
2619 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2620
2621 Vertex shader outputs and fragment shader inputs may be labeled with
2622 this semantic to make them replaceable by sprite coordinates via the
2623 sprite_coord_enable state in the :ref:`rasterizer`.
2624 The semantic index permitted with this semantic is limited to <= 7.
2625
2626 If the driver does not support TEXCOORD, sprite coordinate replacement
2627 applies to inputs with the GENERIC semantic instead.
2628
2629 The intended use case for this semantic is gl_TexCoord.
2630
2631
2632 TGSI_SEMANTIC_PCOORD
2633 """"""""""""""""""""
2634
2635 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2636
2637 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2638 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2639 the current primitive is a point and point sprites are enabled. Otherwise,
2640 the contents of the register are undefined.
2641
2642 The intended use case for this semantic is gl_PointCoord.
2643
2644
2645 TGSI_SEMANTIC_GENERIC
2646 """""""""""""""""""""
2647
2648 All vertex/fragment shader inputs/outputs not labeled with any other
2649 semantic label can be considered to be generic attributes. Typical
2650 uses of generic inputs/outputs are texcoords and user-defined values.
2651
2652
2653 TGSI_SEMANTIC_NORMAL
2654 """"""""""""""""""""
2655
2656 Indicates that a vertex shader input is a normal vector. This is
2657 typically only used for legacy graphics APIs.
2658
2659
2660 TGSI_SEMANTIC_FACE
2661 """"""""""""""""""
2662
2663 This label applies to fragment shader inputs only and indicates that
2664 the register contains front/back-face information of the form (F, 0,
2665 0, 1). The first component will be positive when the fragment belongs
2666 to a front-facing polygon, and negative when the fragment belongs to a
2667 back-facing polygon.
2668
2669
2670 TGSI_SEMANTIC_EDGEFLAG
2671 """"""""""""""""""""""
2672
2673 For vertex shaders, this sematic label indicates that an input or
2674 output is a boolean edge flag. The register layout is [F, x, x, x]
2675 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2676 simply copies the edge flag input to the edgeflag output.
2677
2678 Edge flags are used to control which lines or points are actually
2679 drawn when the polygon mode converts triangles/quads/polygons into
2680 points or lines.
2681
2682
2683 TGSI_SEMANTIC_STENCIL
2684 """""""""""""""""""""
2685
2686 For fragment shaders, this semantic label indicates that an output
2687 is a writable stencil reference value. Only the Y component is writable.
2688 This allows the fragment shader to change the fragments stencilref value.
2689
2690
2691 TGSI_SEMANTIC_VIEWPORT_INDEX
2692 """"""""""""""""""""""""""""
2693
2694 For geometry shaders, this semantic label indicates that an output
2695 contains the index of the viewport (and scissor) to use.
2696 Only the X value is used.
2697
2698
2699 TGSI_SEMANTIC_LAYER
2700 """""""""""""""""""
2701
2702 For geometry shaders, this semantic label indicates that an output
2703 contains the layer value to use for the color and depth/stencil surfaces.
2704 Only the X value is used. (Also known as rendertarget array index.)
2705
2706
2707 TGSI_SEMANTIC_CULLDIST
2708 """"""""""""""""""""""
2709
2710 Used as distance to plane for performing application-defined culling
2711 of individual primitives against a plane. When components of vertex
2712 elements are given this label, these values are assumed to be a
2713 float32 signed distance to a plane. Primitives will be completely
2714 discarded if the plane distance for all of the vertices in the
2715 primitive are < 0. If a vertex has a cull distance of NaN, that
2716 vertex counts as "out" (as if its < 0);
2717 The limits on both clip and cull distances are bound
2718 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2719 the maximum number of components that can be used to hold the
2720 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2721 which specifies the maximum number of registers which can be
2722 annotated with those semantics.
2723
2724
2725 TGSI_SEMANTIC_CLIPDIST
2726 """"""""""""""""""""""
2727
2728 When components of vertex elements are identified this way, these
2729 values are each assumed to be a float32 signed distance to a plane.
2730 Primitive setup only invokes rasterization on pixels for which
2731 the interpolated plane distances are >= 0. Multiple clip planes
2732 can be implemented simultaneously, by annotating multiple
2733 components of one or more vertex elements with the above specified
2734 semantic. The limits on both clip and cull distances are bound
2735 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2736 the maximum number of components that can be used to hold the
2737 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2738 which specifies the maximum number of registers which can be
2739 annotated with those semantics.
2740
2741 TGSI_SEMANTIC_SAMPLEID
2742 """"""""""""""""""""""
2743
2744 For fragment shaders, this semantic label indicates that a system value
2745 contains the current sample id (i.e. gl_SampleID). Only the X value is used.
2746
2747 TGSI_SEMANTIC_SAMPLEPOS
2748 """""""""""""""""""""""
2749
2750 For fragment shaders, this semantic label indicates that a system value
2751 contains the current sample's position (i.e. gl_SamplePosition). Only the X
2752 and Y values are used.
2753
2754 TGSI_SEMANTIC_SAMPLEMASK
2755 """"""""""""""""""""""""
2756
2757 For fragment shaders, this semantic label indicates that an output contains
2758 the sample mask used to disable further sample processing
2759 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
2760
2761 TGSI_SEMANTIC_INVOCATIONID
2762 """"""""""""""""""""""""""
2763
2764 For geometry shaders, this semantic label indicates that a system value
2765 contains the current invocation id (i.e. gl_InvocationID). Only the X value is
2766 used.
2767
2768 Declaration Interpolate
2769 ^^^^^^^^^^^^^^^^^^^^^^^
2770
2771 This token is only valid for fragment shader INPUT declarations.
2772
2773 The Interpolate field specifes the way input is being interpolated by
2774 the rasteriser and is one of TGSI_INTERPOLATE_*.
2775
2776 The Location field specifies the location inside the pixel that the
2777 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
2778 when per-sample shading is enabled, the implementation may choose to
2779 interpolate at the sample irrespective of the Location field.
2780
2781 The CylindricalWrap bitfield specifies which register components
2782 should be subject to cylindrical wrapping when interpolating by the
2783 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2784 should be interpolated according to cylindrical wrapping rules.
2785
2786
2787 Declaration Sampler View
2788 ^^^^^^^^^^^^^^^^^^^^^^^^
2789
2790 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2791
2792 DCL SVIEW[#], resource, type(s)
2793
2794 Declares a shader input sampler view and assigns it to a SVIEW[#]
2795 register.
2796
2797 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2798
2799 type must be 1 or 4 entries (if specifying on a per-component
2800 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2801
2802
2803 Declaration Resource
2804 ^^^^^^^^^^^^^^^^^^^^
2805
2806 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2807
2808 DCL RES[#], resource [, WR] [, RAW]
2809
2810 Declares a shader input resource and assigns it to a RES[#]
2811 register.
2812
2813 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2814 2DArray.
2815
2816 If the RAW keyword is not specified, the texture data will be
2817 subject to conversion, swizzling and scaling as required to yield
2818 the specified data type from the physical data format of the bound
2819 resource.
2820
2821 If the RAW keyword is specified, no channel conversion will be
2822 performed: the values read for each of the channels (X,Y,Z,W) will
2823 correspond to consecutive words in the same order and format
2824 they're found in memory. No element-to-address conversion will be
2825 performed either: the value of the provided X coordinate will be
2826 interpreted in byte units instead of texel units. The result of
2827 accessing a misaligned address is undefined.
2828
2829 Usage of the STORE opcode is only allowed if the WR (writable) flag
2830 is set.
2831
2832
2833 Properties
2834 ^^^^^^^^^^^^^^^^^^^^^^^^
2835
2836 Properties are general directives that apply to the whole TGSI program.
2837
2838 FS_COORD_ORIGIN
2839 """""""""""""""
2840
2841 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2842 The default value is UPPER_LEFT.
2843
2844 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2845 increase downward and rightward.
2846 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2847 increase upward and rightward.
2848
2849 OpenGL defaults to LOWER_LEFT, and is configurable with the
2850 GL_ARB_fragment_coord_conventions extension.
2851
2852 DirectX 9/10 use UPPER_LEFT.
2853
2854 FS_COORD_PIXEL_CENTER
2855 """""""""""""""""""""
2856
2857 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2858 The default value is HALF_INTEGER.
2859
2860 If HALF_INTEGER, the fractionary part of the position will be 0.5
2861 If INTEGER, the fractionary part of the position will be 0.0
2862
2863 Note that this does not affect the set of fragments generated by
2864 rasterization, which is instead controlled by half_pixel_center in the
2865 rasterizer.
2866
2867 OpenGL defaults to HALF_INTEGER, and is configurable with the
2868 GL_ARB_fragment_coord_conventions extension.
2869
2870 DirectX 9 uses INTEGER.
2871 DirectX 10 uses HALF_INTEGER.
2872
2873 FS_COLOR0_WRITES_ALL_CBUFS
2874 """"""""""""""""""""""""""
2875 Specifies that writes to the fragment shader color 0 are replicated to all
2876 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2877 fragData is directed to a single color buffer, but fragColor is broadcast.
2878
2879 VS_PROHIBIT_UCPS
2880 """"""""""""""""""""""""""
2881 If this property is set on the program bound to the shader stage before the
2882 fragment shader, user clip planes should have no effect (be disabled) even if
2883 that shader does not write to any clip distance outputs and the rasterizer's
2884 clip_plane_enable is non-zero.
2885 This property is only supported by drivers that also support shader clip
2886 distance outputs.
2887 This is useful for APIs that don't have UCPs and where clip distances written
2888 by a shader cannot be disabled.
2889
2890 GS_INVOCATIONS
2891 """"""""""""""
2892
2893 Specifies the number of times a geometry shader should be executed for each
2894 input primitive. Each invocation will have a different
2895 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
2896 be 1.
2897
2898 VS_WINDOW_SPACE_POSITION
2899 """"""""""""""""""""""""""
2900 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
2901 is assumed to contain window space coordinates.
2902 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
2903 directly taken from the 4-th component of the shader output.
2904 Naturally, clipping is not performed on window coordinates either.
2905 The effect of this property is undefined if a geometry or tessellation shader
2906 are in use.
2907
2908 Texture Sampling and Texture Formats
2909 ------------------------------------
2910
2911 This table shows how texture image components are returned as (x,y,z,w) tuples
2912 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2913 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2914 well.
2915
2916 +--------------------+--------------+--------------------+--------------+
2917 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2918 +====================+==============+====================+==============+
2919 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2920 +--------------------+--------------+--------------------+--------------+
2921 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2922 +--------------------+--------------+--------------------+--------------+
2923 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2924 +--------------------+--------------+--------------------+--------------+
2925 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2926 +--------------------+--------------+--------------------+--------------+
2927 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2928 +--------------------+--------------+--------------------+--------------+
2929 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2930 +--------------------+--------------+--------------------+--------------+
2931 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2932 +--------------------+--------------+--------------------+--------------+
2933 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2934 +--------------------+--------------+--------------------+--------------+
2935 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2936 | | | [#envmap-bumpmap]_ | |
2937 +--------------------+--------------+--------------------+--------------+
2938 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2939 | | | [#depth-tex-mode]_ | |
2940 +--------------------+--------------+--------------------+--------------+
2941 | S | (s, s, s, s) | unknown | unknown |
2942 +--------------------+--------------+--------------------+--------------+
2943
2944 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2945 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2946 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.