gallium: add some more double opcodes to avoid unnecessary lowering
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = (int) \lfloor src.x\rfloor
52
53 dst.y = (int) \lfloor src.y\rfloor
54
55 dst.z = (int) \lfloor src.z\rfloor
56
57 dst.w = (int) \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: DP2A - 2-component Dot Product And Add
276
277 .. math::
278
279 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
280
281 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
282
283 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
284
285 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
286
287
288 .. opcode:: FRC - Fraction
289
290 .. math::
291
292 dst.x = src.x - \lfloor src.x\rfloor
293
294 dst.y = src.y - \lfloor src.y\rfloor
295
296 dst.z = src.z - \lfloor src.z\rfloor
297
298 dst.w = src.w - \lfloor src.w\rfloor
299
300
301 .. opcode:: CLAMP - Clamp
302
303 .. math::
304
305 dst.x = clamp(src0.x, src1.x, src2.x)
306
307 dst.y = clamp(src0.y, src1.y, src2.y)
308
309 dst.z = clamp(src0.z, src1.z, src2.z)
310
311 dst.w = clamp(src0.w, src1.w, src2.w)
312
313
314 .. opcode:: FLR - Floor
315
316 .. math::
317
318 dst.x = \lfloor src.x\rfloor
319
320 dst.y = \lfloor src.y\rfloor
321
322 dst.z = \lfloor src.z\rfloor
323
324 dst.w = \lfloor src.w\rfloor
325
326
327 .. opcode:: ROUND - Round
328
329 .. math::
330
331 dst.x = round(src.x)
332
333 dst.y = round(src.y)
334
335 dst.z = round(src.z)
336
337 dst.w = round(src.w)
338
339
340 .. opcode:: EX2 - Exponential Base 2
341
342 This instruction replicates its result.
343
344 .. math::
345
346 dst = 2^{src.x}
347
348
349 .. opcode:: LG2 - Logarithm Base 2
350
351 This instruction replicates its result.
352
353 .. math::
354
355 dst = \log_2{src.x}
356
357
358 .. opcode:: POW - Power
359
360 This instruction replicates its result.
361
362 .. math::
363
364 dst = src0.x^{src1.x}
365
366 .. opcode:: XPD - Cross Product
367
368 .. math::
369
370 dst.x = src0.y \times src1.z - src1.y \times src0.z
371
372 dst.y = src0.z \times src1.x - src1.z \times src0.x
373
374 dst.z = src0.x \times src1.y - src1.x \times src0.y
375
376 dst.w = 1
377
378
379 .. opcode:: ABS - Absolute
380
381 .. math::
382
383 dst.x = |src.x|
384
385 dst.y = |src.y|
386
387 dst.z = |src.z|
388
389 dst.w = |src.w|
390
391
392 .. opcode:: DPH - Homogeneous Dot Product
393
394 This instruction replicates its result.
395
396 .. math::
397
398 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
399
400
401 .. opcode:: COS - Cosine
402
403 This instruction replicates its result.
404
405 .. math::
406
407 dst = \cos{src.x}
408
409
410 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
411
412 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
413 advertised. When it is, the fine version guarantees one derivative per row
414 while DDX is allowed to be the same for the entire 2x2 quad.
415
416 .. math::
417
418 dst.x = partialx(src.x)
419
420 dst.y = partialx(src.y)
421
422 dst.z = partialx(src.z)
423
424 dst.w = partialx(src.w)
425
426
427 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
428
429 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
430 advertised. When it is, the fine version guarantees one derivative per column
431 while DDY is allowed to be the same for the entire 2x2 quad.
432
433 .. math::
434
435 dst.x = partialy(src.x)
436
437 dst.y = partialy(src.y)
438
439 dst.z = partialy(src.z)
440
441 dst.w = partialy(src.w)
442
443
444 .. opcode:: PK2H - Pack Two 16-bit Floats
445
446 TBD
447
448
449 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
450
451 TBD
452
453
454 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
455
456 TBD
457
458
459 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
460
461 TBD
462
463
464 .. opcode:: SEQ - Set On Equal
465
466 .. math::
467
468 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
469
470 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
471
472 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
473
474 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
475
476
477 .. opcode:: SGT - Set On Greater Than
478
479 .. math::
480
481 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
482
483 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
484
485 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
486
487 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
488
489
490 .. opcode:: SIN - Sine
491
492 This instruction replicates its result.
493
494 .. math::
495
496 dst = \sin{src.x}
497
498
499 .. opcode:: SLE - Set On Less Equal Than
500
501 .. math::
502
503 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
504
505 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
506
507 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
508
509 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
510
511
512 .. opcode:: SNE - Set On Not Equal
513
514 .. math::
515
516 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
517
518 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
519
520 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
521
522 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
523
524
525 .. opcode:: TEX - Texture Lookup
526
527 for array textures src0.y contains the slice for 1D,
528 and src0.z contain the slice for 2D.
529
530 for shadow textures with no arrays (and not cube map),
531 src0.z contains the reference value.
532
533 for shadow textures with arrays, src0.z contains
534 the reference value for 1D arrays, and src0.w contains
535 the reference value for 2D arrays and cube maps.
536
537 for cube map array shadow textures, the reference value
538 cannot be passed in src0.w, and TEX2 must be used instead.
539
540 .. math::
541
542 coord = src0
543
544 shadow_ref = src0.z or src0.w (optional)
545
546 unit = src1
547
548 dst = texture\_sample(unit, coord, shadow_ref)
549
550
551 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
552
553 this is the same as TEX, but uses another reg to encode the
554 reference value.
555
556 .. math::
557
558 coord = src0
559
560 shadow_ref = src1.x
561
562 unit = src2
563
564 dst = texture\_sample(unit, coord, shadow_ref)
565
566
567
568
569 .. opcode:: TXD - Texture Lookup with Derivatives
570
571 .. math::
572
573 coord = src0
574
575 ddx = src1
576
577 ddy = src2
578
579 unit = src3
580
581 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
582
583
584 .. opcode:: TXP - Projective Texture Lookup
585
586 .. math::
587
588 coord.x = src0.x / src0.w
589
590 coord.y = src0.y / src0.w
591
592 coord.z = src0.z / src0.w
593
594 coord.w = src0.w
595
596 unit = src1
597
598 dst = texture\_sample(unit, coord)
599
600
601 .. opcode:: UP2H - Unpack Two 16-Bit Floats
602
603 TBD
604
605 .. note::
606
607 Considered for removal.
608
609 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
610
611 TBD
612
613 .. note::
614
615 Considered for removal.
616
617 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
618
619 TBD
620
621 .. note::
622
623 Considered for removal.
624
625 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
626
627 TBD
628
629 .. note::
630
631 Considered for removal.
632
633
634 .. opcode:: ARR - Address Register Load With Round
635
636 .. math::
637
638 dst.x = (int) round(src.x)
639
640 dst.y = (int) round(src.y)
641
642 dst.z = (int) round(src.z)
643
644 dst.w = (int) round(src.w)
645
646
647 .. opcode:: SSG - Set Sign
648
649 .. math::
650
651 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
652
653 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
654
655 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
656
657 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
658
659
660 .. opcode:: CMP - Compare
661
662 .. math::
663
664 dst.x = (src0.x < 0) ? src1.x : src2.x
665
666 dst.y = (src0.y < 0) ? src1.y : src2.y
667
668 dst.z = (src0.z < 0) ? src1.z : src2.z
669
670 dst.w = (src0.w < 0) ? src1.w : src2.w
671
672
673 .. opcode:: KILL_IF - Conditional Discard
674
675 Conditional discard. Allowed in fragment shaders only.
676
677 .. math::
678
679 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
680 discard
681 endif
682
683
684 .. opcode:: KILL - Discard
685
686 Unconditional discard. Allowed in fragment shaders only.
687
688
689 .. opcode:: SCS - Sine Cosine
690
691 .. math::
692
693 dst.x = \cos{src.x}
694
695 dst.y = \sin{src.x}
696
697 dst.z = 0
698
699 dst.w = 1
700
701
702 .. opcode:: TXB - Texture Lookup With Bias
703
704 for cube map array textures and shadow cube maps, the bias value
705 cannot be passed in src0.w, and TXB2 must be used instead.
706
707 if the target is a shadow texture, the reference value is always
708 in src.z (this prevents shadow 3d and shadow 2d arrays from
709 using this instruction, but this is not needed).
710
711 .. math::
712
713 coord.x = src0.x
714
715 coord.y = src0.y
716
717 coord.z = src0.z
718
719 coord.w = none
720
721 bias = src0.w
722
723 unit = src1
724
725 dst = texture\_sample(unit, coord, bias)
726
727
728 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
729
730 this is the same as TXB, but uses another reg to encode the
731 lod bias value for cube map arrays and shadow cube maps.
732 Presumably shadow 2d arrays and shadow 3d targets could use
733 this encoding too, but this is not legal.
734
735 shadow cube map arrays are neither possible nor required.
736
737 .. math::
738
739 coord = src0
740
741 bias = src1.x
742
743 unit = src2
744
745 dst = texture\_sample(unit, coord, bias)
746
747
748 .. opcode:: DIV - Divide
749
750 .. math::
751
752 dst.x = \frac{src0.x}{src1.x}
753
754 dst.y = \frac{src0.y}{src1.y}
755
756 dst.z = \frac{src0.z}{src1.z}
757
758 dst.w = \frac{src0.w}{src1.w}
759
760
761 .. opcode:: DP2 - 2-component Dot Product
762
763 This instruction replicates its result.
764
765 .. math::
766
767 dst = src0.x \times src1.x + src0.y \times src1.y
768
769
770 .. opcode:: TXL - Texture Lookup With explicit LOD
771
772 for cube map array textures, the explicit lod value
773 cannot be passed in src0.w, and TXL2 must be used instead.
774
775 if the target is a shadow texture, the reference value is always
776 in src.z (this prevents shadow 3d / 2d array / cube targets from
777 using this instruction, but this is not needed).
778
779 .. math::
780
781 coord.x = src0.x
782
783 coord.y = src0.y
784
785 coord.z = src0.z
786
787 coord.w = none
788
789 lod = src0.w
790
791 unit = src1
792
793 dst = texture\_sample(unit, coord, lod)
794
795
796 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
797
798 this is the same as TXL, but uses another reg to encode the
799 explicit lod value.
800 Presumably shadow 3d / 2d array / cube targets could use
801 this encoding too, but this is not legal.
802
803 shadow cube map arrays are neither possible nor required.
804
805 .. math::
806
807 coord = src0
808
809 lod = src1.x
810
811 unit = src2
812
813 dst = texture\_sample(unit, coord, lod)
814
815
816 .. opcode:: PUSHA - Push Address Register On Stack
817
818 push(src.x)
819 push(src.y)
820 push(src.z)
821 push(src.w)
822
823 .. note::
824
825 Considered for cleanup.
826
827 .. note::
828
829 Considered for removal.
830
831 .. opcode:: POPA - Pop Address Register From Stack
832
833 dst.w = pop()
834 dst.z = pop()
835 dst.y = pop()
836 dst.x = pop()
837
838 .. note::
839
840 Considered for cleanup.
841
842 .. note::
843
844 Considered for removal.
845
846
847 .. opcode:: CALLNZ - Subroutine Call If Not Zero
848
849 TBD
850
851 .. note::
852
853 Considered for cleanup.
854
855 .. note::
856
857 Considered for removal.
858
859
860 Compute ISA
861 ^^^^^^^^^^^^^^^^^^^^^^^^
862
863 These opcodes are primarily provided for special-use computational shaders.
864 Support for these opcodes indicated by a special pipe capability bit (TBD).
865
866 XXX doesn't look like most of the opcodes really belong here.
867
868 .. opcode:: CEIL - Ceiling
869
870 .. math::
871
872 dst.x = \lceil src.x\rceil
873
874 dst.y = \lceil src.y\rceil
875
876 dst.z = \lceil src.z\rceil
877
878 dst.w = \lceil src.w\rceil
879
880
881 .. opcode:: TRUNC - Truncate
882
883 .. math::
884
885 dst.x = trunc(src.x)
886
887 dst.y = trunc(src.y)
888
889 dst.z = trunc(src.z)
890
891 dst.w = trunc(src.w)
892
893
894 .. opcode:: MOD - Modulus
895
896 .. math::
897
898 dst.x = src0.x \bmod src1.x
899
900 dst.y = src0.y \bmod src1.y
901
902 dst.z = src0.z \bmod src1.z
903
904 dst.w = src0.w \bmod src1.w
905
906
907 .. opcode:: UARL - Integer Address Register Load
908
909 Moves the contents of the source register, assumed to be an integer, into the
910 destination register, which is assumed to be an address (ADDR) register.
911
912
913 .. opcode:: SAD - Sum Of Absolute Differences
914
915 .. math::
916
917 dst.x = |src0.x - src1.x| + src2.x
918
919 dst.y = |src0.y - src1.y| + src2.y
920
921 dst.z = |src0.z - src1.z| + src2.z
922
923 dst.w = |src0.w - src1.w| + src2.w
924
925
926 .. opcode:: TXF - Texel Fetch
927
928 As per NV_gpu_shader4, extract a single texel from a specified texture
929 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
930 four-component signed integer vector used to identify the single texel
931 accessed. 3 components + level. Just like texture instructions, an optional
932 offset vector is provided, which is subject to various driver restrictions
933 (regarding range, source of offsets).
934 TXF(uint_vec coord, int_vec offset).
935
936
937 .. opcode:: TXQ - Texture Size Query
938
939 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
940 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
941 depth), 1D array (width, layers), 2D array (width, height, layers).
942 Also return the number of accessible levels (last_level - first_level + 1)
943 in W.
944
945 For components which don't return a resource dimension, their value
946 is undefined.
947
948
949 .. math::
950
951 lod = src0.x
952
953 dst.x = texture\_width(unit, lod)
954
955 dst.y = texture\_height(unit, lod)
956
957 dst.z = texture\_depth(unit, lod)
958
959 dst.w = texture\_levels(unit)
960
961 .. opcode:: TG4 - Texture Gather
962
963 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
964 filtering operation and packs them into a single register. Only works with
965 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
966 addressing modes of the sampler and the top level of any mip pyramid are
967 used. Set W to zero. It behaves like the TEX instruction, but a filtered
968 sample is not generated. The four samples that contribute to filtering are
969 placed into xyzw in clockwise order, starting with the (u,v) texture
970 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
971 where the magnitude of the deltas are half a texel.
972
973 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
974 depth compares, single component selection, and a non-constant offset. It
975 doesn't allow support for the GL independent offset to get i0,j0. This would
976 require another CAP is hw can do it natively. For now we lower that before
977 TGSI.
978
979 .. math::
980
981 coord = src0
982
983 component = src1
984
985 dst = texture\_gather4 (unit, coord, component)
986
987 (with SM5 - cube array shadow)
988
989 .. math::
990
991 coord = src0
992
993 compare = src1
994
995 dst = texture\_gather (uint, coord, compare)
996
997 .. opcode:: LODQ - level of detail query
998
999 Compute the LOD information that the texture pipe would use to access the
1000 texture. The Y component contains the computed LOD lambda_prime. The X
1001 component contains the LOD that will be accessed, based on min/max lod's
1002 and mipmap filters.
1003
1004 .. math::
1005
1006 coord = src0
1007
1008 dst.xy = lodq(uint, coord);
1009
1010 Integer ISA
1011 ^^^^^^^^^^^^^^^^^^^^^^^^
1012 These opcodes are used for integer operations.
1013 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1014
1015
1016 .. opcode:: I2F - Signed Integer To Float
1017
1018 Rounding is unspecified (round to nearest even suggested).
1019
1020 .. math::
1021
1022 dst.x = (float) src.x
1023
1024 dst.y = (float) src.y
1025
1026 dst.z = (float) src.z
1027
1028 dst.w = (float) src.w
1029
1030
1031 .. opcode:: U2F - Unsigned Integer To Float
1032
1033 Rounding is unspecified (round to nearest even suggested).
1034
1035 .. math::
1036
1037 dst.x = (float) src.x
1038
1039 dst.y = (float) src.y
1040
1041 dst.z = (float) src.z
1042
1043 dst.w = (float) src.w
1044
1045
1046 .. opcode:: F2I - Float to Signed Integer
1047
1048 Rounding is towards zero (truncate).
1049 Values outside signed range (including NaNs) produce undefined results.
1050
1051 .. math::
1052
1053 dst.x = (int) src.x
1054
1055 dst.y = (int) src.y
1056
1057 dst.z = (int) src.z
1058
1059 dst.w = (int) src.w
1060
1061
1062 .. opcode:: F2U - Float to Unsigned Integer
1063
1064 Rounding is towards zero (truncate).
1065 Values outside unsigned range (including NaNs) produce undefined results.
1066
1067 .. math::
1068
1069 dst.x = (unsigned) src.x
1070
1071 dst.y = (unsigned) src.y
1072
1073 dst.z = (unsigned) src.z
1074
1075 dst.w = (unsigned) src.w
1076
1077
1078 .. opcode:: UADD - Integer Add
1079
1080 This instruction works the same for signed and unsigned integers.
1081 The low 32bit of the result is returned.
1082
1083 .. math::
1084
1085 dst.x = src0.x + src1.x
1086
1087 dst.y = src0.y + src1.y
1088
1089 dst.z = src0.z + src1.z
1090
1091 dst.w = src0.w + src1.w
1092
1093
1094 .. opcode:: UMAD - Integer Multiply And Add
1095
1096 This instruction works the same for signed and unsigned integers.
1097 The multiplication returns the low 32bit (as does the result itself).
1098
1099 .. math::
1100
1101 dst.x = src0.x \times src1.x + src2.x
1102
1103 dst.y = src0.y \times src1.y + src2.y
1104
1105 dst.z = src0.z \times src1.z + src2.z
1106
1107 dst.w = src0.w \times src1.w + src2.w
1108
1109
1110 .. opcode:: UMUL - Integer Multiply
1111
1112 This instruction works the same for signed and unsigned integers.
1113 The low 32bit of the result is returned.
1114
1115 .. math::
1116
1117 dst.x = src0.x \times src1.x
1118
1119 dst.y = src0.y \times src1.y
1120
1121 dst.z = src0.z \times src1.z
1122
1123 dst.w = src0.w \times src1.w
1124
1125
1126 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1127
1128 The high 32bits of the multiplication of 2 signed integers are returned.
1129
1130 .. math::
1131
1132 dst.x = (src0.x \times src1.x) >> 32
1133
1134 dst.y = (src0.y \times src1.y) >> 32
1135
1136 dst.z = (src0.z \times src1.z) >> 32
1137
1138 dst.w = (src0.w \times src1.w) >> 32
1139
1140
1141 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1142
1143 The high 32bits of the multiplication of 2 unsigned integers are returned.
1144
1145 .. math::
1146
1147 dst.x = (src0.x \times src1.x) >> 32
1148
1149 dst.y = (src0.y \times src1.y) >> 32
1150
1151 dst.z = (src0.z \times src1.z) >> 32
1152
1153 dst.w = (src0.w \times src1.w) >> 32
1154
1155
1156 .. opcode:: IDIV - Signed Integer Division
1157
1158 TBD: behavior for division by zero.
1159
1160 .. math::
1161
1162 dst.x = src0.x \ src1.x
1163
1164 dst.y = src0.y \ src1.y
1165
1166 dst.z = src0.z \ src1.z
1167
1168 dst.w = src0.w \ src1.w
1169
1170
1171 .. opcode:: UDIV - Unsigned Integer Division
1172
1173 For division by zero, 0xffffffff is returned.
1174
1175 .. math::
1176
1177 dst.x = src0.x \ src1.x
1178
1179 dst.y = src0.y \ src1.y
1180
1181 dst.z = src0.z \ src1.z
1182
1183 dst.w = src0.w \ src1.w
1184
1185
1186 .. opcode:: UMOD - Unsigned Integer Remainder
1187
1188 If second arg is zero, 0xffffffff is returned.
1189
1190 .. math::
1191
1192 dst.x = src0.x \ src1.x
1193
1194 dst.y = src0.y \ src1.y
1195
1196 dst.z = src0.z \ src1.z
1197
1198 dst.w = src0.w \ src1.w
1199
1200
1201 .. opcode:: NOT - Bitwise Not
1202
1203 .. math::
1204
1205 dst.x = \sim src.x
1206
1207 dst.y = \sim src.y
1208
1209 dst.z = \sim src.z
1210
1211 dst.w = \sim src.w
1212
1213
1214 .. opcode:: AND - Bitwise And
1215
1216 .. math::
1217
1218 dst.x = src0.x \& src1.x
1219
1220 dst.y = src0.y \& src1.y
1221
1222 dst.z = src0.z \& src1.z
1223
1224 dst.w = src0.w \& src1.w
1225
1226
1227 .. opcode:: OR - Bitwise Or
1228
1229 .. math::
1230
1231 dst.x = src0.x | src1.x
1232
1233 dst.y = src0.y | src1.y
1234
1235 dst.z = src0.z | src1.z
1236
1237 dst.w = src0.w | src1.w
1238
1239
1240 .. opcode:: XOR - Bitwise Xor
1241
1242 .. math::
1243
1244 dst.x = src0.x \oplus src1.x
1245
1246 dst.y = src0.y \oplus src1.y
1247
1248 dst.z = src0.z \oplus src1.z
1249
1250 dst.w = src0.w \oplus src1.w
1251
1252
1253 .. opcode:: IMAX - Maximum of Signed Integers
1254
1255 .. math::
1256
1257 dst.x = max(src0.x, src1.x)
1258
1259 dst.y = max(src0.y, src1.y)
1260
1261 dst.z = max(src0.z, src1.z)
1262
1263 dst.w = max(src0.w, src1.w)
1264
1265
1266 .. opcode:: UMAX - Maximum of Unsigned Integers
1267
1268 .. math::
1269
1270 dst.x = max(src0.x, src1.x)
1271
1272 dst.y = max(src0.y, src1.y)
1273
1274 dst.z = max(src0.z, src1.z)
1275
1276 dst.w = max(src0.w, src1.w)
1277
1278
1279 .. opcode:: IMIN - Minimum of Signed Integers
1280
1281 .. math::
1282
1283 dst.x = min(src0.x, src1.x)
1284
1285 dst.y = min(src0.y, src1.y)
1286
1287 dst.z = min(src0.z, src1.z)
1288
1289 dst.w = min(src0.w, src1.w)
1290
1291
1292 .. opcode:: UMIN - Minimum of Unsigned Integers
1293
1294 .. math::
1295
1296 dst.x = min(src0.x, src1.x)
1297
1298 dst.y = min(src0.y, src1.y)
1299
1300 dst.z = min(src0.z, src1.z)
1301
1302 dst.w = min(src0.w, src1.w)
1303
1304
1305 .. opcode:: SHL - Shift Left
1306
1307 The shift count is masked with 0x1f before the shift is applied.
1308
1309 .. math::
1310
1311 dst.x = src0.x << (0x1f \& src1.x)
1312
1313 dst.y = src0.y << (0x1f \& src1.y)
1314
1315 dst.z = src0.z << (0x1f \& src1.z)
1316
1317 dst.w = src0.w << (0x1f \& src1.w)
1318
1319
1320 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1321
1322 The shift count is masked with 0x1f before the shift is applied.
1323
1324 .. math::
1325
1326 dst.x = src0.x >> (0x1f \& src1.x)
1327
1328 dst.y = src0.y >> (0x1f \& src1.y)
1329
1330 dst.z = src0.z >> (0x1f \& src1.z)
1331
1332 dst.w = src0.w >> (0x1f \& src1.w)
1333
1334
1335 .. opcode:: USHR - Logical Shift Right
1336
1337 The shift count is masked with 0x1f before the shift is applied.
1338
1339 .. math::
1340
1341 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1342
1343 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1344
1345 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1346
1347 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1348
1349
1350 .. opcode:: UCMP - Integer Conditional Move
1351
1352 .. math::
1353
1354 dst.x = src0.x ? src1.x : src2.x
1355
1356 dst.y = src0.y ? src1.y : src2.y
1357
1358 dst.z = src0.z ? src1.z : src2.z
1359
1360 dst.w = src0.w ? src1.w : src2.w
1361
1362
1363
1364 .. opcode:: ISSG - Integer Set Sign
1365
1366 .. math::
1367
1368 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1369
1370 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1371
1372 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1373
1374 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1375
1376
1377
1378 .. opcode:: FSLT - Float Set On Less Than (ordered)
1379
1380 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1381
1382 .. math::
1383
1384 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1385
1386 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1387
1388 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1389
1390 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1391
1392
1393 .. opcode:: ISLT - Signed Integer Set On Less Than
1394
1395 .. math::
1396
1397 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1398
1399 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1400
1401 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1402
1403 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1404
1405
1406 .. opcode:: USLT - Unsigned Integer Set On Less Than
1407
1408 .. math::
1409
1410 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1411
1412 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1413
1414 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1415
1416 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1417
1418
1419 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1420
1421 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1422
1423 .. math::
1424
1425 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1426
1427 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1428
1429 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1430
1431 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1432
1433
1434 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1435
1436 .. math::
1437
1438 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1439
1440 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1441
1442 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1443
1444 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1445
1446
1447 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1448
1449 .. math::
1450
1451 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1452
1453 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1454
1455 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1456
1457 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1458
1459
1460 .. opcode:: FSEQ - Float Set On Equal (ordered)
1461
1462 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1463
1464 .. math::
1465
1466 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1467
1468 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1469
1470 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1471
1472 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1473
1474
1475 .. opcode:: USEQ - Integer Set On Equal
1476
1477 .. math::
1478
1479 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1480
1481 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1482
1483 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1484
1485 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1486
1487
1488 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1489
1490 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1491
1492 .. math::
1493
1494 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1495
1496 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1497
1498 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1499
1500 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1501
1502
1503 .. opcode:: USNE - Integer Set On Not Equal
1504
1505 .. math::
1506
1507 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1508
1509 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1510
1511 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1512
1513 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1514
1515
1516 .. opcode:: INEG - Integer Negate
1517
1518 Two's complement.
1519
1520 .. math::
1521
1522 dst.x = -src.x
1523
1524 dst.y = -src.y
1525
1526 dst.z = -src.z
1527
1528 dst.w = -src.w
1529
1530
1531 .. opcode:: IABS - Integer Absolute Value
1532
1533 .. math::
1534
1535 dst.x = |src.x|
1536
1537 dst.y = |src.y|
1538
1539 dst.z = |src.z|
1540
1541 dst.w = |src.w|
1542
1543 Bitwise ISA
1544 ^^^^^^^^^^^
1545 These opcodes are used for bit-level manipulation of integers.
1546
1547 .. opcode:: IBFE - Signed Bitfield Extract
1548
1549 See SM5 instruction of the same name. Extracts a set of bits from the input,
1550 and sign-extends them if the high bit of the extracted window is set.
1551
1552 Pseudocode::
1553
1554 def ibfe(value, offset, bits):
1555 offset = offset & 0x1f
1556 bits = bits & 0x1f
1557 if bits == 0: return 0
1558 # Note: >> sign-extends
1559 if width + offset < 32:
1560 return (value << (32 - offset - bits)) >> (32 - bits)
1561 else:
1562 return value >> offset
1563
1564 .. opcode:: UBFE - Unsigned Bitfield Extract
1565
1566 See SM5 instruction of the same name. Extracts a set of bits from the input,
1567 without any sign-extension.
1568
1569 Pseudocode::
1570
1571 def ubfe(value, offset, bits):
1572 offset = offset & 0x1f
1573 bits = bits & 0x1f
1574 if bits == 0: return 0
1575 # Note: >> does not sign-extend
1576 if width + offset < 32:
1577 return (value << (32 - offset - bits)) >> (32 - bits)
1578 else:
1579 return value >> offset
1580
1581 .. opcode:: BFI - Bitfield Insert
1582
1583 See SM5 instruction of the same name. Replaces a bit region of 'base' with
1584 the low bits of 'insert'.
1585
1586 Pseudocode::
1587
1588 def bfi(base, insert, offset, bits):
1589 offset = offset & 0x1f
1590 bits = bits & 0x1f
1591 mask = ((1 << bits) - 1) << offset
1592 return ((insert << offset) & mask) | (base & ~mask)
1593
1594 .. opcode:: BREV - Bitfield Reverse
1595
1596 See SM5 instruction BFREV. Reverses the bits of the argument.
1597
1598 .. opcode:: POPC - Population Count
1599
1600 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1601
1602 .. opcode:: LSB - Index of lowest set bit
1603
1604 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1605 bit of the argument. Returns -1 if none are set.
1606
1607 .. opcode:: IMSB - Index of highest non-sign bit
1608
1609 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1610 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1611 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1612 (i.e. for inputs 0 and -1).
1613
1614 .. opcode:: UMSB - Index of highest set bit
1615
1616 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1617 set bit of the argument. Returns -1 if none are set.
1618
1619 Geometry ISA
1620 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1621
1622 These opcodes are only supported in geometry shaders; they have no meaning
1623 in any other type of shader.
1624
1625 .. opcode:: EMIT - Emit
1626
1627 Generate a new vertex for the current primitive into the specified vertex
1628 stream using the values in the output registers.
1629
1630
1631 .. opcode:: ENDPRIM - End Primitive
1632
1633 Complete the current primitive in the specified vertex stream (consisting of
1634 the emitted vertices), and start a new one.
1635
1636
1637 GLSL ISA
1638 ^^^^^^^^^^
1639
1640 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1641 opcodes is determined by a special capability bit, ``GLSL``.
1642 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1643
1644 .. opcode:: CAL - Subroutine Call
1645
1646 push(pc)
1647 pc = target
1648
1649
1650 .. opcode:: RET - Subroutine Call Return
1651
1652 pc = pop()
1653
1654
1655 .. opcode:: CONT - Continue
1656
1657 Unconditionally moves the point of execution to the instruction after the
1658 last bgnloop. The instruction must appear within a bgnloop/endloop.
1659
1660 .. note::
1661
1662 Support for CONT is determined by a special capability bit,
1663 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1664
1665
1666 .. opcode:: BGNLOOP - Begin a Loop
1667
1668 Start a loop. Must have a matching endloop.
1669
1670
1671 .. opcode:: BGNSUB - Begin Subroutine
1672
1673 Starts definition of a subroutine. Must have a matching endsub.
1674
1675
1676 .. opcode:: ENDLOOP - End a Loop
1677
1678 End a loop started with bgnloop.
1679
1680
1681 .. opcode:: ENDSUB - End Subroutine
1682
1683 Ends definition of a subroutine.
1684
1685
1686 .. opcode:: NOP - No Operation
1687
1688 Do nothing.
1689
1690
1691 .. opcode:: BRK - Break
1692
1693 Unconditionally moves the point of execution to the instruction after the
1694 next endloop or endswitch. The instruction must appear within a loop/endloop
1695 or switch/endswitch.
1696
1697
1698 .. opcode:: BREAKC - Break Conditional
1699
1700 Conditionally moves the point of execution to the instruction after the
1701 next endloop or endswitch. The instruction must appear within a loop/endloop
1702 or switch/endswitch.
1703 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1704 as an integer register.
1705
1706 .. note::
1707
1708 Considered for removal as it's quite inconsistent wrt other opcodes
1709 (could emulate with UIF/BRK/ENDIF).
1710
1711
1712 .. opcode:: IF - Float If
1713
1714 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1715
1716 src0.x != 0.0
1717
1718 where src0.x is interpreted as a floating point register.
1719
1720
1721 .. opcode:: UIF - Bitwise If
1722
1723 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1724
1725 src0.x != 0
1726
1727 where src0.x is interpreted as an integer register.
1728
1729
1730 .. opcode:: ELSE - Else
1731
1732 Starts an else block, after an IF or UIF statement.
1733
1734
1735 .. opcode:: ENDIF - End If
1736
1737 Ends an IF or UIF block.
1738
1739
1740 .. opcode:: SWITCH - Switch
1741
1742 Starts a C-style switch expression. The switch consists of one or multiple
1743 CASE statements, and at most one DEFAULT statement. Execution of a statement
1744 ends when a BRK is hit, but just like in C falling through to other cases
1745 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1746 just as last statement, and fallthrough is allowed into/from it.
1747 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1748
1749 Example::
1750
1751 SWITCH src[0].x
1752 CASE src[0].x
1753 (some instructions here)
1754 (optional BRK here)
1755 DEFAULT
1756 (some instructions here)
1757 (optional BRK here)
1758 CASE src[0].x
1759 (some instructions here)
1760 (optional BRK here)
1761 ENDSWITCH
1762
1763
1764 .. opcode:: CASE - Switch case
1765
1766 This represents a switch case label. The src arg must be an integer immediate.
1767
1768
1769 .. opcode:: DEFAULT - Switch default
1770
1771 This represents the default case in the switch, which is taken if no other
1772 case matches.
1773
1774
1775 .. opcode:: ENDSWITCH - End of switch
1776
1777 Ends a switch expression.
1778
1779
1780 Interpolation ISA
1781 ^^^^^^^^^^^^^^^^^
1782
1783 The interpolation instructions allow an input to be interpolated in a
1784 different way than its declaration. This corresponds to the GLSL 4.00
1785 interpolateAt* functions. The first argument of each of these must come from
1786 ``TGSI_FILE_INPUT``.
1787
1788 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1789
1790 Interpolates the varying specified by src0 at the centroid
1791
1792 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1793
1794 Interpolates the varying specified by src0 at the sample id specified by
1795 src1.x (interpreted as an integer)
1796
1797 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1798
1799 Interpolates the varying specified by src0 at the offset src1.xy from the
1800 pixel center (interpreted as floats)
1801
1802
1803 .. _doubleopcodes:
1804
1805 Double ISA
1806 ^^^^^^^^^^^^^^^
1807
1808 The double-precision opcodes reinterpret four-component vectors into
1809 two-component vectors with doubled precision in each component.
1810
1811 .. opcode:: DABS - Absolute
1812
1813 dst.xy = |src0.xy|
1814 dst.zw = |src0.zw|
1815
1816 .. opcode:: DADD - Add
1817
1818 .. math::
1819
1820 dst.xy = src0.xy + src1.xy
1821
1822 dst.zw = src0.zw + src1.zw
1823
1824 .. opcode:: DSEQ - Set on Equal
1825
1826 .. math::
1827
1828 dst.x = src0.xy == src1.xy ? \sim 0 : 0
1829
1830 dst.z = src0.zw == src1.zw ? \sim 0 : 0
1831
1832 .. opcode:: DSNE - Set on Equal
1833
1834 .. math::
1835
1836 dst.x = src0.xy != src1.xy ? \sim 0 : 0
1837
1838 dst.z = src0.zw != src1.zw ? \sim 0 : 0
1839
1840 .. opcode:: DSLT - Set on Less than
1841
1842 .. math::
1843
1844 dst.x = src0.xy < src1.xy ? \sim 0 : 0
1845
1846 dst.z = src0.zw < src1.zw ? \sim 0 : 0
1847
1848 .. opcode:: DSGE - Set on Greater equal
1849
1850 .. math::
1851
1852 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1853
1854 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1855
1856 .. opcode:: DFRAC - Fraction
1857
1858 .. math::
1859
1860 dst.xy = src.xy - \lfloor src.xy\rfloor
1861
1862 dst.zw = src.zw - \lfloor src.zw\rfloor
1863
1864 .. opcode:: DTRUNC - Truncate
1865
1866 .. math::
1867
1868 dst.xy = trunc(src.xy)
1869
1870 dst.zw = trunc(src.zw)
1871
1872 .. opcode:: DCEIL - Ceiling
1873
1874 .. math::
1875
1876 dst.xy = \lceil src.xy\rceil
1877
1878 dst.zw = \lceil src.zw\rceil
1879
1880 .. opcode:: DFLR - Floor
1881
1882 .. math::
1883
1884 dst.xy = \lfloor src.xy\rfloor
1885
1886 dst.zw = \lfloor src.zw\rfloor
1887
1888 .. opcode:: DROUND - Fraction
1889
1890 .. math::
1891
1892 dst.xy = round(src.xy)
1893
1894 dst.zw = round(src.zw)
1895
1896 .. opcode:: DSSG - Set Sign
1897
1898 .. math::
1899
1900 dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0
1901
1902 dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0
1903
1904 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1905
1906 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1907 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1908 :math:`dst1 \times 2^{dst0} = src` .
1909
1910 .. math::
1911
1912 dst0.xy = exp(src.xy)
1913
1914 dst1.xy = frac(src.xy)
1915
1916 dst0.zw = exp(src.zw)
1917
1918 dst1.zw = frac(src.zw)
1919
1920 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1921
1922 This opcode is the inverse of :opcode:`DFRACEXP`. The second
1923 source is an integer.
1924
1925 .. math::
1926
1927 dst.xy = src0.xy \times 2^{src1.x}
1928
1929 dst.zw = src0.zw \times 2^{src1.y}
1930
1931 .. opcode:: DMIN - Minimum
1932
1933 .. math::
1934
1935 dst.xy = min(src0.xy, src1.xy)
1936
1937 dst.zw = min(src0.zw, src1.zw)
1938
1939 .. opcode:: DMAX - Maximum
1940
1941 .. math::
1942
1943 dst.xy = max(src0.xy, src1.xy)
1944
1945 dst.zw = max(src0.zw, src1.zw)
1946
1947 .. opcode:: DMUL - Multiply
1948
1949 .. math::
1950
1951 dst.xy = src0.xy \times src1.xy
1952
1953 dst.zw = src0.zw \times src1.zw
1954
1955
1956 .. opcode:: DMAD - Multiply And Add
1957
1958 .. math::
1959
1960 dst.xy = src0.xy \times src1.xy + src2.xy
1961
1962 dst.zw = src0.zw \times src1.zw + src2.zw
1963
1964
1965 .. opcode:: DRCP - Reciprocal
1966
1967 .. math::
1968
1969 dst.xy = \frac{1}{src.xy}
1970
1971 dst.zw = \frac{1}{src.zw}
1972
1973 .. opcode:: DSQRT - Square Root
1974
1975 .. math::
1976
1977 dst.xy = \sqrt{src.xy}
1978
1979 dst.zw = \sqrt{src.zw}
1980
1981 .. opcode:: DRSQ - Reciprocal Square Root
1982
1983 .. math::
1984
1985 dst.xy = \frac{1}{\sqrt{src.xy}}
1986
1987 dst.zw = \frac{1}{\sqrt{src.zw}}
1988
1989 .. opcode:: F2D - Float to Double
1990
1991 .. math::
1992
1993 dst.xy = double(src0.x)
1994
1995 dst.zw = double(src0.y)
1996
1997 .. opcode:: D2F - Double to Float
1998
1999 .. math::
2000
2001 dst.x = float(src0.xy)
2002
2003 dst.y = float(src0.zw)
2004
2005 .. opcode:: I2D - Int to Double
2006
2007 .. math::
2008
2009 dst.xy = double(src0.x)
2010
2011 dst.zw = double(src0.y)
2012
2013 .. opcode:: D2I - Double to Int
2014
2015 .. math::
2016
2017 dst.x = int(src0.xy)
2018
2019 dst.y = int(src0.zw)
2020
2021 .. opcode:: U2D - Unsigned Int to Double
2022
2023 .. math::
2024
2025 dst.xy = double(src0.x)
2026
2027 dst.zw = double(src0.y)
2028
2029 .. opcode:: D2U - Double to Unsigned Int
2030
2031 .. math::
2032
2033 dst.x = unsigned(src0.xy)
2034
2035 dst.y = unsigned(src0.zw)
2036
2037 .. _samplingopcodes:
2038
2039 Resource Sampling Opcodes
2040 ^^^^^^^^^^^^^^^^^^^^^^^^^
2041
2042 Those opcodes follow very closely semantics of the respective Direct3D
2043 instructions. If in doubt double check Direct3D documentation.
2044 Note that the swizzle on SVIEW (src1) determines texel swizzling
2045 after lookup.
2046
2047 .. opcode:: SAMPLE
2048
2049 Using provided address, sample data from the specified texture using the
2050 filtering mode identified by the gven sampler. The source data may come from
2051 any resource type other than buffers.
2052
2053 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2054
2055 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2056
2057 .. opcode:: SAMPLE_I
2058
2059 Simplified alternative to the SAMPLE instruction. Using the provided
2060 integer address, SAMPLE_I fetches data from the specified sampler view
2061 without any filtering. The source data may come from any resource type
2062 other than CUBE.
2063
2064 Syntax: ``SAMPLE_I dst, address, sampler_view``
2065
2066 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2067
2068 The 'address' is specified as unsigned integers. If the 'address' is out of
2069 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2070 components. As such the instruction doesn't honor address wrap modes, in
2071 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2072 address.w always provides an unsigned integer mipmap level. If the value is
2073 out of the range then the instruction always returns 0 in all components.
2074 address.yz are ignored for buffers and 1d textures. address.z is ignored
2075 for 1d texture arrays and 2d textures.
2076
2077 For 1D texture arrays address.y provides the array index (also as unsigned
2078 integer). If the value is out of the range of available array indices
2079 [0... (array size - 1)] then the opcode always returns 0 in all components.
2080 For 2D texture arrays address.z provides the array index, otherwise it
2081 exhibits the same behavior as in the case for 1D texture arrays. The exact
2082 semantics of the source address are presented in the table below:
2083
2084 +---------------------------+----+-----+-----+---------+
2085 | resource type | X | Y | Z | W |
2086 +===========================+====+=====+=====+=========+
2087 | ``PIPE_BUFFER`` | x | | | ignored |
2088 +---------------------------+----+-----+-----+---------+
2089 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2090 +---------------------------+----+-----+-----+---------+
2091 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2092 +---------------------------+----+-----+-----+---------+
2093 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2094 +---------------------------+----+-----+-----+---------+
2095 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2096 +---------------------------+----+-----+-----+---------+
2097 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2098 +---------------------------+----+-----+-----+---------+
2099 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2100 +---------------------------+----+-----+-----+---------+
2101 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2102 +---------------------------+----+-----+-----+---------+
2103
2104 Where 'mpl' is a mipmap level and 'idx' is the array index.
2105
2106 .. opcode:: SAMPLE_I_MS
2107
2108 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2109
2110 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2111
2112 .. opcode:: SAMPLE_B
2113
2114 Just like the SAMPLE instruction with the exception that an additional bias
2115 is applied to the level of detail computed as part of the instruction
2116 execution.
2117
2118 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2119
2120 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2121
2122 .. opcode:: SAMPLE_C
2123
2124 Similar to the SAMPLE instruction but it performs a comparison filter. The
2125 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2126 additional float32 operand, reference value, which must be a register with
2127 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2128 current samplers compare_func (in pipe_sampler_state) to compare reference
2129 value against the red component value for the surce resource at each texel
2130 that the currently configured texture filter covers based on the provided
2131 coordinates.
2132
2133 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2134
2135 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2136
2137 .. opcode:: SAMPLE_C_LZ
2138
2139 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2140 for level-zero.
2141
2142 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2143
2144 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2145
2146
2147 .. opcode:: SAMPLE_D
2148
2149 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2150 the source address in the x direction and the y direction are provided by
2151 extra parameters.
2152
2153 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2154
2155 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2156
2157 .. opcode:: SAMPLE_L
2158
2159 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2160 directly as a scalar value, representing no anisotropy.
2161
2162 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2163
2164 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2165
2166 .. opcode:: GATHER4
2167
2168 Gathers the four texels to be used in a bi-linear filtering operation and
2169 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2170 and cubemaps arrays. For 2D textures, only the addressing modes of the
2171 sampler and the top level of any mip pyramid are used. Set W to zero. It
2172 behaves like the SAMPLE instruction, but a filtered sample is not
2173 generated. The four samples that contribute to filtering are placed into
2174 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2175 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2176 magnitude of the deltas are half a texel.
2177
2178
2179 .. opcode:: SVIEWINFO
2180
2181 Query the dimensions of a given sampler view. dst receives width, height,
2182 depth or array size and number of mipmap levels as int4. The dst can have a
2183 writemask which will specify what info is the caller interested in.
2184
2185 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2186
2187 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2188
2189 src_mip_level is an unsigned integer scalar. If it's out of range then
2190 returns 0 for width, height and depth/array size but the total number of
2191 mipmap is still returned correctly for the given sampler view. The returned
2192 width, height and depth values are for the mipmap level selected by the
2193 src_mip_level and are in the number of texels. For 1d texture array width
2194 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2195 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2196 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2197 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2198 resinfo allowing swizzling dst values is ignored (due to the interaction
2199 with rcpfloat modifier which requires some swizzle handling in the state
2200 tracker anyway).
2201
2202 .. opcode:: SAMPLE_POS
2203
2204 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2205 indicated where the sample is located. If the resource is not a multi-sample
2206 resource and not a render target, the result is 0.
2207
2208 .. opcode:: SAMPLE_INFO
2209
2210 dst receives number of samples in x. If the resource is not a multi-sample
2211 resource and not a render target, the result is 0.
2212
2213
2214 .. _resourceopcodes:
2215
2216 Resource Access Opcodes
2217 ^^^^^^^^^^^^^^^^^^^^^^^
2218
2219 .. opcode:: LOAD - Fetch data from a shader resource
2220
2221 Syntax: ``LOAD dst, resource, address``
2222
2223 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
2224
2225 Using the provided integer address, LOAD fetches data
2226 from the specified buffer or texture without any
2227 filtering.
2228
2229 The 'address' is specified as a vector of unsigned
2230 integers. If the 'address' is out of range the result
2231 is unspecified.
2232
2233 Only the first mipmap level of a resource can be read
2234 from using this instruction.
2235
2236 For 1D or 2D texture arrays, the array index is
2237 provided as an unsigned integer in address.y or
2238 address.z, respectively. address.yz are ignored for
2239 buffers and 1D textures. address.z is ignored for 1D
2240 texture arrays and 2D textures. address.w is always
2241 ignored.
2242
2243 .. opcode:: STORE - Write data to a shader resource
2244
2245 Syntax: ``STORE resource, address, src``
2246
2247 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
2248
2249 Using the provided integer address, STORE writes data
2250 to the specified buffer or texture.
2251
2252 The 'address' is specified as a vector of unsigned
2253 integers. If the 'address' is out of range the result
2254 is unspecified.
2255
2256 Only the first mipmap level of a resource can be
2257 written to using this instruction.
2258
2259 For 1D or 2D texture arrays, the array index is
2260 provided as an unsigned integer in address.y or
2261 address.z, respectively. address.yz are ignored for
2262 buffers and 1D textures. address.z is ignored for 1D
2263 texture arrays and 2D textures. address.w is always
2264 ignored.
2265
2266
2267 .. _threadsyncopcodes:
2268
2269 Inter-thread synchronization opcodes
2270 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2271
2272 These opcodes are intended for communication between threads running
2273 within the same compute grid. For now they're only valid in compute
2274 programs.
2275
2276 .. opcode:: MFENCE - Memory fence
2277
2278 Syntax: ``MFENCE resource``
2279
2280 Example: ``MFENCE RES[0]``
2281
2282 This opcode forces strong ordering between any memory access
2283 operations that affect the specified resource. This means that
2284 previous loads and stores (and only those) will be performed and
2285 visible to other threads before the program execution continues.
2286
2287
2288 .. opcode:: LFENCE - Load memory fence
2289
2290 Syntax: ``LFENCE resource``
2291
2292 Example: ``LFENCE RES[0]``
2293
2294 Similar to MFENCE, but it only affects the ordering of memory loads.
2295
2296
2297 .. opcode:: SFENCE - Store memory fence
2298
2299 Syntax: ``SFENCE resource``
2300
2301 Example: ``SFENCE RES[0]``
2302
2303 Similar to MFENCE, but it only affects the ordering of memory stores.
2304
2305
2306 .. opcode:: BARRIER - Thread group barrier
2307
2308 ``BARRIER``
2309
2310 This opcode suspends the execution of the current thread until all
2311 the remaining threads in the working group reach the same point of
2312 the program. Results are unspecified if any of the remaining
2313 threads terminates or never reaches an executed BARRIER instruction.
2314
2315
2316 .. _atomopcodes:
2317
2318 Atomic opcodes
2319 ^^^^^^^^^^^^^^
2320
2321 These opcodes provide atomic variants of some common arithmetic and
2322 logical operations. In this context atomicity means that another
2323 concurrent memory access operation that affects the same memory
2324 location is guaranteed to be performed strictly before or after the
2325 entire execution of the atomic operation.
2326
2327 For the moment they're only valid in compute programs.
2328
2329 .. opcode:: ATOMUADD - Atomic integer addition
2330
2331 Syntax: ``ATOMUADD dst, resource, offset, src``
2332
2333 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2334
2335 The following operation is performed atomically on each component:
2336
2337 .. math::
2338
2339 dst_i = resource[offset]_i
2340
2341 resource[offset]_i = dst_i + src_i
2342
2343
2344 .. opcode:: ATOMXCHG - Atomic exchange
2345
2346 Syntax: ``ATOMXCHG dst, resource, offset, src``
2347
2348 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2349
2350 The following operation is performed atomically on each component:
2351
2352 .. math::
2353
2354 dst_i = resource[offset]_i
2355
2356 resource[offset]_i = src_i
2357
2358
2359 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2360
2361 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2362
2363 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2364
2365 The following operation is performed atomically on each component:
2366
2367 .. math::
2368
2369 dst_i = resource[offset]_i
2370
2371 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2372
2373
2374 .. opcode:: ATOMAND - Atomic bitwise And
2375
2376 Syntax: ``ATOMAND dst, resource, offset, src``
2377
2378 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2379
2380 The following operation is performed atomically on each component:
2381
2382 .. math::
2383
2384 dst_i = resource[offset]_i
2385
2386 resource[offset]_i = dst_i \& src_i
2387
2388
2389 .. opcode:: ATOMOR - Atomic bitwise Or
2390
2391 Syntax: ``ATOMOR dst, resource, offset, src``
2392
2393 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2394
2395 The following operation is performed atomically on each component:
2396
2397 .. math::
2398
2399 dst_i = resource[offset]_i
2400
2401 resource[offset]_i = dst_i | src_i
2402
2403
2404 .. opcode:: ATOMXOR - Atomic bitwise Xor
2405
2406 Syntax: ``ATOMXOR dst, resource, offset, src``
2407
2408 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2409
2410 The following operation is performed atomically on each component:
2411
2412 .. math::
2413
2414 dst_i = resource[offset]_i
2415
2416 resource[offset]_i = dst_i \oplus src_i
2417
2418
2419 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2420
2421 Syntax: ``ATOMUMIN dst, resource, offset, src``
2422
2423 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2424
2425 The following operation is performed atomically on each component:
2426
2427 .. math::
2428
2429 dst_i = resource[offset]_i
2430
2431 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2432
2433
2434 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2435
2436 Syntax: ``ATOMUMAX dst, resource, offset, src``
2437
2438 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2439
2440 The following operation is performed atomically on each component:
2441
2442 .. math::
2443
2444 dst_i = resource[offset]_i
2445
2446 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2447
2448
2449 .. opcode:: ATOMIMIN - Atomic signed minimum
2450
2451 Syntax: ``ATOMIMIN dst, resource, offset, src``
2452
2453 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2454
2455 The following operation is performed atomically on each component:
2456
2457 .. math::
2458
2459 dst_i = resource[offset]_i
2460
2461 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2462
2463
2464 .. opcode:: ATOMIMAX - Atomic signed maximum
2465
2466 Syntax: ``ATOMIMAX dst, resource, offset, src``
2467
2468 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2469
2470 The following operation is performed atomically on each component:
2471
2472 .. math::
2473
2474 dst_i = resource[offset]_i
2475
2476 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2477
2478
2479
2480 Explanation of symbols used
2481 ------------------------------
2482
2483
2484 Functions
2485 ^^^^^^^^^^^^^^
2486
2487
2488 :math:`|x|` Absolute value of `x`.
2489
2490 :math:`\lceil x \rceil` Ceiling of `x`.
2491
2492 clamp(x,y,z) Clamp x between y and z.
2493 (x < y) ? y : (x > z) ? z : x
2494
2495 :math:`\lfloor x\rfloor` Floor of `x`.
2496
2497 :math:`\log_2{x}` Logarithm of `x`, base 2.
2498
2499 max(x,y) Maximum of x and y.
2500 (x > y) ? x : y
2501
2502 min(x,y) Minimum of x and y.
2503 (x < y) ? x : y
2504
2505 partialx(x) Derivative of x relative to fragment's X.
2506
2507 partialy(x) Derivative of x relative to fragment's Y.
2508
2509 pop() Pop from stack.
2510
2511 :math:`x^y` `x` to the power `y`.
2512
2513 push(x) Push x on stack.
2514
2515 round(x) Round x.
2516
2517 trunc(x) Truncate x, i.e. drop the fraction bits.
2518
2519
2520 Keywords
2521 ^^^^^^^^^^^^^
2522
2523
2524 discard Discard fragment.
2525
2526 pc Program counter.
2527
2528 target Label of target instruction.
2529
2530
2531 Other tokens
2532 ---------------
2533
2534
2535 Declaration
2536 ^^^^^^^^^^^
2537
2538
2539 Declares a register that is will be referenced as an operand in Instruction
2540 tokens.
2541
2542 File field contains register file that is being declared and is one
2543 of TGSI_FILE.
2544
2545 UsageMask field specifies which of the register components can be accessed
2546 and is one of TGSI_WRITEMASK.
2547
2548 The Local flag specifies that a given value isn't intended for
2549 subroutine parameter passing and, as a result, the implementation
2550 isn't required to give any guarantees of it being preserved across
2551 subroutine boundaries. As it's merely a compiler hint, the
2552 implementation is free to ignore it.
2553
2554 If Dimension flag is set to 1, a Declaration Dimension token follows.
2555
2556 If Semantic flag is set to 1, a Declaration Semantic token follows.
2557
2558 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2559
2560 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2561
2562 If Array flag is set to 1, a Declaration Array token follows.
2563
2564 Array Declaration
2565 ^^^^^^^^^^^^^^^^^^^^^^^^
2566
2567 Declarations can optional have an ArrayID attribute which can be referred by
2568 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2569 if no ArrayID is specified.
2570
2571 If an indirect addressing operand refers to a specific declaration by using
2572 an ArrayID only the registers in this declaration are guaranteed to be
2573 accessed, accessing any register outside this declaration results in undefined
2574 behavior. Note that for compatibility the effective index is zero-based and
2575 not relative to the specified declaration
2576
2577 If no ArrayID is specified with an indirect addressing operand the whole
2578 register file might be accessed by this operand. This is strongly discouraged
2579 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2580
2581 Declaration Semantic
2582 ^^^^^^^^^^^^^^^^^^^^^^^^
2583
2584 Vertex and fragment shader input and output registers may be labeled
2585 with semantic information consisting of a name and index.
2586
2587 Follows Declaration token if Semantic bit is set.
2588
2589 Since its purpose is to link a shader with other stages of the pipeline,
2590 it is valid to follow only those Declaration tokens that declare a register
2591 either in INPUT or OUTPUT file.
2592
2593 SemanticName field contains the semantic name of the register being declared.
2594 There is no default value.
2595
2596 SemanticIndex is an optional subscript that can be used to distinguish
2597 different register declarations with the same semantic name. The default value
2598 is 0.
2599
2600 The meanings of the individual semantic names are explained in the following
2601 sections.
2602
2603 TGSI_SEMANTIC_POSITION
2604 """"""""""""""""""""""
2605
2606 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2607 output register which contains the homogeneous vertex position in the clip
2608 space coordinate system. After clipping, the X, Y and Z components of the
2609 vertex will be divided by the W value to get normalized device coordinates.
2610
2611 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2612 fragment shader input contains the fragment's window position. The X
2613 component starts at zero and always increases from left to right.
2614 The Y component starts at zero and always increases but Y=0 may either
2615 indicate the top of the window or the bottom depending on the fragment
2616 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2617 The Z coordinate ranges from 0 to 1 to represent depth from the front
2618 to the back of the Z buffer. The W component contains the interpolated
2619 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
2620 but unlike d3d10 which interpolates the same 1/w but then gives back
2621 the reciprocal of the interpolated value).
2622
2623 Fragment shaders may also declare an output register with
2624 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2625 the fragment shader to change the fragment's Z position.
2626
2627
2628
2629 TGSI_SEMANTIC_COLOR
2630 """""""""""""""""""
2631
2632 For vertex shader outputs or fragment shader inputs/outputs, this
2633 label indicates that the resister contains an R,G,B,A color.
2634
2635 Several shader inputs/outputs may contain colors so the semantic index
2636 is used to distinguish them. For example, color[0] may be the diffuse
2637 color while color[1] may be the specular color.
2638
2639 This label is needed so that the flat/smooth shading can be applied
2640 to the right interpolants during rasterization.
2641
2642
2643
2644 TGSI_SEMANTIC_BCOLOR
2645 """"""""""""""""""""
2646
2647 Back-facing colors are only used for back-facing polygons, and are only valid
2648 in vertex shader outputs. After rasterization, all polygons are front-facing
2649 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2650 so all BCOLORs effectively become regular COLORs in the fragment shader.
2651
2652
2653 TGSI_SEMANTIC_FOG
2654 """""""""""""""""
2655
2656 Vertex shader inputs and outputs and fragment shader inputs may be
2657 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2658 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2659 to compute a fog blend factor which is used to blend the normal fragment color
2660 with a constant fog color. But fog coord really is just an ordinary vec4
2661 register like regular semantics.
2662
2663
2664 TGSI_SEMANTIC_PSIZE
2665 """""""""""""""""""
2666
2667 Vertex shader input and output registers may be labeled with
2668 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2669 in the form (S, 0, 0, 1). The point size controls the width or diameter
2670 of points for rasterization. This label cannot be used in fragment
2671 shaders.
2672
2673 When using this semantic, be sure to set the appropriate state in the
2674 :ref:`rasterizer` first.
2675
2676
2677 TGSI_SEMANTIC_TEXCOORD
2678 """"""""""""""""""""""
2679
2680 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2681
2682 Vertex shader outputs and fragment shader inputs may be labeled with
2683 this semantic to make them replaceable by sprite coordinates via the
2684 sprite_coord_enable state in the :ref:`rasterizer`.
2685 The semantic index permitted with this semantic is limited to <= 7.
2686
2687 If the driver does not support TEXCOORD, sprite coordinate replacement
2688 applies to inputs with the GENERIC semantic instead.
2689
2690 The intended use case for this semantic is gl_TexCoord.
2691
2692
2693 TGSI_SEMANTIC_PCOORD
2694 """"""""""""""""""""
2695
2696 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2697
2698 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2699 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2700 the current primitive is a point and point sprites are enabled. Otherwise,
2701 the contents of the register are undefined.
2702
2703 The intended use case for this semantic is gl_PointCoord.
2704
2705
2706 TGSI_SEMANTIC_GENERIC
2707 """""""""""""""""""""
2708
2709 All vertex/fragment shader inputs/outputs not labeled with any other
2710 semantic label can be considered to be generic attributes. Typical
2711 uses of generic inputs/outputs are texcoords and user-defined values.
2712
2713
2714 TGSI_SEMANTIC_NORMAL
2715 """"""""""""""""""""
2716
2717 Indicates that a vertex shader input is a normal vector. This is
2718 typically only used for legacy graphics APIs.
2719
2720
2721 TGSI_SEMANTIC_FACE
2722 """"""""""""""""""
2723
2724 This label applies to fragment shader inputs only and indicates that
2725 the register contains front/back-face information of the form (F, 0,
2726 0, 1). The first component will be positive when the fragment belongs
2727 to a front-facing polygon, and negative when the fragment belongs to a
2728 back-facing polygon.
2729
2730
2731 TGSI_SEMANTIC_EDGEFLAG
2732 """"""""""""""""""""""
2733
2734 For vertex shaders, this sematic label indicates that an input or
2735 output is a boolean edge flag. The register layout is [F, x, x, x]
2736 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2737 simply copies the edge flag input to the edgeflag output.
2738
2739 Edge flags are used to control which lines or points are actually
2740 drawn when the polygon mode converts triangles/quads/polygons into
2741 points or lines.
2742
2743
2744 TGSI_SEMANTIC_STENCIL
2745 """""""""""""""""""""
2746
2747 For fragment shaders, this semantic label indicates that an output
2748 is a writable stencil reference value. Only the Y component is writable.
2749 This allows the fragment shader to change the fragments stencilref value.
2750
2751
2752 TGSI_SEMANTIC_VIEWPORT_INDEX
2753 """"""""""""""""""""""""""""
2754
2755 For geometry shaders, this semantic label indicates that an output
2756 contains the index of the viewport (and scissor) to use.
2757 This is an integer value, and only the X component is used.
2758
2759
2760 TGSI_SEMANTIC_LAYER
2761 """""""""""""""""""
2762
2763 For geometry shaders, this semantic label indicates that an output
2764 contains the layer value to use for the color and depth/stencil surfaces.
2765 This is an integer value, and only the X component is used.
2766 (Also known as rendertarget array index.)
2767
2768
2769 TGSI_SEMANTIC_CULLDIST
2770 """"""""""""""""""""""
2771
2772 Used as distance to plane for performing application-defined culling
2773 of individual primitives against a plane. When components of vertex
2774 elements are given this label, these values are assumed to be a
2775 float32 signed distance to a plane. Primitives will be completely
2776 discarded if the plane distance for all of the vertices in the
2777 primitive are < 0. If a vertex has a cull distance of NaN, that
2778 vertex counts as "out" (as if its < 0);
2779 The limits on both clip and cull distances are bound
2780 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2781 the maximum number of components that can be used to hold the
2782 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2783 which specifies the maximum number of registers which can be
2784 annotated with those semantics.
2785
2786
2787 TGSI_SEMANTIC_CLIPDIST
2788 """"""""""""""""""""""
2789
2790 When components of vertex elements are identified this way, these
2791 values are each assumed to be a float32 signed distance to a plane.
2792 Primitive setup only invokes rasterization on pixels for which
2793 the interpolated plane distances are >= 0. Multiple clip planes
2794 can be implemented simultaneously, by annotating multiple
2795 components of one or more vertex elements with the above specified
2796 semantic. The limits on both clip and cull distances are bound
2797 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2798 the maximum number of components that can be used to hold the
2799 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2800 which specifies the maximum number of registers which can be
2801 annotated with those semantics.
2802
2803 TGSI_SEMANTIC_SAMPLEID
2804 """"""""""""""""""""""
2805
2806 For fragment shaders, this semantic label indicates that a system value
2807 contains the current sample id (i.e. gl_SampleID).
2808 This is an integer value, and only the X component is used.
2809
2810 TGSI_SEMANTIC_SAMPLEPOS
2811 """""""""""""""""""""""
2812
2813 For fragment shaders, this semantic label indicates that a system value
2814 contains the current sample's position (i.e. gl_SamplePosition). Only the X
2815 and Y values are used.
2816
2817 TGSI_SEMANTIC_SAMPLEMASK
2818 """"""""""""""""""""""""
2819
2820 For fragment shaders, this semantic label indicates that an output contains
2821 the sample mask used to disable further sample processing
2822 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
2823
2824 TGSI_SEMANTIC_INVOCATIONID
2825 """"""""""""""""""""""""""
2826
2827 For geometry shaders, this semantic label indicates that a system value
2828 contains the current invocation id (i.e. gl_InvocationID).
2829 This is an integer value, and only the X component is used.
2830
2831 TGSI_SEMANTIC_INSTANCEID
2832 """"""""""""""""""""""""
2833
2834 For vertex shaders, this semantic label indicates that a system value contains
2835 the current instance id (i.e. gl_InstanceID). It does not include the base
2836 instance. This is an integer value, and only the X component is used.
2837
2838 TGSI_SEMANTIC_VERTEXID
2839 """"""""""""""""""""""
2840
2841 For vertex shaders, this semantic label indicates that a system value contains
2842 the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
2843 base vertex. This is an integer value, and only the X component is used.
2844
2845 TGSI_SEMANTIC_VERTEXID_NOBASE
2846 """""""""""""""""""""""""""""""
2847
2848 For vertex shaders, this semantic label indicates that a system value contains
2849 the current vertex id without including the base vertex (this corresponds to
2850 d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
2851 == TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
2852 is used.
2853
2854 TGSI_SEMANTIC_BASEVERTEX
2855 """"""""""""""""""""""""
2856
2857 For vertex shaders, this semantic label indicates that a system value contains
2858 the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
2859 this contains the first (or start) value instead.
2860 This is an integer value, and only the X component is used.
2861
2862 TGSI_SEMANTIC_PRIMID
2863 """"""""""""""""""""
2864
2865 For geometry and fragment shaders, this semantic label indicates the value
2866 contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
2867 and only the X component is used.
2868 FIXME: This right now can be either a ordinary input or a system value...
2869
2870
2871 Declaration Interpolate
2872 ^^^^^^^^^^^^^^^^^^^^^^^
2873
2874 This token is only valid for fragment shader INPUT declarations.
2875
2876 The Interpolate field specifes the way input is being interpolated by
2877 the rasteriser and is one of TGSI_INTERPOLATE_*.
2878
2879 The Location field specifies the location inside the pixel that the
2880 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
2881 when per-sample shading is enabled, the implementation may choose to
2882 interpolate at the sample irrespective of the Location field.
2883
2884 The CylindricalWrap bitfield specifies which register components
2885 should be subject to cylindrical wrapping when interpolating by the
2886 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2887 should be interpolated according to cylindrical wrapping rules.
2888
2889
2890 Declaration Sampler View
2891 ^^^^^^^^^^^^^^^^^^^^^^^^
2892
2893 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2894
2895 DCL SVIEW[#], resource, type(s)
2896
2897 Declares a shader input sampler view and assigns it to a SVIEW[#]
2898 register.
2899
2900 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2901
2902 type must be 1 or 4 entries (if specifying on a per-component
2903 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2904
2905
2906 Declaration Resource
2907 ^^^^^^^^^^^^^^^^^^^^
2908
2909 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2910
2911 DCL RES[#], resource [, WR] [, RAW]
2912
2913 Declares a shader input resource and assigns it to a RES[#]
2914 register.
2915
2916 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2917 2DArray.
2918
2919 If the RAW keyword is not specified, the texture data will be
2920 subject to conversion, swizzling and scaling as required to yield
2921 the specified data type from the physical data format of the bound
2922 resource.
2923
2924 If the RAW keyword is specified, no channel conversion will be
2925 performed: the values read for each of the channels (X,Y,Z,W) will
2926 correspond to consecutive words in the same order and format
2927 they're found in memory. No element-to-address conversion will be
2928 performed either: the value of the provided X coordinate will be
2929 interpreted in byte units instead of texel units. The result of
2930 accessing a misaligned address is undefined.
2931
2932 Usage of the STORE opcode is only allowed if the WR (writable) flag
2933 is set.
2934
2935
2936 Properties
2937 ^^^^^^^^^^^^^^^^^^^^^^^^
2938
2939 Properties are general directives that apply to the whole TGSI program.
2940
2941 FS_COORD_ORIGIN
2942 """""""""""""""
2943
2944 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2945 The default value is UPPER_LEFT.
2946
2947 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2948 increase downward and rightward.
2949 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2950 increase upward and rightward.
2951
2952 OpenGL defaults to LOWER_LEFT, and is configurable with the
2953 GL_ARB_fragment_coord_conventions extension.
2954
2955 DirectX 9/10 use UPPER_LEFT.
2956
2957 FS_COORD_PIXEL_CENTER
2958 """""""""""""""""""""
2959
2960 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2961 The default value is HALF_INTEGER.
2962
2963 If HALF_INTEGER, the fractionary part of the position will be 0.5
2964 If INTEGER, the fractionary part of the position will be 0.0
2965
2966 Note that this does not affect the set of fragments generated by
2967 rasterization, which is instead controlled by half_pixel_center in the
2968 rasterizer.
2969
2970 OpenGL defaults to HALF_INTEGER, and is configurable with the
2971 GL_ARB_fragment_coord_conventions extension.
2972
2973 DirectX 9 uses INTEGER.
2974 DirectX 10 uses HALF_INTEGER.
2975
2976 FS_COLOR0_WRITES_ALL_CBUFS
2977 """"""""""""""""""""""""""
2978 Specifies that writes to the fragment shader color 0 are replicated to all
2979 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2980 fragData is directed to a single color buffer, but fragColor is broadcast.
2981
2982 VS_PROHIBIT_UCPS
2983 """"""""""""""""""""""""""
2984 If this property is set on the program bound to the shader stage before the
2985 fragment shader, user clip planes should have no effect (be disabled) even if
2986 that shader does not write to any clip distance outputs and the rasterizer's
2987 clip_plane_enable is non-zero.
2988 This property is only supported by drivers that also support shader clip
2989 distance outputs.
2990 This is useful for APIs that don't have UCPs and where clip distances written
2991 by a shader cannot be disabled.
2992
2993 GS_INVOCATIONS
2994 """"""""""""""
2995
2996 Specifies the number of times a geometry shader should be executed for each
2997 input primitive. Each invocation will have a different
2998 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
2999 be 1.
3000
3001 VS_WINDOW_SPACE_POSITION
3002 """"""""""""""""""""""""""
3003 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
3004 is assumed to contain window space coordinates.
3005 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
3006 directly taken from the 4-th component of the shader output.
3007 Naturally, clipping is not performed on window coordinates either.
3008 The effect of this property is undefined if a geometry or tessellation shader
3009 are in use.
3010
3011 Texture Sampling and Texture Formats
3012 ------------------------------------
3013
3014 This table shows how texture image components are returned as (x,y,z,w) tuples
3015 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
3016 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
3017 well.
3018
3019 +--------------------+--------------+--------------------+--------------+
3020 | Texture Components | Gallium | OpenGL | Direct3D 9 |
3021 +====================+==============+====================+==============+
3022 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
3023 +--------------------+--------------+--------------------+--------------+
3024 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
3025 +--------------------+--------------+--------------------+--------------+
3026 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
3027 +--------------------+--------------+--------------------+--------------+
3028 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
3029 +--------------------+--------------+--------------------+--------------+
3030 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
3031 +--------------------+--------------+--------------------+--------------+
3032 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
3033 +--------------------+--------------+--------------------+--------------+
3034 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
3035 +--------------------+--------------+--------------------+--------------+
3036 | I | (i, i, i, i) | (i, i, i, i) | N/A |
3037 +--------------------+--------------+--------------------+--------------+
3038 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3039 | | | [#envmap-bumpmap]_ | |
3040 +--------------------+--------------+--------------------+--------------+
3041 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3042 | | | [#depth-tex-mode]_ | |
3043 +--------------------+--------------+--------------------+--------------+
3044 | S | (s, s, s, s) | unknown | unknown |
3045 +--------------------+--------------+--------------------+--------------+
3046
3047 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3048 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3049 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.