gallium: add TGSI_SEMANTIC_VIEWPORT_MASK
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate and precise modifier
30 on instructions).
31
32 For arithmetic instruction having a precise modifier certain optimizations
33 which may alter the result are disallowed. Example: *add(mul(a,b),c)* can't be
34 optimized to TGSI_OPCODE_MAD, because some hardware only supports the fused
35 MAD instruction.
36
37 For inputs which have a floating point type, both absolute value and
38 negation modifiers are supported (with absolute value being applied
39 first). The only source of TGSI_OPCODE_MOV and the second and third
40 sources of TGSI_OPCODE_UCMP are considered to have float type for
41 applying modifiers.
42
43 For inputs which have signed or unsigned type only the negate modifier is
44 supported.
45
46 Instruction Set
47 ---------------
48
49 Core ISA
50 ^^^^^^^^^^^^^^^^^^^^^^^^^
51
52 These opcodes are guaranteed to be available regardless of the driver being
53 used.
54
55 .. opcode:: ARL - Address Register Load
56
57 .. math::
58
59 dst.x = (int) \lfloor src.x\rfloor
60
61 dst.y = (int) \lfloor src.y\rfloor
62
63 dst.z = (int) \lfloor src.z\rfloor
64
65 dst.w = (int) \lfloor src.w\rfloor
66
67
68 .. opcode:: MOV - Move
69
70 .. math::
71
72 dst.x = src.x
73
74 dst.y = src.y
75
76 dst.z = src.z
77
78 dst.w = src.w
79
80
81 .. opcode:: LIT - Light Coefficients
82
83 .. math::
84
85 dst.x &= 1 \\
86 dst.y &= max(src.x, 0) \\
87 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
88 dst.w &= 1
89
90
91 .. opcode:: RCP - Reciprocal
92
93 This instruction replicates its result.
94
95 .. math::
96
97 dst = \frac{1}{src.x}
98
99
100 .. opcode:: RSQ - Reciprocal Square Root
101
102 This instruction replicates its result. The results are undefined for src <= 0.
103
104 .. math::
105
106 dst = \frac{1}{\sqrt{src.x}}
107
108
109 .. opcode:: SQRT - Square Root
110
111 This instruction replicates its result. The results are undefined for src < 0.
112
113 .. math::
114
115 dst = {\sqrt{src.x}}
116
117
118 .. opcode:: EXP - Approximate Exponential Base 2
119
120 .. math::
121
122 dst.x &= 2^{\lfloor src.x\rfloor} \\
123 dst.y &= src.x - \lfloor src.x\rfloor \\
124 dst.z &= 2^{src.x} \\
125 dst.w &= 1
126
127
128 .. opcode:: LOG - Approximate Logarithm Base 2
129
130 .. math::
131
132 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
133 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
134 dst.z &= \log_2{|src.x|} \\
135 dst.w &= 1
136
137
138 .. opcode:: MUL - Multiply
139
140 .. math::
141
142 dst.x = src0.x \times src1.x
143
144 dst.y = src0.y \times src1.y
145
146 dst.z = src0.z \times src1.z
147
148 dst.w = src0.w \times src1.w
149
150
151 .. opcode:: ADD - Add
152
153 .. math::
154
155 dst.x = src0.x + src1.x
156
157 dst.y = src0.y + src1.y
158
159 dst.z = src0.z + src1.z
160
161 dst.w = src0.w + src1.w
162
163
164 .. opcode:: DP3 - 3-component Dot Product
165
166 This instruction replicates its result.
167
168 .. math::
169
170 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
171
172
173 .. opcode:: DP4 - 4-component Dot Product
174
175 This instruction replicates its result.
176
177 .. math::
178
179 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
180
181
182 .. opcode:: DST - Distance Vector
183
184 .. math::
185
186 dst.x &= 1\\
187 dst.y &= src0.y \times src1.y\\
188 dst.z &= src0.z\\
189 dst.w &= src1.w
190
191
192 .. opcode:: MIN - Minimum
193
194 .. math::
195
196 dst.x = min(src0.x, src1.x)
197
198 dst.y = min(src0.y, src1.y)
199
200 dst.z = min(src0.z, src1.z)
201
202 dst.w = min(src0.w, src1.w)
203
204
205 .. opcode:: MAX - Maximum
206
207 .. math::
208
209 dst.x = max(src0.x, src1.x)
210
211 dst.y = max(src0.y, src1.y)
212
213 dst.z = max(src0.z, src1.z)
214
215 dst.w = max(src0.w, src1.w)
216
217
218 .. opcode:: SLT - Set On Less Than
219
220 .. math::
221
222 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
223
224 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
225
226 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
227
228 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
229
230
231 .. opcode:: SGE - Set On Greater Equal Than
232
233 .. math::
234
235 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
236
237 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
238
239 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
240
241 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
242
243
244 .. opcode:: MAD - Multiply And Add
245
246 Perform a * b + c. The implementation is free to decide whether there is an
247 intermediate rounding step or not.
248
249 .. math::
250
251 dst.x = src0.x \times src1.x + src2.x
252
253 dst.y = src0.y \times src1.y + src2.y
254
255 dst.z = src0.z \times src1.z + src2.z
256
257 dst.w = src0.w \times src1.w + src2.w
258
259
260 .. opcode:: LRP - Linear Interpolate
261
262 .. math::
263
264 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
265
266 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
267
268 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
269
270 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
271
272
273 .. opcode:: FMA - Fused Multiply-Add
274
275 Perform a * b + c with no intermediate rounding step.
276
277 .. math::
278
279 dst.x = src0.x \times src1.x + src2.x
280
281 dst.y = src0.y \times src1.y + src2.y
282
283 dst.z = src0.z \times src1.z + src2.z
284
285 dst.w = src0.w \times src1.w + src2.w
286
287
288 .. opcode:: FRC - Fraction
289
290 .. math::
291
292 dst.x = src.x - \lfloor src.x\rfloor
293
294 dst.y = src.y - \lfloor src.y\rfloor
295
296 dst.z = src.z - \lfloor src.z\rfloor
297
298 dst.w = src.w - \lfloor src.w\rfloor
299
300
301 .. opcode:: FLR - Floor
302
303 .. math::
304
305 dst.x = \lfloor src.x\rfloor
306
307 dst.y = \lfloor src.y\rfloor
308
309 dst.z = \lfloor src.z\rfloor
310
311 dst.w = \lfloor src.w\rfloor
312
313
314 .. opcode:: ROUND - Round
315
316 .. math::
317
318 dst.x = round(src.x)
319
320 dst.y = round(src.y)
321
322 dst.z = round(src.z)
323
324 dst.w = round(src.w)
325
326
327 .. opcode:: EX2 - Exponential Base 2
328
329 This instruction replicates its result.
330
331 .. math::
332
333 dst = 2^{src.x}
334
335
336 .. opcode:: LG2 - Logarithm Base 2
337
338 This instruction replicates its result.
339
340 .. math::
341
342 dst = \log_2{src.x}
343
344
345 .. opcode:: POW - Power
346
347 This instruction replicates its result.
348
349 .. math::
350
351 dst = src0.x^{src1.x}
352
353
354 .. opcode:: LDEXP - Multiply Number by Integral Power of 2
355
356 src1 is an integer.
357
358 .. math::
359
360 dst.x = src0.x * 2^{src1.x}
361 dst.y = src0.y * 2^{src1.y}
362 dst.z = src0.z * 2^{src1.z}
363 dst.w = src0.w * 2^{src1.w}
364
365
366 .. opcode:: COS - Cosine
367
368 This instruction replicates its result.
369
370 .. math::
371
372 dst = \cos{src.x}
373
374
375 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
376
377 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
378 advertised. When it is, the fine version guarantees one derivative per row
379 while DDX is allowed to be the same for the entire 2x2 quad.
380
381 .. math::
382
383 dst.x = partialx(src.x)
384
385 dst.y = partialx(src.y)
386
387 dst.z = partialx(src.z)
388
389 dst.w = partialx(src.w)
390
391
392 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
393
394 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
395 advertised. When it is, the fine version guarantees one derivative per column
396 while DDY is allowed to be the same for the entire 2x2 quad.
397
398 .. math::
399
400 dst.x = partialy(src.x)
401
402 dst.y = partialy(src.y)
403
404 dst.z = partialy(src.z)
405
406 dst.w = partialy(src.w)
407
408
409 .. opcode:: PK2H - Pack Two 16-bit Floats
410
411 This instruction replicates its result.
412
413 .. math::
414
415 dst = f32\_to\_f16(src.x) | f32\_to\_f16(src.y) << 16
416
417
418 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
419
420 This instruction replicates its result.
421
422 .. math::
423
424 dst = f32\_to\_unorm16(src.x) | f32\_to\_unorm16(src.y) << 16
425
426
427 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
428
429 This instruction replicates its result.
430
431 .. math::
432
433 dst = f32\_to\_snorm8(src.x) |
434 (f32\_to\_snorm8(src.y) << 8) |
435 (f32\_to\_snorm8(src.z) << 16) |
436 (f32\_to\_snorm8(src.w) << 24)
437
438
439 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
440
441 This instruction replicates its result.
442
443 .. math::
444
445 dst = f32\_to\_unorm8(src.x) |
446 (f32\_to\_unorm8(src.y) << 8) |
447 (f32\_to\_unorm8(src.z) << 16) |
448 (f32\_to\_unorm8(src.w) << 24)
449
450
451 .. opcode:: SEQ - Set On Equal
452
453 .. math::
454
455 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
456
457 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
458
459 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
460
461 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
462
463
464 .. opcode:: SGT - Set On Greater Than
465
466 .. math::
467
468 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
469
470 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
471
472 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
473
474 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
475
476
477 .. opcode:: SIN - Sine
478
479 This instruction replicates its result.
480
481 .. math::
482
483 dst = \sin{src.x}
484
485
486 .. opcode:: SLE - Set On Less Equal Than
487
488 .. math::
489
490 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
491
492 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
493
494 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
495
496 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
497
498
499 .. opcode:: SNE - Set On Not Equal
500
501 .. math::
502
503 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
504
505 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
506
507 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
508
509 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
510
511
512 .. opcode:: TEX - Texture Lookup
513
514 for array textures src0.y contains the slice for 1D,
515 and src0.z contain the slice for 2D.
516
517 for shadow textures with no arrays (and not cube map),
518 src0.z contains the reference value.
519
520 for shadow textures with arrays, src0.z contains
521 the reference value for 1D arrays, and src0.w contains
522 the reference value for 2D arrays and cube maps.
523
524 for cube map array shadow textures, the reference value
525 cannot be passed in src0.w, and TEX2 must be used instead.
526
527 .. math::
528
529 coord = src0
530
531 shadow_ref = src0.z or src0.w (optional)
532
533 unit = src1
534
535 dst = texture\_sample(unit, coord, shadow_ref)
536
537
538 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
539
540 this is the same as TEX, but uses another reg to encode the
541 reference value.
542
543 .. math::
544
545 coord = src0
546
547 shadow_ref = src1.x
548
549 unit = src2
550
551 dst = texture\_sample(unit, coord, shadow_ref)
552
553
554
555
556 .. opcode:: TXD - Texture Lookup with Derivatives
557
558 .. math::
559
560 coord = src0
561
562 ddx = src1
563
564 ddy = src2
565
566 unit = src3
567
568 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
569
570
571 .. opcode:: TXP - Projective Texture Lookup
572
573 .. math::
574
575 coord.x = src0.x / src0.w
576
577 coord.y = src0.y / src0.w
578
579 coord.z = src0.z / src0.w
580
581 coord.w = src0.w
582
583 unit = src1
584
585 dst = texture\_sample(unit, coord)
586
587
588 .. opcode:: UP2H - Unpack Two 16-Bit Floats
589
590 .. math::
591
592 dst.x = f16\_to\_f32(src0.x \& 0xffff)
593
594 dst.y = f16\_to\_f32(src0.x >> 16)
595
596 dst.z = f16\_to\_f32(src0.x \& 0xffff)
597
598 dst.w = f16\_to\_f32(src0.x >> 16)
599
600 .. note::
601
602 Considered for removal.
603
604 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
605
606 TBD
607
608 .. note::
609
610 Considered for removal.
611
612 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
613
614 TBD
615
616 .. note::
617
618 Considered for removal.
619
620 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
621
622 TBD
623
624 .. note::
625
626 Considered for removal.
627
628
629 .. opcode:: ARR - Address Register Load With Round
630
631 .. math::
632
633 dst.x = (int) round(src.x)
634
635 dst.y = (int) round(src.y)
636
637 dst.z = (int) round(src.z)
638
639 dst.w = (int) round(src.w)
640
641
642 .. opcode:: SSG - Set Sign
643
644 .. math::
645
646 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
647
648 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
649
650 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
651
652 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
653
654
655 .. opcode:: CMP - Compare
656
657 .. math::
658
659 dst.x = (src0.x < 0) ? src1.x : src2.x
660
661 dst.y = (src0.y < 0) ? src1.y : src2.y
662
663 dst.z = (src0.z < 0) ? src1.z : src2.z
664
665 dst.w = (src0.w < 0) ? src1.w : src2.w
666
667
668 .. opcode:: KILL_IF - Conditional Discard
669
670 Conditional discard. Allowed in fragment shaders only.
671
672 .. math::
673
674 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
675 discard
676 endif
677
678
679 .. opcode:: KILL - Discard
680
681 Unconditional discard. Allowed in fragment shaders only.
682
683
684 .. opcode:: DEMOTE - Demote Invocation to a Helper
685
686 This demotes the current invocation to a helper, but continues
687 execution (while KILL may or may not terminate the
688 invocation). After this runs, all the usual helper invocation rules
689 apply about discarding buffer and render target writes. This is
690 useful for having accurate derivatives in the other invocations
691 which have not been demoted.
692
693 Allowed in fragment shaders only.
694
695
696 .. opcode:: READ_HELPER - Reads Invocation Helper Status
697
698 This is identical to ``TGSI_SEMANTIC_HELPER_INVOCATION``, except
699 this will read the current value, which might change as a result of
700 a ``DEMOTE`` instruction.
701
702 Allowed in fragment shaders only.
703
704
705 .. opcode:: TXB - Texture Lookup With Bias
706
707 for cube map array textures and shadow cube maps, the bias value
708 cannot be passed in src0.w, and TXB2 must be used instead.
709
710 if the target is a shadow texture, the reference value is always
711 in src.z (this prevents shadow 3d and shadow 2d arrays from
712 using this instruction, but this is not needed).
713
714 .. math::
715
716 coord.x = src0.x
717
718 coord.y = src0.y
719
720 coord.z = src0.z
721
722 coord.w = none
723
724 bias = src0.w
725
726 unit = src1
727
728 dst = texture\_sample(unit, coord, bias)
729
730
731 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
732
733 this is the same as TXB, but uses another reg to encode the
734 lod bias value for cube map arrays and shadow cube maps.
735 Presumably shadow 2d arrays and shadow 3d targets could use
736 this encoding too, but this is not legal.
737
738 if the target is a shadow cube map array, the reference value is in
739 src1.y.
740
741 .. math::
742
743 coord = src0
744
745 bias = src1.x
746
747 unit = src2
748
749 dst = texture\_sample(unit, coord, bias)
750
751
752 .. opcode:: DIV - Divide
753
754 .. math::
755
756 dst.x = \frac{src0.x}{src1.x}
757
758 dst.y = \frac{src0.y}{src1.y}
759
760 dst.z = \frac{src0.z}{src1.z}
761
762 dst.w = \frac{src0.w}{src1.w}
763
764
765 .. opcode:: DP2 - 2-component Dot Product
766
767 This instruction replicates its result.
768
769 .. math::
770
771 dst = src0.x \times src1.x + src0.y \times src1.y
772
773
774 .. opcode:: TEX_LZ - Texture Lookup With LOD = 0
775
776 This is the same as TXL with LOD = 0. Like every texture opcode, it obeys
777 pipe_sampler_view::u.tex.first_level and pipe_sampler_state::min_lod.
778 There is no way to override those two in shaders.
779
780 .. math::
781
782 coord.x = src0.x
783
784 coord.y = src0.y
785
786 coord.z = src0.z
787
788 coord.w = none
789
790 lod = 0
791
792 unit = src1
793
794 dst = texture\_sample(unit, coord, lod)
795
796
797 .. opcode:: TXL - Texture Lookup With explicit LOD
798
799 for cube map array textures, the explicit lod value
800 cannot be passed in src0.w, and TXL2 must be used instead.
801
802 if the target is a shadow texture, the reference value is always
803 in src.z (this prevents shadow 3d / 2d array / cube targets from
804 using this instruction, but this is not needed).
805
806 .. math::
807
808 coord.x = src0.x
809
810 coord.y = src0.y
811
812 coord.z = src0.z
813
814 coord.w = none
815
816 lod = src0.w
817
818 unit = src1
819
820 dst = texture\_sample(unit, coord, lod)
821
822
823 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
824
825 this is the same as TXL, but uses another reg to encode the
826 explicit lod value.
827 Presumably shadow 3d / 2d array / cube targets could use
828 this encoding too, but this is not legal.
829
830 if the target is a shadow cube map array, the reference value is in
831 src1.y.
832
833 .. math::
834
835 coord = src0
836
837 lod = src1.x
838
839 unit = src2
840
841 dst = texture\_sample(unit, coord, lod)
842
843
844 Compute ISA
845 ^^^^^^^^^^^^^^^^^^^^^^^^
846
847 These opcodes are primarily provided for special-use computational shaders.
848 Support for these opcodes indicated by a special pipe capability bit (TBD).
849
850 XXX doesn't look like most of the opcodes really belong here.
851
852 .. opcode:: CEIL - Ceiling
853
854 .. math::
855
856 dst.x = \lceil src.x\rceil
857
858 dst.y = \lceil src.y\rceil
859
860 dst.z = \lceil src.z\rceil
861
862 dst.w = \lceil src.w\rceil
863
864
865 .. opcode:: TRUNC - Truncate
866
867 .. math::
868
869 dst.x = trunc(src.x)
870
871 dst.y = trunc(src.y)
872
873 dst.z = trunc(src.z)
874
875 dst.w = trunc(src.w)
876
877
878 .. opcode:: MOD - Modulus
879
880 .. math::
881
882 dst.x = src0.x \bmod src1.x
883
884 dst.y = src0.y \bmod src1.y
885
886 dst.z = src0.z \bmod src1.z
887
888 dst.w = src0.w \bmod src1.w
889
890
891 .. opcode:: UARL - Integer Address Register Load
892
893 Moves the contents of the source register, assumed to be an integer, into the
894 destination register, which is assumed to be an address (ADDR) register.
895
896
897 .. opcode:: TXF - Texel Fetch
898
899 As per NV_gpu_shader4, extract a single texel from a specified texture
900 image or PIPE_BUFFER resource. The source sampler may not be a CUBE or
901 SHADOW. src 0 is a
902 four-component signed integer vector used to identify the single texel
903 accessed. 3 components + level. If the texture is multisampled, then
904 the fourth component indicates the sample, not the mipmap level.
905 Just like texture instructions, an optional
906 offset vector is provided, which is subject to various driver restrictions
907 (regarding range, source of offsets). This instruction ignores the sampler
908 state.
909
910 TXF(uint_vec coord, int_vec offset).
911
912
913 .. opcode:: TXQ - Texture Size Query
914
915 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
916 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
917 depth), 1D array (width, layers), 2D array (width, height, layers).
918 Also return the number of accessible levels (last_level - first_level + 1)
919 in W.
920
921 For components which don't return a resource dimension, their value
922 is undefined.
923
924 .. math::
925
926 lod = src0.x
927
928 dst.x = texture\_width(unit, lod)
929
930 dst.y = texture\_height(unit, lod)
931
932 dst.z = texture\_depth(unit, lod)
933
934 dst.w = texture\_levels(unit)
935
936
937 .. opcode:: TXQS - Texture Samples Query
938
939 This retrieves the number of samples in the texture, and stores it
940 into the x component as an unsigned integer. The other components are
941 undefined. If the texture is not multisampled, this function returns
942 (1, undef, undef, undef).
943
944 .. math::
945
946 dst.x = texture\_samples(unit)
947
948
949 .. opcode:: TG4 - Texture Gather
950
951 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
952 filtering operation and packs them into a single register. Only works with
953 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
954 addressing modes of the sampler and the top level of any mip pyramid are
955 used. Set W to zero. It behaves like the TEX instruction, but a filtered
956 sample is not generated. The four samples that contribute to filtering are
957 placed into xyzw in clockwise order, starting with the (u,v) texture
958 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
959 where the magnitude of the deltas are half a texel.
960
961 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
962 depth compares, single component selection, and a non-constant offset. It
963 doesn't allow support for the GL independent offset to get i0,j0. This would
964 require another CAP is hw can do it natively. For now we lower that before
965 TGSI.
966
967 PIPE_CAP_TGSI_TG4_COMPONENT_IN_SWIZZLE changes the encoding so that component
968 is stored in the sampler source swizzle x.
969
970 .. math::
971
972 coord = src0
973
974 (without TGSI_TG4_COMPONENT_IN_SWIZZLE)
975 component = src1
976
977 dst = texture\_gather4 (unit, coord, component)
978
979 (with TGSI_TG4_COMPONENT_IN_SWIZZLE)
980 dst = texture\_gather4 (unit, coord)
981 component is encoded in sampler swizzle.
982
983 (with SM5 - cube array shadow)
984
985 .. math::
986
987 coord = src0
988
989 compare = src1
990
991 dst = texture\_gather (uint, coord, compare)
992
993 .. opcode:: LODQ - level of detail query
994
995 Compute the LOD information that the texture pipe would use to access the
996 texture. The Y component contains the computed LOD lambda_prime. The X
997 component contains the LOD that will be accessed, based on min/max lod's
998 and mipmap filters.
999
1000 .. math::
1001
1002 coord = src0
1003
1004 dst.xy = lodq(uint, coord);
1005
1006 .. opcode:: CLOCK - retrieve the current shader time
1007
1008 Invoking this instruction multiple times in the same shader should
1009 cause monotonically increasing values to be returned. The values
1010 are implicitly 64-bit, so if fewer than 64 bits of precision are
1011 available, to provide expected wraparound semantics, the value
1012 should be shifted up so that the most significant bit of the time
1013 is the most significant bit of the 64-bit value.
1014
1015 .. math::
1016
1017 dst.xy = clock()
1018
1019
1020 Integer ISA
1021 ^^^^^^^^^^^^^^^^^^^^^^^^
1022 These opcodes are used for integer operations.
1023 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1024
1025
1026 .. opcode:: I2F - Signed Integer To Float
1027
1028 Rounding is unspecified (round to nearest even suggested).
1029
1030 .. math::
1031
1032 dst.x = (float) src.x
1033
1034 dst.y = (float) src.y
1035
1036 dst.z = (float) src.z
1037
1038 dst.w = (float) src.w
1039
1040
1041 .. opcode:: U2F - Unsigned Integer To Float
1042
1043 Rounding is unspecified (round to nearest even suggested).
1044
1045 .. math::
1046
1047 dst.x = (float) src.x
1048
1049 dst.y = (float) src.y
1050
1051 dst.z = (float) src.z
1052
1053 dst.w = (float) src.w
1054
1055
1056 .. opcode:: F2I - Float to Signed Integer
1057
1058 Rounding is towards zero (truncate).
1059 Values outside signed range (including NaNs) produce undefined results.
1060
1061 .. math::
1062
1063 dst.x = (int) src.x
1064
1065 dst.y = (int) src.y
1066
1067 dst.z = (int) src.z
1068
1069 dst.w = (int) src.w
1070
1071
1072 .. opcode:: F2U - Float to Unsigned Integer
1073
1074 Rounding is towards zero (truncate).
1075 Values outside unsigned range (including NaNs) produce undefined results.
1076
1077 .. math::
1078
1079 dst.x = (unsigned) src.x
1080
1081 dst.y = (unsigned) src.y
1082
1083 dst.z = (unsigned) src.z
1084
1085 dst.w = (unsigned) src.w
1086
1087
1088 .. opcode:: UADD - Integer Add
1089
1090 This instruction works the same for signed and unsigned integers.
1091 The low 32bit of the result is returned.
1092
1093 .. math::
1094
1095 dst.x = src0.x + src1.x
1096
1097 dst.y = src0.y + src1.y
1098
1099 dst.z = src0.z + src1.z
1100
1101 dst.w = src0.w + src1.w
1102
1103
1104 .. opcode:: UMAD - Integer Multiply And Add
1105
1106 This instruction works the same for signed and unsigned integers.
1107 The multiplication returns the low 32bit (as does the result itself).
1108
1109 .. math::
1110
1111 dst.x = src0.x \times src1.x + src2.x
1112
1113 dst.y = src0.y \times src1.y + src2.y
1114
1115 dst.z = src0.z \times src1.z + src2.z
1116
1117 dst.w = src0.w \times src1.w + src2.w
1118
1119
1120 .. opcode:: UMUL - Integer Multiply
1121
1122 This instruction works the same for signed and unsigned integers.
1123 The low 32bit of the result is returned.
1124
1125 .. math::
1126
1127 dst.x = src0.x \times src1.x
1128
1129 dst.y = src0.y \times src1.y
1130
1131 dst.z = src0.z \times src1.z
1132
1133 dst.w = src0.w \times src1.w
1134
1135
1136 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1137
1138 The high 32bits of the multiplication of 2 signed integers are returned.
1139
1140 .. math::
1141
1142 dst.x = (src0.x \times src1.x) >> 32
1143
1144 dst.y = (src0.y \times src1.y) >> 32
1145
1146 dst.z = (src0.z \times src1.z) >> 32
1147
1148 dst.w = (src0.w \times src1.w) >> 32
1149
1150
1151 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1152
1153 The high 32bits of the multiplication of 2 unsigned integers are returned.
1154
1155 .. math::
1156
1157 dst.x = (src0.x \times src1.x) >> 32
1158
1159 dst.y = (src0.y \times src1.y) >> 32
1160
1161 dst.z = (src0.z \times src1.z) >> 32
1162
1163 dst.w = (src0.w \times src1.w) >> 32
1164
1165
1166 .. opcode:: IDIV - Signed Integer Division
1167
1168 TBD: behavior for division by zero.
1169
1170 .. math::
1171
1172 dst.x = \frac{src0.x}{src1.x}
1173
1174 dst.y = \frac{src0.y}{src1.y}
1175
1176 dst.z = \frac{src0.z}{src1.z}
1177
1178 dst.w = \frac{src0.w}{src1.w}
1179
1180
1181 .. opcode:: UDIV - Unsigned Integer Division
1182
1183 For division by zero, 0xffffffff is returned.
1184
1185 .. math::
1186
1187 dst.x = \frac{src0.x}{src1.x}
1188
1189 dst.y = \frac{src0.y}{src1.y}
1190
1191 dst.z = \frac{src0.z}{src1.z}
1192
1193 dst.w = \frac{src0.w}{src1.w}
1194
1195
1196 .. opcode:: UMOD - Unsigned Integer Remainder
1197
1198 If second arg is zero, 0xffffffff is returned.
1199
1200 .. math::
1201
1202 dst.x = src0.x \bmod src1.x
1203
1204 dst.y = src0.y \bmod src1.y
1205
1206 dst.z = src0.z \bmod src1.z
1207
1208 dst.w = src0.w \bmod src1.w
1209
1210
1211 .. opcode:: NOT - Bitwise Not
1212
1213 .. math::
1214
1215 dst.x = \sim src.x
1216
1217 dst.y = \sim src.y
1218
1219 dst.z = \sim src.z
1220
1221 dst.w = \sim src.w
1222
1223
1224 .. opcode:: AND - Bitwise And
1225
1226 .. math::
1227
1228 dst.x = src0.x \& src1.x
1229
1230 dst.y = src0.y \& src1.y
1231
1232 dst.z = src0.z \& src1.z
1233
1234 dst.w = src0.w \& src1.w
1235
1236
1237 .. opcode:: OR - Bitwise Or
1238
1239 .. math::
1240
1241 dst.x = src0.x | src1.x
1242
1243 dst.y = src0.y | src1.y
1244
1245 dst.z = src0.z | src1.z
1246
1247 dst.w = src0.w | src1.w
1248
1249
1250 .. opcode:: XOR - Bitwise Xor
1251
1252 .. math::
1253
1254 dst.x = src0.x \oplus src1.x
1255
1256 dst.y = src0.y \oplus src1.y
1257
1258 dst.z = src0.z \oplus src1.z
1259
1260 dst.w = src0.w \oplus src1.w
1261
1262
1263 .. opcode:: IMAX - Maximum of Signed Integers
1264
1265 .. math::
1266
1267 dst.x = max(src0.x, src1.x)
1268
1269 dst.y = max(src0.y, src1.y)
1270
1271 dst.z = max(src0.z, src1.z)
1272
1273 dst.w = max(src0.w, src1.w)
1274
1275
1276 .. opcode:: UMAX - Maximum of Unsigned Integers
1277
1278 .. math::
1279
1280 dst.x = max(src0.x, src1.x)
1281
1282 dst.y = max(src0.y, src1.y)
1283
1284 dst.z = max(src0.z, src1.z)
1285
1286 dst.w = max(src0.w, src1.w)
1287
1288
1289 .. opcode:: IMIN - Minimum of Signed Integers
1290
1291 .. math::
1292
1293 dst.x = min(src0.x, src1.x)
1294
1295 dst.y = min(src0.y, src1.y)
1296
1297 dst.z = min(src0.z, src1.z)
1298
1299 dst.w = min(src0.w, src1.w)
1300
1301
1302 .. opcode:: UMIN - Minimum of Unsigned Integers
1303
1304 .. math::
1305
1306 dst.x = min(src0.x, src1.x)
1307
1308 dst.y = min(src0.y, src1.y)
1309
1310 dst.z = min(src0.z, src1.z)
1311
1312 dst.w = min(src0.w, src1.w)
1313
1314
1315 .. opcode:: SHL - Shift Left
1316
1317 The shift count is masked with 0x1f before the shift is applied.
1318
1319 .. math::
1320
1321 dst.x = src0.x << (0x1f \& src1.x)
1322
1323 dst.y = src0.y << (0x1f \& src1.y)
1324
1325 dst.z = src0.z << (0x1f \& src1.z)
1326
1327 dst.w = src0.w << (0x1f \& src1.w)
1328
1329
1330 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1331
1332 The shift count is masked with 0x1f before the shift is applied.
1333
1334 .. math::
1335
1336 dst.x = src0.x >> (0x1f \& src1.x)
1337
1338 dst.y = src0.y >> (0x1f \& src1.y)
1339
1340 dst.z = src0.z >> (0x1f \& src1.z)
1341
1342 dst.w = src0.w >> (0x1f \& src1.w)
1343
1344
1345 .. opcode:: USHR - Logical Shift Right
1346
1347 The shift count is masked with 0x1f before the shift is applied.
1348
1349 .. math::
1350
1351 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1352
1353 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1354
1355 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1356
1357 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1358
1359
1360 .. opcode:: UCMP - Integer Conditional Move
1361
1362 .. math::
1363
1364 dst.x = src0.x ? src1.x : src2.x
1365
1366 dst.y = src0.y ? src1.y : src2.y
1367
1368 dst.z = src0.z ? src1.z : src2.z
1369
1370 dst.w = src0.w ? src1.w : src2.w
1371
1372
1373
1374 .. opcode:: ISSG - Integer Set Sign
1375
1376 .. math::
1377
1378 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1379
1380 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1381
1382 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1383
1384 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1385
1386
1387
1388 .. opcode:: FSLT - Float Set On Less Than (ordered)
1389
1390 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1391
1392 .. math::
1393
1394 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1395
1396 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1397
1398 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1399
1400 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1401
1402
1403 .. opcode:: ISLT - Signed Integer Set On Less Than
1404
1405 .. math::
1406
1407 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1408
1409 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1410
1411 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1412
1413 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1414
1415
1416 .. opcode:: USLT - Unsigned Integer Set On Less Than
1417
1418 .. math::
1419
1420 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1421
1422 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1423
1424 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1425
1426 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1427
1428
1429 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1430
1431 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1432
1433 .. math::
1434
1435 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1436
1437 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1438
1439 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1440
1441 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1442
1443
1444 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1445
1446 .. math::
1447
1448 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1449
1450 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1451
1452 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1453
1454 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1455
1456
1457 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1458
1459 .. math::
1460
1461 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1462
1463 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1464
1465 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1466
1467 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1468
1469
1470 .. opcode:: FSEQ - Float Set On Equal (ordered)
1471
1472 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1473
1474 .. math::
1475
1476 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1477
1478 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1479
1480 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1481
1482 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1483
1484
1485 .. opcode:: USEQ - Integer Set On Equal
1486
1487 .. math::
1488
1489 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1490
1491 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1492
1493 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1494
1495 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1496
1497
1498 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1499
1500 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1501
1502 .. math::
1503
1504 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1505
1506 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1507
1508 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1509
1510 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1511
1512
1513 .. opcode:: USNE - Integer Set On Not Equal
1514
1515 .. math::
1516
1517 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1518
1519 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1520
1521 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1522
1523 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1524
1525
1526 .. opcode:: INEG - Integer Negate
1527
1528 Two's complement.
1529
1530 .. math::
1531
1532 dst.x = -src.x
1533
1534 dst.y = -src.y
1535
1536 dst.z = -src.z
1537
1538 dst.w = -src.w
1539
1540
1541 .. opcode:: IABS - Integer Absolute Value
1542
1543 .. math::
1544
1545 dst.x = |src.x|
1546
1547 dst.y = |src.y|
1548
1549 dst.z = |src.z|
1550
1551 dst.w = |src.w|
1552
1553 Bitwise ISA
1554 ^^^^^^^^^^^
1555 These opcodes are used for bit-level manipulation of integers.
1556
1557 .. opcode:: IBFE - Signed Bitfield Extract
1558
1559 Like GLSL bitfieldExtract. Extracts a set of bits from the input, and
1560 sign-extends them if the high bit of the extracted window is set.
1561
1562 Pseudocode::
1563
1564 def ibfe(value, offset, bits):
1565 if offset < 0 or bits < 0 or offset + bits > 32:
1566 return undefined
1567 if bits == 0: return 0
1568 # Note: >> sign-extends
1569 return (value << (32 - offset - bits)) >> (32 - bits)
1570
1571 .. opcode:: UBFE - Unsigned Bitfield Extract
1572
1573 Like GLSL bitfieldExtract. Extracts a set of bits from the input, without
1574 any sign-extension.
1575
1576 Pseudocode::
1577
1578 def ubfe(value, offset, bits):
1579 if offset < 0 or bits < 0 or offset + bits > 32:
1580 return undefined
1581 if bits == 0: return 0
1582 # Note: >> does not sign-extend
1583 return (value << (32 - offset - bits)) >> (32 - bits)
1584
1585 .. opcode:: BFI - Bitfield Insert
1586
1587 Like GLSL bitfieldInsert. Replaces a bit region of 'base' with the low bits
1588 of 'insert'.
1589
1590 Pseudocode::
1591
1592 def bfi(base, insert, offset, bits):
1593 if offset < 0 or bits < 0 or offset + bits > 32:
1594 return undefined
1595 # << defined such that mask == ~0 when bits == 32, offset == 0
1596 mask = ((1 << bits) - 1) << offset
1597 return ((insert << offset) & mask) | (base & ~mask)
1598
1599 .. opcode:: BREV - Bitfield Reverse
1600
1601 See SM5 instruction BFREV. Reverses the bits of the argument.
1602
1603 .. opcode:: POPC - Population Count
1604
1605 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1606
1607 .. opcode:: LSB - Index of lowest set bit
1608
1609 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1610 bit of the argument. Returns -1 if none are set.
1611
1612 .. opcode:: IMSB - Index of highest non-sign bit
1613
1614 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1615 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1616 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1617 (i.e. for inputs 0 and -1).
1618
1619 .. opcode:: UMSB - Index of highest set bit
1620
1621 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1622 set bit of the argument. Returns -1 if none are set.
1623
1624 Geometry ISA
1625 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1626
1627 These opcodes are only supported in geometry shaders; they have no meaning
1628 in any other type of shader.
1629
1630 .. opcode:: EMIT - Emit
1631
1632 Generate a new vertex for the current primitive into the specified vertex
1633 stream using the values in the output registers.
1634
1635
1636 .. opcode:: ENDPRIM - End Primitive
1637
1638 Complete the current primitive in the specified vertex stream (consisting of
1639 the emitted vertices), and start a new one.
1640
1641
1642 GLSL ISA
1643 ^^^^^^^^^^
1644
1645 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1646 opcodes is determined by a special capability bit, ``GLSL``.
1647 Some require glsl version 1.30 (UIF/SWITCH/CASE/DEFAULT/ENDSWITCH).
1648
1649 .. opcode:: CAL - Subroutine Call
1650
1651 push(pc)
1652 pc = target
1653
1654
1655 .. opcode:: RET - Subroutine Call Return
1656
1657 pc = pop()
1658
1659
1660 .. opcode:: CONT - Continue
1661
1662 Unconditionally moves the point of execution to the instruction after the
1663 last bgnloop. The instruction must appear within a bgnloop/endloop.
1664
1665 .. note::
1666
1667 Support for CONT is determined by a special capability bit,
1668 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1669
1670
1671 .. opcode:: BGNLOOP - Begin a Loop
1672
1673 Start a loop. Must have a matching endloop.
1674
1675
1676 .. opcode:: BGNSUB - Begin Subroutine
1677
1678 Starts definition of a subroutine. Must have a matching endsub.
1679
1680
1681 .. opcode:: ENDLOOP - End a Loop
1682
1683 End a loop started with bgnloop.
1684
1685
1686 .. opcode:: ENDSUB - End Subroutine
1687
1688 Ends definition of a subroutine.
1689
1690
1691 .. opcode:: NOP - No Operation
1692
1693 Do nothing.
1694
1695
1696 .. opcode:: BRK - Break
1697
1698 Unconditionally moves the point of execution to the instruction after the
1699 next endloop or endswitch. The instruction must appear within a loop/endloop
1700 or switch/endswitch.
1701
1702
1703 .. opcode:: IF - Float If
1704
1705 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1706
1707 src0.x != 0.0
1708
1709 where src0.x is interpreted as a floating point register.
1710
1711
1712 .. opcode:: UIF - Bitwise If
1713
1714 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1715
1716 src0.x != 0
1717
1718 where src0.x is interpreted as an integer register.
1719
1720
1721 .. opcode:: ELSE - Else
1722
1723 Starts an else block, after an IF or UIF statement.
1724
1725
1726 .. opcode:: ENDIF - End If
1727
1728 Ends an IF or UIF block.
1729
1730
1731 .. opcode:: SWITCH - Switch
1732
1733 Starts a C-style switch expression. The switch consists of one or multiple
1734 CASE statements, and at most one DEFAULT statement. Execution of a statement
1735 ends when a BRK is hit, but just like in C falling through to other cases
1736 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1737 just as last statement, and fallthrough is allowed into/from it.
1738 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1739
1740 Example::
1741
1742 SWITCH src[0].x
1743 CASE src[0].x
1744 (some instructions here)
1745 (optional BRK here)
1746 DEFAULT
1747 (some instructions here)
1748 (optional BRK here)
1749 CASE src[0].x
1750 (some instructions here)
1751 (optional BRK here)
1752 ENDSWITCH
1753
1754
1755 .. opcode:: CASE - Switch case
1756
1757 This represents a switch case label. The src arg must be an integer immediate.
1758
1759
1760 .. opcode:: DEFAULT - Switch default
1761
1762 This represents the default case in the switch, which is taken if no other
1763 case matches.
1764
1765
1766 .. opcode:: ENDSWITCH - End of switch
1767
1768 Ends a switch expression.
1769
1770
1771 Interpolation ISA
1772 ^^^^^^^^^^^^^^^^^
1773
1774 The interpolation instructions allow an input to be interpolated in a
1775 different way than its declaration. This corresponds to the GLSL 4.00
1776 interpolateAt* functions. The first argument of each of these must come from
1777 ``TGSI_FILE_INPUT``.
1778
1779 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1780
1781 Interpolates the varying specified by src0 at the centroid
1782
1783 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1784
1785 Interpolates the varying specified by src0 at the sample id specified by
1786 src1.x (interpreted as an integer)
1787
1788 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1789
1790 Interpolates the varying specified by src0 at the offset src1.xy from the
1791 pixel center (interpreted as floats)
1792
1793
1794 .. _doubleopcodes:
1795
1796 Double ISA
1797 ^^^^^^^^^^^^^^^
1798
1799 The double-precision opcodes reinterpret four-component vectors into
1800 two-component vectors with doubled precision in each component.
1801
1802 .. opcode:: DABS - Absolute
1803
1804 .. math::
1805
1806 dst.xy = |src0.xy|
1807
1808 dst.zw = |src0.zw|
1809
1810 .. opcode:: DADD - Add
1811
1812 .. math::
1813
1814 dst.xy = src0.xy + src1.xy
1815
1816 dst.zw = src0.zw + src1.zw
1817
1818 .. opcode:: DSEQ - Set on Equal
1819
1820 .. math::
1821
1822 dst.x = src0.xy == src1.xy ? \sim 0 : 0
1823
1824 dst.z = src0.zw == src1.zw ? \sim 0 : 0
1825
1826 .. opcode:: DSNE - Set on Not Equal
1827
1828 .. math::
1829
1830 dst.x = src0.xy != src1.xy ? \sim 0 : 0
1831
1832 dst.z = src0.zw != src1.zw ? \sim 0 : 0
1833
1834 .. opcode:: DSLT - Set on Less than
1835
1836 .. math::
1837
1838 dst.x = src0.xy < src1.xy ? \sim 0 : 0
1839
1840 dst.z = src0.zw < src1.zw ? \sim 0 : 0
1841
1842 .. opcode:: DSGE - Set on Greater equal
1843
1844 .. math::
1845
1846 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1847
1848 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1849
1850 .. opcode:: DFRAC - Fraction
1851
1852 .. math::
1853
1854 dst.xy = src.xy - \lfloor src.xy\rfloor
1855
1856 dst.zw = src.zw - \lfloor src.zw\rfloor
1857
1858 .. opcode:: DTRUNC - Truncate
1859
1860 .. math::
1861
1862 dst.xy = trunc(src.xy)
1863
1864 dst.zw = trunc(src.zw)
1865
1866 .. opcode:: DCEIL - Ceiling
1867
1868 .. math::
1869
1870 dst.xy = \lceil src.xy\rceil
1871
1872 dst.zw = \lceil src.zw\rceil
1873
1874 .. opcode:: DFLR - Floor
1875
1876 .. math::
1877
1878 dst.xy = \lfloor src.xy\rfloor
1879
1880 dst.zw = \lfloor src.zw\rfloor
1881
1882 .. opcode:: DROUND - Fraction
1883
1884 .. math::
1885
1886 dst.xy = round(src.xy)
1887
1888 dst.zw = round(src.zw)
1889
1890 .. opcode:: DSSG - Set Sign
1891
1892 .. math::
1893
1894 dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0
1895
1896 dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0
1897
1898 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1899
1900 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1901 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1902 :math:`dst1 \times 2^{dst0} = src` . The results are replicated across
1903 channels.
1904
1905 .. math::
1906
1907 dst0.xy = dst.zw = frac(src.xy)
1908
1909 dst1 = frac(src.xy)
1910
1911
1912 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1913
1914 This opcode is the inverse of :opcode:`DFRACEXP`. The second
1915 source is an integer.
1916
1917 .. math::
1918
1919 dst.xy = src0.xy \times 2^{src1.x}
1920
1921 dst.zw = src0.zw \times 2^{src1.z}
1922
1923 .. opcode:: DMIN - Minimum
1924
1925 .. math::
1926
1927 dst.xy = min(src0.xy, src1.xy)
1928
1929 dst.zw = min(src0.zw, src1.zw)
1930
1931 .. opcode:: DMAX - Maximum
1932
1933 .. math::
1934
1935 dst.xy = max(src0.xy, src1.xy)
1936
1937 dst.zw = max(src0.zw, src1.zw)
1938
1939 .. opcode:: DMUL - Multiply
1940
1941 .. math::
1942
1943 dst.xy = src0.xy \times src1.xy
1944
1945 dst.zw = src0.zw \times src1.zw
1946
1947
1948 .. opcode:: DMAD - Multiply And Add
1949
1950 .. math::
1951
1952 dst.xy = src0.xy \times src1.xy + src2.xy
1953
1954 dst.zw = src0.zw \times src1.zw + src2.zw
1955
1956
1957 .. opcode:: DFMA - Fused Multiply-Add
1958
1959 Perform a * b + c with no intermediate rounding step.
1960
1961 .. math::
1962
1963 dst.xy = src0.xy \times src1.xy + src2.xy
1964
1965 dst.zw = src0.zw \times src1.zw + src2.zw
1966
1967
1968 .. opcode:: DDIV - Divide
1969
1970 .. math::
1971
1972 dst.xy = \frac{src0.xy}{src1.xy}
1973
1974 dst.zw = \frac{src0.zw}{src1.zw}
1975
1976
1977 .. opcode:: DRCP - Reciprocal
1978
1979 .. math::
1980
1981 dst.xy = \frac{1}{src.xy}
1982
1983 dst.zw = \frac{1}{src.zw}
1984
1985 .. opcode:: DSQRT - Square Root
1986
1987 .. math::
1988
1989 dst.xy = \sqrt{src.xy}
1990
1991 dst.zw = \sqrt{src.zw}
1992
1993 .. opcode:: DRSQ - Reciprocal Square Root
1994
1995 .. math::
1996
1997 dst.xy = \frac{1}{\sqrt{src.xy}}
1998
1999 dst.zw = \frac{1}{\sqrt{src.zw}}
2000
2001 .. opcode:: F2D - Float to Double
2002
2003 .. math::
2004
2005 dst.xy = double(src0.x)
2006
2007 dst.zw = double(src0.y)
2008
2009 .. opcode:: D2F - Double to Float
2010
2011 .. math::
2012
2013 dst.x = float(src0.xy)
2014
2015 dst.y = float(src0.zw)
2016
2017 .. opcode:: I2D - Int to Double
2018
2019 .. math::
2020
2021 dst.xy = double(src0.x)
2022
2023 dst.zw = double(src0.y)
2024
2025 .. opcode:: D2I - Double to Int
2026
2027 .. math::
2028
2029 dst.x = int(src0.xy)
2030
2031 dst.y = int(src0.zw)
2032
2033 .. opcode:: U2D - Unsigned Int to Double
2034
2035 .. math::
2036
2037 dst.xy = double(src0.x)
2038
2039 dst.zw = double(src0.y)
2040
2041 .. opcode:: D2U - Double to Unsigned Int
2042
2043 .. math::
2044
2045 dst.x = unsigned(src0.xy)
2046
2047 dst.y = unsigned(src0.zw)
2048
2049 64-bit Integer ISA
2050 ^^^^^^^^^^^^^^^^^^
2051
2052 The 64-bit integer opcodes reinterpret four-component vectors into
2053 two-component vectors with 64-bits in each component.
2054
2055 .. opcode:: I64ABS - 64-bit Integer Absolute Value
2056
2057 .. math::
2058
2059 dst.xy = |src0.xy|
2060
2061 dst.zw = |src0.zw|
2062
2063 .. opcode:: I64NEG - 64-bit Integer Negate
2064
2065 Two's complement.
2066
2067 .. math::
2068
2069 dst.xy = -src.xy
2070
2071 dst.zw = -src.zw
2072
2073 .. opcode:: I64SSG - 64-bit Integer Set Sign
2074
2075 .. math::
2076
2077 dst.xy = (src0.xy < 0) ? -1 : (src0.xy > 0) ? 1 : 0
2078
2079 dst.zw = (src0.zw < 0) ? -1 : (src0.zw > 0) ? 1 : 0
2080
2081 .. opcode:: U64ADD - 64-bit Integer Add
2082
2083 .. math::
2084
2085 dst.xy = src0.xy + src1.xy
2086
2087 dst.zw = src0.zw + src1.zw
2088
2089 .. opcode:: U64MUL - 64-bit Integer Multiply
2090
2091 .. math::
2092
2093 dst.xy = src0.xy * src1.xy
2094
2095 dst.zw = src0.zw * src1.zw
2096
2097 .. opcode:: U64SEQ - 64-bit Integer Set on Equal
2098
2099 .. math::
2100
2101 dst.x = src0.xy == src1.xy ? \sim 0 : 0
2102
2103 dst.z = src0.zw == src1.zw ? \sim 0 : 0
2104
2105 .. opcode:: U64SNE - 64-bit Integer Set on Not Equal
2106
2107 .. math::
2108
2109 dst.x = src0.xy != src1.xy ? \sim 0 : 0
2110
2111 dst.z = src0.zw != src1.zw ? \sim 0 : 0
2112
2113 .. opcode:: U64SLT - 64-bit Unsigned Integer Set on Less Than
2114
2115 .. math::
2116
2117 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2118
2119 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2120
2121 .. opcode:: U64SGE - 64-bit Unsigned Integer Set on Greater Equal
2122
2123 .. math::
2124
2125 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2126
2127 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2128
2129 .. opcode:: I64SLT - 64-bit Signed Integer Set on Less Than
2130
2131 .. math::
2132
2133 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2134
2135 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2136
2137 .. opcode:: I64SGE - 64-bit Signed Integer Set on Greater Equal
2138
2139 .. math::
2140
2141 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2142
2143 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2144
2145 .. opcode:: I64MIN - Minimum of 64-bit Signed Integers
2146
2147 .. math::
2148
2149 dst.xy = min(src0.xy, src1.xy)
2150
2151 dst.zw = min(src0.zw, src1.zw)
2152
2153 .. opcode:: U64MIN - Minimum of 64-bit Unsigned Integers
2154
2155 .. math::
2156
2157 dst.xy = min(src0.xy, src1.xy)
2158
2159 dst.zw = min(src0.zw, src1.zw)
2160
2161 .. opcode:: I64MAX - Maximum of 64-bit Signed Integers
2162
2163 .. math::
2164
2165 dst.xy = max(src0.xy, src1.xy)
2166
2167 dst.zw = max(src0.zw, src1.zw)
2168
2169 .. opcode:: U64MAX - Maximum of 64-bit Unsigned Integers
2170
2171 .. math::
2172
2173 dst.xy = max(src0.xy, src1.xy)
2174
2175 dst.zw = max(src0.zw, src1.zw)
2176
2177 .. opcode:: U64SHL - Shift Left 64-bit Unsigned Integer
2178
2179 The shift count is masked with 0x3f before the shift is applied.
2180
2181 .. math::
2182
2183 dst.xy = src0.xy << (0x3f \& src1.x)
2184
2185 dst.zw = src0.zw << (0x3f \& src1.y)
2186
2187 .. opcode:: I64SHR - Arithmetic Shift Right (of 64-bit Signed Integer)
2188
2189 The shift count is masked with 0x3f before the shift is applied.
2190
2191 .. math::
2192
2193 dst.xy = src0.xy >> (0x3f \& src1.x)
2194
2195 dst.zw = src0.zw >> (0x3f \& src1.y)
2196
2197 .. opcode:: U64SHR - Logical Shift Right (of 64-bit Unsigned Integer)
2198
2199 The shift count is masked with 0x3f before the shift is applied.
2200
2201 .. math::
2202
2203 dst.xy = src0.xy >> (unsigned) (0x3f \& src1.x)
2204
2205 dst.zw = src0.zw >> (unsigned) (0x3f \& src1.y)
2206
2207 .. opcode:: I64DIV - 64-bit Signed Integer Division
2208
2209 .. math::
2210
2211 dst.xy = \frac{src0.xy}{src1.xy}
2212
2213 dst.zw = \frac{src0.zw}{src1.zw}
2214
2215 .. opcode:: U64DIV - 64-bit Unsigned Integer Division
2216
2217 .. math::
2218
2219 dst.xy = \frac{src0.xy}{src1.xy}
2220
2221 dst.zw = \frac{src0.zw}{src1.zw}
2222
2223 .. opcode:: U64MOD - 64-bit Unsigned Integer Remainder
2224
2225 .. math::
2226
2227 dst.xy = src0.xy \bmod src1.xy
2228
2229 dst.zw = src0.zw \bmod src1.zw
2230
2231 .. opcode:: I64MOD - 64-bit Signed Integer Remainder
2232
2233 .. math::
2234
2235 dst.xy = src0.xy \bmod src1.xy
2236
2237 dst.zw = src0.zw \bmod src1.zw
2238
2239 .. opcode:: F2U64 - Float to 64-bit Unsigned Int
2240
2241 .. math::
2242
2243 dst.xy = (uint64_t) src0.x
2244
2245 dst.zw = (uint64_t) src0.y
2246
2247 .. opcode:: F2I64 - Float to 64-bit Int
2248
2249 .. math::
2250
2251 dst.xy = (int64_t) src0.x
2252
2253 dst.zw = (int64_t) src0.y
2254
2255 .. opcode:: U2I64 - Unsigned Integer to 64-bit Integer
2256
2257 This is a zero extension.
2258
2259 .. math::
2260
2261 dst.xy = (int64_t) src0.x
2262
2263 dst.zw = (int64_t) src0.y
2264
2265 .. opcode:: I2I64 - Signed Integer to 64-bit Integer
2266
2267 This is a sign extension.
2268
2269 .. math::
2270
2271 dst.xy = (int64_t) src0.x
2272
2273 dst.zw = (int64_t) src0.y
2274
2275 .. opcode:: D2U64 - Double to 64-bit Unsigned Int
2276
2277 .. math::
2278
2279 dst.xy = (uint64_t) src0.xy
2280
2281 dst.zw = (uint64_t) src0.zw
2282
2283 .. opcode:: D2I64 - Double to 64-bit Int
2284
2285 .. math::
2286
2287 dst.xy = (int64_t) src0.xy
2288
2289 dst.zw = (int64_t) src0.zw
2290
2291 .. opcode:: U642F - 64-bit unsigned integer to float
2292
2293 .. math::
2294
2295 dst.x = (float) src0.xy
2296
2297 dst.y = (float) src0.zw
2298
2299 .. opcode:: I642F - 64-bit Int to Float
2300
2301 .. math::
2302
2303 dst.x = (float) src0.xy
2304
2305 dst.y = (float) src0.zw
2306
2307 .. opcode:: U642D - 64-bit unsigned integer to double
2308
2309 .. math::
2310
2311 dst.xy = (double) src0.xy
2312
2313 dst.zw = (double) src0.zw
2314
2315 .. opcode:: I642D - 64-bit Int to double
2316
2317 .. math::
2318
2319 dst.xy = (double) src0.xy
2320
2321 dst.zw = (double) src0.zw
2322
2323 .. _samplingopcodes:
2324
2325 Resource Sampling Opcodes
2326 ^^^^^^^^^^^^^^^^^^^^^^^^^
2327
2328 Those opcodes follow very closely semantics of the respective Direct3D
2329 instructions. If in doubt double check Direct3D documentation.
2330 Note that the swizzle on SVIEW (src1) determines texel swizzling
2331 after lookup.
2332
2333 .. opcode:: SAMPLE
2334
2335 Using provided address, sample data from the specified texture using the
2336 filtering mode identified by the given sampler. The source data may come from
2337 any resource type other than buffers.
2338
2339 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2340
2341 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2342
2343 .. opcode:: SAMPLE_I
2344
2345 Simplified alternative to the SAMPLE instruction. Using the provided
2346 integer address, SAMPLE_I fetches data from the specified sampler view
2347 without any filtering. The source data may come from any resource type
2348 other than CUBE.
2349
2350 Syntax: ``SAMPLE_I dst, address, sampler_view``
2351
2352 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2353
2354 The 'address' is specified as unsigned integers. If the 'address' is out of
2355 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2356 components. As such the instruction doesn't honor address wrap modes, in
2357 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2358 address.w always provides an unsigned integer mipmap level. If the value is
2359 out of the range then the instruction always returns 0 in all components.
2360 address.yz are ignored for buffers and 1d textures. address.z is ignored
2361 for 1d texture arrays and 2d textures.
2362
2363 For 1D texture arrays address.y provides the array index (also as unsigned
2364 integer). If the value is out of the range of available array indices
2365 [0... (array size - 1)] then the opcode always returns 0 in all components.
2366 For 2D texture arrays address.z provides the array index, otherwise it
2367 exhibits the same behavior as in the case for 1D texture arrays. The exact
2368 semantics of the source address are presented in the table below:
2369
2370 +---------------------------+----+-----+-----+---------+
2371 | resource type | X | Y | Z | W |
2372 +===========================+====+=====+=====+=========+
2373 | ``PIPE_BUFFER`` | x | | | ignored |
2374 +---------------------------+----+-----+-----+---------+
2375 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2376 +---------------------------+----+-----+-----+---------+
2377 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2378 +---------------------------+----+-----+-----+---------+
2379 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2380 +---------------------------+----+-----+-----+---------+
2381 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2382 +---------------------------+----+-----+-----+---------+
2383 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2384 +---------------------------+----+-----+-----+---------+
2385 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2386 +---------------------------+----+-----+-----+---------+
2387 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2388 +---------------------------+----+-----+-----+---------+
2389
2390 Where 'mpl' is a mipmap level and 'idx' is the array index.
2391
2392 .. opcode:: SAMPLE_I_MS
2393
2394 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2395
2396 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2397
2398 .. opcode:: SAMPLE_B
2399
2400 Just like the SAMPLE instruction with the exception that an additional bias
2401 is applied to the level of detail computed as part of the instruction
2402 execution.
2403
2404 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2405
2406 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2407
2408 .. opcode:: SAMPLE_C
2409
2410 Similar to the SAMPLE instruction but it performs a comparison filter. The
2411 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2412 additional float32 operand, reference value, which must be a register with
2413 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2414 current samplers compare_func (in pipe_sampler_state) to compare reference
2415 value against the red component value for the surce resource at each texel
2416 that the currently configured texture filter covers based on the provided
2417 coordinates.
2418
2419 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2420
2421 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2422
2423 .. opcode:: SAMPLE_C_LZ
2424
2425 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2426 for level-zero.
2427
2428 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2429
2430 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2431
2432
2433 .. opcode:: SAMPLE_D
2434
2435 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2436 the source address in the x direction and the y direction are provided by
2437 extra parameters.
2438
2439 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2440
2441 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2442
2443 .. opcode:: SAMPLE_L
2444
2445 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2446 directly as a scalar value, representing no anisotropy.
2447
2448 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2449
2450 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2451
2452 .. opcode:: GATHER4
2453
2454 Gathers the four texels to be used in a bi-linear filtering operation and
2455 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2456 and cubemaps arrays. For 2D textures, only the addressing modes of the
2457 sampler and the top level of any mip pyramid are used. Set W to zero. It
2458 behaves like the SAMPLE instruction, but a filtered sample is not
2459 generated. The four samples that contribute to filtering are placed into
2460 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2461 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2462 magnitude of the deltas are half a texel.
2463
2464
2465 .. opcode:: SVIEWINFO
2466
2467 Query the dimensions of a given sampler view. dst receives width, height,
2468 depth or array size and number of mipmap levels as int4. The dst can have a
2469 writemask which will specify what info is the caller interested in.
2470
2471 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2472
2473 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2474
2475 src_mip_level is an unsigned integer scalar. If it's out of range then
2476 returns 0 for width, height and depth/array size but the total number of
2477 mipmap is still returned correctly for the given sampler view. The returned
2478 width, height and depth values are for the mipmap level selected by the
2479 src_mip_level and are in the number of texels. For 1d texture array width
2480 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2481 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2482 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2483 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2484 resinfo allowing swizzling dst values is ignored (due to the interaction
2485 with rcpfloat modifier which requires some swizzle handling in the state
2486 tracker anyway).
2487
2488 .. opcode:: SAMPLE_POS
2489
2490 Query the position of a sample in the given resource or render target
2491 when per-sample fragment shading is in effect.
2492
2493 Syntax: ``SAMPLE_POS dst, source, sample_index``
2494
2495 dst receives float4 (x, y, undef, undef) indicated where the sample is
2496 located. Sample locations are in the range [0, 1] where 0.5 is the center
2497 of the fragment.
2498
2499 source is either a sampler view (to indicate a shader resource) or temp
2500 register (to indicate the render target). The source register may have
2501 an optional swizzle to apply to the returned result
2502
2503 sample_index is an integer scalar indicating which sample position is to
2504 be queried.
2505
2506 If per-sample shading is not in effect or the source resource or render
2507 target is not multisampled, the result is (0.5, 0.5, undef, undef).
2508
2509 NOTE: no driver has implemented this opcode yet (and no state tracker
2510 emits it). This information is subject to change.
2511
2512 .. opcode:: SAMPLE_INFO
2513
2514 Query the number of samples in a multisampled resource or render target.
2515
2516 Syntax: ``SAMPLE_INFO dst, source``
2517
2518 dst receives int4 (n, 0, 0, 0) where n is the number of samples in a
2519 resource or the render target.
2520
2521 source is either a sampler view (to indicate a shader resource) or temp
2522 register (to indicate the render target). The source register may have
2523 an optional swizzle to apply to the returned result
2524
2525 If per-sample shading is not in effect or the source resource or render
2526 target is not multisampled, the result is (1, 0, 0, 0).
2527
2528 NOTE: no driver has implemented this opcode yet (and no state tracker
2529 emits it). This information is subject to change.
2530
2531 .. opcode:: LOD - level of detail
2532
2533 Same syntax as the SAMPLE opcode but instead of performing an actual
2534 texture lookup/filter, return the computed LOD information that the
2535 texture pipe would use to access the texture. The Y component contains
2536 the computed LOD lambda_prime. The X component contains the LOD that will
2537 be accessed, based on min/max lod's and mipmap filters.
2538 The Z and W components are set to 0.
2539
2540 Syntax: ``LOD dst, address, sampler_view, sampler``
2541
2542
2543 .. _resourceopcodes:
2544
2545 Resource Access Opcodes
2546 ^^^^^^^^^^^^^^^^^^^^^^^
2547
2548 For these opcodes, the resource can be a BUFFER, IMAGE, or MEMORY.
2549
2550 .. opcode:: LOAD - Fetch data from a shader buffer or image
2551
2552 Syntax: ``LOAD dst, resource, address``
2553
2554 Example: ``LOAD TEMP[0], BUFFER[0], TEMP[1]``
2555
2556 Using the provided integer address, LOAD fetches data
2557 from the specified buffer or texture without any
2558 filtering.
2559
2560 The 'address' is specified as a vector of unsigned
2561 integers. If the 'address' is out of range the result
2562 is unspecified.
2563
2564 Only the first mipmap level of a resource can be read
2565 from using this instruction.
2566
2567 For 1D or 2D texture arrays, the array index is
2568 provided as an unsigned integer in address.y or
2569 address.z, respectively. address.yz are ignored for
2570 buffers and 1D textures. address.z is ignored for 1D
2571 texture arrays and 2D textures. address.w is always
2572 ignored.
2573
2574 A swizzle suffix may be added to the resource argument
2575 this will cause the resource data to be swizzled accordingly.
2576
2577 .. opcode:: STORE - Write data to a shader resource
2578
2579 Syntax: ``STORE resource, address, src``
2580
2581 Example: ``STORE BUFFER[0], TEMP[0], TEMP[1]``
2582
2583 Using the provided integer address, STORE writes data
2584 to the specified buffer or texture.
2585
2586 The 'address' is specified as a vector of unsigned
2587 integers. If the 'address' is out of range the result
2588 is unspecified.
2589
2590 Only the first mipmap level of a resource can be
2591 written to using this instruction.
2592
2593 For 1D or 2D texture arrays, the array index is
2594 provided as an unsigned integer in address.y or
2595 address.z, respectively. address.yz are ignored for
2596 buffers and 1D textures. address.z is ignored for 1D
2597 texture arrays and 2D textures. address.w is always
2598 ignored.
2599
2600 .. opcode:: RESQ - Query information about a resource
2601
2602 Syntax: ``RESQ dst, resource``
2603
2604 Example: ``RESQ TEMP[0], BUFFER[0]``
2605
2606 Returns information about the buffer or image resource. For buffer
2607 resources, the size (in bytes) is returned in the x component. For
2608 image resources, .xyz will contain the width/height/layers of the
2609 image, while .w will contain the number of samples for multi-sampled
2610 images.
2611
2612 .. opcode:: FBFETCH - Load data from framebuffer
2613
2614 Syntax: ``FBFETCH dst, output``
2615
2616 Example: ``FBFETCH TEMP[0], OUT[0]``
2617
2618 This is only valid on ``COLOR`` semantic outputs. Returns the color
2619 of the current position in the framebuffer from before this fragment
2620 shader invocation. May return the same value from multiple calls for
2621 a particular output within a single invocation. Note that result may
2622 be undefined if a fragment is drawn multiple times without a blend
2623 barrier in between.
2624
2625
2626 .. _bindlessopcodes:
2627
2628 Bindless Opcodes
2629 ^^^^^^^^^^^^^^^^
2630
2631 These opcodes are for working with bindless sampler or image handles and
2632 require PIPE_CAP_BINDLESS_TEXTURE.
2633
2634 .. opcode:: IMG2HND - Get a bindless handle for a image
2635
2636 Syntax: ``IMG2HND dst, image``
2637
2638 Example: ``IMG2HND TEMP[0], IMAGE[0]``
2639
2640 Sets 'dst' to a bindless handle for 'image'.
2641
2642 .. opcode:: SAMP2HND - Get a bindless handle for a sampler
2643
2644 Syntax: ``SAMP2HND dst, sampler``
2645
2646 Example: ``SAMP2HND TEMP[0], SAMP[0]``
2647
2648 Sets 'dst' to a bindless handle for 'sampler'.
2649
2650
2651 .. _threadsyncopcodes:
2652
2653 Inter-thread synchronization opcodes
2654 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2655
2656 These opcodes are intended for communication between threads running
2657 within the same compute grid. For now they're only valid in compute
2658 programs.
2659
2660 .. opcode:: BARRIER - Thread group barrier
2661
2662 ``BARRIER``
2663
2664 This opcode suspends the execution of the current thread until all
2665 the remaining threads in the working group reach the same point of
2666 the program. Results are unspecified if any of the remaining
2667 threads terminates or never reaches an executed BARRIER instruction.
2668
2669 .. opcode:: MEMBAR - Memory barrier
2670
2671 ``MEMBAR type``
2672
2673 This opcode waits for the completion of all memory accesses based on
2674 the type passed in. The type is an immediate bitfield with the following
2675 meaning:
2676
2677 Bit 0: Shader storage buffers
2678 Bit 1: Atomic buffers
2679 Bit 2: Images
2680 Bit 3: Shared memory
2681 Bit 4: Thread group
2682
2683 These may be passed in in any combination. An implementation is free to not
2684 distinguish between these as it sees fit. However these map to all the
2685 possibilities made available by GLSL.
2686
2687 .. _atomopcodes:
2688
2689 Atomic opcodes
2690 ^^^^^^^^^^^^^^
2691
2692 These opcodes provide atomic variants of some common arithmetic and
2693 logical operations. In this context atomicity means that another
2694 concurrent memory access operation that affects the same memory
2695 location is guaranteed to be performed strictly before or after the
2696 entire execution of the atomic operation. The resource may be a BUFFER,
2697 IMAGE, HWATOMIC, or MEMORY. In the case of an image, the offset works
2698 the same as for ``LOAD`` and ``STORE``, specified above. For atomic
2699 counters, the offset is an immediate index to the base hw atomic
2700 counter for this operation.
2701 These atomic operations may only be used with 32-bit integer image formats.
2702
2703 .. opcode:: ATOMUADD - Atomic integer addition
2704
2705 Syntax: ``ATOMUADD dst, resource, offset, src``
2706
2707 Example: ``ATOMUADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2708
2709 The following operation is performed atomically:
2710
2711 .. math::
2712
2713 dst_x = resource[offset]
2714
2715 resource[offset] = dst_x + src_x
2716
2717
2718 .. opcode:: ATOMFADD - Atomic floating point addition
2719
2720 Syntax: ``ATOMFADD dst, resource, offset, src``
2721
2722 Example: ``ATOMFADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2723
2724 The following operation is performed atomically:
2725
2726 .. math::
2727
2728 dst_x = resource[offset]
2729
2730 resource[offset] = dst_x + src_x
2731
2732
2733 .. opcode:: ATOMXCHG - Atomic exchange
2734
2735 Syntax: ``ATOMXCHG dst, resource, offset, src``
2736
2737 Example: ``ATOMXCHG TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2738
2739 The following operation is performed atomically:
2740
2741 .. math::
2742
2743 dst_x = resource[offset]
2744
2745 resource[offset] = src_x
2746
2747
2748 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2749
2750 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2751
2752 Example: ``ATOMCAS TEMP[0], BUFFER[0], TEMP[1], TEMP[2], TEMP[3]``
2753
2754 The following operation is performed atomically:
2755
2756 .. math::
2757
2758 dst_x = resource[offset]
2759
2760 resource[offset] = (dst_x == cmp_x ? src_x : dst_x)
2761
2762
2763 .. opcode:: ATOMAND - Atomic bitwise And
2764
2765 Syntax: ``ATOMAND dst, resource, offset, src``
2766
2767 Example: ``ATOMAND TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2768
2769 The following operation is performed atomically:
2770
2771 .. math::
2772
2773 dst_x = resource[offset]
2774
2775 resource[offset] = dst_x \& src_x
2776
2777
2778 .. opcode:: ATOMOR - Atomic bitwise Or
2779
2780 Syntax: ``ATOMOR dst, resource, offset, src``
2781
2782 Example: ``ATOMOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2783
2784 The following operation is performed atomically:
2785
2786 .. math::
2787
2788 dst_x = resource[offset]
2789
2790 resource[offset] = dst_x | src_x
2791
2792
2793 .. opcode:: ATOMXOR - Atomic bitwise Xor
2794
2795 Syntax: ``ATOMXOR dst, resource, offset, src``
2796
2797 Example: ``ATOMXOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2798
2799 The following operation is performed atomically:
2800
2801 .. math::
2802
2803 dst_x = resource[offset]
2804
2805 resource[offset] = dst_x \oplus src_x
2806
2807
2808 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2809
2810 Syntax: ``ATOMUMIN dst, resource, offset, src``
2811
2812 Example: ``ATOMUMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2813
2814 The following operation is performed atomically:
2815
2816 .. math::
2817
2818 dst_x = resource[offset]
2819
2820 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2821
2822
2823 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2824
2825 Syntax: ``ATOMUMAX dst, resource, offset, src``
2826
2827 Example: ``ATOMUMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2828
2829 The following operation is performed atomically:
2830
2831 .. math::
2832
2833 dst_x = resource[offset]
2834
2835 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2836
2837
2838 .. opcode:: ATOMIMIN - Atomic signed minimum
2839
2840 Syntax: ``ATOMIMIN dst, resource, offset, src``
2841
2842 Example: ``ATOMIMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2843
2844 The following operation is performed atomically:
2845
2846 .. math::
2847
2848 dst_x = resource[offset]
2849
2850 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2851
2852
2853 .. opcode:: ATOMIMAX - Atomic signed maximum
2854
2855 Syntax: ``ATOMIMAX dst, resource, offset, src``
2856
2857 Example: ``ATOMIMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2858
2859 The following operation is performed atomically:
2860
2861 .. math::
2862
2863 dst_x = resource[offset]
2864
2865 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2866
2867
2868 .. opcode:: ATOMINC_WRAP - Atomic increment + wrap around
2869
2870 Syntax: ``ATOMINC_WRAP dst, resource, offset, src``
2871
2872 Example: ``ATOMINC_WRAP TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2873
2874 The following operation is performed atomically:
2875
2876 .. math::
2877
2878 dst_x = resource[offset] + 1
2879
2880 resource[offset] = dst_x <= src_x ? dst_x : 0
2881
2882
2883 .. opcode:: ATOMDEC_WRAP - Atomic decrement + wrap around
2884
2885 Syntax: ``ATOMDEC_WRAP dst, resource, offset, src``
2886
2887 Example: ``ATOMDEC_WRAP TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2888
2889 The following operation is performed atomically:
2890
2891 .. math::
2892
2893 dst_x = resource[offset]
2894
2895 resource[offset] = (dst_x > 0 && dst_x < src_x) ? dst_x - 1 : 0
2896
2897
2898 .. _interlaneopcodes:
2899
2900 Inter-lane opcodes
2901 ^^^^^^^^^^^^^^^^^^
2902
2903 These opcodes reduce the given value across the shader invocations
2904 running in the current SIMD group. Every thread in the subgroup will receive
2905 the same result. The BALLOT operations accept a single-channel argument that
2906 is treated as a boolean and produce a 64-bit value.
2907
2908 .. opcode:: VOTE_ANY - Value is set in any of the active invocations
2909
2910 Syntax: ``VOTE_ANY dst, value``
2911
2912 Example: ``VOTE_ANY TEMP[0].x, TEMP[1].x``
2913
2914
2915 .. opcode:: VOTE_ALL - Value is set in all of the active invocations
2916
2917 Syntax: ``VOTE_ALL dst, value``
2918
2919 Example: ``VOTE_ALL TEMP[0].x, TEMP[1].x``
2920
2921
2922 .. opcode:: VOTE_EQ - Value is the same in all of the active invocations
2923
2924 Syntax: ``VOTE_EQ dst, value``
2925
2926 Example: ``VOTE_EQ TEMP[0].x, TEMP[1].x``
2927
2928
2929 .. opcode:: BALLOT - Lanemask of whether the value is set in each active
2930 invocation
2931
2932 Syntax: ``BALLOT dst, value``
2933
2934 Example: ``BALLOT TEMP[0].xy, TEMP[1].x``
2935
2936 When the argument is a constant true, this produces a bitmask of active
2937 invocations. In fragment shaders, this can include helper invocations
2938 (invocations whose outputs and writes to memory are discarded, but which
2939 are used to compute derivatives).
2940
2941
2942 .. opcode:: READ_FIRST - Broadcast the value from the first active
2943 invocation to all active lanes
2944
2945 Syntax: ``READ_FIRST dst, value``
2946
2947 Example: ``READ_FIRST TEMP[0], TEMP[1]``
2948
2949
2950 .. opcode:: READ_INVOC - Retrieve the value from the given invocation
2951 (need not be uniform)
2952
2953 Syntax: ``READ_INVOC dst, value, invocation``
2954
2955 Example: ``READ_INVOC TEMP[0].xy, TEMP[1].xy, TEMP[2].x``
2956
2957 invocation.x controls the invocation number to read from for all channels.
2958 The invocation number must be the same across all active invocations in a
2959 sub-group; otherwise, the results are undefined.
2960
2961
2962 Explanation of symbols used
2963 ------------------------------
2964
2965
2966 Functions
2967 ^^^^^^^^^^^^^^
2968
2969
2970 :math:`|x|` Absolute value of `x`.
2971
2972 :math:`\lceil x \rceil` Ceiling of `x`.
2973
2974 clamp(x,y,z) Clamp x between y and z.
2975 (x < y) ? y : (x > z) ? z : x
2976
2977 :math:`\lfloor x\rfloor` Floor of `x`.
2978
2979 :math:`\log_2{x}` Logarithm of `x`, base 2.
2980
2981 max(x,y) Maximum of x and y.
2982 (x > y) ? x : y
2983
2984 min(x,y) Minimum of x and y.
2985 (x < y) ? x : y
2986
2987 partialx(x) Derivative of x relative to fragment's X.
2988
2989 partialy(x) Derivative of x relative to fragment's Y.
2990
2991 pop() Pop from stack.
2992
2993 :math:`x^y` `x` to the power `y`.
2994
2995 push(x) Push x on stack.
2996
2997 round(x) Round x.
2998
2999 trunc(x) Truncate x, i.e. drop the fraction bits.
3000
3001
3002 Keywords
3003 ^^^^^^^^^^^^^
3004
3005
3006 discard Discard fragment.
3007
3008 pc Program counter.
3009
3010 target Label of target instruction.
3011
3012
3013 Other tokens
3014 ---------------
3015
3016
3017 Declaration
3018 ^^^^^^^^^^^
3019
3020
3021 Declares a register that is will be referenced as an operand in Instruction
3022 tokens.
3023
3024 File field contains register file that is being declared and is one
3025 of TGSI_FILE.
3026
3027 UsageMask field specifies which of the register components can be accessed
3028 and is one of TGSI_WRITEMASK.
3029
3030 The Local flag specifies that a given value isn't intended for
3031 subroutine parameter passing and, as a result, the implementation
3032 isn't required to give any guarantees of it being preserved across
3033 subroutine boundaries. As it's merely a compiler hint, the
3034 implementation is free to ignore it.
3035
3036 If Dimension flag is set to 1, a Declaration Dimension token follows.
3037
3038 If Semantic flag is set to 1, a Declaration Semantic token follows.
3039
3040 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
3041
3042 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
3043
3044 If Array flag is set to 1, a Declaration Array token follows.
3045
3046 Array Declaration
3047 ^^^^^^^^^^^^^^^^^^^^^^^^
3048
3049 Declarations can optional have an ArrayID attribute which can be referred by
3050 indirect addressing operands. An ArrayID of zero is reserved and treated as
3051 if no ArrayID is specified.
3052
3053 If an indirect addressing operand refers to a specific declaration by using
3054 an ArrayID only the registers in this declaration are guaranteed to be
3055 accessed, accessing any register outside this declaration results in undefined
3056 behavior. Note that for compatibility the effective index is zero-based and
3057 not relative to the specified declaration
3058
3059 If no ArrayID is specified with an indirect addressing operand the whole
3060 register file might be accessed by this operand. This is strongly discouraged
3061 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
3062 This is only legal for TEMP and CONST register files.
3063
3064 Declaration Semantic
3065 ^^^^^^^^^^^^^^^^^^^^^^^^
3066
3067 Vertex and fragment shader input and output registers may be labeled
3068 with semantic information consisting of a name and index.
3069
3070 Follows Declaration token if Semantic bit is set.
3071
3072 Since its purpose is to link a shader with other stages of the pipeline,
3073 it is valid to follow only those Declaration tokens that declare a register
3074 either in INPUT or OUTPUT file.
3075
3076 SemanticName field contains the semantic name of the register being declared.
3077 There is no default value.
3078
3079 SemanticIndex is an optional subscript that can be used to distinguish
3080 different register declarations with the same semantic name. The default value
3081 is 0.
3082
3083 The meanings of the individual semantic names are explained in the following
3084 sections.
3085
3086 TGSI_SEMANTIC_POSITION
3087 """"""""""""""""""""""
3088
3089 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
3090 output register which contains the homogeneous vertex position in the clip
3091 space coordinate system. After clipping, the X, Y and Z components of the
3092 vertex will be divided by the W value to get normalized device coordinates.
3093
3094 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
3095 fragment shader input (or system value, depending on which one is
3096 supported by the driver) contains the fragment's window position. The X
3097 component starts at zero and always increases from left to right.
3098 The Y component starts at zero and always increases but Y=0 may either
3099 indicate the top of the window or the bottom depending on the fragment
3100 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
3101 The Z coordinate ranges from 0 to 1 to represent depth from the front
3102 to the back of the Z buffer. The W component contains the interpolated
3103 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
3104 but unlike d3d10 which interpolates the same 1/w but then gives back
3105 the reciprocal of the interpolated value).
3106
3107 Fragment shaders may also declare an output register with
3108 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
3109 the fragment shader to change the fragment's Z position.
3110
3111
3112
3113 TGSI_SEMANTIC_COLOR
3114 """""""""""""""""""
3115
3116 For vertex shader outputs or fragment shader inputs/outputs, this
3117 label indicates that the register contains an R,G,B,A color.
3118
3119 Several shader inputs/outputs may contain colors so the semantic index
3120 is used to distinguish them. For example, color[0] may be the diffuse
3121 color while color[1] may be the specular color.
3122
3123 This label is needed so that the flat/smooth shading can be applied
3124 to the right interpolants during rasterization.
3125
3126
3127
3128 TGSI_SEMANTIC_BCOLOR
3129 """"""""""""""""""""
3130
3131 Back-facing colors are only used for back-facing polygons, and are only valid
3132 in vertex shader outputs. After rasterization, all polygons are front-facing
3133 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
3134 so all BCOLORs effectively become regular COLORs in the fragment shader.
3135
3136
3137 TGSI_SEMANTIC_FOG
3138 """""""""""""""""
3139
3140 Vertex shader inputs and outputs and fragment shader inputs may be
3141 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
3142 a fog coordinate. Typically, the fragment shader will use the fog coordinate
3143 to compute a fog blend factor which is used to blend the normal fragment color
3144 with a constant fog color. But fog coord really is just an ordinary vec4
3145 register like regular semantics.
3146
3147
3148 TGSI_SEMANTIC_PSIZE
3149 """""""""""""""""""
3150
3151 Vertex shader input and output registers may be labeled with
3152 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
3153 in the form (S, 0, 0, 1). The point size controls the width or diameter
3154 of points for rasterization. This label cannot be used in fragment
3155 shaders.
3156
3157 When using this semantic, be sure to set the appropriate state in the
3158 :ref:`rasterizer` first.
3159
3160
3161 TGSI_SEMANTIC_TEXCOORD
3162 """"""""""""""""""""""
3163
3164 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3165
3166 Vertex shader outputs and fragment shader inputs may be labeled with
3167 this semantic to make them replaceable by sprite coordinates via the
3168 sprite_coord_enable state in the :ref:`rasterizer`.
3169 The semantic index permitted with this semantic is limited to <= 7.
3170
3171 If the driver does not support TEXCOORD, sprite coordinate replacement
3172 applies to inputs with the GENERIC semantic instead.
3173
3174 The intended use case for this semantic is gl_TexCoord.
3175
3176
3177 TGSI_SEMANTIC_PCOORD
3178 """"""""""""""""""""
3179
3180 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3181
3182 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
3183 that the register contains sprite coordinates in the form (x, y, 0, 1), if
3184 the current primitive is a point and point sprites are enabled. Otherwise,
3185 the contents of the register are undefined.
3186
3187 The intended use case for this semantic is gl_PointCoord.
3188
3189
3190 TGSI_SEMANTIC_GENERIC
3191 """""""""""""""""""""
3192
3193 All vertex/fragment shader inputs/outputs not labeled with any other
3194 semantic label can be considered to be generic attributes. Typical
3195 uses of generic inputs/outputs are texcoords and user-defined values.
3196
3197
3198 TGSI_SEMANTIC_NORMAL
3199 """"""""""""""""""""
3200
3201 Indicates that a vertex shader input is a normal vector. This is
3202 typically only used for legacy graphics APIs.
3203
3204
3205 TGSI_SEMANTIC_FACE
3206 """"""""""""""""""
3207
3208 This label applies to fragment shader inputs (or system values,
3209 depending on which one is supported by the driver) and indicates that
3210 the register contains front/back-face information.
3211
3212 If it is an input, it will be a floating-point vector in the form (F, 0, 0, 1),
3213 where F will be positive when the fragment belongs to a front-facing polygon,
3214 and negative when the fragment belongs to a back-facing polygon.
3215
3216 If it is a system value, it will be an integer vector in the form (F, 0, 0, 1),
3217 where F is 0xffffffff when the fragment belongs to a front-facing polygon and
3218 0 when the fragment belongs to a back-facing polygon.
3219
3220
3221 TGSI_SEMANTIC_EDGEFLAG
3222 """"""""""""""""""""""
3223
3224 For vertex shaders, this sematic label indicates that an input or
3225 output is a boolean edge flag. The register layout is [F, x, x, x]
3226 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
3227 simply copies the edge flag input to the edgeflag output.
3228
3229 Edge flags are used to control which lines or points are actually
3230 drawn when the polygon mode converts triangles/quads/polygons into
3231 points or lines.
3232
3233
3234 TGSI_SEMANTIC_STENCIL
3235 """""""""""""""""""""
3236
3237 For fragment shaders, this semantic label indicates that an output
3238 is a writable stencil reference value. Only the Y component is writable.
3239 This allows the fragment shader to change the fragments stencilref value.
3240
3241
3242 TGSI_SEMANTIC_VIEWPORT_INDEX
3243 """"""""""""""""""""""""""""
3244
3245 For geometry shaders, this semantic label indicates that an output
3246 contains the index of the viewport (and scissor) to use.
3247 This is an integer value, and only the X component is used.
3248
3249 If PIPE_CAP_TGSI_VS_LAYER_VIEWPORT or PIPE_CAP_TGSI_TES_LAYER_VIEWPORT is
3250 supported, then this semantic label can also be used in vertex or
3251 tessellation evaluation shaders, respectively. Only the value written in the
3252 last vertex processing stage is used.
3253
3254
3255 TGSI_SEMANTIC_LAYER
3256 """""""""""""""""""
3257
3258 For geometry shaders, this semantic label indicates that an output
3259 contains the layer value to use for the color and depth/stencil surfaces.
3260 This is an integer value, and only the X component is used.
3261 (Also known as rendertarget array index.)
3262
3263 If PIPE_CAP_TGSI_VS_LAYER_VIEWPORT or PIPE_CAP_TGSI_TES_LAYER_VIEWPORT is
3264 supported, then this semantic label can also be used in vertex or
3265 tessellation evaluation shaders, respectively. Only the value written in the
3266 last vertex processing stage is used.
3267
3268
3269 TGSI_SEMANTIC_CLIPDIST
3270 """"""""""""""""""""""
3271
3272 Note this covers clipping and culling distances.
3273
3274 When components of vertex elements are identified this way, these
3275 values are each assumed to be a float32 signed distance to a plane.
3276
3277 For clip distances:
3278 Primitive setup only invokes rasterization on pixels for which
3279 the interpolated plane distances are >= 0.
3280
3281 For cull distances:
3282 Primitives will be completely discarded if the plane distance
3283 for all of the vertices in the primitive are < 0.
3284 If a vertex has a cull distance of NaN, that vertex counts as "out"
3285 (as if its < 0);
3286
3287 Multiple clip/cull planes can be implemented simultaneously, by
3288 annotating multiple components of one or more vertex elements with
3289 the above specified semantic.
3290 The limits on both clip and cull distances are bound
3291 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3292 the maximum number of components that can be used to hold the
3293 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3294 which specifies the maximum number of registers which can be
3295 annotated with those semantics.
3296 The properties NUM_CLIPDIST_ENABLED and NUM_CULLDIST_ENABLED
3297 are used to divide up the 2 x vec4 space between clipping and culling.
3298
3299 TGSI_SEMANTIC_SAMPLEID
3300 """"""""""""""""""""""
3301
3302 For fragment shaders, this semantic label indicates that a system value
3303 contains the current sample id (i.e. gl_SampleID) as an unsigned int.
3304 Only the X component is used. If per-sample shading is not enabled,
3305 the result is (0, undef, undef, undef).
3306
3307 Note that if the fragment shader uses this system value, the fragment
3308 shader is automatically executed at per sample frequency.
3309
3310 TGSI_SEMANTIC_SAMPLEPOS
3311 """""""""""""""""""""""
3312
3313 For fragment shaders, this semantic label indicates that a system
3314 value contains the current sample's position as float4(x, y, undef, undef)
3315 in the render target (i.e. gl_SamplePosition) when per-fragment shading
3316 is in effect. Position values are in the range [0, 1] where 0.5 is
3317 the center of the fragment.
3318
3319 Note that if the fragment shader uses this system value, the fragment
3320 shader is automatically executed at per sample frequency.
3321
3322 TGSI_SEMANTIC_SAMPLEMASK
3323 """"""""""""""""""""""""
3324
3325 For fragment shaders, this semantic label can be applied to either a
3326 shader system value input or output.
3327
3328 For a system value, the sample mask indicates the set of samples covered by
3329 the current primitive. If MSAA is not enabled, the value is (1, 0, 0, 0).
3330
3331 For an output, the sample mask is used to disable further sample processing.
3332
3333 For both, the register type is uint[4] but only the X component is used
3334 (i.e. gl_SampleMask[0]). Each bit corresponds to one sample position (up
3335 to 32x MSAA is supported).
3336
3337 TGSI_SEMANTIC_INVOCATIONID
3338 """"""""""""""""""""""""""
3339
3340 For geometry shaders, this semantic label indicates that a system value
3341 contains the current invocation id (i.e. gl_InvocationID).
3342 This is an integer value, and only the X component is used.
3343
3344 TGSI_SEMANTIC_INSTANCEID
3345 """"""""""""""""""""""""
3346
3347 For vertex shaders, this semantic label indicates that a system value contains
3348 the current instance id (i.e. gl_InstanceID). It does not include the base
3349 instance. This is an integer value, and only the X component is used.
3350
3351 TGSI_SEMANTIC_VERTEXID
3352 """"""""""""""""""""""
3353
3354 For vertex shaders, this semantic label indicates that a system value contains
3355 the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
3356 base vertex. This is an integer value, and only the X component is used.
3357
3358 TGSI_SEMANTIC_VERTEXID_NOBASE
3359 """""""""""""""""""""""""""""""
3360
3361 For vertex shaders, this semantic label indicates that a system value contains
3362 the current vertex id without including the base vertex (this corresponds to
3363 d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
3364 == TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
3365 is used.
3366
3367 TGSI_SEMANTIC_BASEVERTEX
3368 """"""""""""""""""""""""
3369
3370 For vertex shaders, this semantic label indicates that a system value contains
3371 the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
3372 this contains the first (or start) value instead.
3373 This is an integer value, and only the X component is used.
3374
3375 TGSI_SEMANTIC_PRIMID
3376 """"""""""""""""""""
3377
3378 For geometry and fragment shaders, this semantic label indicates the value
3379 contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
3380 and only the X component is used.
3381 FIXME: This right now can be either a ordinary input or a system value...
3382
3383
3384 TGSI_SEMANTIC_PATCH
3385 """""""""""""""""""
3386
3387 For tessellation evaluation/control shaders, this semantic label indicates a
3388 generic per-patch attribute. Such semantics will not implicitly be per-vertex
3389 arrays.
3390
3391 TGSI_SEMANTIC_TESSCOORD
3392 """""""""""""""""""""""
3393
3394 For tessellation evaluation shaders, this semantic label indicates the
3395 coordinates of the vertex being processed. This is available in XYZ; W is
3396 undefined.
3397
3398 TGSI_SEMANTIC_TESSOUTER
3399 """""""""""""""""""""""
3400
3401 For tessellation evaluation/control shaders, this semantic label indicates the
3402 outer tessellation levels of the patch. Isoline tessellation will only have XY
3403 defined, triangle will have XYZ and quads will have XYZW defined. This
3404 corresponds to gl_TessLevelOuter.
3405
3406 TGSI_SEMANTIC_TESSINNER
3407 """""""""""""""""""""""
3408
3409 For tessellation evaluation/control shaders, this semantic label indicates the
3410 inner tessellation levels of the patch. The X value is only defined for
3411 triangle tessellation, while quads will have XY defined. This is entirely
3412 undefined for isoline tessellation.
3413
3414 TGSI_SEMANTIC_VERTICESIN
3415 """"""""""""""""""""""""
3416
3417 For tessellation evaluation/control shaders, this semantic label indicates the
3418 number of vertices provided in the input patch. Only the X value is defined.
3419
3420 TGSI_SEMANTIC_HELPER_INVOCATION
3421 """""""""""""""""""""""""""""""
3422
3423 For fragment shaders, this semantic indicates whether the current
3424 invocation is covered or not. Helper invocations are created in order
3425 to properly compute derivatives, however it may be desirable to skip
3426 some of the logic in those cases. See ``gl_HelperInvocation`` documentation.
3427
3428 TGSI_SEMANTIC_BASEINSTANCE
3429 """"""""""""""""""""""""""
3430
3431 For vertex shaders, the base instance argument supplied for this
3432 draw. This is an integer value, and only the X component is used.
3433
3434 TGSI_SEMANTIC_DRAWID
3435 """"""""""""""""""""
3436
3437 For vertex shaders, the zero-based index of the current draw in a
3438 ``glMultiDraw*`` invocation. This is an integer value, and only the X
3439 component is used.
3440
3441
3442 TGSI_SEMANTIC_WORK_DIM
3443 """"""""""""""""""""""
3444
3445 For compute shaders started via opencl this retrieves the work_dim
3446 parameter to the clEnqueueNDRangeKernel call with which the shader
3447 was started.
3448
3449
3450 TGSI_SEMANTIC_GRID_SIZE
3451 """""""""""""""""""""""
3452
3453 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3454 of a grid of thread blocks.
3455
3456
3457 TGSI_SEMANTIC_BLOCK_ID
3458 """"""""""""""""""""""
3459
3460 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3461 current block inside of the grid.
3462
3463
3464 TGSI_SEMANTIC_BLOCK_SIZE
3465 """"""""""""""""""""""""
3466
3467 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3468 of a block in threads.
3469
3470
3471 TGSI_SEMANTIC_THREAD_ID
3472 """""""""""""""""""""""
3473
3474 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3475 current thread inside of the block.
3476
3477
3478 TGSI_SEMANTIC_SUBGROUP_SIZE
3479 """""""""""""""""""""""""""
3480
3481 This semantic indicates the subgroup size for the current invocation. This is
3482 an integer of at most 64, as it indicates the width of lanemasks. It does not
3483 depend on the number of invocations that are active.
3484
3485
3486 TGSI_SEMANTIC_SUBGROUP_INVOCATION
3487 """""""""""""""""""""""""""""""""
3488
3489 The index of the current invocation within its subgroup.
3490
3491
3492 TGSI_SEMANTIC_SUBGROUP_EQ_MASK
3493 """"""""""""""""""""""""""""""
3494
3495 A bit mask of ``bit index == TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3496 ``1 << subgroup_invocation`` in arbitrary precision arithmetic.
3497
3498
3499 TGSI_SEMANTIC_SUBGROUP_GE_MASK
3500 """"""""""""""""""""""""""""""
3501
3502 A bit mask of ``bit index >= TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3503 ``((1 << (subgroup_size - subgroup_invocation)) - 1) << subgroup_invocation``
3504 in arbitrary precision arithmetic.
3505
3506
3507 TGSI_SEMANTIC_SUBGROUP_GT_MASK
3508 """"""""""""""""""""""""""""""
3509
3510 A bit mask of ``bit index > TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3511 ``((1 << (subgroup_size - subgroup_invocation - 1)) - 1) << (subgroup_invocation + 1)``
3512 in arbitrary precision arithmetic.
3513
3514
3515 TGSI_SEMANTIC_SUBGROUP_LE_MASK
3516 """"""""""""""""""""""""""""""
3517
3518 A bit mask of ``bit index <= TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3519 ``(1 << (subgroup_invocation + 1)) - 1`` in arbitrary precision arithmetic.
3520
3521
3522 TGSI_SEMANTIC_SUBGROUP_LT_MASK
3523 """"""""""""""""""""""""""""""
3524
3525 A bit mask of ``bit index < TGSI_SEMANTIC_SUBGROUP_INVOCATION``, i.e.
3526 ``(1 << subgroup_invocation) - 1`` in arbitrary precision arithmetic.
3527
3528
3529 TGSI_SEMANTIC_VIEWPORT_MASK
3530 """""""""""""""""""""""""""
3531
3532 A bit mask of viewports to broadcast the current primitive to. See
3533 GL_NV_viewport_array2 for more details.
3534
3535
3536 TGSI_SEMANTIC_TESS_DEFAULT_OUTER_LEVEL
3537 """"""""""""""""""""""""""""""""""""""
3538
3539 A system value equal to the default_outer_level array set via set_tess_level.
3540
3541
3542 TGSI_SEMANTIC_TESS_DEFAULT_INNER_LEVEL
3543 """"""""""""""""""""""""""""""""""""""
3544
3545 A system value equal to the default_inner_level array set via set_tess_level.
3546
3547
3548 Declaration Interpolate
3549 ^^^^^^^^^^^^^^^^^^^^^^^
3550
3551 This token is only valid for fragment shader INPUT declarations.
3552
3553 The Interpolate field specifes the way input is being interpolated by
3554 the rasteriser and is one of TGSI_INTERPOLATE_*.
3555
3556 The Location field specifies the location inside the pixel that the
3557 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
3558 when per-sample shading is enabled, the implementation may choose to
3559 interpolate at the sample irrespective of the Location field.
3560
3561 The CylindricalWrap bitfield specifies which register components
3562 should be subject to cylindrical wrapping when interpolating by the
3563 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
3564 should be interpolated according to cylindrical wrapping rules.
3565
3566
3567 Declaration Sampler View
3568 ^^^^^^^^^^^^^^^^^^^^^^^^
3569
3570 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
3571
3572 DCL SVIEW[#], resource, type(s)
3573
3574 Declares a shader input sampler view and assigns it to a SVIEW[#]
3575 register.
3576
3577 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
3578
3579 type must be 1 or 4 entries (if specifying on a per-component
3580 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
3581
3582 For TEX\* style texture sample opcodes (as opposed to SAMPLE\* opcodes
3583 which take an explicit SVIEW[#] source register), there may be optionally
3584 SVIEW[#] declarations. In this case, the SVIEW index is implied by the
3585 SAMP index, and there must be a corresponding SVIEW[#] declaration for
3586 each SAMP[#] declaration. Drivers are free to ignore this if they wish.
3587 But note in particular that some drivers need to know the sampler type
3588 (float/int/unsigned) in order to generate the correct code, so cases
3589 where integer textures are sampled, SVIEW[#] declarations should be
3590 used.
3591
3592 NOTE: It is NOT legal to mix SAMPLE\* style opcodes and TEX\* opcodes
3593 in the same shader.
3594
3595 Declaration Resource
3596 ^^^^^^^^^^^^^^^^^^^^
3597
3598 Follows Declaration token if file is TGSI_FILE_RESOURCE.
3599
3600 DCL RES[#], resource [, WR] [, RAW]
3601
3602 Declares a shader input resource and assigns it to a RES[#]
3603 register.
3604
3605 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
3606 2DArray.
3607
3608 If the RAW keyword is not specified, the texture data will be
3609 subject to conversion, swizzling and scaling as required to yield
3610 the specified data type from the physical data format of the bound
3611 resource.
3612
3613 If the RAW keyword is specified, no channel conversion will be
3614 performed: the values read for each of the channels (X,Y,Z,W) will
3615 correspond to consecutive words in the same order and format
3616 they're found in memory. No element-to-address conversion will be
3617 performed either: the value of the provided X coordinate will be
3618 interpreted in byte units instead of texel units. The result of
3619 accessing a misaligned address is undefined.
3620
3621 Usage of the STORE opcode is only allowed if the WR (writable) flag
3622 is set.
3623
3624 Hardware Atomic Register File
3625 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3626
3627 Hardware atomics are declared as a 2D array with an optional array id.
3628
3629 The first member of the dimension is the buffer resource the atomic
3630 is located in.
3631 The second member is a range into the buffer resource, either for
3632 one or multiple counters. If this is an array, the declaration will have
3633 an unique array id.
3634
3635 Each counter is 4 bytes in size, and index and ranges are in counters not bytes.
3636 DCL HWATOMIC[0][0]
3637 DCL HWATOMIC[0][1]
3638
3639 This declares two atomics, one at the start of the buffer and one in the
3640 second 4 bytes.
3641
3642 DCL HWATOMIC[0][0]
3643 DCL HWATOMIC[1][0]
3644 DCL HWATOMIC[1][1..3], ARRAY(1)
3645
3646 This declares 5 atomics, one in buffer 0 at 0,
3647 one in buffer 1 at 0, and an array of 3 atomics in
3648 the buffer 1, starting at 1.
3649
3650 Properties
3651 ^^^^^^^^^^^^^^^^^^^^^^^^
3652
3653 Properties are general directives that apply to the whole TGSI program.
3654
3655 FS_COORD_ORIGIN
3656 """""""""""""""
3657
3658 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
3659 The default value is UPPER_LEFT.
3660
3661 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
3662 increase downward and rightward.
3663 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
3664 increase upward and rightward.
3665
3666 OpenGL defaults to LOWER_LEFT, and is configurable with the
3667 GL_ARB_fragment_coord_conventions extension.
3668
3669 DirectX 9/10 use UPPER_LEFT.
3670
3671 FS_COORD_PIXEL_CENTER
3672 """""""""""""""""""""
3673
3674 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
3675 The default value is HALF_INTEGER.
3676
3677 If HALF_INTEGER, the fractionary part of the position will be 0.5
3678 If INTEGER, the fractionary part of the position will be 0.0
3679
3680 Note that this does not affect the set of fragments generated by
3681 rasterization, which is instead controlled by half_pixel_center in the
3682 rasterizer.
3683
3684 OpenGL defaults to HALF_INTEGER, and is configurable with the
3685 GL_ARB_fragment_coord_conventions extension.
3686
3687 DirectX 9 uses INTEGER.
3688 DirectX 10 uses HALF_INTEGER.
3689
3690 FS_COLOR0_WRITES_ALL_CBUFS
3691 """"""""""""""""""""""""""
3692 Specifies that writes to the fragment shader color 0 are replicated to all
3693 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
3694 fragData is directed to a single color buffer, but fragColor is broadcast.
3695
3696 VS_PROHIBIT_UCPS
3697 """"""""""""""""""""""""""
3698 If this property is set on the program bound to the shader stage before the
3699 fragment shader, user clip planes should have no effect (be disabled) even if
3700 that shader does not write to any clip distance outputs and the rasterizer's
3701 clip_plane_enable is non-zero.
3702 This property is only supported by drivers that also support shader clip
3703 distance outputs.
3704 This is useful for APIs that don't have UCPs and where clip distances written
3705 by a shader cannot be disabled.
3706
3707 GS_INVOCATIONS
3708 """"""""""""""
3709
3710 Specifies the number of times a geometry shader should be executed for each
3711 input primitive. Each invocation will have a different
3712 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
3713 be 1.
3714
3715 VS_WINDOW_SPACE_POSITION
3716 """"""""""""""""""""""""""
3717 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
3718 is assumed to contain window space coordinates.
3719 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
3720 directly taken from the 4-th component of the shader output.
3721 Naturally, clipping is not performed on window coordinates either.
3722 The effect of this property is undefined if a geometry or tessellation shader
3723 are in use.
3724
3725 TCS_VERTICES_OUT
3726 """"""""""""""""
3727
3728 The number of vertices written by the tessellation control shader. This
3729 effectively defines the patch input size of the tessellation evaluation shader
3730 as well.
3731
3732 TES_PRIM_MODE
3733 """""""""""""
3734
3735 This sets the tessellation primitive mode, one of ``PIPE_PRIM_TRIANGLES``,
3736 ``PIPE_PRIM_QUADS``, or ``PIPE_PRIM_LINES``. (Unlike in GL, there is no
3737 separate isolines settings, the regular lines is assumed to mean isolines.)
3738
3739 TES_SPACING
3740 """""""""""
3741
3742 This sets the spacing mode of the tessellation generator, one of
3743 ``PIPE_TESS_SPACING_*``.
3744
3745 TES_VERTEX_ORDER_CW
3746 """""""""""""""""""
3747
3748 This sets the vertex order to be clockwise if the value is 1, or
3749 counter-clockwise if set to 0.
3750
3751 TES_POINT_MODE
3752 """"""""""""""
3753
3754 If set to a non-zero value, this turns on point mode for the tessellator,
3755 which means that points will be generated instead of primitives.
3756
3757 NUM_CLIPDIST_ENABLED
3758 """"""""""""""""""""
3759
3760 How many clip distance scalar outputs are enabled.
3761
3762 NUM_CULLDIST_ENABLED
3763 """"""""""""""""""""
3764
3765 How many cull distance scalar outputs are enabled.
3766
3767 FS_EARLY_DEPTH_STENCIL
3768 """"""""""""""""""""""
3769
3770 Whether depth test, stencil test, and occlusion query should run before
3771 the fragment shader (regardless of fragment shader side effects). Corresponds
3772 to GLSL early_fragment_tests.
3773
3774 NEXT_SHADER
3775 """""""""""
3776
3777 Which shader stage will MOST LIKELY follow after this shader when the shader
3778 is bound. This is only a hint to the driver and doesn't have to be precise.
3779 Only set for VS and TES.
3780
3781 CS_FIXED_BLOCK_WIDTH / HEIGHT / DEPTH
3782 """""""""""""""""""""""""""""""""""""
3783
3784 Threads per block in each dimension, if known at compile time. If the block size
3785 is known all three should be at least 1. If it is unknown they should all be set
3786 to 0 or not set.
3787
3788 MUL_ZERO_WINS
3789 """""""""""""
3790
3791 The MUL TGSI operation (FP32 multiplication) will return 0 if either
3792 of the operands are equal to 0. That means that 0 * Inf = 0. This
3793 should be set the same way for an entire pipeline. Note that this
3794 applies not only to the literal MUL TGSI opcode, but all FP32
3795 multiplications implied by other operations, such as MAD, FMA, DP2,
3796 DP3, DP4, DST, LOG, LRP, and possibly others. If there is a
3797 mismatch between shaders, then it is unspecified whether this behavior
3798 will be enabled.
3799
3800 FS_POST_DEPTH_COVERAGE
3801 """"""""""""""""""""""
3802
3803 When enabled, the input for TGSI_SEMANTIC_SAMPLEMASK will exclude samples
3804 that have failed the depth/stencil tests. This is only valid when
3805 FS_EARLY_DEPTH_STENCIL is also specified.
3806
3807
3808 Texture Sampling and Texture Formats
3809 ------------------------------------
3810
3811 This table shows how texture image components are returned as (x,y,z,w) tuples
3812 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
3813 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
3814 well.
3815
3816 +--------------------+--------------+--------------------+--------------+
3817 | Texture Components | Gallium | OpenGL | Direct3D 9 |
3818 +====================+==============+====================+==============+
3819 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
3820 +--------------------+--------------+--------------------+--------------+
3821 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
3822 +--------------------+--------------+--------------------+--------------+
3823 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
3824 +--------------------+--------------+--------------------+--------------+
3825 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
3826 +--------------------+--------------+--------------------+--------------+
3827 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
3828 +--------------------+--------------+--------------------+--------------+
3829 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
3830 +--------------------+--------------+--------------------+--------------+
3831 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
3832 +--------------------+--------------+--------------------+--------------+
3833 | I | (i, i, i, i) | (i, i, i, i) | N/A |
3834 +--------------------+--------------+--------------------+--------------+
3835 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3836 | | | [#envmap-bumpmap]_ | |
3837 +--------------------+--------------+--------------------+--------------+
3838 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3839 | | | [#depth-tex-mode]_ | |
3840 +--------------------+--------------+--------------------+--------------+
3841 | S | (s, s, s, s) | unknown | unknown |
3842 +--------------------+--------------+--------------------+--------------+
3843
3844 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3845 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3846 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.