gallium/tgsi: Introduce the "LOCAL" register declaration modifier.
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`Double Opcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Instruction Set
27 ---------------
28
29 Core ISA
30 ^^^^^^^^^^^^^^^^^^^^^^^^^
31
32 These opcodes are guaranteed to be available regardless of the driver being
33 used.
34
35 .. opcode:: ARL - Address Register Load
36
37 .. math::
38
39 dst.x = \lfloor src.x\rfloor
40
41 dst.y = \lfloor src.y\rfloor
42
43 dst.z = \lfloor src.z\rfloor
44
45 dst.w = \lfloor src.w\rfloor
46
47
48 .. opcode:: MOV - Move
49
50 .. math::
51
52 dst.x = src.x
53
54 dst.y = src.y
55
56 dst.z = src.z
57
58 dst.w = src.w
59
60
61 .. opcode:: LIT - Light Coefficients
62
63 .. math::
64
65 dst.x = 1
66
67 dst.y = max(src.x, 0)
68
69 dst.z = (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0
70
71 dst.w = 1
72
73
74 .. opcode:: RCP - Reciprocal
75
76 This instruction replicates its result.
77
78 .. math::
79
80 dst = \frac{1}{src.x}
81
82
83 .. opcode:: RSQ - Reciprocal Square Root
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{\sqrt{|src.x|}}
90
91
92 .. opcode:: EXP - Approximate Exponential Base 2
93
94 .. math::
95
96 dst.x = 2^{\lfloor src.x\rfloor}
97
98 dst.y = src.x - \lfloor src.x\rfloor
99
100 dst.z = 2^{src.x}
101
102 dst.w = 1
103
104
105 .. opcode:: LOG - Approximate Logarithm Base 2
106
107 .. math::
108
109 dst.x = \lfloor\log_2{|src.x|}\rfloor
110
111 dst.y = \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}}
112
113 dst.z = \log_2{|src.x|}
114
115 dst.w = 1
116
117
118 .. opcode:: MUL - Multiply
119
120 .. math::
121
122 dst.x = src0.x \times src1.x
123
124 dst.y = src0.y \times src1.y
125
126 dst.z = src0.z \times src1.z
127
128 dst.w = src0.w \times src1.w
129
130
131 .. opcode:: ADD - Add
132
133 .. math::
134
135 dst.x = src0.x + src1.x
136
137 dst.y = src0.y + src1.y
138
139 dst.z = src0.z + src1.z
140
141 dst.w = src0.w + src1.w
142
143
144 .. opcode:: DP3 - 3-component Dot Product
145
146 This instruction replicates its result.
147
148 .. math::
149
150 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
151
152
153 .. opcode:: DP4 - 4-component Dot Product
154
155 This instruction replicates its result.
156
157 .. math::
158
159 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
160
161
162 .. opcode:: DST - Distance Vector
163
164 .. math::
165
166 dst.x = 1
167
168 dst.y = src0.y \times src1.y
169
170 dst.z = src0.z
171
172 dst.w = src1.w
173
174
175 .. opcode:: MIN - Minimum
176
177 .. math::
178
179 dst.x = min(src0.x, src1.x)
180
181 dst.y = min(src0.y, src1.y)
182
183 dst.z = min(src0.z, src1.z)
184
185 dst.w = min(src0.w, src1.w)
186
187
188 .. opcode:: MAX - Maximum
189
190 .. math::
191
192 dst.x = max(src0.x, src1.x)
193
194 dst.y = max(src0.y, src1.y)
195
196 dst.z = max(src0.z, src1.z)
197
198 dst.w = max(src0.w, src1.w)
199
200
201 .. opcode:: SLT - Set On Less Than
202
203 .. math::
204
205 dst.x = (src0.x < src1.x) ? 1 : 0
206
207 dst.y = (src0.y < src1.y) ? 1 : 0
208
209 dst.z = (src0.z < src1.z) ? 1 : 0
210
211 dst.w = (src0.w < src1.w) ? 1 : 0
212
213
214 .. opcode:: SGE - Set On Greater Equal Than
215
216 .. math::
217
218 dst.x = (src0.x >= src1.x) ? 1 : 0
219
220 dst.y = (src0.y >= src1.y) ? 1 : 0
221
222 dst.z = (src0.z >= src1.z) ? 1 : 0
223
224 dst.w = (src0.w >= src1.w) ? 1 : 0
225
226
227 .. opcode:: MAD - Multiply And Add
228
229 .. math::
230
231 dst.x = src0.x \times src1.x + src2.x
232
233 dst.y = src0.y \times src1.y + src2.y
234
235 dst.z = src0.z \times src1.z + src2.z
236
237 dst.w = src0.w \times src1.w + src2.w
238
239
240 .. opcode:: SUB - Subtract
241
242 .. math::
243
244 dst.x = src0.x - src1.x
245
246 dst.y = src0.y - src1.y
247
248 dst.z = src0.z - src1.z
249
250 dst.w = src0.w - src1.w
251
252
253 .. opcode:: LRP - Linear Interpolate
254
255 .. math::
256
257 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
258
259 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
260
261 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
262
263 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
264
265
266 .. opcode:: CND - Condition
267
268 .. math::
269
270 dst.x = (src2.x > 0.5) ? src0.x : src1.x
271
272 dst.y = (src2.y > 0.5) ? src0.y : src1.y
273
274 dst.z = (src2.z > 0.5) ? src0.z : src1.z
275
276 dst.w = (src2.w > 0.5) ? src0.w : src1.w
277
278
279 .. opcode:: DP2A - 2-component Dot Product And Add
280
281 .. math::
282
283 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
284
285 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
286
287 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
288
289 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
290
291
292 .. opcode:: FRC - Fraction
293
294 .. math::
295
296 dst.x = src.x - \lfloor src.x\rfloor
297
298 dst.y = src.y - \lfloor src.y\rfloor
299
300 dst.z = src.z - \lfloor src.z\rfloor
301
302 dst.w = src.w - \lfloor src.w\rfloor
303
304
305 .. opcode:: CLAMP - Clamp
306
307 .. math::
308
309 dst.x = clamp(src0.x, src1.x, src2.x)
310
311 dst.y = clamp(src0.y, src1.y, src2.y)
312
313 dst.z = clamp(src0.z, src1.z, src2.z)
314
315 dst.w = clamp(src0.w, src1.w, src2.w)
316
317
318 .. opcode:: FLR - Floor
319
320 This is identical to :opcode:`ARL`.
321
322 .. math::
323
324 dst.x = \lfloor src.x\rfloor
325
326 dst.y = \lfloor src.y\rfloor
327
328 dst.z = \lfloor src.z\rfloor
329
330 dst.w = \lfloor src.w\rfloor
331
332
333 .. opcode:: ROUND - Round
334
335 .. math::
336
337 dst.x = round(src.x)
338
339 dst.y = round(src.y)
340
341 dst.z = round(src.z)
342
343 dst.w = round(src.w)
344
345
346 .. opcode:: EX2 - Exponential Base 2
347
348 This instruction replicates its result.
349
350 .. math::
351
352 dst = 2^{src.x}
353
354
355 .. opcode:: LG2 - Logarithm Base 2
356
357 This instruction replicates its result.
358
359 .. math::
360
361 dst = \log_2{src.x}
362
363
364 .. opcode:: POW - Power
365
366 This instruction replicates its result.
367
368 .. math::
369
370 dst = src0.x^{src1.x}
371
372 .. opcode:: XPD - Cross Product
373
374 .. math::
375
376 dst.x = src0.y \times src1.z - src1.y \times src0.z
377
378 dst.y = src0.z \times src1.x - src1.z \times src0.x
379
380 dst.z = src0.x \times src1.y - src1.x \times src0.y
381
382 dst.w = 1
383
384
385 .. opcode:: ABS - Absolute
386
387 .. math::
388
389 dst.x = |src.x|
390
391 dst.y = |src.y|
392
393 dst.z = |src.z|
394
395 dst.w = |src.w|
396
397
398 .. opcode:: RCC - Reciprocal Clamped
399
400 This instruction replicates its result.
401
402 XXX cleanup on aisle three
403
404 .. math::
405
406 dst = (1 / src.x) > 0 ? clamp(1 / src.x, 5.42101e-020, 1.884467e+019) : clamp(1 / src.x, -1.884467e+019, -5.42101e-020)
407
408
409 .. opcode:: DPH - Homogeneous Dot Product
410
411 This instruction replicates its result.
412
413 .. math::
414
415 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
416
417
418 .. opcode:: COS - Cosine
419
420 This instruction replicates its result.
421
422 .. math::
423
424 dst = \cos{src.x}
425
426
427 .. opcode:: DDX - Derivative Relative To X
428
429 .. math::
430
431 dst.x = partialx(src.x)
432
433 dst.y = partialx(src.y)
434
435 dst.z = partialx(src.z)
436
437 dst.w = partialx(src.w)
438
439
440 .. opcode:: DDY - Derivative Relative To Y
441
442 .. math::
443
444 dst.x = partialy(src.x)
445
446 dst.y = partialy(src.y)
447
448 dst.z = partialy(src.z)
449
450 dst.w = partialy(src.w)
451
452
453 .. opcode:: KILP - Predicated Discard
454
455 discard
456
457
458 .. opcode:: PK2H - Pack Two 16-bit Floats
459
460 TBD
461
462
463 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
464
465 TBD
466
467
468 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
469
470 TBD
471
472
473 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
474
475 TBD
476
477
478 .. opcode:: RFL - Reflection Vector
479
480 .. math::
481
482 dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x
483
484 dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y
485
486 dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z
487
488 dst.w = 1
489
490 .. note::
491
492 Considered for removal.
493
494
495 .. opcode:: SEQ - Set On Equal
496
497 .. math::
498
499 dst.x = (src0.x == src1.x) ? 1 : 0
500
501 dst.y = (src0.y == src1.y) ? 1 : 0
502
503 dst.z = (src0.z == src1.z) ? 1 : 0
504
505 dst.w = (src0.w == src1.w) ? 1 : 0
506
507
508 .. opcode:: SFL - Set On False
509
510 This instruction replicates its result.
511
512 .. math::
513
514 dst = 0
515
516 .. note::
517
518 Considered for removal.
519
520
521 .. opcode:: SGT - Set On Greater Than
522
523 .. math::
524
525 dst.x = (src0.x > src1.x) ? 1 : 0
526
527 dst.y = (src0.y > src1.y) ? 1 : 0
528
529 dst.z = (src0.z > src1.z) ? 1 : 0
530
531 dst.w = (src0.w > src1.w) ? 1 : 0
532
533
534 .. opcode:: SIN - Sine
535
536 This instruction replicates its result.
537
538 .. math::
539
540 dst = \sin{src.x}
541
542
543 .. opcode:: SLE - Set On Less Equal Than
544
545 .. math::
546
547 dst.x = (src0.x <= src1.x) ? 1 : 0
548
549 dst.y = (src0.y <= src1.y) ? 1 : 0
550
551 dst.z = (src0.z <= src1.z) ? 1 : 0
552
553 dst.w = (src0.w <= src1.w) ? 1 : 0
554
555
556 .. opcode:: SNE - Set On Not Equal
557
558 .. math::
559
560 dst.x = (src0.x != src1.x) ? 1 : 0
561
562 dst.y = (src0.y != src1.y) ? 1 : 0
563
564 dst.z = (src0.z != src1.z) ? 1 : 0
565
566 dst.w = (src0.w != src1.w) ? 1 : 0
567
568
569 .. opcode:: STR - Set On True
570
571 This instruction replicates its result.
572
573 .. math::
574
575 dst = 1
576
577
578 .. opcode:: TEX - Texture Lookup
579
580 .. math::
581
582 coord = src0
583
584 bias = 0.0
585
586 dst = texture_sample(unit, coord, bias)
587
588 for array textures src0.y contains the slice for 1D,
589 and src0.z contain the slice for 2D.
590 for shadow textures with no arrays, src0.z contains
591 the reference value.
592 for shadow textures with arrays, src0.z contains
593 the reference value for 1D arrays, and src0.w contains
594 the reference value for 2D arrays.
595 There is no way to pass a bias in the .w value for
596 shadow arrays, and GLSL doesn't allow this.
597 GLSL does allow cube shadows maps to take a bias value,
598 and we have to determine how this will look in TGSI.
599
600 .. opcode:: TXD - Texture Lookup with Derivatives
601
602 .. math::
603
604 coord = src0
605
606 ddx = src1
607
608 ddy = src2
609
610 bias = 0.0
611
612 dst = texture_sample_deriv(unit, coord, bias, ddx, ddy)
613
614
615 .. opcode:: TXP - Projective Texture Lookup
616
617 .. math::
618
619 coord.x = src0.x / src.w
620
621 coord.y = src0.y / src.w
622
623 coord.z = src0.z / src.w
624
625 coord.w = src0.w
626
627 bias = 0.0
628
629 dst = texture_sample(unit, coord, bias)
630
631
632 .. opcode:: UP2H - Unpack Two 16-Bit Floats
633
634 TBD
635
636 .. note::
637
638 Considered for removal.
639
640 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
641
642 TBD
643
644 .. note::
645
646 Considered for removal.
647
648 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
649
650 TBD
651
652 .. note::
653
654 Considered for removal.
655
656 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
657
658 TBD
659
660 .. note::
661
662 Considered for removal.
663
664 .. opcode:: X2D - 2D Coordinate Transformation
665
666 .. math::
667
668 dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y
669
670 dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w
671
672 dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y
673
674 dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w
675
676 .. note::
677
678 Considered for removal.
679
680
681 .. opcode:: ARA - Address Register Add
682
683 TBD
684
685 .. note::
686
687 Considered for removal.
688
689 .. opcode:: ARR - Address Register Load With Round
690
691 .. math::
692
693 dst.x = round(src.x)
694
695 dst.y = round(src.y)
696
697 dst.z = round(src.z)
698
699 dst.w = round(src.w)
700
701
702 .. opcode:: BRA - Branch
703
704 pc = target
705
706 .. note::
707
708 Considered for removal.
709
710 .. opcode:: CAL - Subroutine Call
711
712 push(pc)
713 pc = target
714
715
716 .. opcode:: RET - Subroutine Call Return
717
718 pc = pop()
719
720
721 .. opcode:: SSG - Set Sign
722
723 .. math::
724
725 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
726
727 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
728
729 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
730
731 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
732
733
734 .. opcode:: CMP - Compare
735
736 .. math::
737
738 dst.x = (src0.x < 0) ? src1.x : src2.x
739
740 dst.y = (src0.y < 0) ? src1.y : src2.y
741
742 dst.z = (src0.z < 0) ? src1.z : src2.z
743
744 dst.w = (src0.w < 0) ? src1.w : src2.w
745
746
747 .. opcode:: KIL - Conditional Discard
748
749 .. math::
750
751 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
752 discard
753 endif
754
755
756 .. opcode:: SCS - Sine Cosine
757
758 .. math::
759
760 dst.x = \cos{src.x}
761
762 dst.y = \sin{src.x}
763
764 dst.z = 0
765
766 dst.w = 1
767
768
769 .. opcode:: TXB - Texture Lookup With Bias
770
771 .. math::
772
773 coord.x = src.x
774
775 coord.y = src.y
776
777 coord.z = src.z
778
779 coord.w = 1.0
780
781 bias = src.z
782
783 dst = texture_sample(unit, coord, bias)
784
785
786 .. opcode:: NRM - 3-component Vector Normalise
787
788 .. math::
789
790 dst.x = src.x / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
791
792 dst.y = src.y / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
793
794 dst.z = src.z / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
795
796 dst.w = 1
797
798
799 .. opcode:: DIV - Divide
800
801 .. math::
802
803 dst.x = \frac{src0.x}{src1.x}
804
805 dst.y = \frac{src0.y}{src1.y}
806
807 dst.z = \frac{src0.z}{src1.z}
808
809 dst.w = \frac{src0.w}{src1.w}
810
811
812 .. opcode:: DP2 - 2-component Dot Product
813
814 This instruction replicates its result.
815
816 .. math::
817
818 dst = src0.x \times src1.x + src0.y \times src1.y
819
820
821 .. opcode:: TXL - Texture Lookup With explicit LOD
822
823 .. math::
824
825 coord.x = src0.x
826
827 coord.y = src0.y
828
829 coord.z = src0.z
830
831 coord.w = 1.0
832
833 lod = src0.w
834
835 dst = texture_sample(unit, coord, lod)
836
837
838 .. opcode:: BRK - Break
839
840 TBD
841
842
843 .. opcode:: IF - If
844
845 TBD
846
847
848 .. opcode:: ELSE - Else
849
850 TBD
851
852
853 .. opcode:: ENDIF - End If
854
855 TBD
856
857
858 .. opcode:: PUSHA - Push Address Register On Stack
859
860 push(src.x)
861 push(src.y)
862 push(src.z)
863 push(src.w)
864
865 .. note::
866
867 Considered for cleanup.
868
869 .. note::
870
871 Considered for removal.
872
873 .. opcode:: POPA - Pop Address Register From Stack
874
875 dst.w = pop()
876 dst.z = pop()
877 dst.y = pop()
878 dst.x = pop()
879
880 .. note::
881
882 Considered for cleanup.
883
884 .. note::
885
886 Considered for removal.
887
888
889 Compute ISA
890 ^^^^^^^^^^^^^^^^^^^^^^^^
891
892 These opcodes are primarily provided for special-use computational shaders.
893 Support for these opcodes indicated by a special pipe capability bit (TBD).
894
895 XXX so let's discuss it, yeah?
896
897 .. opcode:: CEIL - Ceiling
898
899 .. math::
900
901 dst.x = \lceil src.x\rceil
902
903 dst.y = \lceil src.y\rceil
904
905 dst.z = \lceil src.z\rceil
906
907 dst.w = \lceil src.w\rceil
908
909
910 .. opcode:: I2F - Integer To Float
911
912 .. math::
913
914 dst.x = (float) src.x
915
916 dst.y = (float) src.y
917
918 dst.z = (float) src.z
919
920 dst.w = (float) src.w
921
922
923 .. opcode:: NOT - Bitwise Not
924
925 .. math::
926
927 dst.x = ~src.x
928
929 dst.y = ~src.y
930
931 dst.z = ~src.z
932
933 dst.w = ~src.w
934
935
936 .. opcode:: TRUNC - Truncate
937
938 .. math::
939
940 dst.x = trunc(src.x)
941
942 dst.y = trunc(src.y)
943
944 dst.z = trunc(src.z)
945
946 dst.w = trunc(src.w)
947
948
949 .. opcode:: SHL - Shift Left
950
951 .. math::
952
953 dst.x = src0.x << src1.x
954
955 dst.y = src0.y << src1.x
956
957 dst.z = src0.z << src1.x
958
959 dst.w = src0.w << src1.x
960
961
962 .. opcode:: SHR - Shift Right
963
964 .. math::
965
966 dst.x = src0.x >> src1.x
967
968 dst.y = src0.y >> src1.x
969
970 dst.z = src0.z >> src1.x
971
972 dst.w = src0.w >> src1.x
973
974
975 .. opcode:: AND - Bitwise And
976
977 .. math::
978
979 dst.x = src0.x & src1.x
980
981 dst.y = src0.y & src1.y
982
983 dst.z = src0.z & src1.z
984
985 dst.w = src0.w & src1.w
986
987
988 .. opcode:: OR - Bitwise Or
989
990 .. math::
991
992 dst.x = src0.x | src1.x
993
994 dst.y = src0.y | src1.y
995
996 dst.z = src0.z | src1.z
997
998 dst.w = src0.w | src1.w
999
1000
1001 .. opcode:: MOD - Modulus
1002
1003 .. math::
1004
1005 dst.x = src0.x \bmod src1.x
1006
1007 dst.y = src0.y \bmod src1.y
1008
1009 dst.z = src0.z \bmod src1.z
1010
1011 dst.w = src0.w \bmod src1.w
1012
1013
1014 .. opcode:: XOR - Bitwise Xor
1015
1016 .. math::
1017
1018 dst.x = src0.x \oplus src1.x
1019
1020 dst.y = src0.y \oplus src1.y
1021
1022 dst.z = src0.z \oplus src1.z
1023
1024 dst.w = src0.w \oplus src1.w
1025
1026
1027 .. opcode:: UCMP - Integer Conditional Move
1028
1029 .. math::
1030
1031 dst.x = src0.x ? src1.x : src2.x
1032
1033 dst.y = src0.y ? src1.y : src2.y
1034
1035 dst.z = src0.z ? src1.z : src2.z
1036
1037 dst.w = src0.w ? src1.w : src2.w
1038
1039
1040 .. opcode:: UARL - Integer Address Register Load
1041
1042 Moves the contents of the source register, assumed to be an integer, into the
1043 destination register, which is assumed to be an address (ADDR) register.
1044
1045
1046 .. opcode:: IABS - Integer Absolute Value
1047
1048 .. math::
1049
1050 dst.x = |src.x|
1051
1052 dst.y = |src.y|
1053
1054 dst.z = |src.z|
1055
1056 dst.w = |src.w|
1057
1058
1059 .. opcode:: SAD - Sum Of Absolute Differences
1060
1061 .. math::
1062
1063 dst.x = |src0.x - src1.x| + src2.x
1064
1065 dst.y = |src0.y - src1.y| + src2.y
1066
1067 dst.z = |src0.z - src1.z| + src2.z
1068
1069 dst.w = |src0.w - src1.w| + src2.w
1070
1071
1072 .. opcode:: TXF - Texel Fetch (as per NV_gpu_shader4), extract a single texel
1073 from a specified texture image. The source sampler may
1074 not be a CUBE or SHADOW.
1075 src 0 is a four-component signed integer vector used to
1076 identify the single texel accessed. 3 components + level.
1077 src 1 is a 3 component constant signed integer vector,
1078 with each component only have a range of
1079 -8..+8 (hw only seems to deal with this range, interface
1080 allows for up to unsigned int).
1081 TXF(uint_vec coord, int_vec offset).
1082
1083
1084 .. opcode:: TXQ - Texture Size Query (as per NV_gpu_program4)
1085 retrieve the dimensions of the texture
1086 depending on the target. For 1D (width), 2D/RECT/CUBE
1087 (width, height), 3D (width, height, depth),
1088 1D array (width, layers), 2D array (width, height, layers)
1089
1090 .. math::
1091
1092 lod = src0
1093
1094 dst.x = texture_width(unit, lod)
1095
1096 dst.y = texture_height(unit, lod)
1097
1098 dst.z = texture_depth(unit, lod)
1099
1100
1101 .. opcode:: CONT - Continue
1102
1103 TBD
1104
1105 .. note::
1106
1107 Support for CONT is determined by a special capability bit,
1108 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1109
1110
1111 Geometry ISA
1112 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1113
1114 These opcodes are only supported in geometry shaders; they have no meaning
1115 in any other type of shader.
1116
1117 .. opcode:: EMIT - Emit
1118
1119 TBD
1120
1121
1122 .. opcode:: ENDPRIM - End Primitive
1123
1124 TBD
1125
1126
1127 GLSL ISA
1128 ^^^^^^^^^^
1129
1130 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1131 opcodes is determined by a special capability bit, ``GLSL``.
1132
1133 .. opcode:: BGNLOOP - Begin a Loop
1134
1135 TBD
1136
1137
1138 .. opcode:: BGNSUB - Begin Subroutine
1139
1140 TBD
1141
1142
1143 .. opcode:: ENDLOOP - End a Loop
1144
1145 TBD
1146
1147
1148 .. opcode:: ENDSUB - End Subroutine
1149
1150 TBD
1151
1152
1153 .. opcode:: NOP - No Operation
1154
1155 Do nothing.
1156
1157
1158 .. opcode:: NRM4 - 4-component Vector Normalise
1159
1160 This instruction replicates its result.
1161
1162 .. math::
1163
1164 dst = \frac{src.x}{src.x \times src.x + src.y \times src.y + src.z \times src.z + src.w \times src.w}
1165
1166
1167 ps_2_x
1168 ^^^^^^^^^^^^
1169
1170 XXX wait what
1171
1172 .. opcode:: CALLNZ - Subroutine Call If Not Zero
1173
1174 TBD
1175
1176
1177 .. opcode:: IFC - If
1178
1179 TBD
1180
1181
1182 .. opcode:: BREAKC - Break Conditional
1183
1184 TBD
1185
1186 .. _doubleopcodes:
1187
1188 Double ISA
1189 ^^^^^^^^^^^^^^^
1190
1191 The double-precision opcodes reinterpret four-component vectors into
1192 two-component vectors with doubled precision in each component.
1193
1194 Support for these opcodes is XXX undecided. :T
1195
1196 .. opcode:: DADD - Add
1197
1198 .. math::
1199
1200 dst.xy = src0.xy + src1.xy
1201
1202 dst.zw = src0.zw + src1.zw
1203
1204
1205 .. opcode:: DDIV - Divide
1206
1207 .. math::
1208
1209 dst.xy = src0.xy / src1.xy
1210
1211 dst.zw = src0.zw / src1.zw
1212
1213 .. opcode:: DSEQ - Set on Equal
1214
1215 .. math::
1216
1217 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1218
1219 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1220
1221 .. opcode:: DSLT - Set on Less than
1222
1223 .. math::
1224
1225 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1226
1227 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1228
1229 .. opcode:: DFRAC - Fraction
1230
1231 .. math::
1232
1233 dst.xy = src.xy - \lfloor src.xy\rfloor
1234
1235 dst.zw = src.zw - \lfloor src.zw\rfloor
1236
1237
1238 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1239
1240 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1241 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1242 :math:`dst1 \times 2^{dst0} = src` .
1243
1244 .. math::
1245
1246 dst0.xy = exp(src.xy)
1247
1248 dst1.xy = frac(src.xy)
1249
1250 dst0.zw = exp(src.zw)
1251
1252 dst1.zw = frac(src.zw)
1253
1254 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1255
1256 This opcode is the inverse of :opcode:`DFRACEXP`.
1257
1258 .. math::
1259
1260 dst.xy = src0.xy \times 2^{src1.xy}
1261
1262 dst.zw = src0.zw \times 2^{src1.zw}
1263
1264 .. opcode:: DMIN - Minimum
1265
1266 .. math::
1267
1268 dst.xy = min(src0.xy, src1.xy)
1269
1270 dst.zw = min(src0.zw, src1.zw)
1271
1272 .. opcode:: DMAX - Maximum
1273
1274 .. math::
1275
1276 dst.xy = max(src0.xy, src1.xy)
1277
1278 dst.zw = max(src0.zw, src1.zw)
1279
1280 .. opcode:: DMUL - Multiply
1281
1282 .. math::
1283
1284 dst.xy = src0.xy \times src1.xy
1285
1286 dst.zw = src0.zw \times src1.zw
1287
1288
1289 .. opcode:: DMAD - Multiply And Add
1290
1291 .. math::
1292
1293 dst.xy = src0.xy \times src1.xy + src2.xy
1294
1295 dst.zw = src0.zw \times src1.zw + src2.zw
1296
1297
1298 .. opcode:: DRCP - Reciprocal
1299
1300 .. math::
1301
1302 dst.xy = \frac{1}{src.xy}
1303
1304 dst.zw = \frac{1}{src.zw}
1305
1306 .. opcode:: DSQRT - Square Root
1307
1308 .. math::
1309
1310 dst.xy = \sqrt{src.xy}
1311
1312 dst.zw = \sqrt{src.zw}
1313
1314
1315 .. _samplingopcodes:
1316
1317 Resource Sampling Opcodes
1318 ^^^^^^^^^^^^^^^^^^^^^^^^^
1319
1320 Those opcodes follow very closely semantics of the respective Direct3D
1321 instructions. If in doubt double check Direct3D documentation.
1322
1323 .. opcode:: SAMPLE - Using provided address, sample data from the
1324 specified texture using the filtering mode identified
1325 by the gven sampler. The source data may come from
1326 any resource type other than buffers.
1327 SAMPLE dst, address, sampler_view, sampler
1328 e.g.
1329 SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]
1330
1331 .. opcode:: SAMPLE_I - Simplified alternative to the SAMPLE instruction.
1332 Using the provided integer address, SAMPLE_I fetches data
1333 from the specified sampler view without any filtering.
1334 The source data may come from any resource type other
1335 than CUBE.
1336 SAMPLE_I dst, address, sampler_view
1337 e.g.
1338 SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]
1339 The 'address' is specified as unsigned integers. If the
1340 'address' is out of range [0...(# texels - 1)] the
1341 result of the fetch is always 0 in all components.
1342 As such the instruction doesn't honor address wrap
1343 modes, in cases where that behavior is desirable
1344 'SAMPLE' instruction should be used.
1345 address.w always provides an unsigned integer mipmap
1346 level. If the value is out of the range then the
1347 instruction always returns 0 in all components.
1348 address.yz are ignored for buffers and 1d textures.
1349 address.z is ignored for 1d texture arrays and 2d
1350 textures.
1351 For 1D texture arrays address.y provides the array
1352 index (also as unsigned integer). If the value is
1353 out of the range of available array indices
1354 [0... (array size - 1)] then the opcode always returns
1355 0 in all components.
1356 For 2D texture arrays address.z provides the array
1357 index, otherwise it exhibits the same behavior as in
1358 the case for 1D texture arrays.
1359 The exact semantics of the source address are presented
1360 in the table below:
1361 resource type X Y Z W
1362 ------------- ------------------------
1363 PIPE_BUFFER x ignored
1364 PIPE_TEXTURE_1D x mpl
1365 PIPE_TEXTURE_2D x y mpl
1366 PIPE_TEXTURE_3D x y z mpl
1367 PIPE_TEXTURE_RECT x y mpl
1368 PIPE_TEXTURE_CUBE not allowed as source
1369 PIPE_TEXTURE_1D_ARRAY x idx mpl
1370 PIPE_TEXTURE_2D_ARRAY x y idx mpl
1371
1372 Where 'mpl' is a mipmap level and 'idx' is the
1373 array index.
1374
1375 .. opcode:: SAMPLE_I_MS - Just like SAMPLE_I but allows fetch data from
1376 multi-sampled surfaces.
1377
1378 .. opcode:: SAMPLE_B - Just like the SAMPLE instruction with the
1379 exception that an additiona bias is applied to the
1380 level of detail computed as part of the instruction
1381 execution.
1382 SAMPLE_B dst, address, sampler_view, sampler, lod_bias
1383 e.g.
1384 SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x
1385
1386 .. opcode:: SAMPLE_C - Similar to the SAMPLE instruction but it
1387 performs a comparison filter. The operands to SAMPLE_C
1388 are identical to SAMPLE, except that tere is an additional
1389 float32 operand, reference value, which must be a register
1390 with single-component, or a scalar literal.
1391 SAMPLE_C makes the hardware use the current samplers
1392 compare_func (in pipe_sampler_state) to compare
1393 reference value against the red component value for the
1394 surce resource at each texel that the currently configured
1395 texture filter covers based on the provided coordinates.
1396 SAMPLE_C dst, address, sampler_view.r, sampler, ref_value
1397 e.g.
1398 SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x
1399
1400 .. opcode:: SAMPLE_C_LZ - Same as SAMPLE_C, but LOD is 0 and derivatives
1401 are ignored. The LZ stands for level-zero.
1402 SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value
1403 e.g.
1404 SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x
1405
1406
1407 .. opcode:: SAMPLE_D - SAMPLE_D is identical to the SAMPLE opcode except
1408 that the derivatives for the source address in the x
1409 direction and the y direction are provided by extra
1410 parameters.
1411 SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y
1412 e.g.
1413 SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]
1414
1415 .. opcode:: SAMPLE_L - SAMPLE_L is identical to the SAMPLE opcode except
1416 that the LOD is provided directly as a scalar value,
1417 representing no anisotropy. Source addresses A channel
1418 is used as the LOD.
1419 SAMPLE_L dst, address, sampler_view, sampler
1420 e.g.
1421 SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0]
1422
1423 .. opcode:: GATHER4 - Gathers the four texels to be used in a bi-linear
1424 filtering operation and packs them into a single register.
1425 Only works with 2D, 2D array, cubemaps, and cubemaps arrays.
1426 For 2D textures, only the addressing modes of the sampler and
1427 the top level of any mip pyramid are used. Set W to zero.
1428 It behaves like the SAMPLE instruction, but a filtered
1429 sample is not generated. The four samples that contribute
1430 to filtering are placed into xyzw in counter-clockwise order,
1431 starting with the (u,v) texture coordinate delta at the
1432 following locations (-, +), (+, +), (+, -), (-, -), where
1433 the magnitude of the deltas are half a texel.
1434
1435
1436 .. opcode:: SVIEWINFO - query the dimensions of a given sampler view.
1437 dst receives width, height, depth or array size and
1438 number of mipmap levels. The dst can have a writemask
1439 which will specify what info is the caller interested
1440 in.
1441 SVIEWINFO dst, src_mip_level, sampler_view
1442 e.g.
1443 SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]
1444 src_mip_level is an unsigned integer scalar. If it's
1445 out of range then returns 0 for width, height and
1446 depth/array size but the total number of mipmap is
1447 still returned correctly for the given sampler view.
1448 The returned width, height and depth values are for
1449 the mipmap level selected by the src_mip_level and
1450 are in the number of texels.
1451 For 1d texture array width is in dst.x, array size
1452 is in dst.y and dst.zw are always 0.
1453
1454 .. opcode:: SAMPLE_POS - query the position of a given sample.
1455 dst receives float4 (x, y, 0, 0) indicated where the
1456 sample is located. If the resource is not a multi-sample
1457 resource and not a render target, the result is 0.
1458
1459 .. opcode:: SAMPLE_INFO - dst receives number of samples in x.
1460 If the resource is not a multi-sample resource and
1461 not a render target, the result is 0.
1462
1463
1464 .. _resourceopcodes:
1465
1466 Resource Access Opcodes
1467 ^^^^^^^^^^^^^^^^^^^^^^^
1468
1469 .. opcode:: LOAD - Fetch data from a shader resource
1470
1471 Syntax: ``LOAD dst, resource, address``
1472
1473 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
1474
1475 Using the provided integer address, LOAD fetches data
1476 from the specified buffer or texture without any
1477 filtering.
1478
1479 The 'address' is specified as a vector of unsigned
1480 integers. If the 'address' is out of range the result
1481 is unspecified.
1482
1483 Only the first mipmap level of a resource can be read
1484 from using this instruction.
1485
1486 For 1D or 2D texture arrays, the array index is
1487 provided as an unsigned integer in address.y or
1488 address.z, respectively. address.yz are ignored for
1489 buffers and 1D textures. address.z is ignored for 1D
1490 texture arrays and 2D textures. address.w is always
1491 ignored.
1492
1493 .. opcode:: STORE - Write data to a shader resource
1494
1495 Syntax: ``STORE resource, address, src``
1496
1497 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
1498
1499 Using the provided integer address, STORE writes data
1500 to the specified buffer or texture.
1501
1502 The 'address' is specified as a vector of unsigned
1503 integers. If the 'address' is out of range the result
1504 is unspecified.
1505
1506 Only the first mipmap level of a resource can be
1507 written to using this instruction.
1508
1509 For 1D or 2D texture arrays, the array index is
1510 provided as an unsigned integer in address.y or
1511 address.z, respectively. address.yz are ignored for
1512 buffers and 1D textures. address.z is ignored for 1D
1513 texture arrays and 2D textures. address.w is always
1514 ignored.
1515
1516
1517 .. _threadsyncopcodes:
1518
1519 Inter-thread synchronization opcodes
1520 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1521
1522 These opcodes are intended for communication between threads running
1523 within the same compute grid. For now they're only valid in compute
1524 programs.
1525
1526 .. opcode:: MFENCE - Memory fence
1527
1528 Syntax: ``MFENCE resource``
1529
1530 Example: ``MFENCE RES[0]``
1531
1532 This opcode forces strong ordering between any memory access
1533 operations that affect the specified resource. This means that
1534 previous loads and stores (and only those) will be performed and
1535 visible to other threads before the program execution continues.
1536
1537
1538 .. opcode:: LFENCE - Load memory fence
1539
1540 Syntax: ``LFENCE resource``
1541
1542 Example: ``LFENCE RES[0]``
1543
1544 Similar to MFENCE, but it only affects the ordering of memory loads.
1545
1546
1547 .. opcode:: SFENCE - Store memory fence
1548
1549 Syntax: ``SFENCE resource``
1550
1551 Example: ``SFENCE RES[0]``
1552
1553 Similar to MFENCE, but it only affects the ordering of memory stores.
1554
1555
1556 .. opcode:: BARRIER - Thread group barrier
1557
1558 ``BARRIER``
1559
1560 This opcode suspends the execution of the current thread until all
1561 the remaining threads in the working group reach the same point of
1562 the program. Results are unspecified if any of the remaining
1563 threads terminates or never reaches an executed BARRIER instruction.
1564
1565
1566 .. _atomopcodes:
1567
1568 Atomic opcodes
1569 ^^^^^^^^^^^^^^
1570
1571 These opcodes provide atomic variants of some common arithmetic and
1572 logical operations. In this context atomicity means that another
1573 concurrent memory access operation that affects the same memory
1574 location is guaranteed to be performed strictly before or after the
1575 entire execution of the atomic operation.
1576
1577 For the moment they're only valid in compute programs.
1578
1579 .. opcode:: ATOMUADD - Atomic integer addition
1580
1581 Syntax: ``ATOMUADD dst, resource, offset, src``
1582
1583 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
1584
1585 The following operation is performed atomically on each component:
1586
1587 .. math::
1588
1589 dst_i = resource[offset]_i
1590
1591 resource[offset]_i = dst_i + src_i
1592
1593
1594 .. opcode:: ATOMXCHG - Atomic exchange
1595
1596 Syntax: ``ATOMXCHG dst, resource, offset, src``
1597
1598 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
1599
1600 The following operation is performed atomically on each component:
1601
1602 .. math::
1603
1604 dst_i = resource[offset]_i
1605
1606 resource[offset]_i = src_i
1607
1608
1609 .. opcode:: ATOMCAS - Atomic compare-and-exchange
1610
1611 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
1612
1613 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
1614
1615 The following operation is performed atomically on each component:
1616
1617 .. math::
1618
1619 dst_i = resource[offset]_i
1620
1621 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
1622
1623
1624 .. opcode:: ATOMAND - Atomic bitwise And
1625
1626 Syntax: ``ATOMAND dst, resource, offset, src``
1627
1628 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
1629
1630 The following operation is performed atomically on each component:
1631
1632 .. math::
1633
1634 dst_i = resource[offset]_i
1635
1636 resource[offset]_i = dst_i \& src_i
1637
1638
1639 .. opcode:: ATOMOR - Atomic bitwise Or
1640
1641 Syntax: ``ATOMOR dst, resource, offset, src``
1642
1643 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
1644
1645 The following operation is performed atomically on each component:
1646
1647 .. math::
1648
1649 dst_i = resource[offset]_i
1650
1651 resource[offset]_i = dst_i | src_i
1652
1653
1654 .. opcode:: ATOMXOR - Atomic bitwise Xor
1655
1656 Syntax: ``ATOMXOR dst, resource, offset, src``
1657
1658 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
1659
1660 The following operation is performed atomically on each component:
1661
1662 .. math::
1663
1664 dst_i = resource[offset]_i
1665
1666 resource[offset]_i = dst_i \oplus src_i
1667
1668
1669 .. opcode:: ATOMUMIN - Atomic unsigned minimum
1670
1671 Syntax: ``ATOMUMIN dst, resource, offset, src``
1672
1673 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
1674
1675 The following operation is performed atomically on each component:
1676
1677 .. math::
1678
1679 dst_i = resource[offset]_i
1680
1681 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
1682
1683
1684 .. opcode:: ATOMUMAX - Atomic unsigned maximum
1685
1686 Syntax: ``ATOMUMAX dst, resource, offset, src``
1687
1688 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
1689
1690 The following operation is performed atomically on each component:
1691
1692 .. math::
1693
1694 dst_i = resource[offset]_i
1695
1696 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
1697
1698
1699 .. opcode:: ATOMIMIN - Atomic signed minimum
1700
1701 Syntax: ``ATOMIMIN dst, resource, offset, src``
1702
1703 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
1704
1705 The following operation is performed atomically on each component:
1706
1707 .. math::
1708
1709 dst_i = resource[offset]_i
1710
1711 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
1712
1713
1714 .. opcode:: ATOMIMAX - Atomic signed maximum
1715
1716 Syntax: ``ATOMIMAX dst, resource, offset, src``
1717
1718 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
1719
1720 The following operation is performed atomically on each component:
1721
1722 .. math::
1723
1724 dst_i = resource[offset]_i
1725
1726 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
1727
1728
1729
1730 Explanation of symbols used
1731 ------------------------------
1732
1733
1734 Functions
1735 ^^^^^^^^^^^^^^
1736
1737
1738 :math:`|x|` Absolute value of `x`.
1739
1740 :math:`\lceil x \rceil` Ceiling of `x`.
1741
1742 clamp(x,y,z) Clamp x between y and z.
1743 (x < y) ? y : (x > z) ? z : x
1744
1745 :math:`\lfloor x\rfloor` Floor of `x`.
1746
1747 :math:`\log_2{x}` Logarithm of `x`, base 2.
1748
1749 max(x,y) Maximum of x and y.
1750 (x > y) ? x : y
1751
1752 min(x,y) Minimum of x and y.
1753 (x < y) ? x : y
1754
1755 partialx(x) Derivative of x relative to fragment's X.
1756
1757 partialy(x) Derivative of x relative to fragment's Y.
1758
1759 pop() Pop from stack.
1760
1761 :math:`x^y` `x` to the power `y`.
1762
1763 push(x) Push x on stack.
1764
1765 round(x) Round x.
1766
1767 trunc(x) Truncate x, i.e. drop the fraction bits.
1768
1769
1770 Keywords
1771 ^^^^^^^^^^^^^
1772
1773
1774 discard Discard fragment.
1775
1776 pc Program counter.
1777
1778 target Label of target instruction.
1779
1780
1781 Other tokens
1782 ---------------
1783
1784
1785 Declaration
1786 ^^^^^^^^^^^
1787
1788
1789 Declares a register that is will be referenced as an operand in Instruction
1790 tokens.
1791
1792 File field contains register file that is being declared and is one
1793 of TGSI_FILE.
1794
1795 UsageMask field specifies which of the register components can be accessed
1796 and is one of TGSI_WRITEMASK.
1797
1798 The Local flag specifies that a given value isn't intended for
1799 subroutine parameter passing and, as a result, the implementation
1800 isn't required to give any guarantees of it being preserved across
1801 subroutine boundaries. As it's merely a compiler hint, the
1802 implementation is free to ignore it.
1803
1804 If Dimension flag is set to 1, a Declaration Dimension token follows.
1805
1806 If Semantic flag is set to 1, a Declaration Semantic token follows.
1807
1808 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
1809
1810 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
1811
1812
1813 Declaration Semantic
1814 ^^^^^^^^^^^^^^^^^^^^^^^^
1815
1816 Vertex and fragment shader input and output registers may be labeled
1817 with semantic information consisting of a name and index.
1818
1819 Follows Declaration token if Semantic bit is set.
1820
1821 Since its purpose is to link a shader with other stages of the pipeline,
1822 it is valid to follow only those Declaration tokens that declare a register
1823 either in INPUT or OUTPUT file.
1824
1825 SemanticName field contains the semantic name of the register being declared.
1826 There is no default value.
1827
1828 SemanticIndex is an optional subscript that can be used to distinguish
1829 different register declarations with the same semantic name. The default value
1830 is 0.
1831
1832 The meanings of the individual semantic names are explained in the following
1833 sections.
1834
1835 TGSI_SEMANTIC_POSITION
1836 """"""""""""""""""""""
1837
1838 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
1839 output register which contains the homogeneous vertex position in the clip
1840 space coordinate system. After clipping, the X, Y and Z components of the
1841 vertex will be divided by the W value to get normalized device coordinates.
1842
1843 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
1844 fragment shader input contains the fragment's window position. The X
1845 component starts at zero and always increases from left to right.
1846 The Y component starts at zero and always increases but Y=0 may either
1847 indicate the top of the window or the bottom depending on the fragment
1848 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
1849 The Z coordinate ranges from 0 to 1 to represent depth from the front
1850 to the back of the Z buffer. The W component contains the reciprocol
1851 of the interpolated vertex position W component.
1852
1853 Fragment shaders may also declare an output register with
1854 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
1855 the fragment shader to change the fragment's Z position.
1856
1857
1858
1859 TGSI_SEMANTIC_COLOR
1860 """""""""""""""""""
1861
1862 For vertex shader outputs or fragment shader inputs/outputs, this
1863 label indicates that the resister contains an R,G,B,A color.
1864
1865 Several shader inputs/outputs may contain colors so the semantic index
1866 is used to distinguish them. For example, color[0] may be the diffuse
1867 color while color[1] may be the specular color.
1868
1869 This label is needed so that the flat/smooth shading can be applied
1870 to the right interpolants during rasterization.
1871
1872
1873
1874 TGSI_SEMANTIC_BCOLOR
1875 """"""""""""""""""""
1876
1877 Back-facing colors are only used for back-facing polygons, and are only valid
1878 in vertex shader outputs. After rasterization, all polygons are front-facing
1879 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
1880 so all BCOLORs effectively become regular COLORs in the fragment shader.
1881
1882
1883 TGSI_SEMANTIC_FOG
1884 """""""""""""""""
1885
1886 Vertex shader inputs and outputs and fragment shader inputs may be
1887 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
1888 a fog coordinate in the form (F, 0, 0, 1). Typically, the fragment
1889 shader will use the fog coordinate to compute a fog blend factor which
1890 is used to blend the normal fragment color with a constant fog color.
1891
1892 Only the first component matters when writing from the vertex shader;
1893 the driver will ensure that the coordinate is in this format when used
1894 as a fragment shader input.
1895
1896
1897 TGSI_SEMANTIC_PSIZE
1898 """""""""""""""""""
1899
1900 Vertex shader input and output registers may be labeled with
1901 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
1902 in the form (S, 0, 0, 1). The point size controls the width or diameter
1903 of points for rasterization. This label cannot be used in fragment
1904 shaders.
1905
1906 When using this semantic, be sure to set the appropriate state in the
1907 :ref:`rasterizer` first.
1908
1909
1910 TGSI_SEMANTIC_GENERIC
1911 """""""""""""""""""""
1912
1913 All vertex/fragment shader inputs/outputs not labeled with any other
1914 semantic label can be considered to be generic attributes. Typical
1915 uses of generic inputs/outputs are texcoords and user-defined values.
1916
1917
1918 TGSI_SEMANTIC_NORMAL
1919 """"""""""""""""""""
1920
1921 Indicates that a vertex shader input is a normal vector. This is
1922 typically only used for legacy graphics APIs.
1923
1924
1925 TGSI_SEMANTIC_FACE
1926 """"""""""""""""""
1927
1928 This label applies to fragment shader inputs only and indicates that
1929 the register contains front/back-face information of the form (F, 0,
1930 0, 1). The first component will be positive when the fragment belongs
1931 to a front-facing polygon, and negative when the fragment belongs to a
1932 back-facing polygon.
1933
1934
1935 TGSI_SEMANTIC_EDGEFLAG
1936 """"""""""""""""""""""
1937
1938 For vertex shaders, this sematic label indicates that an input or
1939 output is a boolean edge flag. The register layout is [F, x, x, x]
1940 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
1941 simply copies the edge flag input to the edgeflag output.
1942
1943 Edge flags are used to control which lines or points are actually
1944 drawn when the polygon mode converts triangles/quads/polygons into
1945 points or lines.
1946
1947 TGSI_SEMANTIC_STENCIL
1948 """"""""""""""""""""""
1949
1950 For fragment shaders, this semantic label indicates than an output
1951 is a writable stencil reference value. Only the Y component is writable.
1952 This allows the fragment shader to change the fragments stencilref value.
1953
1954
1955 Declaration Interpolate
1956 ^^^^^^^^^^^^^^^^^^^^^^^
1957
1958 This token is only valid for fragment shader INPUT declarations.
1959
1960 The Interpolate field specifes the way input is being interpolated by
1961 the rasteriser and is one of TGSI_INTERPOLATE_*.
1962
1963 The CylindricalWrap bitfield specifies which register components
1964 should be subject to cylindrical wrapping when interpolating by the
1965 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
1966 should be interpolated according to cylindrical wrapping rules.
1967
1968
1969 Declaration Sampler View
1970 ^^^^^^^^^^^^^^^^^^^^^^^^
1971
1972 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
1973
1974 DCL SVIEW[#], resource, type(s)
1975
1976 Declares a shader input sampler view and assigns it to a SVIEW[#]
1977 register.
1978
1979 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
1980
1981 type must be 1 or 4 entries (if specifying on a per-component
1982 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
1983
1984
1985 Declaration Resource
1986 ^^^^^^^^^^^^^^^^^^^^
1987
1988 Follows Declaration token if file is TGSI_FILE_RESOURCE.
1989
1990 DCL RES[#], resource [, WR] [, RAW]
1991
1992 Declares a shader input resource and assigns it to a RES[#]
1993 register.
1994
1995 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
1996 2DArray.
1997
1998 If the RAW keyword is not specified, the texture data will be
1999 subject to conversion, swizzling and scaling as required to yield
2000 the specified data type from the physical data format of the bound
2001 resource.
2002
2003 If the RAW keyword is specified, no channel conversion will be
2004 performed: the values read for each of the channels (X,Y,Z,W) will
2005 correspond to consecutive words in the same order and format
2006 they're found in memory. No element-to-address conversion will be
2007 performed either: the value of the provided X coordinate will be
2008 interpreted in byte units instead of texel units. The result of
2009 accessing a misaligned address is undefined.
2010
2011 Usage of the STORE opcode is only allowed if the WR (writable) flag
2012 is set.
2013
2014
2015 Properties
2016 ^^^^^^^^^^^^^^^^^^^^^^^^
2017
2018
2019 Properties are general directives that apply to the whole TGSI program.
2020
2021 FS_COORD_ORIGIN
2022 """""""""""""""
2023
2024 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2025 The default value is UPPER_LEFT.
2026
2027 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2028 increase downward and rightward.
2029 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2030 increase upward and rightward.
2031
2032 OpenGL defaults to LOWER_LEFT, and is configurable with the
2033 GL_ARB_fragment_coord_conventions extension.
2034
2035 DirectX 9/10 use UPPER_LEFT.
2036
2037 FS_COORD_PIXEL_CENTER
2038 """""""""""""""""""""
2039
2040 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2041 The default value is HALF_INTEGER.
2042
2043 If HALF_INTEGER, the fractionary part of the position will be 0.5
2044 If INTEGER, the fractionary part of the position will be 0.0
2045
2046 Note that this does not affect the set of fragments generated by
2047 rasterization, which is instead controlled by gl_rasterization_rules in the
2048 rasterizer.
2049
2050 OpenGL defaults to HALF_INTEGER, and is configurable with the
2051 GL_ARB_fragment_coord_conventions extension.
2052
2053 DirectX 9 uses INTEGER.
2054 DirectX 10 uses HALF_INTEGER.
2055
2056 FS_COLOR0_WRITES_ALL_CBUFS
2057 """"""""""""""""""""""""""
2058 Specifies that writes to the fragment shader color 0 are replicated to all
2059 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2060 fragData is directed to a single color buffer, but fragColor is broadcast.
2061
2062 VS_PROHIBIT_UCPS
2063 """"""""""""""""""""""""""
2064 If this property is set on the program bound to the shader stage before the
2065 fragment shader, user clip planes should have no effect (be disabled) even if
2066 that shader does not write to any clip distance outputs and the rasterizer's
2067 clip_plane_enable is non-zero.
2068 This property is only supported by drivers that also support shader clip
2069 distance outputs.
2070 This is useful for APIs that don't have UCPs and where clip distances written
2071 by a shader cannot be disabled.
2072
2073
2074 Texture Sampling and Texture Formats
2075 ------------------------------------
2076
2077 This table shows how texture image components are returned as (x,y,z,w) tuples
2078 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2079 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2080 well.
2081
2082 +--------------------+--------------+--------------------+--------------+
2083 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2084 +====================+==============+====================+==============+
2085 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2086 +--------------------+--------------+--------------------+--------------+
2087 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2088 +--------------------+--------------+--------------------+--------------+
2089 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2090 +--------------------+--------------+--------------------+--------------+
2091 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2092 +--------------------+--------------+--------------------+--------------+
2093 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2094 +--------------------+--------------+--------------------+--------------+
2095 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2096 +--------------------+--------------+--------------------+--------------+
2097 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2098 +--------------------+--------------+--------------------+--------------+
2099 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2100 +--------------------+--------------+--------------------+--------------+
2101 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2102 | | | [#envmap-bumpmap]_ | |
2103 +--------------------+--------------+--------------------+--------------+
2104 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2105 | | | [#depth-tex-mode]_ | |
2106 +--------------------+--------------+--------------------+--------------+
2107 | S | (s, s, s, s) | unknown | unknown |
2108 +--------------------+--------------+--------------------+--------------+
2109
2110 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2111 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2112 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.