gallium: add GS_INVOCATIONS property
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = \lfloor src.x\rfloor
52
53 dst.y = \lfloor src.y\rfloor
54
55 dst.z = \lfloor src.z\rfloor
56
57 dst.w = \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: CND - Condition
276
277 .. math::
278
279 dst.x = (src2.x > 0.5) ? src0.x : src1.x
280
281 dst.y = (src2.y > 0.5) ? src0.y : src1.y
282
283 dst.z = (src2.z > 0.5) ? src0.z : src1.z
284
285 dst.w = (src2.w > 0.5) ? src0.w : src1.w
286
287
288 .. opcode:: DP2A - 2-component Dot Product And Add
289
290 .. math::
291
292 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
293
294 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
295
296 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
297
298 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
299
300
301 .. opcode:: FRC - Fraction
302
303 .. math::
304
305 dst.x = src.x - \lfloor src.x\rfloor
306
307 dst.y = src.y - \lfloor src.y\rfloor
308
309 dst.z = src.z - \lfloor src.z\rfloor
310
311 dst.w = src.w - \lfloor src.w\rfloor
312
313
314 .. opcode:: CLAMP - Clamp
315
316 .. math::
317
318 dst.x = clamp(src0.x, src1.x, src2.x)
319
320 dst.y = clamp(src0.y, src1.y, src2.y)
321
322 dst.z = clamp(src0.z, src1.z, src2.z)
323
324 dst.w = clamp(src0.w, src1.w, src2.w)
325
326
327 .. opcode:: FLR - Floor
328
329 This is identical to :opcode:`ARL`.
330
331 .. math::
332
333 dst.x = \lfloor src.x\rfloor
334
335 dst.y = \lfloor src.y\rfloor
336
337 dst.z = \lfloor src.z\rfloor
338
339 dst.w = \lfloor src.w\rfloor
340
341
342 .. opcode:: ROUND - Round
343
344 .. math::
345
346 dst.x = round(src.x)
347
348 dst.y = round(src.y)
349
350 dst.z = round(src.z)
351
352 dst.w = round(src.w)
353
354
355 .. opcode:: EX2 - Exponential Base 2
356
357 This instruction replicates its result.
358
359 .. math::
360
361 dst = 2^{src.x}
362
363
364 .. opcode:: LG2 - Logarithm Base 2
365
366 This instruction replicates its result.
367
368 .. math::
369
370 dst = \log_2{src.x}
371
372
373 .. opcode:: POW - Power
374
375 This instruction replicates its result.
376
377 .. math::
378
379 dst = src0.x^{src1.x}
380
381 .. opcode:: XPD - Cross Product
382
383 .. math::
384
385 dst.x = src0.y \times src1.z - src1.y \times src0.z
386
387 dst.y = src0.z \times src1.x - src1.z \times src0.x
388
389 dst.z = src0.x \times src1.y - src1.x \times src0.y
390
391 dst.w = 1
392
393
394 .. opcode:: ABS - Absolute
395
396 .. math::
397
398 dst.x = |src.x|
399
400 dst.y = |src.y|
401
402 dst.z = |src.z|
403
404 dst.w = |src.w|
405
406
407 .. opcode:: RCC - Reciprocal Clamped
408
409 This instruction replicates its result.
410
411 XXX cleanup on aisle three
412
413 .. math::
414
415 dst = (1 / src.x) > 0 ? clamp(1 / src.x, 5.42101e-020, 1.84467e+019) : clamp(1 / src.x, -1.84467e+019, -5.42101e-020)
416
417
418 .. opcode:: DPH - Homogeneous Dot Product
419
420 This instruction replicates its result.
421
422 .. math::
423
424 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
425
426
427 .. opcode:: COS - Cosine
428
429 This instruction replicates its result.
430
431 .. math::
432
433 dst = \cos{src.x}
434
435
436 .. opcode:: DDX - Derivative Relative To X
437
438 .. math::
439
440 dst.x = partialx(src.x)
441
442 dst.y = partialx(src.y)
443
444 dst.z = partialx(src.z)
445
446 dst.w = partialx(src.w)
447
448
449 .. opcode:: DDY - Derivative Relative To Y
450
451 .. math::
452
453 dst.x = partialy(src.x)
454
455 dst.y = partialy(src.y)
456
457 dst.z = partialy(src.z)
458
459 dst.w = partialy(src.w)
460
461
462 .. opcode:: PK2H - Pack Two 16-bit Floats
463
464 TBD
465
466
467 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
468
469 TBD
470
471
472 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
473
474 TBD
475
476
477 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
478
479 TBD
480
481
482 .. opcode:: RFL - Reflection Vector
483
484 .. math::
485
486 dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x
487
488 dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y
489
490 dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z
491
492 dst.w = 1
493
494 .. note::
495
496 Considered for removal.
497
498
499 .. opcode:: SEQ - Set On Equal
500
501 .. math::
502
503 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
504
505 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
506
507 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
508
509 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
510
511
512 .. opcode:: SFL - Set On False
513
514 This instruction replicates its result.
515
516 .. math::
517
518 dst = 0.0F
519
520 .. note::
521
522 Considered for removal.
523
524
525 .. opcode:: SGT - Set On Greater Than
526
527 .. math::
528
529 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
530
531 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
532
533 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
534
535 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
536
537
538 .. opcode:: SIN - Sine
539
540 This instruction replicates its result.
541
542 .. math::
543
544 dst = \sin{src.x}
545
546
547 .. opcode:: SLE - Set On Less Equal Than
548
549 .. math::
550
551 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
552
553 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
554
555 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
556
557 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
558
559
560 .. opcode:: SNE - Set On Not Equal
561
562 .. math::
563
564 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
565
566 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
567
568 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
569
570 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
571
572
573 .. opcode:: STR - Set On True
574
575 This instruction replicates its result.
576
577 .. math::
578
579 dst = 1.0F
580
581
582 .. opcode:: TEX - Texture Lookup
583
584 for array textures src0.y contains the slice for 1D,
585 and src0.z contain the slice for 2D.
586
587 for shadow textures with no arrays, src0.z contains
588 the reference value.
589
590 for shadow textures with arrays, src0.z contains
591 the reference value for 1D arrays, and src0.w contains
592 the reference value for 2D arrays.
593
594 There is no way to pass a bias in the .w value for
595 shadow arrays, and GLSL doesn't allow this.
596 GLSL does allow cube shadows maps to take a bias value,
597 and we have to determine how this will look in TGSI.
598
599 .. math::
600
601 coord = src0
602
603 bias = 0.0
604
605 dst = texture\_sample(unit, coord, bias)
606
607 .. opcode:: TXD - Texture Lookup with Derivatives
608
609 .. math::
610
611 coord = src0
612
613 ddx = src1
614
615 ddy = src2
616
617 bias = 0.0
618
619 dst = texture\_sample\_deriv(unit, coord, bias, ddx, ddy)
620
621
622 .. opcode:: TXP - Projective Texture Lookup
623
624 .. math::
625
626 coord.x = src0.x / src.w
627
628 coord.y = src0.y / src.w
629
630 coord.z = src0.z / src.w
631
632 coord.w = src0.w
633
634 bias = 0.0
635
636 dst = texture\_sample(unit, coord, bias)
637
638
639 .. opcode:: UP2H - Unpack Two 16-Bit Floats
640
641 TBD
642
643 .. note::
644
645 Considered for removal.
646
647 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
648
649 TBD
650
651 .. note::
652
653 Considered for removal.
654
655 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
656
657 TBD
658
659 .. note::
660
661 Considered for removal.
662
663 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
664
665 TBD
666
667 .. note::
668
669 Considered for removal.
670
671 .. opcode:: X2D - 2D Coordinate Transformation
672
673 .. math::
674
675 dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y
676
677 dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w
678
679 dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y
680
681 dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w
682
683 .. note::
684
685 Considered for removal.
686
687
688 .. opcode:: ARA - Address Register Add
689
690 TBD
691
692 .. note::
693
694 Considered for removal.
695
696 .. opcode:: ARR - Address Register Load With Round
697
698 .. math::
699
700 dst.x = round(src.x)
701
702 dst.y = round(src.y)
703
704 dst.z = round(src.z)
705
706 dst.w = round(src.w)
707
708
709 .. opcode:: SSG - Set Sign
710
711 .. math::
712
713 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
714
715 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
716
717 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
718
719 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
720
721
722 .. opcode:: CMP - Compare
723
724 .. math::
725
726 dst.x = (src0.x < 0) ? src1.x : src2.x
727
728 dst.y = (src0.y < 0) ? src1.y : src2.y
729
730 dst.z = (src0.z < 0) ? src1.z : src2.z
731
732 dst.w = (src0.w < 0) ? src1.w : src2.w
733
734
735 .. opcode:: KILL_IF - Conditional Discard
736
737 Conditional discard. Allowed in fragment shaders only.
738
739 .. math::
740
741 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
742 discard
743 endif
744
745
746 .. opcode:: KILL - Discard
747
748 Unconditional discard. Allowed in fragment shaders only.
749
750
751 .. opcode:: SCS - Sine Cosine
752
753 .. math::
754
755 dst.x = \cos{src.x}
756
757 dst.y = \sin{src.x}
758
759 dst.z = 0
760
761 dst.w = 1
762
763
764 .. opcode:: TXB - Texture Lookup With Bias
765
766 .. math::
767
768 coord.x = src.x
769
770 coord.y = src.y
771
772 coord.z = src.z
773
774 coord.w = 1.0
775
776 bias = src.z
777
778 dst = texture\_sample(unit, coord, bias)
779
780
781 .. opcode:: NRM - 3-component Vector Normalise
782
783 .. math::
784
785 dst.x = src.x / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
786
787 dst.y = src.y / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
788
789 dst.z = src.z / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
790
791 dst.w = 1
792
793
794 .. opcode:: DIV - Divide
795
796 .. math::
797
798 dst.x = \frac{src0.x}{src1.x}
799
800 dst.y = \frac{src0.y}{src1.y}
801
802 dst.z = \frac{src0.z}{src1.z}
803
804 dst.w = \frac{src0.w}{src1.w}
805
806
807 .. opcode:: DP2 - 2-component Dot Product
808
809 This instruction replicates its result.
810
811 .. math::
812
813 dst = src0.x \times src1.x + src0.y \times src1.y
814
815
816 .. opcode:: TXL - Texture Lookup With explicit LOD
817
818 .. math::
819
820 coord.x = src0.x
821
822 coord.y = src0.y
823
824 coord.z = src0.z
825
826 coord.w = 1.0
827
828 lod = src0.w
829
830 dst = texture\_sample(unit, coord, lod)
831
832
833 .. opcode:: PUSHA - Push Address Register On Stack
834
835 push(src.x)
836 push(src.y)
837 push(src.z)
838 push(src.w)
839
840 .. note::
841
842 Considered for cleanup.
843
844 .. note::
845
846 Considered for removal.
847
848 .. opcode:: POPA - Pop Address Register From Stack
849
850 dst.w = pop()
851 dst.z = pop()
852 dst.y = pop()
853 dst.x = pop()
854
855 .. note::
856
857 Considered for cleanup.
858
859 .. note::
860
861 Considered for removal.
862
863
864 .. opcode:: BRA - Branch
865
866 pc = target
867
868 .. note::
869
870 Considered for removal.
871
872
873 .. opcode:: CALLNZ - Subroutine Call If Not Zero
874
875 TBD
876
877 .. note::
878
879 Considered for cleanup.
880
881 .. note::
882
883 Considered for removal.
884
885
886 Compute ISA
887 ^^^^^^^^^^^^^^^^^^^^^^^^
888
889 These opcodes are primarily provided for special-use computational shaders.
890 Support for these opcodes indicated by a special pipe capability bit (TBD).
891
892 XXX doesn't look like most of the opcodes really belong here.
893
894 .. opcode:: CEIL - Ceiling
895
896 .. math::
897
898 dst.x = \lceil src.x\rceil
899
900 dst.y = \lceil src.y\rceil
901
902 dst.z = \lceil src.z\rceil
903
904 dst.w = \lceil src.w\rceil
905
906
907 .. opcode:: TRUNC - Truncate
908
909 .. math::
910
911 dst.x = trunc(src.x)
912
913 dst.y = trunc(src.y)
914
915 dst.z = trunc(src.z)
916
917 dst.w = trunc(src.w)
918
919
920 .. opcode:: MOD - Modulus
921
922 .. math::
923
924 dst.x = src0.x \bmod src1.x
925
926 dst.y = src0.y \bmod src1.y
927
928 dst.z = src0.z \bmod src1.z
929
930 dst.w = src0.w \bmod src1.w
931
932
933 .. opcode:: UARL - Integer Address Register Load
934
935 Moves the contents of the source register, assumed to be an integer, into the
936 destination register, which is assumed to be an address (ADDR) register.
937
938
939 .. opcode:: SAD - Sum Of Absolute Differences
940
941 .. math::
942
943 dst.x = |src0.x - src1.x| + src2.x
944
945 dst.y = |src0.y - src1.y| + src2.y
946
947 dst.z = |src0.z - src1.z| + src2.z
948
949 dst.w = |src0.w - src1.w| + src2.w
950
951
952 .. opcode:: TXF - Texel Fetch
953
954 As per NV_gpu_shader4, extract a single texel from a specified texture
955 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
956 four-component signed integer vector used to identify the single texel
957 accessed. 3 components + level. src 1 is a 3 component constant signed
958 integer vector, with each component only have a range of -8..+8 (hw only
959 seems to deal with this range, interface allows for up to unsigned int).
960 TXF(uint_vec coord, int_vec offset).
961
962
963 .. opcode:: TXQ - Texture Size Query
964
965 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
966 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
967 depth), 1D array (width, layers), 2D array (width, height, layers)
968
969 .. math::
970
971 lod = src0.x
972
973 dst.x = texture\_width(unit, lod)
974
975 dst.y = texture\_height(unit, lod)
976
977 dst.z = texture\_depth(unit, lod)
978
979 .. opcode:: TG4 - Texture Gather
980
981 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
982 filtering operation and packs them into a single register. Only works with
983 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
984 addressing modes of the sampler and the top level of any mip pyramid are
985 used. Set W to zero. It behaves like the TEX instruction, but a filtered
986 sample is not generated. The four samples that contribute to filtering are
987 placed into xyzw in clockwise order, starting with the (u,v) texture
988 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
989 where the magnitude of the deltas are half a texel.
990
991 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
992 depth compares, single component selection, and a non-constant offset. It
993 doesn't allow support for the GL independent offset to get i0,j0. This would
994 require another CAP is hw can do it natively. For now we lower that before
995 TGSI.
996
997 .. math::
998
999 coord = src0
1000
1001 component = src1
1002
1003 dst = texture\_gather4 (unit, coord, component)
1004
1005 (with SM5 - cube array shadow)
1006
1007 .. math::
1008
1009 coord = src0
1010
1011 compare = src1
1012
1013 dst = texture\_gather (uint, coord, compare)
1014
1015 .. opcode:: LODQ - level of detail query
1016
1017 Compute the LOD information that the texture pipe would use to access the
1018 texture. The Y component contains the computed LOD lambda_prime. The X
1019 component contains the LOD that will be accessed, based on min/max lod's
1020 and mipmap filters.
1021
1022 .. math::
1023
1024 coord = src0
1025
1026 dst.xy = lodq(uint, coord);
1027
1028 Integer ISA
1029 ^^^^^^^^^^^^^^^^^^^^^^^^
1030 These opcodes are used for integer operations.
1031 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1032
1033
1034 .. opcode:: I2F - Signed Integer To Float
1035
1036 Rounding is unspecified (round to nearest even suggested).
1037
1038 .. math::
1039
1040 dst.x = (float) src.x
1041
1042 dst.y = (float) src.y
1043
1044 dst.z = (float) src.z
1045
1046 dst.w = (float) src.w
1047
1048
1049 .. opcode:: U2F - Unsigned Integer To Float
1050
1051 Rounding is unspecified (round to nearest even suggested).
1052
1053 .. math::
1054
1055 dst.x = (float) src.x
1056
1057 dst.y = (float) src.y
1058
1059 dst.z = (float) src.z
1060
1061 dst.w = (float) src.w
1062
1063
1064 .. opcode:: F2I - Float to Signed Integer
1065
1066 Rounding is towards zero (truncate).
1067 Values outside signed range (including NaNs) produce undefined results.
1068
1069 .. math::
1070
1071 dst.x = (int) src.x
1072
1073 dst.y = (int) src.y
1074
1075 dst.z = (int) src.z
1076
1077 dst.w = (int) src.w
1078
1079
1080 .. opcode:: F2U - Float to Unsigned Integer
1081
1082 Rounding is towards zero (truncate).
1083 Values outside unsigned range (including NaNs) produce undefined results.
1084
1085 .. math::
1086
1087 dst.x = (unsigned) src.x
1088
1089 dst.y = (unsigned) src.y
1090
1091 dst.z = (unsigned) src.z
1092
1093 dst.w = (unsigned) src.w
1094
1095
1096 .. opcode:: UADD - Integer Add
1097
1098 This instruction works the same for signed and unsigned integers.
1099 The low 32bit of the result is returned.
1100
1101 .. math::
1102
1103 dst.x = src0.x + src1.x
1104
1105 dst.y = src0.y + src1.y
1106
1107 dst.z = src0.z + src1.z
1108
1109 dst.w = src0.w + src1.w
1110
1111
1112 .. opcode:: UMAD - Integer Multiply And Add
1113
1114 This instruction works the same for signed and unsigned integers.
1115 The multiplication returns the low 32bit (as does the result itself).
1116
1117 .. math::
1118
1119 dst.x = src0.x \times src1.x + src2.x
1120
1121 dst.y = src0.y \times src1.y + src2.y
1122
1123 dst.z = src0.z \times src1.z + src2.z
1124
1125 dst.w = src0.w \times src1.w + src2.w
1126
1127
1128 .. opcode:: UMUL - Integer Multiply
1129
1130 This instruction works the same for signed and unsigned integers.
1131 The low 32bit of the result is returned.
1132
1133 .. math::
1134
1135 dst.x = src0.x \times src1.x
1136
1137 dst.y = src0.y \times src1.y
1138
1139 dst.z = src0.z \times src1.z
1140
1141 dst.w = src0.w \times src1.w
1142
1143
1144 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1145
1146 The high 32bits of the multiplication of 2 signed integers are returned.
1147
1148 .. math::
1149
1150 dst.x = (src0.x \times src1.x) >> 32
1151
1152 dst.y = (src0.y \times src1.y) >> 32
1153
1154 dst.z = (src0.z \times src1.z) >> 32
1155
1156 dst.w = (src0.w \times src1.w) >> 32
1157
1158
1159 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1160
1161 The high 32bits of the multiplication of 2 unsigned integers are returned.
1162
1163 .. math::
1164
1165 dst.x = (src0.x \times src1.x) >> 32
1166
1167 dst.y = (src0.y \times src1.y) >> 32
1168
1169 dst.z = (src0.z \times src1.z) >> 32
1170
1171 dst.w = (src0.w \times src1.w) >> 32
1172
1173
1174 .. opcode:: IDIV - Signed Integer Division
1175
1176 TBD: behavior for division by zero.
1177
1178 .. math::
1179
1180 dst.x = src0.x \ src1.x
1181
1182 dst.y = src0.y \ src1.y
1183
1184 dst.z = src0.z \ src1.z
1185
1186 dst.w = src0.w \ src1.w
1187
1188
1189 .. opcode:: UDIV - Unsigned Integer Division
1190
1191 For division by zero, 0xffffffff is returned.
1192
1193 .. math::
1194
1195 dst.x = src0.x \ src1.x
1196
1197 dst.y = src0.y \ src1.y
1198
1199 dst.z = src0.z \ src1.z
1200
1201 dst.w = src0.w \ src1.w
1202
1203
1204 .. opcode:: UMOD - Unsigned Integer Remainder
1205
1206 If second arg is zero, 0xffffffff is returned.
1207
1208 .. math::
1209
1210 dst.x = src0.x \ src1.x
1211
1212 dst.y = src0.y \ src1.y
1213
1214 dst.z = src0.z \ src1.z
1215
1216 dst.w = src0.w \ src1.w
1217
1218
1219 .. opcode:: NOT - Bitwise Not
1220
1221 .. math::
1222
1223 dst.x = \sim src.x
1224
1225 dst.y = \sim src.y
1226
1227 dst.z = \sim src.z
1228
1229 dst.w = \sim src.w
1230
1231
1232 .. opcode:: AND - Bitwise And
1233
1234 .. math::
1235
1236 dst.x = src0.x \& src1.x
1237
1238 dst.y = src0.y \& src1.y
1239
1240 dst.z = src0.z \& src1.z
1241
1242 dst.w = src0.w \& src1.w
1243
1244
1245 .. opcode:: OR - Bitwise Or
1246
1247 .. math::
1248
1249 dst.x = src0.x | src1.x
1250
1251 dst.y = src0.y | src1.y
1252
1253 dst.z = src0.z | src1.z
1254
1255 dst.w = src0.w | src1.w
1256
1257
1258 .. opcode:: XOR - Bitwise Xor
1259
1260 .. math::
1261
1262 dst.x = src0.x \oplus src1.x
1263
1264 dst.y = src0.y \oplus src1.y
1265
1266 dst.z = src0.z \oplus src1.z
1267
1268 dst.w = src0.w \oplus src1.w
1269
1270
1271 .. opcode:: IMAX - Maximum of Signed Integers
1272
1273 .. math::
1274
1275 dst.x = max(src0.x, src1.x)
1276
1277 dst.y = max(src0.y, src1.y)
1278
1279 dst.z = max(src0.z, src1.z)
1280
1281 dst.w = max(src0.w, src1.w)
1282
1283
1284 .. opcode:: UMAX - Maximum of Unsigned Integers
1285
1286 .. math::
1287
1288 dst.x = max(src0.x, src1.x)
1289
1290 dst.y = max(src0.y, src1.y)
1291
1292 dst.z = max(src0.z, src1.z)
1293
1294 dst.w = max(src0.w, src1.w)
1295
1296
1297 .. opcode:: IMIN - Minimum of Signed Integers
1298
1299 .. math::
1300
1301 dst.x = min(src0.x, src1.x)
1302
1303 dst.y = min(src0.y, src1.y)
1304
1305 dst.z = min(src0.z, src1.z)
1306
1307 dst.w = min(src0.w, src1.w)
1308
1309
1310 .. opcode:: UMIN - Minimum of Unsigned Integers
1311
1312 .. math::
1313
1314 dst.x = min(src0.x, src1.x)
1315
1316 dst.y = min(src0.y, src1.y)
1317
1318 dst.z = min(src0.z, src1.z)
1319
1320 dst.w = min(src0.w, src1.w)
1321
1322
1323 .. opcode:: SHL - Shift Left
1324
1325 The shift count is masked with 0x1f before the shift is applied.
1326
1327 .. math::
1328
1329 dst.x = src0.x << (0x1f \& src1.x)
1330
1331 dst.y = src0.y << (0x1f \& src1.y)
1332
1333 dst.z = src0.z << (0x1f \& src1.z)
1334
1335 dst.w = src0.w << (0x1f \& src1.w)
1336
1337
1338 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1339
1340 The shift count is masked with 0x1f before the shift is applied.
1341
1342 .. math::
1343
1344 dst.x = src0.x >> (0x1f \& src1.x)
1345
1346 dst.y = src0.y >> (0x1f \& src1.y)
1347
1348 dst.z = src0.z >> (0x1f \& src1.z)
1349
1350 dst.w = src0.w >> (0x1f \& src1.w)
1351
1352
1353 .. opcode:: USHR - Logical Shift Right
1354
1355 The shift count is masked with 0x1f before the shift is applied.
1356
1357 .. math::
1358
1359 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1360
1361 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1362
1363 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1364
1365 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1366
1367
1368 .. opcode:: UCMP - Integer Conditional Move
1369
1370 .. math::
1371
1372 dst.x = src0.x ? src1.x : src2.x
1373
1374 dst.y = src0.y ? src1.y : src2.y
1375
1376 dst.z = src0.z ? src1.z : src2.z
1377
1378 dst.w = src0.w ? src1.w : src2.w
1379
1380
1381
1382 .. opcode:: ISSG - Integer Set Sign
1383
1384 .. math::
1385
1386 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1387
1388 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1389
1390 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1391
1392 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1393
1394
1395
1396 .. opcode:: FSLT - Float Set On Less Than (ordered)
1397
1398 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1399
1400 .. math::
1401
1402 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1403
1404 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1405
1406 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1407
1408 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1409
1410
1411 .. opcode:: ISLT - Signed Integer Set On Less Than
1412
1413 .. math::
1414
1415 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1416
1417 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1418
1419 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1420
1421 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1422
1423
1424 .. opcode:: USLT - Unsigned Integer Set On Less Than
1425
1426 .. math::
1427
1428 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1429
1430 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1431
1432 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1433
1434 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1435
1436
1437 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1438
1439 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1440
1441 .. math::
1442
1443 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1444
1445 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1446
1447 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1448
1449 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1450
1451
1452 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1453
1454 .. math::
1455
1456 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1457
1458 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1459
1460 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1461
1462 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1463
1464
1465 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1466
1467 .. math::
1468
1469 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1470
1471 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1472
1473 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1474
1475 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1476
1477
1478 .. opcode:: FSEQ - Float Set On Equal (ordered)
1479
1480 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1481
1482 .. math::
1483
1484 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1485
1486 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1487
1488 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1489
1490 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1491
1492
1493 .. opcode:: USEQ - Integer Set On Equal
1494
1495 .. math::
1496
1497 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1498
1499 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1500
1501 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1502
1503 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1504
1505
1506 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1507
1508 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1509
1510 .. math::
1511
1512 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1513
1514 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1515
1516 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1517
1518 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1519
1520
1521 .. opcode:: USNE - Integer Set On Not Equal
1522
1523 .. math::
1524
1525 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1526
1527 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1528
1529 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1530
1531 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1532
1533
1534 .. opcode:: INEG - Integer Negate
1535
1536 Two's complement.
1537
1538 .. math::
1539
1540 dst.x = -src.x
1541
1542 dst.y = -src.y
1543
1544 dst.z = -src.z
1545
1546 dst.w = -src.w
1547
1548
1549 .. opcode:: IABS - Integer Absolute Value
1550
1551 .. math::
1552
1553 dst.x = |src.x|
1554
1555 dst.y = |src.y|
1556
1557 dst.z = |src.z|
1558
1559 dst.w = |src.w|
1560
1561
1562 Geometry ISA
1563 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1564
1565 These opcodes are only supported in geometry shaders; they have no meaning
1566 in any other type of shader.
1567
1568 .. opcode:: EMIT - Emit
1569
1570 Generate a new vertex for the current primitive using the values in the
1571 output registers.
1572
1573
1574 .. opcode:: ENDPRIM - End Primitive
1575
1576 Complete the current primitive (consisting of the emitted vertices),
1577 and start a new one.
1578
1579
1580 GLSL ISA
1581 ^^^^^^^^^^
1582
1583 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1584 opcodes is determined by a special capability bit, ``GLSL``.
1585 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1586
1587 .. opcode:: CAL - Subroutine Call
1588
1589 push(pc)
1590 pc = target
1591
1592
1593 .. opcode:: RET - Subroutine Call Return
1594
1595 pc = pop()
1596
1597
1598 .. opcode:: CONT - Continue
1599
1600 Unconditionally moves the point of execution to the instruction after the
1601 last bgnloop. The instruction must appear within a bgnloop/endloop.
1602
1603 .. note::
1604
1605 Support for CONT is determined by a special capability bit,
1606 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1607
1608
1609 .. opcode:: BGNLOOP - Begin a Loop
1610
1611 Start a loop. Must have a matching endloop.
1612
1613
1614 .. opcode:: BGNSUB - Begin Subroutine
1615
1616 Starts definition of a subroutine. Must have a matching endsub.
1617
1618
1619 .. opcode:: ENDLOOP - End a Loop
1620
1621 End a loop started with bgnloop.
1622
1623
1624 .. opcode:: ENDSUB - End Subroutine
1625
1626 Ends definition of a subroutine.
1627
1628
1629 .. opcode:: NOP - No Operation
1630
1631 Do nothing.
1632
1633
1634 .. opcode:: BRK - Break
1635
1636 Unconditionally moves the point of execution to the instruction after the
1637 next endloop or endswitch. The instruction must appear within a loop/endloop
1638 or switch/endswitch.
1639
1640
1641 .. opcode:: BREAKC - Break Conditional
1642
1643 Conditionally moves the point of execution to the instruction after the
1644 next endloop or endswitch. The instruction must appear within a loop/endloop
1645 or switch/endswitch.
1646 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1647 as an integer register.
1648
1649 .. note::
1650
1651 Considered for removal as it's quite inconsistent wrt other opcodes
1652 (could emulate with UIF/BRK/ENDIF).
1653
1654
1655 .. opcode:: IF - Float If
1656
1657 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1658
1659 src0.x != 0.0
1660
1661 where src0.x is interpreted as a floating point register.
1662
1663
1664 .. opcode:: UIF - Bitwise If
1665
1666 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1667
1668 src0.x != 0
1669
1670 where src0.x is interpreted as an integer register.
1671
1672
1673 .. opcode:: ELSE - Else
1674
1675 Starts an else block, after an IF or UIF statement.
1676
1677
1678 .. opcode:: ENDIF - End If
1679
1680 Ends an IF or UIF block.
1681
1682
1683 .. opcode:: SWITCH - Switch
1684
1685 Starts a C-style switch expression. The switch consists of one or multiple
1686 CASE statements, and at most one DEFAULT statement. Execution of a statement
1687 ends when a BRK is hit, but just like in C falling through to other cases
1688 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1689 just as last statement, and fallthrough is allowed into/from it.
1690 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1691
1692 Example::
1693
1694 SWITCH src[0].x
1695 CASE src[0].x
1696 (some instructions here)
1697 (optional BRK here)
1698 DEFAULT
1699 (some instructions here)
1700 (optional BRK here)
1701 CASE src[0].x
1702 (some instructions here)
1703 (optional BRK here)
1704 ENDSWITCH
1705
1706
1707 .. opcode:: CASE - Switch case
1708
1709 This represents a switch case label. The src arg must be an integer immediate.
1710
1711
1712 .. opcode:: DEFAULT - Switch default
1713
1714 This represents the default case in the switch, which is taken if no other
1715 case matches.
1716
1717
1718 .. opcode:: ENDSWITCH - End of switch
1719
1720 Ends a switch expression.
1721
1722
1723 .. opcode:: NRM4 - 4-component Vector Normalise
1724
1725 This instruction replicates its result.
1726
1727 .. math::
1728
1729 dst = \frac{src.x}{src.x \times src.x + src.y \times src.y + src.z \times src.z + src.w \times src.w}
1730
1731
1732 .. _doubleopcodes:
1733
1734 Double ISA
1735 ^^^^^^^^^^^^^^^
1736
1737 The double-precision opcodes reinterpret four-component vectors into
1738 two-component vectors with doubled precision in each component.
1739
1740 Support for these opcodes is XXX undecided. :T
1741
1742 .. opcode:: DADD - Add
1743
1744 .. math::
1745
1746 dst.xy = src0.xy + src1.xy
1747
1748 dst.zw = src0.zw + src1.zw
1749
1750
1751 .. opcode:: DDIV - Divide
1752
1753 .. math::
1754
1755 dst.xy = src0.xy / src1.xy
1756
1757 dst.zw = src0.zw / src1.zw
1758
1759 .. opcode:: DSEQ - Set on Equal
1760
1761 .. math::
1762
1763 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1764
1765 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1766
1767 .. opcode:: DSLT - Set on Less than
1768
1769 .. math::
1770
1771 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1772
1773 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1774
1775 .. opcode:: DFRAC - Fraction
1776
1777 .. math::
1778
1779 dst.xy = src.xy - \lfloor src.xy\rfloor
1780
1781 dst.zw = src.zw - \lfloor src.zw\rfloor
1782
1783
1784 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1785
1786 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1787 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1788 :math:`dst1 \times 2^{dst0} = src` .
1789
1790 .. math::
1791
1792 dst0.xy = exp(src.xy)
1793
1794 dst1.xy = frac(src.xy)
1795
1796 dst0.zw = exp(src.zw)
1797
1798 dst1.zw = frac(src.zw)
1799
1800 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1801
1802 This opcode is the inverse of :opcode:`DFRACEXP`.
1803
1804 .. math::
1805
1806 dst.xy = src0.xy \times 2^{src1.xy}
1807
1808 dst.zw = src0.zw \times 2^{src1.zw}
1809
1810 .. opcode:: DMIN - Minimum
1811
1812 .. math::
1813
1814 dst.xy = min(src0.xy, src1.xy)
1815
1816 dst.zw = min(src0.zw, src1.zw)
1817
1818 .. opcode:: DMAX - Maximum
1819
1820 .. math::
1821
1822 dst.xy = max(src0.xy, src1.xy)
1823
1824 dst.zw = max(src0.zw, src1.zw)
1825
1826 .. opcode:: DMUL - Multiply
1827
1828 .. math::
1829
1830 dst.xy = src0.xy \times src1.xy
1831
1832 dst.zw = src0.zw \times src1.zw
1833
1834
1835 .. opcode:: DMAD - Multiply And Add
1836
1837 .. math::
1838
1839 dst.xy = src0.xy \times src1.xy + src2.xy
1840
1841 dst.zw = src0.zw \times src1.zw + src2.zw
1842
1843
1844 .. opcode:: DRCP - Reciprocal
1845
1846 .. math::
1847
1848 dst.xy = \frac{1}{src.xy}
1849
1850 dst.zw = \frac{1}{src.zw}
1851
1852 .. opcode:: DSQRT - Square Root
1853
1854 .. math::
1855
1856 dst.xy = \sqrt{src.xy}
1857
1858 dst.zw = \sqrt{src.zw}
1859
1860
1861 .. _samplingopcodes:
1862
1863 Resource Sampling Opcodes
1864 ^^^^^^^^^^^^^^^^^^^^^^^^^
1865
1866 Those opcodes follow very closely semantics of the respective Direct3D
1867 instructions. If in doubt double check Direct3D documentation.
1868 Note that the swizzle on SVIEW (src1) determines texel swizzling
1869 after lookup.
1870
1871 .. opcode:: SAMPLE
1872
1873 Using provided address, sample data from the specified texture using the
1874 filtering mode identified by the gven sampler. The source data may come from
1875 any resource type other than buffers.
1876
1877 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
1878
1879 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
1880
1881 .. opcode:: SAMPLE_I
1882
1883 Simplified alternative to the SAMPLE instruction. Using the provided
1884 integer address, SAMPLE_I fetches data from the specified sampler view
1885 without any filtering. The source data may come from any resource type
1886 other than CUBE.
1887
1888 Syntax: ``SAMPLE_I dst, address, sampler_view``
1889
1890 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
1891
1892 The 'address' is specified as unsigned integers. If the 'address' is out of
1893 range [0...(# texels - 1)] the result of the fetch is always 0 in all
1894 components. As such the instruction doesn't honor address wrap modes, in
1895 cases where that behavior is desirable 'SAMPLE' instruction should be used.
1896 address.w always provides an unsigned integer mipmap level. If the value is
1897 out of the range then the instruction always returns 0 in all components.
1898 address.yz are ignored for buffers and 1d textures. address.z is ignored
1899 for 1d texture arrays and 2d textures.
1900
1901 For 1D texture arrays address.y provides the array index (also as unsigned
1902 integer). If the value is out of the range of available array indices
1903 [0... (array size - 1)] then the opcode always returns 0 in all components.
1904 For 2D texture arrays address.z provides the array index, otherwise it
1905 exhibits the same behavior as in the case for 1D texture arrays. The exact
1906 semantics of the source address are presented in the table below:
1907
1908 +---------------------------+----+-----+-----+---------+
1909 | resource type | X | Y | Z | W |
1910 +===========================+====+=====+=====+=========+
1911 | ``PIPE_BUFFER`` | x | | | ignored |
1912 +---------------------------+----+-----+-----+---------+
1913 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
1914 +---------------------------+----+-----+-----+---------+
1915 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
1916 +---------------------------+----+-----+-----+---------+
1917 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
1918 +---------------------------+----+-----+-----+---------+
1919 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
1920 +---------------------------+----+-----+-----+---------+
1921 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
1922 +---------------------------+----+-----+-----+---------+
1923 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
1924 +---------------------------+----+-----+-----+---------+
1925 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
1926 +---------------------------+----+-----+-----+---------+
1927
1928 Where 'mpl' is a mipmap level and 'idx' is the array index.
1929
1930 .. opcode:: SAMPLE_I_MS
1931
1932 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
1933
1934 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
1935
1936 .. opcode:: SAMPLE_B
1937
1938 Just like the SAMPLE instruction with the exception that an additional bias
1939 is applied to the level of detail computed as part of the instruction
1940 execution.
1941
1942 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
1943
1944 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
1945
1946 .. opcode:: SAMPLE_C
1947
1948 Similar to the SAMPLE instruction but it performs a comparison filter. The
1949 operands to SAMPLE_C are identical to SAMPLE, except that there is an
1950 additional float32 operand, reference value, which must be a register with
1951 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
1952 current samplers compare_func (in pipe_sampler_state) to compare reference
1953 value against the red component value for the surce resource at each texel
1954 that the currently configured texture filter covers based on the provided
1955 coordinates.
1956
1957 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
1958
1959 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
1960
1961 .. opcode:: SAMPLE_C_LZ
1962
1963 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
1964 for level-zero.
1965
1966 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
1967
1968 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
1969
1970
1971 .. opcode:: SAMPLE_D
1972
1973 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
1974 the source address in the x direction and the y direction are provided by
1975 extra parameters.
1976
1977 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
1978
1979 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
1980
1981 .. opcode:: SAMPLE_L
1982
1983 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
1984 directly as a scalar value, representing no anisotropy.
1985
1986 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
1987
1988 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
1989
1990 .. opcode:: GATHER4
1991
1992 Gathers the four texels to be used in a bi-linear filtering operation and
1993 packs them into a single register. Only works with 2D, 2D array, cubemaps,
1994 and cubemaps arrays. For 2D textures, only the addressing modes of the
1995 sampler and the top level of any mip pyramid are used. Set W to zero. It
1996 behaves like the SAMPLE instruction, but a filtered sample is not
1997 generated. The four samples that contribute to filtering are placed into
1998 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
1999 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2000 magnitude of the deltas are half a texel.
2001
2002
2003 .. opcode:: SVIEWINFO
2004
2005 Query the dimensions of a given sampler view. dst receives width, height,
2006 depth or array size and number of mipmap levels as int4. The dst can have a
2007 writemask which will specify what info is the caller interested in.
2008
2009 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2010
2011 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2012
2013 src_mip_level is an unsigned integer scalar. If it's out of range then
2014 returns 0 for width, height and depth/array size but the total number of
2015 mipmap is still returned correctly for the given sampler view. The returned
2016 width, height and depth values are for the mipmap level selected by the
2017 src_mip_level and are in the number of texels. For 1d texture array width
2018 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2019 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2020 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2021 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2022 resinfo allowing swizzling dst values is ignored (due to the interaction
2023 with rcpfloat modifier which requires some swizzle handling in the state
2024 tracker anyway).
2025
2026 .. opcode:: SAMPLE_POS
2027
2028 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2029 indicated where the sample is located. If the resource is not a multi-sample
2030 resource and not a render target, the result is 0.
2031
2032 .. opcode:: SAMPLE_INFO
2033
2034 dst receives number of samples in x. If the resource is not a multi-sample
2035 resource and not a render target, the result is 0.
2036
2037
2038 .. _resourceopcodes:
2039
2040 Resource Access Opcodes
2041 ^^^^^^^^^^^^^^^^^^^^^^^
2042
2043 .. opcode:: LOAD - Fetch data from a shader resource
2044
2045 Syntax: ``LOAD dst, resource, address``
2046
2047 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
2048
2049 Using the provided integer address, LOAD fetches data
2050 from the specified buffer or texture without any
2051 filtering.
2052
2053 The 'address' is specified as a vector of unsigned
2054 integers. If the 'address' is out of range the result
2055 is unspecified.
2056
2057 Only the first mipmap level of a resource can be read
2058 from using this instruction.
2059
2060 For 1D or 2D texture arrays, the array index is
2061 provided as an unsigned integer in address.y or
2062 address.z, respectively. address.yz are ignored for
2063 buffers and 1D textures. address.z is ignored for 1D
2064 texture arrays and 2D textures. address.w is always
2065 ignored.
2066
2067 .. opcode:: STORE - Write data to a shader resource
2068
2069 Syntax: ``STORE resource, address, src``
2070
2071 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
2072
2073 Using the provided integer address, STORE writes data
2074 to the specified buffer or texture.
2075
2076 The 'address' is specified as a vector of unsigned
2077 integers. If the 'address' is out of range the result
2078 is unspecified.
2079
2080 Only the first mipmap level of a resource can be
2081 written to using this instruction.
2082
2083 For 1D or 2D texture arrays, the array index is
2084 provided as an unsigned integer in address.y or
2085 address.z, respectively. address.yz are ignored for
2086 buffers and 1D textures. address.z is ignored for 1D
2087 texture arrays and 2D textures. address.w is always
2088 ignored.
2089
2090
2091 .. _threadsyncopcodes:
2092
2093 Inter-thread synchronization opcodes
2094 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2095
2096 These opcodes are intended for communication between threads running
2097 within the same compute grid. For now they're only valid in compute
2098 programs.
2099
2100 .. opcode:: MFENCE - Memory fence
2101
2102 Syntax: ``MFENCE resource``
2103
2104 Example: ``MFENCE RES[0]``
2105
2106 This opcode forces strong ordering between any memory access
2107 operations that affect the specified resource. This means that
2108 previous loads and stores (and only those) will be performed and
2109 visible to other threads before the program execution continues.
2110
2111
2112 .. opcode:: LFENCE - Load memory fence
2113
2114 Syntax: ``LFENCE resource``
2115
2116 Example: ``LFENCE RES[0]``
2117
2118 Similar to MFENCE, but it only affects the ordering of memory loads.
2119
2120
2121 .. opcode:: SFENCE - Store memory fence
2122
2123 Syntax: ``SFENCE resource``
2124
2125 Example: ``SFENCE RES[0]``
2126
2127 Similar to MFENCE, but it only affects the ordering of memory stores.
2128
2129
2130 .. opcode:: BARRIER - Thread group barrier
2131
2132 ``BARRIER``
2133
2134 This opcode suspends the execution of the current thread until all
2135 the remaining threads in the working group reach the same point of
2136 the program. Results are unspecified if any of the remaining
2137 threads terminates or never reaches an executed BARRIER instruction.
2138
2139
2140 .. _atomopcodes:
2141
2142 Atomic opcodes
2143 ^^^^^^^^^^^^^^
2144
2145 These opcodes provide atomic variants of some common arithmetic and
2146 logical operations. In this context atomicity means that another
2147 concurrent memory access operation that affects the same memory
2148 location is guaranteed to be performed strictly before or after the
2149 entire execution of the atomic operation.
2150
2151 For the moment they're only valid in compute programs.
2152
2153 .. opcode:: ATOMUADD - Atomic integer addition
2154
2155 Syntax: ``ATOMUADD dst, resource, offset, src``
2156
2157 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2158
2159 The following operation is performed atomically on each component:
2160
2161 .. math::
2162
2163 dst_i = resource[offset]_i
2164
2165 resource[offset]_i = dst_i + src_i
2166
2167
2168 .. opcode:: ATOMXCHG - Atomic exchange
2169
2170 Syntax: ``ATOMXCHG dst, resource, offset, src``
2171
2172 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2173
2174 The following operation is performed atomically on each component:
2175
2176 .. math::
2177
2178 dst_i = resource[offset]_i
2179
2180 resource[offset]_i = src_i
2181
2182
2183 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2184
2185 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2186
2187 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2188
2189 The following operation is performed atomically on each component:
2190
2191 .. math::
2192
2193 dst_i = resource[offset]_i
2194
2195 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2196
2197
2198 .. opcode:: ATOMAND - Atomic bitwise And
2199
2200 Syntax: ``ATOMAND dst, resource, offset, src``
2201
2202 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2203
2204 The following operation is performed atomically on each component:
2205
2206 .. math::
2207
2208 dst_i = resource[offset]_i
2209
2210 resource[offset]_i = dst_i \& src_i
2211
2212
2213 .. opcode:: ATOMOR - Atomic bitwise Or
2214
2215 Syntax: ``ATOMOR dst, resource, offset, src``
2216
2217 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2218
2219 The following operation is performed atomically on each component:
2220
2221 .. math::
2222
2223 dst_i = resource[offset]_i
2224
2225 resource[offset]_i = dst_i | src_i
2226
2227
2228 .. opcode:: ATOMXOR - Atomic bitwise Xor
2229
2230 Syntax: ``ATOMXOR dst, resource, offset, src``
2231
2232 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2233
2234 The following operation is performed atomically on each component:
2235
2236 .. math::
2237
2238 dst_i = resource[offset]_i
2239
2240 resource[offset]_i = dst_i \oplus src_i
2241
2242
2243 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2244
2245 Syntax: ``ATOMUMIN dst, resource, offset, src``
2246
2247 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2248
2249 The following operation is performed atomically on each component:
2250
2251 .. math::
2252
2253 dst_i = resource[offset]_i
2254
2255 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2256
2257
2258 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2259
2260 Syntax: ``ATOMUMAX dst, resource, offset, src``
2261
2262 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2263
2264 The following operation is performed atomically on each component:
2265
2266 .. math::
2267
2268 dst_i = resource[offset]_i
2269
2270 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2271
2272
2273 .. opcode:: ATOMIMIN - Atomic signed minimum
2274
2275 Syntax: ``ATOMIMIN dst, resource, offset, src``
2276
2277 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2278
2279 The following operation is performed atomically on each component:
2280
2281 .. math::
2282
2283 dst_i = resource[offset]_i
2284
2285 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2286
2287
2288 .. opcode:: ATOMIMAX - Atomic signed maximum
2289
2290 Syntax: ``ATOMIMAX dst, resource, offset, src``
2291
2292 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2293
2294 The following operation is performed atomically on each component:
2295
2296 .. math::
2297
2298 dst_i = resource[offset]_i
2299
2300 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2301
2302
2303
2304 Explanation of symbols used
2305 ------------------------------
2306
2307
2308 Functions
2309 ^^^^^^^^^^^^^^
2310
2311
2312 :math:`|x|` Absolute value of `x`.
2313
2314 :math:`\lceil x \rceil` Ceiling of `x`.
2315
2316 clamp(x,y,z) Clamp x between y and z.
2317 (x < y) ? y : (x > z) ? z : x
2318
2319 :math:`\lfloor x\rfloor` Floor of `x`.
2320
2321 :math:`\log_2{x}` Logarithm of `x`, base 2.
2322
2323 max(x,y) Maximum of x and y.
2324 (x > y) ? x : y
2325
2326 min(x,y) Minimum of x and y.
2327 (x < y) ? x : y
2328
2329 partialx(x) Derivative of x relative to fragment's X.
2330
2331 partialy(x) Derivative of x relative to fragment's Y.
2332
2333 pop() Pop from stack.
2334
2335 :math:`x^y` `x` to the power `y`.
2336
2337 push(x) Push x on stack.
2338
2339 round(x) Round x.
2340
2341 trunc(x) Truncate x, i.e. drop the fraction bits.
2342
2343
2344 Keywords
2345 ^^^^^^^^^^^^^
2346
2347
2348 discard Discard fragment.
2349
2350 pc Program counter.
2351
2352 target Label of target instruction.
2353
2354
2355 Other tokens
2356 ---------------
2357
2358
2359 Declaration
2360 ^^^^^^^^^^^
2361
2362
2363 Declares a register that is will be referenced as an operand in Instruction
2364 tokens.
2365
2366 File field contains register file that is being declared and is one
2367 of TGSI_FILE.
2368
2369 UsageMask field specifies which of the register components can be accessed
2370 and is one of TGSI_WRITEMASK.
2371
2372 The Local flag specifies that a given value isn't intended for
2373 subroutine parameter passing and, as a result, the implementation
2374 isn't required to give any guarantees of it being preserved across
2375 subroutine boundaries. As it's merely a compiler hint, the
2376 implementation is free to ignore it.
2377
2378 If Dimension flag is set to 1, a Declaration Dimension token follows.
2379
2380 If Semantic flag is set to 1, a Declaration Semantic token follows.
2381
2382 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2383
2384 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2385
2386 If Array flag is set to 1, a Declaration Array token follows.
2387
2388 Array Declaration
2389 ^^^^^^^^^^^^^^^^^^^^^^^^
2390
2391 Declarations can optional have an ArrayID attribute which can be referred by
2392 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2393 if no ArrayID is specified.
2394
2395 If an indirect addressing operand refers to a specific declaration by using
2396 an ArrayID only the registers in this declaration are guaranteed to be
2397 accessed, accessing any register outside this declaration results in undefined
2398 behavior. Note that for compatibility the effective index is zero-based and
2399 not relative to the specified declaration
2400
2401 If no ArrayID is specified with an indirect addressing operand the whole
2402 register file might be accessed by this operand. This is strongly discouraged
2403 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2404
2405 Declaration Semantic
2406 ^^^^^^^^^^^^^^^^^^^^^^^^
2407
2408 Vertex and fragment shader input and output registers may be labeled
2409 with semantic information consisting of a name and index.
2410
2411 Follows Declaration token if Semantic bit is set.
2412
2413 Since its purpose is to link a shader with other stages of the pipeline,
2414 it is valid to follow only those Declaration tokens that declare a register
2415 either in INPUT or OUTPUT file.
2416
2417 SemanticName field contains the semantic name of the register being declared.
2418 There is no default value.
2419
2420 SemanticIndex is an optional subscript that can be used to distinguish
2421 different register declarations with the same semantic name. The default value
2422 is 0.
2423
2424 The meanings of the individual semantic names are explained in the following
2425 sections.
2426
2427 TGSI_SEMANTIC_POSITION
2428 """"""""""""""""""""""
2429
2430 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2431 output register which contains the homogeneous vertex position in the clip
2432 space coordinate system. After clipping, the X, Y and Z components of the
2433 vertex will be divided by the W value to get normalized device coordinates.
2434
2435 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2436 fragment shader input contains the fragment's window position. The X
2437 component starts at zero and always increases from left to right.
2438 The Y component starts at zero and always increases but Y=0 may either
2439 indicate the top of the window or the bottom depending on the fragment
2440 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2441 The Z coordinate ranges from 0 to 1 to represent depth from the front
2442 to the back of the Z buffer. The W component contains the reciprocol
2443 of the interpolated vertex position W component.
2444
2445 Fragment shaders may also declare an output register with
2446 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2447 the fragment shader to change the fragment's Z position.
2448
2449
2450
2451 TGSI_SEMANTIC_COLOR
2452 """""""""""""""""""
2453
2454 For vertex shader outputs or fragment shader inputs/outputs, this
2455 label indicates that the resister contains an R,G,B,A color.
2456
2457 Several shader inputs/outputs may contain colors so the semantic index
2458 is used to distinguish them. For example, color[0] may be the diffuse
2459 color while color[1] may be the specular color.
2460
2461 This label is needed so that the flat/smooth shading can be applied
2462 to the right interpolants during rasterization.
2463
2464
2465
2466 TGSI_SEMANTIC_BCOLOR
2467 """"""""""""""""""""
2468
2469 Back-facing colors are only used for back-facing polygons, and are only valid
2470 in vertex shader outputs. After rasterization, all polygons are front-facing
2471 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2472 so all BCOLORs effectively become regular COLORs in the fragment shader.
2473
2474
2475 TGSI_SEMANTIC_FOG
2476 """""""""""""""""
2477
2478 Vertex shader inputs and outputs and fragment shader inputs may be
2479 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2480 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2481 to compute a fog blend factor which is used to blend the normal fragment color
2482 with a constant fog color. But fog coord really is just an ordinary vec4
2483 register like regular semantics.
2484
2485
2486 TGSI_SEMANTIC_PSIZE
2487 """""""""""""""""""
2488
2489 Vertex shader input and output registers may be labeled with
2490 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2491 in the form (S, 0, 0, 1). The point size controls the width or diameter
2492 of points for rasterization. This label cannot be used in fragment
2493 shaders.
2494
2495 When using this semantic, be sure to set the appropriate state in the
2496 :ref:`rasterizer` first.
2497
2498
2499 TGSI_SEMANTIC_TEXCOORD
2500 """"""""""""""""""""""
2501
2502 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2503
2504 Vertex shader outputs and fragment shader inputs may be labeled with
2505 this semantic to make them replaceable by sprite coordinates via the
2506 sprite_coord_enable state in the :ref:`rasterizer`.
2507 The semantic index permitted with this semantic is limited to <= 7.
2508
2509 If the driver does not support TEXCOORD, sprite coordinate replacement
2510 applies to inputs with the GENERIC semantic instead.
2511
2512 The intended use case for this semantic is gl_TexCoord.
2513
2514
2515 TGSI_SEMANTIC_PCOORD
2516 """"""""""""""""""""
2517
2518 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2519
2520 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2521 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2522 the current primitive is a point and point sprites are enabled. Otherwise,
2523 the contents of the register are undefined.
2524
2525 The intended use case for this semantic is gl_PointCoord.
2526
2527
2528 TGSI_SEMANTIC_GENERIC
2529 """""""""""""""""""""
2530
2531 All vertex/fragment shader inputs/outputs not labeled with any other
2532 semantic label can be considered to be generic attributes. Typical
2533 uses of generic inputs/outputs are texcoords and user-defined values.
2534
2535
2536 TGSI_SEMANTIC_NORMAL
2537 """"""""""""""""""""
2538
2539 Indicates that a vertex shader input is a normal vector. This is
2540 typically only used for legacy graphics APIs.
2541
2542
2543 TGSI_SEMANTIC_FACE
2544 """"""""""""""""""
2545
2546 This label applies to fragment shader inputs only and indicates that
2547 the register contains front/back-face information of the form (F, 0,
2548 0, 1). The first component will be positive when the fragment belongs
2549 to a front-facing polygon, and negative when the fragment belongs to a
2550 back-facing polygon.
2551
2552
2553 TGSI_SEMANTIC_EDGEFLAG
2554 """"""""""""""""""""""
2555
2556 For vertex shaders, this sematic label indicates that an input or
2557 output is a boolean edge flag. The register layout is [F, x, x, x]
2558 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2559 simply copies the edge flag input to the edgeflag output.
2560
2561 Edge flags are used to control which lines or points are actually
2562 drawn when the polygon mode converts triangles/quads/polygons into
2563 points or lines.
2564
2565
2566 TGSI_SEMANTIC_STENCIL
2567 """""""""""""""""""""
2568
2569 For fragment shaders, this semantic label indicates that an output
2570 is a writable stencil reference value. Only the Y component is writable.
2571 This allows the fragment shader to change the fragments stencilref value.
2572
2573
2574 TGSI_SEMANTIC_VIEWPORT_INDEX
2575 """"""""""""""""""""""""""""
2576
2577 For geometry shaders, this semantic label indicates that an output
2578 contains the index of the viewport (and scissor) to use.
2579 Only the X value is used.
2580
2581
2582 TGSI_SEMANTIC_LAYER
2583 """""""""""""""""""
2584
2585 For geometry shaders, this semantic label indicates that an output
2586 contains the layer value to use for the color and depth/stencil surfaces.
2587 Only the X value is used. (Also known as rendertarget array index.)
2588
2589
2590 TGSI_SEMANTIC_CULLDIST
2591 """"""""""""""""""""""
2592
2593 Used as distance to plane for performing application-defined culling
2594 of individual primitives against a plane. When components of vertex
2595 elements are given this label, these values are assumed to be a
2596 float32 signed distance to a plane. Primitives will be completely
2597 discarded if the plane distance for all of the vertices in the
2598 primitive are < 0. If a vertex has a cull distance of NaN, that
2599 vertex counts as "out" (as if its < 0);
2600 The limits on both clip and cull distances are bound
2601 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2602 the maximum number of components that can be used to hold the
2603 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2604 which specifies the maximum number of registers which can be
2605 annotated with those semantics.
2606
2607
2608 TGSI_SEMANTIC_CLIPDIST
2609 """"""""""""""""""""""
2610
2611 When components of vertex elements are identified this way, these
2612 values are each assumed to be a float32 signed distance to a plane.
2613 Primitive setup only invokes rasterization on pixels for which
2614 the interpolated plane distances are >= 0. Multiple clip planes
2615 can be implemented simultaneously, by annotating multiple
2616 components of one or more vertex elements with the above specified
2617 semantic. The limits on both clip and cull distances are bound
2618 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2619 the maximum number of components that can be used to hold the
2620 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2621 which specifies the maximum number of registers which can be
2622 annotated with those semantics.
2623
2624 TGSI_SEMANTIC_SAMPLEID
2625 """"""""""""""""""""""
2626
2627 For fragment shaders, this semantic label indicates that a system value
2628 contains the current sample id (i.e. gl_SampleID). Only the X value is used.
2629
2630 TGSI_SEMANTIC_SAMPLEPOS
2631 """""""""""""""""""""""
2632
2633 For fragment shaders, this semantic label indicates that a system value
2634 contains the current sample's position (i.e. gl_SamplePosition). Only the X
2635 and Y values are used.
2636
2637 TGSI_SEMANTIC_SAMPLEMASK
2638 """"""""""""""""""""""""
2639
2640 For fragment shaders, this semantic label indicates that an output contains
2641 the sample mask used to disable further sample processing
2642 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
2643
2644 TGSI_SEMANTIC_INVOCATIONID
2645 """"""""""""""""""""""""""
2646
2647 For geometry shaders, this semantic label indicates that a system value
2648 contains the current invocation id (i.e. gl_InvocationID). Only the X value is
2649 used.
2650
2651 Declaration Interpolate
2652 ^^^^^^^^^^^^^^^^^^^^^^^
2653
2654 This token is only valid for fragment shader INPUT declarations.
2655
2656 The Interpolate field specifes the way input is being interpolated by
2657 the rasteriser and is one of TGSI_INTERPOLATE_*.
2658
2659 The CylindricalWrap bitfield specifies which register components
2660 should be subject to cylindrical wrapping when interpolating by the
2661 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2662 should be interpolated according to cylindrical wrapping rules.
2663
2664
2665 Declaration Sampler View
2666 ^^^^^^^^^^^^^^^^^^^^^^^^
2667
2668 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2669
2670 DCL SVIEW[#], resource, type(s)
2671
2672 Declares a shader input sampler view and assigns it to a SVIEW[#]
2673 register.
2674
2675 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2676
2677 type must be 1 or 4 entries (if specifying on a per-component
2678 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2679
2680
2681 Declaration Resource
2682 ^^^^^^^^^^^^^^^^^^^^
2683
2684 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2685
2686 DCL RES[#], resource [, WR] [, RAW]
2687
2688 Declares a shader input resource and assigns it to a RES[#]
2689 register.
2690
2691 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2692 2DArray.
2693
2694 If the RAW keyword is not specified, the texture data will be
2695 subject to conversion, swizzling and scaling as required to yield
2696 the specified data type from the physical data format of the bound
2697 resource.
2698
2699 If the RAW keyword is specified, no channel conversion will be
2700 performed: the values read for each of the channels (X,Y,Z,W) will
2701 correspond to consecutive words in the same order and format
2702 they're found in memory. No element-to-address conversion will be
2703 performed either: the value of the provided X coordinate will be
2704 interpreted in byte units instead of texel units. The result of
2705 accessing a misaligned address is undefined.
2706
2707 Usage of the STORE opcode is only allowed if the WR (writable) flag
2708 is set.
2709
2710
2711 Properties
2712 ^^^^^^^^^^^^^^^^^^^^^^^^
2713
2714 Properties are general directives that apply to the whole TGSI program.
2715
2716 FS_COORD_ORIGIN
2717 """""""""""""""
2718
2719 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2720 The default value is UPPER_LEFT.
2721
2722 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2723 increase downward and rightward.
2724 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2725 increase upward and rightward.
2726
2727 OpenGL defaults to LOWER_LEFT, and is configurable with the
2728 GL_ARB_fragment_coord_conventions extension.
2729
2730 DirectX 9/10 use UPPER_LEFT.
2731
2732 FS_COORD_PIXEL_CENTER
2733 """""""""""""""""""""
2734
2735 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2736 The default value is HALF_INTEGER.
2737
2738 If HALF_INTEGER, the fractionary part of the position will be 0.5
2739 If INTEGER, the fractionary part of the position will be 0.0
2740
2741 Note that this does not affect the set of fragments generated by
2742 rasterization, which is instead controlled by half_pixel_center in the
2743 rasterizer.
2744
2745 OpenGL defaults to HALF_INTEGER, and is configurable with the
2746 GL_ARB_fragment_coord_conventions extension.
2747
2748 DirectX 9 uses INTEGER.
2749 DirectX 10 uses HALF_INTEGER.
2750
2751 FS_COLOR0_WRITES_ALL_CBUFS
2752 """"""""""""""""""""""""""
2753 Specifies that writes to the fragment shader color 0 are replicated to all
2754 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2755 fragData is directed to a single color buffer, but fragColor is broadcast.
2756
2757 VS_PROHIBIT_UCPS
2758 """"""""""""""""""""""""""
2759 If this property is set on the program bound to the shader stage before the
2760 fragment shader, user clip planes should have no effect (be disabled) even if
2761 that shader does not write to any clip distance outputs and the rasterizer's
2762 clip_plane_enable is non-zero.
2763 This property is only supported by drivers that also support shader clip
2764 distance outputs.
2765 This is useful for APIs that don't have UCPs and where clip distances written
2766 by a shader cannot be disabled.
2767
2768 GS_INVOCATIONS
2769 """"""""""""""
2770
2771 Specifies the number of times a geometry shader should be executed for each
2772 input primitive. Each invocation will have a different
2773 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
2774 be 1.
2775
2776
2777 Texture Sampling and Texture Formats
2778 ------------------------------------
2779
2780 This table shows how texture image components are returned as (x,y,z,w) tuples
2781 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2782 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2783 well.
2784
2785 +--------------------+--------------+--------------------+--------------+
2786 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2787 +====================+==============+====================+==============+
2788 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2789 +--------------------+--------------+--------------------+--------------+
2790 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2791 +--------------------+--------------+--------------------+--------------+
2792 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2793 +--------------------+--------------+--------------------+--------------+
2794 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2795 +--------------------+--------------+--------------------+--------------+
2796 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2797 +--------------------+--------------+--------------------+--------------+
2798 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2799 +--------------------+--------------+--------------------+--------------+
2800 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2801 +--------------------+--------------+--------------------+--------------+
2802 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2803 +--------------------+--------------+--------------------+--------------+
2804 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2805 | | | [#envmap-bumpmap]_ | |
2806 +--------------------+--------------+--------------------+--------------+
2807 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2808 | | | [#depth-tex-mode]_ | |
2809 +--------------------+--------------+--------------------+--------------+
2810 | S | (s, s, s, s) | unknown | unknown |
2811 +--------------------+--------------+--------------------+--------------+
2812
2813 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2814 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2815 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.