gallium: add opcodes/cap for fine derivative support
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = \lfloor src.x\rfloor
52
53 dst.y = \lfloor src.y\rfloor
54
55 dst.z = \lfloor src.z\rfloor
56
57 dst.w = \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: CND - Condition
276
277 .. math::
278
279 dst.x = (src2.x > 0.5) ? src0.x : src1.x
280
281 dst.y = (src2.y > 0.5) ? src0.y : src1.y
282
283 dst.z = (src2.z > 0.5) ? src0.z : src1.z
284
285 dst.w = (src2.w > 0.5) ? src0.w : src1.w
286
287
288 .. opcode:: DP2A - 2-component Dot Product And Add
289
290 .. math::
291
292 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
293
294 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
295
296 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
297
298 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
299
300
301 .. opcode:: FRC - Fraction
302
303 .. math::
304
305 dst.x = src.x - \lfloor src.x\rfloor
306
307 dst.y = src.y - \lfloor src.y\rfloor
308
309 dst.z = src.z - \lfloor src.z\rfloor
310
311 dst.w = src.w - \lfloor src.w\rfloor
312
313
314 .. opcode:: CLAMP - Clamp
315
316 .. math::
317
318 dst.x = clamp(src0.x, src1.x, src2.x)
319
320 dst.y = clamp(src0.y, src1.y, src2.y)
321
322 dst.z = clamp(src0.z, src1.z, src2.z)
323
324 dst.w = clamp(src0.w, src1.w, src2.w)
325
326
327 .. opcode:: FLR - Floor
328
329 This is identical to :opcode:`ARL`.
330
331 .. math::
332
333 dst.x = \lfloor src.x\rfloor
334
335 dst.y = \lfloor src.y\rfloor
336
337 dst.z = \lfloor src.z\rfloor
338
339 dst.w = \lfloor src.w\rfloor
340
341
342 .. opcode:: ROUND - Round
343
344 .. math::
345
346 dst.x = round(src.x)
347
348 dst.y = round(src.y)
349
350 dst.z = round(src.z)
351
352 dst.w = round(src.w)
353
354
355 .. opcode:: EX2 - Exponential Base 2
356
357 This instruction replicates its result.
358
359 .. math::
360
361 dst = 2^{src.x}
362
363
364 .. opcode:: LG2 - Logarithm Base 2
365
366 This instruction replicates its result.
367
368 .. math::
369
370 dst = \log_2{src.x}
371
372
373 .. opcode:: POW - Power
374
375 This instruction replicates its result.
376
377 .. math::
378
379 dst = src0.x^{src1.x}
380
381 .. opcode:: XPD - Cross Product
382
383 .. math::
384
385 dst.x = src0.y \times src1.z - src1.y \times src0.z
386
387 dst.y = src0.z \times src1.x - src1.z \times src0.x
388
389 dst.z = src0.x \times src1.y - src1.x \times src0.y
390
391 dst.w = 1
392
393
394 .. opcode:: ABS - Absolute
395
396 .. math::
397
398 dst.x = |src.x|
399
400 dst.y = |src.y|
401
402 dst.z = |src.z|
403
404 dst.w = |src.w|
405
406
407 .. opcode:: RCC - Reciprocal Clamped
408
409 This instruction replicates its result.
410
411 XXX cleanup on aisle three
412
413 .. math::
414
415 dst = (1 / src.x) > 0 ? clamp(1 / src.x, 5.42101e-020, 1.84467e+019) : clamp(1 / src.x, -1.84467e+019, -5.42101e-020)
416
417
418 .. opcode:: DPH - Homogeneous Dot Product
419
420 This instruction replicates its result.
421
422 .. math::
423
424 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
425
426
427 .. opcode:: COS - Cosine
428
429 This instruction replicates its result.
430
431 .. math::
432
433 dst = \cos{src.x}
434
435
436 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
437
438 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
439 advertised. When it is, the fine version guarantees one derivative per row
440 while DDX is allowed to be the same for the entire 2x2 quad.
441
442 .. math::
443
444 dst.x = partialx(src.x)
445
446 dst.y = partialx(src.y)
447
448 dst.z = partialx(src.z)
449
450 dst.w = partialx(src.w)
451
452
453 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
454
455 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
456 advertised. When it is, the fine version guarantees one derivative per column
457 while DDY is allowed to be the same for the entire 2x2 quad.
458
459 .. math::
460
461 dst.x = partialy(src.x)
462
463 dst.y = partialy(src.y)
464
465 dst.z = partialy(src.z)
466
467 dst.w = partialy(src.w)
468
469
470 .. opcode:: PK2H - Pack Two 16-bit Floats
471
472 TBD
473
474
475 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
476
477 TBD
478
479
480 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
481
482 TBD
483
484
485 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
486
487 TBD
488
489
490 .. opcode:: RFL - Reflection Vector
491
492 .. math::
493
494 dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x
495
496 dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y
497
498 dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z
499
500 dst.w = 1
501
502 .. note::
503
504 Considered for removal.
505
506
507 .. opcode:: SEQ - Set On Equal
508
509 .. math::
510
511 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
512
513 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
514
515 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
516
517 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
518
519
520 .. opcode:: SFL - Set On False
521
522 This instruction replicates its result.
523
524 .. math::
525
526 dst = 0.0F
527
528 .. note::
529
530 Considered for removal.
531
532
533 .. opcode:: SGT - Set On Greater Than
534
535 .. math::
536
537 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
538
539 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
540
541 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
542
543 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
544
545
546 .. opcode:: SIN - Sine
547
548 This instruction replicates its result.
549
550 .. math::
551
552 dst = \sin{src.x}
553
554
555 .. opcode:: SLE - Set On Less Equal Than
556
557 .. math::
558
559 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
560
561 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
562
563 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
564
565 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
566
567
568 .. opcode:: SNE - Set On Not Equal
569
570 .. math::
571
572 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
573
574 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
575
576 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
577
578 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
579
580
581 .. opcode:: STR - Set On True
582
583 This instruction replicates its result.
584
585 .. math::
586
587 dst = 1.0F
588
589
590 .. opcode:: TEX - Texture Lookup
591
592 for array textures src0.y contains the slice for 1D,
593 and src0.z contain the slice for 2D.
594
595 for shadow textures with no arrays (and not cube map),
596 src0.z contains the reference value.
597
598 for shadow textures with arrays, src0.z contains
599 the reference value for 1D arrays, and src0.w contains
600 the reference value for 2D arrays and cube maps.
601
602 for cube map array shadow textures, the reference value
603 cannot be passed in src0.w, and TEX2 must be used instead.
604
605 .. math::
606
607 coord = src0
608
609 shadow_ref = src0.z or src0.w (optional)
610
611 unit = src1
612
613 dst = texture\_sample(unit, coord, shadow_ref)
614
615
616 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
617
618 this is the same as TEX, but uses another reg to encode the
619 reference value.
620
621 .. math::
622
623 coord = src0
624
625 shadow_ref = src1.x
626
627 unit = src2
628
629 dst = texture\_sample(unit, coord, shadow_ref)
630
631
632
633
634 .. opcode:: TXD - Texture Lookup with Derivatives
635
636 .. math::
637
638 coord = src0
639
640 ddx = src1
641
642 ddy = src2
643
644 unit = src3
645
646 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
647
648
649 .. opcode:: TXP - Projective Texture Lookup
650
651 .. math::
652
653 coord.x = src0.x / src0.w
654
655 coord.y = src0.y / src0.w
656
657 coord.z = src0.z / src0.w
658
659 coord.w = src0.w
660
661 unit = src1
662
663 dst = texture\_sample(unit, coord)
664
665
666 .. opcode:: UP2H - Unpack Two 16-Bit Floats
667
668 TBD
669
670 .. note::
671
672 Considered for removal.
673
674 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
675
676 TBD
677
678 .. note::
679
680 Considered for removal.
681
682 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
683
684 TBD
685
686 .. note::
687
688 Considered for removal.
689
690 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
691
692 TBD
693
694 .. note::
695
696 Considered for removal.
697
698 .. opcode:: X2D - 2D Coordinate Transformation
699
700 .. math::
701
702 dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y
703
704 dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w
705
706 dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y
707
708 dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w
709
710 .. note::
711
712 Considered for removal.
713
714
715 .. opcode:: ARA - Address Register Add
716
717 TBD
718
719 .. note::
720
721 Considered for removal.
722
723 .. opcode:: ARR - Address Register Load With Round
724
725 .. math::
726
727 dst.x = round(src.x)
728
729 dst.y = round(src.y)
730
731 dst.z = round(src.z)
732
733 dst.w = round(src.w)
734
735
736 .. opcode:: SSG - Set Sign
737
738 .. math::
739
740 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
741
742 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
743
744 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
745
746 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
747
748
749 .. opcode:: CMP - Compare
750
751 .. math::
752
753 dst.x = (src0.x < 0) ? src1.x : src2.x
754
755 dst.y = (src0.y < 0) ? src1.y : src2.y
756
757 dst.z = (src0.z < 0) ? src1.z : src2.z
758
759 dst.w = (src0.w < 0) ? src1.w : src2.w
760
761
762 .. opcode:: KILL_IF - Conditional Discard
763
764 Conditional discard. Allowed in fragment shaders only.
765
766 .. math::
767
768 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
769 discard
770 endif
771
772
773 .. opcode:: KILL - Discard
774
775 Unconditional discard. Allowed in fragment shaders only.
776
777
778 .. opcode:: SCS - Sine Cosine
779
780 .. math::
781
782 dst.x = \cos{src.x}
783
784 dst.y = \sin{src.x}
785
786 dst.z = 0
787
788 dst.w = 1
789
790
791 .. opcode:: TXB - Texture Lookup With Bias
792
793 for cube map array textures and shadow cube maps, the bias value
794 cannot be passed in src0.w, and TXB2 must be used instead.
795
796 if the target is a shadow texture, the reference value is always
797 in src.z (this prevents shadow 3d and shadow 2d arrays from
798 using this instruction, but this is not needed).
799
800 .. math::
801
802 coord.x = src0.x
803
804 coord.y = src0.y
805
806 coord.z = src0.z
807
808 coord.w = none
809
810 bias = src0.w
811
812 unit = src1
813
814 dst = texture\_sample(unit, coord, bias)
815
816
817 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
818
819 this is the same as TXB, but uses another reg to encode the
820 lod bias value for cube map arrays and shadow cube maps.
821 Presumably shadow 2d arrays and shadow 3d targets could use
822 this encoding too, but this is not legal.
823
824 shadow cube map arrays are neither possible nor required.
825
826 .. math::
827
828 coord = src0
829
830 bias = src1.x
831
832 unit = src2
833
834 dst = texture\_sample(unit, coord, bias)
835
836
837 .. opcode:: NRM - 3-component Vector Normalise
838
839 .. math::
840
841 dst.x = src.x / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
842
843 dst.y = src.y / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
844
845 dst.z = src.z / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
846
847 dst.w = 1
848
849
850 .. opcode:: DIV - Divide
851
852 .. math::
853
854 dst.x = \frac{src0.x}{src1.x}
855
856 dst.y = \frac{src0.y}{src1.y}
857
858 dst.z = \frac{src0.z}{src1.z}
859
860 dst.w = \frac{src0.w}{src1.w}
861
862
863 .. opcode:: DP2 - 2-component Dot Product
864
865 This instruction replicates its result.
866
867 .. math::
868
869 dst = src0.x \times src1.x + src0.y \times src1.y
870
871
872 .. opcode:: TXL - Texture Lookup With explicit LOD
873
874 for cube map array textures, the explicit lod value
875 cannot be passed in src0.w, and TXL2 must be used instead.
876
877 if the target is a shadow texture, the reference value is always
878 in src.z (this prevents shadow 3d / 2d array / cube targets from
879 using this instruction, but this is not needed).
880
881 .. math::
882
883 coord.x = src0.x
884
885 coord.y = src0.y
886
887 coord.z = src0.z
888
889 coord.w = none
890
891 lod = src0.w
892
893 unit = src1
894
895 dst = texture\_sample(unit, coord, lod)
896
897
898 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
899
900 this is the same as TXL, but uses another reg to encode the
901 explicit lod value.
902 Presumably shadow 3d / 2d array / cube targets could use
903 this encoding too, but this is not legal.
904
905 shadow cube map arrays are neither possible nor required.
906
907 .. math::
908
909 coord = src0
910
911 lod = src1.x
912
913 unit = src2
914
915 dst = texture\_sample(unit, coord, lod)
916
917
918 .. opcode:: PUSHA - Push Address Register On Stack
919
920 push(src.x)
921 push(src.y)
922 push(src.z)
923 push(src.w)
924
925 .. note::
926
927 Considered for cleanup.
928
929 .. note::
930
931 Considered for removal.
932
933 .. opcode:: POPA - Pop Address Register From Stack
934
935 dst.w = pop()
936 dst.z = pop()
937 dst.y = pop()
938 dst.x = pop()
939
940 .. note::
941
942 Considered for cleanup.
943
944 .. note::
945
946 Considered for removal.
947
948
949 .. opcode:: BRA - Branch
950
951 pc = target
952
953 .. note::
954
955 Considered for removal.
956
957
958 .. opcode:: CALLNZ - Subroutine Call If Not Zero
959
960 TBD
961
962 .. note::
963
964 Considered for cleanup.
965
966 .. note::
967
968 Considered for removal.
969
970
971 Compute ISA
972 ^^^^^^^^^^^^^^^^^^^^^^^^
973
974 These opcodes are primarily provided for special-use computational shaders.
975 Support for these opcodes indicated by a special pipe capability bit (TBD).
976
977 XXX doesn't look like most of the opcodes really belong here.
978
979 .. opcode:: CEIL - Ceiling
980
981 .. math::
982
983 dst.x = \lceil src.x\rceil
984
985 dst.y = \lceil src.y\rceil
986
987 dst.z = \lceil src.z\rceil
988
989 dst.w = \lceil src.w\rceil
990
991
992 .. opcode:: TRUNC - Truncate
993
994 .. math::
995
996 dst.x = trunc(src.x)
997
998 dst.y = trunc(src.y)
999
1000 dst.z = trunc(src.z)
1001
1002 dst.w = trunc(src.w)
1003
1004
1005 .. opcode:: MOD - Modulus
1006
1007 .. math::
1008
1009 dst.x = src0.x \bmod src1.x
1010
1011 dst.y = src0.y \bmod src1.y
1012
1013 dst.z = src0.z \bmod src1.z
1014
1015 dst.w = src0.w \bmod src1.w
1016
1017
1018 .. opcode:: UARL - Integer Address Register Load
1019
1020 Moves the contents of the source register, assumed to be an integer, into the
1021 destination register, which is assumed to be an address (ADDR) register.
1022
1023
1024 .. opcode:: SAD - Sum Of Absolute Differences
1025
1026 .. math::
1027
1028 dst.x = |src0.x - src1.x| + src2.x
1029
1030 dst.y = |src0.y - src1.y| + src2.y
1031
1032 dst.z = |src0.z - src1.z| + src2.z
1033
1034 dst.w = |src0.w - src1.w| + src2.w
1035
1036
1037 .. opcode:: TXF - Texel Fetch
1038
1039 As per NV_gpu_shader4, extract a single texel from a specified texture
1040 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
1041 four-component signed integer vector used to identify the single texel
1042 accessed. 3 components + level. Just like texture instructions, an optional
1043 offset vector is provided, which is subject to various driver restrictions
1044 (regarding range, source of offsets).
1045 TXF(uint_vec coord, int_vec offset).
1046
1047
1048 .. opcode:: TXQ - Texture Size Query
1049
1050 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
1051 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
1052 depth), 1D array (width, layers), 2D array (width, height, layers).
1053 Also return the number of accessible levels (last_level - first_level + 1)
1054 in W.
1055
1056 For components which don't return a resource dimension, their value
1057 is undefined.
1058
1059
1060 .. math::
1061
1062 lod = src0.x
1063
1064 dst.x = texture\_width(unit, lod)
1065
1066 dst.y = texture\_height(unit, lod)
1067
1068 dst.z = texture\_depth(unit, lod)
1069
1070 dst.w = texture\_levels(unit)
1071
1072 .. opcode:: TG4 - Texture Gather
1073
1074 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
1075 filtering operation and packs them into a single register. Only works with
1076 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
1077 addressing modes of the sampler and the top level of any mip pyramid are
1078 used. Set W to zero. It behaves like the TEX instruction, but a filtered
1079 sample is not generated. The four samples that contribute to filtering are
1080 placed into xyzw in clockwise order, starting with the (u,v) texture
1081 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
1082 where the magnitude of the deltas are half a texel.
1083
1084 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
1085 depth compares, single component selection, and a non-constant offset. It
1086 doesn't allow support for the GL independent offset to get i0,j0. This would
1087 require another CAP is hw can do it natively. For now we lower that before
1088 TGSI.
1089
1090 .. math::
1091
1092 coord = src0
1093
1094 component = src1
1095
1096 dst = texture\_gather4 (unit, coord, component)
1097
1098 (with SM5 - cube array shadow)
1099
1100 .. math::
1101
1102 coord = src0
1103
1104 compare = src1
1105
1106 dst = texture\_gather (uint, coord, compare)
1107
1108 .. opcode:: LODQ - level of detail query
1109
1110 Compute the LOD information that the texture pipe would use to access the
1111 texture. The Y component contains the computed LOD lambda_prime. The X
1112 component contains the LOD that will be accessed, based on min/max lod's
1113 and mipmap filters.
1114
1115 .. math::
1116
1117 coord = src0
1118
1119 dst.xy = lodq(uint, coord);
1120
1121 Integer ISA
1122 ^^^^^^^^^^^^^^^^^^^^^^^^
1123 These opcodes are used for integer operations.
1124 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1125
1126
1127 .. opcode:: I2F - Signed Integer To Float
1128
1129 Rounding is unspecified (round to nearest even suggested).
1130
1131 .. math::
1132
1133 dst.x = (float) src.x
1134
1135 dst.y = (float) src.y
1136
1137 dst.z = (float) src.z
1138
1139 dst.w = (float) src.w
1140
1141
1142 .. opcode:: U2F - Unsigned Integer To Float
1143
1144 Rounding is unspecified (round to nearest even suggested).
1145
1146 .. math::
1147
1148 dst.x = (float) src.x
1149
1150 dst.y = (float) src.y
1151
1152 dst.z = (float) src.z
1153
1154 dst.w = (float) src.w
1155
1156
1157 .. opcode:: F2I - Float to Signed Integer
1158
1159 Rounding is towards zero (truncate).
1160 Values outside signed range (including NaNs) produce undefined results.
1161
1162 .. math::
1163
1164 dst.x = (int) src.x
1165
1166 dst.y = (int) src.y
1167
1168 dst.z = (int) src.z
1169
1170 dst.w = (int) src.w
1171
1172
1173 .. opcode:: F2U - Float to Unsigned Integer
1174
1175 Rounding is towards zero (truncate).
1176 Values outside unsigned range (including NaNs) produce undefined results.
1177
1178 .. math::
1179
1180 dst.x = (unsigned) src.x
1181
1182 dst.y = (unsigned) src.y
1183
1184 dst.z = (unsigned) src.z
1185
1186 dst.w = (unsigned) src.w
1187
1188
1189 .. opcode:: UADD - Integer Add
1190
1191 This instruction works the same for signed and unsigned integers.
1192 The low 32bit of the result is returned.
1193
1194 .. math::
1195
1196 dst.x = src0.x + src1.x
1197
1198 dst.y = src0.y + src1.y
1199
1200 dst.z = src0.z + src1.z
1201
1202 dst.w = src0.w + src1.w
1203
1204
1205 .. opcode:: UMAD - Integer Multiply And Add
1206
1207 This instruction works the same for signed and unsigned integers.
1208 The multiplication returns the low 32bit (as does the result itself).
1209
1210 .. math::
1211
1212 dst.x = src0.x \times src1.x + src2.x
1213
1214 dst.y = src0.y \times src1.y + src2.y
1215
1216 dst.z = src0.z \times src1.z + src2.z
1217
1218 dst.w = src0.w \times src1.w + src2.w
1219
1220
1221 .. opcode:: UMUL - Integer Multiply
1222
1223 This instruction works the same for signed and unsigned integers.
1224 The low 32bit of the result is returned.
1225
1226 .. math::
1227
1228 dst.x = src0.x \times src1.x
1229
1230 dst.y = src0.y \times src1.y
1231
1232 dst.z = src0.z \times src1.z
1233
1234 dst.w = src0.w \times src1.w
1235
1236
1237 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1238
1239 The high 32bits of the multiplication of 2 signed integers are returned.
1240
1241 .. math::
1242
1243 dst.x = (src0.x \times src1.x) >> 32
1244
1245 dst.y = (src0.y \times src1.y) >> 32
1246
1247 dst.z = (src0.z \times src1.z) >> 32
1248
1249 dst.w = (src0.w \times src1.w) >> 32
1250
1251
1252 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1253
1254 The high 32bits of the multiplication of 2 unsigned integers are returned.
1255
1256 .. math::
1257
1258 dst.x = (src0.x \times src1.x) >> 32
1259
1260 dst.y = (src0.y \times src1.y) >> 32
1261
1262 dst.z = (src0.z \times src1.z) >> 32
1263
1264 dst.w = (src0.w \times src1.w) >> 32
1265
1266
1267 .. opcode:: IDIV - Signed Integer Division
1268
1269 TBD: behavior for division by zero.
1270
1271 .. math::
1272
1273 dst.x = src0.x \ src1.x
1274
1275 dst.y = src0.y \ src1.y
1276
1277 dst.z = src0.z \ src1.z
1278
1279 dst.w = src0.w \ src1.w
1280
1281
1282 .. opcode:: UDIV - Unsigned Integer Division
1283
1284 For division by zero, 0xffffffff is returned.
1285
1286 .. math::
1287
1288 dst.x = src0.x \ src1.x
1289
1290 dst.y = src0.y \ src1.y
1291
1292 dst.z = src0.z \ src1.z
1293
1294 dst.w = src0.w \ src1.w
1295
1296
1297 .. opcode:: UMOD - Unsigned Integer Remainder
1298
1299 If second arg is zero, 0xffffffff is returned.
1300
1301 .. math::
1302
1303 dst.x = src0.x \ src1.x
1304
1305 dst.y = src0.y \ src1.y
1306
1307 dst.z = src0.z \ src1.z
1308
1309 dst.w = src0.w \ src1.w
1310
1311
1312 .. opcode:: NOT - Bitwise Not
1313
1314 .. math::
1315
1316 dst.x = \sim src.x
1317
1318 dst.y = \sim src.y
1319
1320 dst.z = \sim src.z
1321
1322 dst.w = \sim src.w
1323
1324
1325 .. opcode:: AND - Bitwise And
1326
1327 .. math::
1328
1329 dst.x = src0.x \& src1.x
1330
1331 dst.y = src0.y \& src1.y
1332
1333 dst.z = src0.z \& src1.z
1334
1335 dst.w = src0.w \& src1.w
1336
1337
1338 .. opcode:: OR - Bitwise Or
1339
1340 .. math::
1341
1342 dst.x = src0.x | src1.x
1343
1344 dst.y = src0.y | src1.y
1345
1346 dst.z = src0.z | src1.z
1347
1348 dst.w = src0.w | src1.w
1349
1350
1351 .. opcode:: XOR - Bitwise Xor
1352
1353 .. math::
1354
1355 dst.x = src0.x \oplus src1.x
1356
1357 dst.y = src0.y \oplus src1.y
1358
1359 dst.z = src0.z \oplus src1.z
1360
1361 dst.w = src0.w \oplus src1.w
1362
1363
1364 .. opcode:: IMAX - Maximum of Signed Integers
1365
1366 .. math::
1367
1368 dst.x = max(src0.x, src1.x)
1369
1370 dst.y = max(src0.y, src1.y)
1371
1372 dst.z = max(src0.z, src1.z)
1373
1374 dst.w = max(src0.w, src1.w)
1375
1376
1377 .. opcode:: UMAX - Maximum of Unsigned Integers
1378
1379 .. math::
1380
1381 dst.x = max(src0.x, src1.x)
1382
1383 dst.y = max(src0.y, src1.y)
1384
1385 dst.z = max(src0.z, src1.z)
1386
1387 dst.w = max(src0.w, src1.w)
1388
1389
1390 .. opcode:: IMIN - Minimum of Signed Integers
1391
1392 .. math::
1393
1394 dst.x = min(src0.x, src1.x)
1395
1396 dst.y = min(src0.y, src1.y)
1397
1398 dst.z = min(src0.z, src1.z)
1399
1400 dst.w = min(src0.w, src1.w)
1401
1402
1403 .. opcode:: UMIN - Minimum of Unsigned Integers
1404
1405 .. math::
1406
1407 dst.x = min(src0.x, src1.x)
1408
1409 dst.y = min(src0.y, src1.y)
1410
1411 dst.z = min(src0.z, src1.z)
1412
1413 dst.w = min(src0.w, src1.w)
1414
1415
1416 .. opcode:: SHL - Shift Left
1417
1418 The shift count is masked with 0x1f before the shift is applied.
1419
1420 .. math::
1421
1422 dst.x = src0.x << (0x1f \& src1.x)
1423
1424 dst.y = src0.y << (0x1f \& src1.y)
1425
1426 dst.z = src0.z << (0x1f \& src1.z)
1427
1428 dst.w = src0.w << (0x1f \& src1.w)
1429
1430
1431 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1432
1433 The shift count is masked with 0x1f before the shift is applied.
1434
1435 .. math::
1436
1437 dst.x = src0.x >> (0x1f \& src1.x)
1438
1439 dst.y = src0.y >> (0x1f \& src1.y)
1440
1441 dst.z = src0.z >> (0x1f \& src1.z)
1442
1443 dst.w = src0.w >> (0x1f \& src1.w)
1444
1445
1446 .. opcode:: USHR - Logical Shift Right
1447
1448 The shift count is masked with 0x1f before the shift is applied.
1449
1450 .. math::
1451
1452 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1453
1454 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1455
1456 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1457
1458 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1459
1460
1461 .. opcode:: UCMP - Integer Conditional Move
1462
1463 .. math::
1464
1465 dst.x = src0.x ? src1.x : src2.x
1466
1467 dst.y = src0.y ? src1.y : src2.y
1468
1469 dst.z = src0.z ? src1.z : src2.z
1470
1471 dst.w = src0.w ? src1.w : src2.w
1472
1473
1474
1475 .. opcode:: ISSG - Integer Set Sign
1476
1477 .. math::
1478
1479 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1480
1481 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1482
1483 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1484
1485 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1486
1487
1488
1489 .. opcode:: FSLT - Float Set On Less Than (ordered)
1490
1491 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1492
1493 .. math::
1494
1495 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1496
1497 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1498
1499 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1500
1501 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1502
1503
1504 .. opcode:: ISLT - Signed Integer Set On Less Than
1505
1506 .. math::
1507
1508 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1509
1510 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1511
1512 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1513
1514 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1515
1516
1517 .. opcode:: USLT - Unsigned Integer Set On Less Than
1518
1519 .. math::
1520
1521 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1522
1523 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1524
1525 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1526
1527 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1528
1529
1530 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1531
1532 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1533
1534 .. math::
1535
1536 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1537
1538 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1539
1540 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1541
1542 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1543
1544
1545 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1546
1547 .. math::
1548
1549 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1550
1551 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1552
1553 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1554
1555 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1556
1557
1558 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1559
1560 .. math::
1561
1562 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1563
1564 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1565
1566 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1567
1568 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1569
1570
1571 .. opcode:: FSEQ - Float Set On Equal (ordered)
1572
1573 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1574
1575 .. math::
1576
1577 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1578
1579 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1580
1581 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1582
1583 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1584
1585
1586 .. opcode:: USEQ - Integer Set On Equal
1587
1588 .. math::
1589
1590 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1591
1592 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1593
1594 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1595
1596 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1597
1598
1599 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1600
1601 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1602
1603 .. math::
1604
1605 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1606
1607 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1608
1609 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1610
1611 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1612
1613
1614 .. opcode:: USNE - Integer Set On Not Equal
1615
1616 .. math::
1617
1618 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1619
1620 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1621
1622 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1623
1624 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1625
1626
1627 .. opcode:: INEG - Integer Negate
1628
1629 Two's complement.
1630
1631 .. math::
1632
1633 dst.x = -src.x
1634
1635 dst.y = -src.y
1636
1637 dst.z = -src.z
1638
1639 dst.w = -src.w
1640
1641
1642 .. opcode:: IABS - Integer Absolute Value
1643
1644 .. math::
1645
1646 dst.x = |src.x|
1647
1648 dst.y = |src.y|
1649
1650 dst.z = |src.z|
1651
1652 dst.w = |src.w|
1653
1654 Bitwise ISA
1655 ^^^^^^^^^^^
1656 These opcodes are used for bit-level manipulation of integers.
1657
1658 .. opcode:: IBFE - Signed Bitfield Extract
1659
1660 See SM5 instruction of the same name. Extracts a set of bits from the input,
1661 and sign-extends them if the high bit of the extracted window is set.
1662
1663 Pseudocode::
1664
1665 def ibfe(value, offset, bits):
1666 offset = offset & 0x1f
1667 bits = bits & 0x1f
1668 if bits == 0: return 0
1669 # Note: >> sign-extends
1670 if width + offset < 32:
1671 return (value << (32 - offset - bits)) >> (32 - bits)
1672 else:
1673 return value >> offset
1674
1675 .. opcode:: UBFE - Unsigned Bitfield Extract
1676
1677 See SM5 instruction of the same name. Extracts a set of bits from the input,
1678 without any sign-extension.
1679
1680 Pseudocode::
1681
1682 def ubfe(value, offset, bits):
1683 offset = offset & 0x1f
1684 bits = bits & 0x1f
1685 if bits == 0: return 0
1686 # Note: >> does not sign-extend
1687 if width + offset < 32:
1688 return (value << (32 - offset - bits)) >> (32 - bits)
1689 else:
1690 return value >> offset
1691
1692 .. opcode:: BFI - Bitfield Insert
1693
1694 See SM5 instruction of the same name. Replaces a bit region of 'base' with
1695 the low bits of 'insert'.
1696
1697 Pseudocode::
1698
1699 def bfi(base, insert, offset, bits):
1700 offset = offset & 0x1f
1701 bits = bits & 0x1f
1702 mask = ((1 << bits) - 1) << offset
1703 return ((insert << offset) & mask) | (base & ~mask)
1704
1705 .. opcode:: BREV - Bitfield Reverse
1706
1707 See SM5 instruction BFREV. Reverses the bits of the argument.
1708
1709 .. opcode:: POPC - Population Count
1710
1711 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1712
1713 .. opcode:: LSB - Index of lowest set bit
1714
1715 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1716 bit of the argument. Returns -1 if none are set.
1717
1718 .. opcode:: IMSB - Index of highest non-sign bit
1719
1720 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1721 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1722 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1723 (i.e. for inputs 0 and -1).
1724
1725 .. opcode:: UMSB - Index of highest set bit
1726
1727 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1728 set bit of the argument. Returns -1 if none are set.
1729
1730 Geometry ISA
1731 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1732
1733 These opcodes are only supported in geometry shaders; they have no meaning
1734 in any other type of shader.
1735
1736 .. opcode:: EMIT - Emit
1737
1738 Generate a new vertex for the current primitive into the specified vertex
1739 stream using the values in the output registers.
1740
1741
1742 .. opcode:: ENDPRIM - End Primitive
1743
1744 Complete the current primitive in the specified vertex stream (consisting of
1745 the emitted vertices), and start a new one.
1746
1747
1748 GLSL ISA
1749 ^^^^^^^^^^
1750
1751 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1752 opcodes is determined by a special capability bit, ``GLSL``.
1753 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1754
1755 .. opcode:: CAL - Subroutine Call
1756
1757 push(pc)
1758 pc = target
1759
1760
1761 .. opcode:: RET - Subroutine Call Return
1762
1763 pc = pop()
1764
1765
1766 .. opcode:: CONT - Continue
1767
1768 Unconditionally moves the point of execution to the instruction after the
1769 last bgnloop. The instruction must appear within a bgnloop/endloop.
1770
1771 .. note::
1772
1773 Support for CONT is determined by a special capability bit,
1774 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1775
1776
1777 .. opcode:: BGNLOOP - Begin a Loop
1778
1779 Start a loop. Must have a matching endloop.
1780
1781
1782 .. opcode:: BGNSUB - Begin Subroutine
1783
1784 Starts definition of a subroutine. Must have a matching endsub.
1785
1786
1787 .. opcode:: ENDLOOP - End a Loop
1788
1789 End a loop started with bgnloop.
1790
1791
1792 .. opcode:: ENDSUB - End Subroutine
1793
1794 Ends definition of a subroutine.
1795
1796
1797 .. opcode:: NOP - No Operation
1798
1799 Do nothing.
1800
1801
1802 .. opcode:: BRK - Break
1803
1804 Unconditionally moves the point of execution to the instruction after the
1805 next endloop or endswitch. The instruction must appear within a loop/endloop
1806 or switch/endswitch.
1807
1808
1809 .. opcode:: BREAKC - Break Conditional
1810
1811 Conditionally moves the point of execution to the instruction after the
1812 next endloop or endswitch. The instruction must appear within a loop/endloop
1813 or switch/endswitch.
1814 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1815 as an integer register.
1816
1817 .. note::
1818
1819 Considered for removal as it's quite inconsistent wrt other opcodes
1820 (could emulate with UIF/BRK/ENDIF).
1821
1822
1823 .. opcode:: IF - Float If
1824
1825 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1826
1827 src0.x != 0.0
1828
1829 where src0.x is interpreted as a floating point register.
1830
1831
1832 .. opcode:: UIF - Bitwise If
1833
1834 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1835
1836 src0.x != 0
1837
1838 where src0.x is interpreted as an integer register.
1839
1840
1841 .. opcode:: ELSE - Else
1842
1843 Starts an else block, after an IF or UIF statement.
1844
1845
1846 .. opcode:: ENDIF - End If
1847
1848 Ends an IF or UIF block.
1849
1850
1851 .. opcode:: SWITCH - Switch
1852
1853 Starts a C-style switch expression. The switch consists of one or multiple
1854 CASE statements, and at most one DEFAULT statement. Execution of a statement
1855 ends when a BRK is hit, but just like in C falling through to other cases
1856 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1857 just as last statement, and fallthrough is allowed into/from it.
1858 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1859
1860 Example::
1861
1862 SWITCH src[0].x
1863 CASE src[0].x
1864 (some instructions here)
1865 (optional BRK here)
1866 DEFAULT
1867 (some instructions here)
1868 (optional BRK here)
1869 CASE src[0].x
1870 (some instructions here)
1871 (optional BRK here)
1872 ENDSWITCH
1873
1874
1875 .. opcode:: CASE - Switch case
1876
1877 This represents a switch case label. The src arg must be an integer immediate.
1878
1879
1880 .. opcode:: DEFAULT - Switch default
1881
1882 This represents the default case in the switch, which is taken if no other
1883 case matches.
1884
1885
1886 .. opcode:: ENDSWITCH - End of switch
1887
1888 Ends a switch expression.
1889
1890
1891 .. opcode:: NRM4 - 4-component Vector Normalise
1892
1893 This instruction replicates its result.
1894
1895 .. math::
1896
1897 dst = \frac{src.x}{src.x \times src.x + src.y \times src.y + src.z \times src.z + src.w \times src.w}
1898
1899
1900 Interpolation ISA
1901 ^^^^^^^^^^^^^^^^^
1902
1903 The interpolation instructions allow an input to be interpolated in a
1904 different way than its declaration. This corresponds to the GLSL 4.00
1905 interpolateAt* functions. The first argument of each of these must come from
1906 ``TGSI_FILE_INPUT``.
1907
1908 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1909
1910 Interpolates the varying specified by src0 at the centroid
1911
1912 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1913
1914 Interpolates the varying specified by src0 at the sample id specified by
1915 src1.x (interpreted as an integer)
1916
1917 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1918
1919 Interpolates the varying specified by src0 at the offset src1.xy from the
1920 pixel center (interpreted as floats)
1921
1922
1923 .. _doubleopcodes:
1924
1925 Double ISA
1926 ^^^^^^^^^^^^^^^
1927
1928 The double-precision opcodes reinterpret four-component vectors into
1929 two-component vectors with doubled precision in each component.
1930
1931 Support for these opcodes is XXX undecided. :T
1932
1933 .. opcode:: DADD - Add
1934
1935 .. math::
1936
1937 dst.xy = src0.xy + src1.xy
1938
1939 dst.zw = src0.zw + src1.zw
1940
1941
1942 .. opcode:: DDIV - Divide
1943
1944 .. math::
1945
1946 dst.xy = src0.xy / src1.xy
1947
1948 dst.zw = src0.zw / src1.zw
1949
1950 .. opcode:: DSEQ - Set on Equal
1951
1952 .. math::
1953
1954 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1955
1956 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1957
1958 .. opcode:: DSLT - Set on Less than
1959
1960 .. math::
1961
1962 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1963
1964 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1965
1966 .. opcode:: DFRAC - Fraction
1967
1968 .. math::
1969
1970 dst.xy = src.xy - \lfloor src.xy\rfloor
1971
1972 dst.zw = src.zw - \lfloor src.zw\rfloor
1973
1974
1975 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1976
1977 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1978 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1979 :math:`dst1 \times 2^{dst0} = src` .
1980
1981 .. math::
1982
1983 dst0.xy = exp(src.xy)
1984
1985 dst1.xy = frac(src.xy)
1986
1987 dst0.zw = exp(src.zw)
1988
1989 dst1.zw = frac(src.zw)
1990
1991 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1992
1993 This opcode is the inverse of :opcode:`DFRACEXP`.
1994
1995 .. math::
1996
1997 dst.xy = src0.xy \times 2^{src1.xy}
1998
1999 dst.zw = src0.zw \times 2^{src1.zw}
2000
2001 .. opcode:: DMIN - Minimum
2002
2003 .. math::
2004
2005 dst.xy = min(src0.xy, src1.xy)
2006
2007 dst.zw = min(src0.zw, src1.zw)
2008
2009 .. opcode:: DMAX - Maximum
2010
2011 .. math::
2012
2013 dst.xy = max(src0.xy, src1.xy)
2014
2015 dst.zw = max(src0.zw, src1.zw)
2016
2017 .. opcode:: DMUL - Multiply
2018
2019 .. math::
2020
2021 dst.xy = src0.xy \times src1.xy
2022
2023 dst.zw = src0.zw \times src1.zw
2024
2025
2026 .. opcode:: DMAD - Multiply And Add
2027
2028 .. math::
2029
2030 dst.xy = src0.xy \times src1.xy + src2.xy
2031
2032 dst.zw = src0.zw \times src1.zw + src2.zw
2033
2034
2035 .. opcode:: DRCP - Reciprocal
2036
2037 .. math::
2038
2039 dst.xy = \frac{1}{src.xy}
2040
2041 dst.zw = \frac{1}{src.zw}
2042
2043 .. opcode:: DSQRT - Square Root
2044
2045 .. math::
2046
2047 dst.xy = \sqrt{src.xy}
2048
2049 dst.zw = \sqrt{src.zw}
2050
2051
2052 .. _samplingopcodes:
2053
2054 Resource Sampling Opcodes
2055 ^^^^^^^^^^^^^^^^^^^^^^^^^
2056
2057 Those opcodes follow very closely semantics of the respective Direct3D
2058 instructions. If in doubt double check Direct3D documentation.
2059 Note that the swizzle on SVIEW (src1) determines texel swizzling
2060 after lookup.
2061
2062 .. opcode:: SAMPLE
2063
2064 Using provided address, sample data from the specified texture using the
2065 filtering mode identified by the gven sampler. The source data may come from
2066 any resource type other than buffers.
2067
2068 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2069
2070 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2071
2072 .. opcode:: SAMPLE_I
2073
2074 Simplified alternative to the SAMPLE instruction. Using the provided
2075 integer address, SAMPLE_I fetches data from the specified sampler view
2076 without any filtering. The source data may come from any resource type
2077 other than CUBE.
2078
2079 Syntax: ``SAMPLE_I dst, address, sampler_view``
2080
2081 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2082
2083 The 'address' is specified as unsigned integers. If the 'address' is out of
2084 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2085 components. As such the instruction doesn't honor address wrap modes, in
2086 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2087 address.w always provides an unsigned integer mipmap level. If the value is
2088 out of the range then the instruction always returns 0 in all components.
2089 address.yz are ignored for buffers and 1d textures. address.z is ignored
2090 for 1d texture arrays and 2d textures.
2091
2092 For 1D texture arrays address.y provides the array index (also as unsigned
2093 integer). If the value is out of the range of available array indices
2094 [0... (array size - 1)] then the opcode always returns 0 in all components.
2095 For 2D texture arrays address.z provides the array index, otherwise it
2096 exhibits the same behavior as in the case for 1D texture arrays. The exact
2097 semantics of the source address are presented in the table below:
2098
2099 +---------------------------+----+-----+-----+---------+
2100 | resource type | X | Y | Z | W |
2101 +===========================+====+=====+=====+=========+
2102 | ``PIPE_BUFFER`` | x | | | ignored |
2103 +---------------------------+----+-----+-----+---------+
2104 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2105 +---------------------------+----+-----+-----+---------+
2106 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2107 +---------------------------+----+-----+-----+---------+
2108 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2109 +---------------------------+----+-----+-----+---------+
2110 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2111 +---------------------------+----+-----+-----+---------+
2112 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2113 +---------------------------+----+-----+-----+---------+
2114 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2115 +---------------------------+----+-----+-----+---------+
2116 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2117 +---------------------------+----+-----+-----+---------+
2118
2119 Where 'mpl' is a mipmap level and 'idx' is the array index.
2120
2121 .. opcode:: SAMPLE_I_MS
2122
2123 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2124
2125 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2126
2127 .. opcode:: SAMPLE_B
2128
2129 Just like the SAMPLE instruction with the exception that an additional bias
2130 is applied to the level of detail computed as part of the instruction
2131 execution.
2132
2133 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2134
2135 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2136
2137 .. opcode:: SAMPLE_C
2138
2139 Similar to the SAMPLE instruction but it performs a comparison filter. The
2140 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2141 additional float32 operand, reference value, which must be a register with
2142 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2143 current samplers compare_func (in pipe_sampler_state) to compare reference
2144 value against the red component value for the surce resource at each texel
2145 that the currently configured texture filter covers based on the provided
2146 coordinates.
2147
2148 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2149
2150 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2151
2152 .. opcode:: SAMPLE_C_LZ
2153
2154 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2155 for level-zero.
2156
2157 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2158
2159 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2160
2161
2162 .. opcode:: SAMPLE_D
2163
2164 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2165 the source address in the x direction and the y direction are provided by
2166 extra parameters.
2167
2168 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2169
2170 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2171
2172 .. opcode:: SAMPLE_L
2173
2174 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2175 directly as a scalar value, representing no anisotropy.
2176
2177 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2178
2179 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2180
2181 .. opcode:: GATHER4
2182
2183 Gathers the four texels to be used in a bi-linear filtering operation and
2184 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2185 and cubemaps arrays. For 2D textures, only the addressing modes of the
2186 sampler and the top level of any mip pyramid are used. Set W to zero. It
2187 behaves like the SAMPLE instruction, but a filtered sample is not
2188 generated. The four samples that contribute to filtering are placed into
2189 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2190 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2191 magnitude of the deltas are half a texel.
2192
2193
2194 .. opcode:: SVIEWINFO
2195
2196 Query the dimensions of a given sampler view. dst receives width, height,
2197 depth or array size and number of mipmap levels as int4. The dst can have a
2198 writemask which will specify what info is the caller interested in.
2199
2200 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2201
2202 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2203
2204 src_mip_level is an unsigned integer scalar. If it's out of range then
2205 returns 0 for width, height and depth/array size but the total number of
2206 mipmap is still returned correctly for the given sampler view. The returned
2207 width, height and depth values are for the mipmap level selected by the
2208 src_mip_level and are in the number of texels. For 1d texture array width
2209 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2210 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2211 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2212 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2213 resinfo allowing swizzling dst values is ignored (due to the interaction
2214 with rcpfloat modifier which requires some swizzle handling in the state
2215 tracker anyway).
2216
2217 .. opcode:: SAMPLE_POS
2218
2219 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2220 indicated where the sample is located. If the resource is not a multi-sample
2221 resource and not a render target, the result is 0.
2222
2223 .. opcode:: SAMPLE_INFO
2224
2225 dst receives number of samples in x. If the resource is not a multi-sample
2226 resource and not a render target, the result is 0.
2227
2228
2229 .. _resourceopcodes:
2230
2231 Resource Access Opcodes
2232 ^^^^^^^^^^^^^^^^^^^^^^^
2233
2234 .. opcode:: LOAD - Fetch data from a shader resource
2235
2236 Syntax: ``LOAD dst, resource, address``
2237
2238 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
2239
2240 Using the provided integer address, LOAD fetches data
2241 from the specified buffer or texture without any
2242 filtering.
2243
2244 The 'address' is specified as a vector of unsigned
2245 integers. If the 'address' is out of range the result
2246 is unspecified.
2247
2248 Only the first mipmap level of a resource can be read
2249 from using this instruction.
2250
2251 For 1D or 2D texture arrays, the array index is
2252 provided as an unsigned integer in address.y or
2253 address.z, respectively. address.yz are ignored for
2254 buffers and 1D textures. address.z is ignored for 1D
2255 texture arrays and 2D textures. address.w is always
2256 ignored.
2257
2258 .. opcode:: STORE - Write data to a shader resource
2259
2260 Syntax: ``STORE resource, address, src``
2261
2262 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
2263
2264 Using the provided integer address, STORE writes data
2265 to the specified buffer or texture.
2266
2267 The 'address' is specified as a vector of unsigned
2268 integers. If the 'address' is out of range the result
2269 is unspecified.
2270
2271 Only the first mipmap level of a resource can be
2272 written to using this instruction.
2273
2274 For 1D or 2D texture arrays, the array index is
2275 provided as an unsigned integer in address.y or
2276 address.z, respectively. address.yz are ignored for
2277 buffers and 1D textures. address.z is ignored for 1D
2278 texture arrays and 2D textures. address.w is always
2279 ignored.
2280
2281
2282 .. _threadsyncopcodes:
2283
2284 Inter-thread synchronization opcodes
2285 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2286
2287 These opcodes are intended for communication between threads running
2288 within the same compute grid. For now they're only valid in compute
2289 programs.
2290
2291 .. opcode:: MFENCE - Memory fence
2292
2293 Syntax: ``MFENCE resource``
2294
2295 Example: ``MFENCE RES[0]``
2296
2297 This opcode forces strong ordering between any memory access
2298 operations that affect the specified resource. This means that
2299 previous loads and stores (and only those) will be performed and
2300 visible to other threads before the program execution continues.
2301
2302
2303 .. opcode:: LFENCE - Load memory fence
2304
2305 Syntax: ``LFENCE resource``
2306
2307 Example: ``LFENCE RES[0]``
2308
2309 Similar to MFENCE, but it only affects the ordering of memory loads.
2310
2311
2312 .. opcode:: SFENCE - Store memory fence
2313
2314 Syntax: ``SFENCE resource``
2315
2316 Example: ``SFENCE RES[0]``
2317
2318 Similar to MFENCE, but it only affects the ordering of memory stores.
2319
2320
2321 .. opcode:: BARRIER - Thread group barrier
2322
2323 ``BARRIER``
2324
2325 This opcode suspends the execution of the current thread until all
2326 the remaining threads in the working group reach the same point of
2327 the program. Results are unspecified if any of the remaining
2328 threads terminates or never reaches an executed BARRIER instruction.
2329
2330
2331 .. _atomopcodes:
2332
2333 Atomic opcodes
2334 ^^^^^^^^^^^^^^
2335
2336 These opcodes provide atomic variants of some common arithmetic and
2337 logical operations. In this context atomicity means that another
2338 concurrent memory access operation that affects the same memory
2339 location is guaranteed to be performed strictly before or after the
2340 entire execution of the atomic operation.
2341
2342 For the moment they're only valid in compute programs.
2343
2344 .. opcode:: ATOMUADD - Atomic integer addition
2345
2346 Syntax: ``ATOMUADD dst, resource, offset, src``
2347
2348 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2349
2350 The following operation is performed atomically on each component:
2351
2352 .. math::
2353
2354 dst_i = resource[offset]_i
2355
2356 resource[offset]_i = dst_i + src_i
2357
2358
2359 .. opcode:: ATOMXCHG - Atomic exchange
2360
2361 Syntax: ``ATOMXCHG dst, resource, offset, src``
2362
2363 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2364
2365 The following operation is performed atomically on each component:
2366
2367 .. math::
2368
2369 dst_i = resource[offset]_i
2370
2371 resource[offset]_i = src_i
2372
2373
2374 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2375
2376 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2377
2378 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2379
2380 The following operation is performed atomically on each component:
2381
2382 .. math::
2383
2384 dst_i = resource[offset]_i
2385
2386 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2387
2388
2389 .. opcode:: ATOMAND - Atomic bitwise And
2390
2391 Syntax: ``ATOMAND dst, resource, offset, src``
2392
2393 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2394
2395 The following operation is performed atomically on each component:
2396
2397 .. math::
2398
2399 dst_i = resource[offset]_i
2400
2401 resource[offset]_i = dst_i \& src_i
2402
2403
2404 .. opcode:: ATOMOR - Atomic bitwise Or
2405
2406 Syntax: ``ATOMOR dst, resource, offset, src``
2407
2408 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2409
2410 The following operation is performed atomically on each component:
2411
2412 .. math::
2413
2414 dst_i = resource[offset]_i
2415
2416 resource[offset]_i = dst_i | src_i
2417
2418
2419 .. opcode:: ATOMXOR - Atomic bitwise Xor
2420
2421 Syntax: ``ATOMXOR dst, resource, offset, src``
2422
2423 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2424
2425 The following operation is performed atomically on each component:
2426
2427 .. math::
2428
2429 dst_i = resource[offset]_i
2430
2431 resource[offset]_i = dst_i \oplus src_i
2432
2433
2434 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2435
2436 Syntax: ``ATOMUMIN dst, resource, offset, src``
2437
2438 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2439
2440 The following operation is performed atomically on each component:
2441
2442 .. math::
2443
2444 dst_i = resource[offset]_i
2445
2446 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2447
2448
2449 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2450
2451 Syntax: ``ATOMUMAX dst, resource, offset, src``
2452
2453 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2454
2455 The following operation is performed atomically on each component:
2456
2457 .. math::
2458
2459 dst_i = resource[offset]_i
2460
2461 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2462
2463
2464 .. opcode:: ATOMIMIN - Atomic signed minimum
2465
2466 Syntax: ``ATOMIMIN dst, resource, offset, src``
2467
2468 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2469
2470 The following operation is performed atomically on each component:
2471
2472 .. math::
2473
2474 dst_i = resource[offset]_i
2475
2476 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2477
2478
2479 .. opcode:: ATOMIMAX - Atomic signed maximum
2480
2481 Syntax: ``ATOMIMAX dst, resource, offset, src``
2482
2483 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2484
2485 The following operation is performed atomically on each component:
2486
2487 .. math::
2488
2489 dst_i = resource[offset]_i
2490
2491 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2492
2493
2494
2495 Explanation of symbols used
2496 ------------------------------
2497
2498
2499 Functions
2500 ^^^^^^^^^^^^^^
2501
2502
2503 :math:`|x|` Absolute value of `x`.
2504
2505 :math:`\lceil x \rceil` Ceiling of `x`.
2506
2507 clamp(x,y,z) Clamp x between y and z.
2508 (x < y) ? y : (x > z) ? z : x
2509
2510 :math:`\lfloor x\rfloor` Floor of `x`.
2511
2512 :math:`\log_2{x}` Logarithm of `x`, base 2.
2513
2514 max(x,y) Maximum of x and y.
2515 (x > y) ? x : y
2516
2517 min(x,y) Minimum of x and y.
2518 (x < y) ? x : y
2519
2520 partialx(x) Derivative of x relative to fragment's X.
2521
2522 partialy(x) Derivative of x relative to fragment's Y.
2523
2524 pop() Pop from stack.
2525
2526 :math:`x^y` `x` to the power `y`.
2527
2528 push(x) Push x on stack.
2529
2530 round(x) Round x.
2531
2532 trunc(x) Truncate x, i.e. drop the fraction bits.
2533
2534
2535 Keywords
2536 ^^^^^^^^^^^^^
2537
2538
2539 discard Discard fragment.
2540
2541 pc Program counter.
2542
2543 target Label of target instruction.
2544
2545
2546 Other tokens
2547 ---------------
2548
2549
2550 Declaration
2551 ^^^^^^^^^^^
2552
2553
2554 Declares a register that is will be referenced as an operand in Instruction
2555 tokens.
2556
2557 File field contains register file that is being declared and is one
2558 of TGSI_FILE.
2559
2560 UsageMask field specifies which of the register components can be accessed
2561 and is one of TGSI_WRITEMASK.
2562
2563 The Local flag specifies that a given value isn't intended for
2564 subroutine parameter passing and, as a result, the implementation
2565 isn't required to give any guarantees of it being preserved across
2566 subroutine boundaries. As it's merely a compiler hint, the
2567 implementation is free to ignore it.
2568
2569 If Dimension flag is set to 1, a Declaration Dimension token follows.
2570
2571 If Semantic flag is set to 1, a Declaration Semantic token follows.
2572
2573 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2574
2575 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2576
2577 If Array flag is set to 1, a Declaration Array token follows.
2578
2579 Array Declaration
2580 ^^^^^^^^^^^^^^^^^^^^^^^^
2581
2582 Declarations can optional have an ArrayID attribute which can be referred by
2583 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2584 if no ArrayID is specified.
2585
2586 If an indirect addressing operand refers to a specific declaration by using
2587 an ArrayID only the registers in this declaration are guaranteed to be
2588 accessed, accessing any register outside this declaration results in undefined
2589 behavior. Note that for compatibility the effective index is zero-based and
2590 not relative to the specified declaration
2591
2592 If no ArrayID is specified with an indirect addressing operand the whole
2593 register file might be accessed by this operand. This is strongly discouraged
2594 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2595
2596 Declaration Semantic
2597 ^^^^^^^^^^^^^^^^^^^^^^^^
2598
2599 Vertex and fragment shader input and output registers may be labeled
2600 with semantic information consisting of a name and index.
2601
2602 Follows Declaration token if Semantic bit is set.
2603
2604 Since its purpose is to link a shader with other stages of the pipeline,
2605 it is valid to follow only those Declaration tokens that declare a register
2606 either in INPUT or OUTPUT file.
2607
2608 SemanticName field contains the semantic name of the register being declared.
2609 There is no default value.
2610
2611 SemanticIndex is an optional subscript that can be used to distinguish
2612 different register declarations with the same semantic name. The default value
2613 is 0.
2614
2615 The meanings of the individual semantic names are explained in the following
2616 sections.
2617
2618 TGSI_SEMANTIC_POSITION
2619 """"""""""""""""""""""
2620
2621 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2622 output register which contains the homogeneous vertex position in the clip
2623 space coordinate system. After clipping, the X, Y and Z components of the
2624 vertex will be divided by the W value to get normalized device coordinates.
2625
2626 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2627 fragment shader input contains the fragment's window position. The X
2628 component starts at zero and always increases from left to right.
2629 The Y component starts at zero and always increases but Y=0 may either
2630 indicate the top of the window or the bottom depending on the fragment
2631 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2632 The Z coordinate ranges from 0 to 1 to represent depth from the front
2633 to the back of the Z buffer. The W component contains the reciprocol
2634 of the interpolated vertex position W component.
2635
2636 Fragment shaders may also declare an output register with
2637 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2638 the fragment shader to change the fragment's Z position.
2639
2640
2641
2642 TGSI_SEMANTIC_COLOR
2643 """""""""""""""""""
2644
2645 For vertex shader outputs or fragment shader inputs/outputs, this
2646 label indicates that the resister contains an R,G,B,A color.
2647
2648 Several shader inputs/outputs may contain colors so the semantic index
2649 is used to distinguish them. For example, color[0] may be the diffuse
2650 color while color[1] may be the specular color.
2651
2652 This label is needed so that the flat/smooth shading can be applied
2653 to the right interpolants during rasterization.
2654
2655
2656
2657 TGSI_SEMANTIC_BCOLOR
2658 """"""""""""""""""""
2659
2660 Back-facing colors are only used for back-facing polygons, and are only valid
2661 in vertex shader outputs. After rasterization, all polygons are front-facing
2662 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2663 so all BCOLORs effectively become regular COLORs in the fragment shader.
2664
2665
2666 TGSI_SEMANTIC_FOG
2667 """""""""""""""""
2668
2669 Vertex shader inputs and outputs and fragment shader inputs may be
2670 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2671 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2672 to compute a fog blend factor which is used to blend the normal fragment color
2673 with a constant fog color. But fog coord really is just an ordinary vec4
2674 register like regular semantics.
2675
2676
2677 TGSI_SEMANTIC_PSIZE
2678 """""""""""""""""""
2679
2680 Vertex shader input and output registers may be labeled with
2681 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2682 in the form (S, 0, 0, 1). The point size controls the width or diameter
2683 of points for rasterization. This label cannot be used in fragment
2684 shaders.
2685
2686 When using this semantic, be sure to set the appropriate state in the
2687 :ref:`rasterizer` first.
2688
2689
2690 TGSI_SEMANTIC_TEXCOORD
2691 """"""""""""""""""""""
2692
2693 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2694
2695 Vertex shader outputs and fragment shader inputs may be labeled with
2696 this semantic to make them replaceable by sprite coordinates via the
2697 sprite_coord_enable state in the :ref:`rasterizer`.
2698 The semantic index permitted with this semantic is limited to <= 7.
2699
2700 If the driver does not support TEXCOORD, sprite coordinate replacement
2701 applies to inputs with the GENERIC semantic instead.
2702
2703 The intended use case for this semantic is gl_TexCoord.
2704
2705
2706 TGSI_SEMANTIC_PCOORD
2707 """"""""""""""""""""
2708
2709 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2710
2711 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2712 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2713 the current primitive is a point and point sprites are enabled. Otherwise,
2714 the contents of the register are undefined.
2715
2716 The intended use case for this semantic is gl_PointCoord.
2717
2718
2719 TGSI_SEMANTIC_GENERIC
2720 """""""""""""""""""""
2721
2722 All vertex/fragment shader inputs/outputs not labeled with any other
2723 semantic label can be considered to be generic attributes. Typical
2724 uses of generic inputs/outputs are texcoords and user-defined values.
2725
2726
2727 TGSI_SEMANTIC_NORMAL
2728 """"""""""""""""""""
2729
2730 Indicates that a vertex shader input is a normal vector. This is
2731 typically only used for legacy graphics APIs.
2732
2733
2734 TGSI_SEMANTIC_FACE
2735 """"""""""""""""""
2736
2737 This label applies to fragment shader inputs only and indicates that
2738 the register contains front/back-face information of the form (F, 0,
2739 0, 1). The first component will be positive when the fragment belongs
2740 to a front-facing polygon, and negative when the fragment belongs to a
2741 back-facing polygon.
2742
2743
2744 TGSI_SEMANTIC_EDGEFLAG
2745 """"""""""""""""""""""
2746
2747 For vertex shaders, this sematic label indicates that an input or
2748 output is a boolean edge flag. The register layout is [F, x, x, x]
2749 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2750 simply copies the edge flag input to the edgeflag output.
2751
2752 Edge flags are used to control which lines or points are actually
2753 drawn when the polygon mode converts triangles/quads/polygons into
2754 points or lines.
2755
2756
2757 TGSI_SEMANTIC_STENCIL
2758 """""""""""""""""""""
2759
2760 For fragment shaders, this semantic label indicates that an output
2761 is a writable stencil reference value. Only the Y component is writable.
2762 This allows the fragment shader to change the fragments stencilref value.
2763
2764
2765 TGSI_SEMANTIC_VIEWPORT_INDEX
2766 """"""""""""""""""""""""""""
2767
2768 For geometry shaders, this semantic label indicates that an output
2769 contains the index of the viewport (and scissor) to use.
2770 Only the X value is used.
2771
2772
2773 TGSI_SEMANTIC_LAYER
2774 """""""""""""""""""
2775
2776 For geometry shaders, this semantic label indicates that an output
2777 contains the layer value to use for the color and depth/stencil surfaces.
2778 Only the X value is used. (Also known as rendertarget array index.)
2779
2780
2781 TGSI_SEMANTIC_CULLDIST
2782 """"""""""""""""""""""
2783
2784 Used as distance to plane for performing application-defined culling
2785 of individual primitives against a plane. When components of vertex
2786 elements are given this label, these values are assumed to be a
2787 float32 signed distance to a plane. Primitives will be completely
2788 discarded if the plane distance for all of the vertices in the
2789 primitive are < 0. If a vertex has a cull distance of NaN, that
2790 vertex counts as "out" (as if its < 0);
2791 The limits on both clip and cull distances are bound
2792 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2793 the maximum number of components that can be used to hold the
2794 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2795 which specifies the maximum number of registers which can be
2796 annotated with those semantics.
2797
2798
2799 TGSI_SEMANTIC_CLIPDIST
2800 """"""""""""""""""""""
2801
2802 When components of vertex elements are identified this way, these
2803 values are each assumed to be a float32 signed distance to a plane.
2804 Primitive setup only invokes rasterization on pixels for which
2805 the interpolated plane distances are >= 0. Multiple clip planes
2806 can be implemented simultaneously, by annotating multiple
2807 components of one or more vertex elements with the above specified
2808 semantic. The limits on both clip and cull distances are bound
2809 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2810 the maximum number of components that can be used to hold the
2811 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2812 which specifies the maximum number of registers which can be
2813 annotated with those semantics.
2814
2815 TGSI_SEMANTIC_SAMPLEID
2816 """"""""""""""""""""""
2817
2818 For fragment shaders, this semantic label indicates that a system value
2819 contains the current sample id (i.e. gl_SampleID). Only the X value is used.
2820
2821 TGSI_SEMANTIC_SAMPLEPOS
2822 """""""""""""""""""""""
2823
2824 For fragment shaders, this semantic label indicates that a system value
2825 contains the current sample's position (i.e. gl_SamplePosition). Only the X
2826 and Y values are used.
2827
2828 TGSI_SEMANTIC_SAMPLEMASK
2829 """"""""""""""""""""""""
2830
2831 For fragment shaders, this semantic label indicates that an output contains
2832 the sample mask used to disable further sample processing
2833 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
2834
2835 TGSI_SEMANTIC_INVOCATIONID
2836 """"""""""""""""""""""""""
2837
2838 For geometry shaders, this semantic label indicates that a system value
2839 contains the current invocation id (i.e. gl_InvocationID). Only the X value is
2840 used.
2841
2842 Declaration Interpolate
2843 ^^^^^^^^^^^^^^^^^^^^^^^
2844
2845 This token is only valid for fragment shader INPUT declarations.
2846
2847 The Interpolate field specifes the way input is being interpolated by
2848 the rasteriser and is one of TGSI_INTERPOLATE_*.
2849
2850 The Location field specifies the location inside the pixel that the
2851 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
2852 when per-sample shading is enabled, the implementation may choose to
2853 interpolate at the sample irrespective of the Location field.
2854
2855 The CylindricalWrap bitfield specifies which register components
2856 should be subject to cylindrical wrapping when interpolating by the
2857 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2858 should be interpolated according to cylindrical wrapping rules.
2859
2860
2861 Declaration Sampler View
2862 ^^^^^^^^^^^^^^^^^^^^^^^^
2863
2864 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2865
2866 DCL SVIEW[#], resource, type(s)
2867
2868 Declares a shader input sampler view and assigns it to a SVIEW[#]
2869 register.
2870
2871 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2872
2873 type must be 1 or 4 entries (if specifying on a per-component
2874 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2875
2876
2877 Declaration Resource
2878 ^^^^^^^^^^^^^^^^^^^^
2879
2880 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2881
2882 DCL RES[#], resource [, WR] [, RAW]
2883
2884 Declares a shader input resource and assigns it to a RES[#]
2885 register.
2886
2887 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2888 2DArray.
2889
2890 If the RAW keyword is not specified, the texture data will be
2891 subject to conversion, swizzling and scaling as required to yield
2892 the specified data type from the physical data format of the bound
2893 resource.
2894
2895 If the RAW keyword is specified, no channel conversion will be
2896 performed: the values read for each of the channels (X,Y,Z,W) will
2897 correspond to consecutive words in the same order and format
2898 they're found in memory. No element-to-address conversion will be
2899 performed either: the value of the provided X coordinate will be
2900 interpreted in byte units instead of texel units. The result of
2901 accessing a misaligned address is undefined.
2902
2903 Usage of the STORE opcode is only allowed if the WR (writable) flag
2904 is set.
2905
2906
2907 Properties
2908 ^^^^^^^^^^^^^^^^^^^^^^^^
2909
2910 Properties are general directives that apply to the whole TGSI program.
2911
2912 FS_COORD_ORIGIN
2913 """""""""""""""
2914
2915 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2916 The default value is UPPER_LEFT.
2917
2918 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2919 increase downward and rightward.
2920 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2921 increase upward and rightward.
2922
2923 OpenGL defaults to LOWER_LEFT, and is configurable with the
2924 GL_ARB_fragment_coord_conventions extension.
2925
2926 DirectX 9/10 use UPPER_LEFT.
2927
2928 FS_COORD_PIXEL_CENTER
2929 """""""""""""""""""""
2930
2931 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2932 The default value is HALF_INTEGER.
2933
2934 If HALF_INTEGER, the fractionary part of the position will be 0.5
2935 If INTEGER, the fractionary part of the position will be 0.0
2936
2937 Note that this does not affect the set of fragments generated by
2938 rasterization, which is instead controlled by half_pixel_center in the
2939 rasterizer.
2940
2941 OpenGL defaults to HALF_INTEGER, and is configurable with the
2942 GL_ARB_fragment_coord_conventions extension.
2943
2944 DirectX 9 uses INTEGER.
2945 DirectX 10 uses HALF_INTEGER.
2946
2947 FS_COLOR0_WRITES_ALL_CBUFS
2948 """"""""""""""""""""""""""
2949 Specifies that writes to the fragment shader color 0 are replicated to all
2950 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2951 fragData is directed to a single color buffer, but fragColor is broadcast.
2952
2953 VS_PROHIBIT_UCPS
2954 """"""""""""""""""""""""""
2955 If this property is set on the program bound to the shader stage before the
2956 fragment shader, user clip planes should have no effect (be disabled) even if
2957 that shader does not write to any clip distance outputs and the rasterizer's
2958 clip_plane_enable is non-zero.
2959 This property is only supported by drivers that also support shader clip
2960 distance outputs.
2961 This is useful for APIs that don't have UCPs and where clip distances written
2962 by a shader cannot be disabled.
2963
2964 GS_INVOCATIONS
2965 """"""""""""""
2966
2967 Specifies the number of times a geometry shader should be executed for each
2968 input primitive. Each invocation will have a different
2969 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
2970 be 1.
2971
2972 VS_WINDOW_SPACE_POSITION
2973 """"""""""""""""""""""""""
2974 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
2975 is assumed to contain window space coordinates.
2976 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
2977 directly taken from the 4-th component of the shader output.
2978 Naturally, clipping is not performed on window coordinates either.
2979 The effect of this property is undefined if a geometry or tessellation shader
2980 are in use.
2981
2982 Texture Sampling and Texture Formats
2983 ------------------------------------
2984
2985 This table shows how texture image components are returned as (x,y,z,w) tuples
2986 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2987 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2988 well.
2989
2990 +--------------------+--------------+--------------------+--------------+
2991 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2992 +====================+==============+====================+==============+
2993 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2994 +--------------------+--------------+--------------------+--------------+
2995 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2996 +--------------------+--------------+--------------------+--------------+
2997 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2998 +--------------------+--------------+--------------------+--------------+
2999 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
3000 +--------------------+--------------+--------------------+--------------+
3001 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
3002 +--------------------+--------------+--------------------+--------------+
3003 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
3004 +--------------------+--------------+--------------------+--------------+
3005 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
3006 +--------------------+--------------+--------------------+--------------+
3007 | I | (i, i, i, i) | (i, i, i, i) | N/A |
3008 +--------------------+--------------+--------------------+--------------+
3009 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3010 | | | [#envmap-bumpmap]_ | |
3011 +--------------------+--------------+--------------------+--------------+
3012 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3013 | | | [#depth-tex-mode]_ | |
3014 +--------------------+--------------+--------------------+--------------+
3015 | S | (s, s, s, s) | unknown | unknown |
3016 +--------------------+--------------+--------------------+--------------+
3017
3018 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3019 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3020 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.