gallium/docs: Document TEX2/TXL2/TXB2 instructions and fix up other tex doc
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = \lfloor src.x\rfloor
52
53 dst.y = \lfloor src.y\rfloor
54
55 dst.z = \lfloor src.z\rfloor
56
57 dst.w = \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: CND - Condition
276
277 .. math::
278
279 dst.x = (src2.x > 0.5) ? src0.x : src1.x
280
281 dst.y = (src2.y > 0.5) ? src0.y : src1.y
282
283 dst.z = (src2.z > 0.5) ? src0.z : src1.z
284
285 dst.w = (src2.w > 0.5) ? src0.w : src1.w
286
287
288 .. opcode:: DP2A - 2-component Dot Product And Add
289
290 .. math::
291
292 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
293
294 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
295
296 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
297
298 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
299
300
301 .. opcode:: FRC - Fraction
302
303 .. math::
304
305 dst.x = src.x - \lfloor src.x\rfloor
306
307 dst.y = src.y - \lfloor src.y\rfloor
308
309 dst.z = src.z - \lfloor src.z\rfloor
310
311 dst.w = src.w - \lfloor src.w\rfloor
312
313
314 .. opcode:: CLAMP - Clamp
315
316 .. math::
317
318 dst.x = clamp(src0.x, src1.x, src2.x)
319
320 dst.y = clamp(src0.y, src1.y, src2.y)
321
322 dst.z = clamp(src0.z, src1.z, src2.z)
323
324 dst.w = clamp(src0.w, src1.w, src2.w)
325
326
327 .. opcode:: FLR - Floor
328
329 This is identical to :opcode:`ARL`.
330
331 .. math::
332
333 dst.x = \lfloor src.x\rfloor
334
335 dst.y = \lfloor src.y\rfloor
336
337 dst.z = \lfloor src.z\rfloor
338
339 dst.w = \lfloor src.w\rfloor
340
341
342 .. opcode:: ROUND - Round
343
344 .. math::
345
346 dst.x = round(src.x)
347
348 dst.y = round(src.y)
349
350 dst.z = round(src.z)
351
352 dst.w = round(src.w)
353
354
355 .. opcode:: EX2 - Exponential Base 2
356
357 This instruction replicates its result.
358
359 .. math::
360
361 dst = 2^{src.x}
362
363
364 .. opcode:: LG2 - Logarithm Base 2
365
366 This instruction replicates its result.
367
368 .. math::
369
370 dst = \log_2{src.x}
371
372
373 .. opcode:: POW - Power
374
375 This instruction replicates its result.
376
377 .. math::
378
379 dst = src0.x^{src1.x}
380
381 .. opcode:: XPD - Cross Product
382
383 .. math::
384
385 dst.x = src0.y \times src1.z - src1.y \times src0.z
386
387 dst.y = src0.z \times src1.x - src1.z \times src0.x
388
389 dst.z = src0.x \times src1.y - src1.x \times src0.y
390
391 dst.w = 1
392
393
394 .. opcode:: ABS - Absolute
395
396 .. math::
397
398 dst.x = |src.x|
399
400 dst.y = |src.y|
401
402 dst.z = |src.z|
403
404 dst.w = |src.w|
405
406
407 .. opcode:: RCC - Reciprocal Clamped
408
409 This instruction replicates its result.
410
411 XXX cleanup on aisle three
412
413 .. math::
414
415 dst = (1 / src.x) > 0 ? clamp(1 / src.x, 5.42101e-020, 1.84467e+019) : clamp(1 / src.x, -1.84467e+019, -5.42101e-020)
416
417
418 .. opcode:: DPH - Homogeneous Dot Product
419
420 This instruction replicates its result.
421
422 .. math::
423
424 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
425
426
427 .. opcode:: COS - Cosine
428
429 This instruction replicates its result.
430
431 .. math::
432
433 dst = \cos{src.x}
434
435
436 .. opcode:: DDX - Derivative Relative To X
437
438 .. math::
439
440 dst.x = partialx(src.x)
441
442 dst.y = partialx(src.y)
443
444 dst.z = partialx(src.z)
445
446 dst.w = partialx(src.w)
447
448
449 .. opcode:: DDY - Derivative Relative To Y
450
451 .. math::
452
453 dst.x = partialy(src.x)
454
455 dst.y = partialy(src.y)
456
457 dst.z = partialy(src.z)
458
459 dst.w = partialy(src.w)
460
461
462 .. opcode:: PK2H - Pack Two 16-bit Floats
463
464 TBD
465
466
467 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
468
469 TBD
470
471
472 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
473
474 TBD
475
476
477 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
478
479 TBD
480
481
482 .. opcode:: RFL - Reflection Vector
483
484 .. math::
485
486 dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x
487
488 dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y
489
490 dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z
491
492 dst.w = 1
493
494 .. note::
495
496 Considered for removal.
497
498
499 .. opcode:: SEQ - Set On Equal
500
501 .. math::
502
503 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
504
505 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
506
507 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
508
509 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
510
511
512 .. opcode:: SFL - Set On False
513
514 This instruction replicates its result.
515
516 .. math::
517
518 dst = 0.0F
519
520 .. note::
521
522 Considered for removal.
523
524
525 .. opcode:: SGT - Set On Greater Than
526
527 .. math::
528
529 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
530
531 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
532
533 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
534
535 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
536
537
538 .. opcode:: SIN - Sine
539
540 This instruction replicates its result.
541
542 .. math::
543
544 dst = \sin{src.x}
545
546
547 .. opcode:: SLE - Set On Less Equal Than
548
549 .. math::
550
551 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
552
553 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
554
555 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
556
557 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
558
559
560 .. opcode:: SNE - Set On Not Equal
561
562 .. math::
563
564 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
565
566 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
567
568 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
569
570 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
571
572
573 .. opcode:: STR - Set On True
574
575 This instruction replicates its result.
576
577 .. math::
578
579 dst = 1.0F
580
581
582 .. opcode:: TEX - Texture Lookup
583
584 for array textures src0.y contains the slice for 1D,
585 and src0.z contain the slice for 2D.
586
587 for shadow textures with no arrays (and not cube map),
588 src0.z contains the reference value.
589
590 for shadow textures with arrays, src0.z contains
591 the reference value for 1D arrays, and src0.w contains
592 the reference value for 2D arrays and cube maps.
593
594 for cube map array shadow textures, the reference value
595 cannot be passed in src0.w, and TEX2 must be used instead.
596
597 .. math::
598
599 coord = src0
600
601 shadow_ref = src0.z or src0.w (optional)
602
603 unit = src1
604
605 dst = texture\_sample(unit, coord, shadow_ref)
606
607
608 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
609
610 this is the same as TEX, but uses another reg to encode the
611 reference value.
612
613 .. math::
614
615 coord = src0
616
617 shadow_ref = src1.x
618
619 unit = src2
620
621 dst = texture\_sample(unit, coord, shadow_ref)
622
623
624
625
626 .. opcode:: TXD - Texture Lookup with Derivatives
627
628 .. math::
629
630 coord = src0
631
632 ddx = src1
633
634 ddy = src2
635
636 unit = src3
637
638 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
639
640
641 .. opcode:: TXP - Projective Texture Lookup
642
643 .. math::
644
645 coord.x = src0.x / src0.w
646
647 coord.y = src0.y / src0.w
648
649 coord.z = src0.z / src0.w
650
651 coord.w = src0.w
652
653 unit = src1
654
655 dst = texture\_sample(unit, coord)
656
657
658 .. opcode:: UP2H - Unpack Two 16-Bit Floats
659
660 TBD
661
662 .. note::
663
664 Considered for removal.
665
666 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
667
668 TBD
669
670 .. note::
671
672 Considered for removal.
673
674 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
675
676 TBD
677
678 .. note::
679
680 Considered for removal.
681
682 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
683
684 TBD
685
686 .. note::
687
688 Considered for removal.
689
690 .. opcode:: X2D - 2D Coordinate Transformation
691
692 .. math::
693
694 dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y
695
696 dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w
697
698 dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y
699
700 dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w
701
702 .. note::
703
704 Considered for removal.
705
706
707 .. opcode:: ARA - Address Register Add
708
709 TBD
710
711 .. note::
712
713 Considered for removal.
714
715 .. opcode:: ARR - Address Register Load With Round
716
717 .. math::
718
719 dst.x = round(src.x)
720
721 dst.y = round(src.y)
722
723 dst.z = round(src.z)
724
725 dst.w = round(src.w)
726
727
728 .. opcode:: SSG - Set Sign
729
730 .. math::
731
732 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
733
734 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
735
736 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
737
738 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
739
740
741 .. opcode:: CMP - Compare
742
743 .. math::
744
745 dst.x = (src0.x < 0) ? src1.x : src2.x
746
747 dst.y = (src0.y < 0) ? src1.y : src2.y
748
749 dst.z = (src0.z < 0) ? src1.z : src2.z
750
751 dst.w = (src0.w < 0) ? src1.w : src2.w
752
753
754 .. opcode:: KILL_IF - Conditional Discard
755
756 Conditional discard. Allowed in fragment shaders only.
757
758 .. math::
759
760 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
761 discard
762 endif
763
764
765 .. opcode:: KILL - Discard
766
767 Unconditional discard. Allowed in fragment shaders only.
768
769
770 .. opcode:: SCS - Sine Cosine
771
772 .. math::
773
774 dst.x = \cos{src.x}
775
776 dst.y = \sin{src.x}
777
778 dst.z = 0
779
780 dst.w = 1
781
782
783 .. opcode:: TXB - Texture Lookup With Bias
784
785 for cube map array textures and shadow cube maps, the bias value
786 cannot be passed in src0.w, and TXB2 must be used instead.
787
788 if the target is a shadow texture, the reference value is always
789 in src.z (this prevents shadow 3d and shadow 2d arrays from
790 using this instruction, but this is not needed).
791
792 .. math::
793
794 coord.x = src0.x
795
796 coord.y = src0.y
797
798 coord.z = src0.z
799
800 coord.w = none
801
802 bias = src0.w
803
804 unit = src1
805
806 dst = texture\_sample(unit, coord, bias)
807
808
809 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
810
811 this is the same as TXB, but uses another reg to encode the
812 lod bias value for cube map arrays and shadow cube maps.
813 Presumably shadow 2d arrays and shadow 3d targets could use
814 this encoding too, but this is not legal.
815
816 shadow cube map arrays are neither possible nor required.
817
818 .. math::
819
820 coord = src0
821
822 bias = src1.x
823
824 unit = src2
825
826 dst = texture\_sample(unit, coord, bias)
827
828
829 .. opcode:: NRM - 3-component Vector Normalise
830
831 .. math::
832
833 dst.x = src.x / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
834
835 dst.y = src.y / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
836
837 dst.z = src.z / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
838
839 dst.w = 1
840
841
842 .. opcode:: DIV - Divide
843
844 .. math::
845
846 dst.x = \frac{src0.x}{src1.x}
847
848 dst.y = \frac{src0.y}{src1.y}
849
850 dst.z = \frac{src0.z}{src1.z}
851
852 dst.w = \frac{src0.w}{src1.w}
853
854
855 .. opcode:: DP2 - 2-component Dot Product
856
857 This instruction replicates its result.
858
859 .. math::
860
861 dst = src0.x \times src1.x + src0.y \times src1.y
862
863
864 .. opcode:: TXL - Texture Lookup With explicit LOD
865
866 for cube map array textures, the explicit lod value
867 cannot be passed in src0.w, and TXL2 must be used instead.
868
869 if the target is a shadow texture, the reference value is always
870 in src.z (this prevents shadow 3d / 2d array / cube targets from
871 using this instruction, but this is not needed).
872
873 .. math::
874
875 coord.x = src0.x
876
877 coord.y = src0.y
878
879 coord.z = src0.z
880
881 coord.w = none
882
883 lod = src0.w
884
885 unit = src1
886
887 dst = texture\_sample(unit, coord, lod)
888
889
890 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
891
892 this is the same as TXL, but uses another reg to encode the
893 explicit lod value.
894 Presumably shadow 3d / 2d array / cube targets could use
895 this encoding too, but this is not legal.
896
897 shadow cube map arrays are neither possible nor required.
898
899 .. math::
900
901 coord = src0
902
903 lod = src1.x
904
905 unit = src2
906
907 dst = texture\_sample(unit, coord, lod)
908
909
910 .. opcode:: PUSHA - Push Address Register On Stack
911
912 push(src.x)
913 push(src.y)
914 push(src.z)
915 push(src.w)
916
917 .. note::
918
919 Considered for cleanup.
920
921 .. note::
922
923 Considered for removal.
924
925 .. opcode:: POPA - Pop Address Register From Stack
926
927 dst.w = pop()
928 dst.z = pop()
929 dst.y = pop()
930 dst.x = pop()
931
932 .. note::
933
934 Considered for cleanup.
935
936 .. note::
937
938 Considered for removal.
939
940
941 .. opcode:: BRA - Branch
942
943 pc = target
944
945 .. note::
946
947 Considered for removal.
948
949
950 .. opcode:: CALLNZ - Subroutine Call If Not Zero
951
952 TBD
953
954 .. note::
955
956 Considered for cleanup.
957
958 .. note::
959
960 Considered for removal.
961
962
963 Compute ISA
964 ^^^^^^^^^^^^^^^^^^^^^^^^
965
966 These opcodes are primarily provided for special-use computational shaders.
967 Support for these opcodes indicated by a special pipe capability bit (TBD).
968
969 XXX doesn't look like most of the opcodes really belong here.
970
971 .. opcode:: CEIL - Ceiling
972
973 .. math::
974
975 dst.x = \lceil src.x\rceil
976
977 dst.y = \lceil src.y\rceil
978
979 dst.z = \lceil src.z\rceil
980
981 dst.w = \lceil src.w\rceil
982
983
984 .. opcode:: TRUNC - Truncate
985
986 .. math::
987
988 dst.x = trunc(src.x)
989
990 dst.y = trunc(src.y)
991
992 dst.z = trunc(src.z)
993
994 dst.w = trunc(src.w)
995
996
997 .. opcode:: MOD - Modulus
998
999 .. math::
1000
1001 dst.x = src0.x \bmod src1.x
1002
1003 dst.y = src0.y \bmod src1.y
1004
1005 dst.z = src0.z \bmod src1.z
1006
1007 dst.w = src0.w \bmod src1.w
1008
1009
1010 .. opcode:: UARL - Integer Address Register Load
1011
1012 Moves the contents of the source register, assumed to be an integer, into the
1013 destination register, which is assumed to be an address (ADDR) register.
1014
1015
1016 .. opcode:: SAD - Sum Of Absolute Differences
1017
1018 .. math::
1019
1020 dst.x = |src0.x - src1.x| + src2.x
1021
1022 dst.y = |src0.y - src1.y| + src2.y
1023
1024 dst.z = |src0.z - src1.z| + src2.z
1025
1026 dst.w = |src0.w - src1.w| + src2.w
1027
1028
1029 .. opcode:: TXF - Texel Fetch
1030
1031 As per NV_gpu_shader4, extract a single texel from a specified texture
1032 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
1033 four-component signed integer vector used to identify the single texel
1034 accessed. 3 components + level. Just like texture instructions, an optional
1035 offset vector is provided, which is subject to various driver restrictions
1036 (regarding range, source of offsets).
1037 TXF(uint_vec coord, int_vec offset).
1038
1039
1040 .. opcode:: TXQ - Texture Size Query
1041
1042 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
1043 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
1044 depth), 1D array (width, layers), 2D array (width, height, layers).
1045 Also return the number of accessible levels (last_level - first_level + 1)
1046 in W.
1047
1048 For components which don't return a resource dimension, their value
1049 is undefined.
1050
1051
1052 .. math::
1053
1054 lod = src0.x
1055
1056 dst.x = texture\_width(unit, lod)
1057
1058 dst.y = texture\_height(unit, lod)
1059
1060 dst.z = texture\_depth(unit, lod)
1061
1062 dst.w = texture\_levels(unit)
1063
1064 .. opcode:: TG4 - Texture Gather
1065
1066 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
1067 filtering operation and packs them into a single register. Only works with
1068 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
1069 addressing modes of the sampler and the top level of any mip pyramid are
1070 used. Set W to zero. It behaves like the TEX instruction, but a filtered
1071 sample is not generated. The four samples that contribute to filtering are
1072 placed into xyzw in clockwise order, starting with the (u,v) texture
1073 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
1074 where the magnitude of the deltas are half a texel.
1075
1076 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
1077 depth compares, single component selection, and a non-constant offset. It
1078 doesn't allow support for the GL independent offset to get i0,j0. This would
1079 require another CAP is hw can do it natively. For now we lower that before
1080 TGSI.
1081
1082 .. math::
1083
1084 coord = src0
1085
1086 component = src1
1087
1088 dst = texture\_gather4 (unit, coord, component)
1089
1090 (with SM5 - cube array shadow)
1091
1092 .. math::
1093
1094 coord = src0
1095
1096 compare = src1
1097
1098 dst = texture\_gather (uint, coord, compare)
1099
1100 .. opcode:: LODQ - level of detail query
1101
1102 Compute the LOD information that the texture pipe would use to access the
1103 texture. The Y component contains the computed LOD lambda_prime. The X
1104 component contains the LOD that will be accessed, based on min/max lod's
1105 and mipmap filters.
1106
1107 .. math::
1108
1109 coord = src0
1110
1111 dst.xy = lodq(uint, coord);
1112
1113 Integer ISA
1114 ^^^^^^^^^^^^^^^^^^^^^^^^
1115 These opcodes are used for integer operations.
1116 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1117
1118
1119 .. opcode:: I2F - Signed Integer To Float
1120
1121 Rounding is unspecified (round to nearest even suggested).
1122
1123 .. math::
1124
1125 dst.x = (float) src.x
1126
1127 dst.y = (float) src.y
1128
1129 dst.z = (float) src.z
1130
1131 dst.w = (float) src.w
1132
1133
1134 .. opcode:: U2F - Unsigned Integer To Float
1135
1136 Rounding is unspecified (round to nearest even suggested).
1137
1138 .. math::
1139
1140 dst.x = (float) src.x
1141
1142 dst.y = (float) src.y
1143
1144 dst.z = (float) src.z
1145
1146 dst.w = (float) src.w
1147
1148
1149 .. opcode:: F2I - Float to Signed Integer
1150
1151 Rounding is towards zero (truncate).
1152 Values outside signed range (including NaNs) produce undefined results.
1153
1154 .. math::
1155
1156 dst.x = (int) src.x
1157
1158 dst.y = (int) src.y
1159
1160 dst.z = (int) src.z
1161
1162 dst.w = (int) src.w
1163
1164
1165 .. opcode:: F2U - Float to Unsigned Integer
1166
1167 Rounding is towards zero (truncate).
1168 Values outside unsigned range (including NaNs) produce undefined results.
1169
1170 .. math::
1171
1172 dst.x = (unsigned) src.x
1173
1174 dst.y = (unsigned) src.y
1175
1176 dst.z = (unsigned) src.z
1177
1178 dst.w = (unsigned) src.w
1179
1180
1181 .. opcode:: UADD - Integer Add
1182
1183 This instruction works the same for signed and unsigned integers.
1184 The low 32bit of the result is returned.
1185
1186 .. math::
1187
1188 dst.x = src0.x + src1.x
1189
1190 dst.y = src0.y + src1.y
1191
1192 dst.z = src0.z + src1.z
1193
1194 dst.w = src0.w + src1.w
1195
1196
1197 .. opcode:: UMAD - Integer Multiply And Add
1198
1199 This instruction works the same for signed and unsigned integers.
1200 The multiplication returns the low 32bit (as does the result itself).
1201
1202 .. math::
1203
1204 dst.x = src0.x \times src1.x + src2.x
1205
1206 dst.y = src0.y \times src1.y + src2.y
1207
1208 dst.z = src0.z \times src1.z + src2.z
1209
1210 dst.w = src0.w \times src1.w + src2.w
1211
1212
1213 .. opcode:: UMUL - Integer Multiply
1214
1215 This instruction works the same for signed and unsigned integers.
1216 The low 32bit of the result is returned.
1217
1218 .. math::
1219
1220 dst.x = src0.x \times src1.x
1221
1222 dst.y = src0.y \times src1.y
1223
1224 dst.z = src0.z \times src1.z
1225
1226 dst.w = src0.w \times src1.w
1227
1228
1229 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1230
1231 The high 32bits of the multiplication of 2 signed integers are returned.
1232
1233 .. math::
1234
1235 dst.x = (src0.x \times src1.x) >> 32
1236
1237 dst.y = (src0.y \times src1.y) >> 32
1238
1239 dst.z = (src0.z \times src1.z) >> 32
1240
1241 dst.w = (src0.w \times src1.w) >> 32
1242
1243
1244 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1245
1246 The high 32bits of the multiplication of 2 unsigned integers are returned.
1247
1248 .. math::
1249
1250 dst.x = (src0.x \times src1.x) >> 32
1251
1252 dst.y = (src0.y \times src1.y) >> 32
1253
1254 dst.z = (src0.z \times src1.z) >> 32
1255
1256 dst.w = (src0.w \times src1.w) >> 32
1257
1258
1259 .. opcode:: IDIV - Signed Integer Division
1260
1261 TBD: behavior for division by zero.
1262
1263 .. math::
1264
1265 dst.x = src0.x \ src1.x
1266
1267 dst.y = src0.y \ src1.y
1268
1269 dst.z = src0.z \ src1.z
1270
1271 dst.w = src0.w \ src1.w
1272
1273
1274 .. opcode:: UDIV - Unsigned Integer Division
1275
1276 For division by zero, 0xffffffff is returned.
1277
1278 .. math::
1279
1280 dst.x = src0.x \ src1.x
1281
1282 dst.y = src0.y \ src1.y
1283
1284 dst.z = src0.z \ src1.z
1285
1286 dst.w = src0.w \ src1.w
1287
1288
1289 .. opcode:: UMOD - Unsigned Integer Remainder
1290
1291 If second arg is zero, 0xffffffff is returned.
1292
1293 .. math::
1294
1295 dst.x = src0.x \ src1.x
1296
1297 dst.y = src0.y \ src1.y
1298
1299 dst.z = src0.z \ src1.z
1300
1301 dst.w = src0.w \ src1.w
1302
1303
1304 .. opcode:: NOT - Bitwise Not
1305
1306 .. math::
1307
1308 dst.x = \sim src.x
1309
1310 dst.y = \sim src.y
1311
1312 dst.z = \sim src.z
1313
1314 dst.w = \sim src.w
1315
1316
1317 .. opcode:: AND - Bitwise And
1318
1319 .. math::
1320
1321 dst.x = src0.x \& src1.x
1322
1323 dst.y = src0.y \& src1.y
1324
1325 dst.z = src0.z \& src1.z
1326
1327 dst.w = src0.w \& src1.w
1328
1329
1330 .. opcode:: OR - Bitwise Or
1331
1332 .. math::
1333
1334 dst.x = src0.x | src1.x
1335
1336 dst.y = src0.y | src1.y
1337
1338 dst.z = src0.z | src1.z
1339
1340 dst.w = src0.w | src1.w
1341
1342
1343 .. opcode:: XOR - Bitwise Xor
1344
1345 .. math::
1346
1347 dst.x = src0.x \oplus src1.x
1348
1349 dst.y = src0.y \oplus src1.y
1350
1351 dst.z = src0.z \oplus src1.z
1352
1353 dst.w = src0.w \oplus src1.w
1354
1355
1356 .. opcode:: IMAX - Maximum of Signed Integers
1357
1358 .. math::
1359
1360 dst.x = max(src0.x, src1.x)
1361
1362 dst.y = max(src0.y, src1.y)
1363
1364 dst.z = max(src0.z, src1.z)
1365
1366 dst.w = max(src0.w, src1.w)
1367
1368
1369 .. opcode:: UMAX - Maximum of Unsigned Integers
1370
1371 .. math::
1372
1373 dst.x = max(src0.x, src1.x)
1374
1375 dst.y = max(src0.y, src1.y)
1376
1377 dst.z = max(src0.z, src1.z)
1378
1379 dst.w = max(src0.w, src1.w)
1380
1381
1382 .. opcode:: IMIN - Minimum of Signed Integers
1383
1384 .. math::
1385
1386 dst.x = min(src0.x, src1.x)
1387
1388 dst.y = min(src0.y, src1.y)
1389
1390 dst.z = min(src0.z, src1.z)
1391
1392 dst.w = min(src0.w, src1.w)
1393
1394
1395 .. opcode:: UMIN - Minimum of Unsigned Integers
1396
1397 .. math::
1398
1399 dst.x = min(src0.x, src1.x)
1400
1401 dst.y = min(src0.y, src1.y)
1402
1403 dst.z = min(src0.z, src1.z)
1404
1405 dst.w = min(src0.w, src1.w)
1406
1407
1408 .. opcode:: SHL - Shift Left
1409
1410 The shift count is masked with 0x1f before the shift is applied.
1411
1412 .. math::
1413
1414 dst.x = src0.x << (0x1f \& src1.x)
1415
1416 dst.y = src0.y << (0x1f \& src1.y)
1417
1418 dst.z = src0.z << (0x1f \& src1.z)
1419
1420 dst.w = src0.w << (0x1f \& src1.w)
1421
1422
1423 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1424
1425 The shift count is masked with 0x1f before the shift is applied.
1426
1427 .. math::
1428
1429 dst.x = src0.x >> (0x1f \& src1.x)
1430
1431 dst.y = src0.y >> (0x1f \& src1.y)
1432
1433 dst.z = src0.z >> (0x1f \& src1.z)
1434
1435 dst.w = src0.w >> (0x1f \& src1.w)
1436
1437
1438 .. opcode:: USHR - Logical Shift Right
1439
1440 The shift count is masked with 0x1f before the shift is applied.
1441
1442 .. math::
1443
1444 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1445
1446 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1447
1448 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1449
1450 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1451
1452
1453 .. opcode:: UCMP - Integer Conditional Move
1454
1455 .. math::
1456
1457 dst.x = src0.x ? src1.x : src2.x
1458
1459 dst.y = src0.y ? src1.y : src2.y
1460
1461 dst.z = src0.z ? src1.z : src2.z
1462
1463 dst.w = src0.w ? src1.w : src2.w
1464
1465
1466
1467 .. opcode:: ISSG - Integer Set Sign
1468
1469 .. math::
1470
1471 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1472
1473 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1474
1475 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1476
1477 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1478
1479
1480
1481 .. opcode:: FSLT - Float Set On Less Than (ordered)
1482
1483 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1484
1485 .. math::
1486
1487 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1488
1489 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1490
1491 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1492
1493 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1494
1495
1496 .. opcode:: ISLT - Signed Integer Set On Less Than
1497
1498 .. math::
1499
1500 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1501
1502 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1503
1504 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1505
1506 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1507
1508
1509 .. opcode:: USLT - Unsigned Integer Set On Less Than
1510
1511 .. math::
1512
1513 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1514
1515 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1516
1517 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1518
1519 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1520
1521
1522 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1523
1524 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1525
1526 .. math::
1527
1528 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1529
1530 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1531
1532 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1533
1534 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1535
1536
1537 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1538
1539 .. math::
1540
1541 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1542
1543 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1544
1545 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1546
1547 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1548
1549
1550 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1551
1552 .. math::
1553
1554 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1555
1556 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1557
1558 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1559
1560 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1561
1562
1563 .. opcode:: FSEQ - Float Set On Equal (ordered)
1564
1565 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1566
1567 .. math::
1568
1569 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1570
1571 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1572
1573 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1574
1575 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1576
1577
1578 .. opcode:: USEQ - Integer Set On Equal
1579
1580 .. math::
1581
1582 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1583
1584 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1585
1586 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1587
1588 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1589
1590
1591 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1592
1593 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1594
1595 .. math::
1596
1597 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1598
1599 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1600
1601 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1602
1603 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1604
1605
1606 .. opcode:: USNE - Integer Set On Not Equal
1607
1608 .. math::
1609
1610 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1611
1612 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1613
1614 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1615
1616 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1617
1618
1619 .. opcode:: INEG - Integer Negate
1620
1621 Two's complement.
1622
1623 .. math::
1624
1625 dst.x = -src.x
1626
1627 dst.y = -src.y
1628
1629 dst.z = -src.z
1630
1631 dst.w = -src.w
1632
1633
1634 .. opcode:: IABS - Integer Absolute Value
1635
1636 .. math::
1637
1638 dst.x = |src.x|
1639
1640 dst.y = |src.y|
1641
1642 dst.z = |src.z|
1643
1644 dst.w = |src.w|
1645
1646 Bitwise ISA
1647 ^^^^^^^^^^^
1648 These opcodes are used for bit-level manipulation of integers.
1649
1650 .. opcode:: IBFE - Signed Bitfield Extract
1651
1652 See SM5 instruction of the same name. Extracts a set of bits from the input,
1653 and sign-extends them if the high bit of the extracted window is set.
1654
1655 Pseudocode::
1656
1657 def ibfe(value, offset, bits):
1658 offset = offset & 0x1f
1659 bits = bits & 0x1f
1660 if bits == 0: return 0
1661 # Note: >> sign-extends
1662 if width + offset < 32:
1663 return (value << (32 - offset - bits)) >> (32 - bits)
1664 else:
1665 return value >> offset
1666
1667 .. opcode:: UBFE - Unsigned Bitfield Extract
1668
1669 See SM5 instruction of the same name. Extracts a set of bits from the input,
1670 without any sign-extension.
1671
1672 Pseudocode::
1673
1674 def ubfe(value, offset, bits):
1675 offset = offset & 0x1f
1676 bits = bits & 0x1f
1677 if bits == 0: return 0
1678 # Note: >> does not sign-extend
1679 if width + offset < 32:
1680 return (value << (32 - offset - bits)) >> (32 - bits)
1681 else:
1682 return value >> offset
1683
1684 .. opcode:: BFI - Bitfield Insert
1685
1686 See SM5 instruction of the same name. Replaces a bit region of 'base' with
1687 the low bits of 'insert'.
1688
1689 Pseudocode::
1690
1691 def bfi(base, insert, offset, bits):
1692 offset = offset & 0x1f
1693 bits = bits & 0x1f
1694 mask = ((1 << bits) - 1) << offset
1695 return ((insert << offset) & mask) | (base & ~mask)
1696
1697 .. opcode:: BREV - Bitfield Reverse
1698
1699 See SM5 instruction BFREV. Reverses the bits of the argument.
1700
1701 .. opcode:: POPC - Population Count
1702
1703 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1704
1705 .. opcode:: LSB - Index of lowest set bit
1706
1707 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1708 bit of the argument. Returns -1 if none are set.
1709
1710 .. opcode:: IMSB - Index of highest non-sign bit
1711
1712 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1713 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1714 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1715 (i.e. for inputs 0 and -1).
1716
1717 .. opcode:: UMSB - Index of highest set bit
1718
1719 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1720 set bit of the argument. Returns -1 if none are set.
1721
1722 Geometry ISA
1723 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1724
1725 These opcodes are only supported in geometry shaders; they have no meaning
1726 in any other type of shader.
1727
1728 .. opcode:: EMIT - Emit
1729
1730 Generate a new vertex for the current primitive into the specified vertex
1731 stream using the values in the output registers.
1732
1733
1734 .. opcode:: ENDPRIM - End Primitive
1735
1736 Complete the current primitive in the specified vertex stream (consisting of
1737 the emitted vertices), and start a new one.
1738
1739
1740 GLSL ISA
1741 ^^^^^^^^^^
1742
1743 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1744 opcodes is determined by a special capability bit, ``GLSL``.
1745 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1746
1747 .. opcode:: CAL - Subroutine Call
1748
1749 push(pc)
1750 pc = target
1751
1752
1753 .. opcode:: RET - Subroutine Call Return
1754
1755 pc = pop()
1756
1757
1758 .. opcode:: CONT - Continue
1759
1760 Unconditionally moves the point of execution to the instruction after the
1761 last bgnloop. The instruction must appear within a bgnloop/endloop.
1762
1763 .. note::
1764
1765 Support for CONT is determined by a special capability bit,
1766 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1767
1768
1769 .. opcode:: BGNLOOP - Begin a Loop
1770
1771 Start a loop. Must have a matching endloop.
1772
1773
1774 .. opcode:: BGNSUB - Begin Subroutine
1775
1776 Starts definition of a subroutine. Must have a matching endsub.
1777
1778
1779 .. opcode:: ENDLOOP - End a Loop
1780
1781 End a loop started with bgnloop.
1782
1783
1784 .. opcode:: ENDSUB - End Subroutine
1785
1786 Ends definition of a subroutine.
1787
1788
1789 .. opcode:: NOP - No Operation
1790
1791 Do nothing.
1792
1793
1794 .. opcode:: BRK - Break
1795
1796 Unconditionally moves the point of execution to the instruction after the
1797 next endloop or endswitch. The instruction must appear within a loop/endloop
1798 or switch/endswitch.
1799
1800
1801 .. opcode:: BREAKC - Break Conditional
1802
1803 Conditionally moves the point of execution to the instruction after the
1804 next endloop or endswitch. The instruction must appear within a loop/endloop
1805 or switch/endswitch.
1806 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1807 as an integer register.
1808
1809 .. note::
1810
1811 Considered for removal as it's quite inconsistent wrt other opcodes
1812 (could emulate with UIF/BRK/ENDIF).
1813
1814
1815 .. opcode:: IF - Float If
1816
1817 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1818
1819 src0.x != 0.0
1820
1821 where src0.x is interpreted as a floating point register.
1822
1823
1824 .. opcode:: UIF - Bitwise If
1825
1826 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1827
1828 src0.x != 0
1829
1830 where src0.x is interpreted as an integer register.
1831
1832
1833 .. opcode:: ELSE - Else
1834
1835 Starts an else block, after an IF or UIF statement.
1836
1837
1838 .. opcode:: ENDIF - End If
1839
1840 Ends an IF or UIF block.
1841
1842
1843 .. opcode:: SWITCH - Switch
1844
1845 Starts a C-style switch expression. The switch consists of one or multiple
1846 CASE statements, and at most one DEFAULT statement. Execution of a statement
1847 ends when a BRK is hit, but just like in C falling through to other cases
1848 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1849 just as last statement, and fallthrough is allowed into/from it.
1850 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1851
1852 Example::
1853
1854 SWITCH src[0].x
1855 CASE src[0].x
1856 (some instructions here)
1857 (optional BRK here)
1858 DEFAULT
1859 (some instructions here)
1860 (optional BRK here)
1861 CASE src[0].x
1862 (some instructions here)
1863 (optional BRK here)
1864 ENDSWITCH
1865
1866
1867 .. opcode:: CASE - Switch case
1868
1869 This represents a switch case label. The src arg must be an integer immediate.
1870
1871
1872 .. opcode:: DEFAULT - Switch default
1873
1874 This represents the default case in the switch, which is taken if no other
1875 case matches.
1876
1877
1878 .. opcode:: ENDSWITCH - End of switch
1879
1880 Ends a switch expression.
1881
1882
1883 .. opcode:: NRM4 - 4-component Vector Normalise
1884
1885 This instruction replicates its result.
1886
1887 .. math::
1888
1889 dst = \frac{src.x}{src.x \times src.x + src.y \times src.y + src.z \times src.z + src.w \times src.w}
1890
1891
1892 Interpolation ISA
1893 ^^^^^^^^^^^^^^^^^
1894
1895 The interpolation instructions allow an input to be interpolated in a
1896 different way than its declaration. This corresponds to the GLSL 4.00
1897 interpolateAt* functions. The first argument of each of these must come from
1898 ``TGSI_FILE_INPUT``.
1899
1900 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1901
1902 Interpolates the varying specified by src0 at the centroid
1903
1904 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1905
1906 Interpolates the varying specified by src0 at the sample id specified by
1907 src1.x (interpreted as an integer)
1908
1909 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1910
1911 Interpolates the varying specified by src0 at the offset src1.xy from the
1912 pixel center (interpreted as floats)
1913
1914
1915 .. _doubleopcodes:
1916
1917 Double ISA
1918 ^^^^^^^^^^^^^^^
1919
1920 The double-precision opcodes reinterpret four-component vectors into
1921 two-component vectors with doubled precision in each component.
1922
1923 Support for these opcodes is XXX undecided. :T
1924
1925 .. opcode:: DADD - Add
1926
1927 .. math::
1928
1929 dst.xy = src0.xy + src1.xy
1930
1931 dst.zw = src0.zw + src1.zw
1932
1933
1934 .. opcode:: DDIV - Divide
1935
1936 .. math::
1937
1938 dst.xy = src0.xy / src1.xy
1939
1940 dst.zw = src0.zw / src1.zw
1941
1942 .. opcode:: DSEQ - Set on Equal
1943
1944 .. math::
1945
1946 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1947
1948 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1949
1950 .. opcode:: DSLT - Set on Less than
1951
1952 .. math::
1953
1954 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1955
1956 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1957
1958 .. opcode:: DFRAC - Fraction
1959
1960 .. math::
1961
1962 dst.xy = src.xy - \lfloor src.xy\rfloor
1963
1964 dst.zw = src.zw - \lfloor src.zw\rfloor
1965
1966
1967 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1968
1969 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1970 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1971 :math:`dst1 \times 2^{dst0} = src` .
1972
1973 .. math::
1974
1975 dst0.xy = exp(src.xy)
1976
1977 dst1.xy = frac(src.xy)
1978
1979 dst0.zw = exp(src.zw)
1980
1981 dst1.zw = frac(src.zw)
1982
1983 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1984
1985 This opcode is the inverse of :opcode:`DFRACEXP`.
1986
1987 .. math::
1988
1989 dst.xy = src0.xy \times 2^{src1.xy}
1990
1991 dst.zw = src0.zw \times 2^{src1.zw}
1992
1993 .. opcode:: DMIN - Minimum
1994
1995 .. math::
1996
1997 dst.xy = min(src0.xy, src1.xy)
1998
1999 dst.zw = min(src0.zw, src1.zw)
2000
2001 .. opcode:: DMAX - Maximum
2002
2003 .. math::
2004
2005 dst.xy = max(src0.xy, src1.xy)
2006
2007 dst.zw = max(src0.zw, src1.zw)
2008
2009 .. opcode:: DMUL - Multiply
2010
2011 .. math::
2012
2013 dst.xy = src0.xy \times src1.xy
2014
2015 dst.zw = src0.zw \times src1.zw
2016
2017
2018 .. opcode:: DMAD - Multiply And Add
2019
2020 .. math::
2021
2022 dst.xy = src0.xy \times src1.xy + src2.xy
2023
2024 dst.zw = src0.zw \times src1.zw + src2.zw
2025
2026
2027 .. opcode:: DRCP - Reciprocal
2028
2029 .. math::
2030
2031 dst.xy = \frac{1}{src.xy}
2032
2033 dst.zw = \frac{1}{src.zw}
2034
2035 .. opcode:: DSQRT - Square Root
2036
2037 .. math::
2038
2039 dst.xy = \sqrt{src.xy}
2040
2041 dst.zw = \sqrt{src.zw}
2042
2043
2044 .. _samplingopcodes:
2045
2046 Resource Sampling Opcodes
2047 ^^^^^^^^^^^^^^^^^^^^^^^^^
2048
2049 Those opcodes follow very closely semantics of the respective Direct3D
2050 instructions. If in doubt double check Direct3D documentation.
2051 Note that the swizzle on SVIEW (src1) determines texel swizzling
2052 after lookup.
2053
2054 .. opcode:: SAMPLE
2055
2056 Using provided address, sample data from the specified texture using the
2057 filtering mode identified by the gven sampler. The source data may come from
2058 any resource type other than buffers.
2059
2060 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2061
2062 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2063
2064 .. opcode:: SAMPLE_I
2065
2066 Simplified alternative to the SAMPLE instruction. Using the provided
2067 integer address, SAMPLE_I fetches data from the specified sampler view
2068 without any filtering. The source data may come from any resource type
2069 other than CUBE.
2070
2071 Syntax: ``SAMPLE_I dst, address, sampler_view``
2072
2073 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2074
2075 The 'address' is specified as unsigned integers. If the 'address' is out of
2076 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2077 components. As such the instruction doesn't honor address wrap modes, in
2078 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2079 address.w always provides an unsigned integer mipmap level. If the value is
2080 out of the range then the instruction always returns 0 in all components.
2081 address.yz are ignored for buffers and 1d textures. address.z is ignored
2082 for 1d texture arrays and 2d textures.
2083
2084 For 1D texture arrays address.y provides the array index (also as unsigned
2085 integer). If the value is out of the range of available array indices
2086 [0... (array size - 1)] then the opcode always returns 0 in all components.
2087 For 2D texture arrays address.z provides the array index, otherwise it
2088 exhibits the same behavior as in the case for 1D texture arrays. The exact
2089 semantics of the source address are presented in the table below:
2090
2091 +---------------------------+----+-----+-----+---------+
2092 | resource type | X | Y | Z | W |
2093 +===========================+====+=====+=====+=========+
2094 | ``PIPE_BUFFER`` | x | | | ignored |
2095 +---------------------------+----+-----+-----+---------+
2096 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2097 +---------------------------+----+-----+-----+---------+
2098 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2099 +---------------------------+----+-----+-----+---------+
2100 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2101 +---------------------------+----+-----+-----+---------+
2102 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2103 +---------------------------+----+-----+-----+---------+
2104 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2105 +---------------------------+----+-----+-----+---------+
2106 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2107 +---------------------------+----+-----+-----+---------+
2108 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2109 +---------------------------+----+-----+-----+---------+
2110
2111 Where 'mpl' is a mipmap level and 'idx' is the array index.
2112
2113 .. opcode:: SAMPLE_I_MS
2114
2115 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2116
2117 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2118
2119 .. opcode:: SAMPLE_B
2120
2121 Just like the SAMPLE instruction with the exception that an additional bias
2122 is applied to the level of detail computed as part of the instruction
2123 execution.
2124
2125 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2126
2127 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2128
2129 .. opcode:: SAMPLE_C
2130
2131 Similar to the SAMPLE instruction but it performs a comparison filter. The
2132 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2133 additional float32 operand, reference value, which must be a register with
2134 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2135 current samplers compare_func (in pipe_sampler_state) to compare reference
2136 value against the red component value for the surce resource at each texel
2137 that the currently configured texture filter covers based on the provided
2138 coordinates.
2139
2140 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2141
2142 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2143
2144 .. opcode:: SAMPLE_C_LZ
2145
2146 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2147 for level-zero.
2148
2149 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2150
2151 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2152
2153
2154 .. opcode:: SAMPLE_D
2155
2156 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2157 the source address in the x direction and the y direction are provided by
2158 extra parameters.
2159
2160 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2161
2162 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2163
2164 .. opcode:: SAMPLE_L
2165
2166 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2167 directly as a scalar value, representing no anisotropy.
2168
2169 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2170
2171 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2172
2173 .. opcode:: GATHER4
2174
2175 Gathers the four texels to be used in a bi-linear filtering operation and
2176 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2177 and cubemaps arrays. For 2D textures, only the addressing modes of the
2178 sampler and the top level of any mip pyramid are used. Set W to zero. It
2179 behaves like the SAMPLE instruction, but a filtered sample is not
2180 generated. The four samples that contribute to filtering are placed into
2181 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2182 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2183 magnitude of the deltas are half a texel.
2184
2185
2186 .. opcode:: SVIEWINFO
2187
2188 Query the dimensions of a given sampler view. dst receives width, height,
2189 depth or array size and number of mipmap levels as int4. The dst can have a
2190 writemask which will specify what info is the caller interested in.
2191
2192 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2193
2194 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2195
2196 src_mip_level is an unsigned integer scalar. If it's out of range then
2197 returns 0 for width, height and depth/array size but the total number of
2198 mipmap is still returned correctly for the given sampler view. The returned
2199 width, height and depth values are for the mipmap level selected by the
2200 src_mip_level and are in the number of texels. For 1d texture array width
2201 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2202 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2203 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2204 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2205 resinfo allowing swizzling dst values is ignored (due to the interaction
2206 with rcpfloat modifier which requires some swizzle handling in the state
2207 tracker anyway).
2208
2209 .. opcode:: SAMPLE_POS
2210
2211 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2212 indicated where the sample is located. If the resource is not a multi-sample
2213 resource and not a render target, the result is 0.
2214
2215 .. opcode:: SAMPLE_INFO
2216
2217 dst receives number of samples in x. If the resource is not a multi-sample
2218 resource and not a render target, the result is 0.
2219
2220
2221 .. _resourceopcodes:
2222
2223 Resource Access Opcodes
2224 ^^^^^^^^^^^^^^^^^^^^^^^
2225
2226 .. opcode:: LOAD - Fetch data from a shader resource
2227
2228 Syntax: ``LOAD dst, resource, address``
2229
2230 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
2231
2232 Using the provided integer address, LOAD fetches data
2233 from the specified buffer or texture without any
2234 filtering.
2235
2236 The 'address' is specified as a vector of unsigned
2237 integers. If the 'address' is out of range the result
2238 is unspecified.
2239
2240 Only the first mipmap level of a resource can be read
2241 from using this instruction.
2242
2243 For 1D or 2D texture arrays, the array index is
2244 provided as an unsigned integer in address.y or
2245 address.z, respectively. address.yz are ignored for
2246 buffers and 1D textures. address.z is ignored for 1D
2247 texture arrays and 2D textures. address.w is always
2248 ignored.
2249
2250 .. opcode:: STORE - Write data to a shader resource
2251
2252 Syntax: ``STORE resource, address, src``
2253
2254 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
2255
2256 Using the provided integer address, STORE writes data
2257 to the specified buffer or texture.
2258
2259 The 'address' is specified as a vector of unsigned
2260 integers. If the 'address' is out of range the result
2261 is unspecified.
2262
2263 Only the first mipmap level of a resource can be
2264 written to using this instruction.
2265
2266 For 1D or 2D texture arrays, the array index is
2267 provided as an unsigned integer in address.y or
2268 address.z, respectively. address.yz are ignored for
2269 buffers and 1D textures. address.z is ignored for 1D
2270 texture arrays and 2D textures. address.w is always
2271 ignored.
2272
2273
2274 .. _threadsyncopcodes:
2275
2276 Inter-thread synchronization opcodes
2277 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2278
2279 These opcodes are intended for communication between threads running
2280 within the same compute grid. For now they're only valid in compute
2281 programs.
2282
2283 .. opcode:: MFENCE - Memory fence
2284
2285 Syntax: ``MFENCE resource``
2286
2287 Example: ``MFENCE RES[0]``
2288
2289 This opcode forces strong ordering between any memory access
2290 operations that affect the specified resource. This means that
2291 previous loads and stores (and only those) will be performed and
2292 visible to other threads before the program execution continues.
2293
2294
2295 .. opcode:: LFENCE - Load memory fence
2296
2297 Syntax: ``LFENCE resource``
2298
2299 Example: ``LFENCE RES[0]``
2300
2301 Similar to MFENCE, but it only affects the ordering of memory loads.
2302
2303
2304 .. opcode:: SFENCE - Store memory fence
2305
2306 Syntax: ``SFENCE resource``
2307
2308 Example: ``SFENCE RES[0]``
2309
2310 Similar to MFENCE, but it only affects the ordering of memory stores.
2311
2312
2313 .. opcode:: BARRIER - Thread group barrier
2314
2315 ``BARRIER``
2316
2317 This opcode suspends the execution of the current thread until all
2318 the remaining threads in the working group reach the same point of
2319 the program. Results are unspecified if any of the remaining
2320 threads terminates or never reaches an executed BARRIER instruction.
2321
2322
2323 .. _atomopcodes:
2324
2325 Atomic opcodes
2326 ^^^^^^^^^^^^^^
2327
2328 These opcodes provide atomic variants of some common arithmetic and
2329 logical operations. In this context atomicity means that another
2330 concurrent memory access operation that affects the same memory
2331 location is guaranteed to be performed strictly before or after the
2332 entire execution of the atomic operation.
2333
2334 For the moment they're only valid in compute programs.
2335
2336 .. opcode:: ATOMUADD - Atomic integer addition
2337
2338 Syntax: ``ATOMUADD dst, resource, offset, src``
2339
2340 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2341
2342 The following operation is performed atomically on each component:
2343
2344 .. math::
2345
2346 dst_i = resource[offset]_i
2347
2348 resource[offset]_i = dst_i + src_i
2349
2350
2351 .. opcode:: ATOMXCHG - Atomic exchange
2352
2353 Syntax: ``ATOMXCHG dst, resource, offset, src``
2354
2355 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2356
2357 The following operation is performed atomically on each component:
2358
2359 .. math::
2360
2361 dst_i = resource[offset]_i
2362
2363 resource[offset]_i = src_i
2364
2365
2366 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2367
2368 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2369
2370 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2371
2372 The following operation is performed atomically on each component:
2373
2374 .. math::
2375
2376 dst_i = resource[offset]_i
2377
2378 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2379
2380
2381 .. opcode:: ATOMAND - Atomic bitwise And
2382
2383 Syntax: ``ATOMAND dst, resource, offset, src``
2384
2385 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2386
2387 The following operation is performed atomically on each component:
2388
2389 .. math::
2390
2391 dst_i = resource[offset]_i
2392
2393 resource[offset]_i = dst_i \& src_i
2394
2395
2396 .. opcode:: ATOMOR - Atomic bitwise Or
2397
2398 Syntax: ``ATOMOR dst, resource, offset, src``
2399
2400 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2401
2402 The following operation is performed atomically on each component:
2403
2404 .. math::
2405
2406 dst_i = resource[offset]_i
2407
2408 resource[offset]_i = dst_i | src_i
2409
2410
2411 .. opcode:: ATOMXOR - Atomic bitwise Xor
2412
2413 Syntax: ``ATOMXOR dst, resource, offset, src``
2414
2415 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2416
2417 The following operation is performed atomically on each component:
2418
2419 .. math::
2420
2421 dst_i = resource[offset]_i
2422
2423 resource[offset]_i = dst_i \oplus src_i
2424
2425
2426 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2427
2428 Syntax: ``ATOMUMIN dst, resource, offset, src``
2429
2430 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2431
2432 The following operation is performed atomically on each component:
2433
2434 .. math::
2435
2436 dst_i = resource[offset]_i
2437
2438 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2439
2440
2441 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2442
2443 Syntax: ``ATOMUMAX dst, resource, offset, src``
2444
2445 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2446
2447 The following operation is performed atomically on each component:
2448
2449 .. math::
2450
2451 dst_i = resource[offset]_i
2452
2453 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2454
2455
2456 .. opcode:: ATOMIMIN - Atomic signed minimum
2457
2458 Syntax: ``ATOMIMIN dst, resource, offset, src``
2459
2460 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2461
2462 The following operation is performed atomically on each component:
2463
2464 .. math::
2465
2466 dst_i = resource[offset]_i
2467
2468 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2469
2470
2471 .. opcode:: ATOMIMAX - Atomic signed maximum
2472
2473 Syntax: ``ATOMIMAX dst, resource, offset, src``
2474
2475 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2476
2477 The following operation is performed atomically on each component:
2478
2479 .. math::
2480
2481 dst_i = resource[offset]_i
2482
2483 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2484
2485
2486
2487 Explanation of symbols used
2488 ------------------------------
2489
2490
2491 Functions
2492 ^^^^^^^^^^^^^^
2493
2494
2495 :math:`|x|` Absolute value of `x`.
2496
2497 :math:`\lceil x \rceil` Ceiling of `x`.
2498
2499 clamp(x,y,z) Clamp x between y and z.
2500 (x < y) ? y : (x > z) ? z : x
2501
2502 :math:`\lfloor x\rfloor` Floor of `x`.
2503
2504 :math:`\log_2{x}` Logarithm of `x`, base 2.
2505
2506 max(x,y) Maximum of x and y.
2507 (x > y) ? x : y
2508
2509 min(x,y) Minimum of x and y.
2510 (x < y) ? x : y
2511
2512 partialx(x) Derivative of x relative to fragment's X.
2513
2514 partialy(x) Derivative of x relative to fragment's Y.
2515
2516 pop() Pop from stack.
2517
2518 :math:`x^y` `x` to the power `y`.
2519
2520 push(x) Push x on stack.
2521
2522 round(x) Round x.
2523
2524 trunc(x) Truncate x, i.e. drop the fraction bits.
2525
2526
2527 Keywords
2528 ^^^^^^^^^^^^^
2529
2530
2531 discard Discard fragment.
2532
2533 pc Program counter.
2534
2535 target Label of target instruction.
2536
2537
2538 Other tokens
2539 ---------------
2540
2541
2542 Declaration
2543 ^^^^^^^^^^^
2544
2545
2546 Declares a register that is will be referenced as an operand in Instruction
2547 tokens.
2548
2549 File field contains register file that is being declared and is one
2550 of TGSI_FILE.
2551
2552 UsageMask field specifies which of the register components can be accessed
2553 and is one of TGSI_WRITEMASK.
2554
2555 The Local flag specifies that a given value isn't intended for
2556 subroutine parameter passing and, as a result, the implementation
2557 isn't required to give any guarantees of it being preserved across
2558 subroutine boundaries. As it's merely a compiler hint, the
2559 implementation is free to ignore it.
2560
2561 If Dimension flag is set to 1, a Declaration Dimension token follows.
2562
2563 If Semantic flag is set to 1, a Declaration Semantic token follows.
2564
2565 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2566
2567 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2568
2569 If Array flag is set to 1, a Declaration Array token follows.
2570
2571 Array Declaration
2572 ^^^^^^^^^^^^^^^^^^^^^^^^
2573
2574 Declarations can optional have an ArrayID attribute which can be referred by
2575 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2576 if no ArrayID is specified.
2577
2578 If an indirect addressing operand refers to a specific declaration by using
2579 an ArrayID only the registers in this declaration are guaranteed to be
2580 accessed, accessing any register outside this declaration results in undefined
2581 behavior. Note that for compatibility the effective index is zero-based and
2582 not relative to the specified declaration
2583
2584 If no ArrayID is specified with an indirect addressing operand the whole
2585 register file might be accessed by this operand. This is strongly discouraged
2586 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2587
2588 Declaration Semantic
2589 ^^^^^^^^^^^^^^^^^^^^^^^^
2590
2591 Vertex and fragment shader input and output registers may be labeled
2592 with semantic information consisting of a name and index.
2593
2594 Follows Declaration token if Semantic bit is set.
2595
2596 Since its purpose is to link a shader with other stages of the pipeline,
2597 it is valid to follow only those Declaration tokens that declare a register
2598 either in INPUT or OUTPUT file.
2599
2600 SemanticName field contains the semantic name of the register being declared.
2601 There is no default value.
2602
2603 SemanticIndex is an optional subscript that can be used to distinguish
2604 different register declarations with the same semantic name. The default value
2605 is 0.
2606
2607 The meanings of the individual semantic names are explained in the following
2608 sections.
2609
2610 TGSI_SEMANTIC_POSITION
2611 """"""""""""""""""""""
2612
2613 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2614 output register which contains the homogeneous vertex position in the clip
2615 space coordinate system. After clipping, the X, Y and Z components of the
2616 vertex will be divided by the W value to get normalized device coordinates.
2617
2618 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2619 fragment shader input contains the fragment's window position. The X
2620 component starts at zero and always increases from left to right.
2621 The Y component starts at zero and always increases but Y=0 may either
2622 indicate the top of the window or the bottom depending on the fragment
2623 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2624 The Z coordinate ranges from 0 to 1 to represent depth from the front
2625 to the back of the Z buffer. The W component contains the reciprocol
2626 of the interpolated vertex position W component.
2627
2628 Fragment shaders may also declare an output register with
2629 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2630 the fragment shader to change the fragment's Z position.
2631
2632
2633
2634 TGSI_SEMANTIC_COLOR
2635 """""""""""""""""""
2636
2637 For vertex shader outputs or fragment shader inputs/outputs, this
2638 label indicates that the resister contains an R,G,B,A color.
2639
2640 Several shader inputs/outputs may contain colors so the semantic index
2641 is used to distinguish them. For example, color[0] may be the diffuse
2642 color while color[1] may be the specular color.
2643
2644 This label is needed so that the flat/smooth shading can be applied
2645 to the right interpolants during rasterization.
2646
2647
2648
2649 TGSI_SEMANTIC_BCOLOR
2650 """"""""""""""""""""
2651
2652 Back-facing colors are only used for back-facing polygons, and are only valid
2653 in vertex shader outputs. After rasterization, all polygons are front-facing
2654 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2655 so all BCOLORs effectively become regular COLORs in the fragment shader.
2656
2657
2658 TGSI_SEMANTIC_FOG
2659 """""""""""""""""
2660
2661 Vertex shader inputs and outputs and fragment shader inputs may be
2662 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2663 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2664 to compute a fog blend factor which is used to blend the normal fragment color
2665 with a constant fog color. But fog coord really is just an ordinary vec4
2666 register like regular semantics.
2667
2668
2669 TGSI_SEMANTIC_PSIZE
2670 """""""""""""""""""
2671
2672 Vertex shader input and output registers may be labeled with
2673 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2674 in the form (S, 0, 0, 1). The point size controls the width or diameter
2675 of points for rasterization. This label cannot be used in fragment
2676 shaders.
2677
2678 When using this semantic, be sure to set the appropriate state in the
2679 :ref:`rasterizer` first.
2680
2681
2682 TGSI_SEMANTIC_TEXCOORD
2683 """"""""""""""""""""""
2684
2685 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2686
2687 Vertex shader outputs and fragment shader inputs may be labeled with
2688 this semantic to make them replaceable by sprite coordinates via the
2689 sprite_coord_enable state in the :ref:`rasterizer`.
2690 The semantic index permitted with this semantic is limited to <= 7.
2691
2692 If the driver does not support TEXCOORD, sprite coordinate replacement
2693 applies to inputs with the GENERIC semantic instead.
2694
2695 The intended use case for this semantic is gl_TexCoord.
2696
2697
2698 TGSI_SEMANTIC_PCOORD
2699 """"""""""""""""""""
2700
2701 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2702
2703 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2704 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2705 the current primitive is a point and point sprites are enabled. Otherwise,
2706 the contents of the register are undefined.
2707
2708 The intended use case for this semantic is gl_PointCoord.
2709
2710
2711 TGSI_SEMANTIC_GENERIC
2712 """""""""""""""""""""
2713
2714 All vertex/fragment shader inputs/outputs not labeled with any other
2715 semantic label can be considered to be generic attributes. Typical
2716 uses of generic inputs/outputs are texcoords and user-defined values.
2717
2718
2719 TGSI_SEMANTIC_NORMAL
2720 """"""""""""""""""""
2721
2722 Indicates that a vertex shader input is a normal vector. This is
2723 typically only used for legacy graphics APIs.
2724
2725
2726 TGSI_SEMANTIC_FACE
2727 """"""""""""""""""
2728
2729 This label applies to fragment shader inputs only and indicates that
2730 the register contains front/back-face information of the form (F, 0,
2731 0, 1). The first component will be positive when the fragment belongs
2732 to a front-facing polygon, and negative when the fragment belongs to a
2733 back-facing polygon.
2734
2735
2736 TGSI_SEMANTIC_EDGEFLAG
2737 """"""""""""""""""""""
2738
2739 For vertex shaders, this sematic label indicates that an input or
2740 output is a boolean edge flag. The register layout is [F, x, x, x]
2741 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2742 simply copies the edge flag input to the edgeflag output.
2743
2744 Edge flags are used to control which lines or points are actually
2745 drawn when the polygon mode converts triangles/quads/polygons into
2746 points or lines.
2747
2748
2749 TGSI_SEMANTIC_STENCIL
2750 """""""""""""""""""""
2751
2752 For fragment shaders, this semantic label indicates that an output
2753 is a writable stencil reference value. Only the Y component is writable.
2754 This allows the fragment shader to change the fragments stencilref value.
2755
2756
2757 TGSI_SEMANTIC_VIEWPORT_INDEX
2758 """"""""""""""""""""""""""""
2759
2760 For geometry shaders, this semantic label indicates that an output
2761 contains the index of the viewport (and scissor) to use.
2762 Only the X value is used.
2763
2764
2765 TGSI_SEMANTIC_LAYER
2766 """""""""""""""""""
2767
2768 For geometry shaders, this semantic label indicates that an output
2769 contains the layer value to use for the color and depth/stencil surfaces.
2770 Only the X value is used. (Also known as rendertarget array index.)
2771
2772
2773 TGSI_SEMANTIC_CULLDIST
2774 """"""""""""""""""""""
2775
2776 Used as distance to plane for performing application-defined culling
2777 of individual primitives against a plane. When components of vertex
2778 elements are given this label, these values are assumed to be a
2779 float32 signed distance to a plane. Primitives will be completely
2780 discarded if the plane distance for all of the vertices in the
2781 primitive are < 0. If a vertex has a cull distance of NaN, that
2782 vertex counts as "out" (as if its < 0);
2783 The limits on both clip and cull distances are bound
2784 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2785 the maximum number of components that can be used to hold the
2786 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2787 which specifies the maximum number of registers which can be
2788 annotated with those semantics.
2789
2790
2791 TGSI_SEMANTIC_CLIPDIST
2792 """"""""""""""""""""""
2793
2794 When components of vertex elements are identified this way, these
2795 values are each assumed to be a float32 signed distance to a plane.
2796 Primitive setup only invokes rasterization on pixels for which
2797 the interpolated plane distances are >= 0. Multiple clip planes
2798 can be implemented simultaneously, by annotating multiple
2799 components of one or more vertex elements with the above specified
2800 semantic. The limits on both clip and cull distances are bound
2801 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2802 the maximum number of components that can be used to hold the
2803 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2804 which specifies the maximum number of registers which can be
2805 annotated with those semantics.
2806
2807 TGSI_SEMANTIC_SAMPLEID
2808 """"""""""""""""""""""
2809
2810 For fragment shaders, this semantic label indicates that a system value
2811 contains the current sample id (i.e. gl_SampleID). Only the X value is used.
2812
2813 TGSI_SEMANTIC_SAMPLEPOS
2814 """""""""""""""""""""""
2815
2816 For fragment shaders, this semantic label indicates that a system value
2817 contains the current sample's position (i.e. gl_SamplePosition). Only the X
2818 and Y values are used.
2819
2820 TGSI_SEMANTIC_SAMPLEMASK
2821 """"""""""""""""""""""""
2822
2823 For fragment shaders, this semantic label indicates that an output contains
2824 the sample mask used to disable further sample processing
2825 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
2826
2827 TGSI_SEMANTIC_INVOCATIONID
2828 """"""""""""""""""""""""""
2829
2830 For geometry shaders, this semantic label indicates that a system value
2831 contains the current invocation id (i.e. gl_InvocationID). Only the X value is
2832 used.
2833
2834 Declaration Interpolate
2835 ^^^^^^^^^^^^^^^^^^^^^^^
2836
2837 This token is only valid for fragment shader INPUT declarations.
2838
2839 The Interpolate field specifes the way input is being interpolated by
2840 the rasteriser and is one of TGSI_INTERPOLATE_*.
2841
2842 The Location field specifies the location inside the pixel that the
2843 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
2844 when per-sample shading is enabled, the implementation may choose to
2845 interpolate at the sample irrespective of the Location field.
2846
2847 The CylindricalWrap bitfield specifies which register components
2848 should be subject to cylindrical wrapping when interpolating by the
2849 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2850 should be interpolated according to cylindrical wrapping rules.
2851
2852
2853 Declaration Sampler View
2854 ^^^^^^^^^^^^^^^^^^^^^^^^
2855
2856 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2857
2858 DCL SVIEW[#], resource, type(s)
2859
2860 Declares a shader input sampler view and assigns it to a SVIEW[#]
2861 register.
2862
2863 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2864
2865 type must be 1 or 4 entries (if specifying on a per-component
2866 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2867
2868
2869 Declaration Resource
2870 ^^^^^^^^^^^^^^^^^^^^
2871
2872 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2873
2874 DCL RES[#], resource [, WR] [, RAW]
2875
2876 Declares a shader input resource and assigns it to a RES[#]
2877 register.
2878
2879 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2880 2DArray.
2881
2882 If the RAW keyword is not specified, the texture data will be
2883 subject to conversion, swizzling and scaling as required to yield
2884 the specified data type from the physical data format of the bound
2885 resource.
2886
2887 If the RAW keyword is specified, no channel conversion will be
2888 performed: the values read for each of the channels (X,Y,Z,W) will
2889 correspond to consecutive words in the same order and format
2890 they're found in memory. No element-to-address conversion will be
2891 performed either: the value of the provided X coordinate will be
2892 interpreted in byte units instead of texel units. The result of
2893 accessing a misaligned address is undefined.
2894
2895 Usage of the STORE opcode is only allowed if the WR (writable) flag
2896 is set.
2897
2898
2899 Properties
2900 ^^^^^^^^^^^^^^^^^^^^^^^^
2901
2902 Properties are general directives that apply to the whole TGSI program.
2903
2904 FS_COORD_ORIGIN
2905 """""""""""""""
2906
2907 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2908 The default value is UPPER_LEFT.
2909
2910 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2911 increase downward and rightward.
2912 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2913 increase upward and rightward.
2914
2915 OpenGL defaults to LOWER_LEFT, and is configurable with the
2916 GL_ARB_fragment_coord_conventions extension.
2917
2918 DirectX 9/10 use UPPER_LEFT.
2919
2920 FS_COORD_PIXEL_CENTER
2921 """""""""""""""""""""
2922
2923 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2924 The default value is HALF_INTEGER.
2925
2926 If HALF_INTEGER, the fractionary part of the position will be 0.5
2927 If INTEGER, the fractionary part of the position will be 0.0
2928
2929 Note that this does not affect the set of fragments generated by
2930 rasterization, which is instead controlled by half_pixel_center in the
2931 rasterizer.
2932
2933 OpenGL defaults to HALF_INTEGER, and is configurable with the
2934 GL_ARB_fragment_coord_conventions extension.
2935
2936 DirectX 9 uses INTEGER.
2937 DirectX 10 uses HALF_INTEGER.
2938
2939 FS_COLOR0_WRITES_ALL_CBUFS
2940 """"""""""""""""""""""""""
2941 Specifies that writes to the fragment shader color 0 are replicated to all
2942 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2943 fragData is directed to a single color buffer, but fragColor is broadcast.
2944
2945 VS_PROHIBIT_UCPS
2946 """"""""""""""""""""""""""
2947 If this property is set on the program bound to the shader stage before the
2948 fragment shader, user clip planes should have no effect (be disabled) even if
2949 that shader does not write to any clip distance outputs and the rasterizer's
2950 clip_plane_enable is non-zero.
2951 This property is only supported by drivers that also support shader clip
2952 distance outputs.
2953 This is useful for APIs that don't have UCPs and where clip distances written
2954 by a shader cannot be disabled.
2955
2956 GS_INVOCATIONS
2957 """"""""""""""
2958
2959 Specifies the number of times a geometry shader should be executed for each
2960 input primitive. Each invocation will have a different
2961 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
2962 be 1.
2963
2964 VS_WINDOW_SPACE_POSITION
2965 """"""""""""""""""""""""""
2966 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
2967 is assumed to contain window space coordinates.
2968 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
2969 directly taken from the 4-th component of the shader output.
2970 Naturally, clipping is not performed on window coordinates either.
2971 The effect of this property is undefined if a geometry or tessellation shader
2972 are in use.
2973
2974 Texture Sampling and Texture Formats
2975 ------------------------------------
2976
2977 This table shows how texture image components are returned as (x,y,z,w) tuples
2978 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2979 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2980 well.
2981
2982 +--------------------+--------------+--------------------+--------------+
2983 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2984 +====================+==============+====================+==============+
2985 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2986 +--------------------+--------------+--------------------+--------------+
2987 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2988 +--------------------+--------------+--------------------+--------------+
2989 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2990 +--------------------+--------------+--------------------+--------------+
2991 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2992 +--------------------+--------------+--------------------+--------------+
2993 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2994 +--------------------+--------------+--------------------+--------------+
2995 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2996 +--------------------+--------------+--------------------+--------------+
2997 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2998 +--------------------+--------------+--------------------+--------------+
2999 | I | (i, i, i, i) | (i, i, i, i) | N/A |
3000 +--------------------+--------------+--------------------+--------------+
3001 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3002 | | | [#envmap-bumpmap]_ | |
3003 +--------------------+--------------+--------------------+--------------+
3004 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3005 | | | [#depth-tex-mode]_ | |
3006 +--------------------+--------------+--------------------+--------------+
3007 | S | (s, s, s, s) | unknown | unknown |
3008 +--------------------+--------------+--------------------+--------------+
3009
3010 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3011 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3012 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.