gallivm: handle texel swizzles correctly for d3d10-style sample opcodes
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`Double Opcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = \lfloor src.x\rfloor
52
53 dst.y = \lfloor src.y\rfloor
54
55 dst.z = \lfloor src.z\rfloor
56
57 dst.w = \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x = 1
78
79 dst.y = max(src.x, 0)
80
81 dst.z = (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0
82
83 dst.w = 1
84
85
86 .. opcode:: RCP - Reciprocal
87
88 This instruction replicates its result.
89
90 .. math::
91
92 dst = \frac{1}{src.x}
93
94
95 .. opcode:: RSQ - Reciprocal Square Root
96
97 This instruction replicates its result. The results are undefined for src <= 0.
98
99 .. math::
100
101 dst = \frac{1}{\sqrt{src.x}}
102
103
104 .. opcode:: SQRT - Square Root
105
106 This instruction replicates its result. The results are undefined for src < 0.
107
108 .. math::
109
110 dst = {\sqrt{src.x}}
111
112
113 .. opcode:: EXP - Approximate Exponential Base 2
114
115 .. math::
116
117 dst.x = 2^{\lfloor src.x\rfloor}
118
119 dst.y = src.x - \lfloor src.x\rfloor
120
121 dst.z = 2^{src.x}
122
123 dst.w = 1
124
125
126 .. opcode:: LOG - Approximate Logarithm Base 2
127
128 .. math::
129
130 dst.x = \lfloor\log_2{|src.x|}\rfloor
131
132 dst.y = \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}}
133
134 dst.z = \log_2{|src.x|}
135
136 dst.w = 1
137
138
139 .. opcode:: MUL - Multiply
140
141 .. math::
142
143 dst.x = src0.x \times src1.x
144
145 dst.y = src0.y \times src1.y
146
147 dst.z = src0.z \times src1.z
148
149 dst.w = src0.w \times src1.w
150
151
152 .. opcode:: ADD - Add
153
154 .. math::
155
156 dst.x = src0.x + src1.x
157
158 dst.y = src0.y + src1.y
159
160 dst.z = src0.z + src1.z
161
162 dst.w = src0.w + src1.w
163
164
165 .. opcode:: DP3 - 3-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
172
173
174 .. opcode:: DP4 - 4-component Dot Product
175
176 This instruction replicates its result.
177
178 .. math::
179
180 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
181
182
183 .. opcode:: DST - Distance Vector
184
185 .. math::
186
187 dst.x = 1
188
189 dst.y = src0.y \times src1.y
190
191 dst.z = src0.z
192
193 dst.w = src1.w
194
195
196 .. opcode:: MIN - Minimum
197
198 .. math::
199
200 dst.x = min(src0.x, src1.x)
201
202 dst.y = min(src0.y, src1.y)
203
204 dst.z = min(src0.z, src1.z)
205
206 dst.w = min(src0.w, src1.w)
207
208
209 .. opcode:: MAX - Maximum
210
211 .. math::
212
213 dst.x = max(src0.x, src1.x)
214
215 dst.y = max(src0.y, src1.y)
216
217 dst.z = max(src0.z, src1.z)
218
219 dst.w = max(src0.w, src1.w)
220
221
222 .. opcode:: SLT - Set On Less Than
223
224 .. math::
225
226 dst.x = (src0.x < src1.x) ? 1 : 0
227
228 dst.y = (src0.y < src1.y) ? 1 : 0
229
230 dst.z = (src0.z < src1.z) ? 1 : 0
231
232 dst.w = (src0.w < src1.w) ? 1 : 0
233
234
235 .. opcode:: SGE - Set On Greater Equal Than
236
237 .. math::
238
239 dst.x = (src0.x >= src1.x) ? 1 : 0
240
241 dst.y = (src0.y >= src1.y) ? 1 : 0
242
243 dst.z = (src0.z >= src1.z) ? 1 : 0
244
245 dst.w = (src0.w >= src1.w) ? 1 : 0
246
247
248 .. opcode:: MAD - Multiply And Add
249
250 .. math::
251
252 dst.x = src0.x \times src1.x + src2.x
253
254 dst.y = src0.y \times src1.y + src2.y
255
256 dst.z = src0.z \times src1.z + src2.z
257
258 dst.w = src0.w \times src1.w + src2.w
259
260
261 .. opcode:: SUB - Subtract
262
263 .. math::
264
265 dst.x = src0.x - src1.x
266
267 dst.y = src0.y - src1.y
268
269 dst.z = src0.z - src1.z
270
271 dst.w = src0.w - src1.w
272
273
274 .. opcode:: LRP - Linear Interpolate
275
276 .. math::
277
278 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
279
280 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
281
282 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
283
284 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
285
286
287 .. opcode:: CND - Condition
288
289 .. math::
290
291 dst.x = (src2.x > 0.5) ? src0.x : src1.x
292
293 dst.y = (src2.y > 0.5) ? src0.y : src1.y
294
295 dst.z = (src2.z > 0.5) ? src0.z : src1.z
296
297 dst.w = (src2.w > 0.5) ? src0.w : src1.w
298
299
300 .. opcode:: DP2A - 2-component Dot Product And Add
301
302 .. math::
303
304 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
305
306 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
307
308 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
309
310 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
311
312
313 .. opcode:: FRC - Fraction
314
315 .. math::
316
317 dst.x = src.x - \lfloor src.x\rfloor
318
319 dst.y = src.y - \lfloor src.y\rfloor
320
321 dst.z = src.z - \lfloor src.z\rfloor
322
323 dst.w = src.w - \lfloor src.w\rfloor
324
325
326 .. opcode:: CLAMP - Clamp
327
328 .. math::
329
330 dst.x = clamp(src0.x, src1.x, src2.x)
331
332 dst.y = clamp(src0.y, src1.y, src2.y)
333
334 dst.z = clamp(src0.z, src1.z, src2.z)
335
336 dst.w = clamp(src0.w, src1.w, src2.w)
337
338
339 .. opcode:: FLR - Floor
340
341 This is identical to :opcode:`ARL`.
342
343 .. math::
344
345 dst.x = \lfloor src.x\rfloor
346
347 dst.y = \lfloor src.y\rfloor
348
349 dst.z = \lfloor src.z\rfloor
350
351 dst.w = \lfloor src.w\rfloor
352
353
354 .. opcode:: ROUND - Round
355
356 .. math::
357
358 dst.x = round(src.x)
359
360 dst.y = round(src.y)
361
362 dst.z = round(src.z)
363
364 dst.w = round(src.w)
365
366
367 .. opcode:: EX2 - Exponential Base 2
368
369 This instruction replicates its result.
370
371 .. math::
372
373 dst = 2^{src.x}
374
375
376 .. opcode:: LG2 - Logarithm Base 2
377
378 This instruction replicates its result.
379
380 .. math::
381
382 dst = \log_2{src.x}
383
384
385 .. opcode:: POW - Power
386
387 This instruction replicates its result.
388
389 .. math::
390
391 dst = src0.x^{src1.x}
392
393 .. opcode:: XPD - Cross Product
394
395 .. math::
396
397 dst.x = src0.y \times src1.z - src1.y \times src0.z
398
399 dst.y = src0.z \times src1.x - src1.z \times src0.x
400
401 dst.z = src0.x \times src1.y - src1.x \times src0.y
402
403 dst.w = 1
404
405
406 .. opcode:: ABS - Absolute
407
408 .. math::
409
410 dst.x = |src.x|
411
412 dst.y = |src.y|
413
414 dst.z = |src.z|
415
416 dst.w = |src.w|
417
418
419 .. opcode:: RCC - Reciprocal Clamped
420
421 This instruction replicates its result.
422
423 XXX cleanup on aisle three
424
425 .. math::
426
427 dst = (1 / src.x) > 0 ? clamp(1 / src.x, 5.42101e-020, 1.884467e+019) : clamp(1 / src.x, -1.884467e+019, -5.42101e-020)
428
429
430 .. opcode:: DPH - Homogeneous Dot Product
431
432 This instruction replicates its result.
433
434 .. math::
435
436 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
437
438
439 .. opcode:: COS - Cosine
440
441 This instruction replicates its result.
442
443 .. math::
444
445 dst = \cos{src.x}
446
447
448 .. opcode:: DDX - Derivative Relative To X
449
450 .. math::
451
452 dst.x = partialx(src.x)
453
454 dst.y = partialx(src.y)
455
456 dst.z = partialx(src.z)
457
458 dst.w = partialx(src.w)
459
460
461 .. opcode:: DDY - Derivative Relative To Y
462
463 .. math::
464
465 dst.x = partialy(src.x)
466
467 dst.y = partialy(src.y)
468
469 dst.z = partialy(src.z)
470
471 dst.w = partialy(src.w)
472
473
474 .. opcode:: PK2H - Pack Two 16-bit Floats
475
476 TBD
477
478
479 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
480
481 TBD
482
483
484 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
485
486 TBD
487
488
489 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
490
491 TBD
492
493
494 .. opcode:: RFL - Reflection Vector
495
496 .. math::
497
498 dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x
499
500 dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y
501
502 dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z
503
504 dst.w = 1
505
506 .. note::
507
508 Considered for removal.
509
510
511 .. opcode:: SEQ - Set On Equal
512
513 .. math::
514
515 dst.x = (src0.x == src1.x) ? 1 : 0
516
517 dst.y = (src0.y == src1.y) ? 1 : 0
518
519 dst.z = (src0.z == src1.z) ? 1 : 0
520
521 dst.w = (src0.w == src1.w) ? 1 : 0
522
523
524 .. opcode:: SFL - Set On False
525
526 This instruction replicates its result.
527
528 .. math::
529
530 dst = 0
531
532 .. note::
533
534 Considered for removal.
535
536
537 .. opcode:: SGT - Set On Greater Than
538
539 .. math::
540
541 dst.x = (src0.x > src1.x) ? 1 : 0
542
543 dst.y = (src0.y > src1.y) ? 1 : 0
544
545 dst.z = (src0.z > src1.z) ? 1 : 0
546
547 dst.w = (src0.w > src1.w) ? 1 : 0
548
549
550 .. opcode:: SIN - Sine
551
552 This instruction replicates its result.
553
554 .. math::
555
556 dst = \sin{src.x}
557
558
559 .. opcode:: SLE - Set On Less Equal Than
560
561 .. math::
562
563 dst.x = (src0.x <= src1.x) ? 1 : 0
564
565 dst.y = (src0.y <= src1.y) ? 1 : 0
566
567 dst.z = (src0.z <= src1.z) ? 1 : 0
568
569 dst.w = (src0.w <= src1.w) ? 1 : 0
570
571
572 .. opcode:: SNE - Set On Not Equal
573
574 .. math::
575
576 dst.x = (src0.x != src1.x) ? 1 : 0
577
578 dst.y = (src0.y != src1.y) ? 1 : 0
579
580 dst.z = (src0.z != src1.z) ? 1 : 0
581
582 dst.w = (src0.w != src1.w) ? 1 : 0
583
584
585 .. opcode:: STR - Set On True
586
587 This instruction replicates its result.
588
589 .. math::
590
591 dst = 1
592
593
594 .. opcode:: TEX - Texture Lookup
595
596 .. math::
597
598 coord = src0
599
600 bias = 0.0
601
602 dst = texture_sample(unit, coord, bias)
603
604 for array textures src0.y contains the slice for 1D,
605 and src0.z contain the slice for 2D.
606 for shadow textures with no arrays, src0.z contains
607 the reference value.
608 for shadow textures with arrays, src0.z contains
609 the reference value for 1D arrays, and src0.w contains
610 the reference value for 2D arrays.
611 There is no way to pass a bias in the .w value for
612 shadow arrays, and GLSL doesn't allow this.
613 GLSL does allow cube shadows maps to take a bias value,
614 and we have to determine how this will look in TGSI.
615
616 .. opcode:: TXD - Texture Lookup with Derivatives
617
618 .. math::
619
620 coord = src0
621
622 ddx = src1
623
624 ddy = src2
625
626 bias = 0.0
627
628 dst = texture_sample_deriv(unit, coord, bias, ddx, ddy)
629
630
631 .. opcode:: TXP - Projective Texture Lookup
632
633 .. math::
634
635 coord.x = src0.x / src.w
636
637 coord.y = src0.y / src.w
638
639 coord.z = src0.z / src.w
640
641 coord.w = src0.w
642
643 bias = 0.0
644
645 dst = texture_sample(unit, coord, bias)
646
647
648 .. opcode:: UP2H - Unpack Two 16-Bit Floats
649
650 TBD
651
652 .. note::
653
654 Considered for removal.
655
656 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
657
658 TBD
659
660 .. note::
661
662 Considered for removal.
663
664 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
665
666 TBD
667
668 .. note::
669
670 Considered for removal.
671
672 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
673
674 TBD
675
676 .. note::
677
678 Considered for removal.
679
680 .. opcode:: X2D - 2D Coordinate Transformation
681
682 .. math::
683
684 dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y
685
686 dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w
687
688 dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y
689
690 dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w
691
692 .. note::
693
694 Considered for removal.
695
696
697 .. opcode:: ARA - Address Register Add
698
699 TBD
700
701 .. note::
702
703 Considered for removal.
704
705 .. opcode:: ARR - Address Register Load With Round
706
707 .. math::
708
709 dst.x = round(src.x)
710
711 dst.y = round(src.y)
712
713 dst.z = round(src.z)
714
715 dst.w = round(src.w)
716
717
718 .. opcode:: SSG - Set Sign
719
720 .. math::
721
722 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
723
724 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
725
726 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
727
728 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
729
730
731 .. opcode:: CMP - Compare
732
733 .. math::
734
735 dst.x = (src0.x < 0) ? src1.x : src2.x
736
737 dst.y = (src0.y < 0) ? src1.y : src2.y
738
739 dst.z = (src0.z < 0) ? src1.z : src2.z
740
741 dst.w = (src0.w < 0) ? src1.w : src2.w
742
743
744 .. opcode:: KILL_IF - Conditional Discard
745
746 Conditional discard. Allowed in fragment shaders only.
747
748 .. math::
749
750 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
751 discard
752 endif
753
754
755 .. opcode:: KILL - Discard
756
757 Unconditional discard. Allowed in fragment shaders only.
758
759
760 .. opcode:: SCS - Sine Cosine
761
762 .. math::
763
764 dst.x = \cos{src.x}
765
766 dst.y = \sin{src.x}
767
768 dst.z = 0
769
770 dst.w = 1
771
772
773 .. opcode:: TXB - Texture Lookup With Bias
774
775 .. math::
776
777 coord.x = src.x
778
779 coord.y = src.y
780
781 coord.z = src.z
782
783 coord.w = 1.0
784
785 bias = src.z
786
787 dst = texture_sample(unit, coord, bias)
788
789
790 .. opcode:: NRM - 3-component Vector Normalise
791
792 .. math::
793
794 dst.x = src.x / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
795
796 dst.y = src.y / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
797
798 dst.z = src.z / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
799
800 dst.w = 1
801
802
803 .. opcode:: DIV - Divide
804
805 .. math::
806
807 dst.x = \frac{src0.x}{src1.x}
808
809 dst.y = \frac{src0.y}{src1.y}
810
811 dst.z = \frac{src0.z}{src1.z}
812
813 dst.w = \frac{src0.w}{src1.w}
814
815
816 .. opcode:: DP2 - 2-component Dot Product
817
818 This instruction replicates its result.
819
820 .. math::
821
822 dst = src0.x \times src1.x + src0.y \times src1.y
823
824
825 .. opcode:: TXL - Texture Lookup With explicit LOD
826
827 .. math::
828
829 coord.x = src0.x
830
831 coord.y = src0.y
832
833 coord.z = src0.z
834
835 coord.w = 1.0
836
837 lod = src0.w
838
839 dst = texture_sample(unit, coord, lod)
840
841
842 .. opcode:: PUSHA - Push Address Register On Stack
843
844 push(src.x)
845 push(src.y)
846 push(src.z)
847 push(src.w)
848
849 .. note::
850
851 Considered for cleanup.
852
853 .. note::
854
855 Considered for removal.
856
857 .. opcode:: POPA - Pop Address Register From Stack
858
859 dst.w = pop()
860 dst.z = pop()
861 dst.y = pop()
862 dst.x = pop()
863
864 .. note::
865
866 Considered for cleanup.
867
868 .. note::
869
870 Considered for removal.
871
872
873 .. opcode:: BRA - Branch
874
875 pc = target
876
877 .. note::
878
879 Considered for removal.
880
881
882 .. opcode:: CALLNZ - Subroutine Call If Not Zero
883
884 TBD
885
886 .. note::
887
888 Considered for cleanup.
889
890 .. note::
891
892 Considered for removal.
893
894
895 Compute ISA
896 ^^^^^^^^^^^^^^^^^^^^^^^^
897
898 These opcodes are primarily provided for special-use computational shaders.
899 Support for these opcodes indicated by a special pipe capability bit (TBD).
900
901 XXX doesn't look like most of the opcodes really belong here.
902
903 .. opcode:: CEIL - Ceiling
904
905 .. math::
906
907 dst.x = \lceil src.x\rceil
908
909 dst.y = \lceil src.y\rceil
910
911 dst.z = \lceil src.z\rceil
912
913 dst.w = \lceil src.w\rceil
914
915
916 .. opcode:: TRUNC - Truncate
917
918 .. math::
919
920 dst.x = trunc(src.x)
921
922 dst.y = trunc(src.y)
923
924 dst.z = trunc(src.z)
925
926 dst.w = trunc(src.w)
927
928
929 .. opcode:: MOD - Modulus
930
931 .. math::
932
933 dst.x = src0.x \bmod src1.x
934
935 dst.y = src0.y \bmod src1.y
936
937 dst.z = src0.z \bmod src1.z
938
939 dst.w = src0.w \bmod src1.w
940
941
942 .. opcode:: UARL - Integer Address Register Load
943
944 Moves the contents of the source register, assumed to be an integer, into the
945 destination register, which is assumed to be an address (ADDR) register.
946
947
948 .. opcode:: SAD - Sum Of Absolute Differences
949
950 .. math::
951
952 dst.x = |src0.x - src1.x| + src2.x
953
954 dst.y = |src0.y - src1.y| + src2.y
955
956 dst.z = |src0.z - src1.z| + src2.z
957
958 dst.w = |src0.w - src1.w| + src2.w
959
960
961 .. opcode:: TXF - Texel Fetch (as per NV_gpu_shader4), extract a single texel
962 from a specified texture image. The source sampler may
963 not be a CUBE or SHADOW.
964 src 0 is a four-component signed integer vector used to
965 identify the single texel accessed. 3 components + level.
966 src 1 is a 3 component constant signed integer vector,
967 with each component only have a range of
968 -8..+8 (hw only seems to deal with this range, interface
969 allows for up to unsigned int).
970 TXF(uint_vec coord, int_vec offset).
971
972
973 .. opcode:: TXQ - Texture Size Query (as per NV_gpu_program4)
974 retrieve the dimensions of the texture
975 depending on the target. For 1D (width), 2D/RECT/CUBE
976 (width, height), 3D (width, height, depth),
977 1D array (width, layers), 2D array (width, height, layers)
978
979 .. math::
980
981 lod = src0.x
982
983 dst.x = texture_width(unit, lod)
984
985 dst.y = texture_height(unit, lod)
986
987 dst.z = texture_depth(unit, lod)
988
989
990 Integer ISA
991 ^^^^^^^^^^^^^^^^^^^^^^^^
992 These opcodes are used for integer operations.
993 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
994
995
996 .. opcode:: I2F - Signed Integer To Float
997
998 Rounding is unspecified (round to nearest even suggested).
999
1000 .. math::
1001
1002 dst.x = (float) src.x
1003
1004 dst.y = (float) src.y
1005
1006 dst.z = (float) src.z
1007
1008 dst.w = (float) src.w
1009
1010
1011 .. opcode:: U2F - Unsigned Integer To Float
1012
1013 Rounding is unspecified (round to nearest even suggested).
1014
1015 .. math::
1016
1017 dst.x = (float) src.x
1018
1019 dst.y = (float) src.y
1020
1021 dst.z = (float) src.z
1022
1023 dst.w = (float) src.w
1024
1025
1026 .. opcode:: F2I - Float to Signed Integer
1027
1028 Rounding is towards zero (truncate).
1029 Values outside signed range (including NaNs) produce undefined results.
1030
1031 .. math::
1032
1033 dst.x = (int) src.x
1034
1035 dst.y = (int) src.y
1036
1037 dst.z = (int) src.z
1038
1039 dst.w = (int) src.w
1040
1041
1042 .. opcode:: F2U - Float to Unsigned Integer
1043
1044 Rounding is towards zero (truncate).
1045 Values outside unsigned range (including NaNs) produce undefined results.
1046
1047 .. math::
1048
1049 dst.x = (unsigned) src.x
1050
1051 dst.y = (unsigned) src.y
1052
1053 dst.z = (unsigned) src.z
1054
1055 dst.w = (unsigned) src.w
1056
1057
1058 .. opcode:: UADD - Integer Add
1059
1060 This instruction works the same for signed and unsigned integers.
1061 The low 32bit of the result is returned.
1062
1063 .. math::
1064
1065 dst.x = src0.x + src1.x
1066
1067 dst.y = src0.y + src1.y
1068
1069 dst.z = src0.z + src1.z
1070
1071 dst.w = src0.w + src1.w
1072
1073
1074 .. opcode:: UMAD - Integer Multiply And Add
1075
1076 This instruction works the same for signed and unsigned integers.
1077 The multiplication returns the low 32bit (as does the result itself).
1078
1079 .. math::
1080
1081 dst.x = src0.x \times src1.x + src2.x
1082
1083 dst.y = src0.y \times src1.y + src2.y
1084
1085 dst.z = src0.z \times src1.z + src2.z
1086
1087 dst.w = src0.w \times src1.w + src2.w
1088
1089
1090 .. opcode:: UMUL - Integer Multiply
1091
1092 This instruction works the same for signed and unsigned integers.
1093 The low 32bit of the result is returned.
1094
1095 .. math::
1096
1097 dst.x = src0.x \times src1.x
1098
1099 dst.y = src0.y \times src1.y
1100
1101 dst.z = src0.z \times src1.z
1102
1103 dst.w = src0.w \times src1.w
1104
1105
1106 .. opcode:: IDIV - Signed Integer Division
1107
1108 TBD: behavior for division by zero.
1109
1110 .. math::
1111
1112 dst.x = src0.x \ src1.x
1113
1114 dst.y = src0.y \ src1.y
1115
1116 dst.z = src0.z \ src1.z
1117
1118 dst.w = src0.w \ src1.w
1119
1120
1121 .. opcode:: UDIV - Unsigned Integer Division
1122
1123 For division by zero, 0xffffffff is returned.
1124
1125 .. math::
1126
1127 dst.x = src0.x \ src1.x
1128
1129 dst.y = src0.y \ src1.y
1130
1131 dst.z = src0.z \ src1.z
1132
1133 dst.w = src0.w \ src1.w
1134
1135
1136 .. opcode:: UMOD - Unsigned Integer Remainder
1137
1138 If second arg is zero, 0xffffffff is returned.
1139
1140 .. math::
1141
1142 dst.x = src0.x \ src1.x
1143
1144 dst.y = src0.y \ src1.y
1145
1146 dst.z = src0.z \ src1.z
1147
1148 dst.w = src0.w \ src1.w
1149
1150
1151 .. opcode:: NOT - Bitwise Not
1152
1153 .. math::
1154
1155 dst.x = ~src.x
1156
1157 dst.y = ~src.y
1158
1159 dst.z = ~src.z
1160
1161 dst.w = ~src.w
1162
1163
1164 .. opcode:: AND - Bitwise And
1165
1166 .. math::
1167
1168 dst.x = src0.x & src1.x
1169
1170 dst.y = src0.y & src1.y
1171
1172 dst.z = src0.z & src1.z
1173
1174 dst.w = src0.w & src1.w
1175
1176
1177 .. opcode:: OR - Bitwise Or
1178
1179 .. math::
1180
1181 dst.x = src0.x | src1.x
1182
1183 dst.y = src0.y | src1.y
1184
1185 dst.z = src0.z | src1.z
1186
1187 dst.w = src0.w | src1.w
1188
1189
1190 .. opcode:: XOR - Bitwise Xor
1191
1192 .. math::
1193
1194 dst.x = src0.x \oplus src1.x
1195
1196 dst.y = src0.y \oplus src1.y
1197
1198 dst.z = src0.z \oplus src1.z
1199
1200 dst.w = src0.w \oplus src1.w
1201
1202
1203 .. opcode:: IMAX - Maximum of Signed Integers
1204
1205 .. math::
1206
1207 dst.x = max(src0.x, src1.x)
1208
1209 dst.y = max(src0.y, src1.y)
1210
1211 dst.z = max(src0.z, src1.z)
1212
1213 dst.w = max(src0.w, src1.w)
1214
1215
1216 .. opcode:: UMAX - Maximum of Unsigned Integers
1217
1218 .. math::
1219
1220 dst.x = max(src0.x, src1.x)
1221
1222 dst.y = max(src0.y, src1.y)
1223
1224 dst.z = max(src0.z, src1.z)
1225
1226 dst.w = max(src0.w, src1.w)
1227
1228
1229 .. opcode:: IMIN - Minimum of Signed Integers
1230
1231 .. math::
1232
1233 dst.x = min(src0.x, src1.x)
1234
1235 dst.y = min(src0.y, src1.y)
1236
1237 dst.z = min(src0.z, src1.z)
1238
1239 dst.w = min(src0.w, src1.w)
1240
1241
1242 .. opcode:: UMIN - Minimum of Unsigned Integers
1243
1244 .. math::
1245
1246 dst.x = min(src0.x, src1.x)
1247
1248 dst.y = min(src0.y, src1.y)
1249
1250 dst.z = min(src0.z, src1.z)
1251
1252 dst.w = min(src0.w, src1.w)
1253
1254
1255 .. opcode:: SHL - Shift Left
1256
1257 .. math::
1258
1259 dst.x = src0.x << src1.x
1260
1261 dst.y = src0.y << src1.x
1262
1263 dst.z = src0.z << src1.x
1264
1265 dst.w = src0.w << src1.x
1266
1267
1268 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1269
1270 .. math::
1271
1272 dst.x = src0.x >> src1.x
1273
1274 dst.y = src0.y >> src1.x
1275
1276 dst.z = src0.z >> src1.x
1277
1278 dst.w = src0.w >> src1.x
1279
1280
1281 .. opcode:: USHR - Logical Shift Right
1282
1283 .. math::
1284
1285 dst.x = src0.x >> (unsigned) src1.x
1286
1287 dst.y = src0.y >> (unsigned) src1.x
1288
1289 dst.z = src0.z >> (unsigned) src1.x
1290
1291 dst.w = src0.w >> (unsigned) src1.x
1292
1293
1294 .. opcode:: UCMP - Integer Conditional Move
1295
1296 .. math::
1297
1298 dst.x = src0.x ? src1.x : src2.x
1299
1300 dst.y = src0.y ? src1.y : src2.y
1301
1302 dst.z = src0.z ? src1.z : src2.z
1303
1304 dst.w = src0.w ? src1.w : src2.w
1305
1306
1307
1308 .. opcode:: ISSG - Integer Set Sign
1309
1310 .. math::
1311
1312 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1313
1314 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1315
1316 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1317
1318 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1319
1320
1321
1322 .. opcode:: ISLT - Signed Integer Set On Less Than
1323
1324 .. math::
1325
1326 dst.x = (src0.x < src1.x) ? ~0 : 0
1327
1328 dst.y = (src0.y < src1.y) ? ~0 : 0
1329
1330 dst.z = (src0.z < src1.z) ? ~0 : 0
1331
1332 dst.w = (src0.w < src1.w) ? ~0 : 0
1333
1334
1335 .. opcode:: USLT - Unsigned Integer Set On Less Than
1336
1337 .. math::
1338
1339 dst.x = (src0.x < src1.x) ? ~0 : 0
1340
1341 dst.y = (src0.y < src1.y) ? ~0 : 0
1342
1343 dst.z = (src0.z < src1.z) ? ~0 : 0
1344
1345 dst.w = (src0.w < src1.w) ? ~0 : 0
1346
1347
1348 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1349
1350 .. math::
1351
1352 dst.x = (src0.x >= src1.x) ? ~0 : 0
1353
1354 dst.y = (src0.y >= src1.y) ? ~0 : 0
1355
1356 dst.z = (src0.z >= src1.z) ? ~0 : 0
1357
1358 dst.w = (src0.w >= src1.w) ? ~0 : 0
1359
1360
1361 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1362
1363 .. math::
1364
1365 dst.x = (src0.x >= src1.x) ? ~0 : 0
1366
1367 dst.y = (src0.y >= src1.y) ? ~0 : 0
1368
1369 dst.z = (src0.z >= src1.z) ? ~0 : 0
1370
1371 dst.w = (src0.w >= src1.w) ? ~0 : 0
1372
1373
1374 .. opcode:: USEQ - Integer Set On Equal
1375
1376 .. math::
1377
1378 dst.x = (src0.x == src1.x) ? ~0 : 0
1379
1380 dst.y = (src0.y == src1.y) ? ~0 : 0
1381
1382 dst.z = (src0.z == src1.z) ? ~0 : 0
1383
1384 dst.w = (src0.w == src1.w) ? ~0 : 0
1385
1386
1387 .. opcode:: USNE - Integer Set On Not Equal
1388
1389 .. math::
1390
1391 dst.x = (src0.x != src1.x) ? ~0 : 0
1392
1393 dst.y = (src0.y != src1.y) ? ~0 : 0
1394
1395 dst.z = (src0.z != src1.z) ? ~0 : 0
1396
1397 dst.w = (src0.w != src1.w) ? ~0 : 0
1398
1399
1400 .. opcode:: INEG - Integer Negate
1401
1402 Two's complement.
1403
1404 .. math::
1405
1406 dst.x = -src.x
1407
1408 dst.y = -src.y
1409
1410 dst.z = -src.z
1411
1412 dst.w = -src.w
1413
1414
1415 .. opcode:: IABS - Integer Absolute Value
1416
1417 .. math::
1418
1419 dst.x = |src.x|
1420
1421 dst.y = |src.y|
1422
1423 dst.z = |src.z|
1424
1425 dst.w = |src.w|
1426
1427
1428 Geometry ISA
1429 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1430
1431 These opcodes are only supported in geometry shaders; they have no meaning
1432 in any other type of shader.
1433
1434 .. opcode:: EMIT - Emit
1435
1436 Generate a new vertex for the current primitive using the values in the
1437 output registers.
1438
1439
1440 .. opcode:: ENDPRIM - End Primitive
1441
1442 Complete the current primitive (consisting of the emitted vertices),
1443 and start a new one.
1444
1445
1446 GLSL ISA
1447 ^^^^^^^^^^
1448
1449 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1450 opcodes is determined by a special capability bit, ``GLSL``.
1451 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1452
1453 .. opcode:: CAL - Subroutine Call
1454
1455 push(pc)
1456 pc = target
1457
1458
1459 .. opcode:: RET - Subroutine Call Return
1460
1461 pc = pop()
1462
1463
1464 .. opcode:: CONT - Continue
1465
1466 Unconditionally moves the point of execution to the instruction after the
1467 last bgnloop. The instruction must appear within a bgnloop/endloop.
1468
1469 .. note::
1470
1471 Support for CONT is determined by a special capability bit,
1472 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1473
1474
1475 .. opcode:: BGNLOOP - Begin a Loop
1476
1477 Start a loop. Must have a matching endloop.
1478
1479
1480 .. opcode:: BGNSUB - Begin Subroutine
1481
1482 Starts definition of a subroutine. Must have a matching endsub.
1483
1484
1485 .. opcode:: ENDLOOP - End a Loop
1486
1487 End a loop started with bgnloop.
1488
1489
1490 .. opcode:: ENDSUB - End Subroutine
1491
1492 Ends definition of a subroutine.
1493
1494
1495 .. opcode:: NOP - No Operation
1496
1497 Do nothing.
1498
1499
1500 .. opcode:: BRK - Break
1501
1502 Unconditionally moves the point of execution to the instruction after the
1503 next endloop or endswitch. The instruction must appear within a loop/endloop
1504 or switch/endswitch.
1505
1506
1507 .. opcode:: BREAKC - Break Conditional
1508
1509 Conditionally moves the point of execution to the instruction after the
1510 next endloop or endswitch. The instruction must appear within a loop/endloop
1511 or switch/endswitch.
1512 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1513 as an integer register.
1514
1515 .. note::
1516
1517 Considered for removal as it's quite inconsistent wrt other opcodes
1518 (could emulate with UIF/BRK/ENDIF).
1519
1520
1521 .. opcode:: IF - Float If
1522
1523 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1524
1525 src0.x != 0.0
1526
1527 where src0.x is interpreted as a floating point register.
1528
1529
1530 .. opcode:: UIF - Bitwise If
1531
1532 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1533
1534 src0.x != 0
1535
1536 where src0.x is interpreted as an integer register.
1537
1538
1539 .. opcode:: ELSE - Else
1540
1541 Starts an else block, after an IF or UIF statement.
1542
1543
1544 .. opcode:: ENDIF - End If
1545
1546 Ends an IF or UIF block.
1547
1548
1549 .. opcode:: SWITCH - Switch
1550
1551 Starts a C-style switch expression. The switch consists of one or multiple
1552 CASE statements, and at most one DEFAULT statement. Execution of a statement
1553 ends when a BRK is hit, but just like in C falling through to other cases
1554 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1555 just as last statement, and fallthrough is allowed into/from it.
1556 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1557
1558 Example:
1559 SWITCH src[0].x
1560 CASE src[0].x
1561 (some instructions here)
1562 (optional BRK here)
1563 DEFAULT
1564 (some instructions here)
1565 (optional BRK here)
1566 CASE src[0].x
1567 (some instructions here)
1568 (optional BRK here)
1569 ENDSWITCH
1570
1571
1572 .. opcode:: CASE - Switch case
1573
1574 This represents a switch case label. The src arg must be an integer immediate.
1575
1576
1577 .. opcode:: DEFAULT - Switch default
1578
1579 This represents the default case in the switch, which is taken if no other
1580 case matches.
1581
1582
1583 .. opcode:: ENDSWITCH - End of switch
1584
1585 Ends a switch expression.
1586
1587
1588 .. opcode:: NRM4 - 4-component Vector Normalise
1589
1590 This instruction replicates its result.
1591
1592 .. math::
1593
1594 dst = \frac{src.x}{src.x \times src.x + src.y \times src.y + src.z \times src.z + src.w \times src.w}
1595
1596
1597 .. _doubleopcodes:
1598
1599 Double ISA
1600 ^^^^^^^^^^^^^^^
1601
1602 The double-precision opcodes reinterpret four-component vectors into
1603 two-component vectors with doubled precision in each component.
1604
1605 Support for these opcodes is XXX undecided. :T
1606
1607 .. opcode:: DADD - Add
1608
1609 .. math::
1610
1611 dst.xy = src0.xy + src1.xy
1612
1613 dst.zw = src0.zw + src1.zw
1614
1615
1616 .. opcode:: DDIV - Divide
1617
1618 .. math::
1619
1620 dst.xy = src0.xy / src1.xy
1621
1622 dst.zw = src0.zw / src1.zw
1623
1624 .. opcode:: DSEQ - Set on Equal
1625
1626 .. math::
1627
1628 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1629
1630 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1631
1632 .. opcode:: DSLT - Set on Less than
1633
1634 .. math::
1635
1636 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1637
1638 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1639
1640 .. opcode:: DFRAC - Fraction
1641
1642 .. math::
1643
1644 dst.xy = src.xy - \lfloor src.xy\rfloor
1645
1646 dst.zw = src.zw - \lfloor src.zw\rfloor
1647
1648
1649 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1650
1651 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1652 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1653 :math:`dst1 \times 2^{dst0} = src` .
1654
1655 .. math::
1656
1657 dst0.xy = exp(src.xy)
1658
1659 dst1.xy = frac(src.xy)
1660
1661 dst0.zw = exp(src.zw)
1662
1663 dst1.zw = frac(src.zw)
1664
1665 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1666
1667 This opcode is the inverse of :opcode:`DFRACEXP`.
1668
1669 .. math::
1670
1671 dst.xy = src0.xy \times 2^{src1.xy}
1672
1673 dst.zw = src0.zw \times 2^{src1.zw}
1674
1675 .. opcode:: DMIN - Minimum
1676
1677 .. math::
1678
1679 dst.xy = min(src0.xy, src1.xy)
1680
1681 dst.zw = min(src0.zw, src1.zw)
1682
1683 .. opcode:: DMAX - Maximum
1684
1685 .. math::
1686
1687 dst.xy = max(src0.xy, src1.xy)
1688
1689 dst.zw = max(src0.zw, src1.zw)
1690
1691 .. opcode:: DMUL - Multiply
1692
1693 .. math::
1694
1695 dst.xy = src0.xy \times src1.xy
1696
1697 dst.zw = src0.zw \times src1.zw
1698
1699
1700 .. opcode:: DMAD - Multiply And Add
1701
1702 .. math::
1703
1704 dst.xy = src0.xy \times src1.xy + src2.xy
1705
1706 dst.zw = src0.zw \times src1.zw + src2.zw
1707
1708
1709 .. opcode:: DRCP - Reciprocal
1710
1711 .. math::
1712
1713 dst.xy = \frac{1}{src.xy}
1714
1715 dst.zw = \frac{1}{src.zw}
1716
1717 .. opcode:: DSQRT - Square Root
1718
1719 .. math::
1720
1721 dst.xy = \sqrt{src.xy}
1722
1723 dst.zw = \sqrt{src.zw}
1724
1725
1726 .. _samplingopcodes:
1727
1728 Resource Sampling Opcodes
1729 ^^^^^^^^^^^^^^^^^^^^^^^^^
1730
1731 Those opcodes follow very closely semantics of the respective Direct3D
1732 instructions. If in doubt double check Direct3D documentation.
1733 Note that the swizzle on SVIEW (src1) determines texel swizzling
1734 after lookup.
1735
1736 .. opcode:: SAMPLE - Using provided address, sample data from the
1737 specified texture using the filtering mode identified
1738 by the gven sampler. The source data may come from
1739 any resource type other than buffers.
1740 SAMPLE dst, address, sampler_view, sampler
1741 e.g.
1742 SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]
1743
1744 .. opcode:: SAMPLE_I - Simplified alternative to the SAMPLE instruction.
1745 Using the provided integer address, SAMPLE_I fetches data
1746 from the specified sampler view without any filtering.
1747 The source data may come from any resource type other
1748 than CUBE.
1749 SAMPLE_I dst, address, sampler_view
1750 e.g.
1751 SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]
1752 The 'address' is specified as unsigned integers. If the
1753 'address' is out of range [0...(# texels - 1)] the
1754 result of the fetch is always 0 in all components.
1755 As such the instruction doesn't honor address wrap
1756 modes, in cases where that behavior is desirable
1757 'SAMPLE' instruction should be used.
1758 address.w always provides an unsigned integer mipmap
1759 level. If the value is out of the range then the
1760 instruction always returns 0 in all components.
1761 address.yz are ignored for buffers and 1d textures.
1762 address.z is ignored for 1d texture arrays and 2d
1763 textures.
1764 For 1D texture arrays address.y provides the array
1765 index (also as unsigned integer). If the value is
1766 out of the range of available array indices
1767 [0... (array size - 1)] then the opcode always returns
1768 0 in all components.
1769 For 2D texture arrays address.z provides the array
1770 index, otherwise it exhibits the same behavior as in
1771 the case for 1D texture arrays.
1772 The exact semantics of the source address are presented
1773 in the table below:
1774 resource type X Y Z W
1775 ------------- ------------------------
1776 PIPE_BUFFER x ignored
1777 PIPE_TEXTURE_1D x mpl
1778 PIPE_TEXTURE_2D x y mpl
1779 PIPE_TEXTURE_3D x y z mpl
1780 PIPE_TEXTURE_RECT x y mpl
1781 PIPE_TEXTURE_CUBE not allowed as source
1782 PIPE_TEXTURE_1D_ARRAY x idx mpl
1783 PIPE_TEXTURE_2D_ARRAY x y idx mpl
1784
1785 Where 'mpl' is a mipmap level and 'idx' is the
1786 array index.
1787
1788 .. opcode:: SAMPLE_I_MS - Just like SAMPLE_I but allows fetch data from
1789 multi-sampled surfaces.
1790 SAMPLE_I_MS dst, address, sampler_view, sample
1791
1792 .. opcode:: SAMPLE_B - Just like the SAMPLE instruction with the
1793 exception that an additional bias is applied to the
1794 level of detail computed as part of the instruction
1795 execution.
1796 SAMPLE_B dst, address, sampler_view, sampler, lod_bias
1797 e.g.
1798 SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x
1799
1800 .. opcode:: SAMPLE_C - Similar to the SAMPLE instruction but it
1801 performs a comparison filter. The operands to SAMPLE_C
1802 are identical to SAMPLE, except that there is an additional
1803 float32 operand, reference value, which must be a register
1804 with single-component, or a scalar literal.
1805 SAMPLE_C makes the hardware use the current samplers
1806 compare_func (in pipe_sampler_state) to compare
1807 reference value against the red component value for the
1808 surce resource at each texel that the currently configured
1809 texture filter covers based on the provided coordinates.
1810 SAMPLE_C dst, address, sampler_view.r, sampler, ref_value
1811 e.g.
1812 SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x
1813
1814 .. opcode:: SAMPLE_C_LZ - Same as SAMPLE_C, but LOD is 0 and derivatives
1815 are ignored. The LZ stands for level-zero.
1816 SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value
1817 e.g.
1818 SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x
1819
1820
1821 .. opcode:: SAMPLE_D - SAMPLE_D is identical to the SAMPLE opcode except
1822 that the derivatives for the source address in the x
1823 direction and the y direction are provided by extra
1824 parameters.
1825 SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y
1826 e.g.
1827 SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]
1828
1829 .. opcode:: SAMPLE_L - SAMPLE_L is identical to the SAMPLE opcode except
1830 that the LOD is provided directly as a scalar value,
1831 representing no anisotropy.
1832 SAMPLE_L dst, address, sampler_view, sampler, explicit_lod
1833 e.g.
1834 SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x
1835
1836 .. opcode:: GATHER4 - Gathers the four texels to be used in a bi-linear
1837 filtering operation and packs them into a single register.
1838 Only works with 2D, 2D array, cubemaps, and cubemaps arrays.
1839 For 2D textures, only the addressing modes of the sampler and
1840 the top level of any mip pyramid are used. Set W to zero.
1841 It behaves like the SAMPLE instruction, but a filtered
1842 sample is not generated. The four samples that contribute
1843 to filtering are placed into xyzw in counter-clockwise order,
1844 starting with the (u,v) texture coordinate delta at the
1845 following locations (-, +), (+, +), (+, -), (-, -), where
1846 the magnitude of the deltas are half a texel.
1847
1848
1849 .. opcode:: SVIEWINFO - query the dimensions of a given sampler view.
1850 dst receives width, height, depth or array size and
1851 number of mipmap levels as int4. The dst can have a writemask
1852 which will specify what info is the caller interested
1853 in.
1854 SVIEWINFO dst, src_mip_level, sampler_view
1855 e.g.
1856 SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]
1857 src_mip_level is an unsigned integer scalar. If it's
1858 out of range then returns 0 for width, height and
1859 depth/array size but the total number of mipmap is
1860 still returned correctly for the given sampler view.
1861 The returned width, height and depth values are for
1862 the mipmap level selected by the src_mip_level and
1863 are in the number of texels.
1864 For 1d texture array width is in dst.x, array size
1865 is in dst.y and dst.zw are always 0.
1866
1867 .. opcode:: SAMPLE_POS - query the position of a given sample.
1868 dst receives float4 (x, y, 0, 0) indicated where the
1869 sample is located. If the resource is not a multi-sample
1870 resource and not a render target, the result is 0.
1871
1872 .. opcode:: SAMPLE_INFO - dst receives number of samples in x.
1873 If the resource is not a multi-sample resource and
1874 not a render target, the result is 0.
1875
1876
1877 .. _resourceopcodes:
1878
1879 Resource Access Opcodes
1880 ^^^^^^^^^^^^^^^^^^^^^^^
1881
1882 .. opcode:: LOAD - Fetch data from a shader resource
1883
1884 Syntax: ``LOAD dst, resource, address``
1885
1886 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
1887
1888 Using the provided integer address, LOAD fetches data
1889 from the specified buffer or texture without any
1890 filtering.
1891
1892 The 'address' is specified as a vector of unsigned
1893 integers. If the 'address' is out of range the result
1894 is unspecified.
1895
1896 Only the first mipmap level of a resource can be read
1897 from using this instruction.
1898
1899 For 1D or 2D texture arrays, the array index is
1900 provided as an unsigned integer in address.y or
1901 address.z, respectively. address.yz are ignored for
1902 buffers and 1D textures. address.z is ignored for 1D
1903 texture arrays and 2D textures. address.w is always
1904 ignored.
1905
1906 .. opcode:: STORE - Write data to a shader resource
1907
1908 Syntax: ``STORE resource, address, src``
1909
1910 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
1911
1912 Using the provided integer address, STORE writes data
1913 to the specified buffer or texture.
1914
1915 The 'address' is specified as a vector of unsigned
1916 integers. If the 'address' is out of range the result
1917 is unspecified.
1918
1919 Only the first mipmap level of a resource can be
1920 written to using this instruction.
1921
1922 For 1D or 2D texture arrays, the array index is
1923 provided as an unsigned integer in address.y or
1924 address.z, respectively. address.yz are ignored for
1925 buffers and 1D textures. address.z is ignored for 1D
1926 texture arrays and 2D textures. address.w is always
1927 ignored.
1928
1929
1930 .. _threadsyncopcodes:
1931
1932 Inter-thread synchronization opcodes
1933 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1934
1935 These opcodes are intended for communication between threads running
1936 within the same compute grid. For now they're only valid in compute
1937 programs.
1938
1939 .. opcode:: MFENCE - Memory fence
1940
1941 Syntax: ``MFENCE resource``
1942
1943 Example: ``MFENCE RES[0]``
1944
1945 This opcode forces strong ordering between any memory access
1946 operations that affect the specified resource. This means that
1947 previous loads and stores (and only those) will be performed and
1948 visible to other threads before the program execution continues.
1949
1950
1951 .. opcode:: LFENCE - Load memory fence
1952
1953 Syntax: ``LFENCE resource``
1954
1955 Example: ``LFENCE RES[0]``
1956
1957 Similar to MFENCE, but it only affects the ordering of memory loads.
1958
1959
1960 .. opcode:: SFENCE - Store memory fence
1961
1962 Syntax: ``SFENCE resource``
1963
1964 Example: ``SFENCE RES[0]``
1965
1966 Similar to MFENCE, but it only affects the ordering of memory stores.
1967
1968
1969 .. opcode:: BARRIER - Thread group barrier
1970
1971 ``BARRIER``
1972
1973 This opcode suspends the execution of the current thread until all
1974 the remaining threads in the working group reach the same point of
1975 the program. Results are unspecified if any of the remaining
1976 threads terminates or never reaches an executed BARRIER instruction.
1977
1978
1979 .. _atomopcodes:
1980
1981 Atomic opcodes
1982 ^^^^^^^^^^^^^^
1983
1984 These opcodes provide atomic variants of some common arithmetic and
1985 logical operations. In this context atomicity means that another
1986 concurrent memory access operation that affects the same memory
1987 location is guaranteed to be performed strictly before or after the
1988 entire execution of the atomic operation.
1989
1990 For the moment they're only valid in compute programs.
1991
1992 .. opcode:: ATOMUADD - Atomic integer addition
1993
1994 Syntax: ``ATOMUADD dst, resource, offset, src``
1995
1996 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
1997
1998 The following operation is performed atomically on each component:
1999
2000 .. math::
2001
2002 dst_i = resource[offset]_i
2003
2004 resource[offset]_i = dst_i + src_i
2005
2006
2007 .. opcode:: ATOMXCHG - Atomic exchange
2008
2009 Syntax: ``ATOMXCHG dst, resource, offset, src``
2010
2011 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2012
2013 The following operation is performed atomically on each component:
2014
2015 .. math::
2016
2017 dst_i = resource[offset]_i
2018
2019 resource[offset]_i = src_i
2020
2021
2022 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2023
2024 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2025
2026 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2027
2028 The following operation is performed atomically on each component:
2029
2030 .. math::
2031
2032 dst_i = resource[offset]_i
2033
2034 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2035
2036
2037 .. opcode:: ATOMAND - Atomic bitwise And
2038
2039 Syntax: ``ATOMAND dst, resource, offset, src``
2040
2041 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2042
2043 The following operation is performed atomically on each component:
2044
2045 .. math::
2046
2047 dst_i = resource[offset]_i
2048
2049 resource[offset]_i = dst_i \& src_i
2050
2051
2052 .. opcode:: ATOMOR - Atomic bitwise Or
2053
2054 Syntax: ``ATOMOR dst, resource, offset, src``
2055
2056 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2057
2058 The following operation is performed atomically on each component:
2059
2060 .. math::
2061
2062 dst_i = resource[offset]_i
2063
2064 resource[offset]_i = dst_i | src_i
2065
2066
2067 .. opcode:: ATOMXOR - Atomic bitwise Xor
2068
2069 Syntax: ``ATOMXOR dst, resource, offset, src``
2070
2071 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2072
2073 The following operation is performed atomically on each component:
2074
2075 .. math::
2076
2077 dst_i = resource[offset]_i
2078
2079 resource[offset]_i = dst_i \oplus src_i
2080
2081
2082 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2083
2084 Syntax: ``ATOMUMIN dst, resource, offset, src``
2085
2086 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2087
2088 The following operation is performed atomically on each component:
2089
2090 .. math::
2091
2092 dst_i = resource[offset]_i
2093
2094 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2095
2096
2097 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2098
2099 Syntax: ``ATOMUMAX dst, resource, offset, src``
2100
2101 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2102
2103 The following operation is performed atomically on each component:
2104
2105 .. math::
2106
2107 dst_i = resource[offset]_i
2108
2109 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2110
2111
2112 .. opcode:: ATOMIMIN - Atomic signed minimum
2113
2114 Syntax: ``ATOMIMIN dst, resource, offset, src``
2115
2116 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2117
2118 The following operation is performed atomically on each component:
2119
2120 .. math::
2121
2122 dst_i = resource[offset]_i
2123
2124 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2125
2126
2127 .. opcode:: ATOMIMAX - Atomic signed maximum
2128
2129 Syntax: ``ATOMIMAX dst, resource, offset, src``
2130
2131 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2132
2133 The following operation is performed atomically on each component:
2134
2135 .. math::
2136
2137 dst_i = resource[offset]_i
2138
2139 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2140
2141
2142
2143 Explanation of symbols used
2144 ------------------------------
2145
2146
2147 Functions
2148 ^^^^^^^^^^^^^^
2149
2150
2151 :math:`|x|` Absolute value of `x`.
2152
2153 :math:`\lceil x \rceil` Ceiling of `x`.
2154
2155 clamp(x,y,z) Clamp x between y and z.
2156 (x < y) ? y : (x > z) ? z : x
2157
2158 :math:`\lfloor x\rfloor` Floor of `x`.
2159
2160 :math:`\log_2{x}` Logarithm of `x`, base 2.
2161
2162 max(x,y) Maximum of x and y.
2163 (x > y) ? x : y
2164
2165 min(x,y) Minimum of x and y.
2166 (x < y) ? x : y
2167
2168 partialx(x) Derivative of x relative to fragment's X.
2169
2170 partialy(x) Derivative of x relative to fragment's Y.
2171
2172 pop() Pop from stack.
2173
2174 :math:`x^y` `x` to the power `y`.
2175
2176 push(x) Push x on stack.
2177
2178 round(x) Round x.
2179
2180 trunc(x) Truncate x, i.e. drop the fraction bits.
2181
2182
2183 Keywords
2184 ^^^^^^^^^^^^^
2185
2186
2187 discard Discard fragment.
2188
2189 pc Program counter.
2190
2191 target Label of target instruction.
2192
2193
2194 Other tokens
2195 ---------------
2196
2197
2198 Declaration
2199 ^^^^^^^^^^^
2200
2201
2202 Declares a register that is will be referenced as an operand in Instruction
2203 tokens.
2204
2205 File field contains register file that is being declared and is one
2206 of TGSI_FILE.
2207
2208 UsageMask field specifies which of the register components can be accessed
2209 and is one of TGSI_WRITEMASK.
2210
2211 The Local flag specifies that a given value isn't intended for
2212 subroutine parameter passing and, as a result, the implementation
2213 isn't required to give any guarantees of it being preserved across
2214 subroutine boundaries. As it's merely a compiler hint, the
2215 implementation is free to ignore it.
2216
2217 If Dimension flag is set to 1, a Declaration Dimension token follows.
2218
2219 If Semantic flag is set to 1, a Declaration Semantic token follows.
2220
2221 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2222
2223 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2224
2225 If Array flag is set to 1, a Declaration Array token follows.
2226
2227 Array Declaration
2228 ^^^^^^^^^^^^^^^^^^^^^^^^
2229
2230 Declarations can optional have an ArrayID attribute which can be referred by
2231 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2232 if no ArrayID is specified.
2233
2234 If an indirect addressing operand refers to a specific declaration by using
2235 an ArrayID only the registers in this declaration are guaranteed to be
2236 accessed, accessing any register outside this declaration results in undefined
2237 behavior. Note that for compatibility the effective index is zero-based and
2238 not relative to the specified declaration
2239
2240 If no ArrayID is specified with an indirect addressing operand the whole
2241 register file might be accessed by this operand. This is strongly discouraged
2242 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2243
2244 Declaration Semantic
2245 ^^^^^^^^^^^^^^^^^^^^^^^^
2246
2247 Vertex and fragment shader input and output registers may be labeled
2248 with semantic information consisting of a name and index.
2249
2250 Follows Declaration token if Semantic bit is set.
2251
2252 Since its purpose is to link a shader with other stages of the pipeline,
2253 it is valid to follow only those Declaration tokens that declare a register
2254 either in INPUT or OUTPUT file.
2255
2256 SemanticName field contains the semantic name of the register being declared.
2257 There is no default value.
2258
2259 SemanticIndex is an optional subscript that can be used to distinguish
2260 different register declarations with the same semantic name. The default value
2261 is 0.
2262
2263 The meanings of the individual semantic names are explained in the following
2264 sections.
2265
2266 TGSI_SEMANTIC_POSITION
2267 """"""""""""""""""""""
2268
2269 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2270 output register which contains the homogeneous vertex position in the clip
2271 space coordinate system. After clipping, the X, Y and Z components of the
2272 vertex will be divided by the W value to get normalized device coordinates.
2273
2274 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2275 fragment shader input contains the fragment's window position. The X
2276 component starts at zero and always increases from left to right.
2277 The Y component starts at zero and always increases but Y=0 may either
2278 indicate the top of the window or the bottom depending on the fragment
2279 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2280 The Z coordinate ranges from 0 to 1 to represent depth from the front
2281 to the back of the Z buffer. The W component contains the reciprocol
2282 of the interpolated vertex position W component.
2283
2284 Fragment shaders may also declare an output register with
2285 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2286 the fragment shader to change the fragment's Z position.
2287
2288
2289
2290 TGSI_SEMANTIC_COLOR
2291 """""""""""""""""""
2292
2293 For vertex shader outputs or fragment shader inputs/outputs, this
2294 label indicates that the resister contains an R,G,B,A color.
2295
2296 Several shader inputs/outputs may contain colors so the semantic index
2297 is used to distinguish them. For example, color[0] may be the diffuse
2298 color while color[1] may be the specular color.
2299
2300 This label is needed so that the flat/smooth shading can be applied
2301 to the right interpolants during rasterization.
2302
2303
2304
2305 TGSI_SEMANTIC_BCOLOR
2306 """"""""""""""""""""
2307
2308 Back-facing colors are only used for back-facing polygons, and are only valid
2309 in vertex shader outputs. After rasterization, all polygons are front-facing
2310 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2311 so all BCOLORs effectively become regular COLORs in the fragment shader.
2312
2313
2314 TGSI_SEMANTIC_FOG
2315 """""""""""""""""
2316
2317 Vertex shader inputs and outputs and fragment shader inputs may be
2318 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2319 a fog coordinate in the form (F, 0, 0, 1). Typically, the fragment
2320 shader will use the fog coordinate to compute a fog blend factor which
2321 is used to blend the normal fragment color with a constant fog color.
2322
2323 Only the first component matters when writing from the vertex shader;
2324 the driver will ensure that the coordinate is in this format when used
2325 as a fragment shader input.
2326
2327
2328 TGSI_SEMANTIC_PSIZE
2329 """""""""""""""""""
2330
2331 Vertex shader input and output registers may be labeled with
2332 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2333 in the form (S, 0, 0, 1). The point size controls the width or diameter
2334 of points for rasterization. This label cannot be used in fragment
2335 shaders.
2336
2337 When using this semantic, be sure to set the appropriate state in the
2338 :ref:`rasterizer` first.
2339
2340
2341 TGSI_SEMANTIC_TEXCOORD
2342 """"""""""""""""""""""
2343
2344 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2345
2346 Vertex shader outputs and fragment shader inputs may be labeled with
2347 this semantic to make them replaceable by sprite coordinates via the
2348 sprite_coord_enable state in the :ref:`rasterizer`.
2349 The semantic index permitted with this semantic is limited to <= 7.
2350
2351 If the driver does not support TEXCOORD, sprite coordinate replacement
2352 applies to inputs with the GENERIC semantic instead.
2353
2354 The intended use case for this semantic is gl_TexCoord.
2355
2356
2357 TGSI_SEMANTIC_PCOORD
2358 """"""""""""""""""""
2359
2360 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2361
2362 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2363 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2364 the current primitive is a point and point sprites are enabled. Otherwise,
2365 the contents of the register are undefined.
2366
2367 The intended use case for this semantic is gl_PointCoord.
2368
2369
2370 TGSI_SEMANTIC_GENERIC
2371 """""""""""""""""""""
2372
2373 All vertex/fragment shader inputs/outputs not labeled with any other
2374 semantic label can be considered to be generic attributes. Typical
2375 uses of generic inputs/outputs are texcoords and user-defined values.
2376
2377
2378 TGSI_SEMANTIC_NORMAL
2379 """"""""""""""""""""
2380
2381 Indicates that a vertex shader input is a normal vector. This is
2382 typically only used for legacy graphics APIs.
2383
2384
2385 TGSI_SEMANTIC_FACE
2386 """"""""""""""""""
2387
2388 This label applies to fragment shader inputs only and indicates that
2389 the register contains front/back-face information of the form (F, 0,
2390 0, 1). The first component will be positive when the fragment belongs
2391 to a front-facing polygon, and negative when the fragment belongs to a
2392 back-facing polygon.
2393
2394
2395 TGSI_SEMANTIC_EDGEFLAG
2396 """"""""""""""""""""""
2397
2398 For vertex shaders, this sematic label indicates that an input or
2399 output is a boolean edge flag. The register layout is [F, x, x, x]
2400 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2401 simply copies the edge flag input to the edgeflag output.
2402
2403 Edge flags are used to control which lines or points are actually
2404 drawn when the polygon mode converts triangles/quads/polygons into
2405 points or lines.
2406
2407
2408 TGSI_SEMANTIC_STENCIL
2409 """""""""""""""""""""
2410
2411 For fragment shaders, this semantic label indicates that an output
2412 is a writable stencil reference value. Only the Y component is writable.
2413 This allows the fragment shader to change the fragments stencilref value.
2414
2415
2416 TGSI_SEMANTIC_VIEWPORT_INDEX
2417 """"""""""""""""""""""""""""
2418
2419 For geometry shaders, this semantic label indicates that an output
2420 contains the index of the viewport (and scissor) to use.
2421 Only the X value is used.
2422
2423
2424 TGSI_SEMANTIC_LAYER
2425 """""""""""""""""""
2426
2427 For geometry shaders, this semantic label indicates that an output
2428 contains the layer value to use for the color and depth/stencil surfaces.
2429 Only the X value is used. (Also known as rendertarget array index.)
2430
2431
2432 TGSI_SEMANTIC_CULLDIST
2433 """"""""""""""""""""""
2434
2435 Used as distance to plane for performing application-defined culling
2436 of individual primitives against a plane. When components of vertex
2437 elements are given this label, these values are assumed to be a
2438 float32 signed distance to a plane. Primitives will be completely
2439 discarded if the plane distance for all of the vertices in the
2440 primitive are < 0. If a vertex has a cull distance of NaN, that
2441 vertex counts as "out" (as if its < 0);
2442 The limits on both clip and cull distances are bound
2443 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2444 the maximum number of components that can be used to hold the
2445 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2446 which specifies the maximum number of registers which can be
2447 annotated with those semantics.
2448
2449
2450 TGSI_SEMANTIC_CLIPDIST
2451 """"""""""""""""""""""
2452
2453 When components of vertex elements are identified this way, these
2454 values are each assumed to be a float32 signed distance to a plane.
2455 Primitive setup only invokes rasterization on pixels for which
2456 the interpolated plane distances are >= 0. Multiple clip planes
2457 can be implemented simultaneously, by annotating multiple
2458 components of one or more vertex elements with the above specified
2459 semantic. The limits on both clip and cull distances are bound
2460 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2461 the maximum number of components that can be used to hold the
2462 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2463 which specifies the maximum number of registers which can be
2464 annotated with those semantics.
2465
2466
2467 Declaration Interpolate
2468 ^^^^^^^^^^^^^^^^^^^^^^^
2469
2470 This token is only valid for fragment shader INPUT declarations.
2471
2472 The Interpolate field specifes the way input is being interpolated by
2473 the rasteriser and is one of TGSI_INTERPOLATE_*.
2474
2475 The CylindricalWrap bitfield specifies which register components
2476 should be subject to cylindrical wrapping when interpolating by the
2477 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2478 should be interpolated according to cylindrical wrapping rules.
2479
2480
2481 Declaration Sampler View
2482 ^^^^^^^^^^^^^^^^^^^^^^^^
2483
2484 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2485
2486 DCL SVIEW[#], resource, type(s)
2487
2488 Declares a shader input sampler view and assigns it to a SVIEW[#]
2489 register.
2490
2491 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2492
2493 type must be 1 or 4 entries (if specifying on a per-component
2494 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2495
2496
2497 Declaration Resource
2498 ^^^^^^^^^^^^^^^^^^^^
2499
2500 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2501
2502 DCL RES[#], resource [, WR] [, RAW]
2503
2504 Declares a shader input resource and assigns it to a RES[#]
2505 register.
2506
2507 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2508 2DArray.
2509
2510 If the RAW keyword is not specified, the texture data will be
2511 subject to conversion, swizzling and scaling as required to yield
2512 the specified data type from the physical data format of the bound
2513 resource.
2514
2515 If the RAW keyword is specified, no channel conversion will be
2516 performed: the values read for each of the channels (X,Y,Z,W) will
2517 correspond to consecutive words in the same order and format
2518 they're found in memory. No element-to-address conversion will be
2519 performed either: the value of the provided X coordinate will be
2520 interpreted in byte units instead of texel units. The result of
2521 accessing a misaligned address is undefined.
2522
2523 Usage of the STORE opcode is only allowed if the WR (writable) flag
2524 is set.
2525
2526
2527 Properties
2528 ^^^^^^^^^^^^^^^^^^^^^^^^
2529
2530
2531 Properties are general directives that apply to the whole TGSI program.
2532
2533 FS_COORD_ORIGIN
2534 """""""""""""""
2535
2536 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2537 The default value is UPPER_LEFT.
2538
2539 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2540 increase downward and rightward.
2541 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2542 increase upward and rightward.
2543
2544 OpenGL defaults to LOWER_LEFT, and is configurable with the
2545 GL_ARB_fragment_coord_conventions extension.
2546
2547 DirectX 9/10 use UPPER_LEFT.
2548
2549 FS_COORD_PIXEL_CENTER
2550 """""""""""""""""""""
2551
2552 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2553 The default value is HALF_INTEGER.
2554
2555 If HALF_INTEGER, the fractionary part of the position will be 0.5
2556 If INTEGER, the fractionary part of the position will be 0.0
2557
2558 Note that this does not affect the set of fragments generated by
2559 rasterization, which is instead controlled by half_pixel_center in the
2560 rasterizer.
2561
2562 OpenGL defaults to HALF_INTEGER, and is configurable with the
2563 GL_ARB_fragment_coord_conventions extension.
2564
2565 DirectX 9 uses INTEGER.
2566 DirectX 10 uses HALF_INTEGER.
2567
2568 FS_COLOR0_WRITES_ALL_CBUFS
2569 """"""""""""""""""""""""""
2570 Specifies that writes to the fragment shader color 0 are replicated to all
2571 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2572 fragData is directed to a single color buffer, but fragColor is broadcast.
2573
2574 VS_PROHIBIT_UCPS
2575 """"""""""""""""""""""""""
2576 If this property is set on the program bound to the shader stage before the
2577 fragment shader, user clip planes should have no effect (be disabled) even if
2578 that shader does not write to any clip distance outputs and the rasterizer's
2579 clip_plane_enable is non-zero.
2580 This property is only supported by drivers that also support shader clip
2581 distance outputs.
2582 This is useful for APIs that don't have UCPs and where clip distances written
2583 by a shader cannot be disabled.
2584
2585
2586 Texture Sampling and Texture Formats
2587 ------------------------------------
2588
2589 This table shows how texture image components are returned as (x,y,z,w) tuples
2590 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2591 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2592 well.
2593
2594 +--------------------+--------------+--------------------+--------------+
2595 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2596 +====================+==============+====================+==============+
2597 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2598 +--------------------+--------------+--------------------+--------------+
2599 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2600 +--------------------+--------------+--------------------+--------------+
2601 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2602 +--------------------+--------------+--------------------+--------------+
2603 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2604 +--------------------+--------------+--------------------+--------------+
2605 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2606 +--------------------+--------------+--------------------+--------------+
2607 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2608 +--------------------+--------------+--------------------+--------------+
2609 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2610 +--------------------+--------------+--------------------+--------------+
2611 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2612 +--------------------+--------------+--------------------+--------------+
2613 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2614 | | | [#envmap-bumpmap]_ | |
2615 +--------------------+--------------+--------------------+--------------+
2616 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2617 | | | [#depth-tex-mode]_ | |
2618 +--------------------+--------------+--------------------+--------------+
2619 | S | (s, s, s, s) | unknown | unknown |
2620 +--------------------+--------------+--------------------+--------------+
2621
2622 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2623 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2624 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.