gallium/docs: line up some of the equations
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = \lfloor src.x\rfloor
52
53 dst.y = \lfloor src.y\rfloor
54
55 dst.z = \lfloor src.z\rfloor
56
57 dst.w = \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: CND - Condition
276
277 .. math::
278
279 dst.x = (src2.x > 0.5) ? src0.x : src1.x
280
281 dst.y = (src2.y > 0.5) ? src0.y : src1.y
282
283 dst.z = (src2.z > 0.5) ? src0.z : src1.z
284
285 dst.w = (src2.w > 0.5) ? src0.w : src1.w
286
287
288 .. opcode:: DP2A - 2-component Dot Product And Add
289
290 .. math::
291
292 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
293
294 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
295
296 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
297
298 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
299
300
301 .. opcode:: FRC - Fraction
302
303 .. math::
304
305 dst.x = src.x - \lfloor src.x\rfloor
306
307 dst.y = src.y - \lfloor src.y\rfloor
308
309 dst.z = src.z - \lfloor src.z\rfloor
310
311 dst.w = src.w - \lfloor src.w\rfloor
312
313
314 .. opcode:: CLAMP - Clamp
315
316 .. math::
317
318 dst.x = clamp(src0.x, src1.x, src2.x)
319
320 dst.y = clamp(src0.y, src1.y, src2.y)
321
322 dst.z = clamp(src0.z, src1.z, src2.z)
323
324 dst.w = clamp(src0.w, src1.w, src2.w)
325
326
327 .. opcode:: FLR - Floor
328
329 This is identical to :opcode:`ARL`.
330
331 .. math::
332
333 dst.x = \lfloor src.x\rfloor
334
335 dst.y = \lfloor src.y\rfloor
336
337 dst.z = \lfloor src.z\rfloor
338
339 dst.w = \lfloor src.w\rfloor
340
341
342 .. opcode:: ROUND - Round
343
344 .. math::
345
346 dst.x = round(src.x)
347
348 dst.y = round(src.y)
349
350 dst.z = round(src.z)
351
352 dst.w = round(src.w)
353
354
355 .. opcode:: EX2 - Exponential Base 2
356
357 This instruction replicates its result.
358
359 .. math::
360
361 dst = 2^{src.x}
362
363
364 .. opcode:: LG2 - Logarithm Base 2
365
366 This instruction replicates its result.
367
368 .. math::
369
370 dst = \log_2{src.x}
371
372
373 .. opcode:: POW - Power
374
375 This instruction replicates its result.
376
377 .. math::
378
379 dst = src0.x^{src1.x}
380
381 .. opcode:: XPD - Cross Product
382
383 .. math::
384
385 dst.x = src0.y \times src1.z - src1.y \times src0.z
386
387 dst.y = src0.z \times src1.x - src1.z \times src0.x
388
389 dst.z = src0.x \times src1.y - src1.x \times src0.y
390
391 dst.w = 1
392
393
394 .. opcode:: ABS - Absolute
395
396 .. math::
397
398 dst.x = |src.x|
399
400 dst.y = |src.y|
401
402 dst.z = |src.z|
403
404 dst.w = |src.w|
405
406
407 .. opcode:: RCC - Reciprocal Clamped
408
409 This instruction replicates its result.
410
411 XXX cleanup on aisle three
412
413 .. math::
414
415 dst = (1 / src.x) > 0 ? clamp(1 / src.x, 5.42101e-020, 1.84467e+019) : clamp(1 / src.x, -1.84467e+019, -5.42101e-020)
416
417
418 .. opcode:: DPH - Homogeneous Dot Product
419
420 This instruction replicates its result.
421
422 .. math::
423
424 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
425
426
427 .. opcode:: COS - Cosine
428
429 This instruction replicates its result.
430
431 .. math::
432
433 dst = \cos{src.x}
434
435
436 .. opcode:: DDX - Derivative Relative To X
437
438 .. math::
439
440 dst.x = partialx(src.x)
441
442 dst.y = partialx(src.y)
443
444 dst.z = partialx(src.z)
445
446 dst.w = partialx(src.w)
447
448
449 .. opcode:: DDY - Derivative Relative To Y
450
451 .. math::
452
453 dst.x = partialy(src.x)
454
455 dst.y = partialy(src.y)
456
457 dst.z = partialy(src.z)
458
459 dst.w = partialy(src.w)
460
461
462 .. opcode:: PK2H - Pack Two 16-bit Floats
463
464 TBD
465
466
467 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
468
469 TBD
470
471
472 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
473
474 TBD
475
476
477 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
478
479 TBD
480
481
482 .. opcode:: RFL - Reflection Vector
483
484 .. math::
485
486 dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x
487
488 dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y
489
490 dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z
491
492 dst.w = 1
493
494 .. note::
495
496 Considered for removal.
497
498
499 .. opcode:: SEQ - Set On Equal
500
501 .. math::
502
503 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
504
505 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
506
507 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
508
509 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
510
511
512 .. opcode:: SFL - Set On False
513
514 This instruction replicates its result.
515
516 .. math::
517
518 dst = 0.0F
519
520 .. note::
521
522 Considered for removal.
523
524
525 .. opcode:: SGT - Set On Greater Than
526
527 .. math::
528
529 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
530
531 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
532
533 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
534
535 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
536
537
538 .. opcode:: SIN - Sine
539
540 This instruction replicates its result.
541
542 .. math::
543
544 dst = \sin{src.x}
545
546
547 .. opcode:: SLE - Set On Less Equal Than
548
549 .. math::
550
551 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
552
553 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
554
555 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
556
557 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
558
559
560 .. opcode:: SNE - Set On Not Equal
561
562 .. math::
563
564 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
565
566 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
567
568 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
569
570 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
571
572
573 .. opcode:: STR - Set On True
574
575 This instruction replicates its result.
576
577 .. math::
578
579 dst = 1.0F
580
581
582 .. opcode:: TEX - Texture Lookup
583
584 for array textures src0.y contains the slice for 1D,
585 and src0.z contain the slice for 2D.
586
587 for shadow textures with no arrays, src0.z contains
588 the reference value.
589
590 for shadow textures with arrays, src0.z contains
591 the reference value for 1D arrays, and src0.w contains
592 the reference value for 2D arrays.
593
594 There is no way to pass a bias in the .w value for
595 shadow arrays, and GLSL doesn't allow this.
596 GLSL does allow cube shadows maps to take a bias value,
597 and we have to determine how this will look in TGSI.
598
599 .. math::
600
601 coord = src0
602
603 bias = 0.0
604
605 dst = texture\_sample(unit, coord, bias)
606
607 .. opcode:: TXD - Texture Lookup with Derivatives
608
609 .. math::
610
611 coord = src0
612
613 ddx = src1
614
615 ddy = src2
616
617 bias = 0.0
618
619 dst = texture\_sample\_deriv(unit, coord, bias, ddx, ddy)
620
621
622 .. opcode:: TXP - Projective Texture Lookup
623
624 .. math::
625
626 coord.x = src0.x / src.w
627
628 coord.y = src0.y / src.w
629
630 coord.z = src0.z / src.w
631
632 coord.w = src0.w
633
634 bias = 0.0
635
636 dst = texture\_sample(unit, coord, bias)
637
638
639 .. opcode:: UP2H - Unpack Two 16-Bit Floats
640
641 TBD
642
643 .. note::
644
645 Considered for removal.
646
647 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
648
649 TBD
650
651 .. note::
652
653 Considered for removal.
654
655 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
656
657 TBD
658
659 .. note::
660
661 Considered for removal.
662
663 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
664
665 TBD
666
667 .. note::
668
669 Considered for removal.
670
671 .. opcode:: X2D - 2D Coordinate Transformation
672
673 .. math::
674
675 dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y
676
677 dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w
678
679 dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y
680
681 dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w
682
683 .. note::
684
685 Considered for removal.
686
687
688 .. opcode:: ARA - Address Register Add
689
690 TBD
691
692 .. note::
693
694 Considered for removal.
695
696 .. opcode:: ARR - Address Register Load With Round
697
698 .. math::
699
700 dst.x = round(src.x)
701
702 dst.y = round(src.y)
703
704 dst.z = round(src.z)
705
706 dst.w = round(src.w)
707
708
709 .. opcode:: SSG - Set Sign
710
711 .. math::
712
713 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
714
715 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
716
717 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
718
719 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
720
721
722 .. opcode:: CMP - Compare
723
724 .. math::
725
726 dst.x = (src0.x < 0) ? src1.x : src2.x
727
728 dst.y = (src0.y < 0) ? src1.y : src2.y
729
730 dst.z = (src0.z < 0) ? src1.z : src2.z
731
732 dst.w = (src0.w < 0) ? src1.w : src2.w
733
734
735 .. opcode:: KILL_IF - Conditional Discard
736
737 Conditional discard. Allowed in fragment shaders only.
738
739 .. math::
740
741 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
742 discard
743 endif
744
745
746 .. opcode:: KILL - Discard
747
748 Unconditional discard. Allowed in fragment shaders only.
749
750
751 .. opcode:: SCS - Sine Cosine
752
753 .. math::
754
755 dst.x = \cos{src.x}
756
757 dst.y = \sin{src.x}
758
759 dst.z = 0
760
761 dst.w = 1
762
763
764 .. opcode:: TXB - Texture Lookup With Bias
765
766 .. math::
767
768 coord.x = src.x
769
770 coord.y = src.y
771
772 coord.z = src.z
773
774 coord.w = 1.0
775
776 bias = src.z
777
778 dst = texture\_sample(unit, coord, bias)
779
780
781 .. opcode:: NRM - 3-component Vector Normalise
782
783 .. math::
784
785 dst.x = src.x / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
786
787 dst.y = src.y / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
788
789 dst.z = src.z / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
790
791 dst.w = 1
792
793
794 .. opcode:: DIV - Divide
795
796 .. math::
797
798 dst.x = \frac{src0.x}{src1.x}
799
800 dst.y = \frac{src0.y}{src1.y}
801
802 dst.z = \frac{src0.z}{src1.z}
803
804 dst.w = \frac{src0.w}{src1.w}
805
806
807 .. opcode:: DP2 - 2-component Dot Product
808
809 This instruction replicates its result.
810
811 .. math::
812
813 dst = src0.x \times src1.x + src0.y \times src1.y
814
815
816 .. opcode:: TXL - Texture Lookup With explicit LOD
817
818 .. math::
819
820 coord.x = src0.x
821
822 coord.y = src0.y
823
824 coord.z = src0.z
825
826 coord.w = 1.0
827
828 lod = src0.w
829
830 dst = texture\_sample(unit, coord, lod)
831
832
833 .. opcode:: PUSHA - Push Address Register On Stack
834
835 push(src.x)
836 push(src.y)
837 push(src.z)
838 push(src.w)
839
840 .. note::
841
842 Considered for cleanup.
843
844 .. note::
845
846 Considered for removal.
847
848 .. opcode:: POPA - Pop Address Register From Stack
849
850 dst.w = pop()
851 dst.z = pop()
852 dst.y = pop()
853 dst.x = pop()
854
855 .. note::
856
857 Considered for cleanup.
858
859 .. note::
860
861 Considered for removal.
862
863
864 .. opcode:: BRA - Branch
865
866 pc = target
867
868 .. note::
869
870 Considered for removal.
871
872
873 .. opcode:: CALLNZ - Subroutine Call If Not Zero
874
875 TBD
876
877 .. note::
878
879 Considered for cleanup.
880
881 .. note::
882
883 Considered for removal.
884
885
886 Compute ISA
887 ^^^^^^^^^^^^^^^^^^^^^^^^
888
889 These opcodes are primarily provided for special-use computational shaders.
890 Support for these opcodes indicated by a special pipe capability bit (TBD).
891
892 XXX doesn't look like most of the opcodes really belong here.
893
894 .. opcode:: CEIL - Ceiling
895
896 .. math::
897
898 dst.x = \lceil src.x\rceil
899
900 dst.y = \lceil src.y\rceil
901
902 dst.z = \lceil src.z\rceil
903
904 dst.w = \lceil src.w\rceil
905
906
907 .. opcode:: TRUNC - Truncate
908
909 .. math::
910
911 dst.x = trunc(src.x)
912
913 dst.y = trunc(src.y)
914
915 dst.z = trunc(src.z)
916
917 dst.w = trunc(src.w)
918
919
920 .. opcode:: MOD - Modulus
921
922 .. math::
923
924 dst.x = src0.x \bmod src1.x
925
926 dst.y = src0.y \bmod src1.y
927
928 dst.z = src0.z \bmod src1.z
929
930 dst.w = src0.w \bmod src1.w
931
932
933 .. opcode:: UARL - Integer Address Register Load
934
935 Moves the contents of the source register, assumed to be an integer, into the
936 destination register, which is assumed to be an address (ADDR) register.
937
938
939 .. opcode:: SAD - Sum Of Absolute Differences
940
941 .. math::
942
943 dst.x = |src0.x - src1.x| + src2.x
944
945 dst.y = |src0.y - src1.y| + src2.y
946
947 dst.z = |src0.z - src1.z| + src2.z
948
949 dst.w = |src0.w - src1.w| + src2.w
950
951
952 .. opcode:: TXF - Texel Fetch
953
954 As per NV_gpu_shader4, extract a single texel from a specified texture
955 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
956 four-component signed integer vector used to identify the single texel
957 accessed. 3 components + level. src 1 is a 3 component constant signed
958 integer vector, with each component only have a range of -8..+8 (hw only
959 seems to deal with this range, interface allows for up to unsigned int).
960 TXF(uint_vec coord, int_vec offset).
961
962
963 .. opcode:: TXQ - Texture Size Query
964
965 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
966 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
967 depth), 1D array (width, layers), 2D array (width, height, layers)
968
969 .. math::
970
971 lod = src0.x
972
973 dst.x = texture\_width(unit, lod)
974
975 dst.y = texture\_height(unit, lod)
976
977 dst.z = texture\_depth(unit, lod)
978
979 .. opcode:: TG4 - Texture Gather
980
981 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
982 filtering operation and packs them into a single register. Only works with
983 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
984 addressing modes of the sampler and the top level of any mip pyramid are
985 used. Set W to zero. It behaves like the TEX instruction, but a filtered
986 sample is not generated. The four samples that contribute to filtering are
987 placed into xyzw in clockwise order, starting with the (u,v) texture
988 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
989 where the magnitude of the deltas are half a texel.
990
991 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
992 depth compares, single component selection, and a non-constant offset. It
993 doesn't allow support for the GL independent offset to get i0,j0. This would
994 require another CAP is hw can do it natively. For now we lower that before
995 TGSI.
996
997 .. math::
998
999 coord = src0
1000
1001 component = src1
1002
1003 dst = texture\_gather4 (unit, coord, component)
1004
1005 (with SM5 - cube array shadow)
1006
1007 .. math::
1008
1009 coord = src0
1010
1011 compare = src1
1012
1013 dst = texture\_gather (uint, coord, compare)
1014
1015
1016 Integer ISA
1017 ^^^^^^^^^^^^^^^^^^^^^^^^
1018 These opcodes are used for integer operations.
1019 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1020
1021
1022 .. opcode:: I2F - Signed Integer To Float
1023
1024 Rounding is unspecified (round to nearest even suggested).
1025
1026 .. math::
1027
1028 dst.x = (float) src.x
1029
1030 dst.y = (float) src.y
1031
1032 dst.z = (float) src.z
1033
1034 dst.w = (float) src.w
1035
1036
1037 .. opcode:: U2F - Unsigned Integer To Float
1038
1039 Rounding is unspecified (round to nearest even suggested).
1040
1041 .. math::
1042
1043 dst.x = (float) src.x
1044
1045 dst.y = (float) src.y
1046
1047 dst.z = (float) src.z
1048
1049 dst.w = (float) src.w
1050
1051
1052 .. opcode:: F2I - Float to Signed Integer
1053
1054 Rounding is towards zero (truncate).
1055 Values outside signed range (including NaNs) produce undefined results.
1056
1057 .. math::
1058
1059 dst.x = (int) src.x
1060
1061 dst.y = (int) src.y
1062
1063 dst.z = (int) src.z
1064
1065 dst.w = (int) src.w
1066
1067
1068 .. opcode:: F2U - Float to Unsigned Integer
1069
1070 Rounding is towards zero (truncate).
1071 Values outside unsigned range (including NaNs) produce undefined results.
1072
1073 .. math::
1074
1075 dst.x = (unsigned) src.x
1076
1077 dst.y = (unsigned) src.y
1078
1079 dst.z = (unsigned) src.z
1080
1081 dst.w = (unsigned) src.w
1082
1083
1084 .. opcode:: UADD - Integer Add
1085
1086 This instruction works the same for signed and unsigned integers.
1087 The low 32bit of the result is returned.
1088
1089 .. math::
1090
1091 dst.x = src0.x + src1.x
1092
1093 dst.y = src0.y + src1.y
1094
1095 dst.z = src0.z + src1.z
1096
1097 dst.w = src0.w + src1.w
1098
1099
1100 .. opcode:: UMAD - Integer Multiply And Add
1101
1102 This instruction works the same for signed and unsigned integers.
1103 The multiplication returns the low 32bit (as does the result itself).
1104
1105 .. math::
1106
1107 dst.x = src0.x \times src1.x + src2.x
1108
1109 dst.y = src0.y \times src1.y + src2.y
1110
1111 dst.z = src0.z \times src1.z + src2.z
1112
1113 dst.w = src0.w \times src1.w + src2.w
1114
1115
1116 .. opcode:: UMUL - Integer Multiply
1117
1118 This instruction works the same for signed and unsigned integers.
1119 The low 32bit of the result is returned.
1120
1121 .. math::
1122
1123 dst.x = src0.x \times src1.x
1124
1125 dst.y = src0.y \times src1.y
1126
1127 dst.z = src0.z \times src1.z
1128
1129 dst.w = src0.w \times src1.w
1130
1131
1132 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1133
1134 The high 32bits of the multiplication of 2 signed integers are returned.
1135
1136 .. math::
1137
1138 dst.x = (src0.x \times src1.x) >> 32
1139
1140 dst.y = (src0.y \times src1.y) >> 32
1141
1142 dst.z = (src0.z \times src1.z) >> 32
1143
1144 dst.w = (src0.w \times src1.w) >> 32
1145
1146
1147 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1148
1149 The high 32bits of the multiplication of 2 unsigned integers are returned.
1150
1151 .. math::
1152
1153 dst.x = (src0.x \times src1.x) >> 32
1154
1155 dst.y = (src0.y \times src1.y) >> 32
1156
1157 dst.z = (src0.z \times src1.z) >> 32
1158
1159 dst.w = (src0.w \times src1.w) >> 32
1160
1161
1162 .. opcode:: IDIV - Signed Integer Division
1163
1164 TBD: behavior for division by zero.
1165
1166 .. math::
1167
1168 dst.x = src0.x \ src1.x
1169
1170 dst.y = src0.y \ src1.y
1171
1172 dst.z = src0.z \ src1.z
1173
1174 dst.w = src0.w \ src1.w
1175
1176
1177 .. opcode:: UDIV - Unsigned Integer Division
1178
1179 For division by zero, 0xffffffff is returned.
1180
1181 .. math::
1182
1183 dst.x = src0.x \ src1.x
1184
1185 dst.y = src0.y \ src1.y
1186
1187 dst.z = src0.z \ src1.z
1188
1189 dst.w = src0.w \ src1.w
1190
1191
1192 .. opcode:: UMOD - Unsigned Integer Remainder
1193
1194 If second arg is zero, 0xffffffff is returned.
1195
1196 .. math::
1197
1198 dst.x = src0.x \ src1.x
1199
1200 dst.y = src0.y \ src1.y
1201
1202 dst.z = src0.z \ src1.z
1203
1204 dst.w = src0.w \ src1.w
1205
1206
1207 .. opcode:: NOT - Bitwise Not
1208
1209 .. math::
1210
1211 dst.x = ~src.x
1212
1213 dst.y = ~src.y
1214
1215 dst.z = ~src.z
1216
1217 dst.w = ~src.w
1218
1219
1220 .. opcode:: AND - Bitwise And
1221
1222 .. math::
1223
1224 dst.x = src0.x & src1.x
1225
1226 dst.y = src0.y & src1.y
1227
1228 dst.z = src0.z & src1.z
1229
1230 dst.w = src0.w & src1.w
1231
1232
1233 .. opcode:: OR - Bitwise Or
1234
1235 .. math::
1236
1237 dst.x = src0.x | src1.x
1238
1239 dst.y = src0.y | src1.y
1240
1241 dst.z = src0.z | src1.z
1242
1243 dst.w = src0.w | src1.w
1244
1245
1246 .. opcode:: XOR - Bitwise Xor
1247
1248 .. math::
1249
1250 dst.x = src0.x \oplus src1.x
1251
1252 dst.y = src0.y \oplus src1.y
1253
1254 dst.z = src0.z \oplus src1.z
1255
1256 dst.w = src0.w \oplus src1.w
1257
1258
1259 .. opcode:: IMAX - Maximum of Signed Integers
1260
1261 .. math::
1262
1263 dst.x = max(src0.x, src1.x)
1264
1265 dst.y = max(src0.y, src1.y)
1266
1267 dst.z = max(src0.z, src1.z)
1268
1269 dst.w = max(src0.w, src1.w)
1270
1271
1272 .. opcode:: UMAX - Maximum of Unsigned Integers
1273
1274 .. math::
1275
1276 dst.x = max(src0.x, src1.x)
1277
1278 dst.y = max(src0.y, src1.y)
1279
1280 dst.z = max(src0.z, src1.z)
1281
1282 dst.w = max(src0.w, src1.w)
1283
1284
1285 .. opcode:: IMIN - Minimum of Signed Integers
1286
1287 .. math::
1288
1289 dst.x = min(src0.x, src1.x)
1290
1291 dst.y = min(src0.y, src1.y)
1292
1293 dst.z = min(src0.z, src1.z)
1294
1295 dst.w = min(src0.w, src1.w)
1296
1297
1298 .. opcode:: UMIN - Minimum of Unsigned Integers
1299
1300 .. math::
1301
1302 dst.x = min(src0.x, src1.x)
1303
1304 dst.y = min(src0.y, src1.y)
1305
1306 dst.z = min(src0.z, src1.z)
1307
1308 dst.w = min(src0.w, src1.w)
1309
1310
1311 .. opcode:: SHL - Shift Left
1312
1313 The shift count is masked with 0x1f before the shift is applied.
1314
1315 .. math::
1316
1317 dst.x = src0.x << (0x1f & src1.x)
1318
1319 dst.y = src0.y << (0x1f & src1.y)
1320
1321 dst.z = src0.z << (0x1f & src1.z)
1322
1323 dst.w = src0.w << (0x1f & src1.w)
1324
1325
1326 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1327
1328 The shift count is masked with 0x1f before the shift is applied.
1329
1330 .. math::
1331
1332 dst.x = src0.x >> (0x1f & src1.x)
1333
1334 dst.y = src0.y >> (0x1f & src1.y)
1335
1336 dst.z = src0.z >> (0x1f & src1.z)
1337
1338 dst.w = src0.w >> (0x1f & src1.w)
1339
1340
1341 .. opcode:: USHR - Logical Shift Right
1342
1343 The shift count is masked with 0x1f before the shift is applied.
1344
1345 .. math::
1346
1347 dst.x = src0.x >> (unsigned) (0x1f & src1.x)
1348
1349 dst.y = src0.y >> (unsigned) (0x1f & src1.y)
1350
1351 dst.z = src0.z >> (unsigned) (0x1f & src1.z)
1352
1353 dst.w = src0.w >> (unsigned) (0x1f & src1.w)
1354
1355
1356 .. opcode:: UCMP - Integer Conditional Move
1357
1358 .. math::
1359
1360 dst.x = src0.x ? src1.x : src2.x
1361
1362 dst.y = src0.y ? src1.y : src2.y
1363
1364 dst.z = src0.z ? src1.z : src2.z
1365
1366 dst.w = src0.w ? src1.w : src2.w
1367
1368
1369
1370 .. opcode:: ISSG - Integer Set Sign
1371
1372 .. math::
1373
1374 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1375
1376 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1377
1378 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1379
1380 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1381
1382
1383
1384 .. opcode:: FSLT - Float Set On Less Than (ordered)
1385
1386 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1387
1388 .. math::
1389
1390 dst.x = (src0.x < src1.x) ? ~0 : 0
1391
1392 dst.y = (src0.y < src1.y) ? ~0 : 0
1393
1394 dst.z = (src0.z < src1.z) ? ~0 : 0
1395
1396 dst.w = (src0.w < src1.w) ? ~0 : 0
1397
1398
1399 .. opcode:: ISLT - Signed Integer Set On Less Than
1400
1401 .. math::
1402
1403 dst.x = (src0.x < src1.x) ? ~0 : 0
1404
1405 dst.y = (src0.y < src1.y) ? ~0 : 0
1406
1407 dst.z = (src0.z < src1.z) ? ~0 : 0
1408
1409 dst.w = (src0.w < src1.w) ? ~0 : 0
1410
1411
1412 .. opcode:: USLT - Unsigned Integer Set On Less Than
1413
1414 .. math::
1415
1416 dst.x = (src0.x < src1.x) ? ~0 : 0
1417
1418 dst.y = (src0.y < src1.y) ? ~0 : 0
1419
1420 dst.z = (src0.z < src1.z) ? ~0 : 0
1421
1422 dst.w = (src0.w < src1.w) ? ~0 : 0
1423
1424
1425 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1426
1427 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1428
1429 .. math::
1430
1431 dst.x = (src0.x >= src1.x) ? ~0 : 0
1432
1433 dst.y = (src0.y >= src1.y) ? ~0 : 0
1434
1435 dst.z = (src0.z >= src1.z) ? ~0 : 0
1436
1437 dst.w = (src0.w >= src1.w) ? ~0 : 0
1438
1439
1440 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1441
1442 .. math::
1443
1444 dst.x = (src0.x >= src1.x) ? ~0 : 0
1445
1446 dst.y = (src0.y >= src1.y) ? ~0 : 0
1447
1448 dst.z = (src0.z >= src1.z) ? ~0 : 0
1449
1450 dst.w = (src0.w >= src1.w) ? ~0 : 0
1451
1452
1453 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1454
1455 .. math::
1456
1457 dst.x = (src0.x >= src1.x) ? ~0 : 0
1458
1459 dst.y = (src0.y >= src1.y) ? ~0 : 0
1460
1461 dst.z = (src0.z >= src1.z) ? ~0 : 0
1462
1463 dst.w = (src0.w >= src1.w) ? ~0 : 0
1464
1465
1466 .. opcode:: FSEQ - Float Set On Equal (ordered)
1467
1468 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1469
1470 .. math::
1471
1472 dst.x = (src0.x == src1.x) ? ~0 : 0
1473
1474 dst.y = (src0.y == src1.y) ? ~0 : 0
1475
1476 dst.z = (src0.z == src1.z) ? ~0 : 0
1477
1478 dst.w = (src0.w == src1.w) ? ~0 : 0
1479
1480
1481 .. opcode:: USEQ - Integer Set On Equal
1482
1483 .. math::
1484
1485 dst.x = (src0.x == src1.x) ? ~0 : 0
1486
1487 dst.y = (src0.y == src1.y) ? ~0 : 0
1488
1489 dst.z = (src0.z == src1.z) ? ~0 : 0
1490
1491 dst.w = (src0.w == src1.w) ? ~0 : 0
1492
1493
1494 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1495
1496 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1497
1498 .. math::
1499
1500 dst.x = (src0.x != src1.x) ? ~0 : 0
1501
1502 dst.y = (src0.y != src1.y) ? ~0 : 0
1503
1504 dst.z = (src0.z != src1.z) ? ~0 : 0
1505
1506 dst.w = (src0.w != src1.w) ? ~0 : 0
1507
1508
1509 .. opcode:: USNE - Integer Set On Not Equal
1510
1511 .. math::
1512
1513 dst.x = (src0.x != src1.x) ? ~0 : 0
1514
1515 dst.y = (src0.y != src1.y) ? ~0 : 0
1516
1517 dst.z = (src0.z != src1.z) ? ~0 : 0
1518
1519 dst.w = (src0.w != src1.w) ? ~0 : 0
1520
1521
1522 .. opcode:: INEG - Integer Negate
1523
1524 Two's complement.
1525
1526 .. math::
1527
1528 dst.x = -src.x
1529
1530 dst.y = -src.y
1531
1532 dst.z = -src.z
1533
1534 dst.w = -src.w
1535
1536
1537 .. opcode:: IABS - Integer Absolute Value
1538
1539 .. math::
1540
1541 dst.x = |src.x|
1542
1543 dst.y = |src.y|
1544
1545 dst.z = |src.z|
1546
1547 dst.w = |src.w|
1548
1549
1550 Geometry ISA
1551 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1552
1553 These opcodes are only supported in geometry shaders; they have no meaning
1554 in any other type of shader.
1555
1556 .. opcode:: EMIT - Emit
1557
1558 Generate a new vertex for the current primitive using the values in the
1559 output registers.
1560
1561
1562 .. opcode:: ENDPRIM - End Primitive
1563
1564 Complete the current primitive (consisting of the emitted vertices),
1565 and start a new one.
1566
1567
1568 GLSL ISA
1569 ^^^^^^^^^^
1570
1571 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1572 opcodes is determined by a special capability bit, ``GLSL``.
1573 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1574
1575 .. opcode:: CAL - Subroutine Call
1576
1577 push(pc)
1578 pc = target
1579
1580
1581 .. opcode:: RET - Subroutine Call Return
1582
1583 pc = pop()
1584
1585
1586 .. opcode:: CONT - Continue
1587
1588 Unconditionally moves the point of execution to the instruction after the
1589 last bgnloop. The instruction must appear within a bgnloop/endloop.
1590
1591 .. note::
1592
1593 Support for CONT is determined by a special capability bit,
1594 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1595
1596
1597 .. opcode:: BGNLOOP - Begin a Loop
1598
1599 Start a loop. Must have a matching endloop.
1600
1601
1602 .. opcode:: BGNSUB - Begin Subroutine
1603
1604 Starts definition of a subroutine. Must have a matching endsub.
1605
1606
1607 .. opcode:: ENDLOOP - End a Loop
1608
1609 End a loop started with bgnloop.
1610
1611
1612 .. opcode:: ENDSUB - End Subroutine
1613
1614 Ends definition of a subroutine.
1615
1616
1617 .. opcode:: NOP - No Operation
1618
1619 Do nothing.
1620
1621
1622 .. opcode:: BRK - Break
1623
1624 Unconditionally moves the point of execution to the instruction after the
1625 next endloop or endswitch. The instruction must appear within a loop/endloop
1626 or switch/endswitch.
1627
1628
1629 .. opcode:: BREAKC - Break Conditional
1630
1631 Conditionally moves the point of execution to the instruction after the
1632 next endloop or endswitch. The instruction must appear within a loop/endloop
1633 or switch/endswitch.
1634 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1635 as an integer register.
1636
1637 .. note::
1638
1639 Considered for removal as it's quite inconsistent wrt other opcodes
1640 (could emulate with UIF/BRK/ENDIF).
1641
1642
1643 .. opcode:: IF - Float If
1644
1645 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1646
1647 src0.x != 0.0
1648
1649 where src0.x is interpreted as a floating point register.
1650
1651
1652 .. opcode:: UIF - Bitwise If
1653
1654 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1655
1656 src0.x != 0
1657
1658 where src0.x is interpreted as an integer register.
1659
1660
1661 .. opcode:: ELSE - Else
1662
1663 Starts an else block, after an IF or UIF statement.
1664
1665
1666 .. opcode:: ENDIF - End If
1667
1668 Ends an IF or UIF block.
1669
1670
1671 .. opcode:: SWITCH - Switch
1672
1673 Starts a C-style switch expression. The switch consists of one or multiple
1674 CASE statements, and at most one DEFAULT statement. Execution of a statement
1675 ends when a BRK is hit, but just like in C falling through to other cases
1676 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1677 just as last statement, and fallthrough is allowed into/from it.
1678 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1679
1680 Example::
1681
1682 SWITCH src[0].x
1683 CASE src[0].x
1684 (some instructions here)
1685 (optional BRK here)
1686 DEFAULT
1687 (some instructions here)
1688 (optional BRK here)
1689 CASE src[0].x
1690 (some instructions here)
1691 (optional BRK here)
1692 ENDSWITCH
1693
1694
1695 .. opcode:: CASE - Switch case
1696
1697 This represents a switch case label. The src arg must be an integer immediate.
1698
1699
1700 .. opcode:: DEFAULT - Switch default
1701
1702 This represents the default case in the switch, which is taken if no other
1703 case matches.
1704
1705
1706 .. opcode:: ENDSWITCH - End of switch
1707
1708 Ends a switch expression.
1709
1710
1711 .. opcode:: NRM4 - 4-component Vector Normalise
1712
1713 This instruction replicates its result.
1714
1715 .. math::
1716
1717 dst = \frac{src.x}{src.x \times src.x + src.y \times src.y + src.z \times src.z + src.w \times src.w}
1718
1719
1720 .. _doubleopcodes:
1721
1722 Double ISA
1723 ^^^^^^^^^^^^^^^
1724
1725 The double-precision opcodes reinterpret four-component vectors into
1726 two-component vectors with doubled precision in each component.
1727
1728 Support for these opcodes is XXX undecided. :T
1729
1730 .. opcode:: DADD - Add
1731
1732 .. math::
1733
1734 dst.xy = src0.xy + src1.xy
1735
1736 dst.zw = src0.zw + src1.zw
1737
1738
1739 .. opcode:: DDIV - Divide
1740
1741 .. math::
1742
1743 dst.xy = src0.xy / src1.xy
1744
1745 dst.zw = src0.zw / src1.zw
1746
1747 .. opcode:: DSEQ - Set on Equal
1748
1749 .. math::
1750
1751 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1752
1753 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1754
1755 .. opcode:: DSLT - Set on Less than
1756
1757 .. math::
1758
1759 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1760
1761 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1762
1763 .. opcode:: DFRAC - Fraction
1764
1765 .. math::
1766
1767 dst.xy = src.xy - \lfloor src.xy\rfloor
1768
1769 dst.zw = src.zw - \lfloor src.zw\rfloor
1770
1771
1772 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1773
1774 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1775 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1776 :math:`dst1 \times 2^{dst0} = src` .
1777
1778 .. math::
1779
1780 dst0.xy = exp(src.xy)
1781
1782 dst1.xy = frac(src.xy)
1783
1784 dst0.zw = exp(src.zw)
1785
1786 dst1.zw = frac(src.zw)
1787
1788 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1789
1790 This opcode is the inverse of :opcode:`DFRACEXP`.
1791
1792 .. math::
1793
1794 dst.xy = src0.xy \times 2^{src1.xy}
1795
1796 dst.zw = src0.zw \times 2^{src1.zw}
1797
1798 .. opcode:: DMIN - Minimum
1799
1800 .. math::
1801
1802 dst.xy = min(src0.xy, src1.xy)
1803
1804 dst.zw = min(src0.zw, src1.zw)
1805
1806 .. opcode:: DMAX - Maximum
1807
1808 .. math::
1809
1810 dst.xy = max(src0.xy, src1.xy)
1811
1812 dst.zw = max(src0.zw, src1.zw)
1813
1814 .. opcode:: DMUL - Multiply
1815
1816 .. math::
1817
1818 dst.xy = src0.xy \times src1.xy
1819
1820 dst.zw = src0.zw \times src1.zw
1821
1822
1823 .. opcode:: DMAD - Multiply And Add
1824
1825 .. math::
1826
1827 dst.xy = src0.xy \times src1.xy + src2.xy
1828
1829 dst.zw = src0.zw \times src1.zw + src2.zw
1830
1831
1832 .. opcode:: DRCP - Reciprocal
1833
1834 .. math::
1835
1836 dst.xy = \frac{1}{src.xy}
1837
1838 dst.zw = \frac{1}{src.zw}
1839
1840 .. opcode:: DSQRT - Square Root
1841
1842 .. math::
1843
1844 dst.xy = \sqrt{src.xy}
1845
1846 dst.zw = \sqrt{src.zw}
1847
1848
1849 .. _samplingopcodes:
1850
1851 Resource Sampling Opcodes
1852 ^^^^^^^^^^^^^^^^^^^^^^^^^
1853
1854 Those opcodes follow very closely semantics of the respective Direct3D
1855 instructions. If in doubt double check Direct3D documentation.
1856 Note that the swizzle on SVIEW (src1) determines texel swizzling
1857 after lookup.
1858
1859 .. opcode:: SAMPLE
1860
1861 Using provided address, sample data from the specified texture using the
1862 filtering mode identified by the gven sampler. The source data may come from
1863 any resource type other than buffers.
1864
1865 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
1866
1867 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
1868
1869 .. opcode:: SAMPLE_I
1870
1871 Simplified alternative to the SAMPLE instruction. Using the provided
1872 integer address, SAMPLE_I fetches data from the specified sampler view
1873 without any filtering. The source data may come from any resource type
1874 other than CUBE.
1875
1876 Syntax: ``SAMPLE_I dst, address, sampler_view``
1877
1878 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
1879
1880 The 'address' is specified as unsigned integers. If the 'address' is out of
1881 range [0...(# texels - 1)] the result of the fetch is always 0 in all
1882 components. As such the instruction doesn't honor address wrap modes, in
1883 cases where that behavior is desirable 'SAMPLE' instruction should be used.
1884 address.w always provides an unsigned integer mipmap level. If the value is
1885 out of the range then the instruction always returns 0 in all components.
1886 address.yz are ignored for buffers and 1d textures. address.z is ignored
1887 for 1d texture arrays and 2d textures.
1888
1889 For 1D texture arrays address.y provides the array index (also as unsigned
1890 integer). If the value is out of the range of available array indices
1891 [0... (array size - 1)] then the opcode always returns 0 in all components.
1892 For 2D texture arrays address.z provides the array index, otherwise it
1893 exhibits the same behavior as in the case for 1D texture arrays. The exact
1894 semantics of the source address are presented in the table below:
1895
1896 +---------------------------+----+-----+-----+---------+
1897 | resource type | X | Y | Z | W |
1898 +===========================+====+=====+=====+=========+
1899 | ``PIPE_BUFFER`` | x | | | ignored |
1900 +---------------------------+----+-----+-----+---------+
1901 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
1902 +---------------------------+----+-----+-----+---------+
1903 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
1904 +---------------------------+----+-----+-----+---------+
1905 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
1906 +---------------------------+----+-----+-----+---------+
1907 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
1908 +---------------------------+----+-----+-----+---------+
1909 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
1910 +---------------------------+----+-----+-----+---------+
1911 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
1912 +---------------------------+----+-----+-----+---------+
1913 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
1914 +---------------------------+----+-----+-----+---------+
1915
1916 Where 'mpl' is a mipmap level and 'idx' is the array index.
1917
1918 .. opcode:: SAMPLE_I_MS
1919
1920 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
1921
1922 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
1923
1924 .. opcode:: SAMPLE_B
1925
1926 Just like the SAMPLE instruction with the exception that an additional bias
1927 is applied to the level of detail computed as part of the instruction
1928 execution.
1929
1930 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
1931
1932 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
1933
1934 .. opcode:: SAMPLE_C
1935
1936 Similar to the SAMPLE instruction but it performs a comparison filter. The
1937 operands to SAMPLE_C are identical to SAMPLE, except that there is an
1938 additional float32 operand, reference value, which must be a register with
1939 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
1940 current samplers compare_func (in pipe_sampler_state) to compare reference
1941 value against the red component value for the surce resource at each texel
1942 that the currently configured texture filter covers based on the provided
1943 coordinates.
1944
1945 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
1946
1947 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
1948
1949 .. opcode:: SAMPLE_C_LZ
1950
1951 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
1952 for level-zero.
1953
1954 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
1955
1956 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
1957
1958
1959 .. opcode:: SAMPLE_D
1960
1961 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
1962 the source address in the x direction and the y direction are provided by
1963 extra parameters.
1964
1965 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
1966
1967 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
1968
1969 .. opcode:: SAMPLE_L
1970
1971 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
1972 directly as a scalar value, representing no anisotropy.
1973
1974 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
1975
1976 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
1977
1978 .. opcode:: GATHER4
1979
1980 Gathers the four texels to be used in a bi-linear filtering operation and
1981 packs them into a single register. Only works with 2D, 2D array, cubemaps,
1982 and cubemaps arrays. For 2D textures, only the addressing modes of the
1983 sampler and the top level of any mip pyramid are used. Set W to zero. It
1984 behaves like the SAMPLE instruction, but a filtered sample is not
1985 generated. The four samples that contribute to filtering are placed into
1986 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
1987 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
1988 magnitude of the deltas are half a texel.
1989
1990
1991 .. opcode:: SVIEWINFO
1992
1993 Query the dimensions of a given sampler view. dst receives width, height,
1994 depth or array size and number of mipmap levels as int4. The dst can have a
1995 writemask which will specify what info is the caller interested in.
1996
1997 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
1998
1999 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2000
2001 src_mip_level is an unsigned integer scalar. If it's out of range then
2002 returns 0 for width, height and depth/array size but the total number of
2003 mipmap is still returned correctly for the given sampler view. The returned
2004 width, height and depth values are for the mipmap level selected by the
2005 src_mip_level and are in the number of texels. For 1d texture array width
2006 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2007 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2008 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2009 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2010 resinfo allowing swizzling dst values is ignored (due to the interaction
2011 with rcpfloat modifier which requires some swizzle handling in the state
2012 tracker anyway).
2013
2014 .. opcode:: SAMPLE_POS
2015
2016 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2017 indicated where the sample is located. If the resource is not a multi-sample
2018 resource and not a render target, the result is 0.
2019
2020 .. opcode:: SAMPLE_INFO
2021
2022 dst receives number of samples in x. If the resource is not a multi-sample
2023 resource and not a render target, the result is 0.
2024
2025
2026 .. _resourceopcodes:
2027
2028 Resource Access Opcodes
2029 ^^^^^^^^^^^^^^^^^^^^^^^
2030
2031 .. opcode:: LOAD - Fetch data from a shader resource
2032
2033 Syntax: ``LOAD dst, resource, address``
2034
2035 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
2036
2037 Using the provided integer address, LOAD fetches data
2038 from the specified buffer or texture without any
2039 filtering.
2040
2041 The 'address' is specified as a vector of unsigned
2042 integers. If the 'address' is out of range the result
2043 is unspecified.
2044
2045 Only the first mipmap level of a resource can be read
2046 from using this instruction.
2047
2048 For 1D or 2D texture arrays, the array index is
2049 provided as an unsigned integer in address.y or
2050 address.z, respectively. address.yz are ignored for
2051 buffers and 1D textures. address.z is ignored for 1D
2052 texture arrays and 2D textures. address.w is always
2053 ignored.
2054
2055 .. opcode:: STORE - Write data to a shader resource
2056
2057 Syntax: ``STORE resource, address, src``
2058
2059 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
2060
2061 Using the provided integer address, STORE writes data
2062 to the specified buffer or texture.
2063
2064 The 'address' is specified as a vector of unsigned
2065 integers. If the 'address' is out of range the result
2066 is unspecified.
2067
2068 Only the first mipmap level of a resource can be
2069 written to using this instruction.
2070
2071 For 1D or 2D texture arrays, the array index is
2072 provided as an unsigned integer in address.y or
2073 address.z, respectively. address.yz are ignored for
2074 buffers and 1D textures. address.z is ignored for 1D
2075 texture arrays and 2D textures. address.w is always
2076 ignored.
2077
2078
2079 .. _threadsyncopcodes:
2080
2081 Inter-thread synchronization opcodes
2082 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2083
2084 These opcodes are intended for communication between threads running
2085 within the same compute grid. For now they're only valid in compute
2086 programs.
2087
2088 .. opcode:: MFENCE - Memory fence
2089
2090 Syntax: ``MFENCE resource``
2091
2092 Example: ``MFENCE RES[0]``
2093
2094 This opcode forces strong ordering between any memory access
2095 operations that affect the specified resource. This means that
2096 previous loads and stores (and only those) will be performed and
2097 visible to other threads before the program execution continues.
2098
2099
2100 .. opcode:: LFENCE - Load memory fence
2101
2102 Syntax: ``LFENCE resource``
2103
2104 Example: ``LFENCE RES[0]``
2105
2106 Similar to MFENCE, but it only affects the ordering of memory loads.
2107
2108
2109 .. opcode:: SFENCE - Store memory fence
2110
2111 Syntax: ``SFENCE resource``
2112
2113 Example: ``SFENCE RES[0]``
2114
2115 Similar to MFENCE, but it only affects the ordering of memory stores.
2116
2117
2118 .. opcode:: BARRIER - Thread group barrier
2119
2120 ``BARRIER``
2121
2122 This opcode suspends the execution of the current thread until all
2123 the remaining threads in the working group reach the same point of
2124 the program. Results are unspecified if any of the remaining
2125 threads terminates or never reaches an executed BARRIER instruction.
2126
2127
2128 .. _atomopcodes:
2129
2130 Atomic opcodes
2131 ^^^^^^^^^^^^^^
2132
2133 These opcodes provide atomic variants of some common arithmetic and
2134 logical operations. In this context atomicity means that another
2135 concurrent memory access operation that affects the same memory
2136 location is guaranteed to be performed strictly before or after the
2137 entire execution of the atomic operation.
2138
2139 For the moment they're only valid in compute programs.
2140
2141 .. opcode:: ATOMUADD - Atomic integer addition
2142
2143 Syntax: ``ATOMUADD dst, resource, offset, src``
2144
2145 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2146
2147 The following operation is performed atomically on each component:
2148
2149 .. math::
2150
2151 dst_i = resource[offset]_i
2152
2153 resource[offset]_i = dst_i + src_i
2154
2155
2156 .. opcode:: ATOMXCHG - Atomic exchange
2157
2158 Syntax: ``ATOMXCHG dst, resource, offset, src``
2159
2160 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2161
2162 The following operation is performed atomically on each component:
2163
2164 .. math::
2165
2166 dst_i = resource[offset]_i
2167
2168 resource[offset]_i = src_i
2169
2170
2171 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2172
2173 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2174
2175 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2176
2177 The following operation is performed atomically on each component:
2178
2179 .. math::
2180
2181 dst_i = resource[offset]_i
2182
2183 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2184
2185
2186 .. opcode:: ATOMAND - Atomic bitwise And
2187
2188 Syntax: ``ATOMAND dst, resource, offset, src``
2189
2190 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2191
2192 The following operation is performed atomically on each component:
2193
2194 .. math::
2195
2196 dst_i = resource[offset]_i
2197
2198 resource[offset]_i = dst_i \& src_i
2199
2200
2201 .. opcode:: ATOMOR - Atomic bitwise Or
2202
2203 Syntax: ``ATOMOR dst, resource, offset, src``
2204
2205 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2206
2207 The following operation is performed atomically on each component:
2208
2209 .. math::
2210
2211 dst_i = resource[offset]_i
2212
2213 resource[offset]_i = dst_i | src_i
2214
2215
2216 .. opcode:: ATOMXOR - Atomic bitwise Xor
2217
2218 Syntax: ``ATOMXOR dst, resource, offset, src``
2219
2220 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2221
2222 The following operation is performed atomically on each component:
2223
2224 .. math::
2225
2226 dst_i = resource[offset]_i
2227
2228 resource[offset]_i = dst_i \oplus src_i
2229
2230
2231 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2232
2233 Syntax: ``ATOMUMIN dst, resource, offset, src``
2234
2235 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2236
2237 The following operation is performed atomically on each component:
2238
2239 .. math::
2240
2241 dst_i = resource[offset]_i
2242
2243 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2244
2245
2246 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2247
2248 Syntax: ``ATOMUMAX dst, resource, offset, src``
2249
2250 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2251
2252 The following operation is performed atomically on each component:
2253
2254 .. math::
2255
2256 dst_i = resource[offset]_i
2257
2258 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2259
2260
2261 .. opcode:: ATOMIMIN - Atomic signed minimum
2262
2263 Syntax: ``ATOMIMIN dst, resource, offset, src``
2264
2265 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2266
2267 The following operation is performed atomically on each component:
2268
2269 .. math::
2270
2271 dst_i = resource[offset]_i
2272
2273 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2274
2275
2276 .. opcode:: ATOMIMAX - Atomic signed maximum
2277
2278 Syntax: ``ATOMIMAX dst, resource, offset, src``
2279
2280 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2281
2282 The following operation is performed atomically on each component:
2283
2284 .. math::
2285
2286 dst_i = resource[offset]_i
2287
2288 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2289
2290
2291
2292 Explanation of symbols used
2293 ------------------------------
2294
2295
2296 Functions
2297 ^^^^^^^^^^^^^^
2298
2299
2300 :math:`|x|` Absolute value of `x`.
2301
2302 :math:`\lceil x \rceil` Ceiling of `x`.
2303
2304 clamp(x,y,z) Clamp x between y and z.
2305 (x < y) ? y : (x > z) ? z : x
2306
2307 :math:`\lfloor x\rfloor` Floor of `x`.
2308
2309 :math:`\log_2{x}` Logarithm of `x`, base 2.
2310
2311 max(x,y) Maximum of x and y.
2312 (x > y) ? x : y
2313
2314 min(x,y) Minimum of x and y.
2315 (x < y) ? x : y
2316
2317 partialx(x) Derivative of x relative to fragment's X.
2318
2319 partialy(x) Derivative of x relative to fragment's Y.
2320
2321 pop() Pop from stack.
2322
2323 :math:`x^y` `x` to the power `y`.
2324
2325 push(x) Push x on stack.
2326
2327 round(x) Round x.
2328
2329 trunc(x) Truncate x, i.e. drop the fraction bits.
2330
2331
2332 Keywords
2333 ^^^^^^^^^^^^^
2334
2335
2336 discard Discard fragment.
2337
2338 pc Program counter.
2339
2340 target Label of target instruction.
2341
2342
2343 Other tokens
2344 ---------------
2345
2346
2347 Declaration
2348 ^^^^^^^^^^^
2349
2350
2351 Declares a register that is will be referenced as an operand in Instruction
2352 tokens.
2353
2354 File field contains register file that is being declared and is one
2355 of TGSI_FILE.
2356
2357 UsageMask field specifies which of the register components can be accessed
2358 and is one of TGSI_WRITEMASK.
2359
2360 The Local flag specifies that a given value isn't intended for
2361 subroutine parameter passing and, as a result, the implementation
2362 isn't required to give any guarantees of it being preserved across
2363 subroutine boundaries. As it's merely a compiler hint, the
2364 implementation is free to ignore it.
2365
2366 If Dimension flag is set to 1, a Declaration Dimension token follows.
2367
2368 If Semantic flag is set to 1, a Declaration Semantic token follows.
2369
2370 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2371
2372 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2373
2374 If Array flag is set to 1, a Declaration Array token follows.
2375
2376 Array Declaration
2377 ^^^^^^^^^^^^^^^^^^^^^^^^
2378
2379 Declarations can optional have an ArrayID attribute which can be referred by
2380 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2381 if no ArrayID is specified.
2382
2383 If an indirect addressing operand refers to a specific declaration by using
2384 an ArrayID only the registers in this declaration are guaranteed to be
2385 accessed, accessing any register outside this declaration results in undefined
2386 behavior. Note that for compatibility the effective index is zero-based and
2387 not relative to the specified declaration
2388
2389 If no ArrayID is specified with an indirect addressing operand the whole
2390 register file might be accessed by this operand. This is strongly discouraged
2391 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2392
2393 Declaration Semantic
2394 ^^^^^^^^^^^^^^^^^^^^^^^^
2395
2396 Vertex and fragment shader input and output registers may be labeled
2397 with semantic information consisting of a name and index.
2398
2399 Follows Declaration token if Semantic bit is set.
2400
2401 Since its purpose is to link a shader with other stages of the pipeline,
2402 it is valid to follow only those Declaration tokens that declare a register
2403 either in INPUT or OUTPUT file.
2404
2405 SemanticName field contains the semantic name of the register being declared.
2406 There is no default value.
2407
2408 SemanticIndex is an optional subscript that can be used to distinguish
2409 different register declarations with the same semantic name. The default value
2410 is 0.
2411
2412 The meanings of the individual semantic names are explained in the following
2413 sections.
2414
2415 TGSI_SEMANTIC_POSITION
2416 """"""""""""""""""""""
2417
2418 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2419 output register which contains the homogeneous vertex position in the clip
2420 space coordinate system. After clipping, the X, Y and Z components of the
2421 vertex will be divided by the W value to get normalized device coordinates.
2422
2423 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2424 fragment shader input contains the fragment's window position. The X
2425 component starts at zero and always increases from left to right.
2426 The Y component starts at zero and always increases but Y=0 may either
2427 indicate the top of the window or the bottom depending on the fragment
2428 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2429 The Z coordinate ranges from 0 to 1 to represent depth from the front
2430 to the back of the Z buffer. The W component contains the reciprocol
2431 of the interpolated vertex position W component.
2432
2433 Fragment shaders may also declare an output register with
2434 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2435 the fragment shader to change the fragment's Z position.
2436
2437
2438
2439 TGSI_SEMANTIC_COLOR
2440 """""""""""""""""""
2441
2442 For vertex shader outputs or fragment shader inputs/outputs, this
2443 label indicates that the resister contains an R,G,B,A color.
2444
2445 Several shader inputs/outputs may contain colors so the semantic index
2446 is used to distinguish them. For example, color[0] may be the diffuse
2447 color while color[1] may be the specular color.
2448
2449 This label is needed so that the flat/smooth shading can be applied
2450 to the right interpolants during rasterization.
2451
2452
2453
2454 TGSI_SEMANTIC_BCOLOR
2455 """"""""""""""""""""
2456
2457 Back-facing colors are only used for back-facing polygons, and are only valid
2458 in vertex shader outputs. After rasterization, all polygons are front-facing
2459 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2460 so all BCOLORs effectively become regular COLORs in the fragment shader.
2461
2462
2463 TGSI_SEMANTIC_FOG
2464 """""""""""""""""
2465
2466 Vertex shader inputs and outputs and fragment shader inputs may be
2467 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2468 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2469 to compute a fog blend factor which is used to blend the normal fragment color
2470 with a constant fog color. But fog coord really is just an ordinary vec4
2471 register like regular semantics.
2472
2473
2474 TGSI_SEMANTIC_PSIZE
2475 """""""""""""""""""
2476
2477 Vertex shader input and output registers may be labeled with
2478 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2479 in the form (S, 0, 0, 1). The point size controls the width or diameter
2480 of points for rasterization. This label cannot be used in fragment
2481 shaders.
2482
2483 When using this semantic, be sure to set the appropriate state in the
2484 :ref:`rasterizer` first.
2485
2486
2487 TGSI_SEMANTIC_TEXCOORD
2488 """"""""""""""""""""""
2489
2490 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2491
2492 Vertex shader outputs and fragment shader inputs may be labeled with
2493 this semantic to make them replaceable by sprite coordinates via the
2494 sprite_coord_enable state in the :ref:`rasterizer`.
2495 The semantic index permitted with this semantic is limited to <= 7.
2496
2497 If the driver does not support TEXCOORD, sprite coordinate replacement
2498 applies to inputs with the GENERIC semantic instead.
2499
2500 The intended use case for this semantic is gl_TexCoord.
2501
2502
2503 TGSI_SEMANTIC_PCOORD
2504 """"""""""""""""""""
2505
2506 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2507
2508 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2509 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2510 the current primitive is a point and point sprites are enabled. Otherwise,
2511 the contents of the register are undefined.
2512
2513 The intended use case for this semantic is gl_PointCoord.
2514
2515
2516 TGSI_SEMANTIC_GENERIC
2517 """""""""""""""""""""
2518
2519 All vertex/fragment shader inputs/outputs not labeled with any other
2520 semantic label can be considered to be generic attributes. Typical
2521 uses of generic inputs/outputs are texcoords and user-defined values.
2522
2523
2524 TGSI_SEMANTIC_NORMAL
2525 """"""""""""""""""""
2526
2527 Indicates that a vertex shader input is a normal vector. This is
2528 typically only used for legacy graphics APIs.
2529
2530
2531 TGSI_SEMANTIC_FACE
2532 """"""""""""""""""
2533
2534 This label applies to fragment shader inputs only and indicates that
2535 the register contains front/back-face information of the form (F, 0,
2536 0, 1). The first component will be positive when the fragment belongs
2537 to a front-facing polygon, and negative when the fragment belongs to a
2538 back-facing polygon.
2539
2540
2541 TGSI_SEMANTIC_EDGEFLAG
2542 """"""""""""""""""""""
2543
2544 For vertex shaders, this sematic label indicates that an input or
2545 output is a boolean edge flag. The register layout is [F, x, x, x]
2546 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2547 simply copies the edge flag input to the edgeflag output.
2548
2549 Edge flags are used to control which lines or points are actually
2550 drawn when the polygon mode converts triangles/quads/polygons into
2551 points or lines.
2552
2553
2554 TGSI_SEMANTIC_STENCIL
2555 """""""""""""""""""""
2556
2557 For fragment shaders, this semantic label indicates that an output
2558 is a writable stencil reference value. Only the Y component is writable.
2559 This allows the fragment shader to change the fragments stencilref value.
2560
2561
2562 TGSI_SEMANTIC_VIEWPORT_INDEX
2563 """"""""""""""""""""""""""""
2564
2565 For geometry shaders, this semantic label indicates that an output
2566 contains the index of the viewport (and scissor) to use.
2567 Only the X value is used.
2568
2569
2570 TGSI_SEMANTIC_LAYER
2571 """""""""""""""""""
2572
2573 For geometry shaders, this semantic label indicates that an output
2574 contains the layer value to use for the color and depth/stencil surfaces.
2575 Only the X value is used. (Also known as rendertarget array index.)
2576
2577
2578 TGSI_SEMANTIC_CULLDIST
2579 """"""""""""""""""""""
2580
2581 Used as distance to plane for performing application-defined culling
2582 of individual primitives against a plane. When components of vertex
2583 elements are given this label, these values are assumed to be a
2584 float32 signed distance to a plane. Primitives will be completely
2585 discarded if the plane distance for all of the vertices in the
2586 primitive are < 0. If a vertex has a cull distance of NaN, that
2587 vertex counts as "out" (as if its < 0);
2588 The limits on both clip and cull distances are bound
2589 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2590 the maximum number of components that can be used to hold the
2591 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2592 which specifies the maximum number of registers which can be
2593 annotated with those semantics.
2594
2595
2596 TGSI_SEMANTIC_CLIPDIST
2597 """"""""""""""""""""""
2598
2599 When components of vertex elements are identified this way, these
2600 values are each assumed to be a float32 signed distance to a plane.
2601 Primitive setup only invokes rasterization on pixels for which
2602 the interpolated plane distances are >= 0. Multiple clip planes
2603 can be implemented simultaneously, by annotating multiple
2604 components of one or more vertex elements with the above specified
2605 semantic. The limits on both clip and cull distances are bound
2606 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2607 the maximum number of components that can be used to hold the
2608 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2609 which specifies the maximum number of registers which can be
2610 annotated with those semantics.
2611
2612
2613 Declaration Interpolate
2614 ^^^^^^^^^^^^^^^^^^^^^^^
2615
2616 This token is only valid for fragment shader INPUT declarations.
2617
2618 The Interpolate field specifes the way input is being interpolated by
2619 the rasteriser and is one of TGSI_INTERPOLATE_*.
2620
2621 The CylindricalWrap bitfield specifies which register components
2622 should be subject to cylindrical wrapping when interpolating by the
2623 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2624 should be interpolated according to cylindrical wrapping rules.
2625
2626
2627 Declaration Sampler View
2628 ^^^^^^^^^^^^^^^^^^^^^^^^
2629
2630 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2631
2632 DCL SVIEW[#], resource, type(s)
2633
2634 Declares a shader input sampler view and assigns it to a SVIEW[#]
2635 register.
2636
2637 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2638
2639 type must be 1 or 4 entries (if specifying on a per-component
2640 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2641
2642
2643 Declaration Resource
2644 ^^^^^^^^^^^^^^^^^^^^
2645
2646 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2647
2648 DCL RES[#], resource [, WR] [, RAW]
2649
2650 Declares a shader input resource and assigns it to a RES[#]
2651 register.
2652
2653 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2654 2DArray.
2655
2656 If the RAW keyword is not specified, the texture data will be
2657 subject to conversion, swizzling and scaling as required to yield
2658 the specified data type from the physical data format of the bound
2659 resource.
2660
2661 If the RAW keyword is specified, no channel conversion will be
2662 performed: the values read for each of the channels (X,Y,Z,W) will
2663 correspond to consecutive words in the same order and format
2664 they're found in memory. No element-to-address conversion will be
2665 performed either: the value of the provided X coordinate will be
2666 interpreted in byte units instead of texel units. The result of
2667 accessing a misaligned address is undefined.
2668
2669 Usage of the STORE opcode is only allowed if the WR (writable) flag
2670 is set.
2671
2672
2673 Properties
2674 ^^^^^^^^^^^^^^^^^^^^^^^^
2675
2676 Properties are general directives that apply to the whole TGSI program.
2677
2678 FS_COORD_ORIGIN
2679 """""""""""""""
2680
2681 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2682 The default value is UPPER_LEFT.
2683
2684 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2685 increase downward and rightward.
2686 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2687 increase upward and rightward.
2688
2689 OpenGL defaults to LOWER_LEFT, and is configurable with the
2690 GL_ARB_fragment_coord_conventions extension.
2691
2692 DirectX 9/10 use UPPER_LEFT.
2693
2694 FS_COORD_PIXEL_CENTER
2695 """""""""""""""""""""
2696
2697 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2698 The default value is HALF_INTEGER.
2699
2700 If HALF_INTEGER, the fractionary part of the position will be 0.5
2701 If INTEGER, the fractionary part of the position will be 0.0
2702
2703 Note that this does not affect the set of fragments generated by
2704 rasterization, which is instead controlled by half_pixel_center in the
2705 rasterizer.
2706
2707 OpenGL defaults to HALF_INTEGER, and is configurable with the
2708 GL_ARB_fragment_coord_conventions extension.
2709
2710 DirectX 9 uses INTEGER.
2711 DirectX 10 uses HALF_INTEGER.
2712
2713 FS_COLOR0_WRITES_ALL_CBUFS
2714 """"""""""""""""""""""""""
2715 Specifies that writes to the fragment shader color 0 are replicated to all
2716 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2717 fragData is directed to a single color buffer, but fragColor is broadcast.
2718
2719 VS_PROHIBIT_UCPS
2720 """"""""""""""""""""""""""
2721 If this property is set on the program bound to the shader stage before the
2722 fragment shader, user clip planes should have no effect (be disabled) even if
2723 that shader does not write to any clip distance outputs and the rasterizer's
2724 clip_plane_enable is non-zero.
2725 This property is only supported by drivers that also support shader clip
2726 distance outputs.
2727 This is useful for APIs that don't have UCPs and where clip distances written
2728 by a shader cannot be disabled.
2729
2730
2731 Texture Sampling and Texture Formats
2732 ------------------------------------
2733
2734 This table shows how texture image components are returned as (x,y,z,w) tuples
2735 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2736 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2737 well.
2738
2739 +--------------------+--------------+--------------------+--------------+
2740 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2741 +====================+==============+====================+==============+
2742 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2743 +--------------------+--------------+--------------------+--------------+
2744 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2745 +--------------------+--------------+--------------------+--------------+
2746 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2747 +--------------------+--------------+--------------------+--------------+
2748 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2749 +--------------------+--------------+--------------------+--------------+
2750 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2751 +--------------------+--------------+--------------------+--------------+
2752 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2753 +--------------------+--------------+--------------------+--------------+
2754 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2755 +--------------------+--------------+--------------------+--------------+
2756 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2757 +--------------------+--------------+--------------------+--------------+
2758 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2759 | | | [#envmap-bumpmap]_ | |
2760 +--------------------+--------------+--------------------+--------------+
2761 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2762 | | | [#depth-tex-mode]_ | |
2763 +--------------------+--------------+--------------------+--------------+
2764 | S | (s, s, s, s) | unknown | unknown |
2765 +--------------------+--------------+--------------------+--------------+
2766
2767 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2768 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2769 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.