gallium/docs: remove documentation of non-existent instructions
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = (int) \lfloor src.x\rfloor
52
53 dst.y = (int) \lfloor src.y\rfloor
54
55 dst.z = (int) \lfloor src.z\rfloor
56
57 dst.w = (int) \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: LRP - Linear Interpolate
250
251 .. math::
252
253 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
254
255 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
256
257 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
258
259 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
260
261
262 .. opcode:: FMA - Fused Multiply-Add
263
264 Perform a * b + c with no intermediate rounding step.
265
266 .. math::
267
268 dst.x = src0.x \times src1.x + src2.x
269
270 dst.y = src0.y \times src1.y + src2.y
271
272 dst.z = src0.z \times src1.z + src2.z
273
274 dst.w = src0.w \times src1.w + src2.w
275
276
277 .. opcode:: DP2A - 2-component Dot Product And Add
278
279 .. math::
280
281 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
282
283 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
284
285 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
286
287 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
288
289
290 .. opcode:: FRC - Fraction
291
292 .. math::
293
294 dst.x = src.x - \lfloor src.x\rfloor
295
296 dst.y = src.y - \lfloor src.y\rfloor
297
298 dst.z = src.z - \lfloor src.z\rfloor
299
300 dst.w = src.w - \lfloor src.w\rfloor
301
302
303 .. opcode:: CLAMP - Clamp
304
305 .. math::
306
307 dst.x = clamp(src0.x, src1.x, src2.x)
308
309 dst.y = clamp(src0.y, src1.y, src2.y)
310
311 dst.z = clamp(src0.z, src1.z, src2.z)
312
313 dst.w = clamp(src0.w, src1.w, src2.w)
314
315
316 .. opcode:: FLR - Floor
317
318 .. math::
319
320 dst.x = \lfloor src.x\rfloor
321
322 dst.y = \lfloor src.y\rfloor
323
324 dst.z = \lfloor src.z\rfloor
325
326 dst.w = \lfloor src.w\rfloor
327
328
329 .. opcode:: ROUND - Round
330
331 .. math::
332
333 dst.x = round(src.x)
334
335 dst.y = round(src.y)
336
337 dst.z = round(src.z)
338
339 dst.w = round(src.w)
340
341
342 .. opcode:: EX2 - Exponential Base 2
343
344 This instruction replicates its result.
345
346 .. math::
347
348 dst = 2^{src.x}
349
350
351 .. opcode:: LG2 - Logarithm Base 2
352
353 This instruction replicates its result.
354
355 .. math::
356
357 dst = \log_2{src.x}
358
359
360 .. opcode:: POW - Power
361
362 This instruction replicates its result.
363
364 .. math::
365
366 dst = src0.x^{src1.x}
367
368 .. opcode:: XPD - Cross Product
369
370 .. math::
371
372 dst.x = src0.y \times src1.z - src1.y \times src0.z
373
374 dst.y = src0.z \times src1.x - src1.z \times src0.x
375
376 dst.z = src0.x \times src1.y - src1.x \times src0.y
377
378 dst.w = 1
379
380
381 .. opcode:: DPH - Homogeneous Dot Product
382
383 This instruction replicates its result.
384
385 .. math::
386
387 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
388
389
390 .. opcode:: COS - Cosine
391
392 This instruction replicates its result.
393
394 .. math::
395
396 dst = \cos{src.x}
397
398
399 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
400
401 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
402 advertised. When it is, the fine version guarantees one derivative per row
403 while DDX is allowed to be the same for the entire 2x2 quad.
404
405 .. math::
406
407 dst.x = partialx(src.x)
408
409 dst.y = partialx(src.y)
410
411 dst.z = partialx(src.z)
412
413 dst.w = partialx(src.w)
414
415
416 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
417
418 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
419 advertised. When it is, the fine version guarantees one derivative per column
420 while DDY is allowed to be the same for the entire 2x2 quad.
421
422 .. math::
423
424 dst.x = partialy(src.x)
425
426 dst.y = partialy(src.y)
427
428 dst.z = partialy(src.z)
429
430 dst.w = partialy(src.w)
431
432
433 .. opcode:: PK2H - Pack Two 16-bit Floats
434
435 This instruction replicates its result.
436
437 .. math::
438
439 dst = f32\_to\_f16(src.x) | f32\_to\_f16(src.y) << 16
440
441
442 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
443
444 TBD
445
446
447 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
448
449 TBD
450
451
452 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
453
454 TBD
455
456
457 .. opcode:: SEQ - Set On Equal
458
459 .. math::
460
461 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
462
463 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
464
465 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
466
467 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
468
469
470 .. opcode:: SGT - Set On Greater Than
471
472 .. math::
473
474 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
475
476 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
477
478 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
479
480 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
481
482
483 .. opcode:: SIN - Sine
484
485 This instruction replicates its result.
486
487 .. math::
488
489 dst = \sin{src.x}
490
491
492 .. opcode:: SLE - Set On Less Equal Than
493
494 .. math::
495
496 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
497
498 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
499
500 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
501
502 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
503
504
505 .. opcode:: SNE - Set On Not Equal
506
507 .. math::
508
509 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
510
511 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
512
513 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
514
515 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
516
517
518 .. opcode:: TEX - Texture Lookup
519
520 for array textures src0.y contains the slice for 1D,
521 and src0.z contain the slice for 2D.
522
523 for shadow textures with no arrays (and not cube map),
524 src0.z contains the reference value.
525
526 for shadow textures with arrays, src0.z contains
527 the reference value for 1D arrays, and src0.w contains
528 the reference value for 2D arrays and cube maps.
529
530 for cube map array shadow textures, the reference value
531 cannot be passed in src0.w, and TEX2 must be used instead.
532
533 .. math::
534
535 coord = src0
536
537 shadow_ref = src0.z or src0.w (optional)
538
539 unit = src1
540
541 dst = texture\_sample(unit, coord, shadow_ref)
542
543
544 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
545
546 this is the same as TEX, but uses another reg to encode the
547 reference value.
548
549 .. math::
550
551 coord = src0
552
553 shadow_ref = src1.x
554
555 unit = src2
556
557 dst = texture\_sample(unit, coord, shadow_ref)
558
559
560
561
562 .. opcode:: TXD - Texture Lookup with Derivatives
563
564 .. math::
565
566 coord = src0
567
568 ddx = src1
569
570 ddy = src2
571
572 unit = src3
573
574 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
575
576
577 .. opcode:: TXP - Projective Texture Lookup
578
579 .. math::
580
581 coord.x = src0.x / src0.w
582
583 coord.y = src0.y / src0.w
584
585 coord.z = src0.z / src0.w
586
587 coord.w = src0.w
588
589 unit = src1
590
591 dst = texture\_sample(unit, coord)
592
593
594 .. opcode:: UP2H - Unpack Two 16-Bit Floats
595
596 .. math::
597
598 dst.x = f16\_to\_f32(src0.x \& 0xffff)
599
600 dst.y = f16\_to\_f32(src0.x >> 16)
601
602 dst.z = f16\_to\_f32(src0.x \& 0xffff)
603
604 dst.w = f16\_to\_f32(src0.x >> 16)
605
606 .. note::
607
608 Considered for removal.
609
610 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
611
612 TBD
613
614 .. note::
615
616 Considered for removal.
617
618 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
619
620 TBD
621
622 .. note::
623
624 Considered for removal.
625
626 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
627
628 TBD
629
630 .. note::
631
632 Considered for removal.
633
634
635 .. opcode:: ARR - Address Register Load With Round
636
637 .. math::
638
639 dst.x = (int) round(src.x)
640
641 dst.y = (int) round(src.y)
642
643 dst.z = (int) round(src.z)
644
645 dst.w = (int) round(src.w)
646
647
648 .. opcode:: SSG - Set Sign
649
650 .. math::
651
652 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
653
654 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
655
656 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
657
658 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
659
660
661 .. opcode:: CMP - Compare
662
663 .. math::
664
665 dst.x = (src0.x < 0) ? src1.x : src2.x
666
667 dst.y = (src0.y < 0) ? src1.y : src2.y
668
669 dst.z = (src0.z < 0) ? src1.z : src2.z
670
671 dst.w = (src0.w < 0) ? src1.w : src2.w
672
673
674 .. opcode:: KILL_IF - Conditional Discard
675
676 Conditional discard. Allowed in fragment shaders only.
677
678 .. math::
679
680 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
681 discard
682 endif
683
684
685 .. opcode:: KILL - Discard
686
687 Unconditional discard. Allowed in fragment shaders only.
688
689
690 .. opcode:: SCS - Sine Cosine
691
692 .. math::
693
694 dst.x = \cos{src.x}
695
696 dst.y = \sin{src.x}
697
698 dst.z = 0
699
700 dst.w = 1
701
702
703 .. opcode:: TXB - Texture Lookup With Bias
704
705 for cube map array textures and shadow cube maps, the bias value
706 cannot be passed in src0.w, and TXB2 must be used instead.
707
708 if the target is a shadow texture, the reference value is always
709 in src.z (this prevents shadow 3d and shadow 2d arrays from
710 using this instruction, but this is not needed).
711
712 .. math::
713
714 coord.x = src0.x
715
716 coord.y = src0.y
717
718 coord.z = src0.z
719
720 coord.w = none
721
722 bias = src0.w
723
724 unit = src1
725
726 dst = texture\_sample(unit, coord, bias)
727
728
729 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
730
731 this is the same as TXB, but uses another reg to encode the
732 lod bias value for cube map arrays and shadow cube maps.
733 Presumably shadow 2d arrays and shadow 3d targets could use
734 this encoding too, but this is not legal.
735
736 shadow cube map arrays are neither possible nor required.
737
738 .. math::
739
740 coord = src0
741
742 bias = src1.x
743
744 unit = src2
745
746 dst = texture\_sample(unit, coord, bias)
747
748
749 .. opcode:: DIV - Divide
750
751 .. math::
752
753 dst.x = \frac{src0.x}{src1.x}
754
755 dst.y = \frac{src0.y}{src1.y}
756
757 dst.z = \frac{src0.z}{src1.z}
758
759 dst.w = \frac{src0.w}{src1.w}
760
761
762 .. opcode:: DP2 - 2-component Dot Product
763
764 This instruction replicates its result.
765
766 .. math::
767
768 dst = src0.x \times src1.x + src0.y \times src1.y
769
770
771 .. opcode:: TXL - Texture Lookup With explicit LOD
772
773 for cube map array textures, the explicit lod value
774 cannot be passed in src0.w, and TXL2 must be used instead.
775
776 if the target is a shadow texture, the reference value is always
777 in src.z (this prevents shadow 3d / 2d array / cube targets from
778 using this instruction, but this is not needed).
779
780 .. math::
781
782 coord.x = src0.x
783
784 coord.y = src0.y
785
786 coord.z = src0.z
787
788 coord.w = none
789
790 lod = src0.w
791
792 unit = src1
793
794 dst = texture\_sample(unit, coord, lod)
795
796
797 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
798
799 this is the same as TXL, but uses another reg to encode the
800 explicit lod value.
801 Presumably shadow 3d / 2d array / cube targets could use
802 this encoding too, but this is not legal.
803
804 shadow cube map arrays are neither possible nor required.
805
806 .. math::
807
808 coord = src0
809
810 lod = src1.x
811
812 unit = src2
813
814 dst = texture\_sample(unit, coord, lod)
815
816
817 .. opcode:: PUSHA - Push Address Register On Stack
818
819 push(src.x)
820 push(src.y)
821 push(src.z)
822 push(src.w)
823
824 .. note::
825
826 Considered for cleanup.
827
828 .. note::
829
830 Considered for removal.
831
832 .. opcode:: POPA - Pop Address Register From Stack
833
834 dst.w = pop()
835 dst.z = pop()
836 dst.y = pop()
837 dst.x = pop()
838
839 .. note::
840
841 Considered for cleanup.
842
843 .. note::
844
845 Considered for removal.
846
847
848 .. opcode:: CALLNZ - Subroutine Call If Not Zero
849
850 TBD
851
852 .. note::
853
854 Considered for cleanup.
855
856 .. note::
857
858 Considered for removal.
859
860
861 Compute ISA
862 ^^^^^^^^^^^^^^^^^^^^^^^^
863
864 These opcodes are primarily provided for special-use computational shaders.
865 Support for these opcodes indicated by a special pipe capability bit (TBD).
866
867 XXX doesn't look like most of the opcodes really belong here.
868
869 .. opcode:: CEIL - Ceiling
870
871 .. math::
872
873 dst.x = \lceil src.x\rceil
874
875 dst.y = \lceil src.y\rceil
876
877 dst.z = \lceil src.z\rceil
878
879 dst.w = \lceil src.w\rceil
880
881
882 .. opcode:: TRUNC - Truncate
883
884 .. math::
885
886 dst.x = trunc(src.x)
887
888 dst.y = trunc(src.y)
889
890 dst.z = trunc(src.z)
891
892 dst.w = trunc(src.w)
893
894
895 .. opcode:: MOD - Modulus
896
897 .. math::
898
899 dst.x = src0.x \bmod src1.x
900
901 dst.y = src0.y \bmod src1.y
902
903 dst.z = src0.z \bmod src1.z
904
905 dst.w = src0.w \bmod src1.w
906
907
908 .. opcode:: UARL - Integer Address Register Load
909
910 Moves the contents of the source register, assumed to be an integer, into the
911 destination register, which is assumed to be an address (ADDR) register.
912
913
914 .. opcode:: SAD - Sum Of Absolute Differences
915
916 .. math::
917
918 dst.x = |src0.x - src1.x| + src2.x
919
920 dst.y = |src0.y - src1.y| + src2.y
921
922 dst.z = |src0.z - src1.z| + src2.z
923
924 dst.w = |src0.w - src1.w| + src2.w
925
926
927 .. opcode:: TXF - Texel Fetch
928
929 As per NV_gpu_shader4, extract a single texel from a specified texture
930 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
931 four-component signed integer vector used to identify the single texel
932 accessed. 3 components + level. Just like texture instructions, an optional
933 offset vector is provided, which is subject to various driver restrictions
934 (regarding range, source of offsets).
935 TXF(uint_vec coord, int_vec offset).
936
937
938 .. opcode:: TXQ - Texture Size Query
939
940 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
941 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
942 depth), 1D array (width, layers), 2D array (width, height, layers).
943 Also return the number of accessible levels (last_level - first_level + 1)
944 in W.
945
946 For components which don't return a resource dimension, their value
947 is undefined.
948
949 .. math::
950
951 lod = src0.x
952
953 dst.x = texture\_width(unit, lod)
954
955 dst.y = texture\_height(unit, lod)
956
957 dst.z = texture\_depth(unit, lod)
958
959 dst.w = texture\_levels(unit)
960
961
962 .. opcode:: TXQS - Texture Samples Query
963
964 This retrieves the number of samples in the texture, and stores it
965 into the x component. The other components are undefined.
966
967 .. math::
968
969 dst.x = texture\_samples(unit)
970
971
972 .. opcode:: TG4 - Texture Gather
973
974 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
975 filtering operation and packs them into a single register. Only works with
976 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
977 addressing modes of the sampler and the top level of any mip pyramid are
978 used. Set W to zero. It behaves like the TEX instruction, but a filtered
979 sample is not generated. The four samples that contribute to filtering are
980 placed into xyzw in clockwise order, starting with the (u,v) texture
981 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
982 where the magnitude of the deltas are half a texel.
983
984 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
985 depth compares, single component selection, and a non-constant offset. It
986 doesn't allow support for the GL independent offset to get i0,j0. This would
987 require another CAP is hw can do it natively. For now we lower that before
988 TGSI.
989
990 .. math::
991
992 coord = src0
993
994 component = src1
995
996 dst = texture\_gather4 (unit, coord, component)
997
998 (with SM5 - cube array shadow)
999
1000 .. math::
1001
1002 coord = src0
1003
1004 compare = src1
1005
1006 dst = texture\_gather (uint, coord, compare)
1007
1008 .. opcode:: LODQ - level of detail query
1009
1010 Compute the LOD information that the texture pipe would use to access the
1011 texture. The Y component contains the computed LOD lambda_prime. The X
1012 component contains the LOD that will be accessed, based on min/max lod's
1013 and mipmap filters.
1014
1015 .. math::
1016
1017 coord = src0
1018
1019 dst.xy = lodq(uint, coord);
1020
1021 Integer ISA
1022 ^^^^^^^^^^^^^^^^^^^^^^^^
1023 These opcodes are used for integer operations.
1024 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1025
1026
1027 .. opcode:: I2F - Signed Integer To Float
1028
1029 Rounding is unspecified (round to nearest even suggested).
1030
1031 .. math::
1032
1033 dst.x = (float) src.x
1034
1035 dst.y = (float) src.y
1036
1037 dst.z = (float) src.z
1038
1039 dst.w = (float) src.w
1040
1041
1042 .. opcode:: U2F - Unsigned Integer To Float
1043
1044 Rounding is unspecified (round to nearest even suggested).
1045
1046 .. math::
1047
1048 dst.x = (float) src.x
1049
1050 dst.y = (float) src.y
1051
1052 dst.z = (float) src.z
1053
1054 dst.w = (float) src.w
1055
1056
1057 .. opcode:: F2I - Float to Signed Integer
1058
1059 Rounding is towards zero (truncate).
1060 Values outside signed range (including NaNs) produce undefined results.
1061
1062 .. math::
1063
1064 dst.x = (int) src.x
1065
1066 dst.y = (int) src.y
1067
1068 dst.z = (int) src.z
1069
1070 dst.w = (int) src.w
1071
1072
1073 .. opcode:: F2U - Float to Unsigned Integer
1074
1075 Rounding is towards zero (truncate).
1076 Values outside unsigned range (including NaNs) produce undefined results.
1077
1078 .. math::
1079
1080 dst.x = (unsigned) src.x
1081
1082 dst.y = (unsigned) src.y
1083
1084 dst.z = (unsigned) src.z
1085
1086 dst.w = (unsigned) src.w
1087
1088
1089 .. opcode:: UADD - Integer Add
1090
1091 This instruction works the same for signed and unsigned integers.
1092 The low 32bit of the result is returned.
1093
1094 .. math::
1095
1096 dst.x = src0.x + src1.x
1097
1098 dst.y = src0.y + src1.y
1099
1100 dst.z = src0.z + src1.z
1101
1102 dst.w = src0.w + src1.w
1103
1104
1105 .. opcode:: UMAD - Integer Multiply And Add
1106
1107 This instruction works the same for signed and unsigned integers.
1108 The multiplication returns the low 32bit (as does the result itself).
1109
1110 .. math::
1111
1112 dst.x = src0.x \times src1.x + src2.x
1113
1114 dst.y = src0.y \times src1.y + src2.y
1115
1116 dst.z = src0.z \times src1.z + src2.z
1117
1118 dst.w = src0.w \times src1.w + src2.w
1119
1120
1121 .. opcode:: UMUL - Integer Multiply
1122
1123 This instruction works the same for signed and unsigned integers.
1124 The low 32bit of the result is returned.
1125
1126 .. math::
1127
1128 dst.x = src0.x \times src1.x
1129
1130 dst.y = src0.y \times src1.y
1131
1132 dst.z = src0.z \times src1.z
1133
1134 dst.w = src0.w \times src1.w
1135
1136
1137 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1138
1139 The high 32bits of the multiplication of 2 signed integers are returned.
1140
1141 .. math::
1142
1143 dst.x = (src0.x \times src1.x) >> 32
1144
1145 dst.y = (src0.y \times src1.y) >> 32
1146
1147 dst.z = (src0.z \times src1.z) >> 32
1148
1149 dst.w = (src0.w \times src1.w) >> 32
1150
1151
1152 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1153
1154 The high 32bits of the multiplication of 2 unsigned integers are returned.
1155
1156 .. math::
1157
1158 dst.x = (src0.x \times src1.x) >> 32
1159
1160 dst.y = (src0.y \times src1.y) >> 32
1161
1162 dst.z = (src0.z \times src1.z) >> 32
1163
1164 dst.w = (src0.w \times src1.w) >> 32
1165
1166
1167 .. opcode:: IDIV - Signed Integer Division
1168
1169 TBD: behavior for division by zero.
1170
1171 .. math::
1172
1173 dst.x = src0.x \ src1.x
1174
1175 dst.y = src0.y \ src1.y
1176
1177 dst.z = src0.z \ src1.z
1178
1179 dst.w = src0.w \ src1.w
1180
1181
1182 .. opcode:: UDIV - Unsigned Integer Division
1183
1184 For division by zero, 0xffffffff is returned.
1185
1186 .. math::
1187
1188 dst.x = src0.x \ src1.x
1189
1190 dst.y = src0.y \ src1.y
1191
1192 dst.z = src0.z \ src1.z
1193
1194 dst.w = src0.w \ src1.w
1195
1196
1197 .. opcode:: UMOD - Unsigned Integer Remainder
1198
1199 If second arg is zero, 0xffffffff is returned.
1200
1201 .. math::
1202
1203 dst.x = src0.x \ src1.x
1204
1205 dst.y = src0.y \ src1.y
1206
1207 dst.z = src0.z \ src1.z
1208
1209 dst.w = src0.w \ src1.w
1210
1211
1212 .. opcode:: NOT - Bitwise Not
1213
1214 .. math::
1215
1216 dst.x = \sim src.x
1217
1218 dst.y = \sim src.y
1219
1220 dst.z = \sim src.z
1221
1222 dst.w = \sim src.w
1223
1224
1225 .. opcode:: AND - Bitwise And
1226
1227 .. math::
1228
1229 dst.x = src0.x \& src1.x
1230
1231 dst.y = src0.y \& src1.y
1232
1233 dst.z = src0.z \& src1.z
1234
1235 dst.w = src0.w \& src1.w
1236
1237
1238 .. opcode:: OR - Bitwise Or
1239
1240 .. math::
1241
1242 dst.x = src0.x | src1.x
1243
1244 dst.y = src0.y | src1.y
1245
1246 dst.z = src0.z | src1.z
1247
1248 dst.w = src0.w | src1.w
1249
1250
1251 .. opcode:: XOR - Bitwise Xor
1252
1253 .. math::
1254
1255 dst.x = src0.x \oplus src1.x
1256
1257 dst.y = src0.y \oplus src1.y
1258
1259 dst.z = src0.z \oplus src1.z
1260
1261 dst.w = src0.w \oplus src1.w
1262
1263
1264 .. opcode:: IMAX - Maximum of Signed Integers
1265
1266 .. math::
1267
1268 dst.x = max(src0.x, src1.x)
1269
1270 dst.y = max(src0.y, src1.y)
1271
1272 dst.z = max(src0.z, src1.z)
1273
1274 dst.w = max(src0.w, src1.w)
1275
1276
1277 .. opcode:: UMAX - Maximum of Unsigned Integers
1278
1279 .. math::
1280
1281 dst.x = max(src0.x, src1.x)
1282
1283 dst.y = max(src0.y, src1.y)
1284
1285 dst.z = max(src0.z, src1.z)
1286
1287 dst.w = max(src0.w, src1.w)
1288
1289
1290 .. opcode:: IMIN - Minimum of Signed Integers
1291
1292 .. math::
1293
1294 dst.x = min(src0.x, src1.x)
1295
1296 dst.y = min(src0.y, src1.y)
1297
1298 dst.z = min(src0.z, src1.z)
1299
1300 dst.w = min(src0.w, src1.w)
1301
1302
1303 .. opcode:: UMIN - Minimum of Unsigned Integers
1304
1305 .. math::
1306
1307 dst.x = min(src0.x, src1.x)
1308
1309 dst.y = min(src0.y, src1.y)
1310
1311 dst.z = min(src0.z, src1.z)
1312
1313 dst.w = min(src0.w, src1.w)
1314
1315
1316 .. opcode:: SHL - Shift Left
1317
1318 The shift count is masked with 0x1f before the shift is applied.
1319
1320 .. math::
1321
1322 dst.x = src0.x << (0x1f \& src1.x)
1323
1324 dst.y = src0.y << (0x1f \& src1.y)
1325
1326 dst.z = src0.z << (0x1f \& src1.z)
1327
1328 dst.w = src0.w << (0x1f \& src1.w)
1329
1330
1331 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1332
1333 The shift count is masked with 0x1f before the shift is applied.
1334
1335 .. math::
1336
1337 dst.x = src0.x >> (0x1f \& src1.x)
1338
1339 dst.y = src0.y >> (0x1f \& src1.y)
1340
1341 dst.z = src0.z >> (0x1f \& src1.z)
1342
1343 dst.w = src0.w >> (0x1f \& src1.w)
1344
1345
1346 .. opcode:: USHR - Logical Shift Right
1347
1348 The shift count is masked with 0x1f before the shift is applied.
1349
1350 .. math::
1351
1352 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1353
1354 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1355
1356 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1357
1358 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1359
1360
1361 .. opcode:: UCMP - Integer Conditional Move
1362
1363 .. math::
1364
1365 dst.x = src0.x ? src1.x : src2.x
1366
1367 dst.y = src0.y ? src1.y : src2.y
1368
1369 dst.z = src0.z ? src1.z : src2.z
1370
1371 dst.w = src0.w ? src1.w : src2.w
1372
1373
1374
1375 .. opcode:: ISSG - Integer Set Sign
1376
1377 .. math::
1378
1379 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1380
1381 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1382
1383 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1384
1385 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1386
1387
1388
1389 .. opcode:: FSLT - Float Set On Less Than (ordered)
1390
1391 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1392
1393 .. math::
1394
1395 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1396
1397 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1398
1399 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1400
1401 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1402
1403
1404 .. opcode:: ISLT - Signed Integer Set On Less Than
1405
1406 .. math::
1407
1408 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1409
1410 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1411
1412 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1413
1414 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1415
1416
1417 .. opcode:: USLT - Unsigned Integer Set On Less Than
1418
1419 .. math::
1420
1421 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1422
1423 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1424
1425 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1426
1427 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1428
1429
1430 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1431
1432 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1433
1434 .. math::
1435
1436 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1437
1438 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1439
1440 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1441
1442 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1443
1444
1445 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1446
1447 .. math::
1448
1449 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1450
1451 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1452
1453 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1454
1455 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1456
1457
1458 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1459
1460 .. math::
1461
1462 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1463
1464 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1465
1466 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1467
1468 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1469
1470
1471 .. opcode:: FSEQ - Float Set On Equal (ordered)
1472
1473 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1474
1475 .. math::
1476
1477 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1478
1479 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1480
1481 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1482
1483 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1484
1485
1486 .. opcode:: USEQ - Integer Set On Equal
1487
1488 .. math::
1489
1490 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1491
1492 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1493
1494 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1495
1496 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1497
1498
1499 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1500
1501 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1502
1503 .. math::
1504
1505 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1506
1507 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1508
1509 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1510
1511 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1512
1513
1514 .. opcode:: USNE - Integer Set On Not Equal
1515
1516 .. math::
1517
1518 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1519
1520 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1521
1522 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1523
1524 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1525
1526
1527 .. opcode:: INEG - Integer Negate
1528
1529 Two's complement.
1530
1531 .. math::
1532
1533 dst.x = -src.x
1534
1535 dst.y = -src.y
1536
1537 dst.z = -src.z
1538
1539 dst.w = -src.w
1540
1541
1542 .. opcode:: IABS - Integer Absolute Value
1543
1544 .. math::
1545
1546 dst.x = |src.x|
1547
1548 dst.y = |src.y|
1549
1550 dst.z = |src.z|
1551
1552 dst.w = |src.w|
1553
1554 Bitwise ISA
1555 ^^^^^^^^^^^
1556 These opcodes are used for bit-level manipulation of integers.
1557
1558 .. opcode:: IBFE - Signed Bitfield Extract
1559
1560 Like GLSL bitfieldExtract. Extracts a set of bits from the input, and
1561 sign-extends them if the high bit of the extracted window is set.
1562
1563 Pseudocode::
1564
1565 def ibfe(value, offset, bits):
1566 if offset < 0 or bits < 0 or offset + bits > 32:
1567 return undefined
1568 if bits == 0: return 0
1569 # Note: >> sign-extends
1570 return (value << (32 - offset - bits)) >> (32 - bits)
1571
1572 .. opcode:: UBFE - Unsigned Bitfield Extract
1573
1574 Like GLSL bitfieldExtract. Extracts a set of bits from the input, without
1575 any sign-extension.
1576
1577 Pseudocode::
1578
1579 def ubfe(value, offset, bits):
1580 if offset < 0 or bits < 0 or offset + bits > 32:
1581 return undefined
1582 if bits == 0: return 0
1583 # Note: >> does not sign-extend
1584 return (value << (32 - offset - bits)) >> (32 - bits)
1585
1586 .. opcode:: BFI - Bitfield Insert
1587
1588 Like GLSL bitfieldInsert. Replaces a bit region of 'base' with the low bits
1589 of 'insert'.
1590
1591 Pseudocode::
1592
1593 def bfi(base, insert, offset, bits):
1594 if offset < 0 or bits < 0 or offset + bits > 32:
1595 return undefined
1596 # << defined such that mask == ~0 when bits == 32, offset == 0
1597 mask = ((1 << bits) - 1) << offset
1598 return ((insert << offset) & mask) | (base & ~mask)
1599
1600 .. opcode:: BREV - Bitfield Reverse
1601
1602 See SM5 instruction BFREV. Reverses the bits of the argument.
1603
1604 .. opcode:: POPC - Population Count
1605
1606 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1607
1608 .. opcode:: LSB - Index of lowest set bit
1609
1610 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1611 bit of the argument. Returns -1 if none are set.
1612
1613 .. opcode:: IMSB - Index of highest non-sign bit
1614
1615 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1616 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1617 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1618 (i.e. for inputs 0 and -1).
1619
1620 .. opcode:: UMSB - Index of highest set bit
1621
1622 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1623 set bit of the argument. Returns -1 if none are set.
1624
1625 Geometry ISA
1626 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1627
1628 These opcodes are only supported in geometry shaders; they have no meaning
1629 in any other type of shader.
1630
1631 .. opcode:: EMIT - Emit
1632
1633 Generate a new vertex for the current primitive into the specified vertex
1634 stream using the values in the output registers.
1635
1636
1637 .. opcode:: ENDPRIM - End Primitive
1638
1639 Complete the current primitive in the specified vertex stream (consisting of
1640 the emitted vertices), and start a new one.
1641
1642
1643 GLSL ISA
1644 ^^^^^^^^^^
1645
1646 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1647 opcodes is determined by a special capability bit, ``GLSL``.
1648 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1649
1650 .. opcode:: CAL - Subroutine Call
1651
1652 push(pc)
1653 pc = target
1654
1655
1656 .. opcode:: RET - Subroutine Call Return
1657
1658 pc = pop()
1659
1660
1661 .. opcode:: CONT - Continue
1662
1663 Unconditionally moves the point of execution to the instruction after the
1664 last bgnloop. The instruction must appear within a bgnloop/endloop.
1665
1666 .. note::
1667
1668 Support for CONT is determined by a special capability bit,
1669 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1670
1671
1672 .. opcode:: BGNLOOP - Begin a Loop
1673
1674 Start a loop. Must have a matching endloop.
1675
1676
1677 .. opcode:: BGNSUB - Begin Subroutine
1678
1679 Starts definition of a subroutine. Must have a matching endsub.
1680
1681
1682 .. opcode:: ENDLOOP - End a Loop
1683
1684 End a loop started with bgnloop.
1685
1686
1687 .. opcode:: ENDSUB - End Subroutine
1688
1689 Ends definition of a subroutine.
1690
1691
1692 .. opcode:: NOP - No Operation
1693
1694 Do nothing.
1695
1696
1697 .. opcode:: BRK - Break
1698
1699 Unconditionally moves the point of execution to the instruction after the
1700 next endloop or endswitch. The instruction must appear within a loop/endloop
1701 or switch/endswitch.
1702
1703
1704 .. opcode:: BREAKC - Break Conditional
1705
1706 Conditionally moves the point of execution to the instruction after the
1707 next endloop or endswitch. The instruction must appear within a loop/endloop
1708 or switch/endswitch.
1709 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1710 as an integer register.
1711
1712 .. note::
1713
1714 Considered for removal as it's quite inconsistent wrt other opcodes
1715 (could emulate with UIF/BRK/ENDIF).
1716
1717
1718 .. opcode:: IF - Float If
1719
1720 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1721
1722 src0.x != 0.0
1723
1724 where src0.x is interpreted as a floating point register.
1725
1726
1727 .. opcode:: UIF - Bitwise If
1728
1729 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1730
1731 src0.x != 0
1732
1733 where src0.x is interpreted as an integer register.
1734
1735
1736 .. opcode:: ELSE - Else
1737
1738 Starts an else block, after an IF or UIF statement.
1739
1740
1741 .. opcode:: ENDIF - End If
1742
1743 Ends an IF or UIF block.
1744
1745
1746 .. opcode:: SWITCH - Switch
1747
1748 Starts a C-style switch expression. The switch consists of one or multiple
1749 CASE statements, and at most one DEFAULT statement. Execution of a statement
1750 ends when a BRK is hit, but just like in C falling through to other cases
1751 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1752 just as last statement, and fallthrough is allowed into/from it.
1753 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1754
1755 Example::
1756
1757 SWITCH src[0].x
1758 CASE src[0].x
1759 (some instructions here)
1760 (optional BRK here)
1761 DEFAULT
1762 (some instructions here)
1763 (optional BRK here)
1764 CASE src[0].x
1765 (some instructions here)
1766 (optional BRK here)
1767 ENDSWITCH
1768
1769
1770 .. opcode:: CASE - Switch case
1771
1772 This represents a switch case label. The src arg must be an integer immediate.
1773
1774
1775 .. opcode:: DEFAULT - Switch default
1776
1777 This represents the default case in the switch, which is taken if no other
1778 case matches.
1779
1780
1781 .. opcode:: ENDSWITCH - End of switch
1782
1783 Ends a switch expression.
1784
1785
1786 Interpolation ISA
1787 ^^^^^^^^^^^^^^^^^
1788
1789 The interpolation instructions allow an input to be interpolated in a
1790 different way than its declaration. This corresponds to the GLSL 4.00
1791 interpolateAt* functions. The first argument of each of these must come from
1792 ``TGSI_FILE_INPUT``.
1793
1794 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1795
1796 Interpolates the varying specified by src0 at the centroid
1797
1798 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1799
1800 Interpolates the varying specified by src0 at the sample id specified by
1801 src1.x (interpreted as an integer)
1802
1803 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1804
1805 Interpolates the varying specified by src0 at the offset src1.xy from the
1806 pixel center (interpreted as floats)
1807
1808
1809 .. _doubleopcodes:
1810
1811 Double ISA
1812 ^^^^^^^^^^^^^^^
1813
1814 The double-precision opcodes reinterpret four-component vectors into
1815 two-component vectors with doubled precision in each component.
1816
1817 .. opcode:: DABS - Absolute
1818
1819 dst.xy = |src0.xy|
1820 dst.zw = |src0.zw|
1821
1822 .. opcode:: DADD - Add
1823
1824 .. math::
1825
1826 dst.xy = src0.xy + src1.xy
1827
1828 dst.zw = src0.zw + src1.zw
1829
1830 .. opcode:: DSEQ - Set on Equal
1831
1832 .. math::
1833
1834 dst.x = src0.xy == src1.xy ? \sim 0 : 0
1835
1836 dst.z = src0.zw == src1.zw ? \sim 0 : 0
1837
1838 .. opcode:: DSNE - Set on Equal
1839
1840 .. math::
1841
1842 dst.x = src0.xy != src1.xy ? \sim 0 : 0
1843
1844 dst.z = src0.zw != src1.zw ? \sim 0 : 0
1845
1846 .. opcode:: DSLT - Set on Less than
1847
1848 .. math::
1849
1850 dst.x = src0.xy < src1.xy ? \sim 0 : 0
1851
1852 dst.z = src0.zw < src1.zw ? \sim 0 : 0
1853
1854 .. opcode:: DSGE - Set on Greater equal
1855
1856 .. math::
1857
1858 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
1859
1860 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
1861
1862 .. opcode:: DFRAC - Fraction
1863
1864 .. math::
1865
1866 dst.xy = src.xy - \lfloor src.xy\rfloor
1867
1868 dst.zw = src.zw - \lfloor src.zw\rfloor
1869
1870 .. opcode:: DTRUNC - Truncate
1871
1872 .. math::
1873
1874 dst.xy = trunc(src.xy)
1875
1876 dst.zw = trunc(src.zw)
1877
1878 .. opcode:: DCEIL - Ceiling
1879
1880 .. math::
1881
1882 dst.xy = \lceil src.xy\rceil
1883
1884 dst.zw = \lceil src.zw\rceil
1885
1886 .. opcode:: DFLR - Floor
1887
1888 .. math::
1889
1890 dst.xy = \lfloor src.xy\rfloor
1891
1892 dst.zw = \lfloor src.zw\rfloor
1893
1894 .. opcode:: DROUND - Fraction
1895
1896 .. math::
1897
1898 dst.xy = round(src.xy)
1899
1900 dst.zw = round(src.zw)
1901
1902 .. opcode:: DSSG - Set Sign
1903
1904 .. math::
1905
1906 dst.xy = (src.xy > 0) ? 1.0 : (src.xy < 0) ? -1.0 : 0.0
1907
1908 dst.zw = (src.zw > 0) ? 1.0 : (src.zw < 0) ? -1.0 : 0.0
1909
1910 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1911
1912 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1913 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1914 :math:`dst1 \times 2^{dst0} = src` .
1915
1916 .. math::
1917
1918 dst0.xy = exp(src.xy)
1919
1920 dst1.xy = frac(src.xy)
1921
1922 dst0.zw = exp(src.zw)
1923
1924 dst1.zw = frac(src.zw)
1925
1926 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1927
1928 This opcode is the inverse of :opcode:`DFRACEXP`. The second
1929 source is an integer.
1930
1931 .. math::
1932
1933 dst.xy = src0.xy \times 2^{src1.x}
1934
1935 dst.zw = src0.zw \times 2^{src1.y}
1936
1937 .. opcode:: DMIN - Minimum
1938
1939 .. math::
1940
1941 dst.xy = min(src0.xy, src1.xy)
1942
1943 dst.zw = min(src0.zw, src1.zw)
1944
1945 .. opcode:: DMAX - Maximum
1946
1947 .. math::
1948
1949 dst.xy = max(src0.xy, src1.xy)
1950
1951 dst.zw = max(src0.zw, src1.zw)
1952
1953 .. opcode:: DMUL - Multiply
1954
1955 .. math::
1956
1957 dst.xy = src0.xy \times src1.xy
1958
1959 dst.zw = src0.zw \times src1.zw
1960
1961
1962 .. opcode:: DMAD - Multiply And Add
1963
1964 .. math::
1965
1966 dst.xy = src0.xy \times src1.xy + src2.xy
1967
1968 dst.zw = src0.zw \times src1.zw + src2.zw
1969
1970
1971 .. opcode:: DFMA - Fused Multiply-Add
1972
1973 Perform a * b + c with no intermediate rounding step.
1974
1975 .. math::
1976
1977 dst.xy = src0.xy \times src1.xy + src2.xy
1978
1979 dst.zw = src0.zw \times src1.zw + src2.zw
1980
1981
1982 .. opcode:: DDIV - Divide
1983
1984 .. math::
1985
1986 dst.xy = \frac{src0.xy}{src1.xy}
1987
1988 dst.zw = \frac{src0.zw}{src1.zw}
1989
1990
1991 .. opcode:: DRCP - Reciprocal
1992
1993 .. math::
1994
1995 dst.xy = \frac{1}{src.xy}
1996
1997 dst.zw = \frac{1}{src.zw}
1998
1999 .. opcode:: DSQRT - Square Root
2000
2001 .. math::
2002
2003 dst.xy = \sqrt{src.xy}
2004
2005 dst.zw = \sqrt{src.zw}
2006
2007 .. opcode:: DRSQ - Reciprocal Square Root
2008
2009 .. math::
2010
2011 dst.xy = \frac{1}{\sqrt{src.xy}}
2012
2013 dst.zw = \frac{1}{\sqrt{src.zw}}
2014
2015 .. opcode:: F2D - Float to Double
2016
2017 .. math::
2018
2019 dst.xy = double(src0.x)
2020
2021 dst.zw = double(src0.y)
2022
2023 .. opcode:: D2F - Double to Float
2024
2025 .. math::
2026
2027 dst.x = float(src0.xy)
2028
2029 dst.y = float(src0.zw)
2030
2031 .. opcode:: I2D - Int to Double
2032
2033 .. math::
2034
2035 dst.xy = double(src0.x)
2036
2037 dst.zw = double(src0.y)
2038
2039 .. opcode:: D2I - Double to Int
2040
2041 .. math::
2042
2043 dst.x = int(src0.xy)
2044
2045 dst.y = int(src0.zw)
2046
2047 .. opcode:: U2D - Unsigned Int to Double
2048
2049 .. math::
2050
2051 dst.xy = double(src0.x)
2052
2053 dst.zw = double(src0.y)
2054
2055 .. opcode:: D2U - Double to Unsigned Int
2056
2057 .. math::
2058
2059 dst.x = unsigned(src0.xy)
2060
2061 dst.y = unsigned(src0.zw)
2062
2063 64-bit Integer ISA
2064 ^^^^^^^^^^^^^^^^^^
2065
2066 The 64-bit integer opcodes reinterpret four-component vectors into
2067 two-component vectors with 64-bits in each component.
2068
2069 .. opcode:: I64ABS - 64-bit Integer Absolute Value
2070
2071 dst.xy = |src0.xy|
2072 dst.zw = |src0.zw|
2073
2074 .. opcode:: I64NEG - 64-bit Integer Negate
2075
2076 Two's complement.
2077
2078 .. math::
2079
2080 dst.xy = -src.xy
2081 dst.zw = -src.zw
2082
2083 .. opcode:: I64SSG - 64-bit Integer Set Sign
2084
2085 .. math::
2086
2087 dst.xy = (src0.xy < 0) ? -1 : (src0.xy > 0) ? 1 : 0
2088 dst.zw = (src0.zw < 0) ? -1 : (src0.zw > 0) ? 1 : 0
2089
2090 .. opcode:: U64ADD - 64-bit Integer Add
2091
2092 .. math::
2093
2094 dst.xy = src0.xy + src1.xy
2095 dst.zw = src0.zw + src1.zw
2096
2097 .. opcode:: U64MUL - 64-bit Integer Multiply
2098
2099 .. math::
2100
2101 dst.xy = src0.xy * src1.xy
2102 dst.zw = src0.zw * src1.zw
2103
2104 .. opcode:: U64SEQ - 64-bit Integer Set on Equal
2105
2106 .. math::
2107
2108 dst.x = src0.xy == src1.xy ? \sim 0 : 0
2109 dst.z = src0.zw == src1.zw ? \sim 0 : 0
2110
2111 .. opcode:: U64SNE - 64-bit Integer Set on Not Equal
2112
2113 .. math::
2114
2115 dst.x = src0.xy != src1.xy ? \sim 0 : 0
2116 dst.z = src0.zw != src1.zw ? \sim 0 : 0
2117
2118 .. opcode:: U64SLT - 64-bit Unsigned Integer Set on Less Than
2119
2120 .. math::
2121
2122 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2123 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2124
2125 .. opcode:: U64SGE - 64-bit Unsigned Integer Set on Greater Equal
2126
2127 .. math::
2128
2129 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2130 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2131
2132 .. opcode:: I64SLT - 64-bit Signed Integer Set on Less Than
2133
2134 .. math::
2135
2136 dst.x = src0.xy < src1.xy ? \sim 0 : 0
2137 dst.z = src0.zw < src1.zw ? \sim 0 : 0
2138
2139 .. opcode:: I64SGE - 64-bit Signed Integer Set on Greater Equal
2140
2141 .. math::
2142
2143 dst.x = src0.xy >= src1.xy ? \sim 0 : 0
2144 dst.z = src0.zw >= src1.zw ? \sim 0 : 0
2145
2146 .. opcode:: I64MIN - Minimum of 64-bit Signed Integers
2147
2148 .. math::
2149
2150 dst.xy = min(src0.xy, src1.xy)
2151 dst.zw = min(src0.zw, src1.zw)
2152
2153 .. opcode:: U64MIN - Minimum of 64-bit Unsigned Integers
2154
2155 .. math::
2156
2157 dst.xy = min(src0.xy, src1.xy)
2158 dst.zw = min(src0.zw, src1.zw)
2159
2160 .. opcode:: I64MAX - Maximum of 64-bit Signed Integers
2161
2162 .. math::
2163
2164 dst.xy = max(src0.xy, src1.xy)
2165 dst.zw = max(src0.zw, src1.zw)
2166
2167 .. opcode:: U64MAX - Maximum of 64-bit Unsigned Integers
2168
2169 .. math::
2170
2171 dst.xy = max(src0.xy, src1.xy)
2172 dst.zw = max(src0.zw, src1.zw)
2173
2174 .. opcode:: U64SHL - Shift Left 64-bit Unsigned Integer
2175
2176 The shift count is masked with 0x3f before the shift is applied.
2177
2178 .. math::
2179
2180 dst.xy = src0.xy << (0x3f \& src1.x)
2181 dst.zw = src0.zw << (0x3f \& src1.y)
2182
2183 .. opcode:: I64SHR - Arithmetic Shift Right (of 64-bit Signed Integer)
2184
2185 The shift count is masked with 0x3f before the shift is applied.
2186
2187 .. math::
2188
2189 dst.xy = src0.xy >> (0x3f \& src1.x)
2190 dst.zw = src0.zw >> (0x3f \& src1.y)
2191
2192 .. opcode:: U64SHR - Logical Shift Right (of 64-bit Unsigned Integer)
2193
2194 The shift count is masked with 0x3f before the shift is applied.
2195
2196 .. math::
2197
2198 dst.xy = src0.xy >> (unsigned) (0x3f \& src1.x)
2199 dst.zw = src0.zw >> (unsigned) (0x3f \& src1.y)
2200
2201 .. opcode:: I64DIV - 64-bit Signed Integer Division
2202
2203 .. math::
2204
2205 dst.xy = src0.xy \ src1.xy
2206 dst.zw = src0.zw \ src1.zw
2207
2208 .. opcode:: U64DIV - 64-bit Unsigned Integer Division
2209
2210 .. math::
2211
2212 dst.xy = src0.xy \ src1.xy
2213 dst.zw = src0.zw \ src1.zw
2214
2215 .. opcode:: U64MOD - 64-bit Unsigned Integer Remainder
2216
2217 .. math::
2218
2219 dst.xy = src0.xy \bmod src1.xy
2220 dst.zw = src0.zw \bmod src1.zw
2221
2222 .. opcode:: I64MOD - 64-bit Signed Integer Remainder
2223
2224 .. math::
2225
2226 dst.xy = src0.xy \bmod src1.xy
2227 dst.zw = src0.zw \bmod src1.zw
2228
2229 .. opcode:: F2U64 - Float to 64-bit Unsigned Int
2230
2231 .. math::
2232
2233 dst.xy = (uint64_t) src0.x
2234 dst.zw = (uint64_t) src0.y
2235
2236 .. opcode:: F2I64 - Float to 64-bit Int
2237
2238 .. math::
2239
2240 dst.xy = (int64_t) src0.x
2241 dst.zw = (int64_t) src0.y
2242
2243 .. opcode:: U2I64 - Unsigned Integer to 64-bit Integer
2244
2245 This is a zero extension.
2246
2247 .. math::
2248
2249 dst.xy = (uint64_t) src0.x
2250 dst.zw = (uint64_t) src0.y
2251
2252 .. opcode:: I2I64 - Signed Integer to 64-bit Integer
2253
2254 This is a sign extension.
2255
2256 .. math::
2257
2258 dst.xy = (int64_t) src0.x
2259 dst.zw = (int64_t) src0.y
2260
2261 .. opcode:: D2U64 - Double to 64-bit Unsigned Int
2262
2263 .. math::
2264
2265 dst.xy = (uint64_t) src0.xy
2266 dst.zw = (uint64_t) src0.zw
2267
2268 .. opcode:: D2I64 - Double to 64-bit Int
2269
2270 .. math::
2271
2272 dst.xy = (int64_t) src0.xy
2273 dst.zw = (int64_t) src0.zw
2274
2275 .. opcode:: U642F - 64-bit unsigned integer to float
2276
2277 .. math::
2278
2279 dst.x = (float) src0.xy
2280 dst.y = (float) src0.zw
2281
2282 .. opcode:: I642F - 64-bit Int to Float
2283
2284 .. math::
2285
2286 dst.x = (float) src0.xy
2287 dst.y = (float) src0.zw
2288
2289 .. opcode:: U642D - 64-bit unsigned integer to double
2290
2291 .. math::
2292
2293 dst.xy = (double) src0.xy
2294 dst.zw = (double) src0.zw
2295
2296 .. opcode:: I642D - 64-bit Int to double
2297
2298 .. math::
2299
2300 dst.xy = (double) src0.xy
2301 dst.zw = (double) src0.zw
2302
2303 .. _samplingopcodes:
2304
2305 Resource Sampling Opcodes
2306 ^^^^^^^^^^^^^^^^^^^^^^^^^
2307
2308 Those opcodes follow very closely semantics of the respective Direct3D
2309 instructions. If in doubt double check Direct3D documentation.
2310 Note that the swizzle on SVIEW (src1) determines texel swizzling
2311 after lookup.
2312
2313 .. opcode:: SAMPLE
2314
2315 Using provided address, sample data from the specified texture using the
2316 filtering mode identified by the given sampler. The source data may come from
2317 any resource type other than buffers.
2318
2319 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2320
2321 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2322
2323 .. opcode:: SAMPLE_I
2324
2325 Simplified alternative to the SAMPLE instruction. Using the provided
2326 integer address, SAMPLE_I fetches data from the specified sampler view
2327 without any filtering. The source data may come from any resource type
2328 other than CUBE.
2329
2330 Syntax: ``SAMPLE_I dst, address, sampler_view``
2331
2332 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2333
2334 The 'address' is specified as unsigned integers. If the 'address' is out of
2335 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2336 components. As such the instruction doesn't honor address wrap modes, in
2337 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2338 address.w always provides an unsigned integer mipmap level. If the value is
2339 out of the range then the instruction always returns 0 in all components.
2340 address.yz are ignored for buffers and 1d textures. address.z is ignored
2341 for 1d texture arrays and 2d textures.
2342
2343 For 1D texture arrays address.y provides the array index (also as unsigned
2344 integer). If the value is out of the range of available array indices
2345 [0... (array size - 1)] then the opcode always returns 0 in all components.
2346 For 2D texture arrays address.z provides the array index, otherwise it
2347 exhibits the same behavior as in the case for 1D texture arrays. The exact
2348 semantics of the source address are presented in the table below:
2349
2350 +---------------------------+----+-----+-----+---------+
2351 | resource type | X | Y | Z | W |
2352 +===========================+====+=====+=====+=========+
2353 | ``PIPE_BUFFER`` | x | | | ignored |
2354 +---------------------------+----+-----+-----+---------+
2355 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2356 +---------------------------+----+-----+-----+---------+
2357 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2358 +---------------------------+----+-----+-----+---------+
2359 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2360 +---------------------------+----+-----+-----+---------+
2361 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2362 +---------------------------+----+-----+-----+---------+
2363 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2364 +---------------------------+----+-----+-----+---------+
2365 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2366 +---------------------------+----+-----+-----+---------+
2367 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2368 +---------------------------+----+-----+-----+---------+
2369
2370 Where 'mpl' is a mipmap level and 'idx' is the array index.
2371
2372 .. opcode:: SAMPLE_I_MS
2373
2374 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2375
2376 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2377
2378 .. opcode:: SAMPLE_B
2379
2380 Just like the SAMPLE instruction with the exception that an additional bias
2381 is applied to the level of detail computed as part of the instruction
2382 execution.
2383
2384 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2385
2386 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2387
2388 .. opcode:: SAMPLE_C
2389
2390 Similar to the SAMPLE instruction but it performs a comparison filter. The
2391 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2392 additional float32 operand, reference value, which must be a register with
2393 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2394 current samplers compare_func (in pipe_sampler_state) to compare reference
2395 value against the red component value for the surce resource at each texel
2396 that the currently configured texture filter covers based on the provided
2397 coordinates.
2398
2399 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2400
2401 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2402
2403 .. opcode:: SAMPLE_C_LZ
2404
2405 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2406 for level-zero.
2407
2408 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2409
2410 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2411
2412
2413 .. opcode:: SAMPLE_D
2414
2415 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2416 the source address in the x direction and the y direction are provided by
2417 extra parameters.
2418
2419 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2420
2421 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2422
2423 .. opcode:: SAMPLE_L
2424
2425 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2426 directly as a scalar value, representing no anisotropy.
2427
2428 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2429
2430 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2431
2432 .. opcode:: GATHER4
2433
2434 Gathers the four texels to be used in a bi-linear filtering operation and
2435 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2436 and cubemaps arrays. For 2D textures, only the addressing modes of the
2437 sampler and the top level of any mip pyramid are used. Set W to zero. It
2438 behaves like the SAMPLE instruction, but a filtered sample is not
2439 generated. The four samples that contribute to filtering are placed into
2440 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2441 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2442 magnitude of the deltas are half a texel.
2443
2444
2445 .. opcode:: SVIEWINFO
2446
2447 Query the dimensions of a given sampler view. dst receives width, height,
2448 depth or array size and number of mipmap levels as int4. The dst can have a
2449 writemask which will specify what info is the caller interested in.
2450
2451 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2452
2453 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2454
2455 src_mip_level is an unsigned integer scalar. If it's out of range then
2456 returns 0 for width, height and depth/array size but the total number of
2457 mipmap is still returned correctly for the given sampler view. The returned
2458 width, height and depth values are for the mipmap level selected by the
2459 src_mip_level and are in the number of texels. For 1d texture array width
2460 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2461 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2462 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2463 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2464 resinfo allowing swizzling dst values is ignored (due to the interaction
2465 with rcpfloat modifier which requires some swizzle handling in the state
2466 tracker anyway).
2467
2468 .. opcode:: SAMPLE_POS
2469
2470 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2471 indicated where the sample is located. If the resource is not a multi-sample
2472 resource and not a render target, the result is 0.
2473
2474 .. opcode:: SAMPLE_INFO
2475
2476 dst receives number of samples in x. If the resource is not a multi-sample
2477 resource and not a render target, the result is 0.
2478
2479
2480 .. _resourceopcodes:
2481
2482 Resource Access Opcodes
2483 ^^^^^^^^^^^^^^^^^^^^^^^
2484
2485 .. opcode:: LOAD - Fetch data from a shader buffer or image
2486
2487 Syntax: ``LOAD dst, resource, address``
2488
2489 Example: ``LOAD TEMP[0], BUFFER[0], TEMP[1]``
2490
2491 Using the provided integer address, LOAD fetches data
2492 from the specified buffer or texture without any
2493 filtering.
2494
2495 The 'address' is specified as a vector of unsigned
2496 integers. If the 'address' is out of range the result
2497 is unspecified.
2498
2499 Only the first mipmap level of a resource can be read
2500 from using this instruction.
2501
2502 For 1D or 2D texture arrays, the array index is
2503 provided as an unsigned integer in address.y or
2504 address.z, respectively. address.yz are ignored for
2505 buffers and 1D textures. address.z is ignored for 1D
2506 texture arrays and 2D textures. address.w is always
2507 ignored.
2508
2509 A swizzle suffix may be added to the resource argument
2510 this will cause the resource data to be swizzled accordingly.
2511
2512 .. opcode:: STORE - Write data to a shader resource
2513
2514 Syntax: ``STORE resource, address, src``
2515
2516 Example: ``STORE BUFFER[0], TEMP[0], TEMP[1]``
2517
2518 Using the provided integer address, STORE writes data
2519 to the specified buffer or texture.
2520
2521 The 'address' is specified as a vector of unsigned
2522 integers. If the 'address' is out of range the result
2523 is unspecified.
2524
2525 Only the first mipmap level of a resource can be
2526 written to using this instruction.
2527
2528 For 1D or 2D texture arrays, the array index is
2529 provided as an unsigned integer in address.y or
2530 address.z, respectively. address.yz are ignored for
2531 buffers and 1D textures. address.z is ignored for 1D
2532 texture arrays and 2D textures. address.w is always
2533 ignored.
2534
2535 .. opcode:: RESQ - Query information about a resource
2536
2537 Syntax: ``RESQ dst, resource``
2538
2539 Example: ``RESQ TEMP[0], BUFFER[0]``
2540
2541 Returns information about the buffer or image resource. For buffer
2542 resources, the size (in bytes) is returned in the x component. For
2543 image resources, .xyz will contain the width/height/layers of the
2544 image, while .w will contain the number of samples for multi-sampled
2545 images.
2546
2547 .. opcode:: FBFETCH - Load data from framebuffer
2548
2549 Syntax: ``FBFETCH dst, output``
2550
2551 Example: ``FBFETCH TEMP[0], OUT[0]``
2552
2553 This is only valid on ``COLOR`` semantic outputs. Returns the color
2554 of the current position in the framebuffer from before this fragment
2555 shader invocation. May return the same value from multiple calls for
2556 a particular output within a single invocation. Note that result may
2557 be undefined if a fragment is drawn multiple times without a blend
2558 barrier in between.
2559
2560
2561 .. _threadsyncopcodes:
2562
2563 Inter-thread synchronization opcodes
2564 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2565
2566 These opcodes are intended for communication between threads running
2567 within the same compute grid. For now they're only valid in compute
2568 programs.
2569
2570 .. opcode:: MFENCE - Memory fence
2571
2572 Syntax: ``MFENCE resource``
2573
2574 Example: ``MFENCE RES[0]``
2575
2576 This opcode forces strong ordering between any memory access
2577 operations that affect the specified resource. This means that
2578 previous loads and stores (and only those) will be performed and
2579 visible to other threads before the program execution continues.
2580
2581
2582 .. opcode:: LFENCE - Load memory fence
2583
2584 Syntax: ``LFENCE resource``
2585
2586 Example: ``LFENCE RES[0]``
2587
2588 Similar to MFENCE, but it only affects the ordering of memory loads.
2589
2590
2591 .. opcode:: SFENCE - Store memory fence
2592
2593 Syntax: ``SFENCE resource``
2594
2595 Example: ``SFENCE RES[0]``
2596
2597 Similar to MFENCE, but it only affects the ordering of memory stores.
2598
2599
2600 .. opcode:: BARRIER - Thread group barrier
2601
2602 ``BARRIER``
2603
2604 This opcode suspends the execution of the current thread until all
2605 the remaining threads in the working group reach the same point of
2606 the program. Results are unspecified if any of the remaining
2607 threads terminates or never reaches an executed BARRIER instruction.
2608
2609 .. opcode:: MEMBAR - Memory barrier
2610
2611 ``MEMBAR type``
2612
2613 This opcode waits for the completion of all memory accesses based on
2614 the type passed in. The type is an immediate bitfield with the following
2615 meaning:
2616
2617 Bit 0: Shader storage buffers
2618 Bit 1: Atomic buffers
2619 Bit 2: Images
2620 Bit 3: Shared memory
2621 Bit 4: Thread group
2622
2623 These may be passed in in any combination. An implementation is free to not
2624 distinguish between these as it sees fit. However these map to all the
2625 possibilities made available by GLSL.
2626
2627 .. _atomopcodes:
2628
2629 Atomic opcodes
2630 ^^^^^^^^^^^^^^
2631
2632 These opcodes provide atomic variants of some common arithmetic and
2633 logical operations. In this context atomicity means that another
2634 concurrent memory access operation that affects the same memory
2635 location is guaranteed to be performed strictly before or after the
2636 entire execution of the atomic operation. The resource may be a buffer
2637 or an image. In the case of an image, the offset works the same as for
2638 ``LOAD`` and ``STORE``, specified above. These atomic operations may
2639 only be used with 32-bit integer image formats.
2640
2641 .. opcode:: ATOMUADD - Atomic integer addition
2642
2643 Syntax: ``ATOMUADD dst, resource, offset, src``
2644
2645 Example: ``ATOMUADD TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2646
2647 The following operation is performed atomically:
2648
2649 .. math::
2650
2651 dst_x = resource[offset]
2652
2653 resource[offset] = dst_x + src_x
2654
2655
2656 .. opcode:: ATOMXCHG - Atomic exchange
2657
2658 Syntax: ``ATOMXCHG dst, resource, offset, src``
2659
2660 Example: ``ATOMXCHG TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2661
2662 The following operation is performed atomically:
2663
2664 .. math::
2665
2666 dst_x = resource[offset]
2667
2668 resource[offset] = src_x
2669
2670
2671 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2672
2673 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2674
2675 Example: ``ATOMCAS TEMP[0], BUFFER[0], TEMP[1], TEMP[2], TEMP[3]``
2676
2677 The following operation is performed atomically:
2678
2679 .. math::
2680
2681 dst_x = resource[offset]
2682
2683 resource[offset] = (dst_x == cmp_x ? src_x : dst_x)
2684
2685
2686 .. opcode:: ATOMAND - Atomic bitwise And
2687
2688 Syntax: ``ATOMAND dst, resource, offset, src``
2689
2690 Example: ``ATOMAND TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2691
2692 The following operation is performed atomically:
2693
2694 .. math::
2695
2696 dst_x = resource[offset]
2697
2698 resource[offset] = dst_x \& src_x
2699
2700
2701 .. opcode:: ATOMOR - Atomic bitwise Or
2702
2703 Syntax: ``ATOMOR dst, resource, offset, src``
2704
2705 Example: ``ATOMOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2706
2707 The following operation is performed atomically:
2708
2709 .. math::
2710
2711 dst_x = resource[offset]
2712
2713 resource[offset] = dst_x | src_x
2714
2715
2716 .. opcode:: ATOMXOR - Atomic bitwise Xor
2717
2718 Syntax: ``ATOMXOR dst, resource, offset, src``
2719
2720 Example: ``ATOMXOR TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2721
2722 The following operation is performed atomically:
2723
2724 .. math::
2725
2726 dst_x = resource[offset]
2727
2728 resource[offset] = dst_x \oplus src_x
2729
2730
2731 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2732
2733 Syntax: ``ATOMUMIN dst, resource, offset, src``
2734
2735 Example: ``ATOMUMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2736
2737 The following operation is performed atomically:
2738
2739 .. math::
2740
2741 dst_x = resource[offset]
2742
2743 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2744
2745
2746 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2747
2748 Syntax: ``ATOMUMAX dst, resource, offset, src``
2749
2750 Example: ``ATOMUMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2751
2752 The following operation is performed atomically:
2753
2754 .. math::
2755
2756 dst_x = resource[offset]
2757
2758 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2759
2760
2761 .. opcode:: ATOMIMIN - Atomic signed minimum
2762
2763 Syntax: ``ATOMIMIN dst, resource, offset, src``
2764
2765 Example: ``ATOMIMIN TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2766
2767 The following operation is performed atomically:
2768
2769 .. math::
2770
2771 dst_x = resource[offset]
2772
2773 resource[offset] = (dst_x < src_x ? dst_x : src_x)
2774
2775
2776 .. opcode:: ATOMIMAX - Atomic signed maximum
2777
2778 Syntax: ``ATOMIMAX dst, resource, offset, src``
2779
2780 Example: ``ATOMIMAX TEMP[0], BUFFER[0], TEMP[1], TEMP[2]``
2781
2782 The following operation is performed atomically:
2783
2784 .. math::
2785
2786 dst_x = resource[offset]
2787
2788 resource[offset] = (dst_x > src_x ? dst_x : src_x)
2789
2790
2791 .. _voteopcodes:
2792
2793 Vote opcodes
2794 ^^^^^^^^^^^^
2795
2796 These opcodes compare the given value across the shader invocations
2797 running in the current SIMD group. The details of exactly which
2798 invocations get compared are implementation-defined, and it would be a
2799 correct implementation to only ever consider the current thread's
2800 value. (i.e. SIMD group of 1). The argument is treated as a boolean.
2801
2802 .. opcode:: VOTE_ANY - Value is set in any of the current invocations
2803
2804 .. opcode:: VOTE_ALL - Value is set in all of the current invocations
2805
2806 .. opcode:: VOTE_EQ - Value is the same in all of the current invocations
2807
2808
2809 Explanation of symbols used
2810 ------------------------------
2811
2812
2813 Functions
2814 ^^^^^^^^^^^^^^
2815
2816
2817 :math:`|x|` Absolute value of `x`.
2818
2819 :math:`\lceil x \rceil` Ceiling of `x`.
2820
2821 clamp(x,y,z) Clamp x between y and z.
2822 (x < y) ? y : (x > z) ? z : x
2823
2824 :math:`\lfloor x\rfloor` Floor of `x`.
2825
2826 :math:`\log_2{x}` Logarithm of `x`, base 2.
2827
2828 max(x,y) Maximum of x and y.
2829 (x > y) ? x : y
2830
2831 min(x,y) Minimum of x and y.
2832 (x < y) ? x : y
2833
2834 partialx(x) Derivative of x relative to fragment's X.
2835
2836 partialy(x) Derivative of x relative to fragment's Y.
2837
2838 pop() Pop from stack.
2839
2840 :math:`x^y` `x` to the power `y`.
2841
2842 push(x) Push x on stack.
2843
2844 round(x) Round x.
2845
2846 trunc(x) Truncate x, i.e. drop the fraction bits.
2847
2848
2849 Keywords
2850 ^^^^^^^^^^^^^
2851
2852
2853 discard Discard fragment.
2854
2855 pc Program counter.
2856
2857 target Label of target instruction.
2858
2859
2860 Other tokens
2861 ---------------
2862
2863
2864 Declaration
2865 ^^^^^^^^^^^
2866
2867
2868 Declares a register that is will be referenced as an operand in Instruction
2869 tokens.
2870
2871 File field contains register file that is being declared and is one
2872 of TGSI_FILE.
2873
2874 UsageMask field specifies which of the register components can be accessed
2875 and is one of TGSI_WRITEMASK.
2876
2877 The Local flag specifies that a given value isn't intended for
2878 subroutine parameter passing and, as a result, the implementation
2879 isn't required to give any guarantees of it being preserved across
2880 subroutine boundaries. As it's merely a compiler hint, the
2881 implementation is free to ignore it.
2882
2883 If Dimension flag is set to 1, a Declaration Dimension token follows.
2884
2885 If Semantic flag is set to 1, a Declaration Semantic token follows.
2886
2887 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2888
2889 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2890
2891 If Array flag is set to 1, a Declaration Array token follows.
2892
2893 Array Declaration
2894 ^^^^^^^^^^^^^^^^^^^^^^^^
2895
2896 Declarations can optional have an ArrayID attribute which can be referred by
2897 indirect addressing operands. An ArrayID of zero is reserved and treated as
2898 if no ArrayID is specified.
2899
2900 If an indirect addressing operand refers to a specific declaration by using
2901 an ArrayID only the registers in this declaration are guaranteed to be
2902 accessed, accessing any register outside this declaration results in undefined
2903 behavior. Note that for compatibility the effective index is zero-based and
2904 not relative to the specified declaration
2905
2906 If no ArrayID is specified with an indirect addressing operand the whole
2907 register file might be accessed by this operand. This is strongly discouraged
2908 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2909 This is only legal for TEMP and CONST register files.
2910
2911 Declaration Semantic
2912 ^^^^^^^^^^^^^^^^^^^^^^^^
2913
2914 Vertex and fragment shader input and output registers may be labeled
2915 with semantic information consisting of a name and index.
2916
2917 Follows Declaration token if Semantic bit is set.
2918
2919 Since its purpose is to link a shader with other stages of the pipeline,
2920 it is valid to follow only those Declaration tokens that declare a register
2921 either in INPUT or OUTPUT file.
2922
2923 SemanticName field contains the semantic name of the register being declared.
2924 There is no default value.
2925
2926 SemanticIndex is an optional subscript that can be used to distinguish
2927 different register declarations with the same semantic name. The default value
2928 is 0.
2929
2930 The meanings of the individual semantic names are explained in the following
2931 sections.
2932
2933 TGSI_SEMANTIC_POSITION
2934 """"""""""""""""""""""
2935
2936 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2937 output register which contains the homogeneous vertex position in the clip
2938 space coordinate system. After clipping, the X, Y and Z components of the
2939 vertex will be divided by the W value to get normalized device coordinates.
2940
2941 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2942 fragment shader input (or system value, depending on which one is
2943 supported by the driver) contains the fragment's window position. The X
2944 component starts at zero and always increases from left to right.
2945 The Y component starts at zero and always increases but Y=0 may either
2946 indicate the top of the window or the bottom depending on the fragment
2947 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2948 The Z coordinate ranges from 0 to 1 to represent depth from the front
2949 to the back of the Z buffer. The W component contains the interpolated
2950 reciprocal of the vertex position W component (corresponding to gl_Fragcoord,
2951 but unlike d3d10 which interpolates the same 1/w but then gives back
2952 the reciprocal of the interpolated value).
2953
2954 Fragment shaders may also declare an output register with
2955 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2956 the fragment shader to change the fragment's Z position.
2957
2958
2959
2960 TGSI_SEMANTIC_COLOR
2961 """""""""""""""""""
2962
2963 For vertex shader outputs or fragment shader inputs/outputs, this
2964 label indicates that the register contains an R,G,B,A color.
2965
2966 Several shader inputs/outputs may contain colors so the semantic index
2967 is used to distinguish them. For example, color[0] may be the diffuse
2968 color while color[1] may be the specular color.
2969
2970 This label is needed so that the flat/smooth shading can be applied
2971 to the right interpolants during rasterization.
2972
2973
2974
2975 TGSI_SEMANTIC_BCOLOR
2976 """"""""""""""""""""
2977
2978 Back-facing colors are only used for back-facing polygons, and are only valid
2979 in vertex shader outputs. After rasterization, all polygons are front-facing
2980 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2981 so all BCOLORs effectively become regular COLORs in the fragment shader.
2982
2983
2984 TGSI_SEMANTIC_FOG
2985 """""""""""""""""
2986
2987 Vertex shader inputs and outputs and fragment shader inputs may be
2988 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2989 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2990 to compute a fog blend factor which is used to blend the normal fragment color
2991 with a constant fog color. But fog coord really is just an ordinary vec4
2992 register like regular semantics.
2993
2994
2995 TGSI_SEMANTIC_PSIZE
2996 """""""""""""""""""
2997
2998 Vertex shader input and output registers may be labeled with
2999 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
3000 in the form (S, 0, 0, 1). The point size controls the width or diameter
3001 of points for rasterization. This label cannot be used in fragment
3002 shaders.
3003
3004 When using this semantic, be sure to set the appropriate state in the
3005 :ref:`rasterizer` first.
3006
3007
3008 TGSI_SEMANTIC_TEXCOORD
3009 """"""""""""""""""""""
3010
3011 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3012
3013 Vertex shader outputs and fragment shader inputs may be labeled with
3014 this semantic to make them replaceable by sprite coordinates via the
3015 sprite_coord_enable state in the :ref:`rasterizer`.
3016 The semantic index permitted with this semantic is limited to <= 7.
3017
3018 If the driver does not support TEXCOORD, sprite coordinate replacement
3019 applies to inputs with the GENERIC semantic instead.
3020
3021 The intended use case for this semantic is gl_TexCoord.
3022
3023
3024 TGSI_SEMANTIC_PCOORD
3025 """"""""""""""""""""
3026
3027 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
3028
3029 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
3030 that the register contains sprite coordinates in the form (x, y, 0, 1), if
3031 the current primitive is a point and point sprites are enabled. Otherwise,
3032 the contents of the register are undefined.
3033
3034 The intended use case for this semantic is gl_PointCoord.
3035
3036
3037 TGSI_SEMANTIC_GENERIC
3038 """""""""""""""""""""
3039
3040 All vertex/fragment shader inputs/outputs not labeled with any other
3041 semantic label can be considered to be generic attributes. Typical
3042 uses of generic inputs/outputs are texcoords and user-defined values.
3043
3044
3045 TGSI_SEMANTIC_NORMAL
3046 """"""""""""""""""""
3047
3048 Indicates that a vertex shader input is a normal vector. This is
3049 typically only used for legacy graphics APIs.
3050
3051
3052 TGSI_SEMANTIC_FACE
3053 """"""""""""""""""
3054
3055 This label applies to fragment shader inputs (or system values,
3056 depending on which one is supported by the driver) and indicates that
3057 the register contains front/back-face information.
3058
3059 If it is an input, it will be a floating-point vector in the form (F, 0, 0, 1),
3060 where F will be positive when the fragment belongs to a front-facing polygon,
3061 and negative when the fragment belongs to a back-facing polygon.
3062
3063 If it is a system value, it will be an integer vector in the form (F, 0, 0, 1),
3064 where F is 0xffffffff when the fragment belongs to a front-facing polygon and
3065 0 when the fragment belongs to a back-facing polygon.
3066
3067
3068 TGSI_SEMANTIC_EDGEFLAG
3069 """"""""""""""""""""""
3070
3071 For vertex shaders, this sematic label indicates that an input or
3072 output is a boolean edge flag. The register layout is [F, x, x, x]
3073 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
3074 simply copies the edge flag input to the edgeflag output.
3075
3076 Edge flags are used to control which lines or points are actually
3077 drawn when the polygon mode converts triangles/quads/polygons into
3078 points or lines.
3079
3080
3081 TGSI_SEMANTIC_STENCIL
3082 """""""""""""""""""""
3083
3084 For fragment shaders, this semantic label indicates that an output
3085 is a writable stencil reference value. Only the Y component is writable.
3086 This allows the fragment shader to change the fragments stencilref value.
3087
3088
3089 TGSI_SEMANTIC_VIEWPORT_INDEX
3090 """"""""""""""""""""""""""""
3091
3092 For geometry shaders, this semantic label indicates that an output
3093 contains the index of the viewport (and scissor) to use.
3094 This is an integer value, and only the X component is used.
3095
3096
3097 TGSI_SEMANTIC_LAYER
3098 """""""""""""""""""
3099
3100 For geometry shaders, this semantic label indicates that an output
3101 contains the layer value to use for the color and depth/stencil surfaces.
3102 This is an integer value, and only the X component is used.
3103 (Also known as rendertarget array index.)
3104
3105
3106 TGSI_SEMANTIC_CULLDIST
3107 """"""""""""""""""""""
3108
3109 Used as distance to plane for performing application-defined culling
3110 of individual primitives against a plane. When components of vertex
3111 elements are given this label, these values are assumed to be a
3112 float32 signed distance to a plane. Primitives will be completely
3113 discarded if the plane distance for all of the vertices in the
3114 primitive are < 0. If a vertex has a cull distance of NaN, that
3115 vertex counts as "out" (as if its < 0);
3116 The limits on both clip and cull distances are bound
3117 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3118 the maximum number of components that can be used to hold the
3119 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3120 which specifies the maximum number of registers which can be
3121 annotated with those semantics.
3122
3123
3124 TGSI_SEMANTIC_CLIPDIST
3125 """"""""""""""""""""""
3126
3127 Note this covers clipping and culling distances.
3128
3129 When components of vertex elements are identified this way, these
3130 values are each assumed to be a float32 signed distance to a plane.
3131
3132 For clip distances:
3133 Primitive setup only invokes rasterization on pixels for which
3134 the interpolated plane distances are >= 0.
3135
3136 For cull distances:
3137 Primitives will be completely discarded if the plane distance
3138 for all of the vertices in the primitive are < 0.
3139 If a vertex has a cull distance of NaN, that vertex counts as "out"
3140 (as if its < 0);
3141
3142 Multiple clip/cull planes can be implemented simultaneously, by
3143 annotating multiple components of one or more vertex elements with
3144 the above specified semantic.
3145 The limits on both clip and cull distances are bound
3146 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
3147 the maximum number of components that can be used to hold the
3148 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
3149 which specifies the maximum number of registers which can be
3150 annotated with those semantics.
3151 The properties NUM_CLIPDIST_ENABLED and NUM_CULLDIST_ENABLED
3152 are used to divide up the 2 x vec4 space between clipping and culling.
3153
3154 TGSI_SEMANTIC_SAMPLEID
3155 """"""""""""""""""""""
3156
3157 For fragment shaders, this semantic label indicates that a system value
3158 contains the current sample id (i.e. gl_SampleID).
3159 This is an integer value, and only the X component is used.
3160
3161 TGSI_SEMANTIC_SAMPLEPOS
3162 """""""""""""""""""""""
3163
3164 For fragment shaders, this semantic label indicates that a system value
3165 contains the current sample's position (i.e. gl_SamplePosition). Only the X
3166 and Y values are used.
3167
3168 TGSI_SEMANTIC_SAMPLEMASK
3169 """"""""""""""""""""""""
3170
3171 For fragment shaders, this semantic label indicates that an output contains
3172 the sample mask used to disable further sample processing
3173 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
3174
3175 TGSI_SEMANTIC_INVOCATIONID
3176 """"""""""""""""""""""""""
3177
3178 For geometry shaders, this semantic label indicates that a system value
3179 contains the current invocation id (i.e. gl_InvocationID).
3180 This is an integer value, and only the X component is used.
3181
3182 TGSI_SEMANTIC_INSTANCEID
3183 """"""""""""""""""""""""
3184
3185 For vertex shaders, this semantic label indicates that a system value contains
3186 the current instance id (i.e. gl_InstanceID). It does not include the base
3187 instance. This is an integer value, and only the X component is used.
3188
3189 TGSI_SEMANTIC_VERTEXID
3190 """"""""""""""""""""""
3191
3192 For vertex shaders, this semantic label indicates that a system value contains
3193 the current vertex id (i.e. gl_VertexID). It does (unlike in d3d10) include the
3194 base vertex. This is an integer value, and only the X component is used.
3195
3196 TGSI_SEMANTIC_VERTEXID_NOBASE
3197 """""""""""""""""""""""""""""""
3198
3199 For vertex shaders, this semantic label indicates that a system value contains
3200 the current vertex id without including the base vertex (this corresponds to
3201 d3d10 vertex id, so TGSI_SEMANTIC_VERTEXID_NOBASE + TGSI_SEMANTIC_BASEVERTEX
3202 == TGSI_SEMANTIC_VERTEXID). This is an integer value, and only the X component
3203 is used.
3204
3205 TGSI_SEMANTIC_BASEVERTEX
3206 """"""""""""""""""""""""
3207
3208 For vertex shaders, this semantic label indicates that a system value contains
3209 the base vertex (i.e. gl_BaseVertex). Note that for non-indexed draw calls,
3210 this contains the first (or start) value instead.
3211 This is an integer value, and only the X component is used.
3212
3213 TGSI_SEMANTIC_PRIMID
3214 """"""""""""""""""""
3215
3216 For geometry and fragment shaders, this semantic label indicates the value
3217 contains the primitive id (i.e. gl_PrimitiveID). This is an integer value,
3218 and only the X component is used.
3219 FIXME: This right now can be either a ordinary input or a system value...
3220
3221
3222 TGSI_SEMANTIC_PATCH
3223 """""""""""""""""""
3224
3225 For tessellation evaluation/control shaders, this semantic label indicates a
3226 generic per-patch attribute. Such semantics will not implicitly be per-vertex
3227 arrays.
3228
3229 TGSI_SEMANTIC_TESSCOORD
3230 """""""""""""""""""""""
3231
3232 For tessellation evaluation shaders, this semantic label indicates the
3233 coordinates of the vertex being processed. This is available in XYZ; W is
3234 undefined.
3235
3236 TGSI_SEMANTIC_TESSOUTER
3237 """""""""""""""""""""""
3238
3239 For tessellation evaluation/control shaders, this semantic label indicates the
3240 outer tessellation levels of the patch. Isoline tessellation will only have XY
3241 defined, triangle will have XYZ and quads will have XYZW defined. This
3242 corresponds to gl_TessLevelOuter.
3243
3244 TGSI_SEMANTIC_TESSINNER
3245 """""""""""""""""""""""
3246
3247 For tessellation evaluation/control shaders, this semantic label indicates the
3248 inner tessellation levels of the patch. The X value is only defined for
3249 triangle tessellation, while quads will have XY defined. This is entirely
3250 undefined for isoline tessellation.
3251
3252 TGSI_SEMANTIC_VERTICESIN
3253 """"""""""""""""""""""""
3254
3255 For tessellation evaluation/control shaders, this semantic label indicates the
3256 number of vertices provided in the input patch. Only the X value is defined.
3257
3258 TGSI_SEMANTIC_HELPER_INVOCATION
3259 """""""""""""""""""""""""""""""
3260
3261 For fragment shaders, this semantic indicates whether the current
3262 invocation is covered or not. Helper invocations are created in order
3263 to properly compute derivatives, however it may be desirable to skip
3264 some of the logic in those cases. See ``gl_HelperInvocation`` documentation.
3265
3266 TGSI_SEMANTIC_BASEINSTANCE
3267 """"""""""""""""""""""""""
3268
3269 For vertex shaders, the base instance argument supplied for this
3270 draw. This is an integer value, and only the X component is used.
3271
3272 TGSI_SEMANTIC_DRAWID
3273 """"""""""""""""""""
3274
3275 For vertex shaders, the zero-based index of the current draw in a
3276 ``glMultiDraw*`` invocation. This is an integer value, and only the X
3277 component is used.
3278
3279
3280 TGSI_SEMANTIC_WORK_DIM
3281 """"""""""""""""""""""
3282
3283 For compute shaders started via opencl this retrieves the work_dim
3284 parameter to the clEnqueueNDRangeKernel call with which the shader
3285 was started.
3286
3287
3288 TGSI_SEMANTIC_GRID_SIZE
3289 """""""""""""""""""""""
3290
3291 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3292 of a grid of thread blocks.
3293
3294
3295 TGSI_SEMANTIC_BLOCK_ID
3296 """"""""""""""""""""""
3297
3298 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3299 current block inside of the grid.
3300
3301
3302 TGSI_SEMANTIC_BLOCK_SIZE
3303 """"""""""""""""""""""""
3304
3305 For compute shaders, this semantic indicates the maximum (x, y, z) dimensions
3306 of a block in threads.
3307
3308
3309 TGSI_SEMANTIC_THREAD_ID
3310 """""""""""""""""""""""
3311
3312 For compute shaders, this semantic indicates the (x, y, z) coordinates of the
3313 current thread inside of the block.
3314
3315
3316 Declaration Interpolate
3317 ^^^^^^^^^^^^^^^^^^^^^^^
3318
3319 This token is only valid for fragment shader INPUT declarations.
3320
3321 The Interpolate field specifes the way input is being interpolated by
3322 the rasteriser and is one of TGSI_INTERPOLATE_*.
3323
3324 The Location field specifies the location inside the pixel that the
3325 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
3326 when per-sample shading is enabled, the implementation may choose to
3327 interpolate at the sample irrespective of the Location field.
3328
3329 The CylindricalWrap bitfield specifies which register components
3330 should be subject to cylindrical wrapping when interpolating by the
3331 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
3332 should be interpolated according to cylindrical wrapping rules.
3333
3334
3335 Declaration Sampler View
3336 ^^^^^^^^^^^^^^^^^^^^^^^^
3337
3338 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
3339
3340 DCL SVIEW[#], resource, type(s)
3341
3342 Declares a shader input sampler view and assigns it to a SVIEW[#]
3343 register.
3344
3345 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
3346
3347 type must be 1 or 4 entries (if specifying on a per-component
3348 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
3349
3350 For TEX\* style texture sample opcodes (as opposed to SAMPLE\* opcodes
3351 which take an explicit SVIEW[#] source register), there may be optionally
3352 SVIEW[#] declarations. In this case, the SVIEW index is implied by the
3353 SAMP index, and there must be a corresponding SVIEW[#] declaration for
3354 each SAMP[#] declaration. Drivers are free to ignore this if they wish.
3355 But note in particular that some drivers need to know the sampler type
3356 (float/int/unsigned) in order to generate the correct code, so cases
3357 where integer textures are sampled, SVIEW[#] declarations should be
3358 used.
3359
3360 NOTE: It is NOT legal to mix SAMPLE\* style opcodes and TEX\* opcodes
3361 in the same shader.
3362
3363 Declaration Resource
3364 ^^^^^^^^^^^^^^^^^^^^
3365
3366 Follows Declaration token if file is TGSI_FILE_RESOURCE.
3367
3368 DCL RES[#], resource [, WR] [, RAW]
3369
3370 Declares a shader input resource and assigns it to a RES[#]
3371 register.
3372
3373 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
3374 2DArray.
3375
3376 If the RAW keyword is not specified, the texture data will be
3377 subject to conversion, swizzling and scaling as required to yield
3378 the specified data type from the physical data format of the bound
3379 resource.
3380
3381 If the RAW keyword is specified, no channel conversion will be
3382 performed: the values read for each of the channels (X,Y,Z,W) will
3383 correspond to consecutive words in the same order and format
3384 they're found in memory. No element-to-address conversion will be
3385 performed either: the value of the provided X coordinate will be
3386 interpreted in byte units instead of texel units. The result of
3387 accessing a misaligned address is undefined.
3388
3389 Usage of the STORE opcode is only allowed if the WR (writable) flag
3390 is set.
3391
3392
3393 Properties
3394 ^^^^^^^^^^^^^^^^^^^^^^^^
3395
3396 Properties are general directives that apply to the whole TGSI program.
3397
3398 FS_COORD_ORIGIN
3399 """""""""""""""
3400
3401 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
3402 The default value is UPPER_LEFT.
3403
3404 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
3405 increase downward and rightward.
3406 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
3407 increase upward and rightward.
3408
3409 OpenGL defaults to LOWER_LEFT, and is configurable with the
3410 GL_ARB_fragment_coord_conventions extension.
3411
3412 DirectX 9/10 use UPPER_LEFT.
3413
3414 FS_COORD_PIXEL_CENTER
3415 """""""""""""""""""""
3416
3417 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
3418 The default value is HALF_INTEGER.
3419
3420 If HALF_INTEGER, the fractionary part of the position will be 0.5
3421 If INTEGER, the fractionary part of the position will be 0.0
3422
3423 Note that this does not affect the set of fragments generated by
3424 rasterization, which is instead controlled by half_pixel_center in the
3425 rasterizer.
3426
3427 OpenGL defaults to HALF_INTEGER, and is configurable with the
3428 GL_ARB_fragment_coord_conventions extension.
3429
3430 DirectX 9 uses INTEGER.
3431 DirectX 10 uses HALF_INTEGER.
3432
3433 FS_COLOR0_WRITES_ALL_CBUFS
3434 """"""""""""""""""""""""""
3435 Specifies that writes to the fragment shader color 0 are replicated to all
3436 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
3437 fragData is directed to a single color buffer, but fragColor is broadcast.
3438
3439 VS_PROHIBIT_UCPS
3440 """"""""""""""""""""""""""
3441 If this property is set on the program bound to the shader stage before the
3442 fragment shader, user clip planes should have no effect (be disabled) even if
3443 that shader does not write to any clip distance outputs and the rasterizer's
3444 clip_plane_enable is non-zero.
3445 This property is only supported by drivers that also support shader clip
3446 distance outputs.
3447 This is useful for APIs that don't have UCPs and where clip distances written
3448 by a shader cannot be disabled.
3449
3450 GS_INVOCATIONS
3451 """"""""""""""
3452
3453 Specifies the number of times a geometry shader should be executed for each
3454 input primitive. Each invocation will have a different
3455 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
3456 be 1.
3457
3458 VS_WINDOW_SPACE_POSITION
3459 """"""""""""""""""""""""""
3460 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
3461 is assumed to contain window space coordinates.
3462 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
3463 directly taken from the 4-th component of the shader output.
3464 Naturally, clipping is not performed on window coordinates either.
3465 The effect of this property is undefined if a geometry or tessellation shader
3466 are in use.
3467
3468 TCS_VERTICES_OUT
3469 """"""""""""""""
3470
3471 The number of vertices written by the tessellation control shader. This
3472 effectively defines the patch input size of the tessellation evaluation shader
3473 as well.
3474
3475 TES_PRIM_MODE
3476 """""""""""""
3477
3478 This sets the tessellation primitive mode, one of ``PIPE_PRIM_TRIANGLES``,
3479 ``PIPE_PRIM_QUADS``, or ``PIPE_PRIM_LINES``. (Unlike in GL, there is no
3480 separate isolines settings, the regular lines is assumed to mean isolines.)
3481
3482 TES_SPACING
3483 """""""""""
3484
3485 This sets the spacing mode of the tessellation generator, one of
3486 ``PIPE_TESS_SPACING_*``.
3487
3488 TES_VERTEX_ORDER_CW
3489 """""""""""""""""""
3490
3491 This sets the vertex order to be clockwise if the value is 1, or
3492 counter-clockwise if set to 0.
3493
3494 TES_POINT_MODE
3495 """"""""""""""
3496
3497 If set to a non-zero value, this turns on point mode for the tessellator,
3498 which means that points will be generated instead of primitives.
3499
3500 NUM_CLIPDIST_ENABLED
3501 """"""""""""""""
3502
3503 How many clip distance scalar outputs are enabled.
3504
3505 NUM_CULLDIST_ENABLED
3506 """"""""""""""""
3507
3508 How many cull distance scalar outputs are enabled.
3509
3510 FS_EARLY_DEPTH_STENCIL
3511 """"""""""""""""""""""
3512
3513 Whether depth test, stencil test, and occlusion query should run before
3514 the fragment shader (regardless of fragment shader side effects). Corresponds
3515 to GLSL early_fragment_tests.
3516
3517 NEXT_SHADER
3518 """""""""""
3519
3520 Which shader stage will MOST LIKELY follow after this shader when the shader
3521 is bound. This is only a hint to the driver and doesn't have to be precise.
3522 Only set for VS and TES.
3523
3524 CS_FIXED_BLOCK_WIDTH / HEIGHT / DEPTH
3525 """""""""""""""""""""""""""""""""""""
3526
3527 Threads per block in each dimension, if known at compile time. If the block size
3528 is known all three should be at least 1. If it is unknown they should all be set
3529 to 0 or not set.
3530
3531 MUL_ZERO_WINS
3532 """""""""""""
3533
3534 The MUL TGSI operation (FP32 multiplication) will return 0 if either
3535 of the operands are equal to 0. That means that 0 * Inf = 0. This
3536 should be set the same way for an entire pipeline. Note that this
3537 applies not only to the literal MUL TGSI opcode, but all FP32
3538 multiplications implied by other operations, such as MAD, FMA, DP2,
3539 DP3, DP4, DPH, DST, LOG, LRP, XPD, and possibly others. If there is a
3540 mismatch between shaders, then it is unspecified whether this behavior
3541 will be enabled.
3542
3543
3544 Texture Sampling and Texture Formats
3545 ------------------------------------
3546
3547 This table shows how texture image components are returned as (x,y,z,w) tuples
3548 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
3549 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
3550 well.
3551
3552 +--------------------+--------------+--------------------+--------------+
3553 | Texture Components | Gallium | OpenGL | Direct3D 9 |
3554 +====================+==============+====================+==============+
3555 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
3556 +--------------------+--------------+--------------------+--------------+
3557 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
3558 +--------------------+--------------+--------------------+--------------+
3559 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
3560 +--------------------+--------------+--------------------+--------------+
3561 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
3562 +--------------------+--------------+--------------------+--------------+
3563 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
3564 +--------------------+--------------+--------------------+--------------+
3565 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
3566 +--------------------+--------------+--------------------+--------------+
3567 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
3568 +--------------------+--------------+--------------------+--------------+
3569 | I | (i, i, i, i) | (i, i, i, i) | N/A |
3570 +--------------------+--------------+--------------------+--------------+
3571 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
3572 | | | [#envmap-bumpmap]_ | |
3573 +--------------------+--------------+--------------------+--------------+
3574 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
3575 | | | [#depth-tex-mode]_ | |
3576 +--------------------+--------------+--------------------+--------------+
3577 | S | (s, s, s, s) | unknown | unknown |
3578 +--------------------+--------------+--------------------+--------------+
3579
3580 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
3581 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
3582 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.