gallium/docs: minor clarification for TXQ instruction
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = \lfloor src.x\rfloor
52
53 dst.y = \lfloor src.y\rfloor
54
55 dst.z = \lfloor src.z\rfloor
56
57 dst.w = \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: CND - Condition
276
277 .. math::
278
279 dst.x = (src2.x > 0.5) ? src0.x : src1.x
280
281 dst.y = (src2.y > 0.5) ? src0.y : src1.y
282
283 dst.z = (src2.z > 0.5) ? src0.z : src1.z
284
285 dst.w = (src2.w > 0.5) ? src0.w : src1.w
286
287
288 .. opcode:: DP2A - 2-component Dot Product And Add
289
290 .. math::
291
292 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
293
294 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
295
296 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
297
298 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
299
300
301 .. opcode:: FRC - Fraction
302
303 .. math::
304
305 dst.x = src.x - \lfloor src.x\rfloor
306
307 dst.y = src.y - \lfloor src.y\rfloor
308
309 dst.z = src.z - \lfloor src.z\rfloor
310
311 dst.w = src.w - \lfloor src.w\rfloor
312
313
314 .. opcode:: CLAMP - Clamp
315
316 .. math::
317
318 dst.x = clamp(src0.x, src1.x, src2.x)
319
320 dst.y = clamp(src0.y, src1.y, src2.y)
321
322 dst.z = clamp(src0.z, src1.z, src2.z)
323
324 dst.w = clamp(src0.w, src1.w, src2.w)
325
326
327 .. opcode:: FLR - Floor
328
329 This is identical to :opcode:`ARL`.
330
331 .. math::
332
333 dst.x = \lfloor src.x\rfloor
334
335 dst.y = \lfloor src.y\rfloor
336
337 dst.z = \lfloor src.z\rfloor
338
339 dst.w = \lfloor src.w\rfloor
340
341
342 .. opcode:: ROUND - Round
343
344 .. math::
345
346 dst.x = round(src.x)
347
348 dst.y = round(src.y)
349
350 dst.z = round(src.z)
351
352 dst.w = round(src.w)
353
354
355 .. opcode:: EX2 - Exponential Base 2
356
357 This instruction replicates its result.
358
359 .. math::
360
361 dst = 2^{src.x}
362
363
364 .. opcode:: LG2 - Logarithm Base 2
365
366 This instruction replicates its result.
367
368 .. math::
369
370 dst = \log_2{src.x}
371
372
373 .. opcode:: POW - Power
374
375 This instruction replicates its result.
376
377 .. math::
378
379 dst = src0.x^{src1.x}
380
381 .. opcode:: XPD - Cross Product
382
383 .. math::
384
385 dst.x = src0.y \times src1.z - src1.y \times src0.z
386
387 dst.y = src0.z \times src1.x - src1.z \times src0.x
388
389 dst.z = src0.x \times src1.y - src1.x \times src0.y
390
391 dst.w = 1
392
393
394 .. opcode:: ABS - Absolute
395
396 .. math::
397
398 dst.x = |src.x|
399
400 dst.y = |src.y|
401
402 dst.z = |src.z|
403
404 dst.w = |src.w|
405
406
407 .. opcode:: RCC - Reciprocal Clamped
408
409 This instruction replicates its result.
410
411 XXX cleanup on aisle three
412
413 .. math::
414
415 dst = (1 / src.x) > 0 ? clamp(1 / src.x, 5.42101e-020, 1.84467e+019) : clamp(1 / src.x, -1.84467e+019, -5.42101e-020)
416
417
418 .. opcode:: DPH - Homogeneous Dot Product
419
420 This instruction replicates its result.
421
422 .. math::
423
424 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
425
426
427 .. opcode:: COS - Cosine
428
429 This instruction replicates its result.
430
431 .. math::
432
433 dst = \cos{src.x}
434
435
436 .. opcode:: DDX - Derivative Relative To X
437
438 .. math::
439
440 dst.x = partialx(src.x)
441
442 dst.y = partialx(src.y)
443
444 dst.z = partialx(src.z)
445
446 dst.w = partialx(src.w)
447
448
449 .. opcode:: DDY - Derivative Relative To Y
450
451 .. math::
452
453 dst.x = partialy(src.x)
454
455 dst.y = partialy(src.y)
456
457 dst.z = partialy(src.z)
458
459 dst.w = partialy(src.w)
460
461
462 .. opcode:: PK2H - Pack Two 16-bit Floats
463
464 TBD
465
466
467 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
468
469 TBD
470
471
472 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
473
474 TBD
475
476
477 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
478
479 TBD
480
481
482 .. opcode:: RFL - Reflection Vector
483
484 .. math::
485
486 dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x
487
488 dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y
489
490 dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z
491
492 dst.w = 1
493
494 .. note::
495
496 Considered for removal.
497
498
499 .. opcode:: SEQ - Set On Equal
500
501 .. math::
502
503 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
504
505 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
506
507 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
508
509 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
510
511
512 .. opcode:: SFL - Set On False
513
514 This instruction replicates its result.
515
516 .. math::
517
518 dst = 0.0F
519
520 .. note::
521
522 Considered for removal.
523
524
525 .. opcode:: SGT - Set On Greater Than
526
527 .. math::
528
529 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
530
531 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
532
533 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
534
535 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
536
537
538 .. opcode:: SIN - Sine
539
540 This instruction replicates its result.
541
542 .. math::
543
544 dst = \sin{src.x}
545
546
547 .. opcode:: SLE - Set On Less Equal Than
548
549 .. math::
550
551 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
552
553 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
554
555 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
556
557 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
558
559
560 .. opcode:: SNE - Set On Not Equal
561
562 .. math::
563
564 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
565
566 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
567
568 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
569
570 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
571
572
573 .. opcode:: STR - Set On True
574
575 This instruction replicates its result.
576
577 .. math::
578
579 dst = 1.0F
580
581
582 .. opcode:: TEX - Texture Lookup
583
584 for array textures src0.y contains the slice for 1D,
585 and src0.z contain the slice for 2D.
586
587 for shadow textures with no arrays, src0.z contains
588 the reference value.
589
590 for shadow textures with arrays, src0.z contains
591 the reference value for 1D arrays, and src0.w contains
592 the reference value for 2D arrays.
593
594 There is no way to pass a bias in the .w value for
595 shadow arrays, and GLSL doesn't allow this.
596 GLSL does allow cube shadows maps to take a bias value,
597 and we have to determine how this will look in TGSI.
598
599 .. math::
600
601 coord = src0
602
603 bias = 0.0
604
605 dst = texture\_sample(unit, coord, bias)
606
607 .. opcode:: TXD - Texture Lookup with Derivatives
608
609 .. math::
610
611 coord = src0
612
613 ddx = src1
614
615 ddy = src2
616
617 bias = 0.0
618
619 dst = texture\_sample\_deriv(unit, coord, bias, ddx, ddy)
620
621
622 .. opcode:: TXP - Projective Texture Lookup
623
624 .. math::
625
626 coord.x = src0.x / src.w
627
628 coord.y = src0.y / src.w
629
630 coord.z = src0.z / src.w
631
632 coord.w = src0.w
633
634 bias = 0.0
635
636 dst = texture\_sample(unit, coord, bias)
637
638
639 .. opcode:: UP2H - Unpack Two 16-Bit Floats
640
641 TBD
642
643 .. note::
644
645 Considered for removal.
646
647 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
648
649 TBD
650
651 .. note::
652
653 Considered for removal.
654
655 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
656
657 TBD
658
659 .. note::
660
661 Considered for removal.
662
663 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
664
665 TBD
666
667 .. note::
668
669 Considered for removal.
670
671 .. opcode:: X2D - 2D Coordinate Transformation
672
673 .. math::
674
675 dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y
676
677 dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w
678
679 dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y
680
681 dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w
682
683 .. note::
684
685 Considered for removal.
686
687
688 .. opcode:: ARA - Address Register Add
689
690 TBD
691
692 .. note::
693
694 Considered for removal.
695
696 .. opcode:: ARR - Address Register Load With Round
697
698 .. math::
699
700 dst.x = round(src.x)
701
702 dst.y = round(src.y)
703
704 dst.z = round(src.z)
705
706 dst.w = round(src.w)
707
708
709 .. opcode:: SSG - Set Sign
710
711 .. math::
712
713 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
714
715 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
716
717 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
718
719 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
720
721
722 .. opcode:: CMP - Compare
723
724 .. math::
725
726 dst.x = (src0.x < 0) ? src1.x : src2.x
727
728 dst.y = (src0.y < 0) ? src1.y : src2.y
729
730 dst.z = (src0.z < 0) ? src1.z : src2.z
731
732 dst.w = (src0.w < 0) ? src1.w : src2.w
733
734
735 .. opcode:: KILL_IF - Conditional Discard
736
737 Conditional discard. Allowed in fragment shaders only.
738
739 .. math::
740
741 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
742 discard
743 endif
744
745
746 .. opcode:: KILL - Discard
747
748 Unconditional discard. Allowed in fragment shaders only.
749
750
751 .. opcode:: SCS - Sine Cosine
752
753 .. math::
754
755 dst.x = \cos{src.x}
756
757 dst.y = \sin{src.x}
758
759 dst.z = 0
760
761 dst.w = 1
762
763
764 .. opcode:: TXB - Texture Lookup With Bias
765
766 .. math::
767
768 coord.x = src.x
769
770 coord.y = src.y
771
772 coord.z = src.z
773
774 coord.w = 1.0
775
776 bias = src.z
777
778 dst = texture\_sample(unit, coord, bias)
779
780
781 .. opcode:: NRM - 3-component Vector Normalise
782
783 .. math::
784
785 dst.x = src.x / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
786
787 dst.y = src.y / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
788
789 dst.z = src.z / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
790
791 dst.w = 1
792
793
794 .. opcode:: DIV - Divide
795
796 .. math::
797
798 dst.x = \frac{src0.x}{src1.x}
799
800 dst.y = \frac{src0.y}{src1.y}
801
802 dst.z = \frac{src0.z}{src1.z}
803
804 dst.w = \frac{src0.w}{src1.w}
805
806
807 .. opcode:: DP2 - 2-component Dot Product
808
809 This instruction replicates its result.
810
811 .. math::
812
813 dst = src0.x \times src1.x + src0.y \times src1.y
814
815
816 .. opcode:: TXL - Texture Lookup With explicit LOD
817
818 .. math::
819
820 coord.x = src0.x
821
822 coord.y = src0.y
823
824 coord.z = src0.z
825
826 coord.w = 1.0
827
828 lod = src0.w
829
830 dst = texture\_sample(unit, coord, lod)
831
832
833 .. opcode:: PUSHA - Push Address Register On Stack
834
835 push(src.x)
836 push(src.y)
837 push(src.z)
838 push(src.w)
839
840 .. note::
841
842 Considered for cleanup.
843
844 .. note::
845
846 Considered for removal.
847
848 .. opcode:: POPA - Pop Address Register From Stack
849
850 dst.w = pop()
851 dst.z = pop()
852 dst.y = pop()
853 dst.x = pop()
854
855 .. note::
856
857 Considered for cleanup.
858
859 .. note::
860
861 Considered for removal.
862
863
864 .. opcode:: BRA - Branch
865
866 pc = target
867
868 .. note::
869
870 Considered for removal.
871
872
873 .. opcode:: CALLNZ - Subroutine Call If Not Zero
874
875 TBD
876
877 .. note::
878
879 Considered for cleanup.
880
881 .. note::
882
883 Considered for removal.
884
885
886 Compute ISA
887 ^^^^^^^^^^^^^^^^^^^^^^^^
888
889 These opcodes are primarily provided for special-use computational shaders.
890 Support for these opcodes indicated by a special pipe capability bit (TBD).
891
892 XXX doesn't look like most of the opcodes really belong here.
893
894 .. opcode:: CEIL - Ceiling
895
896 .. math::
897
898 dst.x = \lceil src.x\rceil
899
900 dst.y = \lceil src.y\rceil
901
902 dst.z = \lceil src.z\rceil
903
904 dst.w = \lceil src.w\rceil
905
906
907 .. opcode:: TRUNC - Truncate
908
909 .. math::
910
911 dst.x = trunc(src.x)
912
913 dst.y = trunc(src.y)
914
915 dst.z = trunc(src.z)
916
917 dst.w = trunc(src.w)
918
919
920 .. opcode:: MOD - Modulus
921
922 .. math::
923
924 dst.x = src0.x \bmod src1.x
925
926 dst.y = src0.y \bmod src1.y
927
928 dst.z = src0.z \bmod src1.z
929
930 dst.w = src0.w \bmod src1.w
931
932
933 .. opcode:: UARL - Integer Address Register Load
934
935 Moves the contents of the source register, assumed to be an integer, into the
936 destination register, which is assumed to be an address (ADDR) register.
937
938
939 .. opcode:: SAD - Sum Of Absolute Differences
940
941 .. math::
942
943 dst.x = |src0.x - src1.x| + src2.x
944
945 dst.y = |src0.y - src1.y| + src2.y
946
947 dst.z = |src0.z - src1.z| + src2.z
948
949 dst.w = |src0.w - src1.w| + src2.w
950
951
952 .. opcode:: TXF - Texel Fetch
953
954 As per NV_gpu_shader4, extract a single texel from a specified texture
955 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
956 four-component signed integer vector used to identify the single texel
957 accessed. 3 components + level. src 1 is a 3 component constant signed
958 integer vector, with each component only have a range of -8..+8 (hw only
959 seems to deal with this range, interface allows for up to unsigned int).
960 TXF(uint_vec coord, int_vec offset).
961
962
963 .. opcode:: TXQ - Texture Size Query
964
965 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
966 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
967 depth), 1D array (width, layers), 2D array (width, height, layers).
968 Also return the number of accessible levels (last_level - first_level + 1)
969 in W.
970
971 For components which don't return a resource dimension, their value
972 is undefined.
973
974
975 .. math::
976
977 lod = src0.x
978
979 dst.x = texture\_width(unit, lod)
980
981 dst.y = texture\_height(unit, lod)
982
983 dst.z = texture\_depth(unit, lod)
984
985 dst.w = texture\_levels(unit)
986
987 .. opcode:: TG4 - Texture Gather
988
989 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
990 filtering operation and packs them into a single register. Only works with
991 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
992 addressing modes of the sampler and the top level of any mip pyramid are
993 used. Set W to zero. It behaves like the TEX instruction, but a filtered
994 sample is not generated. The four samples that contribute to filtering are
995 placed into xyzw in clockwise order, starting with the (u,v) texture
996 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
997 where the magnitude of the deltas are half a texel.
998
999 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
1000 depth compares, single component selection, and a non-constant offset. It
1001 doesn't allow support for the GL independent offset to get i0,j0. This would
1002 require another CAP is hw can do it natively. For now we lower that before
1003 TGSI.
1004
1005 .. math::
1006
1007 coord = src0
1008
1009 component = src1
1010
1011 dst = texture\_gather4 (unit, coord, component)
1012
1013 (with SM5 - cube array shadow)
1014
1015 .. math::
1016
1017 coord = src0
1018
1019 compare = src1
1020
1021 dst = texture\_gather (uint, coord, compare)
1022
1023 .. opcode:: LODQ - level of detail query
1024
1025 Compute the LOD information that the texture pipe would use to access the
1026 texture. The Y component contains the computed LOD lambda_prime. The X
1027 component contains the LOD that will be accessed, based on min/max lod's
1028 and mipmap filters.
1029
1030 .. math::
1031
1032 coord = src0
1033
1034 dst.xy = lodq(uint, coord);
1035
1036 Integer ISA
1037 ^^^^^^^^^^^^^^^^^^^^^^^^
1038 These opcodes are used for integer operations.
1039 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1040
1041
1042 .. opcode:: I2F - Signed Integer To Float
1043
1044 Rounding is unspecified (round to nearest even suggested).
1045
1046 .. math::
1047
1048 dst.x = (float) src.x
1049
1050 dst.y = (float) src.y
1051
1052 dst.z = (float) src.z
1053
1054 dst.w = (float) src.w
1055
1056
1057 .. opcode:: U2F - Unsigned Integer To Float
1058
1059 Rounding is unspecified (round to nearest even suggested).
1060
1061 .. math::
1062
1063 dst.x = (float) src.x
1064
1065 dst.y = (float) src.y
1066
1067 dst.z = (float) src.z
1068
1069 dst.w = (float) src.w
1070
1071
1072 .. opcode:: F2I - Float to Signed Integer
1073
1074 Rounding is towards zero (truncate).
1075 Values outside signed range (including NaNs) produce undefined results.
1076
1077 .. math::
1078
1079 dst.x = (int) src.x
1080
1081 dst.y = (int) src.y
1082
1083 dst.z = (int) src.z
1084
1085 dst.w = (int) src.w
1086
1087
1088 .. opcode:: F2U - Float to Unsigned Integer
1089
1090 Rounding is towards zero (truncate).
1091 Values outside unsigned range (including NaNs) produce undefined results.
1092
1093 .. math::
1094
1095 dst.x = (unsigned) src.x
1096
1097 dst.y = (unsigned) src.y
1098
1099 dst.z = (unsigned) src.z
1100
1101 dst.w = (unsigned) src.w
1102
1103
1104 .. opcode:: UADD - Integer Add
1105
1106 This instruction works the same for signed and unsigned integers.
1107 The low 32bit of the result is returned.
1108
1109 .. math::
1110
1111 dst.x = src0.x + src1.x
1112
1113 dst.y = src0.y + src1.y
1114
1115 dst.z = src0.z + src1.z
1116
1117 dst.w = src0.w + src1.w
1118
1119
1120 .. opcode:: UMAD - Integer Multiply And Add
1121
1122 This instruction works the same for signed and unsigned integers.
1123 The multiplication returns the low 32bit (as does the result itself).
1124
1125 .. math::
1126
1127 dst.x = src0.x \times src1.x + src2.x
1128
1129 dst.y = src0.y \times src1.y + src2.y
1130
1131 dst.z = src0.z \times src1.z + src2.z
1132
1133 dst.w = src0.w \times src1.w + src2.w
1134
1135
1136 .. opcode:: UMUL - Integer Multiply
1137
1138 This instruction works the same for signed and unsigned integers.
1139 The low 32bit of the result is returned.
1140
1141 .. math::
1142
1143 dst.x = src0.x \times src1.x
1144
1145 dst.y = src0.y \times src1.y
1146
1147 dst.z = src0.z \times src1.z
1148
1149 dst.w = src0.w \times src1.w
1150
1151
1152 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1153
1154 The high 32bits of the multiplication of 2 signed integers are returned.
1155
1156 .. math::
1157
1158 dst.x = (src0.x \times src1.x) >> 32
1159
1160 dst.y = (src0.y \times src1.y) >> 32
1161
1162 dst.z = (src0.z \times src1.z) >> 32
1163
1164 dst.w = (src0.w \times src1.w) >> 32
1165
1166
1167 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1168
1169 The high 32bits of the multiplication of 2 unsigned integers are returned.
1170
1171 .. math::
1172
1173 dst.x = (src0.x \times src1.x) >> 32
1174
1175 dst.y = (src0.y \times src1.y) >> 32
1176
1177 dst.z = (src0.z \times src1.z) >> 32
1178
1179 dst.w = (src0.w \times src1.w) >> 32
1180
1181
1182 .. opcode:: IDIV - Signed Integer Division
1183
1184 TBD: behavior for division by zero.
1185
1186 .. math::
1187
1188 dst.x = src0.x \ src1.x
1189
1190 dst.y = src0.y \ src1.y
1191
1192 dst.z = src0.z \ src1.z
1193
1194 dst.w = src0.w \ src1.w
1195
1196
1197 .. opcode:: UDIV - Unsigned Integer Division
1198
1199 For division by zero, 0xffffffff is returned.
1200
1201 .. math::
1202
1203 dst.x = src0.x \ src1.x
1204
1205 dst.y = src0.y \ src1.y
1206
1207 dst.z = src0.z \ src1.z
1208
1209 dst.w = src0.w \ src1.w
1210
1211
1212 .. opcode:: UMOD - Unsigned Integer Remainder
1213
1214 If second arg is zero, 0xffffffff is returned.
1215
1216 .. math::
1217
1218 dst.x = src0.x \ src1.x
1219
1220 dst.y = src0.y \ src1.y
1221
1222 dst.z = src0.z \ src1.z
1223
1224 dst.w = src0.w \ src1.w
1225
1226
1227 .. opcode:: NOT - Bitwise Not
1228
1229 .. math::
1230
1231 dst.x = \sim src.x
1232
1233 dst.y = \sim src.y
1234
1235 dst.z = \sim src.z
1236
1237 dst.w = \sim src.w
1238
1239
1240 .. opcode:: AND - Bitwise And
1241
1242 .. math::
1243
1244 dst.x = src0.x \& src1.x
1245
1246 dst.y = src0.y \& src1.y
1247
1248 dst.z = src0.z \& src1.z
1249
1250 dst.w = src0.w \& src1.w
1251
1252
1253 .. opcode:: OR - Bitwise Or
1254
1255 .. math::
1256
1257 dst.x = src0.x | src1.x
1258
1259 dst.y = src0.y | src1.y
1260
1261 dst.z = src0.z | src1.z
1262
1263 dst.w = src0.w | src1.w
1264
1265
1266 .. opcode:: XOR - Bitwise Xor
1267
1268 .. math::
1269
1270 dst.x = src0.x \oplus src1.x
1271
1272 dst.y = src0.y \oplus src1.y
1273
1274 dst.z = src0.z \oplus src1.z
1275
1276 dst.w = src0.w \oplus src1.w
1277
1278
1279 .. opcode:: IMAX - Maximum of Signed Integers
1280
1281 .. math::
1282
1283 dst.x = max(src0.x, src1.x)
1284
1285 dst.y = max(src0.y, src1.y)
1286
1287 dst.z = max(src0.z, src1.z)
1288
1289 dst.w = max(src0.w, src1.w)
1290
1291
1292 .. opcode:: UMAX - Maximum of Unsigned Integers
1293
1294 .. math::
1295
1296 dst.x = max(src0.x, src1.x)
1297
1298 dst.y = max(src0.y, src1.y)
1299
1300 dst.z = max(src0.z, src1.z)
1301
1302 dst.w = max(src0.w, src1.w)
1303
1304
1305 .. opcode:: IMIN - Minimum of Signed Integers
1306
1307 .. math::
1308
1309 dst.x = min(src0.x, src1.x)
1310
1311 dst.y = min(src0.y, src1.y)
1312
1313 dst.z = min(src0.z, src1.z)
1314
1315 dst.w = min(src0.w, src1.w)
1316
1317
1318 .. opcode:: UMIN - Minimum of Unsigned Integers
1319
1320 .. math::
1321
1322 dst.x = min(src0.x, src1.x)
1323
1324 dst.y = min(src0.y, src1.y)
1325
1326 dst.z = min(src0.z, src1.z)
1327
1328 dst.w = min(src0.w, src1.w)
1329
1330
1331 .. opcode:: SHL - Shift Left
1332
1333 The shift count is masked with 0x1f before the shift is applied.
1334
1335 .. math::
1336
1337 dst.x = src0.x << (0x1f \& src1.x)
1338
1339 dst.y = src0.y << (0x1f \& src1.y)
1340
1341 dst.z = src0.z << (0x1f \& src1.z)
1342
1343 dst.w = src0.w << (0x1f \& src1.w)
1344
1345
1346 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1347
1348 The shift count is masked with 0x1f before the shift is applied.
1349
1350 .. math::
1351
1352 dst.x = src0.x >> (0x1f \& src1.x)
1353
1354 dst.y = src0.y >> (0x1f \& src1.y)
1355
1356 dst.z = src0.z >> (0x1f \& src1.z)
1357
1358 dst.w = src0.w >> (0x1f \& src1.w)
1359
1360
1361 .. opcode:: USHR - Logical Shift Right
1362
1363 The shift count is masked with 0x1f before the shift is applied.
1364
1365 .. math::
1366
1367 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1368
1369 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1370
1371 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1372
1373 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1374
1375
1376 .. opcode:: UCMP - Integer Conditional Move
1377
1378 .. math::
1379
1380 dst.x = src0.x ? src1.x : src2.x
1381
1382 dst.y = src0.y ? src1.y : src2.y
1383
1384 dst.z = src0.z ? src1.z : src2.z
1385
1386 dst.w = src0.w ? src1.w : src2.w
1387
1388
1389
1390 .. opcode:: ISSG - Integer Set Sign
1391
1392 .. math::
1393
1394 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1395
1396 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1397
1398 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1399
1400 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1401
1402
1403
1404 .. opcode:: FSLT - Float Set On Less Than (ordered)
1405
1406 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1407
1408 .. math::
1409
1410 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1411
1412 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1413
1414 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1415
1416 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1417
1418
1419 .. opcode:: ISLT - Signed Integer Set On Less Than
1420
1421 .. math::
1422
1423 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1424
1425 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1426
1427 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1428
1429 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1430
1431
1432 .. opcode:: USLT - Unsigned Integer Set On Less Than
1433
1434 .. math::
1435
1436 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1437
1438 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1439
1440 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1441
1442 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1443
1444
1445 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1446
1447 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1448
1449 .. math::
1450
1451 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1452
1453 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1454
1455 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1456
1457 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1458
1459
1460 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1461
1462 .. math::
1463
1464 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1465
1466 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1467
1468 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1469
1470 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1471
1472
1473 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1474
1475 .. math::
1476
1477 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1478
1479 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1480
1481 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1482
1483 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1484
1485
1486 .. opcode:: FSEQ - Float Set On Equal (ordered)
1487
1488 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1489
1490 .. math::
1491
1492 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1493
1494 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1495
1496 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1497
1498 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1499
1500
1501 .. opcode:: USEQ - Integer Set On Equal
1502
1503 .. math::
1504
1505 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1506
1507 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1508
1509 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1510
1511 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1512
1513
1514 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1515
1516 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1517
1518 .. math::
1519
1520 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1521
1522 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1523
1524 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1525
1526 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1527
1528
1529 .. opcode:: USNE - Integer Set On Not Equal
1530
1531 .. math::
1532
1533 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1534
1535 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1536
1537 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1538
1539 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1540
1541
1542 .. opcode:: INEG - Integer Negate
1543
1544 Two's complement.
1545
1546 .. math::
1547
1548 dst.x = -src.x
1549
1550 dst.y = -src.y
1551
1552 dst.z = -src.z
1553
1554 dst.w = -src.w
1555
1556
1557 .. opcode:: IABS - Integer Absolute Value
1558
1559 .. math::
1560
1561 dst.x = |src.x|
1562
1563 dst.y = |src.y|
1564
1565 dst.z = |src.z|
1566
1567 dst.w = |src.w|
1568
1569 Bitwise ISA
1570 ^^^^^^^^^^^
1571 These opcodes are used for bit-level manipulation of integers.
1572
1573 .. opcode:: IBFE - Signed Bitfield Extract
1574
1575 See SM5 instruction of the same name. Extracts a set of bits from the input,
1576 and sign-extends them if the high bit of the extracted window is set.
1577
1578 Pseudocode::
1579
1580 def ibfe(value, offset, bits):
1581 offset = offset & 0x1f
1582 bits = bits & 0x1f
1583 if bits == 0: return 0
1584 # Note: >> sign-extends
1585 if width + offset < 32:
1586 return (value << (32 - offset - bits)) >> (32 - bits)
1587 else:
1588 return value >> offset
1589
1590 .. opcode:: UBFE - Unsigned Bitfield Extract
1591
1592 See SM5 instruction of the same name. Extracts a set of bits from the input,
1593 without any sign-extension.
1594
1595 Pseudocode::
1596
1597 def ubfe(value, offset, bits):
1598 offset = offset & 0x1f
1599 bits = bits & 0x1f
1600 if bits == 0: return 0
1601 # Note: >> does not sign-extend
1602 if width + offset < 32:
1603 return (value << (32 - offset - bits)) >> (32 - bits)
1604 else:
1605 return value >> offset
1606
1607 .. opcode:: BFI - Bitfield Insert
1608
1609 See SM5 instruction of the same name. Replaces a bit region of 'base' with
1610 the low bits of 'insert'.
1611
1612 Pseudocode::
1613
1614 def bfi(base, insert, offset, bits):
1615 offset = offset & 0x1f
1616 bits = bits & 0x1f
1617 mask = ((1 << bits) - 1) << offset
1618 return ((insert << offset) & mask) | (base & ~mask)
1619
1620 .. opcode:: BREV - Bitfield Reverse
1621
1622 See SM5 instruction BFREV. Reverses the bits of the argument.
1623
1624 .. opcode:: POPC - Population Count
1625
1626 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1627
1628 .. opcode:: LSB - Index of lowest set bit
1629
1630 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1631 bit of the argument. Returns -1 if none are set.
1632
1633 .. opcode:: IMSB - Index of highest non-sign bit
1634
1635 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1636 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1637 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1638 (i.e. for inputs 0 and -1).
1639
1640 .. opcode:: UMSB - Index of highest set bit
1641
1642 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1643 set bit of the argument. Returns -1 if none are set.
1644
1645 Geometry ISA
1646 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1647
1648 These opcodes are only supported in geometry shaders; they have no meaning
1649 in any other type of shader.
1650
1651 .. opcode:: EMIT - Emit
1652
1653 Generate a new vertex for the current primitive into the specified vertex
1654 stream using the values in the output registers.
1655
1656
1657 .. opcode:: ENDPRIM - End Primitive
1658
1659 Complete the current primitive in the specified vertex stream (consisting of
1660 the emitted vertices), and start a new one.
1661
1662
1663 GLSL ISA
1664 ^^^^^^^^^^
1665
1666 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1667 opcodes is determined by a special capability bit, ``GLSL``.
1668 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1669
1670 .. opcode:: CAL - Subroutine Call
1671
1672 push(pc)
1673 pc = target
1674
1675
1676 .. opcode:: RET - Subroutine Call Return
1677
1678 pc = pop()
1679
1680
1681 .. opcode:: CONT - Continue
1682
1683 Unconditionally moves the point of execution to the instruction after the
1684 last bgnloop. The instruction must appear within a bgnloop/endloop.
1685
1686 .. note::
1687
1688 Support for CONT is determined by a special capability bit,
1689 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1690
1691
1692 .. opcode:: BGNLOOP - Begin a Loop
1693
1694 Start a loop. Must have a matching endloop.
1695
1696
1697 .. opcode:: BGNSUB - Begin Subroutine
1698
1699 Starts definition of a subroutine. Must have a matching endsub.
1700
1701
1702 .. opcode:: ENDLOOP - End a Loop
1703
1704 End a loop started with bgnloop.
1705
1706
1707 .. opcode:: ENDSUB - End Subroutine
1708
1709 Ends definition of a subroutine.
1710
1711
1712 .. opcode:: NOP - No Operation
1713
1714 Do nothing.
1715
1716
1717 .. opcode:: BRK - Break
1718
1719 Unconditionally moves the point of execution to the instruction after the
1720 next endloop or endswitch. The instruction must appear within a loop/endloop
1721 or switch/endswitch.
1722
1723
1724 .. opcode:: BREAKC - Break Conditional
1725
1726 Conditionally moves the point of execution to the instruction after the
1727 next endloop or endswitch. The instruction must appear within a loop/endloop
1728 or switch/endswitch.
1729 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1730 as an integer register.
1731
1732 .. note::
1733
1734 Considered for removal as it's quite inconsistent wrt other opcodes
1735 (could emulate with UIF/BRK/ENDIF).
1736
1737
1738 .. opcode:: IF - Float If
1739
1740 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1741
1742 src0.x != 0.0
1743
1744 where src0.x is interpreted as a floating point register.
1745
1746
1747 .. opcode:: UIF - Bitwise If
1748
1749 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1750
1751 src0.x != 0
1752
1753 where src0.x is interpreted as an integer register.
1754
1755
1756 .. opcode:: ELSE - Else
1757
1758 Starts an else block, after an IF or UIF statement.
1759
1760
1761 .. opcode:: ENDIF - End If
1762
1763 Ends an IF or UIF block.
1764
1765
1766 .. opcode:: SWITCH - Switch
1767
1768 Starts a C-style switch expression. The switch consists of one or multiple
1769 CASE statements, and at most one DEFAULT statement. Execution of a statement
1770 ends when a BRK is hit, but just like in C falling through to other cases
1771 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1772 just as last statement, and fallthrough is allowed into/from it.
1773 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1774
1775 Example::
1776
1777 SWITCH src[0].x
1778 CASE src[0].x
1779 (some instructions here)
1780 (optional BRK here)
1781 DEFAULT
1782 (some instructions here)
1783 (optional BRK here)
1784 CASE src[0].x
1785 (some instructions here)
1786 (optional BRK here)
1787 ENDSWITCH
1788
1789
1790 .. opcode:: CASE - Switch case
1791
1792 This represents a switch case label. The src arg must be an integer immediate.
1793
1794
1795 .. opcode:: DEFAULT - Switch default
1796
1797 This represents the default case in the switch, which is taken if no other
1798 case matches.
1799
1800
1801 .. opcode:: ENDSWITCH - End of switch
1802
1803 Ends a switch expression.
1804
1805
1806 .. opcode:: NRM4 - 4-component Vector Normalise
1807
1808 This instruction replicates its result.
1809
1810 .. math::
1811
1812 dst = \frac{src.x}{src.x \times src.x + src.y \times src.y + src.z \times src.z + src.w \times src.w}
1813
1814
1815 Interpolation ISA
1816 ^^^^^^^^^^^^^^^^^
1817
1818 The interpolation instructions allow an input to be interpolated in a
1819 different way than its declaration. This corresponds to the GLSL 4.00
1820 interpolateAt* functions. The first argument of each of these must come from
1821 ``TGSI_FILE_INPUT``.
1822
1823 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1824
1825 Interpolates the varying specified by src0 at the centroid
1826
1827 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1828
1829 Interpolates the varying specified by src0 at the sample id specified by
1830 src1.x (interpreted as an integer)
1831
1832 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1833
1834 Interpolates the varying specified by src0 at the offset src1.xy from the
1835 pixel center (interpreted as floats)
1836
1837
1838 .. _doubleopcodes:
1839
1840 Double ISA
1841 ^^^^^^^^^^^^^^^
1842
1843 The double-precision opcodes reinterpret four-component vectors into
1844 two-component vectors with doubled precision in each component.
1845
1846 Support for these opcodes is XXX undecided. :T
1847
1848 .. opcode:: DADD - Add
1849
1850 .. math::
1851
1852 dst.xy = src0.xy + src1.xy
1853
1854 dst.zw = src0.zw + src1.zw
1855
1856
1857 .. opcode:: DDIV - Divide
1858
1859 .. math::
1860
1861 dst.xy = src0.xy / src1.xy
1862
1863 dst.zw = src0.zw / src1.zw
1864
1865 .. opcode:: DSEQ - Set on Equal
1866
1867 .. math::
1868
1869 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1870
1871 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1872
1873 .. opcode:: DSLT - Set on Less than
1874
1875 .. math::
1876
1877 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1878
1879 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1880
1881 .. opcode:: DFRAC - Fraction
1882
1883 .. math::
1884
1885 dst.xy = src.xy - \lfloor src.xy\rfloor
1886
1887 dst.zw = src.zw - \lfloor src.zw\rfloor
1888
1889
1890 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1891
1892 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1893 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1894 :math:`dst1 \times 2^{dst0} = src` .
1895
1896 .. math::
1897
1898 dst0.xy = exp(src.xy)
1899
1900 dst1.xy = frac(src.xy)
1901
1902 dst0.zw = exp(src.zw)
1903
1904 dst1.zw = frac(src.zw)
1905
1906 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1907
1908 This opcode is the inverse of :opcode:`DFRACEXP`.
1909
1910 .. math::
1911
1912 dst.xy = src0.xy \times 2^{src1.xy}
1913
1914 dst.zw = src0.zw \times 2^{src1.zw}
1915
1916 .. opcode:: DMIN - Minimum
1917
1918 .. math::
1919
1920 dst.xy = min(src0.xy, src1.xy)
1921
1922 dst.zw = min(src0.zw, src1.zw)
1923
1924 .. opcode:: DMAX - Maximum
1925
1926 .. math::
1927
1928 dst.xy = max(src0.xy, src1.xy)
1929
1930 dst.zw = max(src0.zw, src1.zw)
1931
1932 .. opcode:: DMUL - Multiply
1933
1934 .. math::
1935
1936 dst.xy = src0.xy \times src1.xy
1937
1938 dst.zw = src0.zw \times src1.zw
1939
1940
1941 .. opcode:: DMAD - Multiply And Add
1942
1943 .. math::
1944
1945 dst.xy = src0.xy \times src1.xy + src2.xy
1946
1947 dst.zw = src0.zw \times src1.zw + src2.zw
1948
1949
1950 .. opcode:: DRCP - Reciprocal
1951
1952 .. math::
1953
1954 dst.xy = \frac{1}{src.xy}
1955
1956 dst.zw = \frac{1}{src.zw}
1957
1958 .. opcode:: DSQRT - Square Root
1959
1960 .. math::
1961
1962 dst.xy = \sqrt{src.xy}
1963
1964 dst.zw = \sqrt{src.zw}
1965
1966
1967 .. _samplingopcodes:
1968
1969 Resource Sampling Opcodes
1970 ^^^^^^^^^^^^^^^^^^^^^^^^^
1971
1972 Those opcodes follow very closely semantics of the respective Direct3D
1973 instructions. If in doubt double check Direct3D documentation.
1974 Note that the swizzle on SVIEW (src1) determines texel swizzling
1975 after lookup.
1976
1977 .. opcode:: SAMPLE
1978
1979 Using provided address, sample data from the specified texture using the
1980 filtering mode identified by the gven sampler. The source data may come from
1981 any resource type other than buffers.
1982
1983 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
1984
1985 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
1986
1987 .. opcode:: SAMPLE_I
1988
1989 Simplified alternative to the SAMPLE instruction. Using the provided
1990 integer address, SAMPLE_I fetches data from the specified sampler view
1991 without any filtering. The source data may come from any resource type
1992 other than CUBE.
1993
1994 Syntax: ``SAMPLE_I dst, address, sampler_view``
1995
1996 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
1997
1998 The 'address' is specified as unsigned integers. If the 'address' is out of
1999 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2000 components. As such the instruction doesn't honor address wrap modes, in
2001 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2002 address.w always provides an unsigned integer mipmap level. If the value is
2003 out of the range then the instruction always returns 0 in all components.
2004 address.yz are ignored for buffers and 1d textures. address.z is ignored
2005 for 1d texture arrays and 2d textures.
2006
2007 For 1D texture arrays address.y provides the array index (also as unsigned
2008 integer). If the value is out of the range of available array indices
2009 [0... (array size - 1)] then the opcode always returns 0 in all components.
2010 For 2D texture arrays address.z provides the array index, otherwise it
2011 exhibits the same behavior as in the case for 1D texture arrays. The exact
2012 semantics of the source address are presented in the table below:
2013
2014 +---------------------------+----+-----+-----+---------+
2015 | resource type | X | Y | Z | W |
2016 +===========================+====+=====+=====+=========+
2017 | ``PIPE_BUFFER`` | x | | | ignored |
2018 +---------------------------+----+-----+-----+---------+
2019 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2020 +---------------------------+----+-----+-----+---------+
2021 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2022 +---------------------------+----+-----+-----+---------+
2023 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2024 +---------------------------+----+-----+-----+---------+
2025 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2026 +---------------------------+----+-----+-----+---------+
2027 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2028 +---------------------------+----+-----+-----+---------+
2029 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2030 +---------------------------+----+-----+-----+---------+
2031 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2032 +---------------------------+----+-----+-----+---------+
2033
2034 Where 'mpl' is a mipmap level and 'idx' is the array index.
2035
2036 .. opcode:: SAMPLE_I_MS
2037
2038 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2039
2040 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2041
2042 .. opcode:: SAMPLE_B
2043
2044 Just like the SAMPLE instruction with the exception that an additional bias
2045 is applied to the level of detail computed as part of the instruction
2046 execution.
2047
2048 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2049
2050 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2051
2052 .. opcode:: SAMPLE_C
2053
2054 Similar to the SAMPLE instruction but it performs a comparison filter. The
2055 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2056 additional float32 operand, reference value, which must be a register with
2057 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2058 current samplers compare_func (in pipe_sampler_state) to compare reference
2059 value against the red component value for the surce resource at each texel
2060 that the currently configured texture filter covers based on the provided
2061 coordinates.
2062
2063 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2064
2065 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2066
2067 .. opcode:: SAMPLE_C_LZ
2068
2069 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2070 for level-zero.
2071
2072 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2073
2074 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2075
2076
2077 .. opcode:: SAMPLE_D
2078
2079 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2080 the source address in the x direction and the y direction are provided by
2081 extra parameters.
2082
2083 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2084
2085 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2086
2087 .. opcode:: SAMPLE_L
2088
2089 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2090 directly as a scalar value, representing no anisotropy.
2091
2092 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2093
2094 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2095
2096 .. opcode:: GATHER4
2097
2098 Gathers the four texels to be used in a bi-linear filtering operation and
2099 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2100 and cubemaps arrays. For 2D textures, only the addressing modes of the
2101 sampler and the top level of any mip pyramid are used. Set W to zero. It
2102 behaves like the SAMPLE instruction, but a filtered sample is not
2103 generated. The four samples that contribute to filtering are placed into
2104 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2105 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2106 magnitude of the deltas are half a texel.
2107
2108
2109 .. opcode:: SVIEWINFO
2110
2111 Query the dimensions of a given sampler view. dst receives width, height,
2112 depth or array size and number of mipmap levels as int4. The dst can have a
2113 writemask which will specify what info is the caller interested in.
2114
2115 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2116
2117 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2118
2119 src_mip_level is an unsigned integer scalar. If it's out of range then
2120 returns 0 for width, height and depth/array size but the total number of
2121 mipmap is still returned correctly for the given sampler view. The returned
2122 width, height and depth values are for the mipmap level selected by the
2123 src_mip_level and are in the number of texels. For 1d texture array width
2124 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2125 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2126 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2127 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2128 resinfo allowing swizzling dst values is ignored (due to the interaction
2129 with rcpfloat modifier which requires some swizzle handling in the state
2130 tracker anyway).
2131
2132 .. opcode:: SAMPLE_POS
2133
2134 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2135 indicated where the sample is located. If the resource is not a multi-sample
2136 resource and not a render target, the result is 0.
2137
2138 .. opcode:: SAMPLE_INFO
2139
2140 dst receives number of samples in x. If the resource is not a multi-sample
2141 resource and not a render target, the result is 0.
2142
2143
2144 .. _resourceopcodes:
2145
2146 Resource Access Opcodes
2147 ^^^^^^^^^^^^^^^^^^^^^^^
2148
2149 .. opcode:: LOAD - Fetch data from a shader resource
2150
2151 Syntax: ``LOAD dst, resource, address``
2152
2153 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
2154
2155 Using the provided integer address, LOAD fetches data
2156 from the specified buffer or texture without any
2157 filtering.
2158
2159 The 'address' is specified as a vector of unsigned
2160 integers. If the 'address' is out of range the result
2161 is unspecified.
2162
2163 Only the first mipmap level of a resource can be read
2164 from using this instruction.
2165
2166 For 1D or 2D texture arrays, the array index is
2167 provided as an unsigned integer in address.y or
2168 address.z, respectively. address.yz are ignored for
2169 buffers and 1D textures. address.z is ignored for 1D
2170 texture arrays and 2D textures. address.w is always
2171 ignored.
2172
2173 .. opcode:: STORE - Write data to a shader resource
2174
2175 Syntax: ``STORE resource, address, src``
2176
2177 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
2178
2179 Using the provided integer address, STORE writes data
2180 to the specified buffer or texture.
2181
2182 The 'address' is specified as a vector of unsigned
2183 integers. If the 'address' is out of range the result
2184 is unspecified.
2185
2186 Only the first mipmap level of a resource can be
2187 written to using this instruction.
2188
2189 For 1D or 2D texture arrays, the array index is
2190 provided as an unsigned integer in address.y or
2191 address.z, respectively. address.yz are ignored for
2192 buffers and 1D textures. address.z is ignored for 1D
2193 texture arrays and 2D textures. address.w is always
2194 ignored.
2195
2196
2197 .. _threadsyncopcodes:
2198
2199 Inter-thread synchronization opcodes
2200 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2201
2202 These opcodes are intended for communication between threads running
2203 within the same compute grid. For now they're only valid in compute
2204 programs.
2205
2206 .. opcode:: MFENCE - Memory fence
2207
2208 Syntax: ``MFENCE resource``
2209
2210 Example: ``MFENCE RES[0]``
2211
2212 This opcode forces strong ordering between any memory access
2213 operations that affect the specified resource. This means that
2214 previous loads and stores (and only those) will be performed and
2215 visible to other threads before the program execution continues.
2216
2217
2218 .. opcode:: LFENCE - Load memory fence
2219
2220 Syntax: ``LFENCE resource``
2221
2222 Example: ``LFENCE RES[0]``
2223
2224 Similar to MFENCE, but it only affects the ordering of memory loads.
2225
2226
2227 .. opcode:: SFENCE - Store memory fence
2228
2229 Syntax: ``SFENCE resource``
2230
2231 Example: ``SFENCE RES[0]``
2232
2233 Similar to MFENCE, but it only affects the ordering of memory stores.
2234
2235
2236 .. opcode:: BARRIER - Thread group barrier
2237
2238 ``BARRIER``
2239
2240 This opcode suspends the execution of the current thread until all
2241 the remaining threads in the working group reach the same point of
2242 the program. Results are unspecified if any of the remaining
2243 threads terminates or never reaches an executed BARRIER instruction.
2244
2245
2246 .. _atomopcodes:
2247
2248 Atomic opcodes
2249 ^^^^^^^^^^^^^^
2250
2251 These opcodes provide atomic variants of some common arithmetic and
2252 logical operations. In this context atomicity means that another
2253 concurrent memory access operation that affects the same memory
2254 location is guaranteed to be performed strictly before or after the
2255 entire execution of the atomic operation.
2256
2257 For the moment they're only valid in compute programs.
2258
2259 .. opcode:: ATOMUADD - Atomic integer addition
2260
2261 Syntax: ``ATOMUADD dst, resource, offset, src``
2262
2263 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2264
2265 The following operation is performed atomically on each component:
2266
2267 .. math::
2268
2269 dst_i = resource[offset]_i
2270
2271 resource[offset]_i = dst_i + src_i
2272
2273
2274 .. opcode:: ATOMXCHG - Atomic exchange
2275
2276 Syntax: ``ATOMXCHG dst, resource, offset, src``
2277
2278 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2279
2280 The following operation is performed atomically on each component:
2281
2282 .. math::
2283
2284 dst_i = resource[offset]_i
2285
2286 resource[offset]_i = src_i
2287
2288
2289 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2290
2291 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2292
2293 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2294
2295 The following operation is performed atomically on each component:
2296
2297 .. math::
2298
2299 dst_i = resource[offset]_i
2300
2301 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2302
2303
2304 .. opcode:: ATOMAND - Atomic bitwise And
2305
2306 Syntax: ``ATOMAND dst, resource, offset, src``
2307
2308 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2309
2310 The following operation is performed atomically on each component:
2311
2312 .. math::
2313
2314 dst_i = resource[offset]_i
2315
2316 resource[offset]_i = dst_i \& src_i
2317
2318
2319 .. opcode:: ATOMOR - Atomic bitwise Or
2320
2321 Syntax: ``ATOMOR dst, resource, offset, src``
2322
2323 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2324
2325 The following operation is performed atomically on each component:
2326
2327 .. math::
2328
2329 dst_i = resource[offset]_i
2330
2331 resource[offset]_i = dst_i | src_i
2332
2333
2334 .. opcode:: ATOMXOR - Atomic bitwise Xor
2335
2336 Syntax: ``ATOMXOR dst, resource, offset, src``
2337
2338 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2339
2340 The following operation is performed atomically on each component:
2341
2342 .. math::
2343
2344 dst_i = resource[offset]_i
2345
2346 resource[offset]_i = dst_i \oplus src_i
2347
2348
2349 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2350
2351 Syntax: ``ATOMUMIN dst, resource, offset, src``
2352
2353 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2354
2355 The following operation is performed atomically on each component:
2356
2357 .. math::
2358
2359 dst_i = resource[offset]_i
2360
2361 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2362
2363
2364 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2365
2366 Syntax: ``ATOMUMAX dst, resource, offset, src``
2367
2368 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2369
2370 The following operation is performed atomically on each component:
2371
2372 .. math::
2373
2374 dst_i = resource[offset]_i
2375
2376 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2377
2378
2379 .. opcode:: ATOMIMIN - Atomic signed minimum
2380
2381 Syntax: ``ATOMIMIN dst, resource, offset, src``
2382
2383 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2384
2385 The following operation is performed atomically on each component:
2386
2387 .. math::
2388
2389 dst_i = resource[offset]_i
2390
2391 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2392
2393
2394 .. opcode:: ATOMIMAX - Atomic signed maximum
2395
2396 Syntax: ``ATOMIMAX dst, resource, offset, src``
2397
2398 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2399
2400 The following operation is performed atomically on each component:
2401
2402 .. math::
2403
2404 dst_i = resource[offset]_i
2405
2406 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2407
2408
2409
2410 Explanation of symbols used
2411 ------------------------------
2412
2413
2414 Functions
2415 ^^^^^^^^^^^^^^
2416
2417
2418 :math:`|x|` Absolute value of `x`.
2419
2420 :math:`\lceil x \rceil` Ceiling of `x`.
2421
2422 clamp(x,y,z) Clamp x between y and z.
2423 (x < y) ? y : (x > z) ? z : x
2424
2425 :math:`\lfloor x\rfloor` Floor of `x`.
2426
2427 :math:`\log_2{x}` Logarithm of `x`, base 2.
2428
2429 max(x,y) Maximum of x and y.
2430 (x > y) ? x : y
2431
2432 min(x,y) Minimum of x and y.
2433 (x < y) ? x : y
2434
2435 partialx(x) Derivative of x relative to fragment's X.
2436
2437 partialy(x) Derivative of x relative to fragment's Y.
2438
2439 pop() Pop from stack.
2440
2441 :math:`x^y` `x` to the power `y`.
2442
2443 push(x) Push x on stack.
2444
2445 round(x) Round x.
2446
2447 trunc(x) Truncate x, i.e. drop the fraction bits.
2448
2449
2450 Keywords
2451 ^^^^^^^^^^^^^
2452
2453
2454 discard Discard fragment.
2455
2456 pc Program counter.
2457
2458 target Label of target instruction.
2459
2460
2461 Other tokens
2462 ---------------
2463
2464
2465 Declaration
2466 ^^^^^^^^^^^
2467
2468
2469 Declares a register that is will be referenced as an operand in Instruction
2470 tokens.
2471
2472 File field contains register file that is being declared and is one
2473 of TGSI_FILE.
2474
2475 UsageMask field specifies which of the register components can be accessed
2476 and is one of TGSI_WRITEMASK.
2477
2478 The Local flag specifies that a given value isn't intended for
2479 subroutine parameter passing and, as a result, the implementation
2480 isn't required to give any guarantees of it being preserved across
2481 subroutine boundaries. As it's merely a compiler hint, the
2482 implementation is free to ignore it.
2483
2484 If Dimension flag is set to 1, a Declaration Dimension token follows.
2485
2486 If Semantic flag is set to 1, a Declaration Semantic token follows.
2487
2488 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2489
2490 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2491
2492 If Array flag is set to 1, a Declaration Array token follows.
2493
2494 Array Declaration
2495 ^^^^^^^^^^^^^^^^^^^^^^^^
2496
2497 Declarations can optional have an ArrayID attribute which can be referred by
2498 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2499 if no ArrayID is specified.
2500
2501 If an indirect addressing operand refers to a specific declaration by using
2502 an ArrayID only the registers in this declaration are guaranteed to be
2503 accessed, accessing any register outside this declaration results in undefined
2504 behavior. Note that for compatibility the effective index is zero-based and
2505 not relative to the specified declaration
2506
2507 If no ArrayID is specified with an indirect addressing operand the whole
2508 register file might be accessed by this operand. This is strongly discouraged
2509 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2510
2511 Declaration Semantic
2512 ^^^^^^^^^^^^^^^^^^^^^^^^
2513
2514 Vertex and fragment shader input and output registers may be labeled
2515 with semantic information consisting of a name and index.
2516
2517 Follows Declaration token if Semantic bit is set.
2518
2519 Since its purpose is to link a shader with other stages of the pipeline,
2520 it is valid to follow only those Declaration tokens that declare a register
2521 either in INPUT or OUTPUT file.
2522
2523 SemanticName field contains the semantic name of the register being declared.
2524 There is no default value.
2525
2526 SemanticIndex is an optional subscript that can be used to distinguish
2527 different register declarations with the same semantic name. The default value
2528 is 0.
2529
2530 The meanings of the individual semantic names are explained in the following
2531 sections.
2532
2533 TGSI_SEMANTIC_POSITION
2534 """"""""""""""""""""""
2535
2536 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2537 output register which contains the homogeneous vertex position in the clip
2538 space coordinate system. After clipping, the X, Y and Z components of the
2539 vertex will be divided by the W value to get normalized device coordinates.
2540
2541 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2542 fragment shader input contains the fragment's window position. The X
2543 component starts at zero and always increases from left to right.
2544 The Y component starts at zero and always increases but Y=0 may either
2545 indicate the top of the window or the bottom depending on the fragment
2546 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2547 The Z coordinate ranges from 0 to 1 to represent depth from the front
2548 to the back of the Z buffer. The W component contains the reciprocol
2549 of the interpolated vertex position W component.
2550
2551 Fragment shaders may also declare an output register with
2552 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2553 the fragment shader to change the fragment's Z position.
2554
2555
2556
2557 TGSI_SEMANTIC_COLOR
2558 """""""""""""""""""
2559
2560 For vertex shader outputs or fragment shader inputs/outputs, this
2561 label indicates that the resister contains an R,G,B,A color.
2562
2563 Several shader inputs/outputs may contain colors so the semantic index
2564 is used to distinguish them. For example, color[0] may be the diffuse
2565 color while color[1] may be the specular color.
2566
2567 This label is needed so that the flat/smooth shading can be applied
2568 to the right interpolants during rasterization.
2569
2570
2571
2572 TGSI_SEMANTIC_BCOLOR
2573 """"""""""""""""""""
2574
2575 Back-facing colors are only used for back-facing polygons, and are only valid
2576 in vertex shader outputs. After rasterization, all polygons are front-facing
2577 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2578 so all BCOLORs effectively become regular COLORs in the fragment shader.
2579
2580
2581 TGSI_SEMANTIC_FOG
2582 """""""""""""""""
2583
2584 Vertex shader inputs and outputs and fragment shader inputs may be
2585 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2586 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2587 to compute a fog blend factor which is used to blend the normal fragment color
2588 with a constant fog color. But fog coord really is just an ordinary vec4
2589 register like regular semantics.
2590
2591
2592 TGSI_SEMANTIC_PSIZE
2593 """""""""""""""""""
2594
2595 Vertex shader input and output registers may be labeled with
2596 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2597 in the form (S, 0, 0, 1). The point size controls the width or diameter
2598 of points for rasterization. This label cannot be used in fragment
2599 shaders.
2600
2601 When using this semantic, be sure to set the appropriate state in the
2602 :ref:`rasterizer` first.
2603
2604
2605 TGSI_SEMANTIC_TEXCOORD
2606 """"""""""""""""""""""
2607
2608 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2609
2610 Vertex shader outputs and fragment shader inputs may be labeled with
2611 this semantic to make them replaceable by sprite coordinates via the
2612 sprite_coord_enable state in the :ref:`rasterizer`.
2613 The semantic index permitted with this semantic is limited to <= 7.
2614
2615 If the driver does not support TEXCOORD, sprite coordinate replacement
2616 applies to inputs with the GENERIC semantic instead.
2617
2618 The intended use case for this semantic is gl_TexCoord.
2619
2620
2621 TGSI_SEMANTIC_PCOORD
2622 """"""""""""""""""""
2623
2624 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2625
2626 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2627 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2628 the current primitive is a point and point sprites are enabled. Otherwise,
2629 the contents of the register are undefined.
2630
2631 The intended use case for this semantic is gl_PointCoord.
2632
2633
2634 TGSI_SEMANTIC_GENERIC
2635 """""""""""""""""""""
2636
2637 All vertex/fragment shader inputs/outputs not labeled with any other
2638 semantic label can be considered to be generic attributes. Typical
2639 uses of generic inputs/outputs are texcoords and user-defined values.
2640
2641
2642 TGSI_SEMANTIC_NORMAL
2643 """"""""""""""""""""
2644
2645 Indicates that a vertex shader input is a normal vector. This is
2646 typically only used for legacy graphics APIs.
2647
2648
2649 TGSI_SEMANTIC_FACE
2650 """"""""""""""""""
2651
2652 This label applies to fragment shader inputs only and indicates that
2653 the register contains front/back-face information of the form (F, 0,
2654 0, 1). The first component will be positive when the fragment belongs
2655 to a front-facing polygon, and negative when the fragment belongs to a
2656 back-facing polygon.
2657
2658
2659 TGSI_SEMANTIC_EDGEFLAG
2660 """"""""""""""""""""""
2661
2662 For vertex shaders, this sematic label indicates that an input or
2663 output is a boolean edge flag. The register layout is [F, x, x, x]
2664 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2665 simply copies the edge flag input to the edgeflag output.
2666
2667 Edge flags are used to control which lines or points are actually
2668 drawn when the polygon mode converts triangles/quads/polygons into
2669 points or lines.
2670
2671
2672 TGSI_SEMANTIC_STENCIL
2673 """""""""""""""""""""
2674
2675 For fragment shaders, this semantic label indicates that an output
2676 is a writable stencil reference value. Only the Y component is writable.
2677 This allows the fragment shader to change the fragments stencilref value.
2678
2679
2680 TGSI_SEMANTIC_VIEWPORT_INDEX
2681 """"""""""""""""""""""""""""
2682
2683 For geometry shaders, this semantic label indicates that an output
2684 contains the index of the viewport (and scissor) to use.
2685 Only the X value is used.
2686
2687
2688 TGSI_SEMANTIC_LAYER
2689 """""""""""""""""""
2690
2691 For geometry shaders, this semantic label indicates that an output
2692 contains the layer value to use for the color and depth/stencil surfaces.
2693 Only the X value is used. (Also known as rendertarget array index.)
2694
2695
2696 TGSI_SEMANTIC_CULLDIST
2697 """"""""""""""""""""""
2698
2699 Used as distance to plane for performing application-defined culling
2700 of individual primitives against a plane. When components of vertex
2701 elements are given this label, these values are assumed to be a
2702 float32 signed distance to a plane. Primitives will be completely
2703 discarded if the plane distance for all of the vertices in the
2704 primitive are < 0. If a vertex has a cull distance of NaN, that
2705 vertex counts as "out" (as if its < 0);
2706 The limits on both clip and cull distances are bound
2707 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2708 the maximum number of components that can be used to hold the
2709 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2710 which specifies the maximum number of registers which can be
2711 annotated with those semantics.
2712
2713
2714 TGSI_SEMANTIC_CLIPDIST
2715 """"""""""""""""""""""
2716
2717 When components of vertex elements are identified this way, these
2718 values are each assumed to be a float32 signed distance to a plane.
2719 Primitive setup only invokes rasterization on pixels for which
2720 the interpolated plane distances are >= 0. Multiple clip planes
2721 can be implemented simultaneously, by annotating multiple
2722 components of one or more vertex elements with the above specified
2723 semantic. The limits on both clip and cull distances are bound
2724 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2725 the maximum number of components that can be used to hold the
2726 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2727 which specifies the maximum number of registers which can be
2728 annotated with those semantics.
2729
2730 TGSI_SEMANTIC_SAMPLEID
2731 """"""""""""""""""""""
2732
2733 For fragment shaders, this semantic label indicates that a system value
2734 contains the current sample id (i.e. gl_SampleID). Only the X value is used.
2735
2736 TGSI_SEMANTIC_SAMPLEPOS
2737 """""""""""""""""""""""
2738
2739 For fragment shaders, this semantic label indicates that a system value
2740 contains the current sample's position (i.e. gl_SamplePosition). Only the X
2741 and Y values are used.
2742
2743 TGSI_SEMANTIC_SAMPLEMASK
2744 """"""""""""""""""""""""
2745
2746 For fragment shaders, this semantic label indicates that an output contains
2747 the sample mask used to disable further sample processing
2748 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
2749
2750 TGSI_SEMANTIC_INVOCATIONID
2751 """"""""""""""""""""""""""
2752
2753 For geometry shaders, this semantic label indicates that a system value
2754 contains the current invocation id (i.e. gl_InvocationID). Only the X value is
2755 used.
2756
2757 Declaration Interpolate
2758 ^^^^^^^^^^^^^^^^^^^^^^^
2759
2760 This token is only valid for fragment shader INPUT declarations.
2761
2762 The Interpolate field specifes the way input is being interpolated by
2763 the rasteriser and is one of TGSI_INTERPOLATE_*.
2764
2765 The Location field specifies the location inside the pixel that the
2766 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
2767 when per-sample shading is enabled, the implementation may choose to
2768 interpolate at the sample irrespective of the Location field.
2769
2770 The CylindricalWrap bitfield specifies which register components
2771 should be subject to cylindrical wrapping when interpolating by the
2772 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2773 should be interpolated according to cylindrical wrapping rules.
2774
2775
2776 Declaration Sampler View
2777 ^^^^^^^^^^^^^^^^^^^^^^^^
2778
2779 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2780
2781 DCL SVIEW[#], resource, type(s)
2782
2783 Declares a shader input sampler view and assigns it to a SVIEW[#]
2784 register.
2785
2786 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2787
2788 type must be 1 or 4 entries (if specifying on a per-component
2789 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2790
2791
2792 Declaration Resource
2793 ^^^^^^^^^^^^^^^^^^^^
2794
2795 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2796
2797 DCL RES[#], resource [, WR] [, RAW]
2798
2799 Declares a shader input resource and assigns it to a RES[#]
2800 register.
2801
2802 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2803 2DArray.
2804
2805 If the RAW keyword is not specified, the texture data will be
2806 subject to conversion, swizzling and scaling as required to yield
2807 the specified data type from the physical data format of the bound
2808 resource.
2809
2810 If the RAW keyword is specified, no channel conversion will be
2811 performed: the values read for each of the channels (X,Y,Z,W) will
2812 correspond to consecutive words in the same order and format
2813 they're found in memory. No element-to-address conversion will be
2814 performed either: the value of the provided X coordinate will be
2815 interpreted in byte units instead of texel units. The result of
2816 accessing a misaligned address is undefined.
2817
2818 Usage of the STORE opcode is only allowed if the WR (writable) flag
2819 is set.
2820
2821
2822 Properties
2823 ^^^^^^^^^^^^^^^^^^^^^^^^
2824
2825 Properties are general directives that apply to the whole TGSI program.
2826
2827 FS_COORD_ORIGIN
2828 """""""""""""""
2829
2830 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2831 The default value is UPPER_LEFT.
2832
2833 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2834 increase downward and rightward.
2835 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2836 increase upward and rightward.
2837
2838 OpenGL defaults to LOWER_LEFT, and is configurable with the
2839 GL_ARB_fragment_coord_conventions extension.
2840
2841 DirectX 9/10 use UPPER_LEFT.
2842
2843 FS_COORD_PIXEL_CENTER
2844 """""""""""""""""""""
2845
2846 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2847 The default value is HALF_INTEGER.
2848
2849 If HALF_INTEGER, the fractionary part of the position will be 0.5
2850 If INTEGER, the fractionary part of the position will be 0.0
2851
2852 Note that this does not affect the set of fragments generated by
2853 rasterization, which is instead controlled by half_pixel_center in the
2854 rasterizer.
2855
2856 OpenGL defaults to HALF_INTEGER, and is configurable with the
2857 GL_ARB_fragment_coord_conventions extension.
2858
2859 DirectX 9 uses INTEGER.
2860 DirectX 10 uses HALF_INTEGER.
2861
2862 FS_COLOR0_WRITES_ALL_CBUFS
2863 """"""""""""""""""""""""""
2864 Specifies that writes to the fragment shader color 0 are replicated to all
2865 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2866 fragData is directed to a single color buffer, but fragColor is broadcast.
2867
2868 VS_PROHIBIT_UCPS
2869 """"""""""""""""""""""""""
2870 If this property is set on the program bound to the shader stage before the
2871 fragment shader, user clip planes should have no effect (be disabled) even if
2872 that shader does not write to any clip distance outputs and the rasterizer's
2873 clip_plane_enable is non-zero.
2874 This property is only supported by drivers that also support shader clip
2875 distance outputs.
2876 This is useful for APIs that don't have UCPs and where clip distances written
2877 by a shader cannot be disabled.
2878
2879 GS_INVOCATIONS
2880 """"""""""""""
2881
2882 Specifies the number of times a geometry shader should be executed for each
2883 input primitive. Each invocation will have a different
2884 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
2885 be 1.
2886
2887 VS_WINDOW_SPACE_POSITION
2888 """"""""""""""""""""""""""
2889 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
2890 is assumed to contain window space coordinates.
2891 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
2892 directly taken from the 4-th component of the shader output.
2893 Naturally, clipping is not performed on window coordinates either.
2894 The effect of this property is undefined if a geometry or tessellation shader
2895 are in use.
2896
2897 Texture Sampling and Texture Formats
2898 ------------------------------------
2899
2900 This table shows how texture image components are returned as (x,y,z,w) tuples
2901 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2902 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2903 well.
2904
2905 +--------------------+--------------+--------------------+--------------+
2906 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2907 +====================+==============+====================+==============+
2908 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2909 +--------------------+--------------+--------------------+--------------+
2910 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2911 +--------------------+--------------+--------------------+--------------+
2912 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2913 +--------------------+--------------+--------------------+--------------+
2914 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2915 +--------------------+--------------+--------------------+--------------+
2916 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2917 +--------------------+--------------+--------------------+--------------+
2918 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2919 +--------------------+--------------+--------------------+--------------+
2920 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2921 +--------------------+--------------+--------------------+--------------+
2922 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2923 +--------------------+--------------+--------------------+--------------+
2924 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2925 | | | [#envmap-bumpmap]_ | |
2926 +--------------------+--------------+--------------------+--------------+
2927 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2928 | | | [#depth-tex-mode]_ | |
2929 +--------------------+--------------+--------------------+--------------+
2930 | S | (s, s, s, s) | unknown | unknown |
2931 +--------------------+--------------+--------------------+--------------+
2932
2933 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2934 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2935 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.