gallium: Drop the unused RCC opcode.
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`doubleopcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed or unsigned type only the negate modifier is
36 supported.
37
38 Instruction Set
39 ---------------
40
41 Core ISA
42 ^^^^^^^^^^^^^^^^^^^^^^^^^
43
44 These opcodes are guaranteed to be available regardless of the driver being
45 used.
46
47 .. opcode:: ARL - Address Register Load
48
49 .. math::
50
51 dst.x = \lfloor src.x\rfloor
52
53 dst.y = \lfloor src.y\rfloor
54
55 dst.z = \lfloor src.z\rfloor
56
57 dst.w = \lfloor src.w\rfloor
58
59
60 .. opcode:: MOV - Move
61
62 .. math::
63
64 dst.x = src.x
65
66 dst.y = src.y
67
68 dst.z = src.z
69
70 dst.w = src.w
71
72
73 .. opcode:: LIT - Light Coefficients
74
75 .. math::
76
77 dst.x &= 1 \\
78 dst.y &= max(src.x, 0) \\
79 dst.z &= (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0 \\
80 dst.w &= 1
81
82
83 .. opcode:: RCP - Reciprocal
84
85 This instruction replicates its result.
86
87 .. math::
88
89 dst = \frac{1}{src.x}
90
91
92 .. opcode:: RSQ - Reciprocal Square Root
93
94 This instruction replicates its result. The results are undefined for src <= 0.
95
96 .. math::
97
98 dst = \frac{1}{\sqrt{src.x}}
99
100
101 .. opcode:: SQRT - Square Root
102
103 This instruction replicates its result. The results are undefined for src < 0.
104
105 .. math::
106
107 dst = {\sqrt{src.x}}
108
109
110 .. opcode:: EXP - Approximate Exponential Base 2
111
112 .. math::
113
114 dst.x &= 2^{\lfloor src.x\rfloor} \\
115 dst.y &= src.x - \lfloor src.x\rfloor \\
116 dst.z &= 2^{src.x} \\
117 dst.w &= 1
118
119
120 .. opcode:: LOG - Approximate Logarithm Base 2
121
122 .. math::
123
124 dst.x &= \lfloor\log_2{|src.x|}\rfloor \\
125 dst.y &= \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}} \\
126 dst.z &= \log_2{|src.x|} \\
127 dst.w &= 1
128
129
130 .. opcode:: MUL - Multiply
131
132 .. math::
133
134 dst.x = src0.x \times src1.x
135
136 dst.y = src0.y \times src1.y
137
138 dst.z = src0.z \times src1.z
139
140 dst.w = src0.w \times src1.w
141
142
143 .. opcode:: ADD - Add
144
145 .. math::
146
147 dst.x = src0.x + src1.x
148
149 dst.y = src0.y + src1.y
150
151 dst.z = src0.z + src1.z
152
153 dst.w = src0.w + src1.w
154
155
156 .. opcode:: DP3 - 3-component Dot Product
157
158 This instruction replicates its result.
159
160 .. math::
161
162 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
163
164
165 .. opcode:: DP4 - 4-component Dot Product
166
167 This instruction replicates its result.
168
169 .. math::
170
171 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
172
173
174 .. opcode:: DST - Distance Vector
175
176 .. math::
177
178 dst.x &= 1\\
179 dst.y &= src0.y \times src1.y\\
180 dst.z &= src0.z\\
181 dst.w &= src1.w
182
183
184 .. opcode:: MIN - Minimum
185
186 .. math::
187
188 dst.x = min(src0.x, src1.x)
189
190 dst.y = min(src0.y, src1.y)
191
192 dst.z = min(src0.z, src1.z)
193
194 dst.w = min(src0.w, src1.w)
195
196
197 .. opcode:: MAX - Maximum
198
199 .. math::
200
201 dst.x = max(src0.x, src1.x)
202
203 dst.y = max(src0.y, src1.y)
204
205 dst.z = max(src0.z, src1.z)
206
207 dst.w = max(src0.w, src1.w)
208
209
210 .. opcode:: SLT - Set On Less Than
211
212 .. math::
213
214 dst.x = (src0.x < src1.x) ? 1.0F : 0.0F
215
216 dst.y = (src0.y < src1.y) ? 1.0F : 0.0F
217
218 dst.z = (src0.z < src1.z) ? 1.0F : 0.0F
219
220 dst.w = (src0.w < src1.w) ? 1.0F : 0.0F
221
222
223 .. opcode:: SGE - Set On Greater Equal Than
224
225 .. math::
226
227 dst.x = (src0.x >= src1.x) ? 1.0F : 0.0F
228
229 dst.y = (src0.y >= src1.y) ? 1.0F : 0.0F
230
231 dst.z = (src0.z >= src1.z) ? 1.0F : 0.0F
232
233 dst.w = (src0.w >= src1.w) ? 1.0F : 0.0F
234
235
236 .. opcode:: MAD - Multiply And Add
237
238 .. math::
239
240 dst.x = src0.x \times src1.x + src2.x
241
242 dst.y = src0.y \times src1.y + src2.y
243
244 dst.z = src0.z \times src1.z + src2.z
245
246 dst.w = src0.w \times src1.w + src2.w
247
248
249 .. opcode:: SUB - Subtract
250
251 .. math::
252
253 dst.x = src0.x - src1.x
254
255 dst.y = src0.y - src1.y
256
257 dst.z = src0.z - src1.z
258
259 dst.w = src0.w - src1.w
260
261
262 .. opcode:: LRP - Linear Interpolate
263
264 .. math::
265
266 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
267
268 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
269
270 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
271
272 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
273
274
275 .. opcode:: CND - Condition
276
277 .. math::
278
279 dst.x = (src2.x > 0.5) ? src0.x : src1.x
280
281 dst.y = (src2.y > 0.5) ? src0.y : src1.y
282
283 dst.z = (src2.z > 0.5) ? src0.z : src1.z
284
285 dst.w = (src2.w > 0.5) ? src0.w : src1.w
286
287
288 .. opcode:: DP2A - 2-component Dot Product And Add
289
290 .. math::
291
292 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
293
294 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
295
296 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
297
298 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
299
300
301 .. opcode:: FRC - Fraction
302
303 .. math::
304
305 dst.x = src.x - \lfloor src.x\rfloor
306
307 dst.y = src.y - \lfloor src.y\rfloor
308
309 dst.z = src.z - \lfloor src.z\rfloor
310
311 dst.w = src.w - \lfloor src.w\rfloor
312
313
314 .. opcode:: CLAMP - Clamp
315
316 .. math::
317
318 dst.x = clamp(src0.x, src1.x, src2.x)
319
320 dst.y = clamp(src0.y, src1.y, src2.y)
321
322 dst.z = clamp(src0.z, src1.z, src2.z)
323
324 dst.w = clamp(src0.w, src1.w, src2.w)
325
326
327 .. opcode:: FLR - Floor
328
329 This is identical to :opcode:`ARL`.
330
331 .. math::
332
333 dst.x = \lfloor src.x\rfloor
334
335 dst.y = \lfloor src.y\rfloor
336
337 dst.z = \lfloor src.z\rfloor
338
339 dst.w = \lfloor src.w\rfloor
340
341
342 .. opcode:: ROUND - Round
343
344 .. math::
345
346 dst.x = round(src.x)
347
348 dst.y = round(src.y)
349
350 dst.z = round(src.z)
351
352 dst.w = round(src.w)
353
354
355 .. opcode:: EX2 - Exponential Base 2
356
357 This instruction replicates its result.
358
359 .. math::
360
361 dst = 2^{src.x}
362
363
364 .. opcode:: LG2 - Logarithm Base 2
365
366 This instruction replicates its result.
367
368 .. math::
369
370 dst = \log_2{src.x}
371
372
373 .. opcode:: POW - Power
374
375 This instruction replicates its result.
376
377 .. math::
378
379 dst = src0.x^{src1.x}
380
381 .. opcode:: XPD - Cross Product
382
383 .. math::
384
385 dst.x = src0.y \times src1.z - src1.y \times src0.z
386
387 dst.y = src0.z \times src1.x - src1.z \times src0.x
388
389 dst.z = src0.x \times src1.y - src1.x \times src0.y
390
391 dst.w = 1
392
393
394 .. opcode:: ABS - Absolute
395
396 .. math::
397
398 dst.x = |src.x|
399
400 dst.y = |src.y|
401
402 dst.z = |src.z|
403
404 dst.w = |src.w|
405
406
407 .. opcode:: DPH - Homogeneous Dot Product
408
409 This instruction replicates its result.
410
411 .. math::
412
413 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
414
415
416 .. opcode:: COS - Cosine
417
418 This instruction replicates its result.
419
420 .. math::
421
422 dst = \cos{src.x}
423
424
425 .. opcode:: DDX, DDX_FINE - Derivative Relative To X
426
427 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
428 advertised. When it is, the fine version guarantees one derivative per row
429 while DDX is allowed to be the same for the entire 2x2 quad.
430
431 .. math::
432
433 dst.x = partialx(src.x)
434
435 dst.y = partialx(src.y)
436
437 dst.z = partialx(src.z)
438
439 dst.w = partialx(src.w)
440
441
442 .. opcode:: DDY, DDY_FINE - Derivative Relative To Y
443
444 The fine variant is only used when ``PIPE_CAP_TGSI_FS_FINE_DERIVATIVE`` is
445 advertised. When it is, the fine version guarantees one derivative per column
446 while DDY is allowed to be the same for the entire 2x2 quad.
447
448 .. math::
449
450 dst.x = partialy(src.x)
451
452 dst.y = partialy(src.y)
453
454 dst.z = partialy(src.z)
455
456 dst.w = partialy(src.w)
457
458
459 .. opcode:: PK2H - Pack Two 16-bit Floats
460
461 TBD
462
463
464 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
465
466 TBD
467
468
469 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
470
471 TBD
472
473
474 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
475
476 TBD
477
478
479 .. opcode:: RFL - Reflection Vector
480
481 .. math::
482
483 dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x
484
485 dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y
486
487 dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z
488
489 dst.w = 1
490
491 .. note::
492
493 Considered for removal.
494
495
496 .. opcode:: SEQ - Set On Equal
497
498 .. math::
499
500 dst.x = (src0.x == src1.x) ? 1.0F : 0.0F
501
502 dst.y = (src0.y == src1.y) ? 1.0F : 0.0F
503
504 dst.z = (src0.z == src1.z) ? 1.0F : 0.0F
505
506 dst.w = (src0.w == src1.w) ? 1.0F : 0.0F
507
508
509 .. opcode:: SFL - Set On False
510
511 This instruction replicates its result.
512
513 .. math::
514
515 dst = 0.0F
516
517 .. note::
518
519 Considered for removal.
520
521
522 .. opcode:: SGT - Set On Greater Than
523
524 .. math::
525
526 dst.x = (src0.x > src1.x) ? 1.0F : 0.0F
527
528 dst.y = (src0.y > src1.y) ? 1.0F : 0.0F
529
530 dst.z = (src0.z > src1.z) ? 1.0F : 0.0F
531
532 dst.w = (src0.w > src1.w) ? 1.0F : 0.0F
533
534
535 .. opcode:: SIN - Sine
536
537 This instruction replicates its result.
538
539 .. math::
540
541 dst = \sin{src.x}
542
543
544 .. opcode:: SLE - Set On Less Equal Than
545
546 .. math::
547
548 dst.x = (src0.x <= src1.x) ? 1.0F : 0.0F
549
550 dst.y = (src0.y <= src1.y) ? 1.0F : 0.0F
551
552 dst.z = (src0.z <= src1.z) ? 1.0F : 0.0F
553
554 dst.w = (src0.w <= src1.w) ? 1.0F : 0.0F
555
556
557 .. opcode:: SNE - Set On Not Equal
558
559 .. math::
560
561 dst.x = (src0.x != src1.x) ? 1.0F : 0.0F
562
563 dst.y = (src0.y != src1.y) ? 1.0F : 0.0F
564
565 dst.z = (src0.z != src1.z) ? 1.0F : 0.0F
566
567 dst.w = (src0.w != src1.w) ? 1.0F : 0.0F
568
569
570 .. opcode:: STR - Set On True
571
572 This instruction replicates its result.
573
574 .. math::
575
576 dst = 1.0F
577
578
579 .. opcode:: TEX - Texture Lookup
580
581 for array textures src0.y contains the slice for 1D,
582 and src0.z contain the slice for 2D.
583
584 for shadow textures with no arrays (and not cube map),
585 src0.z contains the reference value.
586
587 for shadow textures with arrays, src0.z contains
588 the reference value for 1D arrays, and src0.w contains
589 the reference value for 2D arrays and cube maps.
590
591 for cube map array shadow textures, the reference value
592 cannot be passed in src0.w, and TEX2 must be used instead.
593
594 .. math::
595
596 coord = src0
597
598 shadow_ref = src0.z or src0.w (optional)
599
600 unit = src1
601
602 dst = texture\_sample(unit, coord, shadow_ref)
603
604
605 .. opcode:: TEX2 - Texture Lookup (for shadow cube map arrays only)
606
607 this is the same as TEX, but uses another reg to encode the
608 reference value.
609
610 .. math::
611
612 coord = src0
613
614 shadow_ref = src1.x
615
616 unit = src2
617
618 dst = texture\_sample(unit, coord, shadow_ref)
619
620
621
622
623 .. opcode:: TXD - Texture Lookup with Derivatives
624
625 .. math::
626
627 coord = src0
628
629 ddx = src1
630
631 ddy = src2
632
633 unit = src3
634
635 dst = texture\_sample\_deriv(unit, coord, ddx, ddy)
636
637
638 .. opcode:: TXP - Projective Texture Lookup
639
640 .. math::
641
642 coord.x = src0.x / src0.w
643
644 coord.y = src0.y / src0.w
645
646 coord.z = src0.z / src0.w
647
648 coord.w = src0.w
649
650 unit = src1
651
652 dst = texture\_sample(unit, coord)
653
654
655 .. opcode:: UP2H - Unpack Two 16-Bit Floats
656
657 TBD
658
659 .. note::
660
661 Considered for removal.
662
663 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
664
665 TBD
666
667 .. note::
668
669 Considered for removal.
670
671 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
672
673 TBD
674
675 .. note::
676
677 Considered for removal.
678
679 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
680
681 TBD
682
683 .. note::
684
685 Considered for removal.
686
687 .. opcode:: X2D - 2D Coordinate Transformation
688
689 .. math::
690
691 dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y
692
693 dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w
694
695 dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y
696
697 dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w
698
699 .. note::
700
701 Considered for removal.
702
703
704 .. opcode:: ARA - Address Register Add
705
706 TBD
707
708 .. note::
709
710 Considered for removal.
711
712 .. opcode:: ARR - Address Register Load With Round
713
714 .. math::
715
716 dst.x = round(src.x)
717
718 dst.y = round(src.y)
719
720 dst.z = round(src.z)
721
722 dst.w = round(src.w)
723
724
725 .. opcode:: SSG - Set Sign
726
727 .. math::
728
729 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
730
731 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
732
733 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
734
735 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
736
737
738 .. opcode:: CMP - Compare
739
740 .. math::
741
742 dst.x = (src0.x < 0) ? src1.x : src2.x
743
744 dst.y = (src0.y < 0) ? src1.y : src2.y
745
746 dst.z = (src0.z < 0) ? src1.z : src2.z
747
748 dst.w = (src0.w < 0) ? src1.w : src2.w
749
750
751 .. opcode:: KILL_IF - Conditional Discard
752
753 Conditional discard. Allowed in fragment shaders only.
754
755 .. math::
756
757 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
758 discard
759 endif
760
761
762 .. opcode:: KILL - Discard
763
764 Unconditional discard. Allowed in fragment shaders only.
765
766
767 .. opcode:: SCS - Sine Cosine
768
769 .. math::
770
771 dst.x = \cos{src.x}
772
773 dst.y = \sin{src.x}
774
775 dst.z = 0
776
777 dst.w = 1
778
779
780 .. opcode:: TXB - Texture Lookup With Bias
781
782 for cube map array textures and shadow cube maps, the bias value
783 cannot be passed in src0.w, and TXB2 must be used instead.
784
785 if the target is a shadow texture, the reference value is always
786 in src.z (this prevents shadow 3d and shadow 2d arrays from
787 using this instruction, but this is not needed).
788
789 .. math::
790
791 coord.x = src0.x
792
793 coord.y = src0.y
794
795 coord.z = src0.z
796
797 coord.w = none
798
799 bias = src0.w
800
801 unit = src1
802
803 dst = texture\_sample(unit, coord, bias)
804
805
806 .. opcode:: TXB2 - Texture Lookup With Bias (some cube maps only)
807
808 this is the same as TXB, but uses another reg to encode the
809 lod bias value for cube map arrays and shadow cube maps.
810 Presumably shadow 2d arrays and shadow 3d targets could use
811 this encoding too, but this is not legal.
812
813 shadow cube map arrays are neither possible nor required.
814
815 .. math::
816
817 coord = src0
818
819 bias = src1.x
820
821 unit = src2
822
823 dst = texture\_sample(unit, coord, bias)
824
825
826 .. opcode:: DIV - Divide
827
828 .. math::
829
830 dst.x = \frac{src0.x}{src1.x}
831
832 dst.y = \frac{src0.y}{src1.y}
833
834 dst.z = \frac{src0.z}{src1.z}
835
836 dst.w = \frac{src0.w}{src1.w}
837
838
839 .. opcode:: DP2 - 2-component Dot Product
840
841 This instruction replicates its result.
842
843 .. math::
844
845 dst = src0.x \times src1.x + src0.y \times src1.y
846
847
848 .. opcode:: TXL - Texture Lookup With explicit LOD
849
850 for cube map array textures, the explicit lod value
851 cannot be passed in src0.w, and TXL2 must be used instead.
852
853 if the target is a shadow texture, the reference value is always
854 in src.z (this prevents shadow 3d / 2d array / cube targets from
855 using this instruction, but this is not needed).
856
857 .. math::
858
859 coord.x = src0.x
860
861 coord.y = src0.y
862
863 coord.z = src0.z
864
865 coord.w = none
866
867 lod = src0.w
868
869 unit = src1
870
871 dst = texture\_sample(unit, coord, lod)
872
873
874 .. opcode:: TXL2 - Texture Lookup With explicit LOD (for cube map arrays only)
875
876 this is the same as TXL, but uses another reg to encode the
877 explicit lod value.
878 Presumably shadow 3d / 2d array / cube targets could use
879 this encoding too, but this is not legal.
880
881 shadow cube map arrays are neither possible nor required.
882
883 .. math::
884
885 coord = src0
886
887 lod = src1.x
888
889 unit = src2
890
891 dst = texture\_sample(unit, coord, lod)
892
893
894 .. opcode:: PUSHA - Push Address Register On Stack
895
896 push(src.x)
897 push(src.y)
898 push(src.z)
899 push(src.w)
900
901 .. note::
902
903 Considered for cleanup.
904
905 .. note::
906
907 Considered for removal.
908
909 .. opcode:: POPA - Pop Address Register From Stack
910
911 dst.w = pop()
912 dst.z = pop()
913 dst.y = pop()
914 dst.x = pop()
915
916 .. note::
917
918 Considered for cleanup.
919
920 .. note::
921
922 Considered for removal.
923
924
925 .. opcode:: BRA - Branch
926
927 pc = target
928
929 .. note::
930
931 Considered for removal.
932
933
934 .. opcode:: CALLNZ - Subroutine Call If Not Zero
935
936 TBD
937
938 .. note::
939
940 Considered for cleanup.
941
942 .. note::
943
944 Considered for removal.
945
946
947 Compute ISA
948 ^^^^^^^^^^^^^^^^^^^^^^^^
949
950 These opcodes are primarily provided for special-use computational shaders.
951 Support for these opcodes indicated by a special pipe capability bit (TBD).
952
953 XXX doesn't look like most of the opcodes really belong here.
954
955 .. opcode:: CEIL - Ceiling
956
957 .. math::
958
959 dst.x = \lceil src.x\rceil
960
961 dst.y = \lceil src.y\rceil
962
963 dst.z = \lceil src.z\rceil
964
965 dst.w = \lceil src.w\rceil
966
967
968 .. opcode:: TRUNC - Truncate
969
970 .. math::
971
972 dst.x = trunc(src.x)
973
974 dst.y = trunc(src.y)
975
976 dst.z = trunc(src.z)
977
978 dst.w = trunc(src.w)
979
980
981 .. opcode:: MOD - Modulus
982
983 .. math::
984
985 dst.x = src0.x \bmod src1.x
986
987 dst.y = src0.y \bmod src1.y
988
989 dst.z = src0.z \bmod src1.z
990
991 dst.w = src0.w \bmod src1.w
992
993
994 .. opcode:: UARL - Integer Address Register Load
995
996 Moves the contents of the source register, assumed to be an integer, into the
997 destination register, which is assumed to be an address (ADDR) register.
998
999
1000 .. opcode:: SAD - Sum Of Absolute Differences
1001
1002 .. math::
1003
1004 dst.x = |src0.x - src1.x| + src2.x
1005
1006 dst.y = |src0.y - src1.y| + src2.y
1007
1008 dst.z = |src0.z - src1.z| + src2.z
1009
1010 dst.w = |src0.w - src1.w| + src2.w
1011
1012
1013 .. opcode:: TXF - Texel Fetch
1014
1015 As per NV_gpu_shader4, extract a single texel from a specified texture
1016 image. The source sampler may not be a CUBE or SHADOW. src 0 is a
1017 four-component signed integer vector used to identify the single texel
1018 accessed. 3 components + level. Just like texture instructions, an optional
1019 offset vector is provided, which is subject to various driver restrictions
1020 (regarding range, source of offsets).
1021 TXF(uint_vec coord, int_vec offset).
1022
1023
1024 .. opcode:: TXQ - Texture Size Query
1025
1026 As per NV_gpu_program4, retrieve the dimensions of the texture depending on
1027 the target. For 1D (width), 2D/RECT/CUBE (width, height), 3D (width, height,
1028 depth), 1D array (width, layers), 2D array (width, height, layers).
1029 Also return the number of accessible levels (last_level - first_level + 1)
1030 in W.
1031
1032 For components which don't return a resource dimension, their value
1033 is undefined.
1034
1035
1036 .. math::
1037
1038 lod = src0.x
1039
1040 dst.x = texture\_width(unit, lod)
1041
1042 dst.y = texture\_height(unit, lod)
1043
1044 dst.z = texture\_depth(unit, lod)
1045
1046 dst.w = texture\_levels(unit)
1047
1048 .. opcode:: TG4 - Texture Gather
1049
1050 As per ARB_texture_gather, gathers the four texels to be used in a bi-linear
1051 filtering operation and packs them into a single register. Only works with
1052 2D, 2D array, cubemaps, and cubemaps arrays. For 2D textures, only the
1053 addressing modes of the sampler and the top level of any mip pyramid are
1054 used. Set W to zero. It behaves like the TEX instruction, but a filtered
1055 sample is not generated. The four samples that contribute to filtering are
1056 placed into xyzw in clockwise order, starting with the (u,v) texture
1057 coordinate delta at the following locations (-, +), (+, +), (+, -), (-, -),
1058 where the magnitude of the deltas are half a texel.
1059
1060 PIPE_CAP_TEXTURE_SM5 enhances this instruction to support shadow per-sample
1061 depth compares, single component selection, and a non-constant offset. It
1062 doesn't allow support for the GL independent offset to get i0,j0. This would
1063 require another CAP is hw can do it natively. For now we lower that before
1064 TGSI.
1065
1066 .. math::
1067
1068 coord = src0
1069
1070 component = src1
1071
1072 dst = texture\_gather4 (unit, coord, component)
1073
1074 (with SM5 - cube array shadow)
1075
1076 .. math::
1077
1078 coord = src0
1079
1080 compare = src1
1081
1082 dst = texture\_gather (uint, coord, compare)
1083
1084 .. opcode:: LODQ - level of detail query
1085
1086 Compute the LOD information that the texture pipe would use to access the
1087 texture. The Y component contains the computed LOD lambda_prime. The X
1088 component contains the LOD that will be accessed, based on min/max lod's
1089 and mipmap filters.
1090
1091 .. math::
1092
1093 coord = src0
1094
1095 dst.xy = lodq(uint, coord);
1096
1097 Integer ISA
1098 ^^^^^^^^^^^^^^^^^^^^^^^^
1099 These opcodes are used for integer operations.
1100 Support for these opcodes indicated by PIPE_SHADER_CAP_INTEGERS (all of them?)
1101
1102
1103 .. opcode:: I2F - Signed Integer To Float
1104
1105 Rounding is unspecified (round to nearest even suggested).
1106
1107 .. math::
1108
1109 dst.x = (float) src.x
1110
1111 dst.y = (float) src.y
1112
1113 dst.z = (float) src.z
1114
1115 dst.w = (float) src.w
1116
1117
1118 .. opcode:: U2F - Unsigned Integer To Float
1119
1120 Rounding is unspecified (round to nearest even suggested).
1121
1122 .. math::
1123
1124 dst.x = (float) src.x
1125
1126 dst.y = (float) src.y
1127
1128 dst.z = (float) src.z
1129
1130 dst.w = (float) src.w
1131
1132
1133 .. opcode:: F2I - Float to Signed Integer
1134
1135 Rounding is towards zero (truncate).
1136 Values outside signed range (including NaNs) produce undefined results.
1137
1138 .. math::
1139
1140 dst.x = (int) src.x
1141
1142 dst.y = (int) src.y
1143
1144 dst.z = (int) src.z
1145
1146 dst.w = (int) src.w
1147
1148
1149 .. opcode:: F2U - Float to Unsigned Integer
1150
1151 Rounding is towards zero (truncate).
1152 Values outside unsigned range (including NaNs) produce undefined results.
1153
1154 .. math::
1155
1156 dst.x = (unsigned) src.x
1157
1158 dst.y = (unsigned) src.y
1159
1160 dst.z = (unsigned) src.z
1161
1162 dst.w = (unsigned) src.w
1163
1164
1165 .. opcode:: UADD - Integer Add
1166
1167 This instruction works the same for signed and unsigned integers.
1168 The low 32bit of the result is returned.
1169
1170 .. math::
1171
1172 dst.x = src0.x + src1.x
1173
1174 dst.y = src0.y + src1.y
1175
1176 dst.z = src0.z + src1.z
1177
1178 dst.w = src0.w + src1.w
1179
1180
1181 .. opcode:: UMAD - Integer Multiply And Add
1182
1183 This instruction works the same for signed and unsigned integers.
1184 The multiplication returns the low 32bit (as does the result itself).
1185
1186 .. math::
1187
1188 dst.x = src0.x \times src1.x + src2.x
1189
1190 dst.y = src0.y \times src1.y + src2.y
1191
1192 dst.z = src0.z \times src1.z + src2.z
1193
1194 dst.w = src0.w \times src1.w + src2.w
1195
1196
1197 .. opcode:: UMUL - Integer Multiply
1198
1199 This instruction works the same for signed and unsigned integers.
1200 The low 32bit of the result is returned.
1201
1202 .. math::
1203
1204 dst.x = src0.x \times src1.x
1205
1206 dst.y = src0.y \times src1.y
1207
1208 dst.z = src0.z \times src1.z
1209
1210 dst.w = src0.w \times src1.w
1211
1212
1213 .. opcode:: IMUL_HI - Signed Integer Multiply High Bits
1214
1215 The high 32bits of the multiplication of 2 signed integers are returned.
1216
1217 .. math::
1218
1219 dst.x = (src0.x \times src1.x) >> 32
1220
1221 dst.y = (src0.y \times src1.y) >> 32
1222
1223 dst.z = (src0.z \times src1.z) >> 32
1224
1225 dst.w = (src0.w \times src1.w) >> 32
1226
1227
1228 .. opcode:: UMUL_HI - Unsigned Integer Multiply High Bits
1229
1230 The high 32bits of the multiplication of 2 unsigned integers are returned.
1231
1232 .. math::
1233
1234 dst.x = (src0.x \times src1.x) >> 32
1235
1236 dst.y = (src0.y \times src1.y) >> 32
1237
1238 dst.z = (src0.z \times src1.z) >> 32
1239
1240 dst.w = (src0.w \times src1.w) >> 32
1241
1242
1243 .. opcode:: IDIV - Signed Integer Division
1244
1245 TBD: behavior for division by zero.
1246
1247 .. math::
1248
1249 dst.x = src0.x \ src1.x
1250
1251 dst.y = src0.y \ src1.y
1252
1253 dst.z = src0.z \ src1.z
1254
1255 dst.w = src0.w \ src1.w
1256
1257
1258 .. opcode:: UDIV - Unsigned Integer Division
1259
1260 For division by zero, 0xffffffff is returned.
1261
1262 .. math::
1263
1264 dst.x = src0.x \ src1.x
1265
1266 dst.y = src0.y \ src1.y
1267
1268 dst.z = src0.z \ src1.z
1269
1270 dst.w = src0.w \ src1.w
1271
1272
1273 .. opcode:: UMOD - Unsigned Integer Remainder
1274
1275 If second arg is zero, 0xffffffff is returned.
1276
1277 .. math::
1278
1279 dst.x = src0.x \ src1.x
1280
1281 dst.y = src0.y \ src1.y
1282
1283 dst.z = src0.z \ src1.z
1284
1285 dst.w = src0.w \ src1.w
1286
1287
1288 .. opcode:: NOT - Bitwise Not
1289
1290 .. math::
1291
1292 dst.x = \sim src.x
1293
1294 dst.y = \sim src.y
1295
1296 dst.z = \sim src.z
1297
1298 dst.w = \sim src.w
1299
1300
1301 .. opcode:: AND - Bitwise And
1302
1303 .. math::
1304
1305 dst.x = src0.x \& src1.x
1306
1307 dst.y = src0.y \& src1.y
1308
1309 dst.z = src0.z \& src1.z
1310
1311 dst.w = src0.w \& src1.w
1312
1313
1314 .. opcode:: OR - Bitwise Or
1315
1316 .. math::
1317
1318 dst.x = src0.x | src1.x
1319
1320 dst.y = src0.y | src1.y
1321
1322 dst.z = src0.z | src1.z
1323
1324 dst.w = src0.w | src1.w
1325
1326
1327 .. opcode:: XOR - Bitwise Xor
1328
1329 .. math::
1330
1331 dst.x = src0.x \oplus src1.x
1332
1333 dst.y = src0.y \oplus src1.y
1334
1335 dst.z = src0.z \oplus src1.z
1336
1337 dst.w = src0.w \oplus src1.w
1338
1339
1340 .. opcode:: IMAX - Maximum of Signed Integers
1341
1342 .. math::
1343
1344 dst.x = max(src0.x, src1.x)
1345
1346 dst.y = max(src0.y, src1.y)
1347
1348 dst.z = max(src0.z, src1.z)
1349
1350 dst.w = max(src0.w, src1.w)
1351
1352
1353 .. opcode:: UMAX - Maximum of Unsigned Integers
1354
1355 .. math::
1356
1357 dst.x = max(src0.x, src1.x)
1358
1359 dst.y = max(src0.y, src1.y)
1360
1361 dst.z = max(src0.z, src1.z)
1362
1363 dst.w = max(src0.w, src1.w)
1364
1365
1366 .. opcode:: IMIN - Minimum of Signed Integers
1367
1368 .. math::
1369
1370 dst.x = min(src0.x, src1.x)
1371
1372 dst.y = min(src0.y, src1.y)
1373
1374 dst.z = min(src0.z, src1.z)
1375
1376 dst.w = min(src0.w, src1.w)
1377
1378
1379 .. opcode:: UMIN - Minimum of Unsigned Integers
1380
1381 .. math::
1382
1383 dst.x = min(src0.x, src1.x)
1384
1385 dst.y = min(src0.y, src1.y)
1386
1387 dst.z = min(src0.z, src1.z)
1388
1389 dst.w = min(src0.w, src1.w)
1390
1391
1392 .. opcode:: SHL - Shift Left
1393
1394 The shift count is masked with 0x1f before the shift is applied.
1395
1396 .. math::
1397
1398 dst.x = src0.x << (0x1f \& src1.x)
1399
1400 dst.y = src0.y << (0x1f \& src1.y)
1401
1402 dst.z = src0.z << (0x1f \& src1.z)
1403
1404 dst.w = src0.w << (0x1f \& src1.w)
1405
1406
1407 .. opcode:: ISHR - Arithmetic Shift Right (of Signed Integer)
1408
1409 The shift count is masked with 0x1f before the shift is applied.
1410
1411 .. math::
1412
1413 dst.x = src0.x >> (0x1f \& src1.x)
1414
1415 dst.y = src0.y >> (0x1f \& src1.y)
1416
1417 dst.z = src0.z >> (0x1f \& src1.z)
1418
1419 dst.w = src0.w >> (0x1f \& src1.w)
1420
1421
1422 .. opcode:: USHR - Logical Shift Right
1423
1424 The shift count is masked with 0x1f before the shift is applied.
1425
1426 .. math::
1427
1428 dst.x = src0.x >> (unsigned) (0x1f \& src1.x)
1429
1430 dst.y = src0.y >> (unsigned) (0x1f \& src1.y)
1431
1432 dst.z = src0.z >> (unsigned) (0x1f \& src1.z)
1433
1434 dst.w = src0.w >> (unsigned) (0x1f \& src1.w)
1435
1436
1437 .. opcode:: UCMP - Integer Conditional Move
1438
1439 .. math::
1440
1441 dst.x = src0.x ? src1.x : src2.x
1442
1443 dst.y = src0.y ? src1.y : src2.y
1444
1445 dst.z = src0.z ? src1.z : src2.z
1446
1447 dst.w = src0.w ? src1.w : src2.w
1448
1449
1450
1451 .. opcode:: ISSG - Integer Set Sign
1452
1453 .. math::
1454
1455 dst.x = (src0.x < 0) ? -1 : (src0.x > 0) ? 1 : 0
1456
1457 dst.y = (src0.y < 0) ? -1 : (src0.y > 0) ? 1 : 0
1458
1459 dst.z = (src0.z < 0) ? -1 : (src0.z > 0) ? 1 : 0
1460
1461 dst.w = (src0.w < 0) ? -1 : (src0.w > 0) ? 1 : 0
1462
1463
1464
1465 .. opcode:: FSLT - Float Set On Less Than (ordered)
1466
1467 Same comparison as SLT but returns integer instead of 1.0/0.0 float
1468
1469 .. math::
1470
1471 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1472
1473 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1474
1475 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1476
1477 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1478
1479
1480 .. opcode:: ISLT - Signed Integer Set On Less Than
1481
1482 .. math::
1483
1484 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1485
1486 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1487
1488 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1489
1490 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1491
1492
1493 .. opcode:: USLT - Unsigned Integer Set On Less Than
1494
1495 .. math::
1496
1497 dst.x = (src0.x < src1.x) ? \sim 0 : 0
1498
1499 dst.y = (src0.y < src1.y) ? \sim 0 : 0
1500
1501 dst.z = (src0.z < src1.z) ? \sim 0 : 0
1502
1503 dst.w = (src0.w < src1.w) ? \sim 0 : 0
1504
1505
1506 .. opcode:: FSGE - Float Set On Greater Equal Than (ordered)
1507
1508 Same comparison as SGE but returns integer instead of 1.0/0.0 float
1509
1510 .. math::
1511
1512 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1513
1514 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1515
1516 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1517
1518 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1519
1520
1521 .. opcode:: ISGE - Signed Integer Set On Greater Equal Than
1522
1523 .. math::
1524
1525 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1526
1527 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1528
1529 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1530
1531 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1532
1533
1534 .. opcode:: USGE - Unsigned Integer Set On Greater Equal Than
1535
1536 .. math::
1537
1538 dst.x = (src0.x >= src1.x) ? \sim 0 : 0
1539
1540 dst.y = (src0.y >= src1.y) ? \sim 0 : 0
1541
1542 dst.z = (src0.z >= src1.z) ? \sim 0 : 0
1543
1544 dst.w = (src0.w >= src1.w) ? \sim 0 : 0
1545
1546
1547 .. opcode:: FSEQ - Float Set On Equal (ordered)
1548
1549 Same comparison as SEQ but returns integer instead of 1.0/0.0 float
1550
1551 .. math::
1552
1553 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1554
1555 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1556
1557 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1558
1559 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1560
1561
1562 .. opcode:: USEQ - Integer Set On Equal
1563
1564 .. math::
1565
1566 dst.x = (src0.x == src1.x) ? \sim 0 : 0
1567
1568 dst.y = (src0.y == src1.y) ? \sim 0 : 0
1569
1570 dst.z = (src0.z == src1.z) ? \sim 0 : 0
1571
1572 dst.w = (src0.w == src1.w) ? \sim 0 : 0
1573
1574
1575 .. opcode:: FSNE - Float Set On Not Equal (unordered)
1576
1577 Same comparison as SNE but returns integer instead of 1.0/0.0 float
1578
1579 .. math::
1580
1581 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1582
1583 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1584
1585 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1586
1587 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1588
1589
1590 .. opcode:: USNE - Integer Set On Not Equal
1591
1592 .. math::
1593
1594 dst.x = (src0.x != src1.x) ? \sim 0 : 0
1595
1596 dst.y = (src0.y != src1.y) ? \sim 0 : 0
1597
1598 dst.z = (src0.z != src1.z) ? \sim 0 : 0
1599
1600 dst.w = (src0.w != src1.w) ? \sim 0 : 0
1601
1602
1603 .. opcode:: INEG - Integer Negate
1604
1605 Two's complement.
1606
1607 .. math::
1608
1609 dst.x = -src.x
1610
1611 dst.y = -src.y
1612
1613 dst.z = -src.z
1614
1615 dst.w = -src.w
1616
1617
1618 .. opcode:: IABS - Integer Absolute Value
1619
1620 .. math::
1621
1622 dst.x = |src.x|
1623
1624 dst.y = |src.y|
1625
1626 dst.z = |src.z|
1627
1628 dst.w = |src.w|
1629
1630 Bitwise ISA
1631 ^^^^^^^^^^^
1632 These opcodes are used for bit-level manipulation of integers.
1633
1634 .. opcode:: IBFE - Signed Bitfield Extract
1635
1636 See SM5 instruction of the same name. Extracts a set of bits from the input,
1637 and sign-extends them if the high bit of the extracted window is set.
1638
1639 Pseudocode::
1640
1641 def ibfe(value, offset, bits):
1642 offset = offset & 0x1f
1643 bits = bits & 0x1f
1644 if bits == 0: return 0
1645 # Note: >> sign-extends
1646 if width + offset < 32:
1647 return (value << (32 - offset - bits)) >> (32 - bits)
1648 else:
1649 return value >> offset
1650
1651 .. opcode:: UBFE - Unsigned Bitfield Extract
1652
1653 See SM5 instruction of the same name. Extracts a set of bits from the input,
1654 without any sign-extension.
1655
1656 Pseudocode::
1657
1658 def ubfe(value, offset, bits):
1659 offset = offset & 0x1f
1660 bits = bits & 0x1f
1661 if bits == 0: return 0
1662 # Note: >> does not sign-extend
1663 if width + offset < 32:
1664 return (value << (32 - offset - bits)) >> (32 - bits)
1665 else:
1666 return value >> offset
1667
1668 .. opcode:: BFI - Bitfield Insert
1669
1670 See SM5 instruction of the same name. Replaces a bit region of 'base' with
1671 the low bits of 'insert'.
1672
1673 Pseudocode::
1674
1675 def bfi(base, insert, offset, bits):
1676 offset = offset & 0x1f
1677 bits = bits & 0x1f
1678 mask = ((1 << bits) - 1) << offset
1679 return ((insert << offset) & mask) | (base & ~mask)
1680
1681 .. opcode:: BREV - Bitfield Reverse
1682
1683 See SM5 instruction BFREV. Reverses the bits of the argument.
1684
1685 .. opcode:: POPC - Population Count
1686
1687 See SM5 instruction COUNTBITS. Counts the number of set bits in the argument.
1688
1689 .. opcode:: LSB - Index of lowest set bit
1690
1691 See SM5 instruction FIRSTBIT_LO. Computes the 0-based index of the first set
1692 bit of the argument. Returns -1 if none are set.
1693
1694 .. opcode:: IMSB - Index of highest non-sign bit
1695
1696 See SM5 instruction FIRSTBIT_SHI. Computes the 0-based index of the highest
1697 non-sign bit of the argument (i.e. highest 0 bit for negative numbers,
1698 highest 1 bit for positive numbers). Returns -1 if all bits are the same
1699 (i.e. for inputs 0 and -1).
1700
1701 .. opcode:: UMSB - Index of highest set bit
1702
1703 See SM5 instruction FIRSTBIT_HI. Computes the 0-based index of the highest
1704 set bit of the argument. Returns -1 if none are set.
1705
1706 Geometry ISA
1707 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1708
1709 These opcodes are only supported in geometry shaders; they have no meaning
1710 in any other type of shader.
1711
1712 .. opcode:: EMIT - Emit
1713
1714 Generate a new vertex for the current primitive into the specified vertex
1715 stream using the values in the output registers.
1716
1717
1718 .. opcode:: ENDPRIM - End Primitive
1719
1720 Complete the current primitive in the specified vertex stream (consisting of
1721 the emitted vertices), and start a new one.
1722
1723
1724 GLSL ISA
1725 ^^^^^^^^^^
1726
1727 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1728 opcodes is determined by a special capability bit, ``GLSL``.
1729 Some require glsl version 1.30 (UIF/BREAKC/SWITCH/CASE/DEFAULT/ENDSWITCH).
1730
1731 .. opcode:: CAL - Subroutine Call
1732
1733 push(pc)
1734 pc = target
1735
1736
1737 .. opcode:: RET - Subroutine Call Return
1738
1739 pc = pop()
1740
1741
1742 .. opcode:: CONT - Continue
1743
1744 Unconditionally moves the point of execution to the instruction after the
1745 last bgnloop. The instruction must appear within a bgnloop/endloop.
1746
1747 .. note::
1748
1749 Support for CONT is determined by a special capability bit,
1750 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1751
1752
1753 .. opcode:: BGNLOOP - Begin a Loop
1754
1755 Start a loop. Must have a matching endloop.
1756
1757
1758 .. opcode:: BGNSUB - Begin Subroutine
1759
1760 Starts definition of a subroutine. Must have a matching endsub.
1761
1762
1763 .. opcode:: ENDLOOP - End a Loop
1764
1765 End a loop started with bgnloop.
1766
1767
1768 .. opcode:: ENDSUB - End Subroutine
1769
1770 Ends definition of a subroutine.
1771
1772
1773 .. opcode:: NOP - No Operation
1774
1775 Do nothing.
1776
1777
1778 .. opcode:: BRK - Break
1779
1780 Unconditionally moves the point of execution to the instruction after the
1781 next endloop or endswitch. The instruction must appear within a loop/endloop
1782 or switch/endswitch.
1783
1784
1785 .. opcode:: BREAKC - Break Conditional
1786
1787 Conditionally moves the point of execution to the instruction after the
1788 next endloop or endswitch. The instruction must appear within a loop/endloop
1789 or switch/endswitch.
1790 Condition evaluates to true if src0.x != 0 where src0.x is interpreted
1791 as an integer register.
1792
1793 .. note::
1794
1795 Considered for removal as it's quite inconsistent wrt other opcodes
1796 (could emulate with UIF/BRK/ENDIF).
1797
1798
1799 .. opcode:: IF - Float If
1800
1801 Start an IF ... ELSE .. ENDIF block. Condition evaluates to true if
1802
1803 src0.x != 0.0
1804
1805 where src0.x is interpreted as a floating point register.
1806
1807
1808 .. opcode:: UIF - Bitwise If
1809
1810 Start an UIF ... ELSE .. ENDIF block. Condition evaluates to true if
1811
1812 src0.x != 0
1813
1814 where src0.x is interpreted as an integer register.
1815
1816
1817 .. opcode:: ELSE - Else
1818
1819 Starts an else block, after an IF or UIF statement.
1820
1821
1822 .. opcode:: ENDIF - End If
1823
1824 Ends an IF or UIF block.
1825
1826
1827 .. opcode:: SWITCH - Switch
1828
1829 Starts a C-style switch expression. The switch consists of one or multiple
1830 CASE statements, and at most one DEFAULT statement. Execution of a statement
1831 ends when a BRK is hit, but just like in C falling through to other cases
1832 without a break is allowed. Similarly, DEFAULT label is allowed anywhere not
1833 just as last statement, and fallthrough is allowed into/from it.
1834 CASE src arguments are evaluated at bit level against the SWITCH src argument.
1835
1836 Example::
1837
1838 SWITCH src[0].x
1839 CASE src[0].x
1840 (some instructions here)
1841 (optional BRK here)
1842 DEFAULT
1843 (some instructions here)
1844 (optional BRK here)
1845 CASE src[0].x
1846 (some instructions here)
1847 (optional BRK here)
1848 ENDSWITCH
1849
1850
1851 .. opcode:: CASE - Switch case
1852
1853 This represents a switch case label. The src arg must be an integer immediate.
1854
1855
1856 .. opcode:: DEFAULT - Switch default
1857
1858 This represents the default case in the switch, which is taken if no other
1859 case matches.
1860
1861
1862 .. opcode:: ENDSWITCH - End of switch
1863
1864 Ends a switch expression.
1865
1866
1867 Interpolation ISA
1868 ^^^^^^^^^^^^^^^^^
1869
1870 The interpolation instructions allow an input to be interpolated in a
1871 different way than its declaration. This corresponds to the GLSL 4.00
1872 interpolateAt* functions. The first argument of each of these must come from
1873 ``TGSI_FILE_INPUT``.
1874
1875 .. opcode:: INTERP_CENTROID - Interpolate at the centroid
1876
1877 Interpolates the varying specified by src0 at the centroid
1878
1879 .. opcode:: INTERP_SAMPLE - Interpolate at the specified sample
1880
1881 Interpolates the varying specified by src0 at the sample id specified by
1882 src1.x (interpreted as an integer)
1883
1884 .. opcode:: INTERP_OFFSET - Interpolate at the specified offset
1885
1886 Interpolates the varying specified by src0 at the offset src1.xy from the
1887 pixel center (interpreted as floats)
1888
1889
1890 .. _doubleopcodes:
1891
1892 Double ISA
1893 ^^^^^^^^^^^^^^^
1894
1895 The double-precision opcodes reinterpret four-component vectors into
1896 two-component vectors with doubled precision in each component.
1897
1898 Support for these opcodes is XXX undecided. :T
1899
1900 .. opcode:: DADD - Add
1901
1902 .. math::
1903
1904 dst.xy = src0.xy + src1.xy
1905
1906 dst.zw = src0.zw + src1.zw
1907
1908
1909 .. opcode:: DDIV - Divide
1910
1911 .. math::
1912
1913 dst.xy = src0.xy / src1.xy
1914
1915 dst.zw = src0.zw / src1.zw
1916
1917 .. opcode:: DSEQ - Set on Equal
1918
1919 .. math::
1920
1921 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1922
1923 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1924
1925 .. opcode:: DSLT - Set on Less than
1926
1927 .. math::
1928
1929 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1930
1931 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1932
1933 .. opcode:: DFRAC - Fraction
1934
1935 .. math::
1936
1937 dst.xy = src.xy - \lfloor src.xy\rfloor
1938
1939 dst.zw = src.zw - \lfloor src.zw\rfloor
1940
1941
1942 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1943
1944 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1945 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1946 :math:`dst1 \times 2^{dst0} = src` .
1947
1948 .. math::
1949
1950 dst0.xy = exp(src.xy)
1951
1952 dst1.xy = frac(src.xy)
1953
1954 dst0.zw = exp(src.zw)
1955
1956 dst1.zw = frac(src.zw)
1957
1958 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1959
1960 This opcode is the inverse of :opcode:`DFRACEXP`.
1961
1962 .. math::
1963
1964 dst.xy = src0.xy \times 2^{src1.xy}
1965
1966 dst.zw = src0.zw \times 2^{src1.zw}
1967
1968 .. opcode:: DMIN - Minimum
1969
1970 .. math::
1971
1972 dst.xy = min(src0.xy, src1.xy)
1973
1974 dst.zw = min(src0.zw, src1.zw)
1975
1976 .. opcode:: DMAX - Maximum
1977
1978 .. math::
1979
1980 dst.xy = max(src0.xy, src1.xy)
1981
1982 dst.zw = max(src0.zw, src1.zw)
1983
1984 .. opcode:: DMUL - Multiply
1985
1986 .. math::
1987
1988 dst.xy = src0.xy \times src1.xy
1989
1990 dst.zw = src0.zw \times src1.zw
1991
1992
1993 .. opcode:: DMAD - Multiply And Add
1994
1995 .. math::
1996
1997 dst.xy = src0.xy \times src1.xy + src2.xy
1998
1999 dst.zw = src0.zw \times src1.zw + src2.zw
2000
2001
2002 .. opcode:: DRCP - Reciprocal
2003
2004 .. math::
2005
2006 dst.xy = \frac{1}{src.xy}
2007
2008 dst.zw = \frac{1}{src.zw}
2009
2010 .. opcode:: DSQRT - Square Root
2011
2012 .. math::
2013
2014 dst.xy = \sqrt{src.xy}
2015
2016 dst.zw = \sqrt{src.zw}
2017
2018
2019 .. _samplingopcodes:
2020
2021 Resource Sampling Opcodes
2022 ^^^^^^^^^^^^^^^^^^^^^^^^^
2023
2024 Those opcodes follow very closely semantics of the respective Direct3D
2025 instructions. If in doubt double check Direct3D documentation.
2026 Note that the swizzle on SVIEW (src1) determines texel swizzling
2027 after lookup.
2028
2029 .. opcode:: SAMPLE
2030
2031 Using provided address, sample data from the specified texture using the
2032 filtering mode identified by the gven sampler. The source data may come from
2033 any resource type other than buffers.
2034
2035 Syntax: ``SAMPLE dst, address, sampler_view, sampler``
2036
2037 Example: ``SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]``
2038
2039 .. opcode:: SAMPLE_I
2040
2041 Simplified alternative to the SAMPLE instruction. Using the provided
2042 integer address, SAMPLE_I fetches data from the specified sampler view
2043 without any filtering. The source data may come from any resource type
2044 other than CUBE.
2045
2046 Syntax: ``SAMPLE_I dst, address, sampler_view``
2047
2048 Example: ``SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]``
2049
2050 The 'address' is specified as unsigned integers. If the 'address' is out of
2051 range [0...(# texels - 1)] the result of the fetch is always 0 in all
2052 components. As such the instruction doesn't honor address wrap modes, in
2053 cases where that behavior is desirable 'SAMPLE' instruction should be used.
2054 address.w always provides an unsigned integer mipmap level. If the value is
2055 out of the range then the instruction always returns 0 in all components.
2056 address.yz are ignored for buffers and 1d textures. address.z is ignored
2057 for 1d texture arrays and 2d textures.
2058
2059 For 1D texture arrays address.y provides the array index (also as unsigned
2060 integer). If the value is out of the range of available array indices
2061 [0... (array size - 1)] then the opcode always returns 0 in all components.
2062 For 2D texture arrays address.z provides the array index, otherwise it
2063 exhibits the same behavior as in the case for 1D texture arrays. The exact
2064 semantics of the source address are presented in the table below:
2065
2066 +---------------------------+----+-----+-----+---------+
2067 | resource type | X | Y | Z | W |
2068 +===========================+====+=====+=====+=========+
2069 | ``PIPE_BUFFER`` | x | | | ignored |
2070 +---------------------------+----+-----+-----+---------+
2071 | ``PIPE_TEXTURE_1D`` | x | | | mpl |
2072 +---------------------------+----+-----+-----+---------+
2073 | ``PIPE_TEXTURE_2D`` | x | y | | mpl |
2074 +---------------------------+----+-----+-----+---------+
2075 | ``PIPE_TEXTURE_3D`` | x | y | z | mpl |
2076 +---------------------------+----+-----+-----+---------+
2077 | ``PIPE_TEXTURE_RECT`` | x | y | | mpl |
2078 +---------------------------+----+-----+-----+---------+
2079 | ``PIPE_TEXTURE_CUBE`` | not allowed as source |
2080 +---------------------------+----+-----+-----+---------+
2081 | ``PIPE_TEXTURE_1D_ARRAY`` | x | idx | | mpl |
2082 +---------------------------+----+-----+-----+---------+
2083 | ``PIPE_TEXTURE_2D_ARRAY`` | x | y | idx | mpl |
2084 +---------------------------+----+-----+-----+---------+
2085
2086 Where 'mpl' is a mipmap level and 'idx' is the array index.
2087
2088 .. opcode:: SAMPLE_I_MS
2089
2090 Just like SAMPLE_I but allows fetch data from multi-sampled surfaces.
2091
2092 Syntax: ``SAMPLE_I_MS dst, address, sampler_view, sample``
2093
2094 .. opcode:: SAMPLE_B
2095
2096 Just like the SAMPLE instruction with the exception that an additional bias
2097 is applied to the level of detail computed as part of the instruction
2098 execution.
2099
2100 Syntax: ``SAMPLE_B dst, address, sampler_view, sampler, lod_bias``
2101
2102 Example: ``SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2103
2104 .. opcode:: SAMPLE_C
2105
2106 Similar to the SAMPLE instruction but it performs a comparison filter. The
2107 operands to SAMPLE_C are identical to SAMPLE, except that there is an
2108 additional float32 operand, reference value, which must be a register with
2109 single-component, or a scalar literal. SAMPLE_C makes the hardware use the
2110 current samplers compare_func (in pipe_sampler_state) to compare reference
2111 value against the red component value for the surce resource at each texel
2112 that the currently configured texture filter covers based on the provided
2113 coordinates.
2114
2115 Syntax: ``SAMPLE_C dst, address, sampler_view.r, sampler, ref_value``
2116
2117 Example: ``SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2118
2119 .. opcode:: SAMPLE_C_LZ
2120
2121 Same as SAMPLE_C, but LOD is 0 and derivatives are ignored. The LZ stands
2122 for level-zero.
2123
2124 Syntax: ``SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value``
2125
2126 Example: ``SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x``
2127
2128
2129 .. opcode:: SAMPLE_D
2130
2131 SAMPLE_D is identical to the SAMPLE opcode except that the derivatives for
2132 the source address in the x direction and the y direction are provided by
2133 extra parameters.
2134
2135 Syntax: ``SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y``
2136
2137 Example: ``SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]``
2138
2139 .. opcode:: SAMPLE_L
2140
2141 SAMPLE_L is identical to the SAMPLE opcode except that the LOD is provided
2142 directly as a scalar value, representing no anisotropy.
2143
2144 Syntax: ``SAMPLE_L dst, address, sampler_view, sampler, explicit_lod``
2145
2146 Example: ``SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x``
2147
2148 .. opcode:: GATHER4
2149
2150 Gathers the four texels to be used in a bi-linear filtering operation and
2151 packs them into a single register. Only works with 2D, 2D array, cubemaps,
2152 and cubemaps arrays. For 2D textures, only the addressing modes of the
2153 sampler and the top level of any mip pyramid are used. Set W to zero. It
2154 behaves like the SAMPLE instruction, but a filtered sample is not
2155 generated. The four samples that contribute to filtering are placed into
2156 xyzw in counter-clockwise order, starting with the (u,v) texture coordinate
2157 delta at the following locations (-, +), (+, +), (+, -), (-, -), where the
2158 magnitude of the deltas are half a texel.
2159
2160
2161 .. opcode:: SVIEWINFO
2162
2163 Query the dimensions of a given sampler view. dst receives width, height,
2164 depth or array size and number of mipmap levels as int4. The dst can have a
2165 writemask which will specify what info is the caller interested in.
2166
2167 Syntax: ``SVIEWINFO dst, src_mip_level, sampler_view``
2168
2169 Example: ``SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]``
2170
2171 src_mip_level is an unsigned integer scalar. If it's out of range then
2172 returns 0 for width, height and depth/array size but the total number of
2173 mipmap is still returned correctly for the given sampler view. The returned
2174 width, height and depth values are for the mipmap level selected by the
2175 src_mip_level and are in the number of texels. For 1d texture array width
2176 is in dst.x, array size is in dst.y and dst.z is 0. The number of mipmaps is
2177 still in dst.w. In contrast to d3d10 resinfo, there's no way in the tgsi
2178 instruction encoding to specify the return type (float/rcpfloat/uint), hence
2179 always using uint. Also, unlike the SAMPLE instructions, the swizzle on src1
2180 resinfo allowing swizzling dst values is ignored (due to the interaction
2181 with rcpfloat modifier which requires some swizzle handling in the state
2182 tracker anyway).
2183
2184 .. opcode:: SAMPLE_POS
2185
2186 Query the position of a given sample. dst receives float4 (x, y, 0, 0)
2187 indicated where the sample is located. If the resource is not a multi-sample
2188 resource and not a render target, the result is 0.
2189
2190 .. opcode:: SAMPLE_INFO
2191
2192 dst receives number of samples in x. If the resource is not a multi-sample
2193 resource and not a render target, the result is 0.
2194
2195
2196 .. _resourceopcodes:
2197
2198 Resource Access Opcodes
2199 ^^^^^^^^^^^^^^^^^^^^^^^
2200
2201 .. opcode:: LOAD - Fetch data from a shader resource
2202
2203 Syntax: ``LOAD dst, resource, address``
2204
2205 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
2206
2207 Using the provided integer address, LOAD fetches data
2208 from the specified buffer or texture without any
2209 filtering.
2210
2211 The 'address' is specified as a vector of unsigned
2212 integers. If the 'address' is out of range the result
2213 is unspecified.
2214
2215 Only the first mipmap level of a resource can be read
2216 from using this instruction.
2217
2218 For 1D or 2D texture arrays, the array index is
2219 provided as an unsigned integer in address.y or
2220 address.z, respectively. address.yz are ignored for
2221 buffers and 1D textures. address.z is ignored for 1D
2222 texture arrays and 2D textures. address.w is always
2223 ignored.
2224
2225 .. opcode:: STORE - Write data to a shader resource
2226
2227 Syntax: ``STORE resource, address, src``
2228
2229 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
2230
2231 Using the provided integer address, STORE writes data
2232 to the specified buffer or texture.
2233
2234 The 'address' is specified as a vector of unsigned
2235 integers. If the 'address' is out of range the result
2236 is unspecified.
2237
2238 Only the first mipmap level of a resource can be
2239 written to using this instruction.
2240
2241 For 1D or 2D texture arrays, the array index is
2242 provided as an unsigned integer in address.y or
2243 address.z, respectively. address.yz are ignored for
2244 buffers and 1D textures. address.z is ignored for 1D
2245 texture arrays and 2D textures. address.w is always
2246 ignored.
2247
2248
2249 .. _threadsyncopcodes:
2250
2251 Inter-thread synchronization opcodes
2252 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2253
2254 These opcodes are intended for communication between threads running
2255 within the same compute grid. For now they're only valid in compute
2256 programs.
2257
2258 .. opcode:: MFENCE - Memory fence
2259
2260 Syntax: ``MFENCE resource``
2261
2262 Example: ``MFENCE RES[0]``
2263
2264 This opcode forces strong ordering between any memory access
2265 operations that affect the specified resource. This means that
2266 previous loads and stores (and only those) will be performed and
2267 visible to other threads before the program execution continues.
2268
2269
2270 .. opcode:: LFENCE - Load memory fence
2271
2272 Syntax: ``LFENCE resource``
2273
2274 Example: ``LFENCE RES[0]``
2275
2276 Similar to MFENCE, but it only affects the ordering of memory loads.
2277
2278
2279 .. opcode:: SFENCE - Store memory fence
2280
2281 Syntax: ``SFENCE resource``
2282
2283 Example: ``SFENCE RES[0]``
2284
2285 Similar to MFENCE, but it only affects the ordering of memory stores.
2286
2287
2288 .. opcode:: BARRIER - Thread group barrier
2289
2290 ``BARRIER``
2291
2292 This opcode suspends the execution of the current thread until all
2293 the remaining threads in the working group reach the same point of
2294 the program. Results are unspecified if any of the remaining
2295 threads terminates or never reaches an executed BARRIER instruction.
2296
2297
2298 .. _atomopcodes:
2299
2300 Atomic opcodes
2301 ^^^^^^^^^^^^^^
2302
2303 These opcodes provide atomic variants of some common arithmetic and
2304 logical operations. In this context atomicity means that another
2305 concurrent memory access operation that affects the same memory
2306 location is guaranteed to be performed strictly before or after the
2307 entire execution of the atomic operation.
2308
2309 For the moment they're only valid in compute programs.
2310
2311 .. opcode:: ATOMUADD - Atomic integer addition
2312
2313 Syntax: ``ATOMUADD dst, resource, offset, src``
2314
2315 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
2316
2317 The following operation is performed atomically on each component:
2318
2319 .. math::
2320
2321 dst_i = resource[offset]_i
2322
2323 resource[offset]_i = dst_i + src_i
2324
2325
2326 .. opcode:: ATOMXCHG - Atomic exchange
2327
2328 Syntax: ``ATOMXCHG dst, resource, offset, src``
2329
2330 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
2331
2332 The following operation is performed atomically on each component:
2333
2334 .. math::
2335
2336 dst_i = resource[offset]_i
2337
2338 resource[offset]_i = src_i
2339
2340
2341 .. opcode:: ATOMCAS - Atomic compare-and-exchange
2342
2343 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
2344
2345 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
2346
2347 The following operation is performed atomically on each component:
2348
2349 .. math::
2350
2351 dst_i = resource[offset]_i
2352
2353 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
2354
2355
2356 .. opcode:: ATOMAND - Atomic bitwise And
2357
2358 Syntax: ``ATOMAND dst, resource, offset, src``
2359
2360 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
2361
2362 The following operation is performed atomically on each component:
2363
2364 .. math::
2365
2366 dst_i = resource[offset]_i
2367
2368 resource[offset]_i = dst_i \& src_i
2369
2370
2371 .. opcode:: ATOMOR - Atomic bitwise Or
2372
2373 Syntax: ``ATOMOR dst, resource, offset, src``
2374
2375 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2376
2377 The following operation is performed atomically on each component:
2378
2379 .. math::
2380
2381 dst_i = resource[offset]_i
2382
2383 resource[offset]_i = dst_i | src_i
2384
2385
2386 .. opcode:: ATOMXOR - Atomic bitwise Xor
2387
2388 Syntax: ``ATOMXOR dst, resource, offset, src``
2389
2390 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
2391
2392 The following operation is performed atomically on each component:
2393
2394 .. math::
2395
2396 dst_i = resource[offset]_i
2397
2398 resource[offset]_i = dst_i \oplus src_i
2399
2400
2401 .. opcode:: ATOMUMIN - Atomic unsigned minimum
2402
2403 Syntax: ``ATOMUMIN dst, resource, offset, src``
2404
2405 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2406
2407 The following operation is performed atomically on each component:
2408
2409 .. math::
2410
2411 dst_i = resource[offset]_i
2412
2413 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2414
2415
2416 .. opcode:: ATOMUMAX - Atomic unsigned maximum
2417
2418 Syntax: ``ATOMUMAX dst, resource, offset, src``
2419
2420 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2421
2422 The following operation is performed atomically on each component:
2423
2424 .. math::
2425
2426 dst_i = resource[offset]_i
2427
2428 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2429
2430
2431 .. opcode:: ATOMIMIN - Atomic signed minimum
2432
2433 Syntax: ``ATOMIMIN dst, resource, offset, src``
2434
2435 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
2436
2437 The following operation is performed atomically on each component:
2438
2439 .. math::
2440
2441 dst_i = resource[offset]_i
2442
2443 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
2444
2445
2446 .. opcode:: ATOMIMAX - Atomic signed maximum
2447
2448 Syntax: ``ATOMIMAX dst, resource, offset, src``
2449
2450 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
2451
2452 The following operation is performed atomically on each component:
2453
2454 .. math::
2455
2456 dst_i = resource[offset]_i
2457
2458 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
2459
2460
2461
2462 Explanation of symbols used
2463 ------------------------------
2464
2465
2466 Functions
2467 ^^^^^^^^^^^^^^
2468
2469
2470 :math:`|x|` Absolute value of `x`.
2471
2472 :math:`\lceil x \rceil` Ceiling of `x`.
2473
2474 clamp(x,y,z) Clamp x between y and z.
2475 (x < y) ? y : (x > z) ? z : x
2476
2477 :math:`\lfloor x\rfloor` Floor of `x`.
2478
2479 :math:`\log_2{x}` Logarithm of `x`, base 2.
2480
2481 max(x,y) Maximum of x and y.
2482 (x > y) ? x : y
2483
2484 min(x,y) Minimum of x and y.
2485 (x < y) ? x : y
2486
2487 partialx(x) Derivative of x relative to fragment's X.
2488
2489 partialy(x) Derivative of x relative to fragment's Y.
2490
2491 pop() Pop from stack.
2492
2493 :math:`x^y` `x` to the power `y`.
2494
2495 push(x) Push x on stack.
2496
2497 round(x) Round x.
2498
2499 trunc(x) Truncate x, i.e. drop the fraction bits.
2500
2501
2502 Keywords
2503 ^^^^^^^^^^^^^
2504
2505
2506 discard Discard fragment.
2507
2508 pc Program counter.
2509
2510 target Label of target instruction.
2511
2512
2513 Other tokens
2514 ---------------
2515
2516
2517 Declaration
2518 ^^^^^^^^^^^
2519
2520
2521 Declares a register that is will be referenced as an operand in Instruction
2522 tokens.
2523
2524 File field contains register file that is being declared and is one
2525 of TGSI_FILE.
2526
2527 UsageMask field specifies which of the register components can be accessed
2528 and is one of TGSI_WRITEMASK.
2529
2530 The Local flag specifies that a given value isn't intended for
2531 subroutine parameter passing and, as a result, the implementation
2532 isn't required to give any guarantees of it being preserved across
2533 subroutine boundaries. As it's merely a compiler hint, the
2534 implementation is free to ignore it.
2535
2536 If Dimension flag is set to 1, a Declaration Dimension token follows.
2537
2538 If Semantic flag is set to 1, a Declaration Semantic token follows.
2539
2540 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
2541
2542 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
2543
2544 If Array flag is set to 1, a Declaration Array token follows.
2545
2546 Array Declaration
2547 ^^^^^^^^^^^^^^^^^^^^^^^^
2548
2549 Declarations can optional have an ArrayID attribute which can be referred by
2550 indirect addressing operands. An ArrayID of zero is reserved and treaded as
2551 if no ArrayID is specified.
2552
2553 If an indirect addressing operand refers to a specific declaration by using
2554 an ArrayID only the registers in this declaration are guaranteed to be
2555 accessed, accessing any register outside this declaration results in undefined
2556 behavior. Note that for compatibility the effective index is zero-based and
2557 not relative to the specified declaration
2558
2559 If no ArrayID is specified with an indirect addressing operand the whole
2560 register file might be accessed by this operand. This is strongly discouraged
2561 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
2562
2563 Declaration Semantic
2564 ^^^^^^^^^^^^^^^^^^^^^^^^
2565
2566 Vertex and fragment shader input and output registers may be labeled
2567 with semantic information consisting of a name and index.
2568
2569 Follows Declaration token if Semantic bit is set.
2570
2571 Since its purpose is to link a shader with other stages of the pipeline,
2572 it is valid to follow only those Declaration tokens that declare a register
2573 either in INPUT or OUTPUT file.
2574
2575 SemanticName field contains the semantic name of the register being declared.
2576 There is no default value.
2577
2578 SemanticIndex is an optional subscript that can be used to distinguish
2579 different register declarations with the same semantic name. The default value
2580 is 0.
2581
2582 The meanings of the individual semantic names are explained in the following
2583 sections.
2584
2585 TGSI_SEMANTIC_POSITION
2586 """"""""""""""""""""""
2587
2588 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
2589 output register which contains the homogeneous vertex position in the clip
2590 space coordinate system. After clipping, the X, Y and Z components of the
2591 vertex will be divided by the W value to get normalized device coordinates.
2592
2593 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
2594 fragment shader input contains the fragment's window position. The X
2595 component starts at zero and always increases from left to right.
2596 The Y component starts at zero and always increases but Y=0 may either
2597 indicate the top of the window or the bottom depending on the fragment
2598 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
2599 The Z coordinate ranges from 0 to 1 to represent depth from the front
2600 to the back of the Z buffer. The W component contains the reciprocol
2601 of the interpolated vertex position W component.
2602
2603 Fragment shaders may also declare an output register with
2604 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
2605 the fragment shader to change the fragment's Z position.
2606
2607
2608
2609 TGSI_SEMANTIC_COLOR
2610 """""""""""""""""""
2611
2612 For vertex shader outputs or fragment shader inputs/outputs, this
2613 label indicates that the resister contains an R,G,B,A color.
2614
2615 Several shader inputs/outputs may contain colors so the semantic index
2616 is used to distinguish them. For example, color[0] may be the diffuse
2617 color while color[1] may be the specular color.
2618
2619 This label is needed so that the flat/smooth shading can be applied
2620 to the right interpolants during rasterization.
2621
2622
2623
2624 TGSI_SEMANTIC_BCOLOR
2625 """"""""""""""""""""
2626
2627 Back-facing colors are only used for back-facing polygons, and are only valid
2628 in vertex shader outputs. After rasterization, all polygons are front-facing
2629 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
2630 so all BCOLORs effectively become regular COLORs in the fragment shader.
2631
2632
2633 TGSI_SEMANTIC_FOG
2634 """""""""""""""""
2635
2636 Vertex shader inputs and outputs and fragment shader inputs may be
2637 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
2638 a fog coordinate. Typically, the fragment shader will use the fog coordinate
2639 to compute a fog blend factor which is used to blend the normal fragment color
2640 with a constant fog color. But fog coord really is just an ordinary vec4
2641 register like regular semantics.
2642
2643
2644 TGSI_SEMANTIC_PSIZE
2645 """""""""""""""""""
2646
2647 Vertex shader input and output registers may be labeled with
2648 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
2649 in the form (S, 0, 0, 1). The point size controls the width or diameter
2650 of points for rasterization. This label cannot be used in fragment
2651 shaders.
2652
2653 When using this semantic, be sure to set the appropriate state in the
2654 :ref:`rasterizer` first.
2655
2656
2657 TGSI_SEMANTIC_TEXCOORD
2658 """"""""""""""""""""""
2659
2660 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2661
2662 Vertex shader outputs and fragment shader inputs may be labeled with
2663 this semantic to make them replaceable by sprite coordinates via the
2664 sprite_coord_enable state in the :ref:`rasterizer`.
2665 The semantic index permitted with this semantic is limited to <= 7.
2666
2667 If the driver does not support TEXCOORD, sprite coordinate replacement
2668 applies to inputs with the GENERIC semantic instead.
2669
2670 The intended use case for this semantic is gl_TexCoord.
2671
2672
2673 TGSI_SEMANTIC_PCOORD
2674 """"""""""""""""""""
2675
2676 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
2677
2678 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
2679 that the register contains sprite coordinates in the form (x, y, 0, 1), if
2680 the current primitive is a point and point sprites are enabled. Otherwise,
2681 the contents of the register are undefined.
2682
2683 The intended use case for this semantic is gl_PointCoord.
2684
2685
2686 TGSI_SEMANTIC_GENERIC
2687 """""""""""""""""""""
2688
2689 All vertex/fragment shader inputs/outputs not labeled with any other
2690 semantic label can be considered to be generic attributes. Typical
2691 uses of generic inputs/outputs are texcoords and user-defined values.
2692
2693
2694 TGSI_SEMANTIC_NORMAL
2695 """"""""""""""""""""
2696
2697 Indicates that a vertex shader input is a normal vector. This is
2698 typically only used for legacy graphics APIs.
2699
2700
2701 TGSI_SEMANTIC_FACE
2702 """"""""""""""""""
2703
2704 This label applies to fragment shader inputs only and indicates that
2705 the register contains front/back-face information of the form (F, 0,
2706 0, 1). The first component will be positive when the fragment belongs
2707 to a front-facing polygon, and negative when the fragment belongs to a
2708 back-facing polygon.
2709
2710
2711 TGSI_SEMANTIC_EDGEFLAG
2712 """"""""""""""""""""""
2713
2714 For vertex shaders, this sematic label indicates that an input or
2715 output is a boolean edge flag. The register layout is [F, x, x, x]
2716 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2717 simply copies the edge flag input to the edgeflag output.
2718
2719 Edge flags are used to control which lines or points are actually
2720 drawn when the polygon mode converts triangles/quads/polygons into
2721 points or lines.
2722
2723
2724 TGSI_SEMANTIC_STENCIL
2725 """""""""""""""""""""
2726
2727 For fragment shaders, this semantic label indicates that an output
2728 is a writable stencil reference value. Only the Y component is writable.
2729 This allows the fragment shader to change the fragments stencilref value.
2730
2731
2732 TGSI_SEMANTIC_VIEWPORT_INDEX
2733 """"""""""""""""""""""""""""
2734
2735 For geometry shaders, this semantic label indicates that an output
2736 contains the index of the viewport (and scissor) to use.
2737 Only the X value is used.
2738
2739
2740 TGSI_SEMANTIC_LAYER
2741 """""""""""""""""""
2742
2743 For geometry shaders, this semantic label indicates that an output
2744 contains the layer value to use for the color and depth/stencil surfaces.
2745 Only the X value is used. (Also known as rendertarget array index.)
2746
2747
2748 TGSI_SEMANTIC_CULLDIST
2749 """"""""""""""""""""""
2750
2751 Used as distance to plane for performing application-defined culling
2752 of individual primitives against a plane. When components of vertex
2753 elements are given this label, these values are assumed to be a
2754 float32 signed distance to a plane. Primitives will be completely
2755 discarded if the plane distance for all of the vertices in the
2756 primitive are < 0. If a vertex has a cull distance of NaN, that
2757 vertex counts as "out" (as if its < 0);
2758 The limits on both clip and cull distances are bound
2759 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2760 the maximum number of components that can be used to hold the
2761 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2762 which specifies the maximum number of registers which can be
2763 annotated with those semantics.
2764
2765
2766 TGSI_SEMANTIC_CLIPDIST
2767 """"""""""""""""""""""
2768
2769 When components of vertex elements are identified this way, these
2770 values are each assumed to be a float32 signed distance to a plane.
2771 Primitive setup only invokes rasterization on pixels for which
2772 the interpolated plane distances are >= 0. Multiple clip planes
2773 can be implemented simultaneously, by annotating multiple
2774 components of one or more vertex elements with the above specified
2775 semantic. The limits on both clip and cull distances are bound
2776 by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_COUNT define which defines
2777 the maximum number of components that can be used to hold the
2778 distances and by the PIPE_MAX_CLIP_OR_CULL_DISTANCE_ELEMENT_COUNT
2779 which specifies the maximum number of registers which can be
2780 annotated with those semantics.
2781
2782 TGSI_SEMANTIC_SAMPLEID
2783 """"""""""""""""""""""
2784
2785 For fragment shaders, this semantic label indicates that a system value
2786 contains the current sample id (i.e. gl_SampleID). Only the X value is used.
2787
2788 TGSI_SEMANTIC_SAMPLEPOS
2789 """""""""""""""""""""""
2790
2791 For fragment shaders, this semantic label indicates that a system value
2792 contains the current sample's position (i.e. gl_SamplePosition). Only the X
2793 and Y values are used.
2794
2795 TGSI_SEMANTIC_SAMPLEMASK
2796 """"""""""""""""""""""""
2797
2798 For fragment shaders, this semantic label indicates that an output contains
2799 the sample mask used to disable further sample processing
2800 (i.e. gl_SampleMask). Only the X value is used, up to 32x MS.
2801
2802 TGSI_SEMANTIC_INVOCATIONID
2803 """"""""""""""""""""""""""
2804
2805 For geometry shaders, this semantic label indicates that a system value
2806 contains the current invocation id (i.e. gl_InvocationID). Only the X value is
2807 used.
2808
2809 Declaration Interpolate
2810 ^^^^^^^^^^^^^^^^^^^^^^^
2811
2812 This token is only valid for fragment shader INPUT declarations.
2813
2814 The Interpolate field specifes the way input is being interpolated by
2815 the rasteriser and is one of TGSI_INTERPOLATE_*.
2816
2817 The Location field specifies the location inside the pixel that the
2818 interpolation should be done at, one of ``TGSI_INTERPOLATE_LOC_*``. Note that
2819 when per-sample shading is enabled, the implementation may choose to
2820 interpolate at the sample irrespective of the Location field.
2821
2822 The CylindricalWrap bitfield specifies which register components
2823 should be subject to cylindrical wrapping when interpolating by the
2824 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2825 should be interpolated according to cylindrical wrapping rules.
2826
2827
2828 Declaration Sampler View
2829 ^^^^^^^^^^^^^^^^^^^^^^^^
2830
2831 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2832
2833 DCL SVIEW[#], resource, type(s)
2834
2835 Declares a shader input sampler view and assigns it to a SVIEW[#]
2836 register.
2837
2838 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2839
2840 type must be 1 or 4 entries (if specifying on a per-component
2841 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2842
2843
2844 Declaration Resource
2845 ^^^^^^^^^^^^^^^^^^^^
2846
2847 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2848
2849 DCL RES[#], resource [, WR] [, RAW]
2850
2851 Declares a shader input resource and assigns it to a RES[#]
2852 register.
2853
2854 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2855 2DArray.
2856
2857 If the RAW keyword is not specified, the texture data will be
2858 subject to conversion, swizzling and scaling as required to yield
2859 the specified data type from the physical data format of the bound
2860 resource.
2861
2862 If the RAW keyword is specified, no channel conversion will be
2863 performed: the values read for each of the channels (X,Y,Z,W) will
2864 correspond to consecutive words in the same order and format
2865 they're found in memory. No element-to-address conversion will be
2866 performed either: the value of the provided X coordinate will be
2867 interpreted in byte units instead of texel units. The result of
2868 accessing a misaligned address is undefined.
2869
2870 Usage of the STORE opcode is only allowed if the WR (writable) flag
2871 is set.
2872
2873
2874 Properties
2875 ^^^^^^^^^^^^^^^^^^^^^^^^
2876
2877 Properties are general directives that apply to the whole TGSI program.
2878
2879 FS_COORD_ORIGIN
2880 """""""""""""""
2881
2882 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2883 The default value is UPPER_LEFT.
2884
2885 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2886 increase downward and rightward.
2887 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2888 increase upward and rightward.
2889
2890 OpenGL defaults to LOWER_LEFT, and is configurable with the
2891 GL_ARB_fragment_coord_conventions extension.
2892
2893 DirectX 9/10 use UPPER_LEFT.
2894
2895 FS_COORD_PIXEL_CENTER
2896 """""""""""""""""""""
2897
2898 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2899 The default value is HALF_INTEGER.
2900
2901 If HALF_INTEGER, the fractionary part of the position will be 0.5
2902 If INTEGER, the fractionary part of the position will be 0.0
2903
2904 Note that this does not affect the set of fragments generated by
2905 rasterization, which is instead controlled by half_pixel_center in the
2906 rasterizer.
2907
2908 OpenGL defaults to HALF_INTEGER, and is configurable with the
2909 GL_ARB_fragment_coord_conventions extension.
2910
2911 DirectX 9 uses INTEGER.
2912 DirectX 10 uses HALF_INTEGER.
2913
2914 FS_COLOR0_WRITES_ALL_CBUFS
2915 """"""""""""""""""""""""""
2916 Specifies that writes to the fragment shader color 0 are replicated to all
2917 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2918 fragData is directed to a single color buffer, but fragColor is broadcast.
2919
2920 VS_PROHIBIT_UCPS
2921 """"""""""""""""""""""""""
2922 If this property is set on the program bound to the shader stage before the
2923 fragment shader, user clip planes should have no effect (be disabled) even if
2924 that shader does not write to any clip distance outputs and the rasterizer's
2925 clip_plane_enable is non-zero.
2926 This property is only supported by drivers that also support shader clip
2927 distance outputs.
2928 This is useful for APIs that don't have UCPs and where clip distances written
2929 by a shader cannot be disabled.
2930
2931 GS_INVOCATIONS
2932 """"""""""""""
2933
2934 Specifies the number of times a geometry shader should be executed for each
2935 input primitive. Each invocation will have a different
2936 TGSI_SEMANTIC_INVOCATIONID system value set. If not specified, assumed to
2937 be 1.
2938
2939 VS_WINDOW_SPACE_POSITION
2940 """"""""""""""""""""""""""
2941 If this property is set on the vertex shader, the TGSI_SEMANTIC_POSITION output
2942 is assumed to contain window space coordinates.
2943 Division of X,Y,Z by W and the viewport transformation are disabled, and 1/W is
2944 directly taken from the 4-th component of the shader output.
2945 Naturally, clipping is not performed on window coordinates either.
2946 The effect of this property is undefined if a geometry or tessellation shader
2947 are in use.
2948
2949 Texture Sampling and Texture Formats
2950 ------------------------------------
2951
2952 This table shows how texture image components are returned as (x,y,z,w) tuples
2953 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2954 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2955 well.
2956
2957 +--------------------+--------------+--------------------+--------------+
2958 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2959 +====================+==============+====================+==============+
2960 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2961 +--------------------+--------------+--------------------+--------------+
2962 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2963 +--------------------+--------------+--------------------+--------------+
2964 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2965 +--------------------+--------------+--------------------+--------------+
2966 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2967 +--------------------+--------------+--------------------+--------------+
2968 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2969 +--------------------+--------------+--------------------+--------------+
2970 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2971 +--------------------+--------------+--------------------+--------------+
2972 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2973 +--------------------+--------------+--------------------+--------------+
2974 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2975 +--------------------+--------------+--------------------+--------------+
2976 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2977 | | | [#envmap-bumpmap]_ | |
2978 +--------------------+--------------+--------------------+--------------+
2979 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2980 | | | [#depth-tex-mode]_ | |
2981 +--------------------+--------------+--------------------+--------------+
2982 | S | (s, s, s, s) | unknown | unknown |
2983 +--------------------+--------------+--------------------+--------------+
2984
2985 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2986 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2987 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.