gallium: Eliminate TGSI_OPCODE_IFC.
[mesa.git] / src / gallium / docs / source / tgsi.rst
1 TGSI
2 ====
3
4 TGSI, Tungsten Graphics Shader Infrastructure, is an intermediate language
5 for describing shaders. Since Gallium is inherently shaderful, shaders are
6 an important part of the API. TGSI is the only intermediate representation
7 used by all drivers.
8
9 Basics
10 ------
11
12 All TGSI instructions, known as *opcodes*, operate on arbitrary-precision
13 floating-point four-component vectors. An opcode may have up to one
14 destination register, known as *dst*, and between zero and three source
15 registers, called *src0* through *src2*, or simply *src* if there is only
16 one.
17
18 Some instructions, like :opcode:`I2F`, permit re-interpretation of vector
19 components as integers. Other instructions permit using registers as
20 two-component vectors with double precision; see :ref:`Double Opcodes`.
21
22 When an instruction has a scalar result, the result is usually copied into
23 each of the components of *dst*. When this happens, the result is said to be
24 *replicated* to *dst*. :opcode:`RCP` is one such instruction.
25
26 Modifiers
27 ^^^^^^^^^^^^^^^
28
29 TGSI supports modifiers on inputs (as well as saturate modifier on instructions).
30
31 For inputs which have a floating point type, both absolute value and negation
32 modifiers are supported (with absolute value being applied first).
33 TGSI_OPCODE_MOV is considered to have float input type for applying modifiers.
34
35 For inputs which have signed type only the negate modifier is supported. This
36 includes instructions which are otherwise ignorant if the type is signed or
37 unsigned, such as TGSI_OPCODE_UADD.
38
39 For inputs with unsigned type no modifiers are allowed.
40
41 Instruction Set
42 ---------------
43
44 Core ISA
45 ^^^^^^^^^^^^^^^^^^^^^^^^^
46
47 These opcodes are guaranteed to be available regardless of the driver being
48 used.
49
50 .. opcode:: ARL - Address Register Load
51
52 .. math::
53
54 dst.x = \lfloor src.x\rfloor
55
56 dst.y = \lfloor src.y\rfloor
57
58 dst.z = \lfloor src.z\rfloor
59
60 dst.w = \lfloor src.w\rfloor
61
62
63 .. opcode:: MOV - Move
64
65 .. math::
66
67 dst.x = src.x
68
69 dst.y = src.y
70
71 dst.z = src.z
72
73 dst.w = src.w
74
75
76 .. opcode:: LIT - Light Coefficients
77
78 .. math::
79
80 dst.x = 1
81
82 dst.y = max(src.x, 0)
83
84 dst.z = (src.x > 0) ? max(src.y, 0)^{clamp(src.w, -128, 128))} : 0
85
86 dst.w = 1
87
88
89 .. opcode:: RCP - Reciprocal
90
91 This instruction replicates its result.
92
93 .. math::
94
95 dst = \frac{1}{src.x}
96
97
98 .. opcode:: RSQ - Reciprocal Square Root
99
100 This instruction replicates its result.
101
102 .. math::
103
104 dst = \frac{1}{\sqrt{|src.x|}}
105
106
107 .. opcode:: SQRT - Square Root
108
109 This instruction replicates its result.
110
111 .. math::
112
113 dst = {\sqrt{src.x}}
114
115
116 .. opcode:: EXP - Approximate Exponential Base 2
117
118 .. math::
119
120 dst.x = 2^{\lfloor src.x\rfloor}
121
122 dst.y = src.x - \lfloor src.x\rfloor
123
124 dst.z = 2^{src.x}
125
126 dst.w = 1
127
128
129 .. opcode:: LOG - Approximate Logarithm Base 2
130
131 .. math::
132
133 dst.x = \lfloor\log_2{|src.x|}\rfloor
134
135 dst.y = \frac{|src.x|}{2^{\lfloor\log_2{|src.x|}\rfloor}}
136
137 dst.z = \log_2{|src.x|}
138
139 dst.w = 1
140
141
142 .. opcode:: MUL - Multiply
143
144 .. math::
145
146 dst.x = src0.x \times src1.x
147
148 dst.y = src0.y \times src1.y
149
150 dst.z = src0.z \times src1.z
151
152 dst.w = src0.w \times src1.w
153
154
155 .. opcode:: ADD - Add
156
157 .. math::
158
159 dst.x = src0.x + src1.x
160
161 dst.y = src0.y + src1.y
162
163 dst.z = src0.z + src1.z
164
165 dst.w = src0.w + src1.w
166
167
168 .. opcode:: DP3 - 3-component Dot Product
169
170 This instruction replicates its result.
171
172 .. math::
173
174 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z
175
176
177 .. opcode:: DP4 - 4-component Dot Product
178
179 This instruction replicates its result.
180
181 .. math::
182
183 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src0.w \times src1.w
184
185
186 .. opcode:: DST - Distance Vector
187
188 .. math::
189
190 dst.x = 1
191
192 dst.y = src0.y \times src1.y
193
194 dst.z = src0.z
195
196 dst.w = src1.w
197
198
199 .. opcode:: MIN - Minimum
200
201 .. math::
202
203 dst.x = min(src0.x, src1.x)
204
205 dst.y = min(src0.y, src1.y)
206
207 dst.z = min(src0.z, src1.z)
208
209 dst.w = min(src0.w, src1.w)
210
211
212 .. opcode:: MAX - Maximum
213
214 .. math::
215
216 dst.x = max(src0.x, src1.x)
217
218 dst.y = max(src0.y, src1.y)
219
220 dst.z = max(src0.z, src1.z)
221
222 dst.w = max(src0.w, src1.w)
223
224
225 .. opcode:: SLT - Set On Less Than
226
227 .. math::
228
229 dst.x = (src0.x < src1.x) ? 1 : 0
230
231 dst.y = (src0.y < src1.y) ? 1 : 0
232
233 dst.z = (src0.z < src1.z) ? 1 : 0
234
235 dst.w = (src0.w < src1.w) ? 1 : 0
236
237
238 .. opcode:: SGE - Set On Greater Equal Than
239
240 .. math::
241
242 dst.x = (src0.x >= src1.x) ? 1 : 0
243
244 dst.y = (src0.y >= src1.y) ? 1 : 0
245
246 dst.z = (src0.z >= src1.z) ? 1 : 0
247
248 dst.w = (src0.w >= src1.w) ? 1 : 0
249
250
251 .. opcode:: MAD - Multiply And Add
252
253 .. math::
254
255 dst.x = src0.x \times src1.x + src2.x
256
257 dst.y = src0.y \times src1.y + src2.y
258
259 dst.z = src0.z \times src1.z + src2.z
260
261 dst.w = src0.w \times src1.w + src2.w
262
263
264 .. opcode:: SUB - Subtract
265
266 .. math::
267
268 dst.x = src0.x - src1.x
269
270 dst.y = src0.y - src1.y
271
272 dst.z = src0.z - src1.z
273
274 dst.w = src0.w - src1.w
275
276
277 .. opcode:: LRP - Linear Interpolate
278
279 .. math::
280
281 dst.x = src0.x \times src1.x + (1 - src0.x) \times src2.x
282
283 dst.y = src0.y \times src1.y + (1 - src0.y) \times src2.y
284
285 dst.z = src0.z \times src1.z + (1 - src0.z) \times src2.z
286
287 dst.w = src0.w \times src1.w + (1 - src0.w) \times src2.w
288
289
290 .. opcode:: CND - Condition
291
292 .. math::
293
294 dst.x = (src2.x > 0.5) ? src0.x : src1.x
295
296 dst.y = (src2.y > 0.5) ? src0.y : src1.y
297
298 dst.z = (src2.z > 0.5) ? src0.z : src1.z
299
300 dst.w = (src2.w > 0.5) ? src0.w : src1.w
301
302
303 .. opcode:: DP2A - 2-component Dot Product And Add
304
305 .. math::
306
307 dst.x = src0.x \times src1.x + src0.y \times src1.y + src2.x
308
309 dst.y = src0.x \times src1.x + src0.y \times src1.y + src2.x
310
311 dst.z = src0.x \times src1.x + src0.y \times src1.y + src2.x
312
313 dst.w = src0.x \times src1.x + src0.y \times src1.y + src2.x
314
315
316 .. opcode:: FRC - Fraction
317
318 .. math::
319
320 dst.x = src.x - \lfloor src.x\rfloor
321
322 dst.y = src.y - \lfloor src.y\rfloor
323
324 dst.z = src.z - \lfloor src.z\rfloor
325
326 dst.w = src.w - \lfloor src.w\rfloor
327
328
329 .. opcode:: CLAMP - Clamp
330
331 .. math::
332
333 dst.x = clamp(src0.x, src1.x, src2.x)
334
335 dst.y = clamp(src0.y, src1.y, src2.y)
336
337 dst.z = clamp(src0.z, src1.z, src2.z)
338
339 dst.w = clamp(src0.w, src1.w, src2.w)
340
341
342 .. opcode:: FLR - Floor
343
344 This is identical to :opcode:`ARL`.
345
346 .. math::
347
348 dst.x = \lfloor src.x\rfloor
349
350 dst.y = \lfloor src.y\rfloor
351
352 dst.z = \lfloor src.z\rfloor
353
354 dst.w = \lfloor src.w\rfloor
355
356
357 .. opcode:: ROUND - Round
358
359 .. math::
360
361 dst.x = round(src.x)
362
363 dst.y = round(src.y)
364
365 dst.z = round(src.z)
366
367 dst.w = round(src.w)
368
369
370 .. opcode:: EX2 - Exponential Base 2
371
372 This instruction replicates its result.
373
374 .. math::
375
376 dst = 2^{src.x}
377
378
379 .. opcode:: LG2 - Logarithm Base 2
380
381 This instruction replicates its result.
382
383 .. math::
384
385 dst = \log_2{src.x}
386
387
388 .. opcode:: POW - Power
389
390 This instruction replicates its result.
391
392 .. math::
393
394 dst = src0.x^{src1.x}
395
396 .. opcode:: XPD - Cross Product
397
398 .. math::
399
400 dst.x = src0.y \times src1.z - src1.y \times src0.z
401
402 dst.y = src0.z \times src1.x - src1.z \times src0.x
403
404 dst.z = src0.x \times src1.y - src1.x \times src0.y
405
406 dst.w = 1
407
408
409 .. opcode:: ABS - Absolute
410
411 .. math::
412
413 dst.x = |src.x|
414
415 dst.y = |src.y|
416
417 dst.z = |src.z|
418
419 dst.w = |src.w|
420
421
422 .. opcode:: RCC - Reciprocal Clamped
423
424 This instruction replicates its result.
425
426 XXX cleanup on aisle three
427
428 .. math::
429
430 dst = (1 / src.x) > 0 ? clamp(1 / src.x, 5.42101e-020, 1.884467e+019) : clamp(1 / src.x, -1.884467e+019, -5.42101e-020)
431
432
433 .. opcode:: DPH - Homogeneous Dot Product
434
435 This instruction replicates its result.
436
437 .. math::
438
439 dst = src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z + src1.w
440
441
442 .. opcode:: COS - Cosine
443
444 This instruction replicates its result.
445
446 .. math::
447
448 dst = \cos{src.x}
449
450
451 .. opcode:: DDX - Derivative Relative To X
452
453 .. math::
454
455 dst.x = partialx(src.x)
456
457 dst.y = partialx(src.y)
458
459 dst.z = partialx(src.z)
460
461 dst.w = partialx(src.w)
462
463
464 .. opcode:: DDY - Derivative Relative To Y
465
466 .. math::
467
468 dst.x = partialy(src.x)
469
470 dst.y = partialy(src.y)
471
472 dst.z = partialy(src.z)
473
474 dst.w = partialy(src.w)
475
476
477 .. opcode:: KILP - Predicated Discard
478
479 discard
480
481
482 .. opcode:: PK2H - Pack Two 16-bit Floats
483
484 TBD
485
486
487 .. opcode:: PK2US - Pack Two Unsigned 16-bit Scalars
488
489 TBD
490
491
492 .. opcode:: PK4B - Pack Four Signed 8-bit Scalars
493
494 TBD
495
496
497 .. opcode:: PK4UB - Pack Four Unsigned 8-bit Scalars
498
499 TBD
500
501
502 .. opcode:: RFL - Reflection Vector
503
504 .. math::
505
506 dst.x = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.x - src1.x
507
508 dst.y = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.y - src1.y
509
510 dst.z = 2 \times (src0.x \times src1.x + src0.y \times src1.y + src0.z \times src1.z) / (src0.x \times src0.x + src0.y \times src0.y + src0.z \times src0.z) \times src0.z - src1.z
511
512 dst.w = 1
513
514 .. note::
515
516 Considered for removal.
517
518
519 .. opcode:: SEQ - Set On Equal
520
521 .. math::
522
523 dst.x = (src0.x == src1.x) ? 1 : 0
524
525 dst.y = (src0.y == src1.y) ? 1 : 0
526
527 dst.z = (src0.z == src1.z) ? 1 : 0
528
529 dst.w = (src0.w == src1.w) ? 1 : 0
530
531
532 .. opcode:: SFL - Set On False
533
534 This instruction replicates its result.
535
536 .. math::
537
538 dst = 0
539
540 .. note::
541
542 Considered for removal.
543
544
545 .. opcode:: SGT - Set On Greater Than
546
547 .. math::
548
549 dst.x = (src0.x > src1.x) ? 1 : 0
550
551 dst.y = (src0.y > src1.y) ? 1 : 0
552
553 dst.z = (src0.z > src1.z) ? 1 : 0
554
555 dst.w = (src0.w > src1.w) ? 1 : 0
556
557
558 .. opcode:: SIN - Sine
559
560 This instruction replicates its result.
561
562 .. math::
563
564 dst = \sin{src.x}
565
566
567 .. opcode:: SLE - Set On Less Equal Than
568
569 .. math::
570
571 dst.x = (src0.x <= src1.x) ? 1 : 0
572
573 dst.y = (src0.y <= src1.y) ? 1 : 0
574
575 dst.z = (src0.z <= src1.z) ? 1 : 0
576
577 dst.w = (src0.w <= src1.w) ? 1 : 0
578
579
580 .. opcode:: SNE - Set On Not Equal
581
582 .. math::
583
584 dst.x = (src0.x != src1.x) ? 1 : 0
585
586 dst.y = (src0.y != src1.y) ? 1 : 0
587
588 dst.z = (src0.z != src1.z) ? 1 : 0
589
590 dst.w = (src0.w != src1.w) ? 1 : 0
591
592
593 .. opcode:: STR - Set On True
594
595 This instruction replicates its result.
596
597 .. math::
598
599 dst = 1
600
601
602 .. opcode:: TEX - Texture Lookup
603
604 .. math::
605
606 coord = src0
607
608 bias = 0.0
609
610 dst = texture_sample(unit, coord, bias)
611
612 for array textures src0.y contains the slice for 1D,
613 and src0.z contain the slice for 2D.
614 for shadow textures with no arrays, src0.z contains
615 the reference value.
616 for shadow textures with arrays, src0.z contains
617 the reference value for 1D arrays, and src0.w contains
618 the reference value for 2D arrays.
619 There is no way to pass a bias in the .w value for
620 shadow arrays, and GLSL doesn't allow this.
621 GLSL does allow cube shadows maps to take a bias value,
622 and we have to determine how this will look in TGSI.
623
624 .. opcode:: TXD - Texture Lookup with Derivatives
625
626 .. math::
627
628 coord = src0
629
630 ddx = src1
631
632 ddy = src2
633
634 bias = 0.0
635
636 dst = texture_sample_deriv(unit, coord, bias, ddx, ddy)
637
638
639 .. opcode:: TXP - Projective Texture Lookup
640
641 .. math::
642
643 coord.x = src0.x / src.w
644
645 coord.y = src0.y / src.w
646
647 coord.z = src0.z / src.w
648
649 coord.w = src0.w
650
651 bias = 0.0
652
653 dst = texture_sample(unit, coord, bias)
654
655
656 .. opcode:: UP2H - Unpack Two 16-Bit Floats
657
658 TBD
659
660 .. note::
661
662 Considered for removal.
663
664 .. opcode:: UP2US - Unpack Two Unsigned 16-Bit Scalars
665
666 TBD
667
668 .. note::
669
670 Considered for removal.
671
672 .. opcode:: UP4B - Unpack Four Signed 8-Bit Values
673
674 TBD
675
676 .. note::
677
678 Considered for removal.
679
680 .. opcode:: UP4UB - Unpack Four Unsigned 8-Bit Scalars
681
682 TBD
683
684 .. note::
685
686 Considered for removal.
687
688 .. opcode:: X2D - 2D Coordinate Transformation
689
690 .. math::
691
692 dst.x = src0.x + src1.x \times src2.x + src1.y \times src2.y
693
694 dst.y = src0.y + src1.x \times src2.z + src1.y \times src2.w
695
696 dst.z = src0.x + src1.x \times src2.x + src1.y \times src2.y
697
698 dst.w = src0.y + src1.x \times src2.z + src1.y \times src2.w
699
700 .. note::
701
702 Considered for removal.
703
704
705 .. opcode:: ARA - Address Register Add
706
707 TBD
708
709 .. note::
710
711 Considered for removal.
712
713 .. opcode:: ARR - Address Register Load With Round
714
715 .. math::
716
717 dst.x = round(src.x)
718
719 dst.y = round(src.y)
720
721 dst.z = round(src.z)
722
723 dst.w = round(src.w)
724
725
726 .. opcode:: BRA - Branch
727
728 pc = target
729
730 .. note::
731
732 Considered for removal.
733
734 .. opcode:: CAL - Subroutine Call
735
736 push(pc)
737 pc = target
738
739
740 .. opcode:: RET - Subroutine Call Return
741
742 pc = pop()
743
744
745 .. opcode:: SSG - Set Sign
746
747 .. math::
748
749 dst.x = (src.x > 0) ? 1 : (src.x < 0) ? -1 : 0
750
751 dst.y = (src.y > 0) ? 1 : (src.y < 0) ? -1 : 0
752
753 dst.z = (src.z > 0) ? 1 : (src.z < 0) ? -1 : 0
754
755 dst.w = (src.w > 0) ? 1 : (src.w < 0) ? -1 : 0
756
757
758 .. opcode:: CMP - Compare
759
760 .. math::
761
762 dst.x = (src0.x < 0) ? src1.x : src2.x
763
764 dst.y = (src0.y < 0) ? src1.y : src2.y
765
766 dst.z = (src0.z < 0) ? src1.z : src2.z
767
768 dst.w = (src0.w < 0) ? src1.w : src2.w
769
770
771 .. opcode:: KIL - Conditional Discard
772
773 .. math::
774
775 if (src.x < 0 || src.y < 0 || src.z < 0 || src.w < 0)
776 discard
777 endif
778
779
780 .. opcode:: SCS - Sine Cosine
781
782 .. math::
783
784 dst.x = \cos{src.x}
785
786 dst.y = \sin{src.x}
787
788 dst.z = 0
789
790 dst.w = 1
791
792
793 .. opcode:: TXB - Texture Lookup With Bias
794
795 .. math::
796
797 coord.x = src.x
798
799 coord.y = src.y
800
801 coord.z = src.z
802
803 coord.w = 1.0
804
805 bias = src.z
806
807 dst = texture_sample(unit, coord, bias)
808
809
810 .. opcode:: NRM - 3-component Vector Normalise
811
812 .. math::
813
814 dst.x = src.x / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
815
816 dst.y = src.y / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
817
818 dst.z = src.z / (src.x \times src.x + src.y \times src.y + src.z \times src.z)
819
820 dst.w = 1
821
822
823 .. opcode:: DIV - Divide
824
825 .. math::
826
827 dst.x = \frac{src0.x}{src1.x}
828
829 dst.y = \frac{src0.y}{src1.y}
830
831 dst.z = \frac{src0.z}{src1.z}
832
833 dst.w = \frac{src0.w}{src1.w}
834
835
836 .. opcode:: DP2 - 2-component Dot Product
837
838 This instruction replicates its result.
839
840 .. math::
841
842 dst = src0.x \times src1.x + src0.y \times src1.y
843
844
845 .. opcode:: TXL - Texture Lookup With explicit LOD
846
847 .. math::
848
849 coord.x = src0.x
850
851 coord.y = src0.y
852
853 coord.z = src0.z
854
855 coord.w = 1.0
856
857 lod = src0.w
858
859 dst = texture_sample(unit, coord, lod)
860
861
862 .. opcode:: BRK - Break
863
864 TBD
865
866
867 .. opcode:: IF - If
868
869 TBD
870
871
872 .. opcode:: ELSE - Else
873
874 TBD
875
876
877 .. opcode:: ENDIF - End If
878
879 TBD
880
881
882 .. opcode:: PUSHA - Push Address Register On Stack
883
884 push(src.x)
885 push(src.y)
886 push(src.z)
887 push(src.w)
888
889 .. note::
890
891 Considered for cleanup.
892
893 .. note::
894
895 Considered for removal.
896
897 .. opcode:: POPA - Pop Address Register From Stack
898
899 dst.w = pop()
900 dst.z = pop()
901 dst.y = pop()
902 dst.x = pop()
903
904 .. note::
905
906 Considered for cleanup.
907
908 .. note::
909
910 Considered for removal.
911
912
913 Compute ISA
914 ^^^^^^^^^^^^^^^^^^^^^^^^
915
916 These opcodes are primarily provided for special-use computational shaders.
917 Support for these opcodes indicated by a special pipe capability bit (TBD).
918
919 XXX so let's discuss it, yeah?
920
921 .. opcode:: CEIL - Ceiling
922
923 .. math::
924
925 dst.x = \lceil src.x\rceil
926
927 dst.y = \lceil src.y\rceil
928
929 dst.z = \lceil src.z\rceil
930
931 dst.w = \lceil src.w\rceil
932
933
934 .. opcode:: I2F - Integer To Float
935
936 .. math::
937
938 dst.x = (float) src.x
939
940 dst.y = (float) src.y
941
942 dst.z = (float) src.z
943
944 dst.w = (float) src.w
945
946
947 .. opcode:: NOT - Bitwise Not
948
949 .. math::
950
951 dst.x = ~src.x
952
953 dst.y = ~src.y
954
955 dst.z = ~src.z
956
957 dst.w = ~src.w
958
959
960 .. opcode:: TRUNC - Truncate
961
962 .. math::
963
964 dst.x = trunc(src.x)
965
966 dst.y = trunc(src.y)
967
968 dst.z = trunc(src.z)
969
970 dst.w = trunc(src.w)
971
972
973 .. opcode:: SHL - Shift Left
974
975 .. math::
976
977 dst.x = src0.x << src1.x
978
979 dst.y = src0.y << src1.x
980
981 dst.z = src0.z << src1.x
982
983 dst.w = src0.w << src1.x
984
985
986 .. opcode:: SHR - Shift Right
987
988 .. math::
989
990 dst.x = src0.x >> src1.x
991
992 dst.y = src0.y >> src1.x
993
994 dst.z = src0.z >> src1.x
995
996 dst.w = src0.w >> src1.x
997
998
999 .. opcode:: AND - Bitwise And
1000
1001 .. math::
1002
1003 dst.x = src0.x & src1.x
1004
1005 dst.y = src0.y & src1.y
1006
1007 dst.z = src0.z & src1.z
1008
1009 dst.w = src0.w & src1.w
1010
1011
1012 .. opcode:: OR - Bitwise Or
1013
1014 .. math::
1015
1016 dst.x = src0.x | src1.x
1017
1018 dst.y = src0.y | src1.y
1019
1020 dst.z = src0.z | src1.z
1021
1022 dst.w = src0.w | src1.w
1023
1024
1025 .. opcode:: MOD - Modulus
1026
1027 .. math::
1028
1029 dst.x = src0.x \bmod src1.x
1030
1031 dst.y = src0.y \bmod src1.y
1032
1033 dst.z = src0.z \bmod src1.z
1034
1035 dst.w = src0.w \bmod src1.w
1036
1037
1038 .. opcode:: XOR - Bitwise Xor
1039
1040 .. math::
1041
1042 dst.x = src0.x \oplus src1.x
1043
1044 dst.y = src0.y \oplus src1.y
1045
1046 dst.z = src0.z \oplus src1.z
1047
1048 dst.w = src0.w \oplus src1.w
1049
1050
1051 .. opcode:: UCMP - Integer Conditional Move
1052
1053 .. math::
1054
1055 dst.x = src0.x ? src1.x : src2.x
1056
1057 dst.y = src0.y ? src1.y : src2.y
1058
1059 dst.z = src0.z ? src1.z : src2.z
1060
1061 dst.w = src0.w ? src1.w : src2.w
1062
1063
1064 .. opcode:: UARL - Integer Address Register Load
1065
1066 Moves the contents of the source register, assumed to be an integer, into the
1067 destination register, which is assumed to be an address (ADDR) register.
1068
1069
1070 .. opcode:: IABS - Integer Absolute Value
1071
1072 .. math::
1073
1074 dst.x = |src.x|
1075
1076 dst.y = |src.y|
1077
1078 dst.z = |src.z|
1079
1080 dst.w = |src.w|
1081
1082
1083 .. opcode:: SAD - Sum Of Absolute Differences
1084
1085 .. math::
1086
1087 dst.x = |src0.x - src1.x| + src2.x
1088
1089 dst.y = |src0.y - src1.y| + src2.y
1090
1091 dst.z = |src0.z - src1.z| + src2.z
1092
1093 dst.w = |src0.w - src1.w| + src2.w
1094
1095
1096 .. opcode:: TXF - Texel Fetch (as per NV_gpu_shader4), extract a single texel
1097 from a specified texture image. The source sampler may
1098 not be a CUBE or SHADOW.
1099 src 0 is a four-component signed integer vector used to
1100 identify the single texel accessed. 3 components + level.
1101 src 1 is a 3 component constant signed integer vector,
1102 with each component only have a range of
1103 -8..+8 (hw only seems to deal with this range, interface
1104 allows for up to unsigned int).
1105 TXF(uint_vec coord, int_vec offset).
1106
1107
1108 .. opcode:: TXQ - Texture Size Query (as per NV_gpu_program4)
1109 retrieve the dimensions of the texture
1110 depending on the target. For 1D (width), 2D/RECT/CUBE
1111 (width, height), 3D (width, height, depth),
1112 1D array (width, layers), 2D array (width, height, layers)
1113
1114 .. math::
1115
1116 lod = src0
1117
1118 dst.x = texture_width(unit, lod)
1119
1120 dst.y = texture_height(unit, lod)
1121
1122 dst.z = texture_depth(unit, lod)
1123
1124
1125 .. opcode:: CONT - Continue
1126
1127 TBD
1128
1129 .. note::
1130
1131 Support for CONT is determined by a special capability bit,
1132 ``TGSI_CONT_SUPPORTED``. See :ref:`Screen` for more information.
1133
1134
1135 Geometry ISA
1136 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1137
1138 These opcodes are only supported in geometry shaders; they have no meaning
1139 in any other type of shader.
1140
1141 .. opcode:: EMIT - Emit
1142
1143 TBD
1144
1145
1146 .. opcode:: ENDPRIM - End Primitive
1147
1148 TBD
1149
1150
1151 GLSL ISA
1152 ^^^^^^^^^^
1153
1154 These opcodes are part of :term:`GLSL`'s opcode set. Support for these
1155 opcodes is determined by a special capability bit, ``GLSL``.
1156
1157 .. opcode:: BGNLOOP - Begin a Loop
1158
1159 TBD
1160
1161
1162 .. opcode:: BGNSUB - Begin Subroutine
1163
1164 TBD
1165
1166
1167 .. opcode:: ENDLOOP - End a Loop
1168
1169 TBD
1170
1171
1172 .. opcode:: ENDSUB - End Subroutine
1173
1174 TBD
1175
1176
1177 .. opcode:: NOP - No Operation
1178
1179 Do nothing.
1180
1181
1182 .. opcode:: NRM4 - 4-component Vector Normalise
1183
1184 This instruction replicates its result.
1185
1186 .. math::
1187
1188 dst = \frac{src.x}{src.x \times src.x + src.y \times src.y + src.z \times src.z + src.w \times src.w}
1189
1190
1191 ps_2_x
1192 ^^^^^^^^^^^^
1193
1194 XXX wait what
1195
1196 .. opcode:: CALLNZ - Subroutine Call If Not Zero
1197
1198 TBD
1199
1200
1201 .. opcode:: BREAKC - Break Conditional
1202
1203 TBD
1204
1205 .. _doubleopcodes:
1206
1207 Double ISA
1208 ^^^^^^^^^^^^^^^
1209
1210 The double-precision opcodes reinterpret four-component vectors into
1211 two-component vectors with doubled precision in each component.
1212
1213 Support for these opcodes is XXX undecided. :T
1214
1215 .. opcode:: DADD - Add
1216
1217 .. math::
1218
1219 dst.xy = src0.xy + src1.xy
1220
1221 dst.zw = src0.zw + src1.zw
1222
1223
1224 .. opcode:: DDIV - Divide
1225
1226 .. math::
1227
1228 dst.xy = src0.xy / src1.xy
1229
1230 dst.zw = src0.zw / src1.zw
1231
1232 .. opcode:: DSEQ - Set on Equal
1233
1234 .. math::
1235
1236 dst.xy = src0.xy == src1.xy ? 1.0F : 0.0F
1237
1238 dst.zw = src0.zw == src1.zw ? 1.0F : 0.0F
1239
1240 .. opcode:: DSLT - Set on Less than
1241
1242 .. math::
1243
1244 dst.xy = src0.xy < src1.xy ? 1.0F : 0.0F
1245
1246 dst.zw = src0.zw < src1.zw ? 1.0F : 0.0F
1247
1248 .. opcode:: DFRAC - Fraction
1249
1250 .. math::
1251
1252 dst.xy = src.xy - \lfloor src.xy\rfloor
1253
1254 dst.zw = src.zw - \lfloor src.zw\rfloor
1255
1256
1257 .. opcode:: DFRACEXP - Convert Number to Fractional and Integral Components
1258
1259 Like the ``frexp()`` routine in many math libraries, this opcode stores the
1260 exponent of its source to ``dst0``, and the significand to ``dst1``, such that
1261 :math:`dst1 \times 2^{dst0} = src` .
1262
1263 .. math::
1264
1265 dst0.xy = exp(src.xy)
1266
1267 dst1.xy = frac(src.xy)
1268
1269 dst0.zw = exp(src.zw)
1270
1271 dst1.zw = frac(src.zw)
1272
1273 .. opcode:: DLDEXP - Multiply Number by Integral Power of 2
1274
1275 This opcode is the inverse of :opcode:`DFRACEXP`.
1276
1277 .. math::
1278
1279 dst.xy = src0.xy \times 2^{src1.xy}
1280
1281 dst.zw = src0.zw \times 2^{src1.zw}
1282
1283 .. opcode:: DMIN - Minimum
1284
1285 .. math::
1286
1287 dst.xy = min(src0.xy, src1.xy)
1288
1289 dst.zw = min(src0.zw, src1.zw)
1290
1291 .. opcode:: DMAX - Maximum
1292
1293 .. math::
1294
1295 dst.xy = max(src0.xy, src1.xy)
1296
1297 dst.zw = max(src0.zw, src1.zw)
1298
1299 .. opcode:: DMUL - Multiply
1300
1301 .. math::
1302
1303 dst.xy = src0.xy \times src1.xy
1304
1305 dst.zw = src0.zw \times src1.zw
1306
1307
1308 .. opcode:: DMAD - Multiply And Add
1309
1310 .. math::
1311
1312 dst.xy = src0.xy \times src1.xy + src2.xy
1313
1314 dst.zw = src0.zw \times src1.zw + src2.zw
1315
1316
1317 .. opcode:: DRCP - Reciprocal
1318
1319 .. math::
1320
1321 dst.xy = \frac{1}{src.xy}
1322
1323 dst.zw = \frac{1}{src.zw}
1324
1325 .. opcode:: DSQRT - Square Root
1326
1327 .. math::
1328
1329 dst.xy = \sqrt{src.xy}
1330
1331 dst.zw = \sqrt{src.zw}
1332
1333
1334 .. _samplingopcodes:
1335
1336 Resource Sampling Opcodes
1337 ^^^^^^^^^^^^^^^^^^^^^^^^^
1338
1339 Those opcodes follow very closely semantics of the respective Direct3D
1340 instructions. If in doubt double check Direct3D documentation.
1341
1342 .. opcode:: SAMPLE - Using provided address, sample data from the
1343 specified texture using the filtering mode identified
1344 by the gven sampler. The source data may come from
1345 any resource type other than buffers.
1346 SAMPLE dst, address, sampler_view, sampler
1347 e.g.
1348 SAMPLE TEMP[0], TEMP[1], SVIEW[0], SAMP[0]
1349
1350 .. opcode:: SAMPLE_I - Simplified alternative to the SAMPLE instruction.
1351 Using the provided integer address, SAMPLE_I fetches data
1352 from the specified sampler view without any filtering.
1353 The source data may come from any resource type other
1354 than CUBE.
1355 SAMPLE_I dst, address, sampler_view
1356 e.g.
1357 SAMPLE_I TEMP[0], TEMP[1], SVIEW[0]
1358 The 'address' is specified as unsigned integers. If the
1359 'address' is out of range [0...(# texels - 1)] the
1360 result of the fetch is always 0 in all components.
1361 As such the instruction doesn't honor address wrap
1362 modes, in cases where that behavior is desirable
1363 'SAMPLE' instruction should be used.
1364 address.w always provides an unsigned integer mipmap
1365 level. If the value is out of the range then the
1366 instruction always returns 0 in all components.
1367 address.yz are ignored for buffers and 1d textures.
1368 address.z is ignored for 1d texture arrays and 2d
1369 textures.
1370 For 1D texture arrays address.y provides the array
1371 index (also as unsigned integer). If the value is
1372 out of the range of available array indices
1373 [0... (array size - 1)] then the opcode always returns
1374 0 in all components.
1375 For 2D texture arrays address.z provides the array
1376 index, otherwise it exhibits the same behavior as in
1377 the case for 1D texture arrays.
1378 The exact semantics of the source address are presented
1379 in the table below:
1380 resource type X Y Z W
1381 ------------- ------------------------
1382 PIPE_BUFFER x ignored
1383 PIPE_TEXTURE_1D x mpl
1384 PIPE_TEXTURE_2D x y mpl
1385 PIPE_TEXTURE_3D x y z mpl
1386 PIPE_TEXTURE_RECT x y mpl
1387 PIPE_TEXTURE_CUBE not allowed as source
1388 PIPE_TEXTURE_1D_ARRAY x idx mpl
1389 PIPE_TEXTURE_2D_ARRAY x y idx mpl
1390
1391 Where 'mpl' is a mipmap level and 'idx' is the
1392 array index.
1393
1394 .. opcode:: SAMPLE_I_MS - Just like SAMPLE_I but allows fetch data from
1395 multi-sampled surfaces.
1396 SAMPLE_I_MS dst, address, sampler_view, sample
1397
1398 .. opcode:: SAMPLE_B - Just like the SAMPLE instruction with the
1399 exception that an additional bias is applied to the
1400 level of detail computed as part of the instruction
1401 execution.
1402 SAMPLE_B dst, address, sampler_view, sampler, lod_bias
1403 e.g.
1404 SAMPLE_B TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x
1405
1406 .. opcode:: SAMPLE_C - Similar to the SAMPLE instruction but it
1407 performs a comparison filter. The operands to SAMPLE_C
1408 are identical to SAMPLE, except that there is an additional
1409 float32 operand, reference value, which must be a register
1410 with single-component, or a scalar literal.
1411 SAMPLE_C makes the hardware use the current samplers
1412 compare_func (in pipe_sampler_state) to compare
1413 reference value against the red component value for the
1414 surce resource at each texel that the currently configured
1415 texture filter covers based on the provided coordinates.
1416 SAMPLE_C dst, address, sampler_view.r, sampler, ref_value
1417 e.g.
1418 SAMPLE_C TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x
1419
1420 .. opcode:: SAMPLE_C_LZ - Same as SAMPLE_C, but LOD is 0 and derivatives
1421 are ignored. The LZ stands for level-zero.
1422 SAMPLE_C_LZ dst, address, sampler_view.r, sampler, ref_value
1423 e.g.
1424 SAMPLE_C_LZ TEMP[0], TEMP[1], SVIEW[0].r, SAMP[0], TEMP[2].x
1425
1426
1427 .. opcode:: SAMPLE_D - SAMPLE_D is identical to the SAMPLE opcode except
1428 that the derivatives for the source address in the x
1429 direction and the y direction are provided by extra
1430 parameters.
1431 SAMPLE_D dst, address, sampler_view, sampler, der_x, der_y
1432 e.g.
1433 SAMPLE_D TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2], TEMP[3]
1434
1435 .. opcode:: SAMPLE_L - SAMPLE_L is identical to the SAMPLE opcode except
1436 that the LOD is provided directly as a scalar value,
1437 representing no anisotropy.
1438 SAMPLE_L dst, address, sampler_view, sampler, explicit_lod
1439 e.g.
1440 SAMPLE_L TEMP[0], TEMP[1], SVIEW[0], SAMP[0], TEMP[2].x
1441
1442 .. opcode:: GATHER4 - Gathers the four texels to be used in a bi-linear
1443 filtering operation and packs them into a single register.
1444 Only works with 2D, 2D array, cubemaps, and cubemaps arrays.
1445 For 2D textures, only the addressing modes of the sampler and
1446 the top level of any mip pyramid are used. Set W to zero.
1447 It behaves like the SAMPLE instruction, but a filtered
1448 sample is not generated. The four samples that contribute
1449 to filtering are placed into xyzw in counter-clockwise order,
1450 starting with the (u,v) texture coordinate delta at the
1451 following locations (-, +), (+, +), (+, -), (-, -), where
1452 the magnitude of the deltas are half a texel.
1453
1454
1455 .. opcode:: SVIEWINFO - query the dimensions of a given sampler view.
1456 dst receives width, height, depth or array size and
1457 number of mipmap levels as int4. The dst can have a writemask
1458 which will specify what info is the caller interested
1459 in.
1460 SVIEWINFO dst, src_mip_level, sampler_view
1461 e.g.
1462 SVIEWINFO TEMP[0], TEMP[1].x, SVIEW[0]
1463 src_mip_level is an unsigned integer scalar. If it's
1464 out of range then returns 0 for width, height and
1465 depth/array size but the total number of mipmap is
1466 still returned correctly for the given sampler view.
1467 The returned width, height and depth values are for
1468 the mipmap level selected by the src_mip_level and
1469 are in the number of texels.
1470 For 1d texture array width is in dst.x, array size
1471 is in dst.y and dst.zw are always 0.
1472
1473 .. opcode:: SAMPLE_POS - query the position of a given sample.
1474 dst receives float4 (x, y, 0, 0) indicated where the
1475 sample is located. If the resource is not a multi-sample
1476 resource and not a render target, the result is 0.
1477
1478 .. opcode:: SAMPLE_INFO - dst receives number of samples in x.
1479 If the resource is not a multi-sample resource and
1480 not a render target, the result is 0.
1481
1482
1483 .. _resourceopcodes:
1484
1485 Resource Access Opcodes
1486 ^^^^^^^^^^^^^^^^^^^^^^^
1487
1488 .. opcode:: LOAD - Fetch data from a shader resource
1489
1490 Syntax: ``LOAD dst, resource, address``
1491
1492 Example: ``LOAD TEMP[0], RES[0], TEMP[1]``
1493
1494 Using the provided integer address, LOAD fetches data
1495 from the specified buffer or texture without any
1496 filtering.
1497
1498 The 'address' is specified as a vector of unsigned
1499 integers. If the 'address' is out of range the result
1500 is unspecified.
1501
1502 Only the first mipmap level of a resource can be read
1503 from using this instruction.
1504
1505 For 1D or 2D texture arrays, the array index is
1506 provided as an unsigned integer in address.y or
1507 address.z, respectively. address.yz are ignored for
1508 buffers and 1D textures. address.z is ignored for 1D
1509 texture arrays and 2D textures. address.w is always
1510 ignored.
1511
1512 .. opcode:: STORE - Write data to a shader resource
1513
1514 Syntax: ``STORE resource, address, src``
1515
1516 Example: ``STORE RES[0], TEMP[0], TEMP[1]``
1517
1518 Using the provided integer address, STORE writes data
1519 to the specified buffer or texture.
1520
1521 The 'address' is specified as a vector of unsigned
1522 integers. If the 'address' is out of range the result
1523 is unspecified.
1524
1525 Only the first mipmap level of a resource can be
1526 written to using this instruction.
1527
1528 For 1D or 2D texture arrays, the array index is
1529 provided as an unsigned integer in address.y or
1530 address.z, respectively. address.yz are ignored for
1531 buffers and 1D textures. address.z is ignored for 1D
1532 texture arrays and 2D textures. address.w is always
1533 ignored.
1534
1535
1536 .. _threadsyncopcodes:
1537
1538 Inter-thread synchronization opcodes
1539 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1540
1541 These opcodes are intended for communication between threads running
1542 within the same compute grid. For now they're only valid in compute
1543 programs.
1544
1545 .. opcode:: MFENCE - Memory fence
1546
1547 Syntax: ``MFENCE resource``
1548
1549 Example: ``MFENCE RES[0]``
1550
1551 This opcode forces strong ordering between any memory access
1552 operations that affect the specified resource. This means that
1553 previous loads and stores (and only those) will be performed and
1554 visible to other threads before the program execution continues.
1555
1556
1557 .. opcode:: LFENCE - Load memory fence
1558
1559 Syntax: ``LFENCE resource``
1560
1561 Example: ``LFENCE RES[0]``
1562
1563 Similar to MFENCE, but it only affects the ordering of memory loads.
1564
1565
1566 .. opcode:: SFENCE - Store memory fence
1567
1568 Syntax: ``SFENCE resource``
1569
1570 Example: ``SFENCE RES[0]``
1571
1572 Similar to MFENCE, but it only affects the ordering of memory stores.
1573
1574
1575 .. opcode:: BARRIER - Thread group barrier
1576
1577 ``BARRIER``
1578
1579 This opcode suspends the execution of the current thread until all
1580 the remaining threads in the working group reach the same point of
1581 the program. Results are unspecified if any of the remaining
1582 threads terminates or never reaches an executed BARRIER instruction.
1583
1584
1585 .. _atomopcodes:
1586
1587 Atomic opcodes
1588 ^^^^^^^^^^^^^^
1589
1590 These opcodes provide atomic variants of some common arithmetic and
1591 logical operations. In this context atomicity means that another
1592 concurrent memory access operation that affects the same memory
1593 location is guaranteed to be performed strictly before or after the
1594 entire execution of the atomic operation.
1595
1596 For the moment they're only valid in compute programs.
1597
1598 .. opcode:: ATOMUADD - Atomic integer addition
1599
1600 Syntax: ``ATOMUADD dst, resource, offset, src``
1601
1602 Example: ``ATOMUADD TEMP[0], RES[0], TEMP[1], TEMP[2]``
1603
1604 The following operation is performed atomically on each component:
1605
1606 .. math::
1607
1608 dst_i = resource[offset]_i
1609
1610 resource[offset]_i = dst_i + src_i
1611
1612
1613 .. opcode:: ATOMXCHG - Atomic exchange
1614
1615 Syntax: ``ATOMXCHG dst, resource, offset, src``
1616
1617 Example: ``ATOMXCHG TEMP[0], RES[0], TEMP[1], TEMP[2]``
1618
1619 The following operation is performed atomically on each component:
1620
1621 .. math::
1622
1623 dst_i = resource[offset]_i
1624
1625 resource[offset]_i = src_i
1626
1627
1628 .. opcode:: ATOMCAS - Atomic compare-and-exchange
1629
1630 Syntax: ``ATOMCAS dst, resource, offset, cmp, src``
1631
1632 Example: ``ATOMCAS TEMP[0], RES[0], TEMP[1], TEMP[2], TEMP[3]``
1633
1634 The following operation is performed atomically on each component:
1635
1636 .. math::
1637
1638 dst_i = resource[offset]_i
1639
1640 resource[offset]_i = (dst_i == cmp_i ? src_i : dst_i)
1641
1642
1643 .. opcode:: ATOMAND - Atomic bitwise And
1644
1645 Syntax: ``ATOMAND dst, resource, offset, src``
1646
1647 Example: ``ATOMAND TEMP[0], RES[0], TEMP[1], TEMP[2]``
1648
1649 The following operation is performed atomically on each component:
1650
1651 .. math::
1652
1653 dst_i = resource[offset]_i
1654
1655 resource[offset]_i = dst_i \& src_i
1656
1657
1658 .. opcode:: ATOMOR - Atomic bitwise Or
1659
1660 Syntax: ``ATOMOR dst, resource, offset, src``
1661
1662 Example: ``ATOMOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
1663
1664 The following operation is performed atomically on each component:
1665
1666 .. math::
1667
1668 dst_i = resource[offset]_i
1669
1670 resource[offset]_i = dst_i | src_i
1671
1672
1673 .. opcode:: ATOMXOR - Atomic bitwise Xor
1674
1675 Syntax: ``ATOMXOR dst, resource, offset, src``
1676
1677 Example: ``ATOMXOR TEMP[0], RES[0], TEMP[1], TEMP[2]``
1678
1679 The following operation is performed atomically on each component:
1680
1681 .. math::
1682
1683 dst_i = resource[offset]_i
1684
1685 resource[offset]_i = dst_i \oplus src_i
1686
1687
1688 .. opcode:: ATOMUMIN - Atomic unsigned minimum
1689
1690 Syntax: ``ATOMUMIN dst, resource, offset, src``
1691
1692 Example: ``ATOMUMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
1693
1694 The following operation is performed atomically on each component:
1695
1696 .. math::
1697
1698 dst_i = resource[offset]_i
1699
1700 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
1701
1702
1703 .. opcode:: ATOMUMAX - Atomic unsigned maximum
1704
1705 Syntax: ``ATOMUMAX dst, resource, offset, src``
1706
1707 Example: ``ATOMUMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
1708
1709 The following operation is performed atomically on each component:
1710
1711 .. math::
1712
1713 dst_i = resource[offset]_i
1714
1715 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
1716
1717
1718 .. opcode:: ATOMIMIN - Atomic signed minimum
1719
1720 Syntax: ``ATOMIMIN dst, resource, offset, src``
1721
1722 Example: ``ATOMIMIN TEMP[0], RES[0], TEMP[1], TEMP[2]``
1723
1724 The following operation is performed atomically on each component:
1725
1726 .. math::
1727
1728 dst_i = resource[offset]_i
1729
1730 resource[offset]_i = (dst_i < src_i ? dst_i : src_i)
1731
1732
1733 .. opcode:: ATOMIMAX - Atomic signed maximum
1734
1735 Syntax: ``ATOMIMAX dst, resource, offset, src``
1736
1737 Example: ``ATOMIMAX TEMP[0], RES[0], TEMP[1], TEMP[2]``
1738
1739 The following operation is performed atomically on each component:
1740
1741 .. math::
1742
1743 dst_i = resource[offset]_i
1744
1745 resource[offset]_i = (dst_i > src_i ? dst_i : src_i)
1746
1747
1748
1749 Explanation of symbols used
1750 ------------------------------
1751
1752
1753 Functions
1754 ^^^^^^^^^^^^^^
1755
1756
1757 :math:`|x|` Absolute value of `x`.
1758
1759 :math:`\lceil x \rceil` Ceiling of `x`.
1760
1761 clamp(x,y,z) Clamp x between y and z.
1762 (x < y) ? y : (x > z) ? z : x
1763
1764 :math:`\lfloor x\rfloor` Floor of `x`.
1765
1766 :math:`\log_2{x}` Logarithm of `x`, base 2.
1767
1768 max(x,y) Maximum of x and y.
1769 (x > y) ? x : y
1770
1771 min(x,y) Minimum of x and y.
1772 (x < y) ? x : y
1773
1774 partialx(x) Derivative of x relative to fragment's X.
1775
1776 partialy(x) Derivative of x relative to fragment's Y.
1777
1778 pop() Pop from stack.
1779
1780 :math:`x^y` `x` to the power `y`.
1781
1782 push(x) Push x on stack.
1783
1784 round(x) Round x.
1785
1786 trunc(x) Truncate x, i.e. drop the fraction bits.
1787
1788
1789 Keywords
1790 ^^^^^^^^^^^^^
1791
1792
1793 discard Discard fragment.
1794
1795 pc Program counter.
1796
1797 target Label of target instruction.
1798
1799
1800 Other tokens
1801 ---------------
1802
1803
1804 Declaration
1805 ^^^^^^^^^^^
1806
1807
1808 Declares a register that is will be referenced as an operand in Instruction
1809 tokens.
1810
1811 File field contains register file that is being declared and is one
1812 of TGSI_FILE.
1813
1814 UsageMask field specifies which of the register components can be accessed
1815 and is one of TGSI_WRITEMASK.
1816
1817 The Local flag specifies that a given value isn't intended for
1818 subroutine parameter passing and, as a result, the implementation
1819 isn't required to give any guarantees of it being preserved across
1820 subroutine boundaries. As it's merely a compiler hint, the
1821 implementation is free to ignore it.
1822
1823 If Dimension flag is set to 1, a Declaration Dimension token follows.
1824
1825 If Semantic flag is set to 1, a Declaration Semantic token follows.
1826
1827 If Interpolate flag is set to 1, a Declaration Interpolate token follows.
1828
1829 If file is TGSI_FILE_RESOURCE, a Declaration Resource token follows.
1830
1831 If Array flag is set to 1, a Declaration Array token follows.
1832
1833 Array Declaration
1834 ^^^^^^^^^^^^^^^^^^^^^^^^
1835
1836 Declarations can optional have an ArrayID attribute which can be referred by
1837 indirect addressing operands. An ArrayID of zero is reserved and treaded as
1838 if no ArrayID is specified.
1839
1840 If an indirect addressing operand refers to a specific declaration by using
1841 an ArrayID only the registers in this declaration are guaranteed to be
1842 accessed, accessing any register outside this declaration results in undefined
1843 behavior. Note that for compatibility the effective index is zero-based and
1844 not relative to the specified declaration
1845
1846 If no ArrayID is specified with an indirect addressing operand the whole
1847 register file might be accessed by this operand. This is strongly discouraged
1848 and will prevent packing of scalar/vec2 arrays and effective alias analysis.
1849
1850 Declaration Semantic
1851 ^^^^^^^^^^^^^^^^^^^^^^^^
1852
1853 Vertex and fragment shader input and output registers may be labeled
1854 with semantic information consisting of a name and index.
1855
1856 Follows Declaration token if Semantic bit is set.
1857
1858 Since its purpose is to link a shader with other stages of the pipeline,
1859 it is valid to follow only those Declaration tokens that declare a register
1860 either in INPUT or OUTPUT file.
1861
1862 SemanticName field contains the semantic name of the register being declared.
1863 There is no default value.
1864
1865 SemanticIndex is an optional subscript that can be used to distinguish
1866 different register declarations with the same semantic name. The default value
1867 is 0.
1868
1869 The meanings of the individual semantic names are explained in the following
1870 sections.
1871
1872 TGSI_SEMANTIC_POSITION
1873 """"""""""""""""""""""
1874
1875 For vertex shaders, TGSI_SEMANTIC_POSITION indicates the vertex shader
1876 output register which contains the homogeneous vertex position in the clip
1877 space coordinate system. After clipping, the X, Y and Z components of the
1878 vertex will be divided by the W value to get normalized device coordinates.
1879
1880 For fragment shaders, TGSI_SEMANTIC_POSITION is used to indicate that
1881 fragment shader input contains the fragment's window position. The X
1882 component starts at zero and always increases from left to right.
1883 The Y component starts at zero and always increases but Y=0 may either
1884 indicate the top of the window or the bottom depending on the fragment
1885 coordinate origin convention (see TGSI_PROPERTY_FS_COORD_ORIGIN).
1886 The Z coordinate ranges from 0 to 1 to represent depth from the front
1887 to the back of the Z buffer. The W component contains the reciprocol
1888 of the interpolated vertex position W component.
1889
1890 Fragment shaders may also declare an output register with
1891 TGSI_SEMANTIC_POSITION. Only the Z component is writable. This allows
1892 the fragment shader to change the fragment's Z position.
1893
1894
1895
1896 TGSI_SEMANTIC_COLOR
1897 """""""""""""""""""
1898
1899 For vertex shader outputs or fragment shader inputs/outputs, this
1900 label indicates that the resister contains an R,G,B,A color.
1901
1902 Several shader inputs/outputs may contain colors so the semantic index
1903 is used to distinguish them. For example, color[0] may be the diffuse
1904 color while color[1] may be the specular color.
1905
1906 This label is needed so that the flat/smooth shading can be applied
1907 to the right interpolants during rasterization.
1908
1909
1910
1911 TGSI_SEMANTIC_BCOLOR
1912 """"""""""""""""""""
1913
1914 Back-facing colors are only used for back-facing polygons, and are only valid
1915 in vertex shader outputs. After rasterization, all polygons are front-facing
1916 and COLOR and BCOLOR end up occupying the same slots in the fragment shader,
1917 so all BCOLORs effectively become regular COLORs in the fragment shader.
1918
1919
1920 TGSI_SEMANTIC_FOG
1921 """""""""""""""""
1922
1923 Vertex shader inputs and outputs and fragment shader inputs may be
1924 labeled with TGSI_SEMANTIC_FOG to indicate that the register contains
1925 a fog coordinate in the form (F, 0, 0, 1). Typically, the fragment
1926 shader will use the fog coordinate to compute a fog blend factor which
1927 is used to blend the normal fragment color with a constant fog color.
1928
1929 Only the first component matters when writing from the vertex shader;
1930 the driver will ensure that the coordinate is in this format when used
1931 as a fragment shader input.
1932
1933
1934 TGSI_SEMANTIC_PSIZE
1935 """""""""""""""""""
1936
1937 Vertex shader input and output registers may be labeled with
1938 TGIS_SEMANTIC_PSIZE to indicate that the register contains a point size
1939 in the form (S, 0, 0, 1). The point size controls the width or diameter
1940 of points for rasterization. This label cannot be used in fragment
1941 shaders.
1942
1943 When using this semantic, be sure to set the appropriate state in the
1944 :ref:`rasterizer` first.
1945
1946
1947 TGSI_SEMANTIC_TEXCOORD
1948 """"""""""""""""""""""
1949
1950 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
1951
1952 Vertex shader outputs and fragment shader inputs may be labeled with
1953 this semantic to make them replaceable by sprite coordinates via the
1954 sprite_coord_enable state in the :ref:`rasterizer`.
1955 The semantic index permitted with this semantic is limited to <= 7.
1956
1957 If the driver does not support TEXCOORD, sprite coordinate replacement
1958 applies to inputs with the GENERIC semantic instead.
1959
1960 The intended use case for this semantic is gl_TexCoord.
1961
1962
1963 TGSI_SEMANTIC_PCOORD
1964 """"""""""""""""""""
1965
1966 Only available if PIPE_CAP_TGSI_TEXCOORD is exposed !
1967
1968 Fragment shader inputs may be labeled with TGSI_SEMANTIC_PCOORD to indicate
1969 that the register contains sprite coordinates in the form (x, y, 0, 1), if
1970 the current primitive is a point and point sprites are enabled. Otherwise,
1971 the contents of the register are undefined.
1972
1973 The intended use case for this semantic is gl_PointCoord.
1974
1975
1976 TGSI_SEMANTIC_GENERIC
1977 """""""""""""""""""""
1978
1979 All vertex/fragment shader inputs/outputs not labeled with any other
1980 semantic label can be considered to be generic attributes. Typical
1981 uses of generic inputs/outputs are texcoords and user-defined values.
1982
1983
1984 TGSI_SEMANTIC_NORMAL
1985 """"""""""""""""""""
1986
1987 Indicates that a vertex shader input is a normal vector. This is
1988 typically only used for legacy graphics APIs.
1989
1990
1991 TGSI_SEMANTIC_FACE
1992 """"""""""""""""""
1993
1994 This label applies to fragment shader inputs only and indicates that
1995 the register contains front/back-face information of the form (F, 0,
1996 0, 1). The first component will be positive when the fragment belongs
1997 to a front-facing polygon, and negative when the fragment belongs to a
1998 back-facing polygon.
1999
2000
2001 TGSI_SEMANTIC_EDGEFLAG
2002 """"""""""""""""""""""
2003
2004 For vertex shaders, this sematic label indicates that an input or
2005 output is a boolean edge flag. The register layout is [F, x, x, x]
2006 where F is 0.0 or 1.0 and x = don't care. Normally, the vertex shader
2007 simply copies the edge flag input to the edgeflag output.
2008
2009 Edge flags are used to control which lines or points are actually
2010 drawn when the polygon mode converts triangles/quads/polygons into
2011 points or lines.
2012
2013 TGSI_SEMANTIC_STENCIL
2014 """"""""""""""""""""""
2015
2016 For fragment shaders, this semantic label indicates than an output
2017 is a writable stencil reference value. Only the Y component is writable.
2018 This allows the fragment shader to change the fragments stencilref value.
2019
2020
2021 Declaration Interpolate
2022 ^^^^^^^^^^^^^^^^^^^^^^^
2023
2024 This token is only valid for fragment shader INPUT declarations.
2025
2026 The Interpolate field specifes the way input is being interpolated by
2027 the rasteriser and is one of TGSI_INTERPOLATE_*.
2028
2029 The CylindricalWrap bitfield specifies which register components
2030 should be subject to cylindrical wrapping when interpolating by the
2031 rasteriser. If TGSI_CYLINDRICAL_WRAP_X is set to 1, the X component
2032 should be interpolated according to cylindrical wrapping rules.
2033
2034
2035 Declaration Sampler View
2036 ^^^^^^^^^^^^^^^^^^^^^^^^
2037
2038 Follows Declaration token if file is TGSI_FILE_SAMPLER_VIEW.
2039
2040 DCL SVIEW[#], resource, type(s)
2041
2042 Declares a shader input sampler view and assigns it to a SVIEW[#]
2043 register.
2044
2045 resource can be one of BUFFER, 1D, 2D, 3D, 1DArray and 2DArray.
2046
2047 type must be 1 or 4 entries (if specifying on a per-component
2048 level) out of UNORM, SNORM, SINT, UINT and FLOAT.
2049
2050
2051 Declaration Resource
2052 ^^^^^^^^^^^^^^^^^^^^
2053
2054 Follows Declaration token if file is TGSI_FILE_RESOURCE.
2055
2056 DCL RES[#], resource [, WR] [, RAW]
2057
2058 Declares a shader input resource and assigns it to a RES[#]
2059 register.
2060
2061 resource can be one of BUFFER, 1D, 2D, 3D, CUBE, 1DArray and
2062 2DArray.
2063
2064 If the RAW keyword is not specified, the texture data will be
2065 subject to conversion, swizzling and scaling as required to yield
2066 the specified data type from the physical data format of the bound
2067 resource.
2068
2069 If the RAW keyword is specified, no channel conversion will be
2070 performed: the values read for each of the channels (X,Y,Z,W) will
2071 correspond to consecutive words in the same order and format
2072 they're found in memory. No element-to-address conversion will be
2073 performed either: the value of the provided X coordinate will be
2074 interpreted in byte units instead of texel units. The result of
2075 accessing a misaligned address is undefined.
2076
2077 Usage of the STORE opcode is only allowed if the WR (writable) flag
2078 is set.
2079
2080
2081 Properties
2082 ^^^^^^^^^^^^^^^^^^^^^^^^
2083
2084
2085 Properties are general directives that apply to the whole TGSI program.
2086
2087 FS_COORD_ORIGIN
2088 """""""""""""""
2089
2090 Specifies the fragment shader TGSI_SEMANTIC_POSITION coordinate origin.
2091 The default value is UPPER_LEFT.
2092
2093 If UPPER_LEFT, the position will be (0,0) at the upper left corner and
2094 increase downward and rightward.
2095 If LOWER_LEFT, the position will be (0,0) at the lower left corner and
2096 increase upward and rightward.
2097
2098 OpenGL defaults to LOWER_LEFT, and is configurable with the
2099 GL_ARB_fragment_coord_conventions extension.
2100
2101 DirectX 9/10 use UPPER_LEFT.
2102
2103 FS_COORD_PIXEL_CENTER
2104 """""""""""""""""""""
2105
2106 Specifies the fragment shader TGSI_SEMANTIC_POSITION pixel center convention.
2107 The default value is HALF_INTEGER.
2108
2109 If HALF_INTEGER, the fractionary part of the position will be 0.5
2110 If INTEGER, the fractionary part of the position will be 0.0
2111
2112 Note that this does not affect the set of fragments generated by
2113 rasterization, which is instead controlled by gl_rasterization_rules in the
2114 rasterizer.
2115
2116 OpenGL defaults to HALF_INTEGER, and is configurable with the
2117 GL_ARB_fragment_coord_conventions extension.
2118
2119 DirectX 9 uses INTEGER.
2120 DirectX 10 uses HALF_INTEGER.
2121
2122 FS_COLOR0_WRITES_ALL_CBUFS
2123 """"""""""""""""""""""""""
2124 Specifies that writes to the fragment shader color 0 are replicated to all
2125 bound cbufs. This facilitates OpenGL's fragColor output vs fragData[0] where
2126 fragData is directed to a single color buffer, but fragColor is broadcast.
2127
2128 VS_PROHIBIT_UCPS
2129 """"""""""""""""""""""""""
2130 If this property is set on the program bound to the shader stage before the
2131 fragment shader, user clip planes should have no effect (be disabled) even if
2132 that shader does not write to any clip distance outputs and the rasterizer's
2133 clip_plane_enable is non-zero.
2134 This property is only supported by drivers that also support shader clip
2135 distance outputs.
2136 This is useful for APIs that don't have UCPs and where clip distances written
2137 by a shader cannot be disabled.
2138
2139
2140 Texture Sampling and Texture Formats
2141 ------------------------------------
2142
2143 This table shows how texture image components are returned as (x,y,z,w) tuples
2144 by TGSI texture instructions, such as :opcode:`TEX`, :opcode:`TXD`, and
2145 :opcode:`TXP`. For reference, OpenGL and Direct3D conventions are shown as
2146 well.
2147
2148 +--------------------+--------------+--------------------+--------------+
2149 | Texture Components | Gallium | OpenGL | Direct3D 9 |
2150 +====================+==============+====================+==============+
2151 | R | (r, 0, 0, 1) | (r, 0, 0, 1) | (r, 1, 1, 1) |
2152 +--------------------+--------------+--------------------+--------------+
2153 | RG | (r, g, 0, 1) | (r, g, 0, 1) | (r, g, 1, 1) |
2154 +--------------------+--------------+--------------------+--------------+
2155 | RGB | (r, g, b, 1) | (r, g, b, 1) | (r, g, b, 1) |
2156 +--------------------+--------------+--------------------+--------------+
2157 | RGBA | (r, g, b, a) | (r, g, b, a) | (r, g, b, a) |
2158 +--------------------+--------------+--------------------+--------------+
2159 | A | (0, 0, 0, a) | (0, 0, 0, a) | (0, 0, 0, a) |
2160 +--------------------+--------------+--------------------+--------------+
2161 | L | (l, l, l, 1) | (l, l, l, 1) | (l, l, l, 1) |
2162 +--------------------+--------------+--------------------+--------------+
2163 | LA | (l, l, l, a) | (l, l, l, a) | (l, l, l, a) |
2164 +--------------------+--------------+--------------------+--------------+
2165 | I | (i, i, i, i) | (i, i, i, i) | N/A |
2166 +--------------------+--------------+--------------------+--------------+
2167 | UV | XXX TBD | (0, 0, 0, 1) | (u, v, 1, 1) |
2168 | | | [#envmap-bumpmap]_ | |
2169 +--------------------+--------------+--------------------+--------------+
2170 | Z | XXX TBD | (z, z, z, 1) | (0, z, 0, 1) |
2171 | | | [#depth-tex-mode]_ | |
2172 +--------------------+--------------+--------------------+--------------+
2173 | S | (s, s, s, s) | unknown | unknown |
2174 +--------------------+--------------+--------------------+--------------+
2175
2176 .. [#envmap-bumpmap] http://www.opengl.org/registry/specs/ATI/envmap_bumpmap.txt
2177 .. [#depth-tex-mode] the default is (z, z, z, 1) but may also be (0, 0, 0, z)
2178 or (z, z, z, z) depending on the value of GL_DEPTH_TEXTURE_MODE.