freedreno/ir3: debug cleanup
[mesa.git] / src / gallium / drivers / freedreno / a2xx / ir2.c
1 /*
2 * Copyright (C) 2018 Jonathan Marek <jonathan@marek.ca>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Jonathan Marek <jonathan@marek.ca>
25 */
26
27 #include "ir2_private.h"
28
29 static bool scalar_possible(struct ir2_instr *instr)
30 {
31 if (instr->alu.scalar_opc == SCALAR_NONE)
32 return false;
33
34 return src_ncomp(instr) == 1;
35 }
36
37 static bool is_alu_compatible(struct ir2_instr *a, struct ir2_instr *b)
38 {
39 if (!a)
40 return true;
41
42 /* dont use same instruction twice */
43 if (a == b)
44 return false;
45
46 /* PRED_SET must be alone */
47 if (b->alu.scalar_opc >= PRED_SETEs &&
48 b->alu.scalar_opc <= PRED_SET_RESTOREs)
49 return false;
50
51 /* must write to same export (issues otherwise?) */
52 return a->alu.export == b->alu.export;
53 }
54
55 /* priority of vector instruction for scheduling (lower=higher prio) */
56 static unsigned alu_vector_prio(struct ir2_instr *instr)
57 {
58 if (instr->alu.vector_opc == VECTOR_NONE)
59 return ~0u;
60
61 if (is_export(instr))
62 return 4;
63
64 /* TODO check src type and ncomps */
65 if (instr->src_count == 3)
66 return 0;
67
68 if (!scalar_possible(instr))
69 return 1;
70
71 return instr->src_count == 2 ? 2 : 3;
72 }
73
74 /* priority of scalar instruction for scheduling (lower=higher prio) */
75 static unsigned alu_scalar_prio(struct ir2_instr *instr)
76 {
77 if (!scalar_possible(instr))
78 return ~0u;
79
80 /* this case is dealt with later */
81 if (instr->src_count > 1)
82 return ~0u;
83
84 if (is_export(instr))
85 return 4;
86
87 /* PRED to end of block */
88 if (instr->alu.scalar_opc >= PRED_SETEs &&
89 instr->alu.scalar_opc <= PRED_SET_RESTOREs)
90 return 5;
91
92 /* scalar only have highest priority */
93 return instr->alu.vector_opc == VECTOR_NONE ? 0 : 3;
94 }
95
96 /* this is a bit messy:
97 * we want to find a slot where we can insert a scalar MOV with
98 * a vector instruction that was already scheduled
99 */
100 static struct ir2_sched_instr*
101 insert(struct ir2_context *ctx, unsigned block_idx, unsigned reg_idx,
102 struct ir2_src src1, unsigned *comp)
103 {
104 struct ir2_sched_instr *sched = NULL, *s;
105 unsigned i, mask = 0xf;
106
107 /* go first earliest point where the mov can be inserted */
108 for (i = ctx->instr_sched_count-1; i > 0; i--) {
109 s = &ctx->instr_sched[i - 1];
110
111 if (s->instr && s->instr->block_idx != block_idx)
112 break;
113 if (s->instr_s && s->instr_s->block_idx != block_idx)
114 break;
115
116 if (src1.type == IR2_SRC_SSA) {
117 if ((s->instr && s->instr->idx == src1.num) ||
118 (s->instr_s && s->instr_s->idx == src1.num))
119 break;
120 }
121
122 unsigned mr = ~(s->reg_state[reg_idx/8] >> reg_idx%8*4 & 0xf);
123 if ((mask & mr) == 0)
124 break;
125
126 mask &= mr;
127 if (s->instr_s || s->instr->src_count == 3)
128 continue;
129
130 if (s->instr->type != IR2_ALU || s->instr->alu.export >= 0)
131 continue;
132
133 sched = s;
134 }
135 *comp = ffs(mask) - 1;
136
137 if (sched) {
138 for (s = sched; s != &ctx->instr_sched[ctx->instr_sched_count]; s++)
139 s->reg_state[reg_idx/8] |= 1 << (*comp+reg_idx%8*4);
140 }
141
142 return sched;
143 }
144
145 /* case1:
146 * in this case, insert a mov to place the 2nd src into to same reg
147 * (scalar sources come from the same register)
148 *
149 * this is a common case which works when one of the srcs is input/const
150 * but for instrs which have 2 ssa/reg srcs, then its not ideal
151 */
152 static bool
153 scalarize_case1(struct ir2_context *ctx, struct ir2_instr *instr, bool order)
154 {
155 struct ir2_src src0 = instr->src[ order];
156 struct ir2_src src1 = instr->src[!order];
157 struct ir2_sched_instr *sched;
158 struct ir2_instr *ins;
159 struct ir2_reg *reg;
160 unsigned idx, comp;
161
162 switch (src0.type) {
163 case IR2_SRC_CONST:
164 case IR2_SRC_INPUT:
165 return false;
166 default:
167 break;
168 }
169
170 /* TODO, insert needs logic for this */
171 if (src1.type == IR2_SRC_REG)
172 return false;
173
174 /* we could do something if they match src1.. */
175 if (src0.negate || src0.abs)
176 return false;
177
178 reg = get_reg_src(ctx, &src0);
179
180 /* result not used more since we will overwrite */
181 for (int i = 0; i < 4; i++)
182 if (reg->comp[i].ref_count != !!(instr->alu.write_mask & 1 << i))
183 return false;
184
185 /* find a place to insert the mov */
186 sched = insert(ctx, instr->block_idx, reg->idx, src1, &comp);
187 if (!sched)
188 return false;
189
190 ins = &ctx->instr[idx = ctx->instr_count++];
191 ins->idx = idx;
192 ins->type = IR2_ALU;
193 ins->src[0] = src1;
194 ins->src_count = 1;
195 ins->is_ssa = true;
196 ins->ssa.idx = reg->idx;
197 ins->ssa.ncomp = 1;
198 ins->ssa.comp[0].c = comp;
199 ins->alu.scalar_opc = MAXs;
200 ins->alu.export = -1;
201 ins->alu.write_mask = 1;
202 ins->pred = instr->pred;
203 ins->block_idx = instr->block_idx;
204
205 instr->src[0] = src0;
206 instr->alu.src1_swizzle = comp;
207
208 sched->instr_s = ins;
209 return true;
210 }
211
212 /* fill sched with next fetch or (vector and/or scalar) alu instruction */
213 static int sched_next(struct ir2_context *ctx, struct ir2_sched_instr *sched)
214 {
215 struct ir2_instr *avail[0x100], *instr_v = NULL, *instr_s = NULL;
216 unsigned avail_count = 0;
217
218 instr_alloc_type_t export = ~0u;
219 int block_idx = -1;
220
221 /* XXX merge this loop with the other one somehow? */
222 ir2_foreach_instr(instr, ctx) {
223 if (!instr->need_emit)
224 continue;
225 if (is_export(instr))
226 export = MIN2(export, export_buf(instr->alu.export));
227 }
228
229 ir2_foreach_instr(instr, ctx) {
230 if (!instr->need_emit)
231 continue;
232
233 /* dont mix exports */
234 if (is_export(instr) && export_buf(instr->alu.export) != export)
235 continue;
236
237 if (block_idx < 0)
238 block_idx = instr->block_idx;
239 else if (block_idx != instr->block_idx || /* must be same block */
240 instr->type == IR2_CF || /* CF/MEM must be alone */
241 (is_export(instr) && export == SQ_MEMORY))
242 break;
243 /* it works because IR2_CF is always at end of block
244 * and somewhat same idea with MEM exports, which might not be alone
245 * but will end up in-order at least
246 */
247
248 /* check if dependencies are satisfied */
249 bool is_ok = true;
250 ir2_foreach_src(src, instr) {
251 if (src->type == IR2_SRC_REG) {
252 /* need to check if all previous instructions in the block
253 * which write the reg have been emitted
254 * slow..
255 * XXX: check components instead of whole register
256 */
257 struct ir2_reg *reg = get_reg_src(ctx, src);
258 ir2_foreach_instr(p, ctx) {
259 if (!p->is_ssa && p->reg == reg && p->idx < instr->idx)
260 is_ok &= !p->need_emit;
261 }
262 } else if (src->type == IR2_SRC_SSA) {
263 /* in this case its easy, just check need_emit */
264 is_ok &= !ctx->instr[src->num].need_emit;
265 }
266 }
267 /* don't reorder non-ssa write before read */
268 if (!instr->is_ssa) {
269 ir2_foreach_instr(p, ctx) {
270 if (!p->need_emit || p->idx >= instr->idx)
271 continue;
272
273 ir2_foreach_src(src, p) {
274 if (get_reg_src(ctx, src) == instr->reg)
275 is_ok = false;
276 }
277 }
278 }
279 /* don't reorder across predicates */
280 if (avail_count && instr->pred != avail[0]->pred)
281 is_ok = false;
282
283 if (!is_ok)
284 continue;
285
286 avail[avail_count++] = instr;
287 }
288
289 if (!avail_count) {
290 assert(block_idx == -1);
291 return -1;
292 }
293
294 /* priority to FETCH instructions */
295 ir2_foreach_avail(instr) {
296 if (instr->type == IR2_ALU)
297 continue;
298
299 ra_src_free(ctx, instr);
300 ra_reg(ctx, get_reg(instr), -1, false, 0);
301
302 instr->need_emit = false;
303 sched->instr = instr;
304 sched->instr_s = NULL;
305 return block_idx;
306 }
307
308 /* TODO precompute priorities */
309
310 unsigned prio_v = ~0u, prio_s = ~0u, prio;
311 ir2_foreach_avail(instr) {
312 prio = alu_vector_prio(instr);
313 if (prio < prio_v) {
314 instr_v = instr;
315 prio_v = prio;
316 }
317 }
318
319 /* TODO can still insert scalar if src_count=3, if smart about it */
320 if (!instr_v || instr_v->src_count < 3) {
321 ir2_foreach_avail(instr) {
322 bool compat = is_alu_compatible(instr_v, instr);
323
324 prio = alu_scalar_prio(instr);
325 if (prio >= prio_v && !compat)
326 continue;
327
328 if (prio < prio_s) {
329 instr_s = instr;
330 prio_s = prio;
331 if (!compat)
332 instr_v = NULL;
333 }
334 }
335 }
336
337 assert(instr_v || instr_s);
338
339 /* now, we try more complex insertion of vector instruction as scalar
340 * TODO: if we are smart we can still insert if instr_v->src_count==3
341 */
342 if (!instr_s && instr_v->src_count < 3) {
343 ir2_foreach_avail(instr) {
344 if (!is_alu_compatible(instr_v, instr) || !scalar_possible(instr))
345 continue;
346
347 /* at this point, src_count should always be 2 */
348 assert(instr->src_count == 2);
349
350 if (scalarize_case1(ctx, instr, 0)) {
351 instr_s = instr;
352 break;
353 }
354 if (scalarize_case1(ctx, instr, 1)) {
355 instr_s = instr;
356 break;
357 }
358 }
359 }
360
361 /* free src registers */
362 if (instr_v) {
363 instr_v->need_emit = false;
364 ra_src_free(ctx, instr_v);
365 }
366
367 if (instr_s) {
368 instr_s->need_emit = false;
369 ra_src_free(ctx, instr_s);
370 }
371
372 /* allocate dst registers */
373 if (instr_v)
374 ra_reg(ctx, get_reg(instr_v), -1, is_export(instr_v), instr_v->alu.write_mask);
375
376 if (instr_s)
377 ra_reg(ctx, get_reg(instr_s), -1, is_export(instr_s), instr_s->alu.write_mask);
378
379 sched->instr = instr_v;
380 sched->instr_s = instr_s;
381 return block_idx;
382 }
383
384 /* scheduling: determine order of instructions */
385 static void schedule_instrs(struct ir2_context *ctx)
386 {
387 struct ir2_sched_instr *sched;
388 int block_idx;
389
390 /* allocate input registers */
391 for (unsigned idx = 0; idx < ARRAY_SIZE(ctx->input); idx++)
392 if (ctx->input[idx].initialized)
393 ra_reg(ctx, &ctx->input[idx], idx, false, 0);
394
395 for (;;) {
396 sched = &ctx->instr_sched[ctx->instr_sched_count++];
397 block_idx = sched_next(ctx, sched);
398 if (block_idx < 0)
399 break;
400 memcpy(sched->reg_state, ctx->reg_state, sizeof(ctx->reg_state));
401
402 /* catch texture fetch after scheduling and insert the
403 * SET_TEX_LOD right before it if necessary
404 * TODO clean this up
405 */
406 struct ir2_instr *instr = sched->instr, *tex_lod;
407 if (instr && instr->type == IR2_FETCH &&
408 instr->fetch.opc == TEX_FETCH && instr->src_count == 2) {
409 /* generate the SET_LOD instruction */
410 tex_lod = &ctx->instr[ctx->instr_count++];
411 tex_lod->type = IR2_FETCH;
412 tex_lod->block_idx = instr->block_idx;
413 tex_lod->pred = instr->pred;
414 tex_lod->fetch.opc = TEX_SET_TEX_LOD;
415 tex_lod->src[0] = instr->src[1];
416 tex_lod->src_count = 1;
417
418 sched[1] = sched[0];
419 sched->instr = tex_lod;
420 ctx->instr_sched_count++;
421 }
422
423 bool free_block = true;
424 ir2_foreach_instr(instr, ctx)
425 free_block &= instr->block_idx != block_idx;
426 if (free_block)
427 ra_block_free(ctx, block_idx);
428 };
429 ctx->instr_sched_count--;
430 }
431
432 void
433 ir2_compile(struct fd2_shader_stateobj *so, unsigned variant,
434 struct fd2_shader_stateobj *fp)
435 {
436 struct ir2_context ctx = { };
437 bool binning = !fp && so->type == MESA_SHADER_VERTEX;
438
439 if (fp)
440 so->variant[variant].f = fp->variant[0].f;
441
442 ctx.so = so;
443 ctx.info = &so->variant[variant].info;
444 ctx.f = &so->variant[variant].f;
445 ctx.info->max_reg = -1;
446
447 /* convert nir to internal representation */
448 ir2_nir_compile(&ctx, binning);
449
450 /* copy propagate srcs */
451 cp_src(&ctx);
452
453 /* get ref_counts and kill non-needed instructions */
454 ra_count_refs(&ctx);
455
456 /* remove movs used to write outputs */
457 cp_export(&ctx);
458
459 /* instruction order.. and vector->scalar conversions */
460 schedule_instrs(&ctx);
461
462 /* finally, assemble to bitcode */
463 assemble(&ctx, binning);
464 }