freedreno/layout: layout simplifications and pitch from level 0 pitch
[mesa.git] / src / gallium / drivers / freedreno / a4xx / fd4_query.c
1 /*
2 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include "freedreno_query_hw.h"
28 #include "freedreno_context.h"
29 #include "freedreno_util.h"
30
31 #include "fd4_query.h"
32 #include "fd4_context.h"
33 #include "fd4_draw.h"
34 #include "fd4_format.h"
35
36
37 struct fd_rb_samp_ctrs {
38 uint64_t ctr[16];
39 };
40
41 /*
42 * Occlusion Query:
43 *
44 * OCCLUSION_COUNTER and OCCLUSION_PREDICATE differ only in how they
45 * interpret results
46 */
47
48 static struct fd_hw_sample *
49 occlusion_get_sample(struct fd_batch *batch, struct fd_ringbuffer *ring)
50 {
51 struct fd_hw_sample *samp =
52 fd_hw_sample_init(batch, sizeof(struct fd_rb_samp_ctrs));
53
54 /* low bits of sample addr should be zero (since they are control
55 * flags in RB_SAMPLE_COUNT_CONTROL):
56 */
57 debug_assert((samp->offset & 0x3) == 0);
58
59 /* Set RB_SAMPLE_COUNT_ADDR to samp->offset plus value of
60 * HW_QUERY_BASE_REG register:
61 */
62 OUT_PKT3(ring, CP_SET_CONSTANT, 3);
63 OUT_RING(ring, CP_REG(REG_A4XX_RB_SAMPLE_COUNT_CONTROL) | 0x80000000);
64 OUT_RING(ring, HW_QUERY_BASE_REG);
65 OUT_RING(ring, A4XX_RB_SAMPLE_COUNT_CONTROL_COPY |
66 samp->offset);
67
68 OUT_PKT3(ring, CP_DRAW_INDX_OFFSET, 3);
69 OUT_RING(ring, DRAW4(DI_PT_POINTLIST_PSIZE, DI_SRC_SEL_AUTO_INDEX,
70 INDEX4_SIZE_32_BIT, USE_VISIBILITY));
71 OUT_RING(ring, 1); /* NumInstances */
72 OUT_RING(ring, 0); /* NumIndices */
73
74 fd_event_write(batch, ring, ZPASS_DONE);
75
76 return samp;
77 }
78
79 static uint64_t
80 count_samples(const struct fd_rb_samp_ctrs *start,
81 const struct fd_rb_samp_ctrs *end)
82 {
83 return end->ctr[0] - start->ctr[0];
84 }
85
86 static void
87 occlusion_counter_accumulate_result(struct fd_context *ctx,
88 const void *start, const void *end,
89 union pipe_query_result *result)
90 {
91 uint64_t n = count_samples(start, end);
92 result->u64 += n;
93 }
94
95 static void
96 occlusion_predicate_accumulate_result(struct fd_context *ctx,
97 const void *start, const void *end,
98 union pipe_query_result *result)
99 {
100 uint64_t n = count_samples(start, end);
101 result->b |= (n > 0);
102 }
103
104 /*
105 * Time Elapsed Query:
106 *
107 * Note: we could in theory support timestamp queries, but they
108 * won't give sensible results for tilers.
109 */
110
111 static void
112 time_elapsed_enable(struct fd_context *ctx, struct fd_ringbuffer *ring)
113 {
114 /* Right now, the assignment of countable to counter register is
115 * just hard coded. If we start exposing more countables than we
116 * have counters, we will need to be more clever.
117 */
118 struct fd_batch *batch = fd_context_batch(ctx);
119 fd_wfi(batch, ring);
120 OUT_PKT0(ring, REG_A4XX_CP_PERFCTR_CP_SEL_0, 1);
121 OUT_RING(ring, CP_ALWAYS_COUNT);
122 }
123
124 static struct fd_hw_sample *
125 time_elapsed_get_sample(struct fd_batch *batch, struct fd_ringbuffer *ring)
126 {
127 struct fd_hw_sample *samp = fd_hw_sample_init(batch, sizeof(uint64_t));
128
129 /* use unused part of vsc_size_mem as scratch space, to avoid
130 * extra allocation:
131 */
132 struct fd_bo *scratch_bo = fd4_context(batch->ctx)->vsc_size_mem;
133 const int sample_off = 128;
134 const int addr_off = sample_off + 8;
135
136 debug_assert(batch->ctx->screen->max_freq > 0);
137
138 /* Basic issue is that we need to read counter value to a relative
139 * destination (with per-tile offset) rather than absolute dest
140 * addr. But there is no pm4 packet that can do that. This is
141 * where it would be *really* nice if we could write our own fw
142 * since afaict implementing the sort of packet we need would be
143 * trivial.
144 *
145 * Instead, we:
146 * (1) CP_REG_TO_MEM to do a 64b copy of counter to scratch buffer
147 * (2) CP_MEM_WRITE to write per-sample offset to scratch buffer
148 * (3) CP_REG_TO_MEM w/ accumulate flag to add the per-tile base
149 * address to the per-sample offset in the scratch buffer
150 * (4) CP_MEM_TO_REG to copy resulting address from steps #2 and #3
151 * to CP_ME_NRT_ADDR
152 * (5) CP_MEM_TO_REG's to copy saved counter value from scratch
153 * buffer to CP_ME_NRT_DATA to trigger the write out to query
154 * result buffer
155 *
156 * Straightforward, right?
157 *
158 * Maybe could swap the order of things in the scratch buffer to
159 * put address first, and copy back to CP_ME_NRT_ADDR+DATA in one
160 * shot, but that's really just polishing a turd..
161 */
162
163 fd_wfi(batch, ring);
164
165 /* copy sample counter _LO and _HI to scratch: */
166 OUT_PKT3(ring, CP_REG_TO_MEM, 2);
167 OUT_RING(ring, CP_REG_TO_MEM_0_REG(REG_A4XX_RBBM_PERFCTR_CP_0_LO) |
168 CP_REG_TO_MEM_0_64B |
169 CP_REG_TO_MEM_0_CNT(2)); /* write 2 regs to mem */
170 OUT_RELOC(ring, scratch_bo, sample_off, 0, 0);
171
172 /* ok... here we really *would* like to use the CP_SET_CONSTANT
173 * mode which can add a constant to value in reg2 and write to
174 * reg1... *but* that only works for banked/context registers,
175 * and CP_ME_NRT_DATA isn't one of those.. so we need to do some
176 * CP math to the scratch buffer instead:
177 *
178 * (note first 8 bytes are counter value, use offset 0x8 for
179 * address calculation)
180 */
181
182 /* per-sample offset to scratch bo: */
183 OUT_PKT3(ring, CP_MEM_WRITE, 2);
184 OUT_RELOC(ring, scratch_bo, addr_off, 0, 0);
185 OUT_RING(ring, samp->offset);
186
187 /* now add to that the per-tile base: */
188 OUT_PKT3(ring, CP_REG_TO_MEM, 2);
189 OUT_RING(ring, CP_REG_TO_MEM_0_REG(HW_QUERY_BASE_REG) |
190 CP_REG_TO_MEM_0_ACCUMULATE |
191 CP_REG_TO_MEM_0_CNT(0)); /* readback 1 regs */
192 OUT_RELOC(ring, scratch_bo, addr_off, 0, 0);
193
194 /* now copy that back to CP_ME_NRT_ADDR: */
195 OUT_PKT3(ring, CP_MEM_TO_REG, 2);
196 OUT_RING(ring, REG_A4XX_CP_ME_NRT_ADDR);
197 OUT_RELOC(ring, scratch_bo, addr_off, 0, 0);
198
199 /* and finally, copy sample from scratch buffer to CP_ME_NRT_DATA
200 * to trigger the write to result buffer
201 */
202 OUT_PKT3(ring, CP_MEM_TO_REG, 2);
203 OUT_RING(ring, REG_A4XX_CP_ME_NRT_DATA);
204 OUT_RELOC(ring, scratch_bo, sample_off, 0, 0);
205
206 /* and again to get the value of the _HI reg from scratch: */
207 OUT_PKT3(ring, CP_MEM_TO_REG, 2);
208 OUT_RING(ring, REG_A4XX_CP_ME_NRT_DATA);
209 OUT_RELOC(ring, scratch_bo, sample_off + 0x4, 0, 0);
210
211 /* Sigh.. */
212
213 return samp;
214 }
215
216 static void
217 time_elapsed_accumulate_result(struct fd_context *ctx,
218 const void *start, const void *end,
219 union pipe_query_result *result)
220 {
221 uint64_t n = *(uint64_t *)end - *(uint64_t *)start;
222 /* max_freq is in Hz, convert cycle count to ns: */
223 result->u64 += n * 1000000000 / ctx->screen->max_freq;
224 }
225
226 static void
227 timestamp_accumulate_result(struct fd_context *ctx,
228 const void *start, const void *end,
229 union pipe_query_result *result)
230 {
231 /* just return the value from fist tile: */
232 if (result->u64 != 0)
233 return;
234 uint64_t n = *(uint64_t *)start;
235 /* max_freq is in Hz, convert cycle count to ns: */
236 result->u64 = n * 1000000000 / ctx->screen->max_freq;
237 }
238
239 static const struct fd_hw_sample_provider occlusion_counter = {
240 .query_type = PIPE_QUERY_OCCLUSION_COUNTER,
241 .active = FD_STAGE_DRAW,
242 .get_sample = occlusion_get_sample,
243 .accumulate_result = occlusion_counter_accumulate_result,
244 };
245
246 static const struct fd_hw_sample_provider occlusion_predicate = {
247 .query_type = PIPE_QUERY_OCCLUSION_PREDICATE,
248 .active = FD_STAGE_DRAW,
249 .get_sample = occlusion_get_sample,
250 .accumulate_result = occlusion_predicate_accumulate_result,
251 };
252
253 static const struct fd_hw_sample_provider occlusion_predicate_conservative = {
254 .query_type = PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE,
255 .active = FD_STAGE_DRAW,
256 .get_sample = occlusion_get_sample,
257 .accumulate_result = occlusion_predicate_accumulate_result,
258 };
259
260 static const struct fd_hw_sample_provider time_elapsed = {
261 .query_type = PIPE_QUERY_TIME_ELAPSED,
262 .active = FD_STAGE_ALL,
263 .enable = time_elapsed_enable,
264 .get_sample = time_elapsed_get_sample,
265 .accumulate_result = time_elapsed_accumulate_result,
266 };
267
268 /* NOTE: timestamp query isn't going to give terribly sensible results
269 * on a tiler. But it is needed by qapitrace profile heatmap. If you
270 * add in a binning pass, the results get even more non-sensical. So
271 * we just return the timestamp on the first tile and hope that is
272 * kind of good enough.
273 */
274 static const struct fd_hw_sample_provider timestamp = {
275 .query_type = PIPE_QUERY_TIMESTAMP,
276 .active = FD_STAGE_ALL,
277 .enable = time_elapsed_enable,
278 .get_sample = time_elapsed_get_sample,
279 .accumulate_result = timestamp_accumulate_result,
280 };
281
282 void fd4_query_context_init(struct pipe_context *pctx)
283 {
284 struct fd_context *ctx = fd_context(pctx);
285
286 ctx->create_query = fd_hw_create_query;
287 ctx->query_prepare = fd_hw_query_prepare;
288 ctx->query_prepare_tile = fd_hw_query_prepare_tile;
289 ctx->query_set_stage = fd_hw_query_set_stage;
290
291 fd_hw_query_register_provider(pctx, &occlusion_counter);
292 fd_hw_query_register_provider(pctx, &occlusion_predicate);
293 fd_hw_query_register_provider(pctx, &occlusion_predicate_conservative);
294 fd_hw_query_register_provider(pctx, &time_elapsed);
295 fd_hw_query_register_provider(pctx, &timestamp);
296 }