gallium: add PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE
[mesa.git] / src / gallium / drivers / freedreno / a4xx / fd4_query.c
1 /* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */
2
3 /*
4 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 * Rob Clark <robclark@freedesktop.org>
27 */
28
29 #include "freedreno_query_hw.h"
30 #include "freedreno_context.h"
31 #include "freedreno_util.h"
32
33 #include "fd4_query.h"
34 #include "fd4_context.h"
35 #include "fd4_draw.h"
36 #include "fd4_format.h"
37
38
39 struct fd_rb_samp_ctrs {
40 uint64_t ctr[16];
41 };
42
43 /*
44 * Occlusion Query:
45 *
46 * OCCLUSION_COUNTER and OCCLUSION_PREDICATE differ only in how they
47 * interpret results
48 */
49
50 static struct fd_hw_sample *
51 occlusion_get_sample(struct fd_batch *batch, struct fd_ringbuffer *ring)
52 {
53 struct fd_hw_sample *samp =
54 fd_hw_sample_init(batch, sizeof(struct fd_rb_samp_ctrs));
55
56 /* low bits of sample addr should be zero (since they are control
57 * flags in RB_SAMPLE_COUNT_CONTROL):
58 */
59 debug_assert((samp->offset & 0x3) == 0);
60
61 /* Set RB_SAMPLE_COUNT_ADDR to samp->offset plus value of
62 * HW_QUERY_BASE_REG register:
63 */
64 OUT_PKT3(ring, CP_SET_CONSTANT, 3);
65 OUT_RING(ring, CP_REG(REG_A4XX_RB_SAMPLE_COUNT_CONTROL) | 0x80000000);
66 OUT_RING(ring, HW_QUERY_BASE_REG);
67 OUT_RING(ring, A4XX_RB_SAMPLE_COUNT_CONTROL_COPY |
68 samp->offset);
69
70 OUT_PKT3(ring, CP_DRAW_INDX_OFFSET, 3);
71 OUT_RING(ring, DRAW4(DI_PT_POINTLIST_PSIZE, DI_SRC_SEL_AUTO_INDEX,
72 INDEX4_SIZE_32_BIT, USE_VISIBILITY));
73 OUT_RING(ring, 1); /* NumInstances */
74 OUT_RING(ring, 0); /* NumIndices */
75
76 fd_event_write(batch, ring, ZPASS_DONE);
77
78 return samp;
79 }
80
81 static uint64_t
82 count_samples(const struct fd_rb_samp_ctrs *start,
83 const struct fd_rb_samp_ctrs *end)
84 {
85 return end->ctr[0] - start->ctr[0];
86 }
87
88 static void
89 occlusion_counter_accumulate_result(struct fd_context *ctx,
90 const void *start, const void *end,
91 union pipe_query_result *result)
92 {
93 uint64_t n = count_samples(start, end);
94 result->u64 += n;
95 }
96
97 static void
98 occlusion_predicate_accumulate_result(struct fd_context *ctx,
99 const void *start, const void *end,
100 union pipe_query_result *result)
101 {
102 uint64_t n = count_samples(start, end);
103 result->b |= (n > 0);
104 }
105
106 /*
107 * Time Elapsed Query:
108 *
109 * Note: we could in theory support timestamp queries, but they
110 * won't give sensible results for tilers.
111 */
112
113 static void
114 time_elapsed_enable(struct fd_context *ctx, struct fd_ringbuffer *ring)
115 {
116 /* Right now, the assignment of countable to counter register is
117 * just hard coded. If we start exposing more countables than we
118 * have counters, we will need to be more clever.
119 */
120 fd_wfi(ctx->batch, ring);
121 OUT_PKT0(ring, REG_A4XX_CP_PERFCTR_CP_SEL_0, 1);
122 OUT_RING(ring, CP_ALWAYS_COUNT);
123 }
124
125 static struct fd_hw_sample *
126 time_elapsed_get_sample(struct fd_batch *batch, struct fd_ringbuffer *ring)
127 {
128 struct fd_hw_sample *samp = fd_hw_sample_init(batch, sizeof(uint64_t));
129
130 /* use unused part of vsc_size_mem as scratch space, to avoid
131 * extra allocation:
132 */
133 struct fd_bo *scratch_bo = fd4_context(batch->ctx)->vsc_size_mem;
134 const int sample_off = 128;
135 const int addr_off = sample_off + 8;
136
137 debug_assert(batch->ctx->screen->max_freq > 0);
138
139 /* Basic issue is that we need to read counter value to a relative
140 * destination (with per-tile offset) rather than absolute dest
141 * addr. But there is no pm4 packet that can do that. This is
142 * where it would be *really* nice if we could write our own fw
143 * since afaict implementing the sort of packet we need would be
144 * trivial.
145 *
146 * Instead, we:
147 * (1) CP_REG_TO_MEM to do a 64b copy of counter to scratch buffer
148 * (2) CP_MEM_WRITE to write per-sample offset to scratch buffer
149 * (3) CP_REG_TO_MEM w/ accumulate flag to add the per-tile base
150 * address to the per-sample offset in the scratch buffer
151 * (4) CP_MEM_TO_REG to copy resulting address from steps #2 and #3
152 * to CP_ME_NRT_ADDR
153 * (5) CP_MEM_TO_REG's to copy saved counter value from scratch
154 * buffer to CP_ME_NRT_DATA to trigger the write out to query
155 * result buffer
156 *
157 * Straightforward, right?
158 *
159 * Maybe could swap the order of things in the scratch buffer to
160 * put address first, and copy back to CP_ME_NRT_ADDR+DATA in one
161 * shot, but that's really just polishing a turd..
162 */
163
164 fd_wfi(batch, ring);
165
166 /* copy sample counter _LO and _HI to scratch: */
167 OUT_PKT3(ring, CP_REG_TO_MEM, 2);
168 OUT_RING(ring, CP_REG_TO_MEM_0_REG(REG_A4XX_RBBM_PERFCTR_CP_0_LO) |
169 CP_REG_TO_MEM_0_64B |
170 CP_REG_TO_MEM_0_CNT(2-1)); /* write 2 regs to mem */
171 OUT_RELOCW(ring, scratch_bo, sample_off, 0, 0);
172
173 /* ok... here we really *would* like to use the CP_SET_CONSTANT
174 * mode which can add a constant to value in reg2 and write to
175 * reg1... *but* that only works for banked/context registers,
176 * and CP_ME_NRT_DATA isn't one of those.. so we need to do some
177 * CP math to the scratch buffer instead:
178 *
179 * (note first 8 bytes are counter value, use offset 0x8 for
180 * address calculation)
181 */
182
183 /* per-sample offset to scratch bo: */
184 OUT_PKT3(ring, CP_MEM_WRITE, 2);
185 OUT_RELOCW(ring, scratch_bo, addr_off, 0, 0);
186 OUT_RING(ring, samp->offset);
187
188 /* now add to that the per-tile base: */
189 OUT_PKT3(ring, CP_REG_TO_MEM, 2);
190 OUT_RING(ring, CP_REG_TO_MEM_0_REG(HW_QUERY_BASE_REG) |
191 CP_REG_TO_MEM_0_ACCUMULATE |
192 CP_REG_TO_MEM_0_CNT(1-1)); /* readback 1 regs */
193 OUT_RELOCW(ring, scratch_bo, addr_off, 0, 0);
194
195 /* now copy that back to CP_ME_NRT_ADDR: */
196 OUT_PKT3(ring, CP_MEM_TO_REG, 2);
197 OUT_RING(ring, REG_A4XX_CP_ME_NRT_ADDR);
198 OUT_RELOC(ring, scratch_bo, addr_off, 0, 0);
199
200 /* and finally, copy sample from scratch buffer to CP_ME_NRT_DATA
201 * to trigger the write to result buffer
202 */
203 OUT_PKT3(ring, CP_MEM_TO_REG, 2);
204 OUT_RING(ring, REG_A4XX_CP_ME_NRT_DATA);
205 OUT_RELOC(ring, scratch_bo, sample_off, 0, 0);
206
207 /* and again to get the value of the _HI reg from scratch: */
208 OUT_PKT3(ring, CP_MEM_TO_REG, 2);
209 OUT_RING(ring, REG_A4XX_CP_ME_NRT_DATA);
210 OUT_RELOC(ring, scratch_bo, sample_off + 0x4, 0, 0);
211
212 /* Sigh.. */
213
214 return samp;
215 }
216
217 static void
218 time_elapsed_accumulate_result(struct fd_context *ctx,
219 const void *start, const void *end,
220 union pipe_query_result *result)
221 {
222 uint64_t n = *(uint64_t *)end - *(uint64_t *)start;
223 /* max_freq is in Hz, convert cycle count to ns: */
224 result->u64 += n * 1000000000 / ctx->screen->max_freq;
225 }
226
227 static void
228 timestamp_accumulate_result(struct fd_context *ctx,
229 const void *start, const void *end,
230 union pipe_query_result *result)
231 {
232 /* just return the value from fist tile: */
233 if (result->u64 != 0)
234 return;
235 uint64_t n = *(uint64_t *)start;
236 /* max_freq is in Hz, convert cycle count to ns: */
237 result->u64 = n * 1000000000 / ctx->screen->max_freq;
238 }
239
240 static const struct fd_hw_sample_provider occlusion_counter = {
241 .query_type = PIPE_QUERY_OCCLUSION_COUNTER,
242 .active = FD_STAGE_DRAW,
243 .get_sample = occlusion_get_sample,
244 .accumulate_result = occlusion_counter_accumulate_result,
245 };
246
247 static const struct fd_hw_sample_provider occlusion_predicate = {
248 .query_type = PIPE_QUERY_OCCLUSION_PREDICATE,
249 .active = FD_STAGE_DRAW,
250 .get_sample = occlusion_get_sample,
251 .accumulate_result = occlusion_predicate_accumulate_result,
252 };
253
254 static const struct fd_hw_sample_provider occlusion_predicate = {
255 .query_type = PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE,
256 .active = FD_STAGE_DRAW,
257 .get_sample = occlusion_get_sample,
258 .accumulate_result = occlusion_predicate_accumulate_result,
259 };
260
261 static const struct fd_hw_sample_provider time_elapsed = {
262 .query_type = PIPE_QUERY_TIME_ELAPSED,
263 .active = FD_STAGE_DRAW | FD_STAGE_CLEAR,
264 .enable = time_elapsed_enable,
265 .get_sample = time_elapsed_get_sample,
266 .accumulate_result = time_elapsed_accumulate_result,
267 };
268
269 /* NOTE: timestamp query isn't going to give terribly sensible results
270 * on a tiler. But it is needed by qapitrace profile heatmap. If you
271 * add in a binning pass, the results get even more non-sensical. So
272 * we just return the timestamp on the first tile and hope that is
273 * kind of good enough.
274 */
275 static const struct fd_hw_sample_provider timestamp = {
276 .query_type = PIPE_QUERY_TIMESTAMP,
277 .active = FD_STAGE_ALL,
278 .enable = time_elapsed_enable,
279 .get_sample = time_elapsed_get_sample,
280 .accumulate_result = timestamp_accumulate_result,
281 };
282
283 void fd4_query_context_init(struct pipe_context *pctx)
284 {
285 struct fd_context *ctx = fd_context(pctx);
286
287 ctx->create_query = fd_hw_create_query;
288 ctx->query_prepare = fd_hw_query_prepare;
289 ctx->query_prepare_tile = fd_hw_query_prepare_tile;
290 ctx->query_set_stage = fd_hw_query_set_stage;
291
292 fd_hw_query_register_provider(pctx, &occlusion_counter);
293 fd_hw_query_register_provider(pctx, &occlusion_predicate);
294 fd_hw_query_register_provider(pctx, &occlusion_predicate_conservative);
295 fd_hw_query_register_provider(pctx, &time_elapsed);
296 fd_hw_query_register_provider(pctx, &timestamp);
297 }