radeonsi/nir: always set input_usage_mask as using all components
[mesa.git] / src / gallium / drivers / freedreno / freedreno_batch_cache.c
1 /*
2 * Copyright (C) 2016 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include "util/hash_table.h"
28 #include "util/set.h"
29 #include "util/list.h"
30 #include "util/u_string.h"
31
32 #include "freedreno_batch.h"
33 #include "freedreno_batch_cache.h"
34 #include "freedreno_context.h"
35 #include "freedreno_resource.h"
36
37 /* Overview:
38 *
39 * The batch cache provides lookup for mapping pipe_framebuffer_state
40 * to a batch.
41 *
42 * It does this via hashtable, with key that roughly matches the
43 * pipe_framebuffer_state, as described below.
44 *
45 * Batch Cache hashtable key:
46 *
47 * To serialize the key, and to avoid dealing with holding a reference to
48 * pipe_surface's (which hold a reference to pipe_resource and complicate
49 * the whole refcnting thing), the key is variable length and inline's the
50 * pertinent details of the pipe_surface.
51 *
52 * Batch:
53 *
54 * Each batch needs to hold a reference to each resource it depends on (ie.
55 * anything that needs a mem2gmem). And a weak reference to resources it
56 * renders to. (If both src[n] and dst[n] are not NULL then they are the
57 * same.)
58 *
59 * When a resource is destroyed, we need to remove entries in the batch
60 * cache that reference the resource, to avoid dangling pointer issues.
61 * So each resource holds a hashset of batches which have reference them
62 * in their hashtable key.
63 *
64 * When a batch has weak reference to no more resources (ie. all the
65 * surfaces it rendered to are destroyed) the batch can be destroyed.
66 * Could happen in an app that renders and never uses the result. More
67 * common scenario, I think, will be that some, but not all, of the
68 * surfaces are destroyed before the batch is submitted.
69 *
70 * If (for example), batch writes to zsbuf but that surface is destroyed
71 * before batch is submitted, we can skip gmem2mem (but still need to
72 * alloc gmem space as before. If the batch depended on previous contents
73 * of that surface, it would be holding a reference so the surface would
74 * not have been destroyed.
75 */
76
77 struct key {
78 uint32_t width, height, layers;
79 uint16_t samples, num_surfs;
80 struct fd_context *ctx;
81 struct {
82 struct pipe_resource *texture;
83 union pipe_surface_desc u;
84 uint16_t pos, format;
85 } surf[0];
86 };
87
88 static struct key *
89 key_alloc(unsigned num_surfs)
90 {
91 struct key *key =
92 CALLOC_VARIANT_LENGTH_STRUCT(key, sizeof(key->surf[0]) * num_surfs);
93 return key;
94 }
95
96 static uint32_t
97 key_hash(const void *_key)
98 {
99 const struct key *key = _key;
100 uint32_t hash = _mesa_fnv32_1a_offset_bias;
101 hash = _mesa_fnv32_1a_accumulate_block(hash, key, offsetof(struct key, surf[0]));
102 hash = _mesa_fnv32_1a_accumulate_block(hash, key->surf, sizeof(key->surf[0]) * key->num_surfs);
103 return hash;
104 }
105
106 static bool
107 key_equals(const void *_a, const void *_b)
108 {
109 const struct key *a = _a;
110 const struct key *b = _b;
111 return (memcmp(a, b, offsetof(struct key, surf[0])) == 0) &&
112 (memcmp(a->surf, b->surf, sizeof(a->surf[0]) * a->num_surfs) == 0);
113 }
114
115 void
116 fd_bc_init(struct fd_batch_cache *cache)
117 {
118 cache->ht = _mesa_hash_table_create(NULL, key_hash, key_equals);
119 }
120
121 void
122 fd_bc_fini(struct fd_batch_cache *cache)
123 {
124 _mesa_hash_table_destroy(cache->ht, NULL);
125 }
126
127 void
128 fd_bc_flush(struct fd_batch_cache *cache, struct fd_context *ctx)
129 {
130 struct hash_entry *entry;
131 struct fd_batch *last_batch = NULL;
132
133 mtx_lock(&ctx->screen->lock);
134
135 hash_table_foreach(cache->ht, entry) {
136 struct fd_batch *batch = NULL;
137 /* hold a reference since we can drop screen->lock: */
138 fd_batch_reference_locked(&batch, (struct fd_batch *)entry->data);
139 if (batch->ctx == ctx) {
140 mtx_unlock(&ctx->screen->lock);
141 fd_batch_reference(&last_batch, batch);
142 fd_batch_flush(batch, false, false);
143 mtx_lock(&ctx->screen->lock);
144 }
145 fd_batch_reference_locked(&batch, NULL);
146 }
147
148 mtx_unlock(&ctx->screen->lock);
149
150 if (last_batch) {
151 fd_batch_sync(last_batch);
152 fd_batch_reference(&last_batch, NULL);
153 }
154 }
155
156 /* deferred flush doesn't actually flush, but it marks every other
157 * batch associated with the context as dependent on the current
158 * batch. So when the current batch gets flushed, all other batches
159 * that came before also get flushed.
160 */
161 void
162 fd_bc_flush_deferred(struct fd_batch_cache *cache, struct fd_context *ctx)
163 {
164 struct fd_batch *current_batch = ctx->batch;
165 struct hash_entry *entry;
166
167 mtx_lock(&ctx->screen->lock);
168
169 hash_table_foreach(cache->ht, entry) {
170 struct fd_batch *batch = entry->data;
171 if (batch == current_batch)
172 continue;
173 if (batch->ctx == ctx)
174 fd_batch_add_dep(current_batch, batch);
175 }
176
177 mtx_unlock(&ctx->screen->lock);
178 }
179
180 void
181 fd_bc_invalidate_context(struct fd_context *ctx)
182 {
183 struct fd_batch_cache *cache = &ctx->screen->batch_cache;
184 struct fd_batch *batch;
185
186 mtx_lock(&ctx->screen->lock);
187
188 foreach_batch(batch, cache, cache->batch_mask) {
189 if (batch->ctx == ctx)
190 fd_batch_reference_locked(&batch, NULL);
191 }
192
193 mtx_unlock(&ctx->screen->lock);
194 }
195
196 void
197 fd_bc_invalidate_batch(struct fd_batch *batch, bool destroy)
198 {
199 if (!batch)
200 return;
201
202 struct fd_batch_cache *cache = &batch->ctx->screen->batch_cache;
203 struct key *key = (struct key *)batch->key;
204
205 pipe_mutex_assert_locked(batch->ctx->screen->lock);
206
207 if (destroy) {
208 cache->batches[batch->idx] = NULL;
209 cache->batch_mask &= ~(1 << batch->idx);
210 }
211
212 if (!key)
213 return;
214
215 DBG("%p: key=%p", batch, batch->key);
216 for (unsigned idx = 0; idx < key->num_surfs; idx++) {
217 struct fd_resource *rsc = fd_resource(key->surf[idx].texture);
218 rsc->bc_batch_mask &= ~(1 << batch->idx);
219 }
220
221 struct hash_entry *entry =
222 _mesa_hash_table_search_pre_hashed(cache->ht, batch->hash, key);
223 _mesa_hash_table_remove(cache->ht, entry);
224
225 batch->key = NULL;
226 free(key);
227 }
228
229 void
230 fd_bc_invalidate_resource(struct fd_resource *rsc, bool destroy)
231 {
232 struct fd_screen *screen = fd_screen(rsc->base.screen);
233 struct fd_batch *batch;
234
235 mtx_lock(&screen->lock);
236
237 if (destroy) {
238 foreach_batch(batch, &screen->batch_cache, rsc->batch_mask) {
239 struct set_entry *entry = _mesa_set_search(batch->resources, rsc);
240 _mesa_set_remove(batch->resources, entry);
241 }
242 rsc->batch_mask = 0;
243
244 fd_batch_reference_locked(&rsc->write_batch, NULL);
245 }
246
247 foreach_batch(batch, &screen->batch_cache, rsc->bc_batch_mask)
248 fd_bc_invalidate_batch(batch, false);
249
250 rsc->bc_batch_mask = 0;
251
252 mtx_unlock(&screen->lock);
253 }
254
255 struct fd_batch *
256 fd_bc_alloc_batch(struct fd_batch_cache *cache, struct fd_context *ctx)
257 {
258 struct fd_batch *batch;
259 uint32_t idx;
260
261 mtx_lock(&ctx->screen->lock);
262
263 while ((idx = ffs(~cache->batch_mask)) == 0) {
264 #if 0
265 for (unsigned i = 0; i < ARRAY_SIZE(cache->batches); i++) {
266 batch = cache->batches[i];
267 debug_printf("%d: needs_flush=%d, depends:", batch->idx, batch->needs_flush);
268 struct set_entry *entry;
269 set_foreach(batch->dependencies, entry) {
270 struct fd_batch *dep = (struct fd_batch *)entry->key;
271 debug_printf(" %d", dep->idx);
272 }
273 debug_printf("\n");
274 }
275 #endif
276 /* TODO: is LRU the better policy? Or perhaps the batch that
277 * depends on the fewest other batches?
278 */
279 struct fd_batch *flush_batch = NULL;
280 for (unsigned i = 0; i < ARRAY_SIZE(cache->batches); i++) {
281 if ((cache->batches[i] == ctx->batch) ||
282 !cache->batches[i]->needs_flush)
283 continue;
284 if (!flush_batch || (cache->batches[i]->seqno < flush_batch->seqno))
285 fd_batch_reference_locked(&flush_batch, cache->batches[i]);
286 }
287
288 /* we can drop lock temporarily here, since we hold a ref,
289 * flush_batch won't disappear under us.
290 */
291 mtx_unlock(&ctx->screen->lock);
292 DBG("%p: too many batches! flush forced!", flush_batch);
293 fd_batch_flush(flush_batch, true, false);
294 mtx_lock(&ctx->screen->lock);
295
296 /* While the resources get cleaned up automatically, the flush_batch
297 * doesn't get removed from the dependencies of other batches, so
298 * it won't be unref'd and will remain in the table.
299 *
300 * TODO maybe keep a bitmask of batches that depend on me, to make
301 * this easier:
302 */
303 for (unsigned i = 0; i < ARRAY_SIZE(cache->batches); i++) {
304 struct fd_batch *other = cache->batches[i];
305 if (!other)
306 continue;
307 if (other->dependents_mask & (1 << flush_batch->idx)) {
308 other->dependents_mask &= ~(1 << flush_batch->idx);
309 struct fd_batch *ref = flush_batch;
310 fd_batch_reference_locked(&ref, NULL);
311 }
312 }
313
314 fd_batch_reference_locked(&flush_batch, NULL);
315 }
316
317 idx--; /* bit zero returns 1 for ffs() */
318
319 batch = fd_batch_create(ctx, false);
320 if (!batch)
321 goto out;
322
323 batch->seqno = cache->cnt++;
324 batch->idx = idx;
325 cache->batch_mask |= (1 << idx);
326
327 debug_assert(cache->batches[idx] == NULL);
328 cache->batches[idx] = batch;
329
330 out:
331 mtx_unlock(&ctx->screen->lock);
332
333 return batch;
334 }
335
336 static struct fd_batch *
337 batch_from_key(struct fd_batch_cache *cache, struct key *key,
338 struct fd_context *ctx)
339 {
340 struct fd_batch *batch = NULL;
341 uint32_t hash = key_hash(key);
342 struct hash_entry *entry =
343 _mesa_hash_table_search_pre_hashed(cache->ht, hash, key);
344
345 if (entry) {
346 free(key);
347 fd_batch_reference(&batch, (struct fd_batch *)entry->data);
348 return batch;
349 }
350
351 batch = fd_bc_alloc_batch(cache, ctx);
352 #ifdef DEBUG
353 DBG("%p: hash=0x%08x, %ux%u, %u layers, %u samples", batch, hash,
354 key->width, key->height, key->layers, key->samples);
355 for (unsigned idx = 0; idx < key->num_surfs; idx++) {
356 DBG("%p: surf[%u]: %p (%s) (%u,%u / %u,%u,%u)", batch, key->surf[idx].pos,
357 key->surf[idx].texture, util_format_name(key->surf[idx].format),
358 key->surf[idx].u.buf.first_element, key->surf[idx].u.buf.last_element,
359 key->surf[idx].u.tex.first_layer, key->surf[idx].u.tex.last_layer,
360 key->surf[idx].u.tex.level);
361 }
362 #endif
363 if (!batch)
364 return NULL;
365
366 mtx_lock(&ctx->screen->lock);
367
368 _mesa_hash_table_insert_pre_hashed(cache->ht, hash, key, batch);
369 batch->key = key;
370 batch->hash = hash;
371
372 for (unsigned idx = 0; idx < key->num_surfs; idx++) {
373 struct fd_resource *rsc = fd_resource(key->surf[idx].texture);
374 rsc->bc_batch_mask = (1 << batch->idx);
375 }
376
377 mtx_unlock(&ctx->screen->lock);
378
379 return batch;
380 }
381
382 static void
383 key_surf(struct key *key, unsigned idx, unsigned pos, struct pipe_surface *psurf)
384 {
385 key->surf[idx].texture = psurf->texture;
386 key->surf[idx].u = psurf->u;
387 key->surf[idx].pos = pos;
388 key->surf[idx].format = psurf->format;
389 }
390
391 struct fd_batch *
392 fd_batch_from_fb(struct fd_batch_cache *cache, struct fd_context *ctx,
393 const struct pipe_framebuffer_state *pfb)
394 {
395 unsigned idx = 0, n = pfb->nr_cbufs + (pfb->zsbuf ? 1 : 0);
396 struct key *key = key_alloc(n);
397
398 key->width = pfb->width;
399 key->height = pfb->height;
400 key->layers = pfb->layers;
401 key->samples = pfb->samples;
402 key->ctx = ctx;
403
404 if (pfb->zsbuf)
405 key_surf(key, idx++, 0, pfb->zsbuf);
406
407 for (unsigned i = 0; i < pfb->nr_cbufs; i++)
408 if (pfb->cbufs[i])
409 key_surf(key, idx++, i + 1, pfb->cbufs[i]);
410
411 key->num_surfs = idx;
412
413 return batch_from_key(cache, key, ctx);
414 }