freedreno: replace fnv1a hash function with xxhash
[mesa.git] / src / gallium / drivers / freedreno / freedreno_batch_cache.c
1 /*
2 * Copyright (C) 2016 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include "util/hash_table.h"
28 #include "util/set.h"
29 #include "util/list.h"
30 #include "util/u_string.h"
31 #define XXH_INLINE_ALL
32 #include "util/xxhash.h"
33
34 #include "freedreno_batch.h"
35 #include "freedreno_batch_cache.h"
36 #include "freedreno_context.h"
37 #include "freedreno_resource.h"
38
39 /* Overview:
40 *
41 * The batch cache provides lookup for mapping pipe_framebuffer_state
42 * to a batch.
43 *
44 * It does this via hashtable, with key that roughly matches the
45 * pipe_framebuffer_state, as described below.
46 *
47 * Batch Cache hashtable key:
48 *
49 * To serialize the key, and to avoid dealing with holding a reference to
50 * pipe_surface's (which hold a reference to pipe_resource and complicate
51 * the whole refcnting thing), the key is variable length and inline's the
52 * pertinent details of the pipe_surface.
53 *
54 * Batch:
55 *
56 * Each batch needs to hold a reference to each resource it depends on (ie.
57 * anything that needs a mem2gmem). And a weak reference to resources it
58 * renders to. (If both src[n] and dst[n] are not NULL then they are the
59 * same.)
60 *
61 * When a resource is destroyed, we need to remove entries in the batch
62 * cache that reference the resource, to avoid dangling pointer issues.
63 * So each resource holds a hashset of batches which have reference them
64 * in their hashtable key.
65 *
66 * When a batch has weak reference to no more resources (ie. all the
67 * surfaces it rendered to are destroyed) the batch can be destroyed.
68 * Could happen in an app that renders and never uses the result. More
69 * common scenario, I think, will be that some, but not all, of the
70 * surfaces are destroyed before the batch is submitted.
71 *
72 * If (for example), batch writes to zsbuf but that surface is destroyed
73 * before batch is submitted, we can skip gmem2mem (but still need to
74 * alloc gmem space as before. If the batch depended on previous contents
75 * of that surface, it would be holding a reference so the surface would
76 * not have been destroyed.
77 */
78
79 struct key {
80 uint32_t width, height, layers;
81 uint16_t samples, num_surfs;
82 struct fd_context *ctx;
83 struct {
84 struct pipe_resource *texture;
85 union pipe_surface_desc u;
86 uint8_t pos, samples;
87 uint16_t format;
88 } surf[0];
89 };
90
91 static struct key *
92 key_alloc(unsigned num_surfs)
93 {
94 struct key *key =
95 CALLOC_VARIANT_LENGTH_STRUCT(key, sizeof(key->surf[0]) * num_surfs);
96 return key;
97 }
98
99 static uint32_t
100 key_hash(const void *_key)
101 {
102 const struct key *key = _key;
103 uint32_t hash = 0;
104 hash = XXH32(key, offsetof(struct key, surf[0]), hash);
105 hash = XXH32(key->surf, sizeof(key->surf[0]) * key->num_surfs , hash);
106 return hash;
107 }
108
109 static bool
110 key_equals(const void *_a, const void *_b)
111 {
112 const struct key *a = _a;
113 const struct key *b = _b;
114 return (memcmp(a, b, offsetof(struct key, surf[0])) == 0) &&
115 (memcmp(a->surf, b->surf, sizeof(a->surf[0]) * a->num_surfs) == 0);
116 }
117
118 void
119 fd_bc_init(struct fd_batch_cache *cache)
120 {
121 cache->ht = _mesa_hash_table_create(NULL, key_hash, key_equals);
122 }
123
124 void
125 fd_bc_fini(struct fd_batch_cache *cache)
126 {
127 _mesa_hash_table_destroy(cache->ht, NULL);
128 }
129
130 static void
131 bc_flush(struct fd_batch_cache *cache, struct fd_context *ctx, bool deferred)
132 {
133 /* fd_batch_flush() (and fd_batch_add_dep() which calls it indirectly)
134 * can cause batches to be unref'd and freed under our feet, so grab
135 * a reference to all the batches we need up-front.
136 */
137 struct fd_batch *batches[ARRAY_SIZE(cache->batches)] = {0};
138 struct fd_batch *batch;
139 unsigned n = 0;
140
141 fd_context_lock(ctx);
142
143 foreach_batch(batch, cache, cache->batch_mask) {
144 if (batch->ctx == ctx) {
145 fd_batch_reference_locked(&batches[n++], batch);
146 }
147 }
148
149 if (deferred) {
150 struct fd_batch *current_batch = fd_context_batch(ctx);
151
152 for (unsigned i = 0; i < n; i++) {
153 if (batches[i] && (batches[i]->ctx == ctx) &&
154 (batches[i] != current_batch)) {
155 fd_batch_add_dep(current_batch, batches[i]);
156 }
157 }
158
159 fd_context_unlock(ctx);
160 } else {
161 fd_context_unlock(ctx);
162
163 for (unsigned i = 0; i < n; i++) {
164 fd_batch_flush(batches[i]);
165 }
166 }
167
168 for (unsigned i = 0; i < n; i++) {
169 fd_batch_reference(&batches[i], NULL);
170 }
171 }
172
173 void
174 fd_bc_flush(struct fd_batch_cache *cache, struct fd_context *ctx)
175 {
176 bc_flush(cache, ctx, false);
177 }
178
179 /* deferred flush doesn't actually flush, but it marks every other
180 * batch associated with the context as dependent on the current
181 * batch. So when the current batch gets flushed, all other batches
182 * that came before also get flushed.
183 */
184 void
185 fd_bc_flush_deferred(struct fd_batch_cache *cache, struct fd_context *ctx)
186 {
187 bc_flush(cache, ctx, true);
188 }
189
190 void
191 fd_bc_invalidate_context(struct fd_context *ctx)
192 {
193 struct fd_batch_cache *cache = &ctx->screen->batch_cache;
194 struct fd_batch *batch;
195
196 fd_screen_lock(ctx->screen);
197
198 foreach_batch(batch, cache, cache->batch_mask) {
199 if (batch->ctx == ctx)
200 fd_bc_invalidate_batch(batch, true);
201 }
202
203 fd_screen_unlock(ctx->screen);
204 }
205
206 /**
207 * Note that when batch is flushed, it needs to remain in the cache so
208 * that fd_bc_invalidate_resource() can work.. otherwise we can have
209 * the case where a rsc is destroyed while a batch still has a dangling
210 * reference to it.
211 *
212 * Note that the cmdstream (or, after the SUBMIT ioctl, the kernel)
213 * would have a reference to the underlying bo, so it is ok for the
214 * rsc to be destroyed before the batch.
215 */
216 void
217 fd_bc_invalidate_batch(struct fd_batch *batch, bool remove)
218 {
219 if (!batch)
220 return;
221
222 struct fd_batch_cache *cache = &batch->ctx->screen->batch_cache;
223 struct key *key = (struct key *)batch->key;
224
225 fd_context_assert_locked(batch->ctx);
226
227 if (remove) {
228 cache->batches[batch->idx] = NULL;
229 cache->batch_mask &= ~(1 << batch->idx);
230 }
231
232 if (!key)
233 return;
234
235 DBG("%p: key=%p", batch, batch->key);
236 for (unsigned idx = 0; idx < key->num_surfs; idx++) {
237 struct fd_resource *rsc = fd_resource(key->surf[idx].texture);
238 rsc->bc_batch_mask &= ~(1 << batch->idx);
239 }
240
241 struct hash_entry *entry =
242 _mesa_hash_table_search_pre_hashed(cache->ht, batch->hash, key);
243 _mesa_hash_table_remove(cache->ht, entry);
244
245 batch->key = NULL;
246 free(key);
247 }
248
249 void
250 fd_bc_invalidate_resource(struct fd_resource *rsc, bool destroy)
251 {
252 struct fd_screen *screen = fd_screen(rsc->base.screen);
253 struct fd_batch *batch;
254
255 fd_screen_lock(screen);
256
257 if (destroy) {
258 foreach_batch(batch, &screen->batch_cache, rsc->batch_mask) {
259 struct set_entry *entry = _mesa_set_search(batch->resources, rsc);
260 _mesa_set_remove(batch->resources, entry);
261 }
262 rsc->batch_mask = 0;
263
264 fd_batch_reference_locked(&rsc->write_batch, NULL);
265 }
266
267 foreach_batch(batch, &screen->batch_cache, rsc->bc_batch_mask)
268 fd_bc_invalidate_batch(batch, false);
269
270 rsc->bc_batch_mask = 0;
271
272 fd_screen_unlock(screen);
273 }
274
275 struct fd_batch *
276 fd_bc_alloc_batch(struct fd_batch_cache *cache, struct fd_context *ctx, bool nondraw)
277 {
278 struct fd_batch *batch;
279 uint32_t idx;
280
281 fd_screen_lock(ctx->screen);
282
283 while ((idx = ffs(~cache->batch_mask)) == 0) {
284 #if 0
285 for (unsigned i = 0; i < ARRAY_SIZE(cache->batches); i++) {
286 batch = cache->batches[i];
287 debug_printf("%d: needs_flush=%d, depends:", batch->idx, batch->needs_flush);
288 set_foreach(batch->dependencies, entry) {
289 struct fd_batch *dep = (struct fd_batch *)entry->key;
290 debug_printf(" %d", dep->idx);
291 }
292 debug_printf("\n");
293 }
294 #endif
295 /* TODO: is LRU the better policy? Or perhaps the batch that
296 * depends on the fewest other batches?
297 */
298 struct fd_batch *flush_batch = NULL;
299 for (unsigned i = 0; i < ARRAY_SIZE(cache->batches); i++) {
300 if (!flush_batch || (cache->batches[i]->seqno < flush_batch->seqno))
301 fd_batch_reference_locked(&flush_batch, cache->batches[i]);
302 }
303
304 /* we can drop lock temporarily here, since we hold a ref,
305 * flush_batch won't disappear under us.
306 */
307 fd_screen_unlock(ctx->screen);
308 DBG("%p: too many batches! flush forced!", flush_batch);
309 fd_batch_flush(flush_batch);
310 fd_screen_lock(ctx->screen);
311
312 /* While the resources get cleaned up automatically, the flush_batch
313 * doesn't get removed from the dependencies of other batches, so
314 * it won't be unref'd and will remain in the table.
315 *
316 * TODO maybe keep a bitmask of batches that depend on me, to make
317 * this easier:
318 */
319 for (unsigned i = 0; i < ARRAY_SIZE(cache->batches); i++) {
320 struct fd_batch *other = cache->batches[i];
321 if (!other)
322 continue;
323 if (other->dependents_mask & (1 << flush_batch->idx)) {
324 other->dependents_mask &= ~(1 << flush_batch->idx);
325 struct fd_batch *ref = flush_batch;
326 fd_batch_reference_locked(&ref, NULL);
327 }
328 }
329
330 fd_batch_reference_locked(&flush_batch, NULL);
331 }
332
333 idx--; /* bit zero returns 1 for ffs() */
334
335 batch = fd_batch_create(ctx, nondraw);
336 if (!batch)
337 goto out;
338
339 batch->seqno = cache->cnt++;
340 batch->idx = idx;
341 cache->batch_mask |= (1 << idx);
342
343 debug_assert(cache->batches[idx] == NULL);
344 cache->batches[idx] = batch;
345
346 out:
347 fd_screen_unlock(ctx->screen);
348
349 return batch;
350 }
351
352 static struct fd_batch *
353 batch_from_key(struct fd_batch_cache *cache, struct key *key,
354 struct fd_context *ctx)
355 {
356 struct fd_batch *batch = NULL;
357 uint32_t hash = key_hash(key);
358 struct hash_entry *entry =
359 _mesa_hash_table_search_pre_hashed(cache->ht, hash, key);
360
361 if (entry) {
362 free(key);
363 fd_batch_reference(&batch, (struct fd_batch *)entry->data);
364 return batch;
365 }
366
367 batch = fd_bc_alloc_batch(cache, ctx, false);
368 #ifdef DEBUG
369 DBG("%p: hash=0x%08x, %ux%u, %u layers, %u samples", batch, hash,
370 key->width, key->height, key->layers, key->samples);
371 for (unsigned idx = 0; idx < key->num_surfs; idx++) {
372 DBG("%p: surf[%u]: %p (%s) (%u,%u / %u,%u,%u)", batch, key->surf[idx].pos,
373 key->surf[idx].texture, util_format_name(key->surf[idx].format),
374 key->surf[idx].u.buf.first_element, key->surf[idx].u.buf.last_element,
375 key->surf[idx].u.tex.first_layer, key->surf[idx].u.tex.last_layer,
376 key->surf[idx].u.tex.level);
377 }
378 #endif
379 if (!batch)
380 return NULL;
381
382 /* reset max_scissor, which will be adjusted on draws
383 * according to the actual scissor.
384 */
385 batch->max_scissor.minx = ~0;
386 batch->max_scissor.miny = ~0;
387 batch->max_scissor.maxx = 0;
388 batch->max_scissor.maxy = 0;
389
390 fd_screen_lock(ctx->screen);
391
392 _mesa_hash_table_insert_pre_hashed(cache->ht, hash, key, batch);
393 batch->key = key;
394 batch->hash = hash;
395
396 for (unsigned idx = 0; idx < key->num_surfs; idx++) {
397 struct fd_resource *rsc = fd_resource(key->surf[idx].texture);
398 rsc->bc_batch_mask = (1 << batch->idx);
399 }
400
401 fd_screen_unlock(ctx->screen);
402
403 return batch;
404 }
405
406 static void
407 key_surf(struct key *key, unsigned idx, unsigned pos, struct pipe_surface *psurf)
408 {
409 key->surf[idx].texture = psurf->texture;
410 key->surf[idx].u = psurf->u;
411 key->surf[idx].pos = pos;
412 key->surf[idx].samples = MAX2(1, psurf->nr_samples);
413 key->surf[idx].format = psurf->format;
414 }
415
416 struct fd_batch *
417 fd_batch_from_fb(struct fd_batch_cache *cache, struct fd_context *ctx,
418 const struct pipe_framebuffer_state *pfb)
419 {
420 unsigned idx = 0, n = pfb->nr_cbufs + (pfb->zsbuf ? 1 : 0);
421 struct key *key = key_alloc(n);
422
423 key->width = pfb->width;
424 key->height = pfb->height;
425 key->layers = pfb->layers;
426 key->samples = util_framebuffer_get_num_samples(pfb);
427 key->ctx = ctx;
428
429 if (pfb->zsbuf)
430 key_surf(key, idx++, 0, pfb->zsbuf);
431
432 for (unsigned i = 0; i < pfb->nr_cbufs; i++)
433 if (pfb->cbufs[i])
434 key_surf(key, idx++, i + 1, pfb->cbufs[i]);
435
436 key->num_surfs = idx;
437
438 return batch_from_key(cache, key, ctx);
439 }