freedreno/ir3: cache defining instruction
[mesa.git] / src / gallium / drivers / freedreno / ir3 / ir3.h
1 /*
2 * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #ifndef IR3_H_
25 #define IR3_H_
26
27 #include <stdint.h>
28 #include <stdbool.h>
29
30 #include "util/u_debug.h"
31 #include "util/list.h"
32
33 #include "instr-a3xx.h"
34 #include "disasm.h" /* TODO move 'enum shader_t' somewhere else.. */
35
36 /* low level intermediate representation of an adreno shader program */
37
38 struct ir3_compiler;
39 struct ir3;
40 struct ir3_instruction;
41 struct ir3_block;
42
43 struct ir3_info {
44 uint32_t gpu_id;
45 uint16_t sizedwords;
46 uint16_t instrs_count; /* expanded to account for rpt's */
47 /* NOTE: max_reg, etc, does not include registers not touched
48 * by the shader (ie. vertex fetched via VFD_DECODE but not
49 * touched by shader)
50 */
51 int8_t max_reg; /* highest GPR # used by shader */
52 int8_t max_half_reg;
53 int16_t max_const;
54 };
55
56 struct ir3_register {
57 enum {
58 IR3_REG_CONST = 0x001,
59 IR3_REG_IMMED = 0x002,
60 IR3_REG_HALF = 0x004,
61 IR3_REG_RELATIV= 0x008,
62 IR3_REG_R = 0x010,
63 /* Most instructions, it seems, can do float abs/neg but not
64 * integer. The CP pass needs to know what is intended (int or
65 * float) in order to do the right thing. For this reason the
66 * abs/neg flags are split out into float and int variants. In
67 * addition, .b (bitwise) operations, the negate is actually a
68 * bitwise not, so split that out into a new flag to make it
69 * more clear.
70 */
71 IR3_REG_FNEG = 0x020,
72 IR3_REG_FABS = 0x040,
73 IR3_REG_SNEG = 0x080,
74 IR3_REG_SABS = 0x100,
75 IR3_REG_BNOT = 0x200,
76 IR3_REG_EVEN = 0x400,
77 IR3_REG_POS_INF= 0x800,
78 /* (ei) flag, end-input? Set on last bary, presumably to signal
79 * that the shader needs no more input:
80 */
81 IR3_REG_EI = 0x1000,
82 /* meta-flags, for intermediate stages of IR, ie.
83 * before register assignment is done:
84 */
85 IR3_REG_SSA = 0x2000, /* 'instr' is ptr to assigning instr */
86 IR3_REG_PHI_SRC= 0x4000, /* phi src, regs[0]->instr points to phi */
87
88 } flags;
89 union {
90 /* normal registers:
91 * the component is in the low two bits of the reg #, so
92 * rN.x becomes: (N << 2) | x
93 */
94 int num;
95 /* immediate: */
96 int32_t iim_val;
97 uint32_t uim_val;
98 float fim_val;
99 /* relative: */
100 int offset;
101 };
102
103 /* for IR3_REG_SSA, src registers contain ptr back to
104 * assigning instruction.
105 */
106 struct ir3_instruction *instr;
107
108 union {
109 /* used for cat5 instructions, but also for internal/IR level
110 * tracking of what registers are read/written by an instruction.
111 * wrmask may be a bad name since it is used to represent both
112 * src and dst that touch multiple adjacent registers.
113 */
114 unsigned wrmask;
115 /* for relative addressing, 32bits for array size is too small,
116 * but otoh we don't need to deal with disjoint sets, so instead
117 * use a simple size field (number of scalar components).
118 */
119 unsigned size;
120 };
121 };
122
123 struct ir3_instruction {
124 struct ir3_block *block;
125 int category;
126 opc_t opc;
127 enum {
128 /* (sy) flag is set on first instruction, and after sample
129 * instructions (probably just on RAW hazard).
130 */
131 IR3_INSTR_SY = 0x001,
132 /* (ss) flag is set on first instruction, and first instruction
133 * to depend on the result of "long" instructions (RAW hazard):
134 *
135 * rcp, rsq, log2, exp2, sin, cos, sqrt
136 *
137 * It seems to synchronize until all in-flight instructions are
138 * completed, for example:
139 *
140 * rsq hr1.w, hr1.w
141 * add.f hr2.z, (neg)hr2.z, hc0.y
142 * mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
143 * rsq hr2.x, hr2.x
144 * (rpt1)nop
145 * mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
146 * nop
147 * mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
148 * (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
149 * (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
150 *
151 * The last mul.f does not have (ss) set, presumably because the
152 * (ss) on the previous instruction does the job.
153 *
154 * The blob driver also seems to set it on WAR hazards, although
155 * not really clear if this is needed or just blob compiler being
156 * sloppy. So far I haven't found a case where removing the (ss)
157 * causes problems for WAR hazard, but I could just be getting
158 * lucky:
159 *
160 * rcp r1.y, r3.y
161 * (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
162 *
163 */
164 IR3_INSTR_SS = 0x002,
165 /* (jp) flag is set on jump targets:
166 */
167 IR3_INSTR_JP = 0x004,
168 IR3_INSTR_UL = 0x008,
169 IR3_INSTR_3D = 0x010,
170 IR3_INSTR_A = 0x020,
171 IR3_INSTR_O = 0x040,
172 IR3_INSTR_P = 0x080,
173 IR3_INSTR_S = 0x100,
174 IR3_INSTR_S2EN = 0x200,
175 /* meta-flags, for intermediate stages of IR, ie.
176 * before register assignment is done:
177 */
178 IR3_INSTR_MARK = 0x1000,
179 } flags;
180 int repeat;
181 #ifdef DEBUG
182 unsigned regs_max;
183 #endif
184 unsigned regs_count;
185 struct ir3_register **regs;
186 union {
187 struct {
188 char inv;
189 char comp;
190 int immed;
191 struct ir3_block *target;
192 } cat0;
193 struct {
194 type_t src_type, dst_type;
195 } cat1;
196 struct {
197 enum {
198 IR3_COND_LT = 0,
199 IR3_COND_LE = 1,
200 IR3_COND_GT = 2,
201 IR3_COND_GE = 3,
202 IR3_COND_EQ = 4,
203 IR3_COND_NE = 5,
204 } condition;
205 } cat2;
206 struct {
207 unsigned samp, tex;
208 type_t type;
209 } cat5;
210 struct {
211 type_t type;
212 int offset;
213 int iim_val;
214 } cat6;
215 /* for meta-instructions, just used to hold extra data
216 * before instruction scheduling, etc
217 */
218 struct {
219 int off; /* component/offset */
220 } fo;
221 struct {
222 int aid;
223 } fi;
224 struct {
225 /* used to temporarily hold reference to nir_phi_instr
226 * until we resolve the phi srcs
227 */
228 void *nphi;
229 } phi;
230 struct {
231 struct ir3_block *block;
232 } inout;
233 };
234
235 /* transient values used during various algorithms: */
236 union {
237 /* The instruction depth is the max dependency distance to output.
238 *
239 * You can also think of it as the "cost", if we did any sort of
240 * optimization for register footprint. Ie. a value that is just
241 * result of moving a const to a reg would have a low cost, so to
242 * it could make sense to duplicate the instruction at various
243 * points where the result is needed to reduce register footprint.
244 *
245 * DEPTH_UNUSED used to mark unused instructions after depth
246 * calculation pass.
247 */
248 #define DEPTH_UNUSED ~0
249 unsigned depth;
250 /* When we get to the RA stage, we no longer need depth, but
251 * we do need instruction's position/name:
252 */
253 struct {
254 uint16_t ip;
255 uint16_t name;
256 };
257 };
258
259 /* Used during CP and RA stages. For fanin and shader inputs/
260 * outputs where we need a sequence of consecutive registers,
261 * keep track of each src instructions left (ie 'n-1') and right
262 * (ie 'n+1') neighbor. The front-end must insert enough mov's
263 * to ensure that each instruction has at most one left and at
264 * most one right neighbor. During the copy-propagation pass,
265 * we only remove mov's when we can preserve this constraint.
266 * And during the RA stage, we use the neighbor information to
267 * allocate a block of registers in one shot.
268 *
269 * TODO: maybe just add something like:
270 * struct ir3_instruction_ref {
271 * struct ir3_instruction *instr;
272 * unsigned cnt;
273 * }
274 *
275 * Or can we get away without the refcnt stuff? It seems like
276 * it should be overkill.. the problem is if, potentially after
277 * already eliminating some mov's, if you have a single mov that
278 * needs to be grouped with it's neighbors in two different
279 * places (ex. shader output and a fanin).
280 */
281 struct {
282 struct ir3_instruction *left, *right;
283 uint16_t left_cnt, right_cnt;
284 } cp;
285
286 /* an instruction can reference at most one address register amongst
287 * it's src/dst registers. Beyond that, you need to insert mov's.
288 */
289 struct ir3_instruction *address;
290
291 /* in case of a instruction with relative dst instruction, we need to
292 * capture the dependency on the fanin for the previous values of
293 * the array elements. Since we don't know at compile time actually
294 * which array elements are written, this serves to preserve the
295 * unconditional write to array elements prior to the conditional
296 * write.
297 *
298 * TODO only cat1 can do indirect write.. we could maybe move this
299 * into instr->cat1.fanin (but would require the frontend to insert
300 * the extra mov)
301 */
302 struct ir3_instruction *fanin;
303
304 /* Entry in ir3_block's instruction list: */
305 struct list_head node;
306
307 #ifdef DEBUG
308 uint32_t serialno;
309 #endif
310 };
311
312 static inline struct ir3_instruction *
313 ir3_neighbor_first(struct ir3_instruction *instr)
314 {
315 while (instr->cp.left)
316 instr = instr->cp.left;
317 return instr;
318 }
319
320 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
321 {
322 int num = 1;
323
324 debug_assert(!instr->cp.left);
325
326 while (instr->cp.right) {
327 num++;
328 instr = instr->cp.right;
329 }
330
331 return num;
332 }
333
334 struct ir3_heap_chunk;
335
336 struct ir3 {
337 struct ir3_compiler *compiler;
338
339 unsigned ninputs, noutputs;
340 struct ir3_instruction **inputs;
341 struct ir3_instruction **outputs;
342
343 /* Track bary.f (and ldlv) instructions.. this is needed in
344 * scheduling to ensure that all varying fetches happen before
345 * any potential kill instructions. The hw gets grumpy if all
346 * threads in a group are killed before the last bary.f gets
347 * a chance to signal end of input (ei).
348 */
349 unsigned baryfs_count, baryfs_sz;
350 struct ir3_instruction **baryfs;
351
352 /* Track all indirect instructions (read and write). To avoid
353 * deadlock scenario where an address register gets scheduled,
354 * but other dependent src instructions cannot be scheduled due
355 * to dependency on a *different* address register value, the
356 * scheduler needs to ensure that all dependencies other than
357 * the instruction other than the address register are scheduled
358 * before the one that writes the address register. Having a
359 * convenient list of instructions that reference some address
360 * register simplifies this.
361 */
362 unsigned indirects_count, indirects_sz;
363 struct ir3_instruction **indirects;
364 /* and same for instructions that consume predicate register: */
365 unsigned predicates_count, predicates_sz;
366 struct ir3_instruction **predicates;
367
368 /* List of blocks: */
369 struct list_head block_list;
370
371 unsigned heap_idx;
372 struct ir3_heap_chunk *chunk;
373 };
374
375 typedef struct nir_block nir_block;
376
377 struct ir3_block {
378 struct list_head node;
379 struct ir3 *shader;
380
381 nir_block *nblock;
382
383 struct list_head instr_list; /* list of ir3_instruction */
384
385 /* each block has either one or two successors.. in case of
386 * two successors, 'condition' decides which one to follow.
387 * A block preceding an if/else has two successors.
388 */
389 struct ir3_instruction *condition;
390 struct ir3_block *successors[2];
391
392 uint16_t start_ip, end_ip;
393
394 /* used for per-pass extra block data. Mainly used right
395 * now in RA step to track livein/liveout.
396 */
397 void *bd;
398
399 #ifdef DEBUG
400 uint32_t serialno;
401 #endif
402 };
403
404 struct ir3 * ir3_create(struct ir3_compiler *compiler,
405 unsigned nin, unsigned nout);
406 void ir3_destroy(struct ir3 *shader);
407 void * ir3_assemble(struct ir3 *shader,
408 struct ir3_info *info, uint32_t gpu_id);
409 void * ir3_alloc(struct ir3 *shader, int sz);
410
411 struct ir3_block * ir3_block_create(struct ir3 *shader);
412
413 struct ir3_instruction * ir3_instr_create(struct ir3_block *block,
414 int category, opc_t opc);
415 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
416 int category, opc_t opc, int nreg);
417 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
418 const char *ir3_instr_name(struct ir3_instruction *instr);
419
420 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
421 int num, int flags);
422
423 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
424 {
425 if (instr->flags & IR3_INSTR_MARK)
426 return true; /* already visited */
427 instr->flags |= IR3_INSTR_MARK;
428 return false;
429 }
430
431 void ir3_block_clear_mark(struct ir3_block *block);
432 void ir3_clear_mark(struct ir3 *shader);
433
434 unsigned ir3_count_instructions(struct ir3 *ir);
435
436 static inline int ir3_instr_regno(struct ir3_instruction *instr,
437 struct ir3_register *reg)
438 {
439 unsigned i;
440 for (i = 0; i < instr->regs_count; i++)
441 if (reg == instr->regs[i])
442 return i;
443 return -1;
444 }
445
446
447 #define MAX_ARRAYS 16
448
449 /* comp:
450 * 0 - x
451 * 1 - y
452 * 2 - z
453 * 3 - w
454 */
455 static inline uint32_t regid(int num, int comp)
456 {
457 return (num << 2) | (comp & 0x3);
458 }
459
460 static inline uint32_t reg_num(struct ir3_register *reg)
461 {
462 return reg->num >> 2;
463 }
464
465 static inline uint32_t reg_comp(struct ir3_register *reg)
466 {
467 return reg->num & 0x3;
468 }
469
470 static inline bool is_flow(struct ir3_instruction *instr)
471 {
472 return (instr->category == 0);
473 }
474
475 static inline bool is_kill(struct ir3_instruction *instr)
476 {
477 return is_flow(instr) && (instr->opc == OPC_KILL);
478 }
479
480 static inline bool is_nop(struct ir3_instruction *instr)
481 {
482 return is_flow(instr) && (instr->opc == OPC_NOP);
483 }
484
485 /* Is it a non-transformative (ie. not type changing) mov? This can
486 * also include absneg.s/absneg.f, which for the most part can be
487 * treated as a mov (single src argument).
488 */
489 static inline bool is_same_type_mov(struct ir3_instruction *instr)
490 {
491 struct ir3_register *dst = instr->regs[0];
492
493 /* mov's that write to a0.x or p0.x are special: */
494 if (dst->num == regid(REG_P0, 0))
495 return false;
496 if (dst->num == regid(REG_A0, 0))
497 return false;
498
499 if ((instr->category == 1) &&
500 (instr->cat1.src_type == instr->cat1.dst_type))
501 return true;
502 if ((instr->category == 2) && ((instr->opc == OPC_ABSNEG_F) ||
503 (instr->opc == OPC_ABSNEG_S)))
504 return true;
505 return false;
506 }
507
508 static inline bool is_alu(struct ir3_instruction *instr)
509 {
510 return (1 <= instr->category) && (instr->category <= 3);
511 }
512
513 static inline bool is_sfu(struct ir3_instruction *instr)
514 {
515 return (instr->category == 4);
516 }
517
518 static inline bool is_tex(struct ir3_instruction *instr)
519 {
520 return (instr->category == 5);
521 }
522
523 static inline bool is_mem(struct ir3_instruction *instr)
524 {
525 return (instr->category == 6);
526 }
527
528 static inline bool
529 is_store(struct ir3_instruction *instr)
530 {
531 if (is_mem(instr)) {
532 /* these instructions, the "destination" register is
533 * actually a source, the address to store to.
534 */
535 switch (instr->opc) {
536 case OPC_STG:
537 case OPC_STP:
538 case OPC_STL:
539 case OPC_STLW:
540 case OPC_L2G:
541 case OPC_G2L:
542 return true;
543 default:
544 break;
545 }
546 }
547 return false;
548 }
549
550 static inline bool is_input(struct ir3_instruction *instr)
551 {
552 /* in some cases, ldlv is used to fetch varying without
553 * interpolation.. fortunately inloc is the first src
554 * register in either case
555 */
556 if (is_mem(instr) && (instr->opc == OPC_LDLV))
557 return true;
558 return (instr->category == 2) && (instr->opc == OPC_BARY_F);
559 }
560
561 static inline bool is_meta(struct ir3_instruction *instr)
562 {
563 /* TODO how should we count PHI (and maybe fan-in/out) which
564 * might actually contribute some instructions to the final
565 * result?
566 */
567 return (instr->category == -1);
568 }
569
570 static inline bool writes_addr(struct ir3_instruction *instr)
571 {
572 if (instr->regs_count > 0) {
573 struct ir3_register *dst = instr->regs[0];
574 return reg_num(dst) == REG_A0;
575 }
576 return false;
577 }
578
579 static inline bool writes_pred(struct ir3_instruction *instr)
580 {
581 if (instr->regs_count > 0) {
582 struct ir3_register *dst = instr->regs[0];
583 return reg_num(dst) == REG_P0;
584 }
585 return false;
586 }
587
588 /* returns defining instruction for reg */
589 /* TODO better name */
590 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
591 {
592 if (reg->flags & IR3_REG_SSA)
593 return reg->instr;
594 return NULL;
595 }
596
597 static inline bool conflicts(struct ir3_instruction *a,
598 struct ir3_instruction *b)
599 {
600 return (a && b) && (a != b);
601 }
602
603 static inline bool reg_gpr(struct ir3_register *r)
604 {
605 if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
606 return false;
607 if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
608 return false;
609 return true;
610 }
611
612 static inline type_t half_type(type_t type)
613 {
614 switch (type) {
615 case TYPE_F32: return TYPE_F16;
616 case TYPE_U32: return TYPE_U16;
617 case TYPE_S32: return TYPE_S16;
618 case TYPE_F16:
619 case TYPE_U16:
620 case TYPE_S16:
621 return type;
622 default:
623 assert(0);
624 return ~0;
625 }
626 }
627
628 /* some cat2 instructions (ie. those which are not float) can embed an
629 * immediate:
630 */
631 static inline bool ir3_cat2_int(opc_t opc)
632 {
633 switch (opc) {
634 case OPC_ADD_U:
635 case OPC_ADD_S:
636 case OPC_SUB_U:
637 case OPC_SUB_S:
638 case OPC_CMPS_U:
639 case OPC_CMPS_S:
640 case OPC_MIN_U:
641 case OPC_MIN_S:
642 case OPC_MAX_U:
643 case OPC_MAX_S:
644 case OPC_CMPV_U:
645 case OPC_CMPV_S:
646 case OPC_MUL_U:
647 case OPC_MUL_S:
648 case OPC_MULL_U:
649 case OPC_CLZ_S:
650 case OPC_ABSNEG_S:
651 case OPC_AND_B:
652 case OPC_OR_B:
653 case OPC_NOT_B:
654 case OPC_XOR_B:
655 case OPC_BFREV_B:
656 case OPC_CLZ_B:
657 case OPC_SHL_B:
658 case OPC_SHR_B:
659 case OPC_ASHR_B:
660 case OPC_MGEN_B:
661 case OPC_GETBIT_B:
662 case OPC_CBITS_B:
663 case OPC_BARY_F:
664 return true;
665
666 default:
667 return false;
668 }
669 }
670
671
672 /* map cat2 instruction to valid abs/neg flags: */
673 static inline unsigned ir3_cat2_absneg(opc_t opc)
674 {
675 switch (opc) {
676 case OPC_ADD_F:
677 case OPC_MIN_F:
678 case OPC_MAX_F:
679 case OPC_MUL_F:
680 case OPC_SIGN_F:
681 case OPC_CMPS_F:
682 case OPC_ABSNEG_F:
683 case OPC_CMPV_F:
684 case OPC_FLOOR_F:
685 case OPC_CEIL_F:
686 case OPC_RNDNE_F:
687 case OPC_RNDAZ_F:
688 case OPC_TRUNC_F:
689 case OPC_BARY_F:
690 return IR3_REG_FABS | IR3_REG_FNEG;
691
692 case OPC_ADD_U:
693 case OPC_ADD_S:
694 case OPC_SUB_U:
695 case OPC_SUB_S:
696 case OPC_CMPS_U:
697 case OPC_CMPS_S:
698 case OPC_MIN_U:
699 case OPC_MIN_S:
700 case OPC_MAX_U:
701 case OPC_MAX_S:
702 case OPC_CMPV_U:
703 case OPC_CMPV_S:
704 case OPC_MUL_U:
705 case OPC_MUL_S:
706 case OPC_MULL_U:
707 case OPC_CLZ_S:
708 return 0;
709
710 case OPC_ABSNEG_S:
711 return IR3_REG_SABS | IR3_REG_SNEG;
712
713 case OPC_AND_B:
714 case OPC_OR_B:
715 case OPC_NOT_B:
716 case OPC_XOR_B:
717 case OPC_BFREV_B:
718 case OPC_CLZ_B:
719 case OPC_SHL_B:
720 case OPC_SHR_B:
721 case OPC_ASHR_B:
722 case OPC_MGEN_B:
723 case OPC_GETBIT_B:
724 case OPC_CBITS_B:
725 return IR3_REG_BNOT;
726
727 default:
728 return 0;
729 }
730 }
731
732 /* map cat3 instructions to valid abs/neg flags: */
733 static inline unsigned ir3_cat3_absneg(opc_t opc)
734 {
735 switch (opc) {
736 case OPC_MAD_F16:
737 case OPC_MAD_F32:
738 case OPC_SEL_F16:
739 case OPC_SEL_F32:
740 return IR3_REG_FNEG;
741
742 case OPC_MAD_U16:
743 case OPC_MADSH_U16:
744 case OPC_MAD_S16:
745 case OPC_MADSH_M16:
746 case OPC_MAD_U24:
747 case OPC_MAD_S24:
748 case OPC_SEL_S16:
749 case OPC_SEL_S32:
750 case OPC_SAD_S16:
751 case OPC_SAD_S32:
752 /* neg *may* work on 3rd src.. */
753
754 case OPC_SEL_B16:
755 case OPC_SEL_B32:
756
757 default:
758 return 0;
759 }
760 }
761
762 #define array_insert(arr, val) do { \
763 if (arr ## _count == arr ## _sz) { \
764 arr ## _sz = MAX2(2 * arr ## _sz, 16); \
765 arr = realloc(arr, arr ## _sz * sizeof(arr[0])); \
766 } \
767 arr[arr ##_count++] = val; \
768 } while (0)
769
770 /* iterator for an instructions's sources (reg), also returns src #: */
771 #define foreach_src_n(__srcreg, __n, __instr) \
772 if ((__instr)->regs_count) \
773 for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
774 if ((__srcreg = (__instr)->regs[__n + 1]))
775
776 /* iterator for an instructions's sources (reg): */
777 #define foreach_src(__srcreg, __instr) \
778 foreach_src_n(__srcreg, __i, __instr)
779
780 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
781 {
782 if (instr->fanin)
783 return instr->regs_count + 2;
784 if (instr->address)
785 return instr->regs_count + 1;
786 return instr->regs_count;
787 }
788
789 static inline struct ir3_instruction * __ssa_src_n(struct ir3_instruction *instr, unsigned n)
790 {
791 if (n == (instr->regs_count + 1))
792 return instr->fanin;
793 if (n == (instr->regs_count + 0))
794 return instr->address;
795 return ssa(instr->regs[n]);
796 }
797
798 #define __src_cnt(__instr) ((__instr)->address ? (__instr)->regs_count : (__instr)->regs_count - 1)
799
800 /* iterator for an instruction's SSA sources (instr), also returns src #: */
801 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
802 if ((__instr)->regs_count) \
803 for (unsigned __cnt = __ssa_src_cnt(__instr) - 1, __n = 0; __n < __cnt; __n++) \
804 if ((__srcinst = __ssa_src_n(__instr, __n + 1)))
805
806 /* iterator for an instruction's SSA sources (instr): */
807 #define foreach_ssa_src(__srcinst, __instr) \
808 foreach_ssa_src_n(__srcinst, __i, __instr)
809
810
811 /* dump: */
812 void ir3_print(struct ir3 *ir);
813 void ir3_print_instr(struct ir3_instruction *instr);
814
815 /* depth calculation: */
816 int ir3_delayslots(struct ir3_instruction *assigner,
817 struct ir3_instruction *consumer, unsigned n);
818 void ir3_insert_by_depth(struct ir3_instruction *instr, struct list_head *list);
819 void ir3_depth(struct ir3 *ir);
820
821 /* copy-propagate: */
822 void ir3_cp(struct ir3 *ir);
823
824 /* group neighbors and insert mov's to resolve conflicts: */
825 void ir3_group(struct ir3 *ir);
826
827 /* scheduling: */
828 int ir3_sched(struct ir3 *ir);
829
830 /* register assignment: */
831 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(void *memctx);
832 int ir3_ra(struct ir3 *ir3, enum shader_t type,
833 bool frag_coord, bool frag_face);
834
835 /* legalize: */
836 void ir3_legalize(struct ir3 *ir, bool *has_samp, int *max_bary);
837
838 /* ************************************************************************* */
839 /* instruction helpers */
840
841 static inline struct ir3_instruction *
842 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
843 {
844 struct ir3_instruction *instr =
845 ir3_instr_create(block, 1, 0);
846 ir3_reg_create(instr, 0, 0); /* dst */
847 ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
848 instr->cat1.src_type = type;
849 instr->cat1.dst_type = type;
850 return instr;
851 }
852
853 static inline struct ir3_instruction *
854 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
855 type_t src_type, type_t dst_type)
856 {
857 struct ir3_instruction *instr =
858 ir3_instr_create(block, 1, 0);
859 ir3_reg_create(instr, 0, 0); /* dst */
860 ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
861 instr->cat1.src_type = src_type;
862 instr->cat1.dst_type = dst_type;
863 return instr;
864 }
865
866 static inline struct ir3_instruction *
867 ir3_NOP(struct ir3_block *block)
868 {
869 return ir3_instr_create(block, 0, OPC_NOP);
870 }
871
872 #define INSTR0(CAT, name) \
873 static inline struct ir3_instruction * \
874 ir3_##name(struct ir3_block *block) \
875 { \
876 struct ir3_instruction *instr = \
877 ir3_instr_create(block, CAT, OPC_##name); \
878 return instr; \
879 }
880
881 #define INSTR1(CAT, name) \
882 static inline struct ir3_instruction * \
883 ir3_##name(struct ir3_block *block, \
884 struct ir3_instruction *a, unsigned aflags) \
885 { \
886 struct ir3_instruction *instr = \
887 ir3_instr_create(block, CAT, OPC_##name); \
888 ir3_reg_create(instr, 0, 0); /* dst */ \
889 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
890 return instr; \
891 }
892
893 #define INSTR2(CAT, name) \
894 static inline struct ir3_instruction * \
895 ir3_##name(struct ir3_block *block, \
896 struct ir3_instruction *a, unsigned aflags, \
897 struct ir3_instruction *b, unsigned bflags) \
898 { \
899 struct ir3_instruction *instr = \
900 ir3_instr_create(block, CAT, OPC_##name); \
901 ir3_reg_create(instr, 0, 0); /* dst */ \
902 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
903 ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b; \
904 return instr; \
905 }
906
907 #define INSTR3(CAT, name) \
908 static inline struct ir3_instruction * \
909 ir3_##name(struct ir3_block *block, \
910 struct ir3_instruction *a, unsigned aflags, \
911 struct ir3_instruction *b, unsigned bflags, \
912 struct ir3_instruction *c, unsigned cflags) \
913 { \
914 struct ir3_instruction *instr = \
915 ir3_instr_create(block, CAT, OPC_##name); \
916 ir3_reg_create(instr, 0, 0); /* dst */ \
917 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
918 ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b; \
919 ir3_reg_create(instr, 0, IR3_REG_SSA | cflags)->instr = c; \
920 return instr; \
921 }
922
923 /* cat0 instructions: */
924 INSTR0(0, BR);
925 INSTR0(0, JUMP);
926 INSTR1(0, KILL);
927 INSTR0(0, END);
928
929 /* cat2 instructions, most 2 src but some 1 src: */
930 INSTR2(2, ADD_F)
931 INSTR2(2, MIN_F)
932 INSTR2(2, MAX_F)
933 INSTR2(2, MUL_F)
934 INSTR1(2, SIGN_F)
935 INSTR2(2, CMPS_F)
936 INSTR1(2, ABSNEG_F)
937 INSTR2(2, CMPV_F)
938 INSTR1(2, FLOOR_F)
939 INSTR1(2, CEIL_F)
940 INSTR1(2, RNDNE_F)
941 INSTR1(2, RNDAZ_F)
942 INSTR1(2, TRUNC_F)
943 INSTR2(2, ADD_U)
944 INSTR2(2, ADD_S)
945 INSTR2(2, SUB_U)
946 INSTR2(2, SUB_S)
947 INSTR2(2, CMPS_U)
948 INSTR2(2, CMPS_S)
949 INSTR2(2, MIN_U)
950 INSTR2(2, MIN_S)
951 INSTR2(2, MAX_U)
952 INSTR2(2, MAX_S)
953 INSTR1(2, ABSNEG_S)
954 INSTR2(2, AND_B)
955 INSTR2(2, OR_B)
956 INSTR1(2, NOT_B)
957 INSTR2(2, XOR_B)
958 INSTR2(2, CMPV_U)
959 INSTR2(2, CMPV_S)
960 INSTR2(2, MUL_U)
961 INSTR2(2, MUL_S)
962 INSTR2(2, MULL_U)
963 INSTR1(2, BFREV_B)
964 INSTR1(2, CLZ_S)
965 INSTR1(2, CLZ_B)
966 INSTR2(2, SHL_B)
967 INSTR2(2, SHR_B)
968 INSTR2(2, ASHR_B)
969 INSTR2(2, BARY_F)
970 INSTR2(2, MGEN_B)
971 INSTR2(2, GETBIT_B)
972 INSTR1(2, SETRM)
973 INSTR1(2, CBITS_B)
974 INSTR2(2, SHB)
975 INSTR2(2, MSAD)
976
977 /* cat3 instructions: */
978 INSTR3(3, MAD_U16)
979 INSTR3(3, MADSH_U16)
980 INSTR3(3, MAD_S16)
981 INSTR3(3, MADSH_M16)
982 INSTR3(3, MAD_U24)
983 INSTR3(3, MAD_S24)
984 INSTR3(3, MAD_F16)
985 INSTR3(3, MAD_F32)
986 INSTR3(3, SEL_B16)
987 INSTR3(3, SEL_B32)
988 INSTR3(3, SEL_S16)
989 INSTR3(3, SEL_S32)
990 INSTR3(3, SEL_F16)
991 INSTR3(3, SEL_F32)
992 INSTR3(3, SAD_S16)
993 INSTR3(3, SAD_S32)
994
995 /* cat4 instructions: */
996 INSTR1(4, RCP)
997 INSTR1(4, RSQ)
998 INSTR1(4, LOG2)
999 INSTR1(4, EXP2)
1000 INSTR1(4, SIN)
1001 INSTR1(4, COS)
1002 INSTR1(4, SQRT)
1003
1004 /* cat5 instructions: */
1005 INSTR1(5, DSX)
1006 INSTR1(5, DSY)
1007
1008 static inline struct ir3_instruction *
1009 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
1010 unsigned wrmask, unsigned flags, unsigned samp, unsigned tex,
1011 struct ir3_instruction *src0, struct ir3_instruction *src1)
1012 {
1013 struct ir3_instruction *sam;
1014 struct ir3_register *reg;
1015
1016 sam = ir3_instr_create(block, 5, opc);
1017 sam->flags |= flags;
1018 ir3_reg_create(sam, 0, 0)->wrmask = wrmask;
1019 if (src0) {
1020 reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
1021 reg->wrmask = (1 << (src0->regs_count - 1)) - 1;
1022 reg->instr = src0;
1023 }
1024 if (src1) {
1025 reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
1026 reg->instr = src1;
1027 reg->wrmask = (1 << (src1->regs_count - 1)) - 1;
1028 }
1029 sam->cat5.samp = samp;
1030 sam->cat5.tex = tex;
1031 sam->cat5.type = type;
1032
1033 return sam;
1034 }
1035
1036 /* cat6 instructions: */
1037 INSTR2(6, LDLV)
1038 INSTR2(6, LDG)
1039
1040 /* ************************************************************************* */
1041 /* split this out or find some helper to use.. like main/bitset.h.. */
1042
1043 #include <string.h>
1044
1045 #define MAX_REG 256
1046
1047 typedef uint8_t regmask_t[2 * MAX_REG / 8];
1048
1049 static inline unsigned regmask_idx(struct ir3_register *reg)
1050 {
1051 unsigned num = reg->num;
1052 debug_assert(num < MAX_REG);
1053 if (reg->flags & IR3_REG_HALF)
1054 num += MAX_REG;
1055 return num;
1056 }
1057
1058 static inline void regmask_init(regmask_t *regmask)
1059 {
1060 memset(regmask, 0, sizeof(*regmask));
1061 }
1062
1063 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1064 {
1065 unsigned idx = regmask_idx(reg);
1066 if (reg->flags & IR3_REG_RELATIV) {
1067 unsigned i;
1068 for (i = 0; i < reg->size; i++, idx++)
1069 (*regmask)[idx / 8] |= 1 << (idx % 8);
1070 } else {
1071 unsigned mask;
1072 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1073 if (mask & 1)
1074 (*regmask)[idx / 8] |= 1 << (idx % 8);
1075 }
1076 }
1077
1078 static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
1079 {
1080 unsigned i;
1081 for (i = 0; i < ARRAY_SIZE(*dst); i++)
1082 (*dst)[i] = (*a)[i] | (*b)[i];
1083 }
1084
1085 /* set bits in a if not set in b, conceptually:
1086 * a |= (reg & ~b)
1087 */
1088 static inline void regmask_set_if_not(regmask_t *a,
1089 struct ir3_register *reg, regmask_t *b)
1090 {
1091 unsigned idx = regmask_idx(reg);
1092 if (reg->flags & IR3_REG_RELATIV) {
1093 unsigned i;
1094 for (i = 0; i < reg->size; i++, idx++)
1095 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1096 (*a)[idx / 8] |= 1 << (idx % 8);
1097 } else {
1098 unsigned mask;
1099 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1100 if (mask & 1)
1101 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1102 (*a)[idx / 8] |= 1 << (idx % 8);
1103 }
1104 }
1105
1106 static inline bool regmask_get(regmask_t *regmask,
1107 struct ir3_register *reg)
1108 {
1109 unsigned idx = regmask_idx(reg);
1110 if (reg->flags & IR3_REG_RELATIV) {
1111 unsigned i;
1112 for (i = 0; i < reg->size; i++, idx++)
1113 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1114 return true;
1115 } else {
1116 unsigned mask;
1117 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1118 if (mask & 1)
1119 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1120 return true;
1121 }
1122 return false;
1123 }
1124
1125 /* ************************************************************************* */
1126
1127 #endif /* IR3_H_ */