freedreno/ir3: add support for store instructions
[mesa.git] / src / gallium / drivers / freedreno / ir3 / ir3.h
1 /*
2 * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #ifndef IR3_H_
25 #define IR3_H_
26
27 #include <stdint.h>
28 #include <stdbool.h>
29
30 #include "util/u_debug.h"
31 #include "util/list.h"
32
33 #include "instr-a3xx.h"
34 #include "disasm.h" /* TODO move 'enum shader_t' somewhere else.. */
35
36 /* low level intermediate representation of an adreno shader program */
37
38 struct ir3_compiler;
39 struct ir3;
40 struct ir3_instruction;
41 struct ir3_block;
42
43 struct ir3_info {
44 uint32_t gpu_id;
45 uint16_t sizedwords;
46 uint16_t instrs_count; /* expanded to account for rpt's */
47 /* NOTE: max_reg, etc, does not include registers not touched
48 * by the shader (ie. vertex fetched via VFD_DECODE but not
49 * touched by shader)
50 */
51 int8_t max_reg; /* highest GPR # used by shader */
52 int8_t max_half_reg;
53 int16_t max_const;
54 };
55
56 struct ir3_register {
57 enum {
58 IR3_REG_CONST = 0x001,
59 IR3_REG_IMMED = 0x002,
60 IR3_REG_HALF = 0x004,
61 IR3_REG_RELATIV= 0x008,
62 IR3_REG_R = 0x010,
63 /* Most instructions, it seems, can do float abs/neg but not
64 * integer. The CP pass needs to know what is intended (int or
65 * float) in order to do the right thing. For this reason the
66 * abs/neg flags are split out into float and int variants. In
67 * addition, .b (bitwise) operations, the negate is actually a
68 * bitwise not, so split that out into a new flag to make it
69 * more clear.
70 */
71 IR3_REG_FNEG = 0x020,
72 IR3_REG_FABS = 0x040,
73 IR3_REG_SNEG = 0x080,
74 IR3_REG_SABS = 0x100,
75 IR3_REG_BNOT = 0x200,
76 IR3_REG_EVEN = 0x400,
77 IR3_REG_POS_INF= 0x800,
78 /* (ei) flag, end-input? Set on last bary, presumably to signal
79 * that the shader needs no more input:
80 */
81 IR3_REG_EI = 0x1000,
82 /* meta-flags, for intermediate stages of IR, ie.
83 * before register assignment is done:
84 */
85 IR3_REG_SSA = 0x2000, /* 'instr' is ptr to assigning instr */
86 IR3_REG_PHI_SRC= 0x4000, /* phi src, regs[0]->instr points to phi */
87
88 } flags;
89 union {
90 /* normal registers:
91 * the component is in the low two bits of the reg #, so
92 * rN.x becomes: (N << 2) | x
93 */
94 int num;
95 /* immediate: */
96 int32_t iim_val;
97 uint32_t uim_val;
98 float fim_val;
99 /* relative: */
100 int offset;
101 };
102
103 /* for IR3_REG_SSA, src registers contain ptr back to
104 * assigning instruction.
105 */
106 struct ir3_instruction *instr;
107
108 union {
109 /* used for cat5 instructions, but also for internal/IR level
110 * tracking of what registers are read/written by an instruction.
111 * wrmask may be a bad name since it is used to represent both
112 * src and dst that touch multiple adjacent registers.
113 */
114 unsigned wrmask;
115 /* for relative addressing, 32bits for array size is too small,
116 * but otoh we don't need to deal with disjoint sets, so instead
117 * use a simple size field (number of scalar components).
118 */
119 unsigned size;
120 };
121 };
122
123 struct ir3_instruction {
124 struct ir3_block *block;
125 int category;
126 opc_t opc;
127 enum {
128 /* (sy) flag is set on first instruction, and after sample
129 * instructions (probably just on RAW hazard).
130 */
131 IR3_INSTR_SY = 0x001,
132 /* (ss) flag is set on first instruction, and first instruction
133 * to depend on the result of "long" instructions (RAW hazard):
134 *
135 * rcp, rsq, log2, exp2, sin, cos, sqrt
136 *
137 * It seems to synchronize until all in-flight instructions are
138 * completed, for example:
139 *
140 * rsq hr1.w, hr1.w
141 * add.f hr2.z, (neg)hr2.z, hc0.y
142 * mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
143 * rsq hr2.x, hr2.x
144 * (rpt1)nop
145 * mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
146 * nop
147 * mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
148 * (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
149 * (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
150 *
151 * The last mul.f does not have (ss) set, presumably because the
152 * (ss) on the previous instruction does the job.
153 *
154 * The blob driver also seems to set it on WAR hazards, although
155 * not really clear if this is needed or just blob compiler being
156 * sloppy. So far I haven't found a case where removing the (ss)
157 * causes problems for WAR hazard, but I could just be getting
158 * lucky:
159 *
160 * rcp r1.y, r3.y
161 * (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
162 *
163 */
164 IR3_INSTR_SS = 0x002,
165 /* (jp) flag is set on jump targets:
166 */
167 IR3_INSTR_JP = 0x004,
168 IR3_INSTR_UL = 0x008,
169 IR3_INSTR_3D = 0x010,
170 IR3_INSTR_A = 0x020,
171 IR3_INSTR_O = 0x040,
172 IR3_INSTR_P = 0x080,
173 IR3_INSTR_S = 0x100,
174 IR3_INSTR_S2EN = 0x200,
175 IR3_INSTR_G = 0x400,
176 /* meta-flags, for intermediate stages of IR, ie.
177 * before register assignment is done:
178 */
179 IR3_INSTR_MARK = 0x1000,
180 } flags;
181 int repeat;
182 #ifdef DEBUG
183 unsigned regs_max;
184 #endif
185 unsigned regs_count;
186 struct ir3_register **regs;
187 union {
188 struct {
189 char inv;
190 char comp;
191 int immed;
192 struct ir3_block *target;
193 } cat0;
194 struct {
195 type_t src_type, dst_type;
196 } cat1;
197 struct {
198 enum {
199 IR3_COND_LT = 0,
200 IR3_COND_LE = 1,
201 IR3_COND_GT = 2,
202 IR3_COND_GE = 3,
203 IR3_COND_EQ = 4,
204 IR3_COND_NE = 5,
205 } condition;
206 } cat2;
207 struct {
208 unsigned samp, tex;
209 type_t type;
210 } cat5;
211 struct {
212 type_t type;
213 int src_offset;
214 int dst_offset;
215 int iim_val;
216 } cat6;
217 /* for meta-instructions, just used to hold extra data
218 * before instruction scheduling, etc
219 */
220 struct {
221 int off; /* component/offset */
222 } fo;
223 struct {
224 int aid;
225 } fi;
226 struct {
227 /* used to temporarily hold reference to nir_phi_instr
228 * until we resolve the phi srcs
229 */
230 void *nphi;
231 } phi;
232 struct {
233 struct ir3_block *block;
234 } inout;
235 };
236
237 /* transient values used during various algorithms: */
238 union {
239 /* The instruction depth is the max dependency distance to output.
240 *
241 * You can also think of it as the "cost", if we did any sort of
242 * optimization for register footprint. Ie. a value that is just
243 * result of moving a const to a reg would have a low cost, so to
244 * it could make sense to duplicate the instruction at various
245 * points where the result is needed to reduce register footprint.
246 *
247 * DEPTH_UNUSED used to mark unused instructions after depth
248 * calculation pass.
249 */
250 #define DEPTH_UNUSED ~0
251 unsigned depth;
252 /* When we get to the RA stage, we no longer need depth, but
253 * we do need instruction's position/name:
254 */
255 struct {
256 uint16_t ip;
257 uint16_t name;
258 };
259 };
260
261 /* Used during CP and RA stages. For fanin and shader inputs/
262 * outputs where we need a sequence of consecutive registers,
263 * keep track of each src instructions left (ie 'n-1') and right
264 * (ie 'n+1') neighbor. The front-end must insert enough mov's
265 * to ensure that each instruction has at most one left and at
266 * most one right neighbor. During the copy-propagation pass,
267 * we only remove mov's when we can preserve this constraint.
268 * And during the RA stage, we use the neighbor information to
269 * allocate a block of registers in one shot.
270 *
271 * TODO: maybe just add something like:
272 * struct ir3_instruction_ref {
273 * struct ir3_instruction *instr;
274 * unsigned cnt;
275 * }
276 *
277 * Or can we get away without the refcnt stuff? It seems like
278 * it should be overkill.. the problem is if, potentially after
279 * already eliminating some mov's, if you have a single mov that
280 * needs to be grouped with it's neighbors in two different
281 * places (ex. shader output and a fanin).
282 */
283 struct {
284 struct ir3_instruction *left, *right;
285 uint16_t left_cnt, right_cnt;
286 } cp;
287
288 /* an instruction can reference at most one address register amongst
289 * it's src/dst registers. Beyond that, you need to insert mov's.
290 *
291 * NOTE: do not write this directly, use ir3_instr_set_address()
292 */
293 struct ir3_instruction *address;
294
295 /* in case of a instruction with relative dst instruction, we need to
296 * capture the dependency on the fanin for the previous values of
297 * the array elements. Since we don't know at compile time actually
298 * which array elements are written, this serves to preserve the
299 * unconditional write to array elements prior to the conditional
300 * write.
301 *
302 * TODO only cat1 can do indirect write.. we could maybe move this
303 * into instr->cat1.fanin (but would require the frontend to insert
304 * the extra mov)
305 */
306 struct ir3_instruction *fanin;
307
308 /* Entry in ir3_block's instruction list: */
309 struct list_head node;
310
311 #ifdef DEBUG
312 uint32_t serialno;
313 #endif
314 };
315
316 static inline struct ir3_instruction *
317 ir3_neighbor_first(struct ir3_instruction *instr)
318 {
319 while (instr->cp.left)
320 instr = instr->cp.left;
321 return instr;
322 }
323
324 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
325 {
326 int num = 1;
327
328 debug_assert(!instr->cp.left);
329
330 while (instr->cp.right) {
331 num++;
332 instr = instr->cp.right;
333 }
334
335 return num;
336 }
337
338 struct ir3_heap_chunk;
339
340 struct ir3 {
341 struct ir3_compiler *compiler;
342
343 unsigned ninputs, noutputs;
344 struct ir3_instruction **inputs;
345 struct ir3_instruction **outputs;
346
347 /* Track bary.f (and ldlv) instructions.. this is needed in
348 * scheduling to ensure that all varying fetches happen before
349 * any potential kill instructions. The hw gets grumpy if all
350 * threads in a group are killed before the last bary.f gets
351 * a chance to signal end of input (ei).
352 */
353 unsigned baryfs_count, baryfs_sz;
354 struct ir3_instruction **baryfs;
355
356 /* Track all indirect instructions (read and write). To avoid
357 * deadlock scenario where an address register gets scheduled,
358 * but other dependent src instructions cannot be scheduled due
359 * to dependency on a *different* address register value, the
360 * scheduler needs to ensure that all dependencies other than
361 * the instruction other than the address register are scheduled
362 * before the one that writes the address register. Having a
363 * convenient list of instructions that reference some address
364 * register simplifies this.
365 */
366 unsigned indirects_count, indirects_sz;
367 struct ir3_instruction **indirects;
368 /* and same for instructions that consume predicate register: */
369 unsigned predicates_count, predicates_sz;
370 struct ir3_instruction **predicates;
371
372 /* List of blocks: */
373 struct list_head block_list;
374
375 unsigned heap_idx;
376 struct ir3_heap_chunk *chunk;
377 };
378
379 typedef struct nir_block nir_block;
380
381 struct ir3_block {
382 struct list_head node;
383 struct ir3 *shader;
384
385 nir_block *nblock;
386
387 struct list_head instr_list; /* list of ir3_instruction */
388
389 /* each block has either one or two successors.. in case of
390 * two successors, 'condition' decides which one to follow.
391 * A block preceding an if/else has two successors.
392 */
393 struct ir3_instruction *condition;
394 struct ir3_block *successors[2];
395
396 uint16_t start_ip, end_ip;
397
398 /* used for per-pass extra block data. Mainly used right
399 * now in RA step to track livein/liveout.
400 */
401 void *bd;
402
403 #ifdef DEBUG
404 uint32_t serialno;
405 #endif
406 };
407
408 struct ir3 * ir3_create(struct ir3_compiler *compiler,
409 unsigned nin, unsigned nout);
410 void ir3_destroy(struct ir3 *shader);
411 void * ir3_assemble(struct ir3 *shader,
412 struct ir3_info *info, uint32_t gpu_id);
413 void * ir3_alloc(struct ir3 *shader, int sz);
414
415 struct ir3_block * ir3_block_create(struct ir3 *shader);
416
417 struct ir3_instruction * ir3_instr_create(struct ir3_block *block,
418 int category, opc_t opc);
419 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
420 int category, opc_t opc, int nreg);
421 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
422 const char *ir3_instr_name(struct ir3_instruction *instr);
423
424 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
425 int num, int flags);
426
427 void ir3_instr_set_address(struct ir3_instruction *instr,
428 struct ir3_instruction *addr);
429
430 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
431 {
432 if (instr->flags & IR3_INSTR_MARK)
433 return true; /* already visited */
434 instr->flags |= IR3_INSTR_MARK;
435 return false;
436 }
437
438 void ir3_block_clear_mark(struct ir3_block *block);
439 void ir3_clear_mark(struct ir3 *shader);
440
441 unsigned ir3_count_instructions(struct ir3 *ir);
442
443 static inline int ir3_instr_regno(struct ir3_instruction *instr,
444 struct ir3_register *reg)
445 {
446 unsigned i;
447 for (i = 0; i < instr->regs_count; i++)
448 if (reg == instr->regs[i])
449 return i;
450 return -1;
451 }
452
453
454 #define MAX_ARRAYS 16
455
456 /* comp:
457 * 0 - x
458 * 1 - y
459 * 2 - z
460 * 3 - w
461 */
462 static inline uint32_t regid(int num, int comp)
463 {
464 return (num << 2) | (comp & 0x3);
465 }
466
467 static inline uint32_t reg_num(struct ir3_register *reg)
468 {
469 return reg->num >> 2;
470 }
471
472 static inline uint32_t reg_comp(struct ir3_register *reg)
473 {
474 return reg->num & 0x3;
475 }
476
477 static inline bool is_flow(struct ir3_instruction *instr)
478 {
479 return (instr->category == 0);
480 }
481
482 static inline bool is_kill(struct ir3_instruction *instr)
483 {
484 return is_flow(instr) && (instr->opc == OPC_KILL);
485 }
486
487 static inline bool is_nop(struct ir3_instruction *instr)
488 {
489 return is_flow(instr) && (instr->opc == OPC_NOP);
490 }
491
492 /* Is it a non-transformative (ie. not type changing) mov? This can
493 * also include absneg.s/absneg.f, which for the most part can be
494 * treated as a mov (single src argument).
495 */
496 static inline bool is_same_type_mov(struct ir3_instruction *instr)
497 {
498 struct ir3_register *dst = instr->regs[0];
499
500 /* mov's that write to a0.x or p0.x are special: */
501 if (dst->num == regid(REG_P0, 0))
502 return false;
503 if (dst->num == regid(REG_A0, 0))
504 return false;
505
506 if ((instr->category == 1) &&
507 (instr->cat1.src_type == instr->cat1.dst_type))
508 return true;
509 if ((instr->category == 2) && ((instr->opc == OPC_ABSNEG_F) ||
510 (instr->opc == OPC_ABSNEG_S)))
511 return true;
512 return false;
513 }
514
515 static inline bool is_alu(struct ir3_instruction *instr)
516 {
517 return (1 <= instr->category) && (instr->category <= 3);
518 }
519
520 static inline bool is_sfu(struct ir3_instruction *instr)
521 {
522 return (instr->category == 4);
523 }
524
525 static inline bool is_tex(struct ir3_instruction *instr)
526 {
527 return (instr->category == 5);
528 }
529
530 static inline bool is_mem(struct ir3_instruction *instr)
531 {
532 return (instr->category == 6);
533 }
534
535 static inline bool
536 is_store(struct ir3_instruction *instr)
537 {
538 if (is_mem(instr)) {
539 /* these instructions, the "destination" register is
540 * actually a source, the address to store to.
541 */
542 switch (instr->opc) {
543 case OPC_STG:
544 case OPC_STP:
545 case OPC_STL:
546 case OPC_STLW:
547 case OPC_L2G:
548 case OPC_G2L:
549 return true;
550 default:
551 break;
552 }
553 }
554 return false;
555 }
556
557 static inline bool is_load(struct ir3_instruction *instr)
558 {
559 if (is_mem(instr)) {
560 switch (instr->opc) {
561 case OPC_LDG:
562 case OPC_LDL:
563 case OPC_LDP:
564 case OPC_L2G:
565 case OPC_LDLW:
566 case OPC_LDC_4:
567 case OPC_LDLV:
568 /* probably some others too.. */
569 return true;
570 default:
571 break;
572 }
573 }
574 return false;
575 }
576
577 static inline bool is_input(struct ir3_instruction *instr)
578 {
579 /* in some cases, ldlv is used to fetch varying without
580 * interpolation.. fortunately inloc is the first src
581 * register in either case
582 */
583 if (is_mem(instr) && (instr->opc == OPC_LDLV))
584 return true;
585 return (instr->category == 2) && (instr->opc == OPC_BARY_F);
586 }
587
588 static inline bool is_meta(struct ir3_instruction *instr)
589 {
590 /* TODO how should we count PHI (and maybe fan-in/out) which
591 * might actually contribute some instructions to the final
592 * result?
593 */
594 return (instr->category == -1);
595 }
596
597 static inline bool writes_addr(struct ir3_instruction *instr)
598 {
599 if (instr->regs_count > 0) {
600 struct ir3_register *dst = instr->regs[0];
601 return reg_num(dst) == REG_A0;
602 }
603 return false;
604 }
605
606 static inline bool writes_pred(struct ir3_instruction *instr)
607 {
608 if (instr->regs_count > 0) {
609 struct ir3_register *dst = instr->regs[0];
610 return reg_num(dst) == REG_P0;
611 }
612 return false;
613 }
614
615 /* returns defining instruction for reg */
616 /* TODO better name */
617 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
618 {
619 if (reg->flags & IR3_REG_SSA)
620 return reg->instr;
621 return NULL;
622 }
623
624 static inline bool conflicts(struct ir3_instruction *a,
625 struct ir3_instruction *b)
626 {
627 return (a && b) && (a != b);
628 }
629
630 static inline bool reg_gpr(struct ir3_register *r)
631 {
632 if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
633 return false;
634 if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
635 return false;
636 return true;
637 }
638
639 static inline type_t half_type(type_t type)
640 {
641 switch (type) {
642 case TYPE_F32: return TYPE_F16;
643 case TYPE_U32: return TYPE_U16;
644 case TYPE_S32: return TYPE_S16;
645 case TYPE_F16:
646 case TYPE_U16:
647 case TYPE_S16:
648 return type;
649 default:
650 assert(0);
651 return ~0;
652 }
653 }
654
655 /* some cat2 instructions (ie. those which are not float) can embed an
656 * immediate:
657 */
658 static inline bool ir3_cat2_int(opc_t opc)
659 {
660 switch (opc) {
661 case OPC_ADD_U:
662 case OPC_ADD_S:
663 case OPC_SUB_U:
664 case OPC_SUB_S:
665 case OPC_CMPS_U:
666 case OPC_CMPS_S:
667 case OPC_MIN_U:
668 case OPC_MIN_S:
669 case OPC_MAX_U:
670 case OPC_MAX_S:
671 case OPC_CMPV_U:
672 case OPC_CMPV_S:
673 case OPC_MUL_U:
674 case OPC_MUL_S:
675 case OPC_MULL_U:
676 case OPC_CLZ_S:
677 case OPC_ABSNEG_S:
678 case OPC_AND_B:
679 case OPC_OR_B:
680 case OPC_NOT_B:
681 case OPC_XOR_B:
682 case OPC_BFREV_B:
683 case OPC_CLZ_B:
684 case OPC_SHL_B:
685 case OPC_SHR_B:
686 case OPC_ASHR_B:
687 case OPC_MGEN_B:
688 case OPC_GETBIT_B:
689 case OPC_CBITS_B:
690 case OPC_BARY_F:
691 return true;
692
693 default:
694 return false;
695 }
696 }
697
698
699 /* map cat2 instruction to valid abs/neg flags: */
700 static inline unsigned ir3_cat2_absneg(opc_t opc)
701 {
702 switch (opc) {
703 case OPC_ADD_F:
704 case OPC_MIN_F:
705 case OPC_MAX_F:
706 case OPC_MUL_F:
707 case OPC_SIGN_F:
708 case OPC_CMPS_F:
709 case OPC_ABSNEG_F:
710 case OPC_CMPV_F:
711 case OPC_FLOOR_F:
712 case OPC_CEIL_F:
713 case OPC_RNDNE_F:
714 case OPC_RNDAZ_F:
715 case OPC_TRUNC_F:
716 case OPC_BARY_F:
717 return IR3_REG_FABS | IR3_REG_FNEG;
718
719 case OPC_ADD_U:
720 case OPC_ADD_S:
721 case OPC_SUB_U:
722 case OPC_SUB_S:
723 case OPC_CMPS_U:
724 case OPC_CMPS_S:
725 case OPC_MIN_U:
726 case OPC_MIN_S:
727 case OPC_MAX_U:
728 case OPC_MAX_S:
729 case OPC_CMPV_U:
730 case OPC_CMPV_S:
731 case OPC_MUL_U:
732 case OPC_MUL_S:
733 case OPC_MULL_U:
734 case OPC_CLZ_S:
735 return 0;
736
737 case OPC_ABSNEG_S:
738 return IR3_REG_SABS | IR3_REG_SNEG;
739
740 case OPC_AND_B:
741 case OPC_OR_B:
742 case OPC_NOT_B:
743 case OPC_XOR_B:
744 case OPC_BFREV_B:
745 case OPC_CLZ_B:
746 case OPC_SHL_B:
747 case OPC_SHR_B:
748 case OPC_ASHR_B:
749 case OPC_MGEN_B:
750 case OPC_GETBIT_B:
751 case OPC_CBITS_B:
752 return IR3_REG_BNOT;
753
754 default:
755 return 0;
756 }
757 }
758
759 /* map cat3 instructions to valid abs/neg flags: */
760 static inline unsigned ir3_cat3_absneg(opc_t opc)
761 {
762 switch (opc) {
763 case OPC_MAD_F16:
764 case OPC_MAD_F32:
765 case OPC_SEL_F16:
766 case OPC_SEL_F32:
767 return IR3_REG_FNEG;
768
769 case OPC_MAD_U16:
770 case OPC_MADSH_U16:
771 case OPC_MAD_S16:
772 case OPC_MADSH_M16:
773 case OPC_MAD_U24:
774 case OPC_MAD_S24:
775 case OPC_SEL_S16:
776 case OPC_SEL_S32:
777 case OPC_SAD_S16:
778 case OPC_SAD_S32:
779 /* neg *may* work on 3rd src.. */
780
781 case OPC_SEL_B16:
782 case OPC_SEL_B32:
783
784 default:
785 return 0;
786 }
787 }
788
789 #define array_insert(arr, val) do { \
790 if (arr ## _count == arr ## _sz) { \
791 arr ## _sz = MAX2(2 * arr ## _sz, 16); \
792 arr = realloc(arr, arr ## _sz * sizeof(arr[0])); \
793 } \
794 arr[arr ##_count++] = val; \
795 } while (0)
796
797 /* iterator for an instructions's sources (reg), also returns src #: */
798 #define foreach_src_n(__srcreg, __n, __instr) \
799 if ((__instr)->regs_count) \
800 for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
801 if ((__srcreg = (__instr)->regs[__n + 1]))
802
803 /* iterator for an instructions's sources (reg): */
804 #define foreach_src(__srcreg, __instr) \
805 foreach_src_n(__srcreg, __i, __instr)
806
807 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
808 {
809 if (instr->fanin)
810 return instr->regs_count + 2;
811 if (instr->address)
812 return instr->regs_count + 1;
813 return instr->regs_count;
814 }
815
816 static inline struct ir3_instruction * __ssa_src_n(struct ir3_instruction *instr, unsigned n)
817 {
818 if (n == (instr->regs_count + 1))
819 return instr->fanin;
820 if (n == (instr->regs_count + 0))
821 return instr->address;
822 return ssa(instr->regs[n]);
823 }
824
825 #define __src_cnt(__instr) ((__instr)->address ? (__instr)->regs_count : (__instr)->regs_count - 1)
826
827 /* iterator for an instruction's SSA sources (instr), also returns src #: */
828 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
829 if ((__instr)->regs_count) \
830 for (unsigned __cnt = __ssa_src_cnt(__instr) - 1, __n = 0; __n < __cnt; __n++) \
831 if ((__srcinst = __ssa_src_n(__instr, __n + 1)))
832
833 /* iterator for an instruction's SSA sources (instr): */
834 #define foreach_ssa_src(__srcinst, __instr) \
835 foreach_ssa_src_n(__srcinst, __i, __instr)
836
837
838 /* dump: */
839 void ir3_print(struct ir3 *ir);
840 void ir3_print_instr(struct ir3_instruction *instr);
841
842 /* depth calculation: */
843 int ir3_delayslots(struct ir3_instruction *assigner,
844 struct ir3_instruction *consumer, unsigned n);
845 void ir3_insert_by_depth(struct ir3_instruction *instr, struct list_head *list);
846 void ir3_depth(struct ir3 *ir);
847
848 /* copy-propagate: */
849 void ir3_cp(struct ir3 *ir);
850
851 /* group neighbors and insert mov's to resolve conflicts: */
852 void ir3_group(struct ir3 *ir);
853
854 /* scheduling: */
855 int ir3_sched(struct ir3 *ir);
856
857 /* register assignment: */
858 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(void *memctx);
859 int ir3_ra(struct ir3 *ir3, enum shader_t type,
860 bool frag_coord, bool frag_face);
861
862 /* legalize: */
863 void ir3_legalize(struct ir3 *ir, bool *has_samp, int *max_bary);
864
865 /* ************************************************************************* */
866 /* instruction helpers */
867
868 static inline struct ir3_instruction *
869 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
870 {
871 struct ir3_instruction *instr =
872 ir3_instr_create(block, 1, 0);
873 ir3_reg_create(instr, 0, 0); /* dst */
874 ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
875 instr->cat1.src_type = type;
876 instr->cat1.dst_type = type;
877 return instr;
878 }
879
880 static inline struct ir3_instruction *
881 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
882 type_t src_type, type_t dst_type)
883 {
884 struct ir3_instruction *instr =
885 ir3_instr_create(block, 1, 0);
886 ir3_reg_create(instr, 0, 0); /* dst */
887 ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
888 instr->cat1.src_type = src_type;
889 instr->cat1.dst_type = dst_type;
890 return instr;
891 }
892
893 static inline struct ir3_instruction *
894 ir3_NOP(struct ir3_block *block)
895 {
896 return ir3_instr_create(block, 0, OPC_NOP);
897 }
898
899 #define INSTR0(CAT, name) \
900 static inline struct ir3_instruction * \
901 ir3_##name(struct ir3_block *block) \
902 { \
903 struct ir3_instruction *instr = \
904 ir3_instr_create(block, CAT, OPC_##name); \
905 return instr; \
906 }
907
908 #define INSTR1(CAT, name) \
909 static inline struct ir3_instruction * \
910 ir3_##name(struct ir3_block *block, \
911 struct ir3_instruction *a, unsigned aflags) \
912 { \
913 struct ir3_instruction *instr = \
914 ir3_instr_create(block, CAT, OPC_##name); \
915 ir3_reg_create(instr, 0, 0); /* dst */ \
916 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
917 return instr; \
918 }
919
920 #define INSTR2(CAT, name) \
921 static inline struct ir3_instruction * \
922 ir3_##name(struct ir3_block *block, \
923 struct ir3_instruction *a, unsigned aflags, \
924 struct ir3_instruction *b, unsigned bflags) \
925 { \
926 struct ir3_instruction *instr = \
927 ir3_instr_create(block, CAT, OPC_##name); \
928 ir3_reg_create(instr, 0, 0); /* dst */ \
929 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
930 ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b; \
931 return instr; \
932 }
933
934 #define INSTR3(CAT, name) \
935 static inline struct ir3_instruction * \
936 ir3_##name(struct ir3_block *block, \
937 struct ir3_instruction *a, unsigned aflags, \
938 struct ir3_instruction *b, unsigned bflags, \
939 struct ir3_instruction *c, unsigned cflags) \
940 { \
941 struct ir3_instruction *instr = \
942 ir3_instr_create(block, CAT, OPC_##name); \
943 ir3_reg_create(instr, 0, 0); /* dst */ \
944 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
945 ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b; \
946 ir3_reg_create(instr, 0, IR3_REG_SSA | cflags)->instr = c; \
947 return instr; \
948 }
949
950 /* cat0 instructions: */
951 INSTR0(0, BR);
952 INSTR0(0, JUMP);
953 INSTR1(0, KILL);
954 INSTR0(0, END);
955
956 /* cat2 instructions, most 2 src but some 1 src: */
957 INSTR2(2, ADD_F)
958 INSTR2(2, MIN_F)
959 INSTR2(2, MAX_F)
960 INSTR2(2, MUL_F)
961 INSTR1(2, SIGN_F)
962 INSTR2(2, CMPS_F)
963 INSTR1(2, ABSNEG_F)
964 INSTR2(2, CMPV_F)
965 INSTR1(2, FLOOR_F)
966 INSTR1(2, CEIL_F)
967 INSTR1(2, RNDNE_F)
968 INSTR1(2, RNDAZ_F)
969 INSTR1(2, TRUNC_F)
970 INSTR2(2, ADD_U)
971 INSTR2(2, ADD_S)
972 INSTR2(2, SUB_U)
973 INSTR2(2, SUB_S)
974 INSTR2(2, CMPS_U)
975 INSTR2(2, CMPS_S)
976 INSTR2(2, MIN_U)
977 INSTR2(2, MIN_S)
978 INSTR2(2, MAX_U)
979 INSTR2(2, MAX_S)
980 INSTR1(2, ABSNEG_S)
981 INSTR2(2, AND_B)
982 INSTR2(2, OR_B)
983 INSTR1(2, NOT_B)
984 INSTR2(2, XOR_B)
985 INSTR2(2, CMPV_U)
986 INSTR2(2, CMPV_S)
987 INSTR2(2, MUL_U)
988 INSTR2(2, MUL_S)
989 INSTR2(2, MULL_U)
990 INSTR1(2, BFREV_B)
991 INSTR1(2, CLZ_S)
992 INSTR1(2, CLZ_B)
993 INSTR2(2, SHL_B)
994 INSTR2(2, SHR_B)
995 INSTR2(2, ASHR_B)
996 INSTR2(2, BARY_F)
997 INSTR2(2, MGEN_B)
998 INSTR2(2, GETBIT_B)
999 INSTR1(2, SETRM)
1000 INSTR1(2, CBITS_B)
1001 INSTR2(2, SHB)
1002 INSTR2(2, MSAD)
1003
1004 /* cat3 instructions: */
1005 INSTR3(3, MAD_U16)
1006 INSTR3(3, MADSH_U16)
1007 INSTR3(3, MAD_S16)
1008 INSTR3(3, MADSH_M16)
1009 INSTR3(3, MAD_U24)
1010 INSTR3(3, MAD_S24)
1011 INSTR3(3, MAD_F16)
1012 INSTR3(3, MAD_F32)
1013 INSTR3(3, SEL_B16)
1014 INSTR3(3, SEL_B32)
1015 INSTR3(3, SEL_S16)
1016 INSTR3(3, SEL_S32)
1017 INSTR3(3, SEL_F16)
1018 INSTR3(3, SEL_F32)
1019 INSTR3(3, SAD_S16)
1020 INSTR3(3, SAD_S32)
1021
1022 /* cat4 instructions: */
1023 INSTR1(4, RCP)
1024 INSTR1(4, RSQ)
1025 INSTR1(4, LOG2)
1026 INSTR1(4, EXP2)
1027 INSTR1(4, SIN)
1028 INSTR1(4, COS)
1029 INSTR1(4, SQRT)
1030
1031 /* cat5 instructions: */
1032 INSTR1(5, DSX)
1033 INSTR1(5, DSY)
1034
1035 static inline struct ir3_instruction *
1036 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
1037 unsigned wrmask, unsigned flags, unsigned samp, unsigned tex,
1038 struct ir3_instruction *src0, struct ir3_instruction *src1)
1039 {
1040 struct ir3_instruction *sam;
1041 struct ir3_register *reg;
1042
1043 sam = ir3_instr_create(block, 5, opc);
1044 sam->flags |= flags;
1045 ir3_reg_create(sam, 0, 0)->wrmask = wrmask;
1046 if (src0) {
1047 reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
1048 reg->wrmask = (1 << (src0->regs_count - 1)) - 1;
1049 reg->instr = src0;
1050 }
1051 if (src1) {
1052 reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
1053 reg->instr = src1;
1054 reg->wrmask = (1 << (src1->regs_count - 1)) - 1;
1055 }
1056 sam->cat5.samp = samp;
1057 sam->cat5.tex = tex;
1058 sam->cat5.type = type;
1059
1060 return sam;
1061 }
1062
1063 /* cat6 instructions: */
1064 INSTR2(6, LDLV)
1065 INSTR2(6, LDG)
1066 INSTR3(6, STG)
1067
1068 /* ************************************************************************* */
1069 /* split this out or find some helper to use.. like main/bitset.h.. */
1070
1071 #include <string.h>
1072
1073 #define MAX_REG 256
1074
1075 typedef uint8_t regmask_t[2 * MAX_REG / 8];
1076
1077 static inline unsigned regmask_idx(struct ir3_register *reg)
1078 {
1079 unsigned num = reg->num;
1080 debug_assert(num < MAX_REG);
1081 if (reg->flags & IR3_REG_HALF)
1082 num += MAX_REG;
1083 return num;
1084 }
1085
1086 static inline void regmask_init(regmask_t *regmask)
1087 {
1088 memset(regmask, 0, sizeof(*regmask));
1089 }
1090
1091 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1092 {
1093 unsigned idx = regmask_idx(reg);
1094 if (reg->flags & IR3_REG_RELATIV) {
1095 unsigned i;
1096 for (i = 0; i < reg->size; i++, idx++)
1097 (*regmask)[idx / 8] |= 1 << (idx % 8);
1098 } else {
1099 unsigned mask;
1100 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1101 if (mask & 1)
1102 (*regmask)[idx / 8] |= 1 << (idx % 8);
1103 }
1104 }
1105
1106 static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
1107 {
1108 unsigned i;
1109 for (i = 0; i < ARRAY_SIZE(*dst); i++)
1110 (*dst)[i] = (*a)[i] | (*b)[i];
1111 }
1112
1113 /* set bits in a if not set in b, conceptually:
1114 * a |= (reg & ~b)
1115 */
1116 static inline void regmask_set_if_not(regmask_t *a,
1117 struct ir3_register *reg, regmask_t *b)
1118 {
1119 unsigned idx = regmask_idx(reg);
1120 if (reg->flags & IR3_REG_RELATIV) {
1121 unsigned i;
1122 for (i = 0; i < reg->size; i++, idx++)
1123 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1124 (*a)[idx / 8] |= 1 << (idx % 8);
1125 } else {
1126 unsigned mask;
1127 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1128 if (mask & 1)
1129 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1130 (*a)[idx / 8] |= 1 << (idx % 8);
1131 }
1132 }
1133
1134 static inline bool regmask_get(regmask_t *regmask,
1135 struct ir3_register *reg)
1136 {
1137 unsigned idx = regmask_idx(reg);
1138 if (reg->flags & IR3_REG_RELATIV) {
1139 unsigned i;
1140 for (i = 0; i < reg->size; i++, idx++)
1141 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1142 return true;
1143 } else {
1144 unsigned mask;
1145 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1146 if (mask & 1)
1147 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1148 return true;
1149 }
1150 return false;
1151 }
1152
1153 /* ************************************************************************* */
1154
1155 #endif /* IR3_H_ */