freedreno/ir3: rename ir3_block::bd
[mesa.git] / src / gallium / drivers / freedreno / ir3 / ir3.h
1 /*
2 * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #ifndef IR3_H_
25 #define IR3_H_
26
27 #include <stdint.h>
28 #include <stdbool.h>
29
30 #include "util/u_debug.h"
31 #include "util/list.h"
32
33 #include "instr-a3xx.h"
34 #include "disasm.h" /* TODO move 'enum shader_t' somewhere else.. */
35
36 /* low level intermediate representation of an adreno shader program */
37
38 struct ir3_compiler;
39 struct ir3;
40 struct ir3_instruction;
41 struct ir3_block;
42
43 struct ir3_info {
44 uint32_t gpu_id;
45 uint16_t sizedwords;
46 uint16_t instrs_count; /* expanded to account for rpt's */
47 /* NOTE: max_reg, etc, does not include registers not touched
48 * by the shader (ie. vertex fetched via VFD_DECODE but not
49 * touched by shader)
50 */
51 int8_t max_reg; /* highest GPR # used by shader */
52 int8_t max_half_reg;
53 int16_t max_const;
54 };
55
56 struct ir3_register {
57 enum {
58 IR3_REG_CONST = 0x001,
59 IR3_REG_IMMED = 0x002,
60 IR3_REG_HALF = 0x004,
61 IR3_REG_RELATIV= 0x008,
62 IR3_REG_R = 0x010,
63 /* Most instructions, it seems, can do float abs/neg but not
64 * integer. The CP pass needs to know what is intended (int or
65 * float) in order to do the right thing. For this reason the
66 * abs/neg flags are split out into float and int variants. In
67 * addition, .b (bitwise) operations, the negate is actually a
68 * bitwise not, so split that out into a new flag to make it
69 * more clear.
70 */
71 IR3_REG_FNEG = 0x020,
72 IR3_REG_FABS = 0x040,
73 IR3_REG_SNEG = 0x080,
74 IR3_REG_SABS = 0x100,
75 IR3_REG_BNOT = 0x200,
76 IR3_REG_EVEN = 0x400,
77 IR3_REG_POS_INF= 0x800,
78 /* (ei) flag, end-input? Set on last bary, presumably to signal
79 * that the shader needs no more input:
80 */
81 IR3_REG_EI = 0x1000,
82 /* meta-flags, for intermediate stages of IR, ie.
83 * before register assignment is done:
84 */
85 IR3_REG_SSA = 0x2000, /* 'instr' is ptr to assigning instr */
86 IR3_REG_PHI_SRC= 0x4000, /* phi src, regs[0]->instr points to phi */
87
88 } flags;
89 union {
90 /* normal registers:
91 * the component is in the low two bits of the reg #, so
92 * rN.x becomes: (N << 2) | x
93 */
94 int num;
95 /* immediate: */
96 int32_t iim_val;
97 uint32_t uim_val;
98 float fim_val;
99 /* relative: */
100 int offset;
101 };
102
103 /* for IR3_REG_SSA, src registers contain ptr back to
104 * assigning instruction.
105 */
106 struct ir3_instruction *instr;
107
108 union {
109 /* used for cat5 instructions, but also for internal/IR level
110 * tracking of what registers are read/written by an instruction.
111 * wrmask may be a bad name since it is used to represent both
112 * src and dst that touch multiple adjacent registers.
113 */
114 unsigned wrmask;
115 /* for relative addressing, 32bits for array size is too small,
116 * but otoh we don't need to deal with disjoint sets, so instead
117 * use a simple size field (number of scalar components).
118 */
119 unsigned size;
120 };
121 };
122
123 struct ir3_instruction {
124 struct ir3_block *block;
125 int category;
126 opc_t opc;
127 enum {
128 /* (sy) flag is set on first instruction, and after sample
129 * instructions (probably just on RAW hazard).
130 */
131 IR3_INSTR_SY = 0x001,
132 /* (ss) flag is set on first instruction, and first instruction
133 * to depend on the result of "long" instructions (RAW hazard):
134 *
135 * rcp, rsq, log2, exp2, sin, cos, sqrt
136 *
137 * It seems to synchronize until all in-flight instructions are
138 * completed, for example:
139 *
140 * rsq hr1.w, hr1.w
141 * add.f hr2.z, (neg)hr2.z, hc0.y
142 * mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
143 * rsq hr2.x, hr2.x
144 * (rpt1)nop
145 * mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
146 * nop
147 * mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
148 * (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
149 * (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
150 *
151 * The last mul.f does not have (ss) set, presumably because the
152 * (ss) on the previous instruction does the job.
153 *
154 * The blob driver also seems to set it on WAR hazards, although
155 * not really clear if this is needed or just blob compiler being
156 * sloppy. So far I haven't found a case where removing the (ss)
157 * causes problems for WAR hazard, but I could just be getting
158 * lucky:
159 *
160 * rcp r1.y, r3.y
161 * (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
162 *
163 */
164 IR3_INSTR_SS = 0x002,
165 /* (jp) flag is set on jump targets:
166 */
167 IR3_INSTR_JP = 0x004,
168 IR3_INSTR_UL = 0x008,
169 IR3_INSTR_3D = 0x010,
170 IR3_INSTR_A = 0x020,
171 IR3_INSTR_O = 0x040,
172 IR3_INSTR_P = 0x080,
173 IR3_INSTR_S = 0x100,
174 IR3_INSTR_S2EN = 0x200,
175 IR3_INSTR_G = 0x400,
176 /* meta-flags, for intermediate stages of IR, ie.
177 * before register assignment is done:
178 */
179 IR3_INSTR_MARK = 0x1000,
180 IR3_INSTR_UNUSED= 0x2000,
181 } flags;
182 int repeat;
183 #ifdef DEBUG
184 unsigned regs_max;
185 #endif
186 unsigned regs_count;
187 struct ir3_register **regs;
188 union {
189 struct {
190 char inv;
191 char comp;
192 int immed;
193 struct ir3_block *target;
194 } cat0;
195 struct {
196 type_t src_type, dst_type;
197 } cat1;
198 struct {
199 enum {
200 IR3_COND_LT = 0,
201 IR3_COND_LE = 1,
202 IR3_COND_GT = 2,
203 IR3_COND_GE = 3,
204 IR3_COND_EQ = 4,
205 IR3_COND_NE = 5,
206 } condition;
207 } cat2;
208 struct {
209 unsigned samp, tex;
210 type_t type;
211 } cat5;
212 struct {
213 type_t type;
214 int src_offset;
215 int dst_offset;
216 int iim_val;
217 } cat6;
218 /* for meta-instructions, just used to hold extra data
219 * before instruction scheduling, etc
220 */
221 struct {
222 int off; /* component/offset */
223 } fo;
224 struct {
225 int aid;
226 } fi;
227 struct {
228 /* used to temporarily hold reference to nir_phi_instr
229 * until we resolve the phi srcs
230 */
231 void *nphi;
232 } phi;
233 struct {
234 struct ir3_block *block;
235 } inout;
236 };
237
238 /* transient values used during various algorithms: */
239 union {
240 /* The instruction depth is the max dependency distance to output.
241 *
242 * You can also think of it as the "cost", if we did any sort of
243 * optimization for register footprint. Ie. a value that is just
244 * result of moving a const to a reg would have a low cost, so to
245 * it could make sense to duplicate the instruction at various
246 * points where the result is needed to reduce register footprint.
247 */
248 unsigned depth;
249 /* When we get to the RA stage, we no longer need depth, but
250 * we do need instruction's position/name:
251 */
252 struct {
253 uint16_t ip;
254 uint16_t name;
255 };
256 };
257
258 /* Used during CP and RA stages. For fanin and shader inputs/
259 * outputs where we need a sequence of consecutive registers,
260 * keep track of each src instructions left (ie 'n-1') and right
261 * (ie 'n+1') neighbor. The front-end must insert enough mov's
262 * to ensure that each instruction has at most one left and at
263 * most one right neighbor. During the copy-propagation pass,
264 * we only remove mov's when we can preserve this constraint.
265 * And during the RA stage, we use the neighbor information to
266 * allocate a block of registers in one shot.
267 *
268 * TODO: maybe just add something like:
269 * struct ir3_instruction_ref {
270 * struct ir3_instruction *instr;
271 * unsigned cnt;
272 * }
273 *
274 * Or can we get away without the refcnt stuff? It seems like
275 * it should be overkill.. the problem is if, potentially after
276 * already eliminating some mov's, if you have a single mov that
277 * needs to be grouped with it's neighbors in two different
278 * places (ex. shader output and a fanin).
279 */
280 struct {
281 struct ir3_instruction *left, *right;
282 uint16_t left_cnt, right_cnt;
283 } cp;
284
285 /* an instruction can reference at most one address register amongst
286 * it's src/dst registers. Beyond that, you need to insert mov's.
287 *
288 * NOTE: do not write this directly, use ir3_instr_set_address()
289 */
290 struct ir3_instruction *address;
291
292 /* in case of a instruction with relative dst instruction, we need to
293 * capture the dependency on the fanin for the previous values of
294 * the array elements. Since we don't know at compile time actually
295 * which array elements are written, this serves to preserve the
296 * unconditional write to array elements prior to the conditional
297 * write.
298 *
299 * TODO only cat1 can do indirect write.. we could maybe move this
300 * into instr->cat1.fanin (but would require the frontend to insert
301 * the extra mov)
302 */
303 struct ir3_instruction *fanin;
304
305 /* Entry in ir3_block's instruction list: */
306 struct list_head node;
307
308 #ifdef DEBUG
309 uint32_t serialno;
310 #endif
311 };
312
313 static inline struct ir3_instruction *
314 ir3_neighbor_first(struct ir3_instruction *instr)
315 {
316 while (instr->cp.left)
317 instr = instr->cp.left;
318 return instr;
319 }
320
321 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
322 {
323 int num = 1;
324
325 debug_assert(!instr->cp.left);
326
327 while (instr->cp.right) {
328 num++;
329 instr = instr->cp.right;
330 }
331
332 return num;
333 }
334
335 struct ir3_heap_chunk;
336
337 struct ir3 {
338 struct ir3_compiler *compiler;
339
340 unsigned ninputs, noutputs;
341 struct ir3_instruction **inputs;
342 struct ir3_instruction **outputs;
343
344 /* Track bary.f (and ldlv) instructions.. this is needed in
345 * scheduling to ensure that all varying fetches happen before
346 * any potential kill instructions. The hw gets grumpy if all
347 * threads in a group are killed before the last bary.f gets
348 * a chance to signal end of input (ei).
349 */
350 unsigned baryfs_count, baryfs_sz;
351 struct ir3_instruction **baryfs;
352
353 /* Track all indirect instructions (read and write). To avoid
354 * deadlock scenario where an address register gets scheduled,
355 * but other dependent src instructions cannot be scheduled due
356 * to dependency on a *different* address register value, the
357 * scheduler needs to ensure that all dependencies other than
358 * the instruction other than the address register are scheduled
359 * before the one that writes the address register. Having a
360 * convenient list of instructions that reference some address
361 * register simplifies this.
362 */
363 unsigned indirects_count, indirects_sz;
364 struct ir3_instruction **indirects;
365 /* and same for instructions that consume predicate register: */
366 unsigned predicates_count, predicates_sz;
367 struct ir3_instruction **predicates;
368
369 /* Track instructions which do not write a register but other-
370 * wise must not be discarded (such as kill, stg, etc)
371 */
372 unsigned keeps_count, keeps_sz;
373 struct ir3_instruction **keeps;
374
375 /* List of blocks: */
376 struct list_head block_list;
377
378 unsigned heap_idx;
379 struct ir3_heap_chunk *chunk;
380 };
381
382 typedef struct nir_block nir_block;
383
384 struct ir3_block {
385 struct list_head node;
386 struct ir3 *shader;
387
388 nir_block *nblock;
389
390 struct list_head instr_list; /* list of ir3_instruction */
391
392 /* each block has either one or two successors.. in case of
393 * two successors, 'condition' decides which one to follow.
394 * A block preceding an if/else has two successors.
395 */
396 struct ir3_instruction *condition;
397 struct ir3_block *successors[2];
398
399 uint16_t start_ip, end_ip;
400
401 /* used for per-pass extra block data. Mainly used right
402 * now in RA step to track livein/liveout.
403 */
404 void *data;
405
406 #ifdef DEBUG
407 uint32_t serialno;
408 #endif
409 };
410
411 struct ir3 * ir3_create(struct ir3_compiler *compiler,
412 unsigned nin, unsigned nout);
413 void ir3_destroy(struct ir3 *shader);
414 void * ir3_assemble(struct ir3 *shader,
415 struct ir3_info *info, uint32_t gpu_id);
416 void * ir3_alloc(struct ir3 *shader, int sz);
417
418 struct ir3_block * ir3_block_create(struct ir3 *shader);
419
420 struct ir3_instruction * ir3_instr_create(struct ir3_block *block,
421 int category, opc_t opc);
422 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
423 int category, opc_t opc, int nreg);
424 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
425 const char *ir3_instr_name(struct ir3_instruction *instr);
426
427 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
428 int num, int flags);
429
430 void ir3_instr_set_address(struct ir3_instruction *instr,
431 struct ir3_instruction *addr);
432
433 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
434 {
435 if (instr->flags & IR3_INSTR_MARK)
436 return true; /* already visited */
437 instr->flags |= IR3_INSTR_MARK;
438 return false;
439 }
440
441 void ir3_block_clear_mark(struct ir3_block *block);
442 void ir3_clear_mark(struct ir3 *shader);
443
444 unsigned ir3_count_instructions(struct ir3 *ir);
445
446 static inline int ir3_instr_regno(struct ir3_instruction *instr,
447 struct ir3_register *reg)
448 {
449 unsigned i;
450 for (i = 0; i < instr->regs_count; i++)
451 if (reg == instr->regs[i])
452 return i;
453 return -1;
454 }
455
456
457 #define MAX_ARRAYS 16
458
459 /* comp:
460 * 0 - x
461 * 1 - y
462 * 2 - z
463 * 3 - w
464 */
465 static inline uint32_t regid(int num, int comp)
466 {
467 return (num << 2) | (comp & 0x3);
468 }
469
470 static inline uint32_t reg_num(struct ir3_register *reg)
471 {
472 return reg->num >> 2;
473 }
474
475 static inline uint32_t reg_comp(struct ir3_register *reg)
476 {
477 return reg->num & 0x3;
478 }
479
480 static inline bool is_flow(struct ir3_instruction *instr)
481 {
482 return (instr->category == 0);
483 }
484
485 static inline bool is_kill(struct ir3_instruction *instr)
486 {
487 return is_flow(instr) && (instr->opc == OPC_KILL);
488 }
489
490 static inline bool is_nop(struct ir3_instruction *instr)
491 {
492 return is_flow(instr) && (instr->opc == OPC_NOP);
493 }
494
495 /* Is it a non-transformative (ie. not type changing) mov? This can
496 * also include absneg.s/absneg.f, which for the most part can be
497 * treated as a mov (single src argument).
498 */
499 static inline bool is_same_type_mov(struct ir3_instruction *instr)
500 {
501 struct ir3_register *dst = instr->regs[0];
502
503 /* mov's that write to a0.x or p0.x are special: */
504 if (dst->num == regid(REG_P0, 0))
505 return false;
506 if (dst->num == regid(REG_A0, 0))
507 return false;
508
509 if ((instr->category == 1) &&
510 (instr->cat1.src_type == instr->cat1.dst_type))
511 return true;
512 if ((instr->category == 2) && ((instr->opc == OPC_ABSNEG_F) ||
513 (instr->opc == OPC_ABSNEG_S)))
514 return true;
515 return false;
516 }
517
518 static inline bool is_alu(struct ir3_instruction *instr)
519 {
520 return (1 <= instr->category) && (instr->category <= 3);
521 }
522
523 static inline bool is_sfu(struct ir3_instruction *instr)
524 {
525 return (instr->category == 4);
526 }
527
528 static inline bool is_tex(struct ir3_instruction *instr)
529 {
530 return (instr->category == 5);
531 }
532
533 static inline bool is_mem(struct ir3_instruction *instr)
534 {
535 return (instr->category == 6);
536 }
537
538 static inline bool
539 is_store(struct ir3_instruction *instr)
540 {
541 if (is_mem(instr)) {
542 /* these instructions, the "destination" register is
543 * actually a source, the address to store to.
544 */
545 switch (instr->opc) {
546 case OPC_STG:
547 case OPC_STP:
548 case OPC_STL:
549 case OPC_STLW:
550 case OPC_L2G:
551 case OPC_G2L:
552 return true;
553 default:
554 break;
555 }
556 }
557 return false;
558 }
559
560 static inline bool is_load(struct ir3_instruction *instr)
561 {
562 if (is_mem(instr)) {
563 switch (instr->opc) {
564 case OPC_LDG:
565 case OPC_LDL:
566 case OPC_LDP:
567 case OPC_L2G:
568 case OPC_LDLW:
569 case OPC_LDC_4:
570 case OPC_LDLV:
571 /* probably some others too.. */
572 return true;
573 default:
574 break;
575 }
576 }
577 return false;
578 }
579
580 static inline bool is_input(struct ir3_instruction *instr)
581 {
582 /* in some cases, ldlv is used to fetch varying without
583 * interpolation.. fortunately inloc is the first src
584 * register in either case
585 */
586 if (is_mem(instr) && (instr->opc == OPC_LDLV))
587 return true;
588 return (instr->category == 2) && (instr->opc == OPC_BARY_F);
589 }
590
591 static inline bool is_meta(struct ir3_instruction *instr)
592 {
593 /* TODO how should we count PHI (and maybe fan-in/out) which
594 * might actually contribute some instructions to the final
595 * result?
596 */
597 return (instr->category == -1);
598 }
599
600 static inline bool writes_addr(struct ir3_instruction *instr)
601 {
602 if (instr->regs_count > 0) {
603 struct ir3_register *dst = instr->regs[0];
604 return reg_num(dst) == REG_A0;
605 }
606 return false;
607 }
608
609 static inline bool writes_pred(struct ir3_instruction *instr)
610 {
611 if (instr->regs_count > 0) {
612 struct ir3_register *dst = instr->regs[0];
613 return reg_num(dst) == REG_P0;
614 }
615 return false;
616 }
617
618 /* returns defining instruction for reg */
619 /* TODO better name */
620 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
621 {
622 if (reg->flags & IR3_REG_SSA)
623 return reg->instr;
624 return NULL;
625 }
626
627 static inline bool conflicts(struct ir3_instruction *a,
628 struct ir3_instruction *b)
629 {
630 return (a && b) && (a != b);
631 }
632
633 static inline bool reg_gpr(struct ir3_register *r)
634 {
635 if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
636 return false;
637 if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
638 return false;
639 return true;
640 }
641
642 static inline type_t half_type(type_t type)
643 {
644 switch (type) {
645 case TYPE_F32: return TYPE_F16;
646 case TYPE_U32: return TYPE_U16;
647 case TYPE_S32: return TYPE_S16;
648 case TYPE_F16:
649 case TYPE_U16:
650 case TYPE_S16:
651 return type;
652 default:
653 assert(0);
654 return ~0;
655 }
656 }
657
658 /* some cat2 instructions (ie. those which are not float) can embed an
659 * immediate:
660 */
661 static inline bool ir3_cat2_int(opc_t opc)
662 {
663 switch (opc) {
664 case OPC_ADD_U:
665 case OPC_ADD_S:
666 case OPC_SUB_U:
667 case OPC_SUB_S:
668 case OPC_CMPS_U:
669 case OPC_CMPS_S:
670 case OPC_MIN_U:
671 case OPC_MIN_S:
672 case OPC_MAX_U:
673 case OPC_MAX_S:
674 case OPC_CMPV_U:
675 case OPC_CMPV_S:
676 case OPC_MUL_U:
677 case OPC_MUL_S:
678 case OPC_MULL_U:
679 case OPC_CLZ_S:
680 case OPC_ABSNEG_S:
681 case OPC_AND_B:
682 case OPC_OR_B:
683 case OPC_NOT_B:
684 case OPC_XOR_B:
685 case OPC_BFREV_B:
686 case OPC_CLZ_B:
687 case OPC_SHL_B:
688 case OPC_SHR_B:
689 case OPC_ASHR_B:
690 case OPC_MGEN_B:
691 case OPC_GETBIT_B:
692 case OPC_CBITS_B:
693 case OPC_BARY_F:
694 return true;
695
696 default:
697 return false;
698 }
699 }
700
701
702 /* map cat2 instruction to valid abs/neg flags: */
703 static inline unsigned ir3_cat2_absneg(opc_t opc)
704 {
705 switch (opc) {
706 case OPC_ADD_F:
707 case OPC_MIN_F:
708 case OPC_MAX_F:
709 case OPC_MUL_F:
710 case OPC_SIGN_F:
711 case OPC_CMPS_F:
712 case OPC_ABSNEG_F:
713 case OPC_CMPV_F:
714 case OPC_FLOOR_F:
715 case OPC_CEIL_F:
716 case OPC_RNDNE_F:
717 case OPC_RNDAZ_F:
718 case OPC_TRUNC_F:
719 case OPC_BARY_F:
720 return IR3_REG_FABS | IR3_REG_FNEG;
721
722 case OPC_ADD_U:
723 case OPC_ADD_S:
724 case OPC_SUB_U:
725 case OPC_SUB_S:
726 case OPC_CMPS_U:
727 case OPC_CMPS_S:
728 case OPC_MIN_U:
729 case OPC_MIN_S:
730 case OPC_MAX_U:
731 case OPC_MAX_S:
732 case OPC_CMPV_U:
733 case OPC_CMPV_S:
734 case OPC_MUL_U:
735 case OPC_MUL_S:
736 case OPC_MULL_U:
737 case OPC_CLZ_S:
738 return 0;
739
740 case OPC_ABSNEG_S:
741 return IR3_REG_SABS | IR3_REG_SNEG;
742
743 case OPC_AND_B:
744 case OPC_OR_B:
745 case OPC_NOT_B:
746 case OPC_XOR_B:
747 case OPC_BFREV_B:
748 case OPC_CLZ_B:
749 case OPC_SHL_B:
750 case OPC_SHR_B:
751 case OPC_ASHR_B:
752 case OPC_MGEN_B:
753 case OPC_GETBIT_B:
754 case OPC_CBITS_B:
755 return IR3_REG_BNOT;
756
757 default:
758 return 0;
759 }
760 }
761
762 /* map cat3 instructions to valid abs/neg flags: */
763 static inline unsigned ir3_cat3_absneg(opc_t opc)
764 {
765 switch (opc) {
766 case OPC_MAD_F16:
767 case OPC_MAD_F32:
768 case OPC_SEL_F16:
769 case OPC_SEL_F32:
770 return IR3_REG_FNEG;
771
772 case OPC_MAD_U16:
773 case OPC_MADSH_U16:
774 case OPC_MAD_S16:
775 case OPC_MADSH_M16:
776 case OPC_MAD_U24:
777 case OPC_MAD_S24:
778 case OPC_SEL_S16:
779 case OPC_SEL_S32:
780 case OPC_SAD_S16:
781 case OPC_SAD_S32:
782 /* neg *may* work on 3rd src.. */
783
784 case OPC_SEL_B16:
785 case OPC_SEL_B32:
786
787 default:
788 return 0;
789 }
790 }
791
792 #define array_insert(arr, val) do { \
793 if (arr ## _count == arr ## _sz) { \
794 arr ## _sz = MAX2(2 * arr ## _sz, 16); \
795 arr = realloc(arr, arr ## _sz * sizeof(arr[0])); \
796 } \
797 arr[arr ##_count++] = val; \
798 } while (0)
799
800 /* iterator for an instructions's sources (reg), also returns src #: */
801 #define foreach_src_n(__srcreg, __n, __instr) \
802 if ((__instr)->regs_count) \
803 for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
804 if ((__srcreg = (__instr)->regs[__n + 1]))
805
806 /* iterator for an instructions's sources (reg): */
807 #define foreach_src(__srcreg, __instr) \
808 foreach_src_n(__srcreg, __i, __instr)
809
810 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
811 {
812 if (instr->fanin)
813 return instr->regs_count + 2;
814 if (instr->address)
815 return instr->regs_count + 1;
816 return instr->regs_count;
817 }
818
819 static inline struct ir3_instruction * __ssa_src_n(struct ir3_instruction *instr, unsigned n)
820 {
821 if (n == (instr->regs_count + 1))
822 return instr->fanin;
823 if (n == (instr->regs_count + 0))
824 return instr->address;
825 return ssa(instr->regs[n]);
826 }
827
828 #define __src_cnt(__instr) ((__instr)->address ? (__instr)->regs_count : (__instr)->regs_count - 1)
829
830 /* iterator for an instruction's SSA sources (instr), also returns src #: */
831 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
832 if ((__instr)->regs_count) \
833 for (unsigned __cnt = __ssa_src_cnt(__instr) - 1, __n = 0; __n < __cnt; __n++) \
834 if ((__srcinst = __ssa_src_n(__instr, __n + 1)))
835
836 /* iterator for an instruction's SSA sources (instr): */
837 #define foreach_ssa_src(__srcinst, __instr) \
838 foreach_ssa_src_n(__srcinst, __i, __instr)
839
840
841 /* dump: */
842 void ir3_print(struct ir3 *ir);
843 void ir3_print_instr(struct ir3_instruction *instr);
844
845 /* depth calculation: */
846 int ir3_delayslots(struct ir3_instruction *assigner,
847 struct ir3_instruction *consumer, unsigned n);
848 void ir3_insert_by_depth(struct ir3_instruction *instr, struct list_head *list);
849 void ir3_depth(struct ir3 *ir);
850
851 /* copy-propagate: */
852 void ir3_cp(struct ir3 *ir);
853
854 /* group neighbors and insert mov's to resolve conflicts: */
855 void ir3_group(struct ir3 *ir);
856
857 /* scheduling: */
858 int ir3_sched(struct ir3 *ir);
859
860 /* register assignment: */
861 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(void *memctx);
862 int ir3_ra(struct ir3 *ir3, enum shader_t type,
863 bool frag_coord, bool frag_face);
864
865 /* legalize: */
866 void ir3_legalize(struct ir3 *ir, bool *has_samp, int *max_bary);
867
868 /* ************************************************************************* */
869 /* instruction helpers */
870
871 static inline struct ir3_instruction *
872 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
873 {
874 struct ir3_instruction *instr =
875 ir3_instr_create(block, 1, 0);
876 ir3_reg_create(instr, 0, 0); /* dst */
877 ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
878 instr->cat1.src_type = type;
879 instr->cat1.dst_type = type;
880 return instr;
881 }
882
883 static inline struct ir3_instruction *
884 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
885 type_t src_type, type_t dst_type)
886 {
887 struct ir3_instruction *instr =
888 ir3_instr_create(block, 1, 0);
889 ir3_reg_create(instr, 0, 0); /* dst */
890 ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
891 instr->cat1.src_type = src_type;
892 instr->cat1.dst_type = dst_type;
893 return instr;
894 }
895
896 static inline struct ir3_instruction *
897 ir3_NOP(struct ir3_block *block)
898 {
899 return ir3_instr_create(block, 0, OPC_NOP);
900 }
901
902 #define INSTR0(CAT, name) \
903 static inline struct ir3_instruction * \
904 ir3_##name(struct ir3_block *block) \
905 { \
906 struct ir3_instruction *instr = \
907 ir3_instr_create(block, CAT, OPC_##name); \
908 return instr; \
909 }
910
911 #define INSTR1(CAT, name) \
912 static inline struct ir3_instruction * \
913 ir3_##name(struct ir3_block *block, \
914 struct ir3_instruction *a, unsigned aflags) \
915 { \
916 struct ir3_instruction *instr = \
917 ir3_instr_create(block, CAT, OPC_##name); \
918 ir3_reg_create(instr, 0, 0); /* dst */ \
919 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
920 return instr; \
921 }
922
923 #define INSTR2(CAT, name) \
924 static inline struct ir3_instruction * \
925 ir3_##name(struct ir3_block *block, \
926 struct ir3_instruction *a, unsigned aflags, \
927 struct ir3_instruction *b, unsigned bflags) \
928 { \
929 struct ir3_instruction *instr = \
930 ir3_instr_create(block, CAT, OPC_##name); \
931 ir3_reg_create(instr, 0, 0); /* dst */ \
932 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
933 ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b; \
934 return instr; \
935 }
936
937 #define INSTR3(CAT, name) \
938 static inline struct ir3_instruction * \
939 ir3_##name(struct ir3_block *block, \
940 struct ir3_instruction *a, unsigned aflags, \
941 struct ir3_instruction *b, unsigned bflags, \
942 struct ir3_instruction *c, unsigned cflags) \
943 { \
944 struct ir3_instruction *instr = \
945 ir3_instr_create(block, CAT, OPC_##name); \
946 ir3_reg_create(instr, 0, 0); /* dst */ \
947 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
948 ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b; \
949 ir3_reg_create(instr, 0, IR3_REG_SSA | cflags)->instr = c; \
950 return instr; \
951 }
952
953 /* cat0 instructions: */
954 INSTR0(0, BR);
955 INSTR0(0, JUMP);
956 INSTR1(0, KILL);
957 INSTR0(0, END);
958
959 /* cat2 instructions, most 2 src but some 1 src: */
960 INSTR2(2, ADD_F)
961 INSTR2(2, MIN_F)
962 INSTR2(2, MAX_F)
963 INSTR2(2, MUL_F)
964 INSTR1(2, SIGN_F)
965 INSTR2(2, CMPS_F)
966 INSTR1(2, ABSNEG_F)
967 INSTR2(2, CMPV_F)
968 INSTR1(2, FLOOR_F)
969 INSTR1(2, CEIL_F)
970 INSTR1(2, RNDNE_F)
971 INSTR1(2, RNDAZ_F)
972 INSTR1(2, TRUNC_F)
973 INSTR2(2, ADD_U)
974 INSTR2(2, ADD_S)
975 INSTR2(2, SUB_U)
976 INSTR2(2, SUB_S)
977 INSTR2(2, CMPS_U)
978 INSTR2(2, CMPS_S)
979 INSTR2(2, MIN_U)
980 INSTR2(2, MIN_S)
981 INSTR2(2, MAX_U)
982 INSTR2(2, MAX_S)
983 INSTR1(2, ABSNEG_S)
984 INSTR2(2, AND_B)
985 INSTR2(2, OR_B)
986 INSTR1(2, NOT_B)
987 INSTR2(2, XOR_B)
988 INSTR2(2, CMPV_U)
989 INSTR2(2, CMPV_S)
990 INSTR2(2, MUL_U)
991 INSTR2(2, MUL_S)
992 INSTR2(2, MULL_U)
993 INSTR1(2, BFREV_B)
994 INSTR1(2, CLZ_S)
995 INSTR1(2, CLZ_B)
996 INSTR2(2, SHL_B)
997 INSTR2(2, SHR_B)
998 INSTR2(2, ASHR_B)
999 INSTR2(2, BARY_F)
1000 INSTR2(2, MGEN_B)
1001 INSTR2(2, GETBIT_B)
1002 INSTR1(2, SETRM)
1003 INSTR1(2, CBITS_B)
1004 INSTR2(2, SHB)
1005 INSTR2(2, MSAD)
1006
1007 /* cat3 instructions: */
1008 INSTR3(3, MAD_U16)
1009 INSTR3(3, MADSH_U16)
1010 INSTR3(3, MAD_S16)
1011 INSTR3(3, MADSH_M16)
1012 INSTR3(3, MAD_U24)
1013 INSTR3(3, MAD_S24)
1014 INSTR3(3, MAD_F16)
1015 INSTR3(3, MAD_F32)
1016 INSTR3(3, SEL_B16)
1017 INSTR3(3, SEL_B32)
1018 INSTR3(3, SEL_S16)
1019 INSTR3(3, SEL_S32)
1020 INSTR3(3, SEL_F16)
1021 INSTR3(3, SEL_F32)
1022 INSTR3(3, SAD_S16)
1023 INSTR3(3, SAD_S32)
1024
1025 /* cat4 instructions: */
1026 INSTR1(4, RCP)
1027 INSTR1(4, RSQ)
1028 INSTR1(4, LOG2)
1029 INSTR1(4, EXP2)
1030 INSTR1(4, SIN)
1031 INSTR1(4, COS)
1032 INSTR1(4, SQRT)
1033
1034 /* cat5 instructions: */
1035 INSTR1(5, DSX)
1036 INSTR1(5, DSY)
1037
1038 static inline struct ir3_instruction *
1039 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
1040 unsigned wrmask, unsigned flags, unsigned samp, unsigned tex,
1041 struct ir3_instruction *src0, struct ir3_instruction *src1)
1042 {
1043 struct ir3_instruction *sam;
1044 struct ir3_register *reg;
1045
1046 sam = ir3_instr_create(block, 5, opc);
1047 sam->flags |= flags;
1048 ir3_reg_create(sam, 0, 0)->wrmask = wrmask;
1049 if (src0) {
1050 reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
1051 reg->wrmask = (1 << (src0->regs_count - 1)) - 1;
1052 reg->instr = src0;
1053 }
1054 if (src1) {
1055 reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
1056 reg->instr = src1;
1057 reg->wrmask = (1 << (src1->regs_count - 1)) - 1;
1058 }
1059 sam->cat5.samp = samp;
1060 sam->cat5.tex = tex;
1061 sam->cat5.type = type;
1062
1063 return sam;
1064 }
1065
1066 /* cat6 instructions: */
1067 INSTR2(6, LDLV)
1068 INSTR2(6, LDG)
1069 INSTR3(6, STG)
1070
1071 /* ************************************************************************* */
1072 /* split this out or find some helper to use.. like main/bitset.h.. */
1073
1074 #include <string.h>
1075
1076 #define MAX_REG 256
1077
1078 typedef uint8_t regmask_t[2 * MAX_REG / 8];
1079
1080 static inline unsigned regmask_idx(struct ir3_register *reg)
1081 {
1082 unsigned num = reg->num;
1083 debug_assert(num < MAX_REG);
1084 if (reg->flags & IR3_REG_HALF)
1085 num += MAX_REG;
1086 return num;
1087 }
1088
1089 static inline void regmask_init(regmask_t *regmask)
1090 {
1091 memset(regmask, 0, sizeof(*regmask));
1092 }
1093
1094 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1095 {
1096 unsigned idx = regmask_idx(reg);
1097 if (reg->flags & IR3_REG_RELATIV) {
1098 unsigned i;
1099 for (i = 0; i < reg->size; i++, idx++)
1100 (*regmask)[idx / 8] |= 1 << (idx % 8);
1101 } else {
1102 unsigned mask;
1103 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1104 if (mask & 1)
1105 (*regmask)[idx / 8] |= 1 << (idx % 8);
1106 }
1107 }
1108
1109 static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
1110 {
1111 unsigned i;
1112 for (i = 0; i < ARRAY_SIZE(*dst); i++)
1113 (*dst)[i] = (*a)[i] | (*b)[i];
1114 }
1115
1116 /* set bits in a if not set in b, conceptually:
1117 * a |= (reg & ~b)
1118 */
1119 static inline void regmask_set_if_not(regmask_t *a,
1120 struct ir3_register *reg, regmask_t *b)
1121 {
1122 unsigned idx = regmask_idx(reg);
1123 if (reg->flags & IR3_REG_RELATIV) {
1124 unsigned i;
1125 for (i = 0; i < reg->size; i++, idx++)
1126 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1127 (*a)[idx / 8] |= 1 << (idx % 8);
1128 } else {
1129 unsigned mask;
1130 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1131 if (mask & 1)
1132 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1133 (*a)[idx / 8] |= 1 << (idx % 8);
1134 }
1135 }
1136
1137 static inline bool regmask_get(regmask_t *regmask,
1138 struct ir3_register *reg)
1139 {
1140 unsigned idx = regmask_idx(reg);
1141 if (reg->flags & IR3_REG_RELATIV) {
1142 unsigned i;
1143 for (i = 0; i < reg->size; i++, idx++)
1144 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1145 return true;
1146 } else {
1147 unsigned mask;
1148 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1149 if (mask & 1)
1150 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1151 return true;
1152 }
1153 return false;
1154 }
1155
1156 /* ************************************************************************* */
1157
1158 #endif /* IR3_H_ */