freedreno/ir3: move inputs/outputs to shader
[mesa.git] / src / gallium / drivers / freedreno / ir3 / ir3.h
1 /*
2 * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #ifndef IR3_H_
25 #define IR3_H_
26
27 #include <stdint.h>
28 #include <stdbool.h>
29
30 #include "util/u_debug.h"
31 #include "util/list.h"
32
33 #include "instr-a3xx.h"
34 #include "disasm.h" /* TODO move 'enum shader_t' somewhere else.. */
35
36 /* low level intermediate representation of an adreno shader program */
37
38 struct ir3_compiler;
39 struct ir3;
40 struct ir3_instruction;
41 struct ir3_block;
42
43 struct ir3_info {
44 uint16_t sizedwords;
45 uint16_t instrs_count; /* expanded to account for rpt's */
46 /* NOTE: max_reg, etc, does not include registers not touched
47 * by the shader (ie. vertex fetched via VFD_DECODE but not
48 * touched by shader)
49 */
50 int8_t max_reg; /* highest GPR # used by shader */
51 int8_t max_half_reg;
52 int16_t max_const;
53 };
54
55 struct ir3_register {
56 enum {
57 IR3_REG_CONST = 0x001,
58 IR3_REG_IMMED = 0x002,
59 IR3_REG_HALF = 0x004,
60 IR3_REG_RELATIV= 0x008,
61 IR3_REG_R = 0x010,
62 /* Most instructions, it seems, can do float abs/neg but not
63 * integer. The CP pass needs to know what is intended (int or
64 * float) in order to do the right thing. For this reason the
65 * abs/neg flags are split out into float and int variants. In
66 * addition, .b (bitwise) operations, the negate is actually a
67 * bitwise not, so split that out into a new flag to make it
68 * more clear.
69 */
70 IR3_REG_FNEG = 0x020,
71 IR3_REG_FABS = 0x040,
72 IR3_REG_SNEG = 0x080,
73 IR3_REG_SABS = 0x100,
74 IR3_REG_BNOT = 0x200,
75 IR3_REG_EVEN = 0x400,
76 IR3_REG_POS_INF= 0x800,
77 /* (ei) flag, end-input? Set on last bary, presumably to signal
78 * that the shader needs no more input:
79 */
80 IR3_REG_EI = 0x1000,
81 /* meta-flags, for intermediate stages of IR, ie.
82 * before register assignment is done:
83 */
84 IR3_REG_SSA = 0x2000, /* 'instr' is ptr to assigning instr */
85 IR3_REG_IA = 0x4000, /* meta-input dst is "assigned" */
86 } flags;
87 union {
88 /* normal registers:
89 * the component is in the low two bits of the reg #, so
90 * rN.x becomes: (N << 2) | x
91 */
92 int num;
93 /* immediate: */
94 int32_t iim_val;
95 uint32_t uim_val;
96 float fim_val;
97 /* relative: */
98 int offset;
99 };
100
101 /* for IR3_REG_SSA, src registers contain ptr back to
102 * assigning instruction.
103 */
104 struct ir3_instruction *instr;
105
106 union {
107 /* used for cat5 instructions, but also for internal/IR level
108 * tracking of what registers are read/written by an instruction.
109 * wrmask may be a bad name since it is used to represent both
110 * src and dst that touch multiple adjacent registers.
111 */
112 unsigned wrmask;
113 /* for relative addressing, 32bits for array size is too small,
114 * but otoh we don't need to deal with disjoint sets, so instead
115 * use a simple size field (number of scalar components).
116 */
117 unsigned size;
118 };
119 };
120
121 struct ir3_instruction {
122 struct ir3_block *block;
123 int category;
124 opc_t opc;
125 enum {
126 /* (sy) flag is set on first instruction, and after sample
127 * instructions (probably just on RAW hazard).
128 */
129 IR3_INSTR_SY = 0x001,
130 /* (ss) flag is set on first instruction, and first instruction
131 * to depend on the result of "long" instructions (RAW hazard):
132 *
133 * rcp, rsq, log2, exp2, sin, cos, sqrt
134 *
135 * It seems to synchronize until all in-flight instructions are
136 * completed, for example:
137 *
138 * rsq hr1.w, hr1.w
139 * add.f hr2.z, (neg)hr2.z, hc0.y
140 * mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
141 * rsq hr2.x, hr2.x
142 * (rpt1)nop
143 * mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
144 * nop
145 * mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
146 * (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
147 * (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
148 *
149 * The last mul.f does not have (ss) set, presumably because the
150 * (ss) on the previous instruction does the job.
151 *
152 * The blob driver also seems to set it on WAR hazards, although
153 * not really clear if this is needed or just blob compiler being
154 * sloppy. So far I haven't found a case where removing the (ss)
155 * causes problems for WAR hazard, but I could just be getting
156 * lucky:
157 *
158 * rcp r1.y, r3.y
159 * (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
160 *
161 */
162 IR3_INSTR_SS = 0x002,
163 /* (jp) flag is set on jump targets:
164 */
165 IR3_INSTR_JP = 0x004,
166 IR3_INSTR_UL = 0x008,
167 IR3_INSTR_3D = 0x010,
168 IR3_INSTR_A = 0x020,
169 IR3_INSTR_O = 0x040,
170 IR3_INSTR_P = 0x080,
171 IR3_INSTR_S = 0x100,
172 IR3_INSTR_S2EN = 0x200,
173 /* meta-flags, for intermediate stages of IR, ie.
174 * before register assignment is done:
175 */
176 IR3_INSTR_MARK = 0x1000,
177 } flags;
178 int repeat;
179 #ifdef DEBUG
180 unsigned regs_max;
181 #endif
182 unsigned regs_count;
183 struct ir3_register **regs;
184 union {
185 struct {
186 char inv;
187 char comp;
188 int immed;
189 } cat0;
190 struct {
191 type_t src_type, dst_type;
192 } cat1;
193 struct {
194 enum {
195 IR3_COND_LT = 0,
196 IR3_COND_LE = 1,
197 IR3_COND_GT = 2,
198 IR3_COND_GE = 3,
199 IR3_COND_EQ = 4,
200 IR3_COND_NE = 5,
201 } condition;
202 } cat2;
203 struct {
204 unsigned samp, tex;
205 type_t type;
206 } cat5;
207 struct {
208 type_t type;
209 int offset;
210 int iim_val;
211 } cat6;
212 /* for meta-instructions, just used to hold extra data
213 * before instruction scheduling, etc
214 */
215 struct {
216 int off; /* component/offset */
217 } fo;
218 struct {
219 int aid;
220 } fi;
221 struct {
222 struct ir3_block *if_block, *else_block;
223 } flow;
224 struct {
225 struct ir3_block *block;
226 } inout;
227
228 /* XXX keep this as big as all other union members! */
229 uint32_t info[3];
230 };
231
232 /* transient values used during various algorithms: */
233 union {
234 /* The instruction depth is the max dependency distance to output.
235 *
236 * You can also think of it as the "cost", if we did any sort of
237 * optimization for register footprint. Ie. a value that is just
238 * result of moving a const to a reg would have a low cost, so to
239 * it could make sense to duplicate the instruction at various
240 * points where the result is needed to reduce register footprint.
241 *
242 * DEPTH_UNUSED used to mark unused instructions after depth
243 * calculation pass.
244 */
245 #define DEPTH_UNUSED ~0
246 unsigned depth;
247 /* When we get to the RA stage, we no longer need depth, but
248 * we do need instruction's position/name:
249 */
250 struct {
251 uint16_t ip;
252 uint16_t name;
253 };
254 };
255
256 /* Used during CP and RA stages. For fanin and shader inputs/
257 * outputs where we need a sequence of consecutive registers,
258 * keep track of each src instructions left (ie 'n-1') and right
259 * (ie 'n+1') neighbor. The front-end must insert enough mov's
260 * to ensure that each instruction has at most one left and at
261 * most one right neighbor. During the copy-propagation pass,
262 * we only remove mov's when we can preserve this constraint.
263 * And during the RA stage, we use the neighbor information to
264 * allocate a block of registers in one shot.
265 *
266 * TODO: maybe just add something like:
267 * struct ir3_instruction_ref {
268 * struct ir3_instruction *instr;
269 * unsigned cnt;
270 * }
271 *
272 * Or can we get away without the refcnt stuff? It seems like
273 * it should be overkill.. the problem is if, potentially after
274 * already eliminating some mov's, if you have a single mov that
275 * needs to be grouped with it's neighbors in two different
276 * places (ex. shader output and a fanin).
277 */
278 struct {
279 struct ir3_instruction *left, *right;
280 uint16_t left_cnt, right_cnt;
281 } cp;
282
283 /* an instruction can reference at most one address register amongst
284 * it's src/dst registers. Beyond that, you need to insert mov's.
285 */
286 struct ir3_instruction *address;
287
288 /* in case of a instruction with relative dst instruction, we need to
289 * capture the dependency on the fanin for the previous values of
290 * the array elements. Since we don't know at compile time actually
291 * which array elements are written, this serves to preserve the
292 * unconditional write to array elements prior to the conditional
293 * write.
294 *
295 * TODO only cat1 can do indirect write.. we could maybe move this
296 * into instr->cat1.fanin (but would require the frontend to insert
297 * the extra mov)
298 */
299 struct ir3_instruction *fanin;
300
301 /* Entry in ir3_block's instruction list: */
302 struct list_head node;
303
304 #ifdef DEBUG
305 uint32_t serialno;
306 #endif
307 };
308
309 static inline struct ir3_instruction *
310 ir3_neighbor_first(struct ir3_instruction *instr)
311 {
312 while (instr->cp.left)
313 instr = instr->cp.left;
314 return instr;
315 }
316
317 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
318 {
319 int num = 1;
320
321 debug_assert(!instr->cp.left);
322
323 while (instr->cp.right) {
324 num++;
325 instr = instr->cp.right;
326 }
327
328 return num;
329 }
330
331 struct ir3_heap_chunk;
332
333 struct ir3 {
334 struct ir3_compiler *compiler;
335
336 unsigned ninputs, noutputs;
337 struct ir3_instruction **inputs;
338 struct ir3_instruction **outputs;
339
340 /* Track bary.f (and ldlv) instructions.. this is needed in
341 * scheduling to ensure that all varying fetches happen before
342 * any potential kill instructions. The hw gets grumpy if all
343 * threads in a group are killed before the last bary.f gets
344 * a chance to signal end of input (ei).
345 */
346 unsigned baryfs_count, baryfs_sz;
347 struct ir3_instruction **baryfs;
348
349 /* Track all indirect instructions (read and write). To avoid
350 * deadlock scenario where an address register gets scheduled,
351 * but other dependent src instructions cannot be scheduled due
352 * to dependency on a *different* address register value, the
353 * scheduler needs to ensure that all dependencies other than
354 * the instruction other than the address register are scheduled
355 * before the one that writes the address register. Having a
356 * convenient list of instructions that reference some address
357 * register simplifies this.
358 */
359 unsigned indirects_count, indirects_sz;
360 struct ir3_instruction **indirects;
361 /* and same for instructions that consume predicate register: */
362 unsigned predicates_count, predicates_sz;
363 struct ir3_instruction **predicates;
364
365 struct ir3_block *block;
366 unsigned heap_idx;
367 struct ir3_heap_chunk *chunk;
368 };
369
370 struct ir3_block {
371 struct ir3 *shader;
372 /* only a single address register: */
373 struct ir3_instruction *address;
374 struct list_head instr_list;
375 };
376
377 struct ir3 * ir3_create(struct ir3_compiler *compiler,
378 unsigned nin, unsigned nout);
379 void ir3_destroy(struct ir3 *shader);
380 void * ir3_assemble(struct ir3 *shader,
381 struct ir3_info *info, uint32_t gpu_id);
382 void * ir3_alloc(struct ir3 *shader, int sz);
383
384 struct ir3_block * ir3_block_create(struct ir3 *shader);
385
386 struct ir3_instruction * ir3_instr_create(struct ir3_block *block,
387 int category, opc_t opc);
388 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
389 int category, opc_t opc, int nreg);
390 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
391 const char *ir3_instr_name(struct ir3_instruction *instr);
392
393 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
394 int num, int flags);
395
396
397 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
398 {
399 if (instr->flags & IR3_INSTR_MARK)
400 return true; /* already visited */
401 instr->flags |= IR3_INSTR_MARK;
402 return false;
403 }
404
405 static inline void ir3_clear_mark(struct ir3 *shader)
406 {
407 /* TODO would be nice to drop the instruction array.. for
408 * new compiler, _clear_mark() is all we use it for, and
409 * we could probably manage a linked list instead..
410 *
411 * Also, we'll probably want to mark instructions within
412 * a block, so tracking the list of instrs globally is
413 * unlikely to be what we want.
414 */
415 list_for_each_entry (struct ir3_instruction, instr, &shader->block->instr_list, node)
416 instr->flags &= ~IR3_INSTR_MARK;
417 }
418
419 static inline int ir3_instr_regno(struct ir3_instruction *instr,
420 struct ir3_register *reg)
421 {
422 unsigned i;
423 for (i = 0; i < instr->regs_count; i++)
424 if (reg == instr->regs[i])
425 return i;
426 return -1;
427 }
428
429
430 #define MAX_ARRAYS 16
431
432 /* comp:
433 * 0 - x
434 * 1 - y
435 * 2 - z
436 * 3 - w
437 */
438 static inline uint32_t regid(int num, int comp)
439 {
440 return (num << 2) | (comp & 0x3);
441 }
442
443 static inline uint32_t reg_num(struct ir3_register *reg)
444 {
445 return reg->num >> 2;
446 }
447
448 static inline uint32_t reg_comp(struct ir3_register *reg)
449 {
450 return reg->num & 0x3;
451 }
452
453 static inline bool is_flow(struct ir3_instruction *instr)
454 {
455 return (instr->category == 0);
456 }
457
458 static inline bool is_kill(struct ir3_instruction *instr)
459 {
460 return is_flow(instr) && (instr->opc == OPC_KILL);
461 }
462
463 static inline bool is_nop(struct ir3_instruction *instr)
464 {
465 return is_flow(instr) && (instr->opc == OPC_NOP);
466 }
467
468 /* Is it a non-transformative (ie. not type changing) mov? This can
469 * also include absneg.s/absneg.f, which for the most part can be
470 * treated as a mov (single src argument).
471 */
472 static inline bool is_same_type_mov(struct ir3_instruction *instr)
473 {
474 struct ir3_register *dst = instr->regs[0];
475
476 /* mov's that write to a0.x or p0.x are special: */
477 if (dst->num == regid(REG_P0, 0))
478 return false;
479 if (dst->num == regid(REG_A0, 0))
480 return false;
481
482 if ((instr->category == 1) &&
483 (instr->cat1.src_type == instr->cat1.dst_type))
484 return true;
485 if ((instr->category == 2) && ((instr->opc == OPC_ABSNEG_F) ||
486 (instr->opc == OPC_ABSNEG_S)))
487 return true;
488 return false;
489 }
490
491 static inline bool is_alu(struct ir3_instruction *instr)
492 {
493 return (1 <= instr->category) && (instr->category <= 3);
494 }
495
496 static inline bool is_sfu(struct ir3_instruction *instr)
497 {
498 return (instr->category == 4);
499 }
500
501 static inline bool is_tex(struct ir3_instruction *instr)
502 {
503 return (instr->category == 5);
504 }
505
506 static inline bool is_mem(struct ir3_instruction *instr)
507 {
508 return (instr->category == 6);
509 }
510
511 static inline bool
512 is_store(struct ir3_instruction *instr)
513 {
514 if (is_mem(instr)) {
515 /* these instructions, the "destination" register is
516 * actually a source, the address to store to.
517 */
518 switch (instr->opc) {
519 case OPC_STG:
520 case OPC_STP:
521 case OPC_STL:
522 case OPC_STLW:
523 case OPC_L2G:
524 case OPC_G2L:
525 return true;
526 default:
527 break;
528 }
529 }
530 return false;
531 }
532
533 static inline bool is_input(struct ir3_instruction *instr)
534 {
535 /* in some cases, ldlv is used to fetch varying without
536 * interpolation.. fortunately inloc is the first src
537 * register in either case
538 */
539 if (is_mem(instr) && (instr->opc == OPC_LDLV))
540 return true;
541 return (instr->category == 2) && (instr->opc == OPC_BARY_F);
542 }
543
544 static inline bool is_meta(struct ir3_instruction *instr)
545 {
546 /* TODO how should we count PHI (and maybe fan-in/out) which
547 * might actually contribute some instructions to the final
548 * result?
549 */
550 return (instr->category == -1);
551 }
552
553 static inline bool writes_addr(struct ir3_instruction *instr)
554 {
555 if (instr->regs_count > 0) {
556 struct ir3_register *dst = instr->regs[0];
557 return reg_num(dst) == REG_A0;
558 }
559 return false;
560 }
561
562 static inline bool writes_pred(struct ir3_instruction *instr)
563 {
564 if (instr->regs_count > 0) {
565 struct ir3_register *dst = instr->regs[0];
566 return reg_num(dst) == REG_P0;
567 }
568 return false;
569 }
570
571 /* returns defining instruction for reg */
572 /* TODO better name */
573 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
574 {
575 if (reg->flags & IR3_REG_SSA)
576 return reg->instr;
577 return NULL;
578 }
579
580 static inline bool conflicts(struct ir3_instruction *a,
581 struct ir3_instruction *b)
582 {
583 return (a && b) && (a != b);
584 }
585
586 static inline bool reg_gpr(struct ir3_register *r)
587 {
588 if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
589 return false;
590 if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
591 return false;
592 return true;
593 }
594
595 /* some cat2 instructions (ie. those which are not float) can embed an
596 * immediate:
597 */
598 static inline bool ir3_cat2_int(opc_t opc)
599 {
600 switch (opc) {
601 case OPC_ADD_U:
602 case OPC_ADD_S:
603 case OPC_SUB_U:
604 case OPC_SUB_S:
605 case OPC_CMPS_U:
606 case OPC_CMPS_S:
607 case OPC_MIN_U:
608 case OPC_MIN_S:
609 case OPC_MAX_U:
610 case OPC_MAX_S:
611 case OPC_CMPV_U:
612 case OPC_CMPV_S:
613 case OPC_MUL_U:
614 case OPC_MUL_S:
615 case OPC_MULL_U:
616 case OPC_CLZ_S:
617 case OPC_ABSNEG_S:
618 case OPC_AND_B:
619 case OPC_OR_B:
620 case OPC_NOT_B:
621 case OPC_XOR_B:
622 case OPC_BFREV_B:
623 case OPC_CLZ_B:
624 case OPC_SHL_B:
625 case OPC_SHR_B:
626 case OPC_ASHR_B:
627 case OPC_MGEN_B:
628 case OPC_GETBIT_B:
629 case OPC_CBITS_B:
630 case OPC_BARY_F:
631 return true;
632
633 default:
634 return false;
635 }
636 }
637
638
639 /* map cat2 instruction to valid abs/neg flags: */
640 static inline unsigned ir3_cat2_absneg(opc_t opc)
641 {
642 switch (opc) {
643 case OPC_ADD_F:
644 case OPC_MIN_F:
645 case OPC_MAX_F:
646 case OPC_MUL_F:
647 case OPC_SIGN_F:
648 case OPC_CMPS_F:
649 case OPC_ABSNEG_F:
650 case OPC_CMPV_F:
651 case OPC_FLOOR_F:
652 case OPC_CEIL_F:
653 case OPC_RNDNE_F:
654 case OPC_RNDAZ_F:
655 case OPC_TRUNC_F:
656 case OPC_BARY_F:
657 return IR3_REG_FABS | IR3_REG_FNEG;
658
659 case OPC_ADD_U:
660 case OPC_ADD_S:
661 case OPC_SUB_U:
662 case OPC_SUB_S:
663 case OPC_CMPS_U:
664 case OPC_CMPS_S:
665 case OPC_MIN_U:
666 case OPC_MIN_S:
667 case OPC_MAX_U:
668 case OPC_MAX_S:
669 case OPC_CMPV_U:
670 case OPC_CMPV_S:
671 case OPC_MUL_U:
672 case OPC_MUL_S:
673 case OPC_MULL_U:
674 case OPC_CLZ_S:
675 return 0;
676
677 case OPC_ABSNEG_S:
678 return IR3_REG_SABS | IR3_REG_SNEG;
679
680 case OPC_AND_B:
681 case OPC_OR_B:
682 case OPC_NOT_B:
683 case OPC_XOR_B:
684 case OPC_BFREV_B:
685 case OPC_CLZ_B:
686 case OPC_SHL_B:
687 case OPC_SHR_B:
688 case OPC_ASHR_B:
689 case OPC_MGEN_B:
690 case OPC_GETBIT_B:
691 case OPC_CBITS_B:
692 return IR3_REG_BNOT;
693
694 default:
695 return 0;
696 }
697 }
698
699 /* map cat3 instructions to valid abs/neg flags: */
700 static inline unsigned ir3_cat3_absneg(opc_t opc)
701 {
702 switch (opc) {
703 case OPC_MAD_F16:
704 case OPC_MAD_F32:
705 case OPC_SEL_F16:
706 case OPC_SEL_F32:
707 return IR3_REG_FNEG;
708
709 case OPC_MAD_U16:
710 case OPC_MADSH_U16:
711 case OPC_MAD_S16:
712 case OPC_MADSH_M16:
713 case OPC_MAD_U24:
714 case OPC_MAD_S24:
715 case OPC_SEL_S16:
716 case OPC_SEL_S32:
717 case OPC_SAD_S16:
718 case OPC_SAD_S32:
719 /* neg *may* work on 3rd src.. */
720
721 case OPC_SEL_B16:
722 case OPC_SEL_B32:
723
724 default:
725 return 0;
726 }
727 }
728
729 #define array_insert(arr, val) do { \
730 if (arr ## _count == arr ## _sz) { \
731 arr ## _sz = MAX2(2 * arr ## _sz, 16); \
732 arr = realloc(arr, arr ## _sz * sizeof(arr[0])); \
733 } \
734 arr[arr ##_count++] = val; \
735 } while (0)
736
737 /* iterator for an instructions's sources (reg), also returns src #: */
738 #define foreach_src_n(__srcreg, __n, __instr) \
739 if ((__instr)->regs_count) \
740 for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
741 if ((__srcreg = (__instr)->regs[__n + 1]))
742
743 /* iterator for an instructions's sources (reg): */
744 #define foreach_src(__srcreg, __instr) \
745 foreach_src_n(__srcreg, __i, __instr)
746
747 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
748 {
749 if (instr->fanin)
750 return instr->regs_count + 2;
751 if (instr->address)
752 return instr->regs_count + 1;
753 return instr->regs_count;
754 }
755
756 static inline struct ir3_instruction * __ssa_src_n(struct ir3_instruction *instr, unsigned n)
757 {
758 if (n == (instr->regs_count + 1))
759 return instr->fanin;
760 if (n == (instr->regs_count + 0))
761 return instr->address;
762 return ssa(instr->regs[n]);
763 }
764
765 #define __src_cnt(__instr) ((__instr)->address ? (__instr)->regs_count : (__instr)->regs_count - 1)
766
767 /* iterator for an instruction's SSA sources (instr), also returns src #: */
768 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
769 if ((__instr)->regs_count) \
770 for (unsigned __cnt = __ssa_src_cnt(__instr) - 1, __n = 0; __n < __cnt; __n++) \
771 if ((__srcinst = __ssa_src_n(__instr, __n + 1)))
772
773 /* iterator for an instruction's SSA sources (instr): */
774 #define foreach_ssa_src(__srcinst, __instr) \
775 foreach_ssa_src_n(__srcinst, __i, __instr)
776
777
778 /* dump: */
779 void ir3_print(struct ir3 *ir);
780 void ir3_print_instr(struct ir3_instruction *instr);
781
782 /* depth calculation: */
783 int ir3_delayslots(struct ir3_instruction *assigner,
784 struct ir3_instruction *consumer, unsigned n);
785 void ir3_insert_by_depth(struct ir3_instruction *instr, struct list_head *list);
786 void ir3_depth(struct ir3 *ir);
787
788 /* copy-propagate: */
789 void ir3_cp(struct ir3 *ir);
790
791 /* group neighbors and insert mov's to resolve conflicts: */
792 void ir3_group(struct ir3 *ir);
793
794 /* scheduling: */
795 int ir3_sched(struct ir3 *ir);
796
797 /* register assignment: */
798 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(void *memctx);
799 int ir3_ra(struct ir3 *ir3, enum shader_t type,
800 bool frag_coord, bool frag_face);
801
802 /* legalize: */
803 void ir3_legalize(struct ir3 *ir, bool *has_samp, int *max_bary);
804
805 /* ************************************************************************* */
806 /* instruction helpers */
807
808 static inline struct ir3_instruction *
809 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
810 {
811 struct ir3_instruction *instr =
812 ir3_instr_create(block, 1, 0);
813 ir3_reg_create(instr, 0, 0); /* dst */
814 ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
815 instr->cat1.src_type = type;
816 instr->cat1.dst_type = type;
817 return instr;
818 }
819
820 static inline struct ir3_instruction *
821 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
822 type_t src_type, type_t dst_type)
823 {
824 struct ir3_instruction *instr =
825 ir3_instr_create(block, 1, 0);
826 ir3_reg_create(instr, 0, 0); /* dst */
827 ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
828 instr->cat1.src_type = src_type;
829 instr->cat1.dst_type = dst_type;
830 return instr;
831 }
832
833 static inline struct ir3_instruction *
834 ir3_NOP(struct ir3_block *block)
835 {
836 return ir3_instr_create(block, 0, OPC_NOP);
837 }
838
839 #define INSTR1(CAT, name) \
840 static inline struct ir3_instruction * \
841 ir3_##name(struct ir3_block *block, \
842 struct ir3_instruction *a, unsigned aflags) \
843 { \
844 struct ir3_instruction *instr = \
845 ir3_instr_create(block, CAT, OPC_##name); \
846 ir3_reg_create(instr, 0, 0); /* dst */ \
847 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
848 return instr; \
849 }
850
851 #define INSTR2(CAT, name) \
852 static inline struct ir3_instruction * \
853 ir3_##name(struct ir3_block *block, \
854 struct ir3_instruction *a, unsigned aflags, \
855 struct ir3_instruction *b, unsigned bflags) \
856 { \
857 struct ir3_instruction *instr = \
858 ir3_instr_create(block, CAT, OPC_##name); \
859 ir3_reg_create(instr, 0, 0); /* dst */ \
860 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
861 ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b; \
862 return instr; \
863 }
864
865 #define INSTR3(CAT, name) \
866 static inline struct ir3_instruction * \
867 ir3_##name(struct ir3_block *block, \
868 struct ir3_instruction *a, unsigned aflags, \
869 struct ir3_instruction *b, unsigned bflags, \
870 struct ir3_instruction *c, unsigned cflags) \
871 { \
872 struct ir3_instruction *instr = \
873 ir3_instr_create(block, CAT, OPC_##name); \
874 ir3_reg_create(instr, 0, 0); /* dst */ \
875 ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a; \
876 ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b; \
877 ir3_reg_create(instr, 0, IR3_REG_SSA | cflags)->instr = c; \
878 return instr; \
879 }
880
881 /* cat0 instructions: */
882 INSTR1(0, KILL);
883
884 /* cat2 instructions, most 2 src but some 1 src: */
885 INSTR2(2, ADD_F)
886 INSTR2(2, MIN_F)
887 INSTR2(2, MAX_F)
888 INSTR2(2, MUL_F)
889 INSTR1(2, SIGN_F)
890 INSTR2(2, CMPS_F)
891 INSTR1(2, ABSNEG_F)
892 INSTR2(2, CMPV_F)
893 INSTR1(2, FLOOR_F)
894 INSTR1(2, CEIL_F)
895 INSTR1(2, RNDNE_F)
896 INSTR1(2, RNDAZ_F)
897 INSTR1(2, TRUNC_F)
898 INSTR2(2, ADD_U)
899 INSTR2(2, ADD_S)
900 INSTR2(2, SUB_U)
901 INSTR2(2, SUB_S)
902 INSTR2(2, CMPS_U)
903 INSTR2(2, CMPS_S)
904 INSTR2(2, MIN_U)
905 INSTR2(2, MIN_S)
906 INSTR2(2, MAX_U)
907 INSTR2(2, MAX_S)
908 INSTR1(2, ABSNEG_S)
909 INSTR2(2, AND_B)
910 INSTR2(2, OR_B)
911 INSTR1(2, NOT_B)
912 INSTR2(2, XOR_B)
913 INSTR2(2, CMPV_U)
914 INSTR2(2, CMPV_S)
915 INSTR2(2, MUL_U)
916 INSTR2(2, MUL_S)
917 INSTR2(2, MULL_U)
918 INSTR1(2, BFREV_B)
919 INSTR1(2, CLZ_S)
920 INSTR1(2, CLZ_B)
921 INSTR2(2, SHL_B)
922 INSTR2(2, SHR_B)
923 INSTR2(2, ASHR_B)
924 INSTR2(2, BARY_F)
925 INSTR2(2, MGEN_B)
926 INSTR2(2, GETBIT_B)
927 INSTR1(2, SETRM)
928 INSTR1(2, CBITS_B)
929 INSTR2(2, SHB)
930 INSTR2(2, MSAD)
931
932 /* cat3 instructions: */
933 INSTR3(3, MAD_U16)
934 INSTR3(3, MADSH_U16)
935 INSTR3(3, MAD_S16)
936 INSTR3(3, MADSH_M16)
937 INSTR3(3, MAD_U24)
938 INSTR3(3, MAD_S24)
939 INSTR3(3, MAD_F16)
940 INSTR3(3, MAD_F32)
941 INSTR3(3, SEL_B16)
942 INSTR3(3, SEL_B32)
943 INSTR3(3, SEL_S16)
944 INSTR3(3, SEL_S32)
945 INSTR3(3, SEL_F16)
946 INSTR3(3, SEL_F32)
947 INSTR3(3, SAD_S16)
948 INSTR3(3, SAD_S32)
949
950 /* cat4 instructions: */
951 INSTR1(4, RCP)
952 INSTR1(4, RSQ)
953 INSTR1(4, LOG2)
954 INSTR1(4, EXP2)
955 INSTR1(4, SIN)
956 INSTR1(4, COS)
957 INSTR1(4, SQRT)
958
959 /* cat5 instructions: */
960 INSTR1(5, DSX)
961 INSTR1(5, DSY)
962
963 static inline struct ir3_instruction *
964 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
965 unsigned wrmask, unsigned flags, unsigned samp, unsigned tex,
966 struct ir3_instruction *src0, struct ir3_instruction *src1)
967 {
968 struct ir3_instruction *sam;
969 struct ir3_register *reg;
970
971 sam = ir3_instr_create(block, 5, opc);
972 sam->flags |= flags;
973 ir3_reg_create(sam, 0, 0)->wrmask = wrmask;
974 if (src0) {
975 reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
976 reg->wrmask = (1 << (src0->regs_count - 1)) - 1;
977 reg->instr = src0;
978 }
979 if (src1) {
980 reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
981 reg->instr = src1;
982 reg->wrmask = (1 << (src1->regs_count - 1)) - 1;
983 }
984 sam->cat5.samp = samp;
985 sam->cat5.tex = tex;
986 sam->cat5.type = type;
987
988 return sam;
989 }
990
991 /* cat6 instructions: */
992 INSTR2(6, LDLV)
993 INSTR2(6, LDG)
994
995 /* ************************************************************************* */
996 /* split this out or find some helper to use.. like main/bitset.h.. */
997
998 #include <string.h>
999
1000 #define MAX_REG 256
1001
1002 typedef uint8_t regmask_t[2 * MAX_REG / 8];
1003
1004 static inline unsigned regmask_idx(struct ir3_register *reg)
1005 {
1006 unsigned num = reg->num;
1007 debug_assert(num < MAX_REG);
1008 if (reg->flags & IR3_REG_HALF)
1009 num += MAX_REG;
1010 return num;
1011 }
1012
1013 static inline void regmask_init(regmask_t *regmask)
1014 {
1015 memset(regmask, 0, sizeof(*regmask));
1016 }
1017
1018 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1019 {
1020 unsigned idx = regmask_idx(reg);
1021 if (reg->flags & IR3_REG_RELATIV) {
1022 unsigned i;
1023 for (i = 0; i < reg->size; i++, idx++)
1024 (*regmask)[idx / 8] |= 1 << (idx % 8);
1025 } else {
1026 unsigned mask;
1027 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1028 if (mask & 1)
1029 (*regmask)[idx / 8] |= 1 << (idx % 8);
1030 }
1031 }
1032
1033 static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
1034 {
1035 unsigned i;
1036 for (i = 0; i < ARRAY_SIZE(*dst); i++)
1037 (*dst)[i] = (*a)[i] | (*b)[i];
1038 }
1039
1040 /* set bits in a if not set in b, conceptually:
1041 * a |= (reg & ~b)
1042 */
1043 static inline void regmask_set_if_not(regmask_t *a,
1044 struct ir3_register *reg, regmask_t *b)
1045 {
1046 unsigned idx = regmask_idx(reg);
1047 if (reg->flags & IR3_REG_RELATIV) {
1048 unsigned i;
1049 for (i = 0; i < reg->size; i++, idx++)
1050 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1051 (*a)[idx / 8] |= 1 << (idx % 8);
1052 } else {
1053 unsigned mask;
1054 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1055 if (mask & 1)
1056 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1057 (*a)[idx / 8] |= 1 << (idx % 8);
1058 }
1059 }
1060
1061 static inline bool regmask_get(regmask_t *regmask,
1062 struct ir3_register *reg)
1063 {
1064 unsigned idx = regmask_idx(reg);
1065 if (reg->flags & IR3_REG_RELATIV) {
1066 unsigned i;
1067 for (i = 0; i < reg->size; i++, idx++)
1068 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1069 return true;
1070 } else {
1071 unsigned mask;
1072 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1073 if (mask & 1)
1074 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1075 return true;
1076 }
1077 return false;
1078 }
1079
1080 /* ************************************************************************* */
1081
1082 #endif /* IR3_H_ */