2d99bc74a9295617241a077ba1cc23a3c26f27b2
[mesa.git] / src / gallium / drivers / freedreno / ir3 / ir3_compiler_nir.c
1 /* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */
2
3 /*
4 * Copyright (C) 2015 Rob Clark <robclark@freedesktop.org>
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 * Rob Clark <robclark@freedesktop.org>
27 */
28
29 #include <stdarg.h>
30
31 #include "pipe/p_state.h"
32 #include "util/u_string.h"
33 #include "util/u_memory.h"
34 #include "util/u_inlines.h"
35
36 #include "freedreno_util.h"
37
38 #include "ir3_compiler.h"
39 #include "ir3_shader.h"
40 #include "ir3_nir.h"
41
42 #include "instr-a3xx.h"
43 #include "ir3.h"
44
45
46 struct ir3_context {
47 struct ir3_compiler *compiler;
48
49 struct nir_shader *s;
50
51 struct nir_instr *cur_instr; /* current instruction, just for debug */
52
53 struct ir3 *ir;
54 struct ir3_shader_variant *so;
55
56 struct ir3_block *block; /* the current block */
57 struct ir3_block *in_block; /* block created for shader inputs */
58
59 nir_function_impl *impl;
60
61 /* For fragment shaders, varyings are not actual shader inputs,
62 * instead the hw passes a varying-coord which is used with
63 * bary.f.
64 *
65 * But NIR doesn't know that, it still declares varyings as
66 * inputs. So we do all the input tracking normally and fix
67 * things up after compile_instructions()
68 *
69 * NOTE that frag_vcoord is the hardware position (possibly it
70 * is actually an index or tag or some such.. it is *not*
71 * values that can be directly used for gl_FragCoord..)
72 */
73 struct ir3_instruction *frag_vcoord;
74
75 /* for fragment shaders, for gl_FrontFacing and gl_FragCoord: */
76 struct ir3_instruction *frag_face, *frag_coord;
77
78 /* For vertex shaders, keep track of the system values sources */
79 struct ir3_instruction *vertex_id, *basevertex, *instance_id;
80
81 /* For fragment shaders: */
82 struct ir3_instruction *samp_id, *samp_mask_in;
83
84 /* Compute shader inputs: */
85 struct ir3_instruction *local_invocation_id, *work_group_id;
86
87 /* mapping from nir_register to defining instruction: */
88 struct hash_table *def_ht;
89
90 unsigned num_arrays;
91
92 /* a common pattern for indirect addressing is to request the
93 * same address register multiple times. To avoid generating
94 * duplicate instruction sequences (which our backend does not
95 * try to clean up, since that should be done as the NIR stage)
96 * we cache the address value generated for a given src value:
97 *
98 * Note that we have to cache these per alignment, since same
99 * src used for an array of vec1 cannot be also used for an
100 * array of vec4.
101 */
102 struct hash_table *addr_ht[4];
103
104 /* last dst array, for indirect we need to insert a var-store.
105 */
106 struct ir3_instruction **last_dst;
107 unsigned last_dst_n;
108
109 /* maps nir_block to ir3_block, mostly for the purposes of
110 * figuring out the blocks successors
111 */
112 struct hash_table *block_ht;
113
114 /* on a4xx, bitmask of samplers which need astc+srgb workaround: */
115 unsigned astc_srgb;
116
117 unsigned samples; /* bitmask of x,y sample shifts */
118
119 unsigned max_texture_index;
120
121 /* set if we encounter something we can't handle yet, so we
122 * can bail cleanly and fallback to TGSI compiler f/e
123 */
124 bool error;
125 };
126
127 /* gpu pointer size in units of 32bit registers/slots */
128 static unsigned pointer_size(struct ir3_context *ctx)
129 {
130 return (ctx->compiler->gpu_id >= 500) ? 2 : 1;
131 }
132
133 static struct ir3_instruction * create_immed(struct ir3_block *block, uint32_t val);
134 static struct ir3_block * get_block(struct ir3_context *ctx, const nir_block *nblock);
135
136
137 static struct ir3_context *
138 compile_init(struct ir3_compiler *compiler,
139 struct ir3_shader_variant *so)
140 {
141 struct ir3_context *ctx = rzalloc(NULL, struct ir3_context);
142
143 if (compiler->gpu_id >= 400) {
144 if (so->type == SHADER_VERTEX) {
145 ctx->astc_srgb = so->key.vastc_srgb;
146 } else if (so->type == SHADER_FRAGMENT) {
147 ctx->astc_srgb = so->key.fastc_srgb;
148 }
149
150 } else {
151 if (so->type == SHADER_VERTEX) {
152 ctx->samples = so->key.vsamples;
153 } else if (so->type == SHADER_FRAGMENT) {
154 ctx->samples = so->key.fsamples;
155 }
156 }
157
158 ctx->compiler = compiler;
159 ctx->so = so;
160 ctx->def_ht = _mesa_hash_table_create(ctx,
161 _mesa_hash_pointer, _mesa_key_pointer_equal);
162 ctx->block_ht = _mesa_hash_table_create(ctx,
163 _mesa_hash_pointer, _mesa_key_pointer_equal);
164
165 /* TODO: maybe generate some sort of bitmask of what key
166 * lowers vs what shader has (ie. no need to lower
167 * texture clamp lowering if no texture sample instrs)..
168 * although should be done further up the stack to avoid
169 * creating duplicate variants..
170 */
171
172 if (ir3_key_lowers_nir(&so->key)) {
173 nir_shader *s = nir_shader_clone(ctx, so->shader->nir);
174 ctx->s = ir3_optimize_nir(so->shader, s, &so->key);
175 } else {
176 /* fast-path for shader key that lowers nothing in NIR: */
177 ctx->s = so->shader->nir;
178 }
179
180 /* this needs to be the last pass run, so do this here instead of
181 * in ir3_optimize_nir():
182 */
183 NIR_PASS_V(ctx->s, nir_lower_locals_to_regs);
184 NIR_PASS_V(ctx->s, nir_convert_from_ssa, true);
185
186 if (fd_mesa_debug & FD_DBG_DISASM) {
187 DBG("dump nir%dv%d: type=%d, k={bp=%u,cts=%u,hp=%u}",
188 so->shader->id, so->id, so->type,
189 so->key.binning_pass, so->key.color_two_side,
190 so->key.half_precision);
191 nir_print_shader(ctx->s, stdout);
192 }
193
194 if (shader_debug_enabled(so->type)) {
195 fprintf(stderr, "NIR (final form) for %s shader:\n",
196 shader_stage_name(so->type));
197 nir_print_shader(ctx->s, stderr);
198 }
199
200 ir3_nir_scan_driver_consts(ctx->s, &so->const_layout);
201
202 so->num_uniforms = ctx->s->num_uniforms;
203 so->num_ubos = ctx->s->info.num_ubos;
204
205 /* Layout of constant registers, each section aligned to vec4. Note
206 * that pointer size (ubo, etc) changes depending on generation.
207 *
208 * user consts
209 * UBO addresses
210 * SSBO sizes
211 * if (vertex shader) {
212 * driver params (IR3_DP_*)
213 * if (stream_output.num_outputs > 0)
214 * stream-out addresses
215 * }
216 * immediates
217 *
218 * Immediates go last mostly because they are inserted in the CP pass
219 * after the nir -> ir3 frontend.
220 */
221 unsigned constoff = align(ctx->s->num_uniforms, 4);
222 unsigned ptrsz = pointer_size(ctx);
223
224 memset(&so->constbase, ~0, sizeof(so->constbase));
225
226 if (so->num_ubos > 0) {
227 so->constbase.ubo = constoff;
228 constoff += align(ctx->s->info.num_ubos * ptrsz, 4) / 4;
229 }
230
231 if (so->const_layout.ssbo_size.count > 0) {
232 unsigned cnt = so->const_layout.ssbo_size.count;
233 so->constbase.ssbo_sizes = constoff;
234 constoff += align(cnt, 4) / 4;
235 }
236
237 if (so->const_layout.image_dims.count > 0) {
238 unsigned cnt = so->const_layout.image_dims.count;
239 so->constbase.image_dims = constoff;
240 constoff += align(cnt, 4) / 4;
241 }
242
243 unsigned num_driver_params = 0;
244 if (so->type == SHADER_VERTEX) {
245 num_driver_params = IR3_DP_VS_COUNT;
246 } else if (so->type == SHADER_COMPUTE) {
247 num_driver_params = IR3_DP_CS_COUNT;
248 }
249
250 so->constbase.driver_param = constoff;
251 constoff += align(num_driver_params, 4) / 4;
252
253 if ((so->type == SHADER_VERTEX) &&
254 (compiler->gpu_id < 500) &&
255 so->shader->stream_output.num_outputs > 0) {
256 so->constbase.tfbo = constoff;
257 constoff += align(PIPE_MAX_SO_BUFFERS * ptrsz, 4) / 4;
258 }
259
260 so->constbase.immediate = constoff;
261
262 return ctx;
263 }
264
265 static void
266 compile_error(struct ir3_context *ctx, const char *format, ...)
267 {
268 struct hash_table *errors = NULL;
269 va_list ap;
270 va_start(ap, format);
271 if (ctx->cur_instr) {
272 errors = _mesa_hash_table_create(NULL,
273 _mesa_hash_pointer,
274 _mesa_key_pointer_equal);
275 char *msg = ralloc_vasprintf(errors, format, ap);
276 _mesa_hash_table_insert(errors, ctx->cur_instr, msg);
277 } else {
278 _debug_vprintf(format, ap);
279 }
280 va_end(ap);
281 nir_print_shader_annotated(ctx->s, stdout, errors);
282 ralloc_free(errors);
283 ctx->error = true;
284 debug_assert(0);
285 }
286
287 #define compile_assert(ctx, cond) do { \
288 if (!(cond)) compile_error((ctx), "failed assert: "#cond"\n"); \
289 } while (0)
290
291 static void
292 compile_free(struct ir3_context *ctx)
293 {
294 ralloc_free(ctx);
295 }
296
297 static void
298 declare_array(struct ir3_context *ctx, nir_register *reg)
299 {
300 struct ir3_array *arr = rzalloc(ctx, struct ir3_array);
301 arr->id = ++ctx->num_arrays;
302 /* NOTE: sometimes we get non array regs, for example for arrays of
303 * length 1. See fs-const-array-of-struct-of-array.shader_test. So
304 * treat a non-array as if it was an array of length 1.
305 *
306 * It would be nice if there was a nir pass to convert arrays of
307 * length 1 to ssa.
308 */
309 arr->length = reg->num_components * MAX2(1, reg->num_array_elems);
310 compile_assert(ctx, arr->length > 0);
311 arr->r = reg;
312 list_addtail(&arr->node, &ctx->ir->array_list);
313 }
314
315 static struct ir3_array *
316 get_array(struct ir3_context *ctx, nir_register *reg)
317 {
318 list_for_each_entry (struct ir3_array, arr, &ctx->ir->array_list, node) {
319 if (arr->r == reg)
320 return arr;
321 }
322 compile_error(ctx, "bogus reg: %s\n", reg->name);
323 return NULL;
324 }
325
326 /* relative (indirect) if address!=NULL */
327 static struct ir3_instruction *
328 create_array_load(struct ir3_context *ctx, struct ir3_array *arr, int n,
329 struct ir3_instruction *address)
330 {
331 struct ir3_block *block = ctx->block;
332 struct ir3_instruction *mov;
333 struct ir3_register *src;
334
335 mov = ir3_instr_create(block, OPC_MOV);
336 mov->cat1.src_type = TYPE_U32;
337 mov->cat1.dst_type = TYPE_U32;
338 mov->barrier_class = IR3_BARRIER_ARRAY_R;
339 mov->barrier_conflict = IR3_BARRIER_ARRAY_W;
340 ir3_reg_create(mov, 0, 0);
341 src = ir3_reg_create(mov, 0, IR3_REG_ARRAY |
342 COND(address, IR3_REG_RELATIV));
343 src->instr = arr->last_write;
344 src->size = arr->length;
345 src->array.id = arr->id;
346 src->array.offset = n;
347
348 if (address)
349 ir3_instr_set_address(mov, address);
350
351 return mov;
352 }
353
354 /* relative (indirect) if address!=NULL */
355 static void
356 create_array_store(struct ir3_context *ctx, struct ir3_array *arr, int n,
357 struct ir3_instruction *src, struct ir3_instruction *address)
358 {
359 struct ir3_block *block = ctx->block;
360 struct ir3_instruction *mov;
361 struct ir3_register *dst;
362
363 /* if not relative store, don't create an extra mov, since that
364 * ends up being difficult for cp to remove.
365 */
366 if (!address) {
367 dst = src->regs[0];
368
369 src->barrier_class |= IR3_BARRIER_ARRAY_W;
370 src->barrier_conflict |= IR3_BARRIER_ARRAY_R | IR3_BARRIER_ARRAY_W;
371
372 dst->flags |= IR3_REG_ARRAY;
373 dst->instr = arr->last_write;
374 dst->size = arr->length;
375 dst->array.id = arr->id;
376 dst->array.offset = n;
377
378 arr->last_write = src;
379
380 array_insert(block, block->keeps, src);
381
382 return;
383 }
384
385 mov = ir3_instr_create(block, OPC_MOV);
386 mov->cat1.src_type = TYPE_U32;
387 mov->cat1.dst_type = TYPE_U32;
388 mov->barrier_class = IR3_BARRIER_ARRAY_W;
389 mov->barrier_conflict = IR3_BARRIER_ARRAY_R | IR3_BARRIER_ARRAY_W;
390 dst = ir3_reg_create(mov, 0, IR3_REG_ARRAY |
391 COND(address, IR3_REG_RELATIV));
392 dst->instr = arr->last_write;
393 dst->size = arr->length;
394 dst->array.id = arr->id;
395 dst->array.offset = n;
396 ir3_reg_create(mov, 0, IR3_REG_SSA)->instr = src;
397
398 if (address)
399 ir3_instr_set_address(mov, address);
400
401 arr->last_write = mov;
402
403 /* the array store may only matter to something in an earlier
404 * block (ie. loops), but since arrays are not in SSA, depth
405 * pass won't know this.. so keep all array stores:
406 */
407 array_insert(block, block->keeps, mov);
408 }
409
410 static inline type_t utype_for_size(unsigned bit_size)
411 {
412 switch (bit_size) {
413 case 32: return TYPE_U32;
414 case 16: return TYPE_U16;
415 case 8: return TYPE_U8;
416 default: unreachable("bad bitsize"); return ~0;
417 }
418 }
419
420 static inline type_t utype_src(nir_src src)
421 { return utype_for_size(nir_src_bit_size(src)); }
422
423 static inline type_t utype_dst(nir_dest dst)
424 { return utype_for_size(nir_dest_bit_size(dst)); }
425
426 /* allocate a n element value array (to be populated by caller) and
427 * insert in def_ht
428 */
429 static struct ir3_instruction **
430 get_dst_ssa(struct ir3_context *ctx, nir_ssa_def *dst, unsigned n)
431 {
432 struct ir3_instruction **value =
433 ralloc_array(ctx->def_ht, struct ir3_instruction *, n);
434 _mesa_hash_table_insert(ctx->def_ht, dst, value);
435 return value;
436 }
437
438 static struct ir3_instruction **
439 get_dst(struct ir3_context *ctx, nir_dest *dst, unsigned n)
440 {
441 struct ir3_instruction **value;
442
443 if (dst->is_ssa) {
444 value = get_dst_ssa(ctx, &dst->ssa, n);
445 } else {
446 value = ralloc_array(ctx, struct ir3_instruction *, n);
447 }
448
449 /* NOTE: in non-ssa case, we don't really need to store last_dst
450 * but this helps us catch cases where put_dst() call is forgotten
451 */
452 compile_assert(ctx, !ctx->last_dst);
453 ctx->last_dst = value;
454 ctx->last_dst_n = n;
455
456 return value;
457 }
458
459 static struct ir3_instruction * get_addr(struct ir3_context *ctx, struct ir3_instruction *src, int align);
460
461 static struct ir3_instruction * const *
462 get_src(struct ir3_context *ctx, nir_src *src)
463 {
464 if (src->is_ssa) {
465 struct hash_entry *entry;
466 entry = _mesa_hash_table_search(ctx->def_ht, src->ssa);
467 compile_assert(ctx, entry);
468 return entry->data;
469 } else {
470 nir_register *reg = src->reg.reg;
471 struct ir3_array *arr = get_array(ctx, reg);
472 unsigned num_components = arr->r->num_components;
473 struct ir3_instruction *addr = NULL;
474 struct ir3_instruction **value =
475 ralloc_array(ctx, struct ir3_instruction *, num_components);
476
477 if (src->reg.indirect)
478 addr = get_addr(ctx, get_src(ctx, src->reg.indirect)[0],
479 reg->num_components);
480
481 for (unsigned i = 0; i < num_components; i++) {
482 unsigned n = src->reg.base_offset * reg->num_components + i;
483 compile_assert(ctx, n < arr->length);
484 value[i] = create_array_load(ctx, arr, n, addr);
485 }
486
487 return value;
488 }
489 }
490
491 static void
492 put_dst(struct ir3_context *ctx, nir_dest *dst)
493 {
494 unsigned bit_size = nir_dest_bit_size(*dst);
495
496 if (bit_size < 32) {
497 for (unsigned i = 0; i < ctx->last_dst_n; i++) {
498 struct ir3_instruction *dst = ctx->last_dst[i];
499 dst->regs[0]->flags |= IR3_REG_HALF;
500 if (ctx->last_dst[i]->opc == OPC_META_FO)
501 dst->regs[1]->instr->regs[0]->flags |= IR3_REG_HALF;
502 }
503 }
504
505 if (!dst->is_ssa) {
506 nir_register *reg = dst->reg.reg;
507 struct ir3_array *arr = get_array(ctx, reg);
508 unsigned num_components = ctx->last_dst_n;
509 struct ir3_instruction *addr = NULL;
510
511 if (dst->reg.indirect)
512 addr = get_addr(ctx, get_src(ctx, dst->reg.indirect)[0],
513 reg->num_components);
514
515 for (unsigned i = 0; i < num_components; i++) {
516 unsigned n = dst->reg.base_offset * reg->num_components + i;
517 compile_assert(ctx, n < arr->length);
518 if (!ctx->last_dst[i])
519 continue;
520 create_array_store(ctx, arr, n, ctx->last_dst[i], addr);
521 }
522
523 ralloc_free(ctx->last_dst);
524 }
525 ctx->last_dst = NULL;
526 ctx->last_dst_n = 0;
527 }
528
529 static struct ir3_instruction *
530 create_immed_typed(struct ir3_block *block, uint32_t val, type_t type)
531 {
532 struct ir3_instruction *mov;
533 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
534
535 mov = ir3_instr_create(block, OPC_MOV);
536 mov->cat1.src_type = type;
537 mov->cat1.dst_type = type;
538 ir3_reg_create(mov, 0, flags);
539 ir3_reg_create(mov, 0, IR3_REG_IMMED)->uim_val = val;
540
541 return mov;
542 }
543
544 static struct ir3_instruction *
545 create_immed(struct ir3_block *block, uint32_t val)
546 {
547 return create_immed_typed(block, val, TYPE_U32);
548 }
549
550 static struct ir3_instruction *
551 create_addr(struct ir3_block *block, struct ir3_instruction *src, int align)
552 {
553 struct ir3_instruction *instr, *immed;
554
555 /* TODO in at least some cases, the backend could probably be
556 * made clever enough to propagate IR3_REG_HALF..
557 */
558 instr = ir3_COV(block, src, TYPE_U32, TYPE_S16);
559 instr->regs[0]->flags |= IR3_REG_HALF;
560
561 switch(align){
562 case 1:
563 /* src *= 1: */
564 break;
565 case 2:
566 /* src *= 2 => src <<= 1: */
567 immed = create_immed(block, 1);
568 immed->regs[0]->flags |= IR3_REG_HALF;
569
570 instr = ir3_SHL_B(block, instr, 0, immed, 0);
571 instr->regs[0]->flags |= IR3_REG_HALF;
572 instr->regs[1]->flags |= IR3_REG_HALF;
573 break;
574 case 3:
575 /* src *= 3: */
576 immed = create_immed(block, 3);
577 immed->regs[0]->flags |= IR3_REG_HALF;
578
579 instr = ir3_MULL_U(block, instr, 0, immed, 0);
580 instr->regs[0]->flags |= IR3_REG_HALF;
581 instr->regs[1]->flags |= IR3_REG_HALF;
582 break;
583 case 4:
584 /* src *= 4 => src <<= 2: */
585 immed = create_immed(block, 2);
586 immed->regs[0]->flags |= IR3_REG_HALF;
587
588 instr = ir3_SHL_B(block, instr, 0, immed, 0);
589 instr->regs[0]->flags |= IR3_REG_HALF;
590 instr->regs[1]->flags |= IR3_REG_HALF;
591 break;
592 default:
593 unreachable("bad align");
594 return NULL;
595 }
596
597 instr = ir3_MOV(block, instr, TYPE_S16);
598 instr->regs[0]->num = regid(REG_A0, 0);
599 instr->regs[0]->flags |= IR3_REG_HALF;
600 instr->regs[1]->flags |= IR3_REG_HALF;
601
602 return instr;
603 }
604
605 /* caches addr values to avoid generating multiple cov/shl/mova
606 * sequences for each use of a given NIR level src as address
607 */
608 static struct ir3_instruction *
609 get_addr(struct ir3_context *ctx, struct ir3_instruction *src, int align)
610 {
611 struct ir3_instruction *addr;
612 unsigned idx = align - 1;
613
614 compile_assert(ctx, idx < ARRAY_SIZE(ctx->addr_ht));
615
616 if (!ctx->addr_ht[idx]) {
617 ctx->addr_ht[idx] = _mesa_hash_table_create(ctx,
618 _mesa_hash_pointer, _mesa_key_pointer_equal);
619 } else {
620 struct hash_entry *entry;
621 entry = _mesa_hash_table_search(ctx->addr_ht[idx], src);
622 if (entry)
623 return entry->data;
624 }
625
626 addr = create_addr(ctx->block, src, align);
627 _mesa_hash_table_insert(ctx->addr_ht[idx], src, addr);
628
629 return addr;
630 }
631
632 static struct ir3_instruction *
633 get_predicate(struct ir3_context *ctx, struct ir3_instruction *src)
634 {
635 struct ir3_block *b = ctx->block;
636 struct ir3_instruction *cond;
637
638 /* NOTE: only cmps.*.* can write p0.x: */
639 cond = ir3_CMPS_S(b, src, 0, create_immed(b, 0), 0);
640 cond->cat2.condition = IR3_COND_NE;
641
642 /* condition always goes in predicate register: */
643 cond->regs[0]->num = regid(REG_P0, 0);
644
645 return cond;
646 }
647
648 static struct ir3_instruction *
649 create_uniform(struct ir3_context *ctx, unsigned n)
650 {
651 struct ir3_instruction *mov;
652
653 mov = ir3_instr_create(ctx->block, OPC_MOV);
654 /* TODO get types right? */
655 mov->cat1.src_type = TYPE_F32;
656 mov->cat1.dst_type = TYPE_F32;
657 ir3_reg_create(mov, 0, 0);
658 ir3_reg_create(mov, n, IR3_REG_CONST);
659
660 return mov;
661 }
662
663 static struct ir3_instruction *
664 create_uniform_indirect(struct ir3_context *ctx, int n,
665 struct ir3_instruction *address)
666 {
667 struct ir3_instruction *mov;
668
669 mov = ir3_instr_create(ctx->block, OPC_MOV);
670 mov->cat1.src_type = TYPE_U32;
671 mov->cat1.dst_type = TYPE_U32;
672 ir3_reg_create(mov, 0, 0);
673 ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
674
675 ir3_instr_set_address(mov, address);
676
677 return mov;
678 }
679
680 static struct ir3_instruction *
681 create_collect(struct ir3_context *ctx, struct ir3_instruction *const *arr,
682 unsigned arrsz)
683 {
684 struct ir3_block *block = ctx->block;
685 struct ir3_instruction *collect;
686
687 if (arrsz == 0)
688 return NULL;
689
690 unsigned flags = arr[0]->regs[0]->flags & IR3_REG_HALF;
691
692 collect = ir3_instr_create2(block, OPC_META_FI, 1 + arrsz);
693 ir3_reg_create(collect, 0, flags); /* dst */
694 for (unsigned i = 0; i < arrsz; i++) {
695 struct ir3_instruction *elem = arr[i];
696
697 /* Since arrays are pre-colored in RA, we can't assume that
698 * things will end up in the right place. (Ie. if a collect
699 * joins elements from two different arrays.) So insert an
700 * extra mov.
701 *
702 * We could possibly skip this if all the collected elements
703 * are contiguous elements in a single array.. not sure how
704 * likely that is to happen.
705 *
706 * Fixes a problem with glamor shaders, that in effect do
707 * something like:
708 *
709 * if (foo)
710 * texcoord = ..
711 * else
712 * texcoord = ..
713 * color = texture2D(tex, texcoord);
714 *
715 * In this case, texcoord will end up as nir registers (which
716 * translate to ir3 array's of length 1. And we can't assume
717 * the two (or more) arrays will get allocated in consecutive
718 * scalar registers.
719 *
720 */
721 if (elem->regs[0]->flags & IR3_REG_ARRAY) {
722 type_t type = (flags & IR3_REG_HALF) ? TYPE_U16 : TYPE_U32;
723 elem = ir3_MOV(block, elem, type);
724 }
725
726 compile_assert(ctx, (elem->regs[0]->flags & IR3_REG_HALF) == flags);
727 ir3_reg_create(collect, 0, IR3_REG_SSA | flags)->instr = elem;
728 }
729
730 return collect;
731 }
732
733 static struct ir3_instruction *
734 create_indirect_load(struct ir3_context *ctx, unsigned arrsz, int n,
735 struct ir3_instruction *address, struct ir3_instruction *collect)
736 {
737 struct ir3_block *block = ctx->block;
738 struct ir3_instruction *mov;
739 struct ir3_register *src;
740
741 mov = ir3_instr_create(block, OPC_MOV);
742 mov->cat1.src_type = TYPE_U32;
743 mov->cat1.dst_type = TYPE_U32;
744 ir3_reg_create(mov, 0, 0);
745 src = ir3_reg_create(mov, 0, IR3_REG_SSA | IR3_REG_RELATIV);
746 src->instr = collect;
747 src->size = arrsz;
748 src->array.offset = n;
749
750 ir3_instr_set_address(mov, address);
751
752 return mov;
753 }
754
755 static struct ir3_instruction *
756 create_input_compmask(struct ir3_context *ctx, unsigned n, unsigned compmask)
757 {
758 struct ir3_instruction *in;
759
760 in = ir3_instr_create(ctx->in_block, OPC_META_INPUT);
761 in->inout.block = ctx->in_block;
762 ir3_reg_create(in, n, 0);
763
764 in->regs[0]->wrmask = compmask;
765
766 return in;
767 }
768
769 static struct ir3_instruction *
770 create_input(struct ir3_context *ctx, unsigned n)
771 {
772 return create_input_compmask(ctx, n, 0x1);
773 }
774
775 static struct ir3_instruction *
776 create_frag_input(struct ir3_context *ctx, bool use_ldlv)
777 {
778 struct ir3_block *block = ctx->block;
779 struct ir3_instruction *instr;
780 /* actual inloc is assigned and fixed up later: */
781 struct ir3_instruction *inloc = create_immed(block, 0);
782
783 if (use_ldlv) {
784 instr = ir3_LDLV(block, inloc, 0, create_immed(block, 1), 0);
785 instr->cat6.type = TYPE_U32;
786 instr->cat6.iim_val = 1;
787 } else {
788 instr = ir3_BARY_F(block, inloc, 0, ctx->frag_vcoord, 0);
789 instr->regs[2]->wrmask = 0x3;
790 }
791
792 return instr;
793 }
794
795 static struct ir3_instruction *
796 create_driver_param(struct ir3_context *ctx, enum ir3_driver_param dp)
797 {
798 /* first four vec4 sysval's reserved for UBOs: */
799 /* NOTE: dp is in scalar, but there can be >4 dp components: */
800 unsigned n = ctx->so->constbase.driver_param;
801 unsigned r = regid(n + dp / 4, dp % 4);
802 return create_uniform(ctx, r);
803 }
804
805 /* helper for instructions that produce multiple consecutive scalar
806 * outputs which need to have a split/fanout meta instruction inserted
807 */
808 static void
809 split_dest(struct ir3_block *block, struct ir3_instruction **dst,
810 struct ir3_instruction *src, unsigned base, unsigned n)
811 {
812 struct ir3_instruction *prev = NULL;
813
814 if ((n == 1) && (src->regs[0]->wrmask == 0x1)) {
815 dst[0] = src;
816 return;
817 }
818
819 for (int i = 0, j = 0; i < n; i++) {
820 struct ir3_instruction *split = ir3_instr_create(block, OPC_META_FO);
821 ir3_reg_create(split, 0, IR3_REG_SSA);
822 ir3_reg_create(split, 0, IR3_REG_SSA)->instr = src;
823 split->fo.off = i + base;
824
825 if (prev) {
826 split->cp.left = prev;
827 split->cp.left_cnt++;
828 prev->cp.right = split;
829 prev->cp.right_cnt++;
830 }
831 prev = split;
832
833 if (src->regs[0]->wrmask & (1 << (i + base)))
834 dst[j++] = split;
835 }
836 }
837
838 /*
839 * Adreno uses uint rather than having dedicated bool type,
840 * which (potentially) requires some conversion, in particular
841 * when using output of an bool instr to int input, or visa
842 * versa.
843 *
844 * | Adreno | NIR |
845 * -------+---------+-------+-
846 * true | 1 | ~0 |
847 * false | 0 | 0 |
848 *
849 * To convert from an adreno bool (uint) to nir, use:
850 *
851 * absneg.s dst, (neg)src
852 *
853 * To convert back in the other direction:
854 *
855 * absneg.s dst, (abs)arc
856 *
857 * The CP step can clean up the absneg.s that cancel each other
858 * out, and with a slight bit of extra cleverness (to recognize
859 * the instructions which produce either a 0 or 1) can eliminate
860 * the absneg.s's completely when an instruction that wants
861 * 0/1 consumes the result. For example, when a nir 'bcsel'
862 * consumes the result of 'feq'. So we should be able to get by
863 * without a boolean resolve step, and without incuring any
864 * extra penalty in instruction count.
865 */
866
867 /* NIR bool -> native (adreno): */
868 static struct ir3_instruction *
869 ir3_b2n(struct ir3_block *block, struct ir3_instruction *instr)
870 {
871 return ir3_ABSNEG_S(block, instr, IR3_REG_SABS);
872 }
873
874 /* native (adreno) -> NIR bool: */
875 static struct ir3_instruction *
876 ir3_n2b(struct ir3_block *block, struct ir3_instruction *instr)
877 {
878 return ir3_ABSNEG_S(block, instr, IR3_REG_SNEG);
879 }
880
881 /*
882 * alu/sfu instructions:
883 */
884
885 static struct ir3_instruction *
886 create_cov(struct ir3_context *ctx, struct ir3_instruction *src,
887 unsigned src_bitsize, nir_op op)
888 {
889 type_t src_type, dst_type;
890
891 switch (op) {
892 case nir_op_f2f32:
893 case nir_op_f2f16_rtne:
894 case nir_op_f2f16_rtz:
895 case nir_op_f2f16:
896 case nir_op_f2i32:
897 case nir_op_f2i16:
898 case nir_op_f2i8:
899 case nir_op_f2u32:
900 case nir_op_f2u16:
901 case nir_op_f2u8:
902 switch (src_bitsize) {
903 case 32:
904 src_type = TYPE_F32;
905 break;
906 case 16:
907 src_type = TYPE_F16;
908 break;
909 default:
910 compile_error(ctx, "invalid src bit size: %u", src_bitsize);
911 }
912 break;
913
914 case nir_op_i2f32:
915 case nir_op_i2f16:
916 case nir_op_i2i32:
917 case nir_op_i2i16:
918 case nir_op_i2i8:
919 switch (src_bitsize) {
920 case 32:
921 src_type = TYPE_S32;
922 break;
923 case 16:
924 src_type = TYPE_S16;
925 break;
926 case 8:
927 src_type = TYPE_S8;
928 break;
929 default:
930 compile_error(ctx, "invalid src bit size: %u", src_bitsize);
931 }
932 break;
933
934 case nir_op_u2f32:
935 case nir_op_u2f16:
936 case nir_op_u2u32:
937 case nir_op_u2u16:
938 case nir_op_u2u8:
939 switch (src_bitsize) {
940 case 32:
941 src_type = TYPE_U32;
942 break;
943 case 16:
944 src_type = TYPE_U16;
945 break;
946 case 8:
947 src_type = TYPE_U8;
948 break;
949 default:
950 compile_error(ctx, "invalid src bit size: %u", src_bitsize);
951 }
952 break;
953
954 default:
955 compile_error(ctx, "invalid conversion op: %u", op);
956 }
957
958 switch (op) {
959 case nir_op_f2f32:
960 case nir_op_i2f32:
961 case nir_op_u2f32:
962 dst_type = TYPE_F32;
963 break;
964
965 case nir_op_f2f16_rtne:
966 case nir_op_f2f16_rtz:
967 case nir_op_f2f16:
968 /* TODO how to handle rounding mode? */
969 case nir_op_i2f16:
970 case nir_op_u2f16:
971 dst_type = TYPE_F16;
972 break;
973
974 case nir_op_f2i32:
975 case nir_op_i2i32:
976 dst_type = TYPE_S32;
977 break;
978
979 case nir_op_f2i16:
980 case nir_op_i2i16:
981 dst_type = TYPE_S16;
982 break;
983
984 case nir_op_f2i8:
985 case nir_op_i2i8:
986 dst_type = TYPE_S8;
987 break;
988
989 case nir_op_f2u32:
990 case nir_op_u2u32:
991 dst_type = TYPE_U32;
992 break;
993
994 case nir_op_f2u16:
995 case nir_op_u2u16:
996 dst_type = TYPE_U16;
997 break;
998
999 case nir_op_f2u8:
1000 case nir_op_u2u8:
1001 dst_type = TYPE_U8;
1002 break;
1003
1004 default:
1005 compile_error(ctx, "invalid conversion op: %u", op);
1006 }
1007
1008 return ir3_COV(ctx->block, src, src_type, dst_type);
1009 }
1010
1011 static void
1012 emit_alu(struct ir3_context *ctx, nir_alu_instr *alu)
1013 {
1014 const nir_op_info *info = &nir_op_infos[alu->op];
1015 struct ir3_instruction **dst, *src[info->num_inputs];
1016 unsigned bs[info->num_inputs]; /* bit size */
1017 struct ir3_block *b = ctx->block;
1018 unsigned dst_sz, wrmask;
1019
1020 if (alu->dest.dest.is_ssa) {
1021 dst_sz = alu->dest.dest.ssa.num_components;
1022 wrmask = (1 << dst_sz) - 1;
1023 } else {
1024 dst_sz = alu->dest.dest.reg.reg->num_components;
1025 wrmask = alu->dest.write_mask;
1026 }
1027
1028 dst = get_dst(ctx, &alu->dest.dest, dst_sz);
1029
1030 /* Vectors are special in that they have non-scalarized writemasks,
1031 * and just take the first swizzle channel for each argument in
1032 * order into each writemask channel.
1033 */
1034 if ((alu->op == nir_op_vec2) ||
1035 (alu->op == nir_op_vec3) ||
1036 (alu->op == nir_op_vec4)) {
1037
1038 for (int i = 0; i < info->num_inputs; i++) {
1039 nir_alu_src *asrc = &alu->src[i];
1040
1041 compile_assert(ctx, !asrc->abs);
1042 compile_assert(ctx, !asrc->negate);
1043
1044 src[i] = get_src(ctx, &asrc->src)[asrc->swizzle[0]];
1045 if (!src[i])
1046 src[i] = create_immed(ctx->block, 0);
1047 dst[i] = ir3_MOV(b, src[i], TYPE_U32);
1048 }
1049
1050 put_dst(ctx, &alu->dest.dest);
1051 return;
1052 }
1053
1054 /* We also get mov's with more than one component for mov's so
1055 * handle those specially:
1056 */
1057 if ((alu->op == nir_op_imov) || (alu->op == nir_op_fmov)) {
1058 type_t type = (alu->op == nir_op_imov) ? TYPE_U32 : TYPE_F32;
1059 nir_alu_src *asrc = &alu->src[0];
1060 struct ir3_instruction *const *src0 = get_src(ctx, &asrc->src);
1061
1062 for (unsigned i = 0; i < dst_sz; i++) {
1063 if (wrmask & (1 << i)) {
1064 dst[i] = ir3_MOV(b, src0[asrc->swizzle[i]], type);
1065 } else {
1066 dst[i] = NULL;
1067 }
1068 }
1069
1070 put_dst(ctx, &alu->dest.dest);
1071 return;
1072 }
1073
1074 /* General case: We can just grab the one used channel per src. */
1075 for (int i = 0; i < info->num_inputs; i++) {
1076 unsigned chan = ffs(alu->dest.write_mask) - 1;
1077 nir_alu_src *asrc = &alu->src[i];
1078
1079 compile_assert(ctx, !asrc->abs);
1080 compile_assert(ctx, !asrc->negate);
1081
1082 src[i] = get_src(ctx, &asrc->src)[asrc->swizzle[chan]];
1083 bs[i] = nir_src_bit_size(asrc->src);
1084
1085 compile_assert(ctx, src[i]);
1086 }
1087
1088 switch (alu->op) {
1089 case nir_op_f2f32:
1090 case nir_op_f2f16_rtne:
1091 case nir_op_f2f16_rtz:
1092 case nir_op_f2f16:
1093 case nir_op_f2i32:
1094 case nir_op_f2i16:
1095 case nir_op_f2i8:
1096 case nir_op_f2u32:
1097 case nir_op_f2u16:
1098 case nir_op_f2u8:
1099 case nir_op_i2f32:
1100 case nir_op_i2f16:
1101 case nir_op_i2i32:
1102 case nir_op_i2i16:
1103 case nir_op_i2i8:
1104 case nir_op_u2f32:
1105 case nir_op_u2f16:
1106 case nir_op_u2u32:
1107 case nir_op_u2u16:
1108 case nir_op_u2u8:
1109 dst[0] = create_cov(ctx, src[0], bs[0], alu->op);
1110 break;
1111 case nir_op_f2b:
1112 dst[0] = ir3_CMPS_F(b, src[0], 0, create_immed(b, fui(0.0)), 0);
1113 dst[0]->cat2.condition = IR3_COND_NE;
1114 dst[0] = ir3_n2b(b, dst[0]);
1115 break;
1116 case nir_op_b2f:
1117 dst[0] = ir3_COV(b, ir3_b2n(b, src[0]), TYPE_U32, TYPE_F32);
1118 break;
1119 case nir_op_b2i:
1120 dst[0] = ir3_b2n(b, src[0]);
1121 break;
1122 case nir_op_i2b:
1123 dst[0] = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
1124 dst[0]->cat2.condition = IR3_COND_NE;
1125 dst[0] = ir3_n2b(b, dst[0]);
1126 break;
1127
1128 case nir_op_fneg:
1129 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FNEG);
1130 break;
1131 case nir_op_fabs:
1132 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FABS);
1133 break;
1134 case nir_op_fmax:
1135 dst[0] = ir3_MAX_F(b, src[0], 0, src[1], 0);
1136 break;
1137 case nir_op_fmin:
1138 dst[0] = ir3_MIN_F(b, src[0], 0, src[1], 0);
1139 break;
1140 case nir_op_fsat:
1141 /* if there is just a single use of the src, and it supports
1142 * (sat) bit, we can just fold the (sat) flag back to the
1143 * src instruction and create a mov. This is easier for cp
1144 * to eliminate.
1145 *
1146 * TODO probably opc_cat==4 is ok too
1147 */
1148 if (alu->src[0].src.is_ssa &&
1149 (list_length(&alu->src[0].src.ssa->uses) == 1) &&
1150 ((opc_cat(src[0]->opc) == 2) || (opc_cat(src[0]->opc) == 3))) {
1151 src[0]->flags |= IR3_INSTR_SAT;
1152 dst[0] = ir3_MOV(b, src[0], TYPE_U32);
1153 } else {
1154 /* otherwise generate a max.f that saturates.. blob does
1155 * similar (generating a cat2 mov using max.f)
1156 */
1157 dst[0] = ir3_MAX_F(b, src[0], 0, src[0], 0);
1158 dst[0]->flags |= IR3_INSTR_SAT;
1159 }
1160 break;
1161 case nir_op_fmul:
1162 dst[0] = ir3_MUL_F(b, src[0], 0, src[1], 0);
1163 break;
1164 case nir_op_fadd:
1165 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], 0);
1166 break;
1167 case nir_op_fsub:
1168 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], IR3_REG_FNEG);
1169 break;
1170 case nir_op_ffma:
1171 dst[0] = ir3_MAD_F32(b, src[0], 0, src[1], 0, src[2], 0);
1172 break;
1173 case nir_op_fddx:
1174 dst[0] = ir3_DSX(b, src[0], 0);
1175 dst[0]->cat5.type = TYPE_F32;
1176 break;
1177 case nir_op_fddy:
1178 dst[0] = ir3_DSY(b, src[0], 0);
1179 dst[0]->cat5.type = TYPE_F32;
1180 break;
1181 break;
1182 case nir_op_flt:
1183 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
1184 dst[0]->cat2.condition = IR3_COND_LT;
1185 dst[0] = ir3_n2b(b, dst[0]);
1186 break;
1187 case nir_op_fge:
1188 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
1189 dst[0]->cat2.condition = IR3_COND_GE;
1190 dst[0] = ir3_n2b(b, dst[0]);
1191 break;
1192 case nir_op_feq:
1193 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
1194 dst[0]->cat2.condition = IR3_COND_EQ;
1195 dst[0] = ir3_n2b(b, dst[0]);
1196 break;
1197 case nir_op_fne:
1198 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
1199 dst[0]->cat2.condition = IR3_COND_NE;
1200 dst[0] = ir3_n2b(b, dst[0]);
1201 break;
1202 case nir_op_fceil:
1203 dst[0] = ir3_CEIL_F(b, src[0], 0);
1204 break;
1205 case nir_op_ffloor:
1206 dst[0] = ir3_FLOOR_F(b, src[0], 0);
1207 break;
1208 case nir_op_ftrunc:
1209 dst[0] = ir3_TRUNC_F(b, src[0], 0);
1210 break;
1211 case nir_op_fround_even:
1212 dst[0] = ir3_RNDNE_F(b, src[0], 0);
1213 break;
1214 case nir_op_fsign:
1215 dst[0] = ir3_SIGN_F(b, src[0], 0);
1216 break;
1217
1218 case nir_op_fsin:
1219 dst[0] = ir3_SIN(b, src[0], 0);
1220 break;
1221 case nir_op_fcos:
1222 dst[0] = ir3_COS(b, src[0], 0);
1223 break;
1224 case nir_op_frsq:
1225 dst[0] = ir3_RSQ(b, src[0], 0);
1226 break;
1227 case nir_op_frcp:
1228 dst[0] = ir3_RCP(b, src[0], 0);
1229 break;
1230 case nir_op_flog2:
1231 dst[0] = ir3_LOG2(b, src[0], 0);
1232 break;
1233 case nir_op_fexp2:
1234 dst[0] = ir3_EXP2(b, src[0], 0);
1235 break;
1236 case nir_op_fsqrt:
1237 dst[0] = ir3_SQRT(b, src[0], 0);
1238 break;
1239
1240 case nir_op_iabs:
1241 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SABS);
1242 break;
1243 case nir_op_iadd:
1244 dst[0] = ir3_ADD_U(b, src[0], 0, src[1], 0);
1245 break;
1246 case nir_op_iand:
1247 dst[0] = ir3_AND_B(b, src[0], 0, src[1], 0);
1248 break;
1249 case nir_op_imax:
1250 dst[0] = ir3_MAX_S(b, src[0], 0, src[1], 0);
1251 break;
1252 case nir_op_umax:
1253 dst[0] = ir3_MAX_U(b, src[0], 0, src[1], 0);
1254 break;
1255 case nir_op_imin:
1256 dst[0] = ir3_MIN_S(b, src[0], 0, src[1], 0);
1257 break;
1258 case nir_op_umin:
1259 dst[0] = ir3_MIN_U(b, src[0], 0, src[1], 0);
1260 break;
1261 case nir_op_imul:
1262 /*
1263 * dst = (al * bl) + (ah * bl << 16) + (al * bh << 16)
1264 * mull.u tmp0, a, b ; mul low, i.e. al * bl
1265 * madsh.m16 tmp1, a, b, tmp0 ; mul-add shift high mix, i.e. ah * bl << 16
1266 * madsh.m16 dst, b, a, tmp1 ; i.e. al * bh << 16
1267 */
1268 dst[0] = ir3_MADSH_M16(b, src[1], 0, src[0], 0,
1269 ir3_MADSH_M16(b, src[0], 0, src[1], 0,
1270 ir3_MULL_U(b, src[0], 0, src[1], 0), 0), 0);
1271 break;
1272 case nir_op_ineg:
1273 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
1274 break;
1275 case nir_op_inot:
1276 dst[0] = ir3_NOT_B(b, src[0], 0);
1277 break;
1278 case nir_op_ior:
1279 dst[0] = ir3_OR_B(b, src[0], 0, src[1], 0);
1280 break;
1281 case nir_op_ishl:
1282 dst[0] = ir3_SHL_B(b, src[0], 0, src[1], 0);
1283 break;
1284 case nir_op_ishr:
1285 dst[0] = ir3_ASHR_B(b, src[0], 0, src[1], 0);
1286 break;
1287 case nir_op_isign: {
1288 /* maybe this would be sane to lower in nir.. */
1289 struct ir3_instruction *neg, *pos;
1290
1291 neg = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
1292 neg->cat2.condition = IR3_COND_LT;
1293
1294 pos = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
1295 pos->cat2.condition = IR3_COND_GT;
1296
1297 dst[0] = ir3_SUB_U(b, pos, 0, neg, 0);
1298
1299 break;
1300 }
1301 case nir_op_isub:
1302 dst[0] = ir3_SUB_U(b, src[0], 0, src[1], 0);
1303 break;
1304 case nir_op_ixor:
1305 dst[0] = ir3_XOR_B(b, src[0], 0, src[1], 0);
1306 break;
1307 case nir_op_ushr:
1308 dst[0] = ir3_SHR_B(b, src[0], 0, src[1], 0);
1309 break;
1310 case nir_op_ilt:
1311 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
1312 dst[0]->cat2.condition = IR3_COND_LT;
1313 dst[0] = ir3_n2b(b, dst[0]);
1314 break;
1315 case nir_op_ige:
1316 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
1317 dst[0]->cat2.condition = IR3_COND_GE;
1318 dst[0] = ir3_n2b(b, dst[0]);
1319 break;
1320 case nir_op_ieq:
1321 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
1322 dst[0]->cat2.condition = IR3_COND_EQ;
1323 dst[0] = ir3_n2b(b, dst[0]);
1324 break;
1325 case nir_op_ine:
1326 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
1327 dst[0]->cat2.condition = IR3_COND_NE;
1328 dst[0] = ir3_n2b(b, dst[0]);
1329 break;
1330 case nir_op_ult:
1331 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
1332 dst[0]->cat2.condition = IR3_COND_LT;
1333 dst[0] = ir3_n2b(b, dst[0]);
1334 break;
1335 case nir_op_uge:
1336 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
1337 dst[0]->cat2.condition = IR3_COND_GE;
1338 dst[0] = ir3_n2b(b, dst[0]);
1339 break;
1340
1341 case nir_op_bcsel: {
1342 struct ir3_instruction *cond = ir3_b2n(b, src[0]);
1343 compile_assert(ctx, bs[1] == bs[2]);
1344 /* the boolean condition is 32b even if src[1] and src[2] are
1345 * half-precision, but sel.b16 wants all three src's to be the
1346 * same type.
1347 */
1348 if (bs[1] < 32)
1349 cond = ir3_COV(b, cond, TYPE_U32, TYPE_U16);
1350 dst[0] = ir3_SEL_B32(b, src[1], 0, cond, 0, src[2], 0);
1351 break;
1352 }
1353 case nir_op_bit_count:
1354 dst[0] = ir3_CBITS_B(b, src[0], 0);
1355 break;
1356 case nir_op_ifind_msb: {
1357 struct ir3_instruction *cmp;
1358 dst[0] = ir3_CLZ_S(b, src[0], 0);
1359 cmp = ir3_CMPS_S(b, dst[0], 0, create_immed(b, 0), 0);
1360 cmp->cat2.condition = IR3_COND_GE;
1361 dst[0] = ir3_SEL_B32(b,
1362 ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
1363 cmp, 0, dst[0], 0);
1364 break;
1365 }
1366 case nir_op_ufind_msb:
1367 dst[0] = ir3_CLZ_B(b, src[0], 0);
1368 dst[0] = ir3_SEL_B32(b,
1369 ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
1370 src[0], 0, dst[0], 0);
1371 break;
1372 case nir_op_find_lsb:
1373 dst[0] = ir3_BFREV_B(b, src[0], 0);
1374 dst[0] = ir3_CLZ_B(b, dst[0], 0);
1375 break;
1376 case nir_op_bitfield_reverse:
1377 dst[0] = ir3_BFREV_B(b, src[0], 0);
1378 break;
1379
1380 default:
1381 compile_error(ctx, "Unhandled ALU op: %s\n",
1382 nir_op_infos[alu->op].name);
1383 break;
1384 }
1385
1386 put_dst(ctx, &alu->dest.dest);
1387 }
1388
1389 /* handles direct/indirect UBO reads: */
1390 static void
1391 emit_intrinsic_load_ubo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1392 struct ir3_instruction **dst)
1393 {
1394 struct ir3_block *b = ctx->block;
1395 struct ir3_instruction *base_lo, *base_hi, *addr, *src0, *src1;
1396 nir_const_value *const_offset;
1397 /* UBO addresses are the first driver params: */
1398 unsigned ubo = regid(ctx->so->constbase.ubo, 0);
1399 const unsigned ptrsz = pointer_size(ctx);
1400
1401 int off = 0;
1402
1403 /* First src is ubo index, which could either be an immed or not: */
1404 src0 = get_src(ctx, &intr->src[0])[0];
1405 if (is_same_type_mov(src0) &&
1406 (src0->regs[1]->flags & IR3_REG_IMMED)) {
1407 base_lo = create_uniform(ctx, ubo + (src0->regs[1]->iim_val * ptrsz));
1408 base_hi = create_uniform(ctx, ubo + (src0->regs[1]->iim_val * ptrsz) + 1);
1409 } else {
1410 base_lo = create_uniform_indirect(ctx, ubo, get_addr(ctx, src0, 4));
1411 base_hi = create_uniform_indirect(ctx, ubo + 1, get_addr(ctx, src0, 4));
1412 }
1413
1414 /* note: on 32bit gpu's base_hi is ignored and DCE'd */
1415 addr = base_lo;
1416
1417 const_offset = nir_src_as_const_value(intr->src[1]);
1418 if (const_offset) {
1419 off += const_offset->u32[0];
1420 } else {
1421 /* For load_ubo_indirect, second src is indirect offset: */
1422 src1 = get_src(ctx, &intr->src[1])[0];
1423
1424 /* and add offset to addr: */
1425 addr = ir3_ADD_S(b, addr, 0, src1, 0);
1426 }
1427
1428 /* if offset is to large to encode in the ldg, split it out: */
1429 if ((off + (intr->num_components * 4)) > 1024) {
1430 /* split out the minimal amount to improve the odds that
1431 * cp can fit the immediate in the add.s instruction:
1432 */
1433 unsigned off2 = off + (intr->num_components * 4) - 1024;
1434 addr = ir3_ADD_S(b, addr, 0, create_immed(b, off2), 0);
1435 off -= off2;
1436 }
1437
1438 if (ptrsz == 2) {
1439 struct ir3_instruction *carry;
1440
1441 /* handle 32b rollover, ie:
1442 * if (addr < base_lo)
1443 * base_hi++
1444 */
1445 carry = ir3_CMPS_U(b, addr, 0, base_lo, 0);
1446 carry->cat2.condition = IR3_COND_LT;
1447 base_hi = ir3_ADD_S(b, base_hi, 0, carry, 0);
1448
1449 addr = create_collect(ctx, (struct ir3_instruction*[]){ addr, base_hi }, 2);
1450 }
1451
1452 for (int i = 0; i < intr->num_components; i++) {
1453 struct ir3_instruction *load =
1454 ir3_LDG(b, addr, 0, create_immed(b, 1), 0);
1455 load->cat6.type = TYPE_U32;
1456 load->cat6.src_offset = off + i * 4; /* byte offset */
1457 dst[i] = load;
1458 }
1459 }
1460
1461 /* src[] = { buffer_index, offset }. No const_index */
1462 static void
1463 emit_intrinsic_load_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1464 struct ir3_instruction **dst)
1465 {
1466 struct ir3_block *b = ctx->block;
1467 struct ir3_instruction *ldgb, *src0, *src1, *offset;
1468 nir_const_value *const_offset;
1469
1470 /* can this be non-const buffer_index? how do we handle that? */
1471 const_offset = nir_src_as_const_value(intr->src[0]);
1472 compile_assert(ctx, const_offset);
1473
1474 offset = get_src(ctx, &intr->src[1])[0];
1475
1476 /* src0 is uvec2(offset*4, 0), src1 is offset.. nir already *= 4: */
1477 src0 = create_collect(ctx, (struct ir3_instruction*[]){
1478 offset,
1479 create_immed(b, 0),
1480 }, 2);
1481 src1 = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
1482
1483 ldgb = ir3_LDGB(b, create_immed(b, const_offset->u32[0]), 0,
1484 src0, 0, src1, 0);
1485 ldgb->regs[0]->wrmask = MASK(intr->num_components);
1486 ldgb->cat6.iim_val = intr->num_components;
1487 ldgb->cat6.d = 4;
1488 ldgb->cat6.type = TYPE_U32;
1489 ldgb->barrier_class = IR3_BARRIER_BUFFER_R;
1490 ldgb->barrier_conflict = IR3_BARRIER_BUFFER_W;
1491
1492 split_dest(b, dst, ldgb, 0, intr->num_components);
1493 }
1494
1495 /* src[] = { value, block_index, offset }. const_index[] = { write_mask } */
1496 static void
1497 emit_intrinsic_store_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1498 {
1499 struct ir3_block *b = ctx->block;
1500 struct ir3_instruction *stgb, *src0, *src1, *src2, *offset;
1501 nir_const_value *const_offset;
1502 /* TODO handle wrmask properly, see _store_shared().. but I think
1503 * it is more a PITA than that, since blob ends up loading the
1504 * masked components and writing them back out.
1505 */
1506 unsigned wrmask = intr->const_index[0];
1507 unsigned ncomp = ffs(~wrmask) - 1;
1508
1509 /* can this be non-const buffer_index? how do we handle that? */
1510 const_offset = nir_src_as_const_value(intr->src[1]);
1511 compile_assert(ctx, const_offset);
1512
1513 offset = get_src(ctx, &intr->src[2])[0];
1514
1515 /* src0 is value, src1 is offset, src2 is uvec2(offset*4, 0)..
1516 * nir already *= 4:
1517 */
1518 src0 = create_collect(ctx, get_src(ctx, &intr->src[0]), ncomp);
1519 src1 = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
1520 src2 = create_collect(ctx, (struct ir3_instruction*[]){
1521 offset,
1522 create_immed(b, 0),
1523 }, 2);
1524
1525 stgb = ir3_STGB(b, create_immed(b, const_offset->u32[0]), 0,
1526 src0, 0, src1, 0, src2, 0);
1527 stgb->cat6.iim_val = ncomp;
1528 stgb->cat6.d = 4;
1529 stgb->cat6.type = TYPE_U32;
1530 stgb->barrier_class = IR3_BARRIER_BUFFER_W;
1531 stgb->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1532
1533 array_insert(b, b->keeps, stgb);
1534 }
1535
1536 /* src[] = { block_index } */
1537 static void
1538 emit_intrinsic_ssbo_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1539 struct ir3_instruction **dst)
1540 {
1541 /* SSBO size stored as a const starting at ssbo_sizes: */
1542 unsigned blk_idx = nir_src_as_const_value(intr->src[0])->u32[0];
1543 unsigned idx = regid(ctx->so->constbase.ssbo_sizes, 0) +
1544 ctx->so->const_layout.ssbo_size.off[blk_idx];
1545
1546 debug_assert(ctx->so->const_layout.ssbo_size.mask & (1 << blk_idx));
1547
1548 dst[0] = create_uniform(ctx, idx);
1549 }
1550
1551 /*
1552 * SSBO atomic intrinsics
1553 *
1554 * All of the SSBO atomic memory operations read a value from memory,
1555 * compute a new value using one of the operations below, write the new
1556 * value to memory, and return the original value read.
1557 *
1558 * All operations take 3 sources except CompSwap that takes 4. These
1559 * sources represent:
1560 *
1561 * 0: The SSBO buffer index.
1562 * 1: The offset into the SSBO buffer of the variable that the atomic
1563 * operation will operate on.
1564 * 2: The data parameter to the atomic function (i.e. the value to add
1565 * in ssbo_atomic_add, etc).
1566 * 3: For CompSwap only: the second data parameter.
1567 */
1568 static struct ir3_instruction *
1569 emit_intrinsic_atomic_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1570 {
1571 struct ir3_block *b = ctx->block;
1572 struct ir3_instruction *atomic, *ssbo, *src0, *src1, *src2, *offset;
1573 nir_const_value *const_offset;
1574 type_t type = TYPE_U32;
1575
1576 /* can this be non-const buffer_index? how do we handle that? */
1577 const_offset = nir_src_as_const_value(intr->src[0]);
1578 compile_assert(ctx, const_offset);
1579 ssbo = create_immed(b, const_offset->u32[0]);
1580
1581 offset = get_src(ctx, &intr->src[1])[0];
1582
1583 /* src0 is data (or uvec2(data, compare))
1584 * src1 is offset
1585 * src2 is uvec2(offset*4, 0) (appears to be 64b byte offset)
1586 *
1587 * Note that nir already multiplies the offset by four
1588 */
1589 src0 = get_src(ctx, &intr->src[2])[0];
1590 src1 = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
1591 src2 = create_collect(ctx, (struct ir3_instruction*[]){
1592 offset,
1593 create_immed(b, 0),
1594 }, 2);
1595
1596 switch (intr->intrinsic) {
1597 case nir_intrinsic_ssbo_atomic_add:
1598 atomic = ir3_ATOMIC_ADD_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1599 break;
1600 case nir_intrinsic_ssbo_atomic_imin:
1601 atomic = ir3_ATOMIC_MIN_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1602 type = TYPE_S32;
1603 break;
1604 case nir_intrinsic_ssbo_atomic_umin:
1605 atomic = ir3_ATOMIC_MIN_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1606 break;
1607 case nir_intrinsic_ssbo_atomic_imax:
1608 atomic = ir3_ATOMIC_MAX_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1609 type = TYPE_S32;
1610 break;
1611 case nir_intrinsic_ssbo_atomic_umax:
1612 atomic = ir3_ATOMIC_MAX_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1613 break;
1614 case nir_intrinsic_ssbo_atomic_and:
1615 atomic = ir3_ATOMIC_AND_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1616 break;
1617 case nir_intrinsic_ssbo_atomic_or:
1618 atomic = ir3_ATOMIC_OR_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1619 break;
1620 case nir_intrinsic_ssbo_atomic_xor:
1621 atomic = ir3_ATOMIC_XOR_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1622 break;
1623 case nir_intrinsic_ssbo_atomic_exchange:
1624 atomic = ir3_ATOMIC_XCHG_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1625 break;
1626 case nir_intrinsic_ssbo_atomic_comp_swap:
1627 /* for cmpxchg, src0 is [ui]vec2(data, compare): */
1628 src0 = create_collect(ctx, (struct ir3_instruction*[]){
1629 get_src(ctx, &intr->src[3])[0],
1630 src0,
1631 }, 2);
1632 atomic = ir3_ATOMIC_CMPXCHG_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1633 break;
1634 default:
1635 unreachable("boo");
1636 }
1637
1638 atomic->cat6.iim_val = 1;
1639 atomic->cat6.d = 4;
1640 atomic->cat6.type = type;
1641 atomic->barrier_class = IR3_BARRIER_BUFFER_W;
1642 atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1643
1644 /* even if nothing consume the result, we can't DCE the instruction: */
1645 array_insert(b, b->keeps, atomic);
1646
1647 return atomic;
1648 }
1649
1650 /* src[] = { offset }. const_index[] = { base } */
1651 static void
1652 emit_intrinsic_load_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1653 struct ir3_instruction **dst)
1654 {
1655 struct ir3_block *b = ctx->block;
1656 struct ir3_instruction *ldl, *offset;
1657 unsigned base;
1658
1659 offset = get_src(ctx, &intr->src[0])[0];
1660 base = nir_intrinsic_base(intr);
1661
1662 ldl = ir3_LDL(b, offset, 0, create_immed(b, intr->num_components), 0);
1663 ldl->cat6.src_offset = base;
1664 ldl->cat6.type = utype_dst(intr->dest);
1665 ldl->regs[0]->wrmask = MASK(intr->num_components);
1666
1667 ldl->barrier_class = IR3_BARRIER_SHARED_R;
1668 ldl->barrier_conflict = IR3_BARRIER_SHARED_W;
1669
1670 split_dest(b, dst, ldl, 0, intr->num_components);
1671 }
1672
1673 /* src[] = { value, offset }. const_index[] = { base, write_mask } */
1674 static void
1675 emit_intrinsic_store_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1676 {
1677 struct ir3_block *b = ctx->block;
1678 struct ir3_instruction *stl, *offset;
1679 struct ir3_instruction * const *value;
1680 unsigned base, wrmask;
1681
1682 value = get_src(ctx, &intr->src[0]);
1683 offset = get_src(ctx, &intr->src[1])[0];
1684
1685 base = nir_intrinsic_base(intr);
1686 wrmask = nir_intrinsic_write_mask(intr);
1687
1688 /* Combine groups of consecutive enabled channels in one write
1689 * message. We use ffs to find the first enabled channel and then ffs on
1690 * the bit-inverse, down-shifted writemask to determine the length of
1691 * the block of enabled bits.
1692 *
1693 * (trick stolen from i965's fs_visitor::nir_emit_cs_intrinsic())
1694 */
1695 while (wrmask) {
1696 unsigned first_component = ffs(wrmask) - 1;
1697 unsigned length = ffs(~(wrmask >> first_component)) - 1;
1698
1699 stl = ir3_STL(b, offset, 0,
1700 create_collect(ctx, &value[first_component], length), 0,
1701 create_immed(b, length), 0);
1702 stl->cat6.dst_offset = first_component + base;
1703 stl->cat6.type = utype_src(intr->src[0]);
1704 stl->barrier_class = IR3_BARRIER_SHARED_W;
1705 stl->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1706
1707 array_insert(b, b->keeps, stl);
1708
1709 /* Clear the bits in the writemask that we just wrote, then try
1710 * again to see if more channels are left.
1711 */
1712 wrmask &= (15 << (first_component + length));
1713 }
1714 }
1715
1716 /*
1717 * CS shared variable atomic intrinsics
1718 *
1719 * All of the shared variable atomic memory operations read a value from
1720 * memory, compute a new value using one of the operations below, write the
1721 * new value to memory, and return the original value read.
1722 *
1723 * All operations take 2 sources except CompSwap that takes 3. These
1724 * sources represent:
1725 *
1726 * 0: The offset into the shared variable storage region that the atomic
1727 * operation will operate on.
1728 * 1: The data parameter to the atomic function (i.e. the value to add
1729 * in shared_atomic_add, etc).
1730 * 2: For CompSwap only: the second data parameter.
1731 */
1732 static struct ir3_instruction *
1733 emit_intrinsic_atomic_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1734 {
1735 struct ir3_block *b = ctx->block;
1736 struct ir3_instruction *atomic, *src0, *src1;
1737 type_t type = TYPE_U32;
1738
1739 src0 = get_src(ctx, &intr->src[0])[0]; /* offset */
1740 src1 = get_src(ctx, &intr->src[1])[0]; /* value */
1741
1742 switch (intr->intrinsic) {
1743 case nir_intrinsic_shared_atomic_add:
1744 atomic = ir3_ATOMIC_ADD(b, src0, 0, src1, 0);
1745 break;
1746 case nir_intrinsic_shared_atomic_imin:
1747 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
1748 type = TYPE_S32;
1749 break;
1750 case nir_intrinsic_shared_atomic_umin:
1751 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
1752 break;
1753 case nir_intrinsic_shared_atomic_imax:
1754 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1755 type = TYPE_S32;
1756 break;
1757 case nir_intrinsic_shared_atomic_umax:
1758 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1759 break;
1760 case nir_intrinsic_shared_atomic_and:
1761 atomic = ir3_ATOMIC_AND(b, src0, 0, src1, 0);
1762 break;
1763 case nir_intrinsic_shared_atomic_or:
1764 atomic = ir3_ATOMIC_OR(b, src0, 0, src1, 0);
1765 break;
1766 case nir_intrinsic_shared_atomic_xor:
1767 atomic = ir3_ATOMIC_XOR(b, src0, 0, src1, 0);
1768 break;
1769 case nir_intrinsic_shared_atomic_exchange:
1770 atomic = ir3_ATOMIC_XCHG(b, src0, 0, src1, 0);
1771 break;
1772 case nir_intrinsic_shared_atomic_comp_swap:
1773 /* for cmpxchg, src1 is [ui]vec2(data, compare): */
1774 src1 = create_collect(ctx, (struct ir3_instruction*[]){
1775 get_src(ctx, &intr->src[2])[0],
1776 src1,
1777 }, 2);
1778 atomic = ir3_ATOMIC_CMPXCHG(b, src0, 0, src1, 0);
1779 break;
1780 default:
1781 unreachable("boo");
1782 }
1783
1784 atomic->cat6.iim_val = 1;
1785 atomic->cat6.d = 1;
1786 atomic->cat6.type = type;
1787 atomic->barrier_class = IR3_BARRIER_SHARED_W;
1788 atomic->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1789
1790 /* even if nothing consume the result, we can't DCE the instruction: */
1791 array_insert(b, b->keeps, atomic);
1792
1793 return atomic;
1794 }
1795
1796 /* Images get mapped into SSBO/image state (for store/atomic) and texture
1797 * state block (for load). To simplify things, invert the image id and
1798 * map it from end of state block, ie. image 0 becomes num-1, image 1
1799 * becomes num-2, etc. This potentially avoids needing to re-emit texture
1800 * state when switching shaders.
1801 *
1802 * TODO is max # of samplers and SSBOs the same. This shouldn't be hard-
1803 * coded. Also, since all the gl shader stages (ie. everything but CS)
1804 * share the same SSBO/image state block, this might require some more
1805 * logic if we supported images in anything other than FS..
1806 */
1807 static unsigned
1808 get_image_slot(struct ir3_context *ctx, nir_deref_instr *deref)
1809 {
1810 unsigned int loc = 0;
1811 unsigned inner_size = 1;
1812
1813 while (deref->deref_type != nir_deref_type_var) {
1814 assert(deref->deref_type == nir_deref_type_array);
1815 nir_const_value *const_index = nir_src_as_const_value(deref->arr.index);
1816 assert(const_index);
1817
1818 /* Go to the next instruction */
1819 deref = nir_deref_instr_parent(deref);
1820
1821 assert(glsl_type_is_array(deref->type));
1822 const unsigned array_len = glsl_get_length(deref->type);
1823 loc += MIN2(const_index->u32[0], array_len - 1) * inner_size;
1824
1825 /* Update the inner size */
1826 inner_size *= array_len;
1827 }
1828
1829 loc += deref->var->data.driver_location;
1830
1831 /* TODO figure out real limit per generation, and don't hardcode: */
1832 const unsigned max_samplers = 16;
1833 return max_samplers - loc - 1;
1834 }
1835
1836 /* see tex_info() for equiv logic for texture instructions.. it would be
1837 * nice if this could be better unified..
1838 */
1839 static unsigned
1840 get_image_coords(const nir_variable *var, unsigned *flagsp)
1841 {
1842 const struct glsl_type *type = glsl_without_array(var->type);
1843 unsigned coords, flags = 0;
1844
1845 switch (glsl_get_sampler_dim(type)) {
1846 case GLSL_SAMPLER_DIM_1D:
1847 case GLSL_SAMPLER_DIM_BUF:
1848 coords = 1;
1849 break;
1850 case GLSL_SAMPLER_DIM_2D:
1851 case GLSL_SAMPLER_DIM_RECT:
1852 case GLSL_SAMPLER_DIM_EXTERNAL:
1853 case GLSL_SAMPLER_DIM_MS:
1854 coords = 2;
1855 break;
1856 case GLSL_SAMPLER_DIM_3D:
1857 case GLSL_SAMPLER_DIM_CUBE:
1858 flags |= IR3_INSTR_3D;
1859 coords = 3;
1860 break;
1861 default:
1862 unreachable("bad sampler dim");
1863 return 0;
1864 }
1865
1866 if (glsl_sampler_type_is_array(type)) {
1867 /* note: unlike tex_info(), adjust # of coords to include array idx: */
1868 coords++;
1869 flags |= IR3_INSTR_A;
1870 }
1871
1872 if (flagsp)
1873 *flagsp = flags;
1874
1875 return coords;
1876 }
1877
1878 static type_t
1879 get_image_type(const nir_variable *var)
1880 {
1881 switch (glsl_get_sampler_result_type(glsl_without_array(var->type))) {
1882 case GLSL_TYPE_UINT:
1883 return TYPE_U32;
1884 case GLSL_TYPE_INT:
1885 return TYPE_S32;
1886 case GLSL_TYPE_FLOAT:
1887 return TYPE_F32;
1888 default:
1889 unreachable("bad sampler type.");
1890 return 0;
1891 }
1892 }
1893
1894 static struct ir3_instruction *
1895 get_image_offset(struct ir3_context *ctx, const nir_variable *var,
1896 struct ir3_instruction * const *coords, bool byteoff)
1897 {
1898 struct ir3_block *b = ctx->block;
1899 struct ir3_instruction *offset;
1900 unsigned ncoords = get_image_coords(var, NULL);
1901
1902 /* to calculate the byte offset (yes, uggg) we need (up to) three
1903 * const values to know the bytes per pixel, and y and z stride:
1904 */
1905 unsigned cb = regid(ctx->so->constbase.image_dims, 0) +
1906 ctx->so->const_layout.image_dims.off[var->data.driver_location];
1907
1908 debug_assert(ctx->so->const_layout.image_dims.mask &
1909 (1 << var->data.driver_location));
1910
1911 /* offset = coords.x * bytes_per_pixel: */
1912 offset = ir3_MUL_S(b, coords[0], 0, create_uniform(ctx, cb + 0), 0);
1913 if (ncoords > 1) {
1914 /* offset += coords.y * y_pitch: */
1915 offset = ir3_MAD_S24(b, create_uniform(ctx, cb + 1), 0,
1916 coords[1], 0, offset, 0);
1917 }
1918 if (ncoords > 2) {
1919 /* offset += coords.z * z_pitch: */
1920 offset = ir3_MAD_S24(b, create_uniform(ctx, cb + 2), 0,
1921 coords[2], 0, offset, 0);
1922 }
1923
1924 if (!byteoff) {
1925 /* Some cases, like atomics, seem to use dword offset instead
1926 * of byte offsets.. blob just puts an extra shr.b in there
1927 * in those cases:
1928 */
1929 offset = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
1930 }
1931
1932 return create_collect(ctx, (struct ir3_instruction*[]){
1933 offset,
1934 create_immed(b, 0),
1935 }, 2);
1936 }
1937
1938 /* src[] = { deref, coord, sample_index }. const_index[] = {} */
1939 static void
1940 emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1941 struct ir3_instruction **dst)
1942 {
1943 struct ir3_block *b = ctx->block;
1944 const nir_variable *var = nir_intrinsic_get_var(intr, 0);
1945 struct ir3_instruction *sam;
1946 struct ir3_instruction * const *src0 = get_src(ctx, &intr->src[1]);
1947 struct ir3_instruction *coords[4];
1948 unsigned flags, ncoords = get_image_coords(var, &flags);
1949 unsigned tex_idx = get_image_slot(ctx, nir_src_as_deref(intr->src[0]));
1950 type_t type = get_image_type(var);
1951
1952 /* hmm, this seems a bit odd, but it is what blob does and (at least
1953 * a5xx) just faults on bogus addresses otherwise:
1954 */
1955 if (flags & IR3_INSTR_3D) {
1956 flags &= ~IR3_INSTR_3D;
1957 flags |= IR3_INSTR_A;
1958 }
1959
1960 for (unsigned i = 0; i < ncoords; i++)
1961 coords[i] = src0[i];
1962
1963 if (ncoords == 1)
1964 coords[ncoords++] = create_immed(b, 0);
1965
1966 sam = ir3_SAM(b, OPC_ISAM, type, TGSI_WRITEMASK_XYZW, flags,
1967 tex_idx, tex_idx, create_collect(ctx, coords, ncoords), NULL);
1968
1969 sam->barrier_class = IR3_BARRIER_IMAGE_R;
1970 sam->barrier_conflict = IR3_BARRIER_IMAGE_W;
1971
1972 split_dest(b, dst, sam, 0, 4);
1973 }
1974
1975 /* src[] = { deref, coord, sample_index, value }. const_index[] = {} */
1976 static void
1977 emit_intrinsic_store_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1978 {
1979 struct ir3_block *b = ctx->block;
1980 const nir_variable *var = nir_intrinsic_get_var(intr, 0);
1981 struct ir3_instruction *stib, *offset;
1982 struct ir3_instruction * const *value = get_src(ctx, &intr->src[3]);
1983 struct ir3_instruction * const *coords = get_src(ctx, &intr->src[1]);
1984 unsigned ncoords = get_image_coords(var, NULL);
1985 unsigned tex_idx = get_image_slot(ctx, nir_src_as_deref(intr->src[0]));
1986
1987 /* src0 is value
1988 * src1 is coords
1989 * src2 is 64b byte offset
1990 */
1991
1992 offset = get_image_offset(ctx, var, coords, true);
1993
1994 /* NOTE: stib seems to take byte offset, but stgb.typed can be used
1995 * too and takes a dword offset.. not quite sure yet why blob uses
1996 * one over the other in various cases.
1997 */
1998
1999 stib = ir3_STIB(b, create_immed(b, tex_idx), 0,
2000 create_collect(ctx, value, 4), 0,
2001 create_collect(ctx, coords, ncoords), 0,
2002 offset, 0);
2003 stib->cat6.iim_val = 4;
2004 stib->cat6.d = ncoords;
2005 stib->cat6.type = get_image_type(var);
2006 stib->cat6.typed = true;
2007 stib->barrier_class = IR3_BARRIER_IMAGE_W;
2008 stib->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
2009
2010 array_insert(b, b->keeps, stib);
2011 }
2012
2013 static void
2014 emit_intrinsic_image_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
2015 struct ir3_instruction **dst)
2016 {
2017 struct ir3_block *b = ctx->block;
2018 const nir_variable *var = nir_intrinsic_get_var(intr, 0);
2019 unsigned tex_idx = get_image_slot(ctx, nir_src_as_deref(intr->src[0]));
2020 struct ir3_instruction *sam, *lod;
2021 unsigned flags, ncoords = get_image_coords(var, &flags);
2022
2023 lod = create_immed(b, 0);
2024 sam = ir3_SAM(b, OPC_GETSIZE, TYPE_U32, TGSI_WRITEMASK_XYZW, flags,
2025 tex_idx, tex_idx, lod, NULL);
2026
2027 /* Array size actually ends up in .w rather than .z. This doesn't
2028 * matter for miplevel 0, but for higher mips the value in z is
2029 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
2030 * returned, which means that we have to add 1 to it for arrays for
2031 * a3xx.
2032 *
2033 * Note use a temporary dst and then copy, since the size of the dst
2034 * array that is passed in is based on nir's understanding of the
2035 * result size, not the hardware's
2036 */
2037 struct ir3_instruction *tmp[4];
2038
2039 split_dest(b, tmp, sam, 0, 4);
2040
2041 for (unsigned i = 0; i < ncoords; i++)
2042 dst[i] = tmp[i];
2043
2044 if (flags & IR3_INSTR_A) {
2045 if (ctx->compiler->levels_add_one) {
2046 dst[ncoords-1] = ir3_ADD_U(b, tmp[3], 0, create_immed(b, 1), 0);
2047 } else {
2048 dst[ncoords-1] = ir3_MOV(b, tmp[3], TYPE_U32);
2049 }
2050 }
2051 }
2052
2053 /* src[] = { deref, coord, sample_index, value, compare }. const_index[] = {} */
2054 static struct ir3_instruction *
2055 emit_intrinsic_atomic_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
2056 {
2057 struct ir3_block *b = ctx->block;
2058 const nir_variable *var = nir_intrinsic_get_var(intr, 0);
2059 struct ir3_instruction *atomic, *image, *src0, *src1, *src2;
2060 struct ir3_instruction * const *coords = get_src(ctx, &intr->src[1]);
2061 unsigned ncoords = get_image_coords(var, NULL);
2062
2063 image = create_immed(b, get_image_slot(ctx, nir_src_as_deref(intr->src[0])));
2064
2065 /* src0 is value (or uvec2(value, compare))
2066 * src1 is coords
2067 * src2 is 64b byte offset
2068 */
2069 src0 = get_src(ctx, &intr->src[3])[0];
2070 src1 = create_collect(ctx, coords, ncoords);
2071 src2 = get_image_offset(ctx, var, coords, false);
2072
2073 switch (intr->intrinsic) {
2074 case nir_intrinsic_image_deref_atomic_add:
2075 atomic = ir3_ATOMIC_ADD_G(b, image, 0, src0, 0, src1, 0, src2, 0);
2076 break;
2077 case nir_intrinsic_image_deref_atomic_min:
2078 atomic = ir3_ATOMIC_MIN_G(b, image, 0, src0, 0, src1, 0, src2, 0);
2079 break;
2080 case nir_intrinsic_image_deref_atomic_max:
2081 atomic = ir3_ATOMIC_MAX_G(b, image, 0, src0, 0, src1, 0, src2, 0);
2082 break;
2083 case nir_intrinsic_image_deref_atomic_and:
2084 atomic = ir3_ATOMIC_AND_G(b, image, 0, src0, 0, src1, 0, src2, 0);
2085 break;
2086 case nir_intrinsic_image_deref_atomic_or:
2087 atomic = ir3_ATOMIC_OR_G(b, image, 0, src0, 0, src1, 0, src2, 0);
2088 break;
2089 case nir_intrinsic_image_deref_atomic_xor:
2090 atomic = ir3_ATOMIC_XOR_G(b, image, 0, src0, 0, src1, 0, src2, 0);
2091 break;
2092 case nir_intrinsic_image_deref_atomic_exchange:
2093 atomic = ir3_ATOMIC_XCHG_G(b, image, 0, src0, 0, src1, 0, src2, 0);
2094 break;
2095 case nir_intrinsic_image_deref_atomic_comp_swap:
2096 /* for cmpxchg, src0 is [ui]vec2(data, compare): */
2097 src0 = create_collect(ctx, (struct ir3_instruction*[]){
2098 get_src(ctx, &intr->src[4])[0],
2099 src0,
2100 }, 2);
2101 atomic = ir3_ATOMIC_CMPXCHG_G(b, image, 0, src0, 0, src1, 0, src2, 0);
2102 break;
2103 default:
2104 unreachable("boo");
2105 }
2106
2107 atomic->cat6.iim_val = 1;
2108 atomic->cat6.d = ncoords;
2109 atomic->cat6.type = get_image_type(var);
2110 atomic->cat6.typed = true;
2111 atomic->barrier_class = IR3_BARRIER_IMAGE_W;
2112 atomic->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
2113
2114 /* even if nothing consume the result, we can't DCE the instruction: */
2115 array_insert(b, b->keeps, atomic);
2116
2117 return atomic;
2118 }
2119
2120 static void
2121 emit_intrinsic_barrier(struct ir3_context *ctx, nir_intrinsic_instr *intr)
2122 {
2123 struct ir3_block *b = ctx->block;
2124 struct ir3_instruction *barrier;
2125
2126 switch (intr->intrinsic) {
2127 case nir_intrinsic_barrier:
2128 barrier = ir3_BAR(b);
2129 barrier->cat7.g = true;
2130 barrier->cat7.l = true;
2131 barrier->flags = IR3_INSTR_SS | IR3_INSTR_SY;
2132 barrier->barrier_class = IR3_BARRIER_EVERYTHING;
2133 break;
2134 case nir_intrinsic_memory_barrier:
2135 barrier = ir3_FENCE(b);
2136 barrier->cat7.g = true;
2137 barrier->cat7.r = true;
2138 barrier->cat7.w = true;
2139 barrier->barrier_class = IR3_BARRIER_IMAGE_W |
2140 IR3_BARRIER_BUFFER_W;
2141 barrier->barrier_conflict =
2142 IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
2143 IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
2144 break;
2145 case nir_intrinsic_memory_barrier_atomic_counter:
2146 case nir_intrinsic_memory_barrier_buffer:
2147 barrier = ir3_FENCE(b);
2148 barrier->cat7.g = true;
2149 barrier->cat7.r = true;
2150 barrier->cat7.w = true;
2151 barrier->barrier_class = IR3_BARRIER_BUFFER_W;
2152 barrier->barrier_conflict = IR3_BARRIER_BUFFER_R |
2153 IR3_BARRIER_BUFFER_W;
2154 break;
2155 case nir_intrinsic_memory_barrier_image:
2156 // TODO double check if this should have .g set
2157 barrier = ir3_FENCE(b);
2158 barrier->cat7.g = true;
2159 barrier->cat7.r = true;
2160 barrier->cat7.w = true;
2161 barrier->barrier_class = IR3_BARRIER_IMAGE_W;
2162 barrier->barrier_conflict = IR3_BARRIER_IMAGE_R |
2163 IR3_BARRIER_IMAGE_W;
2164 break;
2165 case nir_intrinsic_memory_barrier_shared:
2166 barrier = ir3_FENCE(b);
2167 barrier->cat7.g = true;
2168 barrier->cat7.l = true;
2169 barrier->cat7.r = true;
2170 barrier->cat7.w = true;
2171 barrier->barrier_class = IR3_BARRIER_SHARED_W;
2172 barrier->barrier_conflict = IR3_BARRIER_SHARED_R |
2173 IR3_BARRIER_SHARED_W;
2174 break;
2175 case nir_intrinsic_group_memory_barrier:
2176 barrier = ir3_FENCE(b);
2177 barrier->cat7.g = true;
2178 barrier->cat7.l = true;
2179 barrier->cat7.r = true;
2180 barrier->cat7.w = true;
2181 barrier->barrier_class = IR3_BARRIER_SHARED_W |
2182 IR3_BARRIER_IMAGE_W |
2183 IR3_BARRIER_BUFFER_W;
2184 barrier->barrier_conflict =
2185 IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W |
2186 IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
2187 IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
2188 break;
2189 default:
2190 unreachable("boo");
2191 }
2192
2193 /* make sure barrier doesn't get DCE'd */
2194 array_insert(b, b->keeps, barrier);
2195 }
2196
2197 static void add_sysval_input_compmask(struct ir3_context *ctx,
2198 gl_system_value slot, unsigned compmask,
2199 struct ir3_instruction *instr)
2200 {
2201 struct ir3_shader_variant *so = ctx->so;
2202 unsigned r = regid(so->inputs_count, 0);
2203 unsigned n = so->inputs_count++;
2204
2205 so->inputs[n].sysval = true;
2206 so->inputs[n].slot = slot;
2207 so->inputs[n].compmask = compmask;
2208 so->inputs[n].regid = r;
2209 so->inputs[n].interpolate = INTERP_MODE_FLAT;
2210 so->total_in++;
2211
2212 ctx->ir->ninputs = MAX2(ctx->ir->ninputs, r + 1);
2213 ctx->ir->inputs[r] = instr;
2214 }
2215
2216 static void add_sysval_input(struct ir3_context *ctx, gl_system_value slot,
2217 struct ir3_instruction *instr)
2218 {
2219 add_sysval_input_compmask(ctx, slot, 0x1, instr);
2220 }
2221
2222 static void
2223 emit_intrinsic(struct ir3_context *ctx, nir_intrinsic_instr *intr)
2224 {
2225 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
2226 struct ir3_instruction **dst;
2227 struct ir3_instruction * const *src;
2228 struct ir3_block *b = ctx->block;
2229 nir_const_value *const_offset;
2230 int idx, comp;
2231
2232 if (info->has_dest) {
2233 unsigned n = nir_intrinsic_dest_components(intr);
2234 dst = get_dst(ctx, &intr->dest, n);
2235 } else {
2236 dst = NULL;
2237 }
2238
2239 switch (intr->intrinsic) {
2240 case nir_intrinsic_load_uniform:
2241 idx = nir_intrinsic_base(intr);
2242 const_offset = nir_src_as_const_value(intr->src[0]);
2243 if (const_offset) {
2244 idx += const_offset->u32[0];
2245 for (int i = 0; i < intr->num_components; i++) {
2246 unsigned n = idx * 4 + i;
2247 dst[i] = create_uniform(ctx, n);
2248 }
2249 } else {
2250 src = get_src(ctx, &intr->src[0]);
2251 for (int i = 0; i < intr->num_components; i++) {
2252 int n = idx * 4 + i;
2253 dst[i] = create_uniform_indirect(ctx, n,
2254 get_addr(ctx, src[0], 4));
2255 }
2256 /* NOTE: if relative addressing is used, we set
2257 * constlen in the compiler (to worst-case value)
2258 * since we don't know in the assembler what the max
2259 * addr reg value can be:
2260 */
2261 ctx->so->constlen = ctx->s->num_uniforms;
2262 }
2263 break;
2264 case nir_intrinsic_load_ubo:
2265 emit_intrinsic_load_ubo(ctx, intr, dst);
2266 break;
2267 case nir_intrinsic_load_input:
2268 idx = nir_intrinsic_base(intr);
2269 comp = nir_intrinsic_component(intr);
2270 const_offset = nir_src_as_const_value(intr->src[0]);
2271 if (const_offset) {
2272 idx += const_offset->u32[0];
2273 for (int i = 0; i < intr->num_components; i++) {
2274 unsigned n = idx * 4 + i + comp;
2275 dst[i] = ctx->ir->inputs[n];
2276 }
2277 } else {
2278 src = get_src(ctx, &intr->src[0]);
2279 struct ir3_instruction *collect =
2280 create_collect(ctx, ctx->ir->inputs, ctx->ir->ninputs);
2281 struct ir3_instruction *addr = get_addr(ctx, src[0], 4);
2282 for (int i = 0; i < intr->num_components; i++) {
2283 unsigned n = idx * 4 + i + comp;
2284 dst[i] = create_indirect_load(ctx, ctx->ir->ninputs,
2285 n, addr, collect);
2286 }
2287 }
2288 break;
2289 case nir_intrinsic_load_ssbo:
2290 emit_intrinsic_load_ssbo(ctx, intr, dst);
2291 break;
2292 case nir_intrinsic_store_ssbo:
2293 emit_intrinsic_store_ssbo(ctx, intr);
2294 break;
2295 case nir_intrinsic_get_buffer_size:
2296 emit_intrinsic_ssbo_size(ctx, intr, dst);
2297 break;
2298 case nir_intrinsic_ssbo_atomic_add:
2299 case nir_intrinsic_ssbo_atomic_imin:
2300 case nir_intrinsic_ssbo_atomic_umin:
2301 case nir_intrinsic_ssbo_atomic_imax:
2302 case nir_intrinsic_ssbo_atomic_umax:
2303 case nir_intrinsic_ssbo_atomic_and:
2304 case nir_intrinsic_ssbo_atomic_or:
2305 case nir_intrinsic_ssbo_atomic_xor:
2306 case nir_intrinsic_ssbo_atomic_exchange:
2307 case nir_intrinsic_ssbo_atomic_comp_swap:
2308 dst[0] = emit_intrinsic_atomic_ssbo(ctx, intr);
2309 break;
2310 case nir_intrinsic_load_shared:
2311 emit_intrinsic_load_shared(ctx, intr, dst);
2312 break;
2313 case nir_intrinsic_store_shared:
2314 emit_intrinsic_store_shared(ctx, intr);
2315 break;
2316 case nir_intrinsic_shared_atomic_add:
2317 case nir_intrinsic_shared_atomic_imin:
2318 case nir_intrinsic_shared_atomic_umin:
2319 case nir_intrinsic_shared_atomic_imax:
2320 case nir_intrinsic_shared_atomic_umax:
2321 case nir_intrinsic_shared_atomic_and:
2322 case nir_intrinsic_shared_atomic_or:
2323 case nir_intrinsic_shared_atomic_xor:
2324 case nir_intrinsic_shared_atomic_exchange:
2325 case nir_intrinsic_shared_atomic_comp_swap:
2326 dst[0] = emit_intrinsic_atomic_shared(ctx, intr);
2327 break;
2328 case nir_intrinsic_image_deref_load:
2329 emit_intrinsic_load_image(ctx, intr, dst);
2330 break;
2331 case nir_intrinsic_image_deref_store:
2332 emit_intrinsic_store_image(ctx, intr);
2333 break;
2334 case nir_intrinsic_image_deref_size:
2335 emit_intrinsic_image_size(ctx, intr, dst);
2336 break;
2337 case nir_intrinsic_image_deref_atomic_add:
2338 case nir_intrinsic_image_deref_atomic_min:
2339 case nir_intrinsic_image_deref_atomic_max:
2340 case nir_intrinsic_image_deref_atomic_and:
2341 case nir_intrinsic_image_deref_atomic_or:
2342 case nir_intrinsic_image_deref_atomic_xor:
2343 case nir_intrinsic_image_deref_atomic_exchange:
2344 case nir_intrinsic_image_deref_atomic_comp_swap:
2345 dst[0] = emit_intrinsic_atomic_image(ctx, intr);
2346 break;
2347 case nir_intrinsic_barrier:
2348 case nir_intrinsic_memory_barrier:
2349 case nir_intrinsic_group_memory_barrier:
2350 case nir_intrinsic_memory_barrier_atomic_counter:
2351 case nir_intrinsic_memory_barrier_buffer:
2352 case nir_intrinsic_memory_barrier_image:
2353 case nir_intrinsic_memory_barrier_shared:
2354 emit_intrinsic_barrier(ctx, intr);
2355 /* note that blk ptr no longer valid, make that obvious: */
2356 b = NULL;
2357 break;
2358 case nir_intrinsic_store_output:
2359 idx = nir_intrinsic_base(intr);
2360 comp = nir_intrinsic_component(intr);
2361 const_offset = nir_src_as_const_value(intr->src[1]);
2362 compile_assert(ctx, const_offset != NULL);
2363 idx += const_offset->u32[0];
2364
2365 src = get_src(ctx, &intr->src[0]);
2366 for (int i = 0; i < intr->num_components; i++) {
2367 unsigned n = idx * 4 + i + comp;
2368 ctx->ir->outputs[n] = src[i];
2369 }
2370 break;
2371 case nir_intrinsic_load_base_vertex:
2372 case nir_intrinsic_load_first_vertex:
2373 if (!ctx->basevertex) {
2374 ctx->basevertex = create_driver_param(ctx, IR3_DP_VTXID_BASE);
2375 add_sysval_input(ctx, SYSTEM_VALUE_FIRST_VERTEX, ctx->basevertex);
2376 }
2377 dst[0] = ctx->basevertex;
2378 break;
2379 case nir_intrinsic_load_vertex_id_zero_base:
2380 case nir_intrinsic_load_vertex_id:
2381 if (!ctx->vertex_id) {
2382 gl_system_value sv = (intr->intrinsic == nir_intrinsic_load_vertex_id) ?
2383 SYSTEM_VALUE_VERTEX_ID : SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
2384 ctx->vertex_id = create_input(ctx, 0);
2385 add_sysval_input(ctx, sv, ctx->vertex_id);
2386 }
2387 dst[0] = ctx->vertex_id;
2388 break;
2389 case nir_intrinsic_load_instance_id:
2390 if (!ctx->instance_id) {
2391 ctx->instance_id = create_input(ctx, 0);
2392 add_sysval_input(ctx, SYSTEM_VALUE_INSTANCE_ID,
2393 ctx->instance_id);
2394 }
2395 dst[0] = ctx->instance_id;
2396 break;
2397 case nir_intrinsic_load_sample_id:
2398 case nir_intrinsic_load_sample_id_no_per_sample:
2399 if (!ctx->samp_id) {
2400 ctx->samp_id = create_input(ctx, 0);
2401 ctx->samp_id->regs[0]->flags |= IR3_REG_HALF;
2402 add_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_ID,
2403 ctx->samp_id);
2404 }
2405 dst[0] = ir3_COV(b, ctx->samp_id, TYPE_U16, TYPE_U32);
2406 break;
2407 case nir_intrinsic_load_sample_mask_in:
2408 if (!ctx->samp_mask_in) {
2409 ctx->samp_mask_in = create_input(ctx, 0);
2410 add_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_MASK_IN,
2411 ctx->samp_mask_in);
2412 }
2413 dst[0] = ctx->samp_mask_in;
2414 break;
2415 case nir_intrinsic_load_user_clip_plane:
2416 idx = nir_intrinsic_ucp_id(intr);
2417 for (int i = 0; i < intr->num_components; i++) {
2418 unsigned n = idx * 4 + i;
2419 dst[i] = create_driver_param(ctx, IR3_DP_UCP0_X + n);
2420 }
2421 break;
2422 case nir_intrinsic_load_front_face:
2423 if (!ctx->frag_face) {
2424 ctx->so->frag_face = true;
2425 ctx->frag_face = create_input(ctx, 0);
2426 add_sysval_input(ctx, SYSTEM_VALUE_FRONT_FACE, ctx->frag_face);
2427 ctx->frag_face->regs[0]->flags |= IR3_REG_HALF;
2428 }
2429 /* for fragface, we get -1 for back and 0 for front. However this is
2430 * the inverse of what nir expects (where ~0 is true).
2431 */
2432 dst[0] = ir3_COV(b, ctx->frag_face, TYPE_S16, TYPE_S32);
2433 dst[0] = ir3_NOT_B(b, dst[0], 0);
2434 break;
2435 case nir_intrinsic_load_local_invocation_id:
2436 if (!ctx->local_invocation_id) {
2437 ctx->local_invocation_id = create_input_compmask(ctx, 0, 0x7);
2438 add_sysval_input_compmask(ctx, SYSTEM_VALUE_LOCAL_INVOCATION_ID,
2439 0x7, ctx->local_invocation_id);
2440 }
2441 split_dest(b, dst, ctx->local_invocation_id, 0, 3);
2442 break;
2443 case nir_intrinsic_load_work_group_id:
2444 if (!ctx->work_group_id) {
2445 ctx->work_group_id = create_input_compmask(ctx, 0, 0x7);
2446 add_sysval_input_compmask(ctx, SYSTEM_VALUE_WORK_GROUP_ID,
2447 0x7, ctx->work_group_id);
2448 ctx->work_group_id->regs[0]->flags |= IR3_REG_HIGH;
2449 }
2450 split_dest(b, dst, ctx->work_group_id, 0, 3);
2451 break;
2452 case nir_intrinsic_load_num_work_groups:
2453 for (int i = 0; i < intr->num_components; i++) {
2454 dst[i] = create_driver_param(ctx, IR3_DP_NUM_WORK_GROUPS_X + i);
2455 }
2456 break;
2457 case nir_intrinsic_load_local_group_size:
2458 for (int i = 0; i < intr->num_components; i++) {
2459 dst[i] = create_driver_param(ctx, IR3_DP_LOCAL_GROUP_SIZE_X + i);
2460 }
2461 break;
2462 case nir_intrinsic_discard_if:
2463 case nir_intrinsic_discard: {
2464 struct ir3_instruction *cond, *kill;
2465
2466 if (intr->intrinsic == nir_intrinsic_discard_if) {
2467 /* conditional discard: */
2468 src = get_src(ctx, &intr->src[0]);
2469 cond = ir3_b2n(b, src[0]);
2470 } else {
2471 /* unconditional discard: */
2472 cond = create_immed(b, 1);
2473 }
2474
2475 /* NOTE: only cmps.*.* can write p0.x: */
2476 cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
2477 cond->cat2.condition = IR3_COND_NE;
2478
2479 /* condition always goes in predicate register: */
2480 cond->regs[0]->num = regid(REG_P0, 0);
2481
2482 kill = ir3_KILL(b, cond, 0);
2483 array_insert(ctx->ir, ctx->ir->predicates, kill);
2484
2485 array_insert(b, b->keeps, kill);
2486 ctx->so->has_kill = true;
2487
2488 break;
2489 }
2490 default:
2491 compile_error(ctx, "Unhandled intrinsic type: %s\n",
2492 nir_intrinsic_infos[intr->intrinsic].name);
2493 break;
2494 }
2495
2496 if (info->has_dest)
2497 put_dst(ctx, &intr->dest);
2498 }
2499
2500 static void
2501 emit_load_const(struct ir3_context *ctx, nir_load_const_instr *instr)
2502 {
2503 struct ir3_instruction **dst = get_dst_ssa(ctx, &instr->def,
2504 instr->def.num_components);
2505 type_t type = (instr->def.bit_size < 32) ? TYPE_U16 : TYPE_U32;
2506
2507 for (int i = 0; i < instr->def.num_components; i++)
2508 dst[i] = create_immed_typed(ctx->block, instr->value.u32[i], type);
2509 }
2510
2511 static void
2512 emit_undef(struct ir3_context *ctx, nir_ssa_undef_instr *undef)
2513 {
2514 struct ir3_instruction **dst = get_dst_ssa(ctx, &undef->def,
2515 undef->def.num_components);
2516 type_t type = (undef->def.bit_size < 32) ? TYPE_U16 : TYPE_U32;
2517
2518 /* backend doesn't want undefined instructions, so just plug
2519 * in 0.0..
2520 */
2521 for (int i = 0; i < undef->def.num_components; i++)
2522 dst[i] = create_immed_typed(ctx->block, fui(0.0), type);
2523 }
2524
2525 /*
2526 * texture fetch/sample instructions:
2527 */
2528
2529 static void
2530 tex_info(nir_tex_instr *tex, unsigned *flagsp, unsigned *coordsp)
2531 {
2532 unsigned coords, flags = 0;
2533
2534 /* note: would use tex->coord_components.. except txs.. also,
2535 * since array index goes after shadow ref, we don't want to
2536 * count it:
2537 */
2538 switch (tex->sampler_dim) {
2539 case GLSL_SAMPLER_DIM_1D:
2540 case GLSL_SAMPLER_DIM_BUF:
2541 coords = 1;
2542 break;
2543 case GLSL_SAMPLER_DIM_2D:
2544 case GLSL_SAMPLER_DIM_RECT:
2545 case GLSL_SAMPLER_DIM_EXTERNAL:
2546 case GLSL_SAMPLER_DIM_MS:
2547 coords = 2;
2548 break;
2549 case GLSL_SAMPLER_DIM_3D:
2550 case GLSL_SAMPLER_DIM_CUBE:
2551 coords = 3;
2552 flags |= IR3_INSTR_3D;
2553 break;
2554 default:
2555 unreachable("bad sampler_dim");
2556 }
2557
2558 if (tex->is_shadow && tex->op != nir_texop_lod)
2559 flags |= IR3_INSTR_S;
2560
2561 if (tex->is_array && tex->op != nir_texop_lod)
2562 flags |= IR3_INSTR_A;
2563
2564 *flagsp = flags;
2565 *coordsp = coords;
2566 }
2567
2568 static void
2569 emit_tex(struct ir3_context *ctx, nir_tex_instr *tex)
2570 {
2571 struct ir3_block *b = ctx->block;
2572 struct ir3_instruction **dst, *sam, *src0[12], *src1[4];
2573 struct ir3_instruction * const *coord, * const *off, * const *ddx, * const *ddy;
2574 struct ir3_instruction *lod, *compare, *proj, *sample_index;
2575 bool has_bias = false, has_lod = false, has_proj = false, has_off = false;
2576 unsigned i, coords, flags;
2577 unsigned nsrc0 = 0, nsrc1 = 0;
2578 type_t type;
2579 opc_t opc = 0;
2580
2581 coord = off = ddx = ddy = NULL;
2582 lod = proj = compare = sample_index = NULL;
2583
2584 /* TODO: might just be one component for gathers? */
2585 dst = get_dst(ctx, &tex->dest, 4);
2586
2587 for (unsigned i = 0; i < tex->num_srcs; i++) {
2588 switch (tex->src[i].src_type) {
2589 case nir_tex_src_coord:
2590 coord = get_src(ctx, &tex->src[i].src);
2591 break;
2592 case nir_tex_src_bias:
2593 lod = get_src(ctx, &tex->src[i].src)[0];
2594 has_bias = true;
2595 break;
2596 case nir_tex_src_lod:
2597 lod = get_src(ctx, &tex->src[i].src)[0];
2598 has_lod = true;
2599 break;
2600 case nir_tex_src_comparator: /* shadow comparator */
2601 compare = get_src(ctx, &tex->src[i].src)[0];
2602 break;
2603 case nir_tex_src_projector:
2604 proj = get_src(ctx, &tex->src[i].src)[0];
2605 has_proj = true;
2606 break;
2607 case nir_tex_src_offset:
2608 off = get_src(ctx, &tex->src[i].src);
2609 has_off = true;
2610 break;
2611 case nir_tex_src_ddx:
2612 ddx = get_src(ctx, &tex->src[i].src);
2613 break;
2614 case nir_tex_src_ddy:
2615 ddy = get_src(ctx, &tex->src[i].src);
2616 break;
2617 case nir_tex_src_ms_index:
2618 sample_index = get_src(ctx, &tex->src[i].src)[0];
2619 break;
2620 default:
2621 compile_error(ctx, "Unhandled NIR tex src type: %d\n",
2622 tex->src[i].src_type);
2623 return;
2624 }
2625 }
2626
2627 switch (tex->op) {
2628 case nir_texop_tex: opc = has_lod ? OPC_SAML : OPC_SAM; break;
2629 case nir_texop_txb: opc = OPC_SAMB; break;
2630 case nir_texop_txl: opc = OPC_SAML; break;
2631 case nir_texop_txd: opc = OPC_SAMGQ; break;
2632 case nir_texop_txf: opc = OPC_ISAML; break;
2633 case nir_texop_lod: opc = OPC_GETLOD; break;
2634 case nir_texop_tg4:
2635 /* NOTE: a4xx might need to emulate gather w/ txf (this is
2636 * what blob does, seems gather is broken?), and a3xx did
2637 * not support it (but probably could also emulate).
2638 */
2639 switch (tex->component) {
2640 case 0: opc = OPC_GATHER4R; break;
2641 case 1: opc = OPC_GATHER4G; break;
2642 case 2: opc = OPC_GATHER4B; break;
2643 case 3: opc = OPC_GATHER4A; break;
2644 }
2645 break;
2646 case nir_texop_txf_ms: opc = OPC_ISAMM; break;
2647 case nir_texop_txs:
2648 case nir_texop_query_levels:
2649 case nir_texop_texture_samples:
2650 case nir_texop_samples_identical:
2651 case nir_texop_txf_ms_mcs:
2652 compile_error(ctx, "Unhandled NIR tex type: %d\n", tex->op);
2653 return;
2654 }
2655
2656 tex_info(tex, &flags, &coords);
2657
2658 /*
2659 * lay out the first argument in the proper order:
2660 * - actual coordinates first
2661 * - shadow reference
2662 * - array index
2663 * - projection w
2664 * - starting at offset 4, dpdx.xy, dpdy.xy
2665 *
2666 * bias/lod go into the second arg
2667 */
2668
2669 /* insert tex coords: */
2670 for (i = 0; i < coords; i++)
2671 src0[i] = coord[i];
2672
2673 nsrc0 = i;
2674
2675 /* NOTE a3xx (and possibly a4xx?) might be different, using isaml
2676 * with scaled x coord according to requested sample:
2677 */
2678 if (tex->op == nir_texop_txf_ms) {
2679 if (ctx->compiler->txf_ms_with_isaml) {
2680 /* the samples are laid out in x dimension as
2681 * 0 1 2 3
2682 * x_ms = (x << ms) + sample_index;
2683 */
2684 struct ir3_instruction *ms;
2685 ms = create_immed(b, (ctx->samples >> (2 * tex->texture_index)) & 3);
2686
2687 src0[0] = ir3_SHL_B(b, src0[0], 0, ms, 0);
2688 src0[0] = ir3_ADD_U(b, src0[0], 0, sample_index, 0);
2689
2690 opc = OPC_ISAML;
2691 } else {
2692 src0[nsrc0++] = sample_index;
2693 }
2694 }
2695
2696 /* scale up integer coords for TXF based on the LOD */
2697 if (ctx->compiler->unminify_coords && (opc == OPC_ISAML)) {
2698 assert(has_lod);
2699 for (i = 0; i < coords; i++)
2700 src0[i] = ir3_SHL_B(b, src0[i], 0, lod, 0);
2701 }
2702
2703 if (coords == 1) {
2704 /* hw doesn't do 1d, so we treat it as 2d with
2705 * height of 1, and patch up the y coord.
2706 * TODO: y coord should be (int)0 in some cases..
2707 */
2708 src0[nsrc0++] = create_immed(b, fui(0.5));
2709 }
2710
2711 if (tex->is_shadow && tex->op != nir_texop_lod)
2712 src0[nsrc0++] = compare;
2713
2714 if (tex->is_array && tex->op != nir_texop_lod) {
2715 struct ir3_instruction *idx = coord[coords];
2716
2717 /* the array coord for cube arrays needs 0.5 added to it */
2718 if (ctx->compiler->array_index_add_half && (opc != OPC_ISAML))
2719 idx = ir3_ADD_F(b, idx, 0, create_immed(b, fui(0.5)), 0);
2720
2721 src0[nsrc0++] = idx;
2722 }
2723
2724 if (has_proj) {
2725 src0[nsrc0++] = proj;
2726 flags |= IR3_INSTR_P;
2727 }
2728
2729 /* pad to 4, then ddx/ddy: */
2730 if (tex->op == nir_texop_txd) {
2731 while (nsrc0 < 4)
2732 src0[nsrc0++] = create_immed(b, fui(0.0));
2733 for (i = 0; i < coords; i++)
2734 src0[nsrc0++] = ddx[i];
2735 if (coords < 2)
2736 src0[nsrc0++] = create_immed(b, fui(0.0));
2737 for (i = 0; i < coords; i++)
2738 src0[nsrc0++] = ddy[i];
2739 if (coords < 2)
2740 src0[nsrc0++] = create_immed(b, fui(0.0));
2741 }
2742
2743 /*
2744 * second argument (if applicable):
2745 * - offsets
2746 * - lod
2747 * - bias
2748 */
2749 if (has_off | has_lod | has_bias) {
2750 if (has_off) {
2751 unsigned off_coords = coords;
2752 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2753 off_coords--;
2754 for (i = 0; i < off_coords; i++)
2755 src1[nsrc1++] = off[i];
2756 if (off_coords < 2)
2757 src1[nsrc1++] = create_immed(b, fui(0.0));
2758 flags |= IR3_INSTR_O;
2759 }
2760
2761 if (has_lod | has_bias)
2762 src1[nsrc1++] = lod;
2763 }
2764
2765 switch (tex->dest_type) {
2766 case nir_type_invalid:
2767 case nir_type_float:
2768 type = TYPE_F32;
2769 break;
2770 case nir_type_int:
2771 type = TYPE_S32;
2772 break;
2773 case nir_type_uint:
2774 case nir_type_bool:
2775 type = TYPE_U32;
2776 break;
2777 default:
2778 unreachable("bad dest_type");
2779 }
2780
2781 if (opc == OPC_GETLOD)
2782 type = TYPE_U32;
2783
2784 unsigned tex_idx = tex->texture_index;
2785
2786 ctx->max_texture_index = MAX2(ctx->max_texture_index, tex_idx);
2787
2788 struct ir3_instruction *col0 = create_collect(ctx, src0, nsrc0);
2789 struct ir3_instruction *col1 = create_collect(ctx, src1, nsrc1);
2790
2791 sam = ir3_SAM(b, opc, type, TGSI_WRITEMASK_XYZW, flags,
2792 tex_idx, tex_idx, col0, col1);
2793
2794 if ((ctx->astc_srgb & (1 << tex_idx)) && !nir_tex_instr_is_query(tex)) {
2795 /* only need first 3 components: */
2796 sam->regs[0]->wrmask = 0x7;
2797 split_dest(b, dst, sam, 0, 3);
2798
2799 /* we need to sample the alpha separately with a non-ASTC
2800 * texture state:
2801 */
2802 sam = ir3_SAM(b, opc, type, TGSI_WRITEMASK_W, flags,
2803 tex_idx, tex_idx, col0, col1);
2804
2805 array_insert(ctx->ir, ctx->ir->astc_srgb, sam);
2806
2807 /* fixup .w component: */
2808 split_dest(b, &dst[3], sam, 3, 1);
2809 } else {
2810 /* normal (non-workaround) case: */
2811 split_dest(b, dst, sam, 0, 4);
2812 }
2813
2814 /* GETLOD returns results in 4.8 fixed point */
2815 if (opc == OPC_GETLOD) {
2816 struct ir3_instruction *factor = create_immed(b, fui(1.0 / 256));
2817
2818 compile_assert(ctx, tex->dest_type == nir_type_float);
2819 for (i = 0; i < 2; i++) {
2820 dst[i] = ir3_MUL_F(b, ir3_COV(b, dst[i], TYPE_U32, TYPE_F32), 0,
2821 factor, 0);
2822 }
2823 }
2824
2825 put_dst(ctx, &tex->dest);
2826 }
2827
2828 static void
2829 emit_tex_query_levels(struct ir3_context *ctx, nir_tex_instr *tex)
2830 {
2831 struct ir3_block *b = ctx->block;
2832 struct ir3_instruction **dst, *sam;
2833
2834 dst = get_dst(ctx, &tex->dest, 1);
2835
2836 sam = ir3_SAM(b, OPC_GETINFO, TYPE_U32, TGSI_WRITEMASK_Z, 0,
2837 tex->texture_index, tex->texture_index, NULL, NULL);
2838
2839 /* even though there is only one component, since it ends
2840 * up in .z rather than .x, we need a split_dest()
2841 */
2842 split_dest(b, dst, sam, 0, 3);
2843
2844 /* The # of levels comes from getinfo.z. We need to add 1 to it, since
2845 * the value in TEX_CONST_0 is zero-based.
2846 */
2847 if (ctx->compiler->levels_add_one)
2848 dst[0] = ir3_ADD_U(b, dst[0], 0, create_immed(b, 1), 0);
2849
2850 put_dst(ctx, &tex->dest);
2851 }
2852
2853 static void
2854 emit_tex_txs(struct ir3_context *ctx, nir_tex_instr *tex)
2855 {
2856 struct ir3_block *b = ctx->block;
2857 struct ir3_instruction **dst, *sam;
2858 struct ir3_instruction *lod;
2859 unsigned flags, coords;
2860
2861 tex_info(tex, &flags, &coords);
2862
2863 /* Actually we want the number of dimensions, not coordinates. This
2864 * distinction only matters for cubes.
2865 */
2866 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2867 coords = 2;
2868
2869 dst = get_dst(ctx, &tex->dest, 4);
2870
2871 compile_assert(ctx, tex->num_srcs == 1);
2872 compile_assert(ctx, tex->src[0].src_type == nir_tex_src_lod);
2873
2874 lod = get_src(ctx, &tex->src[0].src)[0];
2875
2876 sam = ir3_SAM(b, OPC_GETSIZE, TYPE_U32, TGSI_WRITEMASK_XYZW, flags,
2877 tex->texture_index, tex->texture_index, lod, NULL);
2878
2879 split_dest(b, dst, sam, 0, 4);
2880
2881 /* Array size actually ends up in .w rather than .z. This doesn't
2882 * matter for miplevel 0, but for higher mips the value in z is
2883 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
2884 * returned, which means that we have to add 1 to it for arrays.
2885 */
2886 if (tex->is_array) {
2887 if (ctx->compiler->levels_add_one) {
2888 dst[coords] = ir3_ADD_U(b, dst[3], 0, create_immed(b, 1), 0);
2889 } else {
2890 dst[coords] = ir3_MOV(b, dst[3], TYPE_U32);
2891 }
2892 }
2893
2894 put_dst(ctx, &tex->dest);
2895 }
2896
2897 static void
2898 emit_jump(struct ir3_context *ctx, nir_jump_instr *jump)
2899 {
2900 switch (jump->type) {
2901 case nir_jump_break:
2902 case nir_jump_continue:
2903 case nir_jump_return:
2904 /* I *think* we can simply just ignore this, and use the
2905 * successor block link to figure out where we need to
2906 * jump to for break/continue
2907 */
2908 break;
2909 default:
2910 compile_error(ctx, "Unhandled NIR jump type: %d\n", jump->type);
2911 break;
2912 }
2913 }
2914
2915 static void
2916 emit_instr(struct ir3_context *ctx, nir_instr *instr)
2917 {
2918 switch (instr->type) {
2919 case nir_instr_type_alu:
2920 emit_alu(ctx, nir_instr_as_alu(instr));
2921 break;
2922 case nir_instr_type_deref:
2923 /* ignored, handled as part of the intrinsic they are src to */
2924 break;
2925 case nir_instr_type_intrinsic:
2926 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
2927 break;
2928 case nir_instr_type_load_const:
2929 emit_load_const(ctx, nir_instr_as_load_const(instr));
2930 break;
2931 case nir_instr_type_ssa_undef:
2932 emit_undef(ctx, nir_instr_as_ssa_undef(instr));
2933 break;
2934 case nir_instr_type_tex: {
2935 nir_tex_instr *tex = nir_instr_as_tex(instr);
2936 /* couple tex instructions get special-cased:
2937 */
2938 switch (tex->op) {
2939 case nir_texop_txs:
2940 emit_tex_txs(ctx, tex);
2941 break;
2942 case nir_texop_query_levels:
2943 emit_tex_query_levels(ctx, tex);
2944 break;
2945 default:
2946 emit_tex(ctx, tex);
2947 break;
2948 }
2949 break;
2950 }
2951 case nir_instr_type_jump:
2952 emit_jump(ctx, nir_instr_as_jump(instr));
2953 break;
2954 case nir_instr_type_phi:
2955 /* we have converted phi webs to regs in NIR by now */
2956 compile_error(ctx, "Unexpected NIR instruction type: %d\n", instr->type);
2957 break;
2958 case nir_instr_type_call:
2959 case nir_instr_type_parallel_copy:
2960 compile_error(ctx, "Unhandled NIR instruction type: %d\n", instr->type);
2961 break;
2962 }
2963 }
2964
2965 static struct ir3_block *
2966 get_block(struct ir3_context *ctx, const nir_block *nblock)
2967 {
2968 struct ir3_block *block;
2969 struct hash_entry *hentry;
2970 struct set_entry *sentry;
2971 unsigned i;
2972
2973 hentry = _mesa_hash_table_search(ctx->block_ht, nblock);
2974 if (hentry)
2975 return hentry->data;
2976
2977 block = ir3_block_create(ctx->ir);
2978 block->nblock = nblock;
2979 _mesa_hash_table_insert(ctx->block_ht, nblock, block);
2980
2981 block->predecessors_count = nblock->predecessors->entries;
2982 block->predecessors = ralloc_array_size(block,
2983 sizeof(block->predecessors[0]), block->predecessors_count);
2984 i = 0;
2985 set_foreach(nblock->predecessors, sentry) {
2986 block->predecessors[i++] = get_block(ctx, sentry->key);
2987 }
2988
2989 return block;
2990 }
2991
2992 static void
2993 emit_block(struct ir3_context *ctx, nir_block *nblock)
2994 {
2995 struct ir3_block *block = get_block(ctx, nblock);
2996
2997 for (int i = 0; i < ARRAY_SIZE(block->successors); i++) {
2998 if (nblock->successors[i]) {
2999 block->successors[i] =
3000 get_block(ctx, nblock->successors[i]);
3001 }
3002 }
3003
3004 ctx->block = block;
3005 list_addtail(&block->node, &ctx->ir->block_list);
3006
3007 /* re-emit addr register in each block if needed: */
3008 for (int i = 0; i < ARRAY_SIZE(ctx->addr_ht); i++) {
3009 _mesa_hash_table_destroy(ctx->addr_ht[i], NULL);
3010 ctx->addr_ht[i] = NULL;
3011 }
3012
3013 nir_foreach_instr(instr, nblock) {
3014 ctx->cur_instr = instr;
3015 emit_instr(ctx, instr);
3016 ctx->cur_instr = NULL;
3017 if (ctx->error)
3018 return;
3019 }
3020 }
3021
3022 static void emit_cf_list(struct ir3_context *ctx, struct exec_list *list);
3023
3024 static void
3025 emit_if(struct ir3_context *ctx, nir_if *nif)
3026 {
3027 struct ir3_instruction *condition = get_src(ctx, &nif->condition)[0];
3028
3029 ctx->block->condition =
3030 get_predicate(ctx, ir3_b2n(condition->block, condition));
3031
3032 emit_cf_list(ctx, &nif->then_list);
3033 emit_cf_list(ctx, &nif->else_list);
3034 }
3035
3036 static void
3037 emit_loop(struct ir3_context *ctx, nir_loop *nloop)
3038 {
3039 emit_cf_list(ctx, &nloop->body);
3040 }
3041
3042 static void
3043 emit_cf_list(struct ir3_context *ctx, struct exec_list *list)
3044 {
3045 foreach_list_typed(nir_cf_node, node, node, list) {
3046 switch (node->type) {
3047 case nir_cf_node_block:
3048 emit_block(ctx, nir_cf_node_as_block(node));
3049 break;
3050 case nir_cf_node_if:
3051 emit_if(ctx, nir_cf_node_as_if(node));
3052 break;
3053 case nir_cf_node_loop:
3054 emit_loop(ctx, nir_cf_node_as_loop(node));
3055 break;
3056 case nir_cf_node_function:
3057 compile_error(ctx, "TODO\n");
3058 break;
3059 }
3060 }
3061 }
3062
3063 /* emit stream-out code. At this point, the current block is the original
3064 * (nir) end block, and nir ensures that all flow control paths terminate
3065 * into the end block. We re-purpose the original end block to generate
3066 * the 'if (vtxcnt < maxvtxcnt)' condition, then append the conditional
3067 * block holding stream-out write instructions, followed by the new end
3068 * block:
3069 *
3070 * blockOrigEnd {
3071 * p0.x = (vtxcnt < maxvtxcnt)
3072 * // succs: blockStreamOut, blockNewEnd
3073 * }
3074 * blockStreamOut {
3075 * ... stream-out instructions ...
3076 * // succs: blockNewEnd
3077 * }
3078 * blockNewEnd {
3079 * }
3080 */
3081 static void
3082 emit_stream_out(struct ir3_context *ctx)
3083 {
3084 struct ir3_shader_variant *v = ctx->so;
3085 struct ir3 *ir = ctx->ir;
3086 struct pipe_stream_output_info *strmout =
3087 &ctx->so->shader->stream_output;
3088 struct ir3_block *orig_end_block, *stream_out_block, *new_end_block;
3089 struct ir3_instruction *vtxcnt, *maxvtxcnt, *cond;
3090 struct ir3_instruction *bases[PIPE_MAX_SO_BUFFERS];
3091
3092 /* create vtxcnt input in input block at top of shader,
3093 * so that it is seen as live over the entire duration
3094 * of the shader:
3095 */
3096 vtxcnt = create_input(ctx, 0);
3097 add_sysval_input(ctx, SYSTEM_VALUE_VERTEX_CNT, vtxcnt);
3098
3099 maxvtxcnt = create_driver_param(ctx, IR3_DP_VTXCNT_MAX);
3100
3101 /* at this point, we are at the original 'end' block,
3102 * re-purpose this block to stream-out condition, then
3103 * append stream-out block and new-end block
3104 */
3105 orig_end_block = ctx->block;
3106
3107 // TODO these blocks need to update predecessors..
3108 // maybe w/ store_global intrinsic, we could do this
3109 // stuff in nir->nir pass
3110
3111 stream_out_block = ir3_block_create(ir);
3112 list_addtail(&stream_out_block->node, &ir->block_list);
3113
3114 new_end_block = ir3_block_create(ir);
3115 list_addtail(&new_end_block->node, &ir->block_list);
3116
3117 orig_end_block->successors[0] = stream_out_block;
3118 orig_end_block->successors[1] = new_end_block;
3119 stream_out_block->successors[0] = new_end_block;
3120
3121 /* setup 'if (vtxcnt < maxvtxcnt)' condition: */
3122 cond = ir3_CMPS_S(ctx->block, vtxcnt, 0, maxvtxcnt, 0);
3123 cond->regs[0]->num = regid(REG_P0, 0);
3124 cond->cat2.condition = IR3_COND_LT;
3125
3126 /* condition goes on previous block to the conditional,
3127 * since it is used to pick which of the two successor
3128 * paths to take:
3129 */
3130 orig_end_block->condition = cond;
3131
3132 /* switch to stream_out_block to generate the stream-out
3133 * instructions:
3134 */
3135 ctx->block = stream_out_block;
3136
3137 /* Calculate base addresses based on vtxcnt. Instructions
3138 * generated for bases not used in following loop will be
3139 * stripped out in the backend.
3140 */
3141 for (unsigned i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
3142 unsigned stride = strmout->stride[i];
3143 struct ir3_instruction *base, *off;
3144
3145 base = create_uniform(ctx, regid(v->constbase.tfbo, i));
3146
3147 /* 24-bit should be enough: */
3148 off = ir3_MUL_U(ctx->block, vtxcnt, 0,
3149 create_immed(ctx->block, stride * 4), 0);
3150
3151 bases[i] = ir3_ADD_S(ctx->block, off, 0, base, 0);
3152 }
3153
3154 /* Generate the per-output store instructions: */
3155 for (unsigned i = 0; i < strmout->num_outputs; i++) {
3156 for (unsigned j = 0; j < strmout->output[i].num_components; j++) {
3157 unsigned c = j + strmout->output[i].start_component;
3158 struct ir3_instruction *base, *out, *stg;
3159
3160 base = bases[strmout->output[i].output_buffer];
3161 out = ctx->ir->outputs[regid(strmout->output[i].register_index, c)];
3162
3163 stg = ir3_STG(ctx->block, base, 0, out, 0,
3164 create_immed(ctx->block, 1), 0);
3165 stg->cat6.type = TYPE_U32;
3166 stg->cat6.dst_offset = (strmout->output[i].dst_offset + j) * 4;
3167
3168 array_insert(ctx->block, ctx->block->keeps, stg);
3169 }
3170 }
3171
3172 /* and finally switch to the new_end_block: */
3173 ctx->block = new_end_block;
3174 }
3175
3176 static void
3177 emit_function(struct ir3_context *ctx, nir_function_impl *impl)
3178 {
3179 nir_metadata_require(impl, nir_metadata_block_index);
3180
3181 emit_cf_list(ctx, &impl->body);
3182 emit_block(ctx, impl->end_block);
3183
3184 /* at this point, we should have a single empty block,
3185 * into which we emit the 'end' instruction.
3186 */
3187 compile_assert(ctx, list_empty(&ctx->block->instr_list));
3188
3189 /* If stream-out (aka transform-feedback) enabled, emit the
3190 * stream-out instructions, followed by a new empty block (into
3191 * which the 'end' instruction lands).
3192 *
3193 * NOTE: it is done in this order, rather than inserting before
3194 * we emit end_block, because NIR guarantees that all blocks
3195 * flow into end_block, and that end_block has no successors.
3196 * So by re-purposing end_block as the first block of stream-
3197 * out, we guarantee that all exit paths flow into the stream-
3198 * out instructions.
3199 */
3200 if ((ctx->compiler->gpu_id < 500) &&
3201 (ctx->so->shader->stream_output.num_outputs > 0) &&
3202 !ctx->so->key.binning_pass) {
3203 debug_assert(ctx->so->type == SHADER_VERTEX);
3204 emit_stream_out(ctx);
3205 }
3206
3207 ir3_END(ctx->block);
3208 }
3209
3210 static struct ir3_instruction *
3211 create_frag_coord(struct ir3_context *ctx, unsigned comp)
3212 {
3213 struct ir3_block *block = ctx->block;
3214 struct ir3_instruction *instr;
3215
3216 if (!ctx->frag_coord) {
3217 ctx->frag_coord = create_input_compmask(ctx, 0, 0xf);
3218 /* defer add_sysval_input() until after all inputs created */
3219 }
3220
3221 split_dest(block, &instr, ctx->frag_coord, comp, 1);
3222
3223 switch (comp) {
3224 case 0: /* .x */
3225 case 1: /* .y */
3226 /* for frag_coord, we get unsigned values.. we need
3227 * to subtract (integer) 8 and divide by 16 (right-
3228 * shift by 4) then convert to float:
3229 *
3230 * sub.s tmp, src, 8
3231 * shr.b tmp, tmp, 4
3232 * mov.u32f32 dst, tmp
3233 *
3234 */
3235 instr = ir3_SUB_S(block, instr, 0,
3236 create_immed(block, 8), 0);
3237 instr = ir3_SHR_B(block, instr, 0,
3238 create_immed(block, 4), 0);
3239 instr = ir3_COV(block, instr, TYPE_U32, TYPE_F32);
3240
3241 return instr;
3242 case 2: /* .z */
3243 case 3: /* .w */
3244 default:
3245 /* seems that we can use these as-is: */
3246 return instr;
3247 }
3248 }
3249
3250 static void
3251 setup_input(struct ir3_context *ctx, nir_variable *in)
3252 {
3253 struct ir3_shader_variant *so = ctx->so;
3254 unsigned array_len = MAX2(glsl_get_length(in->type), 1);
3255 unsigned ncomp = glsl_get_components(in->type);
3256 unsigned n = in->data.driver_location;
3257 unsigned slot = in->data.location;
3258
3259 DBG("; in: slot=%u, len=%ux%u, drvloc=%u",
3260 slot, array_len, ncomp, n);
3261
3262 /* let's pretend things other than vec4 don't exist: */
3263 ncomp = MAX2(ncomp, 4);
3264
3265 /* skip unread inputs, we could end up with (for example), unsplit
3266 * matrix/etc inputs in the case they are not read, so just silently
3267 * skip these.
3268 */
3269 if (ncomp > 4)
3270 return;
3271
3272 compile_assert(ctx, ncomp == 4);
3273
3274 so->inputs[n].slot = slot;
3275 so->inputs[n].compmask = (1 << ncomp) - 1;
3276 so->inputs_count = MAX2(so->inputs_count, n + 1);
3277 so->inputs[n].interpolate = in->data.interpolation;
3278
3279 if (ctx->so->type == SHADER_FRAGMENT) {
3280 for (int i = 0; i < ncomp; i++) {
3281 struct ir3_instruction *instr = NULL;
3282 unsigned idx = (n * 4) + i;
3283
3284 if (slot == VARYING_SLOT_POS) {
3285 so->inputs[n].bary = false;
3286 so->frag_coord = true;
3287 instr = create_frag_coord(ctx, i);
3288 } else if (slot == VARYING_SLOT_PNTC) {
3289 /* see for example st_nir_fixup_varying_slots().. this is
3290 * maybe a bit mesa/st specific. But we need things to line
3291 * up for this in fdN_program:
3292 * unsigned texmask = 1 << (slot - VARYING_SLOT_VAR0);
3293 * if (emit->sprite_coord_enable & texmask) {
3294 * ...
3295 * }
3296 */
3297 so->inputs[n].slot = VARYING_SLOT_VAR8;
3298 so->inputs[n].bary = true;
3299 instr = create_frag_input(ctx, false);
3300 } else {
3301 bool use_ldlv = false;
3302
3303 /* detect the special case for front/back colors where
3304 * we need to do flat vs smooth shading depending on
3305 * rast state:
3306 */
3307 if (in->data.interpolation == INTERP_MODE_NONE) {
3308 switch (slot) {
3309 case VARYING_SLOT_COL0:
3310 case VARYING_SLOT_COL1:
3311 case VARYING_SLOT_BFC0:
3312 case VARYING_SLOT_BFC1:
3313 so->inputs[n].rasterflat = true;
3314 break;
3315 default:
3316 break;
3317 }
3318 }
3319
3320 if (ctx->compiler->flat_bypass) {
3321 if ((so->inputs[n].interpolate == INTERP_MODE_FLAT) ||
3322 (so->inputs[n].rasterflat && ctx->so->key.rasterflat))
3323 use_ldlv = true;
3324 }
3325
3326 so->inputs[n].bary = true;
3327
3328 instr = create_frag_input(ctx, use_ldlv);
3329 }
3330
3331 compile_assert(ctx, idx < ctx->ir->ninputs);
3332
3333 ctx->ir->inputs[idx] = instr;
3334 }
3335 } else if (ctx->so->type == SHADER_VERTEX) {
3336 for (int i = 0; i < ncomp; i++) {
3337 unsigned idx = (n * 4) + i;
3338 compile_assert(ctx, idx < ctx->ir->ninputs);
3339 ctx->ir->inputs[idx] = create_input(ctx, idx);
3340 }
3341 } else {
3342 compile_error(ctx, "unknown shader type: %d\n", ctx->so->type);
3343 }
3344
3345 if (so->inputs[n].bary || (ctx->so->type == SHADER_VERTEX)) {
3346 so->total_in += ncomp;
3347 }
3348 }
3349
3350 static void
3351 setup_output(struct ir3_context *ctx, nir_variable *out)
3352 {
3353 struct ir3_shader_variant *so = ctx->so;
3354 unsigned array_len = MAX2(glsl_get_length(out->type), 1);
3355 unsigned ncomp = glsl_get_components(out->type);
3356 unsigned n = out->data.driver_location;
3357 unsigned slot = out->data.location;
3358 unsigned comp = 0;
3359
3360 DBG("; out: slot=%u, len=%ux%u, drvloc=%u",
3361 slot, array_len, ncomp, n);
3362
3363 /* let's pretend things other than vec4 don't exist: */
3364 ncomp = MAX2(ncomp, 4);
3365 compile_assert(ctx, ncomp == 4);
3366
3367 if (ctx->so->type == SHADER_FRAGMENT) {
3368 switch (slot) {
3369 case FRAG_RESULT_DEPTH:
3370 comp = 2; /* tgsi will write to .z component */
3371 so->writes_pos = true;
3372 break;
3373 case FRAG_RESULT_COLOR:
3374 so->color0_mrt = 1;
3375 break;
3376 default:
3377 if (slot >= FRAG_RESULT_DATA0)
3378 break;
3379 compile_error(ctx, "unknown FS output name: %s\n",
3380 gl_frag_result_name(slot));
3381 }
3382 } else if (ctx->so->type == SHADER_VERTEX) {
3383 switch (slot) {
3384 case VARYING_SLOT_POS:
3385 so->writes_pos = true;
3386 break;
3387 case VARYING_SLOT_PSIZ:
3388 so->writes_psize = true;
3389 break;
3390 case VARYING_SLOT_COL0:
3391 case VARYING_SLOT_COL1:
3392 case VARYING_SLOT_BFC0:
3393 case VARYING_SLOT_BFC1:
3394 case VARYING_SLOT_FOGC:
3395 case VARYING_SLOT_CLIP_DIST0:
3396 case VARYING_SLOT_CLIP_DIST1:
3397 case VARYING_SLOT_CLIP_VERTEX:
3398 break;
3399 default:
3400 if (slot >= VARYING_SLOT_VAR0)
3401 break;
3402 if ((VARYING_SLOT_TEX0 <= slot) && (slot <= VARYING_SLOT_TEX7))
3403 break;
3404 compile_error(ctx, "unknown VS output name: %s\n",
3405 gl_varying_slot_name(slot));
3406 }
3407 } else {
3408 compile_error(ctx, "unknown shader type: %d\n", ctx->so->type);
3409 }
3410
3411 compile_assert(ctx, n < ARRAY_SIZE(so->outputs));
3412
3413 so->outputs[n].slot = slot;
3414 so->outputs[n].regid = regid(n, comp);
3415 so->outputs_count = MAX2(so->outputs_count, n + 1);
3416
3417 for (int i = 0; i < ncomp; i++) {
3418 unsigned idx = (n * 4) + i;
3419 compile_assert(ctx, idx < ctx->ir->noutputs);
3420 ctx->ir->outputs[idx] = create_immed(ctx->block, fui(0.0));
3421 }
3422 }
3423
3424 static int
3425 max_drvloc(struct exec_list *vars)
3426 {
3427 int drvloc = -1;
3428 nir_foreach_variable(var, vars) {
3429 drvloc = MAX2(drvloc, (int)var->data.driver_location);
3430 }
3431 return drvloc;
3432 }
3433
3434 static const unsigned max_sysvals[SHADER_MAX] = {
3435 [SHADER_FRAGMENT] = 24, // TODO
3436 [SHADER_VERTEX] = 16,
3437 [SHADER_COMPUTE] = 16, // TODO how many do we actually need?
3438 };
3439
3440 static void
3441 emit_instructions(struct ir3_context *ctx)
3442 {
3443 unsigned ninputs, noutputs;
3444 nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->s);
3445
3446 ninputs = (max_drvloc(&ctx->s->inputs) + 1) * 4;
3447 noutputs = (max_drvloc(&ctx->s->outputs) + 1) * 4;
3448
3449 /* we need to leave room for sysvals:
3450 */
3451 ninputs += max_sysvals[ctx->so->type];
3452
3453 ctx->ir = ir3_create(ctx->compiler, ninputs, noutputs);
3454
3455 /* Create inputs in first block: */
3456 ctx->block = get_block(ctx, nir_start_block(fxn));
3457 ctx->in_block = ctx->block;
3458 list_addtail(&ctx->block->node, &ctx->ir->block_list);
3459
3460 ninputs -= max_sysvals[ctx->so->type];
3461
3462 /* for fragment shader, the vcoord input register is used as the
3463 * base for bary.f varying fetch instrs:
3464 */
3465 struct ir3_instruction *vcoord = NULL;
3466 if (ctx->so->type == SHADER_FRAGMENT) {
3467 struct ir3_instruction *xy[2];
3468
3469 vcoord = create_input_compmask(ctx, 0, 0x3);
3470 split_dest(ctx->block, xy, vcoord, 0, 2);
3471
3472 ctx->frag_vcoord = create_collect(ctx, xy, 2);
3473 }
3474
3475 /* Setup inputs: */
3476 nir_foreach_variable(var, &ctx->s->inputs) {
3477 setup_input(ctx, var);
3478 }
3479
3480 /* Defer add_sysval_input() stuff until after setup_inputs(),
3481 * because sysvals need to be appended after varyings:
3482 */
3483 if (vcoord) {
3484 add_sysval_input_compmask(ctx, SYSTEM_VALUE_VARYING_COORD,
3485 0x3, vcoord);
3486 }
3487
3488 if (ctx->frag_coord) {
3489 add_sysval_input_compmask(ctx, SYSTEM_VALUE_FRAG_COORD,
3490 0xf, ctx->frag_coord);
3491 }
3492
3493 /* Setup outputs: */
3494 nir_foreach_variable(var, &ctx->s->outputs) {
3495 setup_output(ctx, var);
3496 }
3497
3498 /* Setup registers (which should only be arrays): */
3499 nir_foreach_register(reg, &ctx->s->registers) {
3500 declare_array(ctx, reg);
3501 }
3502
3503 /* NOTE: need to do something more clever when we support >1 fxn */
3504 nir_foreach_register(reg, &fxn->registers) {
3505 declare_array(ctx, reg);
3506 }
3507 /* And emit the body: */
3508 ctx->impl = fxn;
3509 emit_function(ctx, fxn);
3510 }
3511
3512 /* from NIR perspective, we actually have varying inputs. But the varying
3513 * inputs, from an IR standpoint, are just bary.f/ldlv instructions. The
3514 * only actual inputs are the sysvals.
3515 */
3516 static void
3517 fixup_frag_inputs(struct ir3_context *ctx)
3518 {
3519 struct ir3_shader_variant *so = ctx->so;
3520 struct ir3 *ir = ctx->ir;
3521 unsigned i = 0;
3522
3523 /* sysvals should appear at the end of the inputs, drop everything else: */
3524 while ((i < so->inputs_count) && !so->inputs[i].sysval)
3525 i++;
3526
3527 /* at IR level, inputs are always blocks of 4 scalars: */
3528 i *= 4;
3529
3530 ir->inputs = &ir->inputs[i];
3531 ir->ninputs -= i;
3532 }
3533
3534 /* Fixup tex sampler state for astc/srgb workaround instructions. We
3535 * need to assign the tex state indexes for these after we know the
3536 * max tex index.
3537 */
3538 static void
3539 fixup_astc_srgb(struct ir3_context *ctx)
3540 {
3541 struct ir3_shader_variant *so = ctx->so;
3542 /* indexed by original tex idx, value is newly assigned alpha sampler
3543 * state tex idx. Zero is invalid since there is at least one sampler
3544 * if we get here.
3545 */
3546 unsigned alt_tex_state[16] = {0};
3547 unsigned tex_idx = ctx->max_texture_index + 1;
3548 unsigned idx = 0;
3549
3550 so->astc_srgb.base = tex_idx;
3551
3552 for (unsigned i = 0; i < ctx->ir->astc_srgb_count; i++) {
3553 struct ir3_instruction *sam = ctx->ir->astc_srgb[i];
3554
3555 compile_assert(ctx, sam->cat5.tex < ARRAY_SIZE(alt_tex_state));
3556
3557 if (alt_tex_state[sam->cat5.tex] == 0) {
3558 /* assign new alternate/alpha tex state slot: */
3559 alt_tex_state[sam->cat5.tex] = tex_idx++;
3560 so->astc_srgb.orig_idx[idx++] = sam->cat5.tex;
3561 so->astc_srgb.count++;
3562 }
3563
3564 sam->cat5.tex = alt_tex_state[sam->cat5.tex];
3565 }
3566 }
3567
3568 int
3569 ir3_compile_shader_nir(struct ir3_compiler *compiler,
3570 struct ir3_shader_variant *so)
3571 {
3572 struct ir3_context *ctx;
3573 struct ir3 *ir;
3574 struct ir3_instruction **inputs;
3575 unsigned i, j, actual_in, inloc;
3576 int ret = 0, max_bary;
3577
3578 assert(!so->ir);
3579
3580 ctx = compile_init(compiler, so);
3581 if (!ctx) {
3582 DBG("INIT failed!");
3583 ret = -1;
3584 goto out;
3585 }
3586
3587 emit_instructions(ctx);
3588
3589 if (ctx->error) {
3590 DBG("EMIT failed!");
3591 ret = -1;
3592 goto out;
3593 }
3594
3595 ir = so->ir = ctx->ir;
3596
3597 /* keep track of the inputs from TGSI perspective.. */
3598 inputs = ir->inputs;
3599
3600 /* but fixup actual inputs for frag shader: */
3601 if (so->type == SHADER_FRAGMENT)
3602 fixup_frag_inputs(ctx);
3603
3604 /* at this point, for binning pass, throw away unneeded outputs: */
3605 if (so->key.binning_pass) {
3606 for (i = 0, j = 0; i < so->outputs_count; i++) {
3607 unsigned slot = so->outputs[i].slot;
3608
3609 /* throw away everything but first position/psize */
3610 if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) {
3611 if (i != j) {
3612 so->outputs[j] = so->outputs[i];
3613 ir->outputs[(j*4)+0] = ir->outputs[(i*4)+0];
3614 ir->outputs[(j*4)+1] = ir->outputs[(i*4)+1];
3615 ir->outputs[(j*4)+2] = ir->outputs[(i*4)+2];
3616 ir->outputs[(j*4)+3] = ir->outputs[(i*4)+3];
3617 }
3618 j++;
3619 }
3620 }
3621 so->outputs_count = j;
3622 ir->noutputs = j * 4;
3623 }
3624
3625 /* if we want half-precision outputs, mark the output registers
3626 * as half:
3627 */
3628 if (so->key.half_precision) {
3629 for (i = 0; i < ir->noutputs; i++) {
3630 struct ir3_instruction *out = ir->outputs[i];
3631
3632 if (!out)
3633 continue;
3634
3635 /* if frag shader writes z, that needs to be full precision: */
3636 if (so->outputs[i/4].slot == FRAG_RESULT_DEPTH)
3637 continue;
3638
3639 out->regs[0]->flags |= IR3_REG_HALF;
3640 /* output could be a fanout (ie. texture fetch output)
3641 * in which case we need to propagate the half-reg flag
3642 * up to the definer so that RA sees it:
3643 */
3644 if (out->opc == OPC_META_FO) {
3645 out = out->regs[1]->instr;
3646 out->regs[0]->flags |= IR3_REG_HALF;
3647 }
3648
3649 if (out->opc == OPC_MOV) {
3650 out->cat1.dst_type = half_type(out->cat1.dst_type);
3651 }
3652 }
3653 }
3654
3655 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3656 printf("BEFORE CP:\n");
3657 ir3_print(ir);
3658 }
3659
3660 ir3_cp(ir, so);
3661
3662 /* Insert mov if there's same instruction for each output.
3663 * eg. dEQP-GLES31.functional.shaders.opaque_type_indexing.sampler.const_expression.vertex.sampler2dshadow
3664 */
3665 for (int i = ir->noutputs - 1; i >= 0; i--) {
3666 if (!ir->outputs[i])
3667 continue;
3668 for (unsigned j = 0; j < i; j++) {
3669 if (ir->outputs[i] == ir->outputs[j]) {
3670 ir->outputs[i] =
3671 ir3_MOV(ir->outputs[i]->block, ir->outputs[i], TYPE_F32);
3672 }
3673 }
3674 }
3675
3676 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3677 printf("BEFORE GROUPING:\n");
3678 ir3_print(ir);
3679 }
3680
3681 ir3_sched_add_deps(ir);
3682
3683 /* Group left/right neighbors, inserting mov's where needed to
3684 * solve conflicts:
3685 */
3686 ir3_group(ir);
3687
3688 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3689 printf("AFTER GROUPING:\n");
3690 ir3_print(ir);
3691 }
3692
3693 ir3_depth(ir);
3694
3695 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3696 printf("AFTER DEPTH:\n");
3697 ir3_print(ir);
3698 }
3699
3700 ret = ir3_sched(ir);
3701 if (ret) {
3702 DBG("SCHED failed!");
3703 goto out;
3704 }
3705
3706 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3707 printf("AFTER SCHED:\n");
3708 ir3_print(ir);
3709 }
3710
3711 ret = ir3_ra(ir, so->type, so->frag_coord, so->frag_face);
3712 if (ret) {
3713 DBG("RA failed!");
3714 goto out;
3715 }
3716
3717 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3718 printf("AFTER RA:\n");
3719 ir3_print(ir);
3720 }
3721
3722 /* fixup input/outputs: */
3723 for (i = 0; i < so->outputs_count; i++) {
3724 so->outputs[i].regid = ir->outputs[i*4]->regs[0]->num;
3725 }
3726
3727 /* Note that some or all channels of an input may be unused: */
3728 actual_in = 0;
3729 inloc = 0;
3730 for (i = 0; i < so->inputs_count; i++) {
3731 unsigned j, reg = regid(63,0), compmask = 0, maxcomp = 0;
3732 so->inputs[i].ncomp = 0;
3733 so->inputs[i].inloc = inloc;
3734 for (j = 0; j < 4; j++) {
3735 struct ir3_instruction *in = inputs[(i*4) + j];
3736 if (in && !(in->flags & IR3_INSTR_UNUSED)) {
3737 compmask |= (1 << j);
3738 reg = in->regs[0]->num - j;
3739 actual_in++;
3740 so->inputs[i].ncomp++;
3741 if ((so->type == SHADER_FRAGMENT) && so->inputs[i].bary) {
3742 /* assign inloc: */
3743 assert(in->regs[1]->flags & IR3_REG_IMMED);
3744 in->regs[1]->iim_val = inloc + j;
3745 maxcomp = j + 1;
3746 }
3747 }
3748 }
3749 if ((so->type == SHADER_FRAGMENT) && compmask && so->inputs[i].bary) {
3750 so->varying_in++;
3751 so->inputs[i].compmask = (1 << maxcomp) - 1;
3752 inloc += maxcomp;
3753 } else if (!so->inputs[i].sysval) {
3754 so->inputs[i].compmask = compmask;
3755 }
3756 so->inputs[i].regid = reg;
3757 }
3758
3759 if (ctx->astc_srgb)
3760 fixup_astc_srgb(ctx);
3761
3762 /* We need to do legalize after (for frag shader's) the "bary.f"
3763 * offsets (inloc) have been assigned.
3764 */
3765 ir3_legalize(ir, &so->has_samp, &so->has_ssbo, &max_bary);
3766
3767 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3768 printf("AFTER LEGALIZE:\n");
3769 ir3_print(ir);
3770 }
3771
3772 /* Note that actual_in counts inputs that are not bary.f'd for FS: */
3773 if (so->type == SHADER_VERTEX)
3774 so->total_in = actual_in;
3775 else
3776 so->total_in = max_bary + 1;
3777
3778 out:
3779 if (ret) {
3780 if (so->ir)
3781 ir3_destroy(so->ir);
3782 so->ir = NULL;
3783 }
3784 compile_free(ctx);
3785
3786 return ret;
3787 }