freedreno/ir3: use saml always if we have lod
[mesa.git] / src / gallium / drivers / freedreno / ir3 / ir3_compiler_nir.c
1 /* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */
2
3 /*
4 * Copyright (C) 2015 Rob Clark <robclark@freedesktop.org>
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 * Rob Clark <robclark@freedesktop.org>
27 */
28
29 #include <stdarg.h>
30
31 #include "pipe/p_state.h"
32 #include "util/u_string.h"
33 #include "util/u_memory.h"
34 #include "util/u_inlines.h"
35
36 #include "freedreno_util.h"
37
38 #include "ir3_compiler.h"
39 #include "ir3_shader.h"
40 #include "ir3_nir.h"
41
42 #include "instr-a3xx.h"
43 #include "ir3.h"
44
45
46 struct ir3_context {
47 struct ir3_compiler *compiler;
48
49 struct nir_shader *s;
50
51 struct ir3 *ir;
52 struct ir3_shader_variant *so;
53
54 struct ir3_block *block; /* the current block */
55 struct ir3_block *in_block; /* block created for shader inputs */
56
57 nir_function_impl *impl;
58
59 /* For fragment shaders, from the hw perspective the only
60 * actual input is r0.xy position register passed to bary.f.
61 * But TGSI doesn't know that, it still declares things as
62 * IN[] registers. So we do all the input tracking normally
63 * and fix things up after compile_instructions()
64 *
65 * NOTE that frag_pos is the hardware position (possibly it
66 * is actually an index or tag or some such.. it is *not*
67 * values that can be directly used for gl_FragCoord..)
68 */
69 struct ir3_instruction *frag_pos, *frag_face, *frag_coord[4];
70
71 /* For vertex shaders, keep track of the system values sources */
72 struct ir3_instruction *vertex_id, *basevertex, *instance_id;
73
74 /* For fragment shaders: */
75 struct ir3_instruction *samp_id, *samp_mask_in;
76
77 /* Compute shader inputs: */
78 struct ir3_instruction *local_invocation_id, *work_group_id;
79
80 /* mapping from nir_register to defining instruction: */
81 struct hash_table *def_ht;
82
83 unsigned num_arrays;
84
85 /* a common pattern for indirect addressing is to request the
86 * same address register multiple times. To avoid generating
87 * duplicate instruction sequences (which our backend does not
88 * try to clean up, since that should be done as the NIR stage)
89 * we cache the address value generated for a given src value:
90 *
91 * Note that we have to cache these per alignment, since same
92 * src used for an array of vec1 cannot be also used for an
93 * array of vec4.
94 */
95 struct hash_table *addr_ht[4];
96
97 /* last dst array, for indirect we need to insert a var-store.
98 */
99 struct ir3_instruction **last_dst;
100 unsigned last_dst_n;
101
102 /* maps nir_block to ir3_block, mostly for the purposes of
103 * figuring out the blocks successors
104 */
105 struct hash_table *block_ht;
106
107 /* a4xx (at least patchlevel 0) cannot seem to flat-interpolate
108 * so we need to use ldlv.u32 to load the varying directly:
109 */
110 bool flat_bypass;
111
112 /* on a3xx, we need to add one to # of array levels:
113 */
114 bool levels_add_one;
115
116 /* on a3xx, we need to scale up integer coords for isaml based
117 * on LoD:
118 */
119 bool unminify_coords;
120
121 /* on a4xx, for array textures we need to add 0.5 to the array
122 * index coordinate:
123 */
124 bool array_index_add_half;
125
126 /* on a4xx, bitmask of samplers which need astc+srgb workaround: */
127 unsigned astc_srgb;
128
129 unsigned max_texture_index;
130
131 /* set if we encounter something we can't handle yet, so we
132 * can bail cleanly and fallback to TGSI compiler f/e
133 */
134 bool error;
135 };
136
137 /* gpu pointer size in units of 32bit registers/slots */
138 static unsigned pointer_size(struct ir3_context *ctx)
139 {
140 return (ctx->compiler->gpu_id >= 500) ? 2 : 1;
141 }
142
143 static struct ir3_instruction * create_immed(struct ir3_block *block, uint32_t val);
144 static struct ir3_block * get_block(struct ir3_context *ctx, const nir_block *nblock);
145
146
147 static struct ir3_context *
148 compile_init(struct ir3_compiler *compiler,
149 struct ir3_shader_variant *so)
150 {
151 struct ir3_context *ctx = rzalloc(NULL, struct ir3_context);
152
153 if (compiler->gpu_id >= 400) {
154 /* need special handling for "flat" */
155 ctx->flat_bypass = true;
156 ctx->levels_add_one = false;
157 ctx->unminify_coords = false;
158 ctx->array_index_add_half = true;
159
160 if (so->type == SHADER_VERTEX)
161 ctx->astc_srgb = so->key.vastc_srgb;
162 else if (so->type == SHADER_FRAGMENT)
163 ctx->astc_srgb = so->key.fastc_srgb;
164
165 } else {
166 /* no special handling for "flat" */
167 ctx->flat_bypass = false;
168 ctx->levels_add_one = true;
169 ctx->unminify_coords = true;
170 ctx->array_index_add_half = false;
171 }
172
173 ctx->compiler = compiler;
174 ctx->ir = so->ir;
175 ctx->so = so;
176 ctx->def_ht = _mesa_hash_table_create(ctx,
177 _mesa_hash_pointer, _mesa_key_pointer_equal);
178 ctx->block_ht = _mesa_hash_table_create(ctx,
179 _mesa_hash_pointer, _mesa_key_pointer_equal);
180
181 /* TODO: maybe generate some sort of bitmask of what key
182 * lowers vs what shader has (ie. no need to lower
183 * texture clamp lowering if no texture sample instrs)..
184 * although should be done further up the stack to avoid
185 * creating duplicate variants..
186 */
187
188 if (ir3_key_lowers_nir(&so->key)) {
189 nir_shader *s = nir_shader_clone(ctx, so->shader->nir);
190 ctx->s = ir3_optimize_nir(so->shader, s, &so->key);
191 } else {
192 /* fast-path for shader key that lowers nothing in NIR: */
193 ctx->s = so->shader->nir;
194 }
195
196 /* this needs to be the last pass run, so do this here instead of
197 * in ir3_optimize_nir():
198 */
199 NIR_PASS_V(ctx->s, nir_lower_locals_to_regs);
200 NIR_PASS_V(ctx->s, nir_convert_from_ssa, true);
201
202 if (fd_mesa_debug & FD_DBG_DISASM) {
203 DBG("dump nir%dv%d: type=%d, k={bp=%u,cts=%u,hp=%u}",
204 so->shader->id, so->id, so->type,
205 so->key.binning_pass, so->key.color_two_side,
206 so->key.half_precision);
207 nir_print_shader(ctx->s, stdout);
208 }
209
210 ir3_nir_scan_driver_consts(ctx->s, &so->const_layout);
211
212 so->num_uniforms = ctx->s->num_uniforms;
213 so->num_ubos = ctx->s->info.num_ubos;
214
215 /* Layout of constant registers, each section aligned to vec4. Note
216 * that pointer size (ubo, etc) changes depending on generation.
217 *
218 * user consts
219 * UBO addresses
220 * SSBO sizes
221 * if (vertex shader) {
222 * driver params (IR3_DP_*)
223 * if (stream_output.num_outputs > 0)
224 * stream-out addresses
225 * }
226 * immediates
227 *
228 * Immediates go last mostly because they are inserted in the CP pass
229 * after the nir -> ir3 frontend.
230 */
231 unsigned constoff = align(ctx->s->num_uniforms, 4);
232 unsigned ptrsz = pointer_size(ctx);
233
234 memset(&so->constbase, ~0, sizeof(so->constbase));
235
236 if (so->num_ubos > 0) {
237 so->constbase.ubo = constoff;
238 constoff += align(ctx->s->info.num_ubos * ptrsz, 4) / 4;
239 }
240
241 if (so->const_layout.ssbo_size.count > 0) {
242 unsigned cnt = so->const_layout.ssbo_size.count;
243 so->constbase.ssbo_sizes = constoff;
244 constoff += align(cnt, 4) / 4;
245 }
246
247 if (so->const_layout.image_dims.count > 0) {
248 unsigned cnt = so->const_layout.image_dims.count;
249 so->constbase.image_dims = constoff;
250 constoff += align(cnt, 4) / 4;
251 }
252
253 unsigned num_driver_params = 0;
254 if (so->type == SHADER_VERTEX) {
255 num_driver_params = IR3_DP_VS_COUNT;
256 } else if (so->type == SHADER_COMPUTE) {
257 num_driver_params = IR3_DP_CS_COUNT;
258 }
259
260 so->constbase.driver_param = constoff;
261 constoff += align(num_driver_params, 4) / 4;
262
263 if ((so->type == SHADER_VERTEX) &&
264 (compiler->gpu_id < 500) &&
265 so->shader->stream_output.num_outputs > 0) {
266 so->constbase.tfbo = constoff;
267 constoff += align(PIPE_MAX_SO_BUFFERS * ptrsz, 4) / 4;
268 }
269
270 so->constbase.immediate = constoff;
271
272 return ctx;
273 }
274
275 static void
276 compile_error(struct ir3_context *ctx, const char *format, ...)
277 {
278 va_list ap;
279 va_start(ap, format);
280 _debug_vprintf(format, ap);
281 va_end(ap);
282 nir_print_shader(ctx->s, stdout);
283 ctx->error = true;
284 debug_assert(0);
285 }
286
287 #define compile_assert(ctx, cond) do { \
288 if (!(cond)) compile_error((ctx), "failed assert: "#cond"\n"); \
289 } while (0)
290
291 static void
292 compile_free(struct ir3_context *ctx)
293 {
294 ralloc_free(ctx);
295 }
296
297 static void
298 declare_array(struct ir3_context *ctx, nir_register *reg)
299 {
300 struct ir3_array *arr = rzalloc(ctx, struct ir3_array);
301 arr->id = ++ctx->num_arrays;
302 /* NOTE: sometimes we get non array regs, for example for arrays of
303 * length 1. See fs-const-array-of-struct-of-array.shader_test. So
304 * treat a non-array as if it was an array of length 1.
305 *
306 * It would be nice if there was a nir pass to convert arrays of
307 * length 1 to ssa.
308 */
309 arr->length = reg->num_components * MAX2(1, reg->num_array_elems);
310 compile_assert(ctx, arr->length > 0);
311 arr->r = reg;
312 list_addtail(&arr->node, &ctx->ir->array_list);
313 }
314
315 static struct ir3_array *
316 get_array(struct ir3_context *ctx, nir_register *reg)
317 {
318 list_for_each_entry (struct ir3_array, arr, &ctx->ir->array_list, node) {
319 if (arr->r == reg)
320 return arr;
321 }
322 compile_error(ctx, "bogus reg: %s\n", reg->name);
323 return NULL;
324 }
325
326 /* relative (indirect) if address!=NULL */
327 static struct ir3_instruction *
328 create_array_load(struct ir3_context *ctx, struct ir3_array *arr, int n,
329 struct ir3_instruction *address)
330 {
331 struct ir3_block *block = ctx->block;
332 struct ir3_instruction *mov;
333 struct ir3_register *src;
334
335 mov = ir3_instr_create(block, OPC_MOV);
336 mov->cat1.src_type = TYPE_U32;
337 mov->cat1.dst_type = TYPE_U32;
338 mov->barrier_class = IR3_BARRIER_ARRAY_R;
339 mov->barrier_conflict = IR3_BARRIER_ARRAY_W;
340 ir3_reg_create(mov, 0, 0);
341 src = ir3_reg_create(mov, 0, IR3_REG_ARRAY |
342 COND(address, IR3_REG_RELATIV));
343 src->instr = arr->last_write;
344 src->size = arr->length;
345 src->array.id = arr->id;
346 src->array.offset = n;
347
348 if (address)
349 ir3_instr_set_address(mov, address);
350
351 return mov;
352 }
353
354 /* relative (indirect) if address!=NULL */
355 static void
356 create_array_store(struct ir3_context *ctx, struct ir3_array *arr, int n,
357 struct ir3_instruction *src, struct ir3_instruction *address)
358 {
359 struct ir3_block *block = ctx->block;
360 struct ir3_instruction *mov;
361 struct ir3_register *dst;
362
363 /* if not relative store, don't create an extra mov, since that
364 * ends up being difficult for cp to remove.
365 */
366 if (!address) {
367 dst = src->regs[0];
368
369 src->barrier_class |= IR3_BARRIER_ARRAY_W;
370 src->barrier_conflict |= IR3_BARRIER_ARRAY_R | IR3_BARRIER_ARRAY_W;
371
372 dst->flags |= IR3_REG_ARRAY;
373 dst->instr = arr->last_write;
374 dst->size = arr->length;
375 dst->array.id = arr->id;
376 dst->array.offset = n;
377
378 arr->last_write = src;
379
380 array_insert(block, block->keeps, src);
381
382 return;
383 }
384
385 mov = ir3_instr_create(block, OPC_MOV);
386 mov->cat1.src_type = TYPE_U32;
387 mov->cat1.dst_type = TYPE_U32;
388 mov->barrier_class = IR3_BARRIER_ARRAY_W;
389 mov->barrier_conflict = IR3_BARRIER_ARRAY_R | IR3_BARRIER_ARRAY_W;
390 dst = ir3_reg_create(mov, 0, IR3_REG_ARRAY |
391 COND(address, IR3_REG_RELATIV));
392 dst->instr = arr->last_write;
393 dst->size = arr->length;
394 dst->array.id = arr->id;
395 dst->array.offset = n;
396 ir3_reg_create(mov, 0, IR3_REG_SSA)->instr = src;
397
398 if (address)
399 ir3_instr_set_address(mov, address);
400
401 arr->last_write = mov;
402
403 /* the array store may only matter to something in an earlier
404 * block (ie. loops), but since arrays are not in SSA, depth
405 * pass won't know this.. so keep all array stores:
406 */
407 array_insert(block, block->keeps, mov);
408 }
409
410 static inline type_t utype_for_size(unsigned bit_size)
411 {
412 switch (bit_size) {
413 case 32: return TYPE_U32;
414 case 16: return TYPE_U16;
415 case 8: return TYPE_U8;
416 default: unreachable("bad bitsize"); return ~0;
417 }
418 }
419
420 static inline type_t utype_src(nir_src src)
421 { return utype_for_size(nir_src_bit_size(src)); }
422
423 static inline type_t utype_dst(nir_dest dst)
424 { return utype_for_size(nir_dest_bit_size(dst)); }
425
426 /* allocate a n element value array (to be populated by caller) and
427 * insert in def_ht
428 */
429 static struct ir3_instruction **
430 get_dst_ssa(struct ir3_context *ctx, nir_ssa_def *dst, unsigned n)
431 {
432 struct ir3_instruction **value =
433 ralloc_array(ctx->def_ht, struct ir3_instruction *, n);
434 _mesa_hash_table_insert(ctx->def_ht, dst, value);
435 return value;
436 }
437
438 static struct ir3_instruction **
439 get_dst(struct ir3_context *ctx, nir_dest *dst, unsigned n)
440 {
441 struct ir3_instruction **value;
442
443 if (dst->is_ssa) {
444 value = get_dst_ssa(ctx, &dst->ssa, n);
445 } else {
446 value = ralloc_array(ctx, struct ir3_instruction *, n);
447 }
448
449 /* NOTE: in non-ssa case, we don't really need to store last_dst
450 * but this helps us catch cases where put_dst() call is forgotten
451 */
452 compile_assert(ctx, !ctx->last_dst);
453 ctx->last_dst = value;
454 ctx->last_dst_n = n;
455
456 return value;
457 }
458
459 static struct ir3_instruction * get_addr(struct ir3_context *ctx, struct ir3_instruction *src, int align);
460
461 static struct ir3_instruction * const *
462 get_src(struct ir3_context *ctx, nir_src *src)
463 {
464 if (src->is_ssa) {
465 struct hash_entry *entry;
466 entry = _mesa_hash_table_search(ctx->def_ht, src->ssa);
467 compile_assert(ctx, entry);
468 return entry->data;
469 } else {
470 nir_register *reg = src->reg.reg;
471 struct ir3_array *arr = get_array(ctx, reg);
472 unsigned num_components = arr->r->num_components;
473 struct ir3_instruction *addr = NULL;
474 struct ir3_instruction **value =
475 ralloc_array(ctx, struct ir3_instruction *, num_components);
476
477 if (src->reg.indirect)
478 addr = get_addr(ctx, get_src(ctx, src->reg.indirect)[0],
479 reg->num_components);
480
481 for (unsigned i = 0; i < num_components; i++) {
482 unsigned n = src->reg.base_offset * reg->num_components + i;
483 compile_assert(ctx, n < arr->length);
484 value[i] = create_array_load(ctx, arr, n, addr);
485 }
486
487 return value;
488 }
489 }
490
491 static void
492 put_dst(struct ir3_context *ctx, nir_dest *dst)
493 {
494 unsigned bit_size = nir_dest_bit_size(*dst);
495
496 if (bit_size < 32) {
497 for (unsigned i = 0; i < ctx->last_dst_n; i++) {
498 struct ir3_instruction *dst = ctx->last_dst[i];
499 dst->regs[0]->flags |= IR3_REG_HALF;
500 if (ctx->last_dst[i]->opc == OPC_META_FO)
501 dst->regs[1]->instr->regs[0]->flags |= IR3_REG_HALF;
502 }
503 }
504
505 if (!dst->is_ssa) {
506 nir_register *reg = dst->reg.reg;
507 struct ir3_array *arr = get_array(ctx, reg);
508 unsigned num_components = ctx->last_dst_n;
509 struct ir3_instruction *addr = NULL;
510
511 if (dst->reg.indirect)
512 addr = get_addr(ctx, get_src(ctx, dst->reg.indirect)[0],
513 reg->num_components);
514
515 for (unsigned i = 0; i < num_components; i++) {
516 unsigned n = dst->reg.base_offset * reg->num_components + i;
517 compile_assert(ctx, n < arr->length);
518 if (!ctx->last_dst[i])
519 continue;
520 create_array_store(ctx, arr, n, ctx->last_dst[i], addr);
521 }
522
523 ralloc_free(ctx->last_dst);
524 }
525 ctx->last_dst = NULL;
526 ctx->last_dst_n = 0;
527 }
528
529 static struct ir3_instruction *
530 create_immed_typed(struct ir3_block *block, uint32_t val, type_t type)
531 {
532 struct ir3_instruction *mov;
533 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
534
535 mov = ir3_instr_create(block, OPC_MOV);
536 mov->cat1.src_type = type;
537 mov->cat1.dst_type = type;
538 ir3_reg_create(mov, 0, flags);
539 ir3_reg_create(mov, 0, IR3_REG_IMMED)->uim_val = val;
540
541 return mov;
542 }
543
544 static struct ir3_instruction *
545 create_immed(struct ir3_block *block, uint32_t val)
546 {
547 return create_immed_typed(block, val, TYPE_U32);
548 }
549
550 static struct ir3_instruction *
551 create_addr(struct ir3_block *block, struct ir3_instruction *src, int align)
552 {
553 struct ir3_instruction *instr, *immed;
554
555 /* TODO in at least some cases, the backend could probably be
556 * made clever enough to propagate IR3_REG_HALF..
557 */
558 instr = ir3_COV(block, src, TYPE_U32, TYPE_S16);
559 instr->regs[0]->flags |= IR3_REG_HALF;
560
561 switch(align){
562 case 1:
563 /* src *= 1: */
564 break;
565 case 2:
566 /* src *= 2 => src <<= 1: */
567 immed = create_immed(block, 1);
568 immed->regs[0]->flags |= IR3_REG_HALF;
569
570 instr = ir3_SHL_B(block, instr, 0, immed, 0);
571 instr->regs[0]->flags |= IR3_REG_HALF;
572 instr->regs[1]->flags |= IR3_REG_HALF;
573 break;
574 case 3:
575 /* src *= 3: */
576 immed = create_immed(block, 3);
577 immed->regs[0]->flags |= IR3_REG_HALF;
578
579 instr = ir3_MULL_U(block, instr, 0, immed, 0);
580 instr->regs[0]->flags |= IR3_REG_HALF;
581 instr->regs[1]->flags |= IR3_REG_HALF;
582 break;
583 case 4:
584 /* src *= 4 => src <<= 2: */
585 immed = create_immed(block, 2);
586 immed->regs[0]->flags |= IR3_REG_HALF;
587
588 instr = ir3_SHL_B(block, instr, 0, immed, 0);
589 instr->regs[0]->flags |= IR3_REG_HALF;
590 instr->regs[1]->flags |= IR3_REG_HALF;
591 break;
592 default:
593 unreachable("bad align");
594 return NULL;
595 }
596
597 instr = ir3_MOV(block, instr, TYPE_S16);
598 instr->regs[0]->num = regid(REG_A0, 0);
599 instr->regs[0]->flags |= IR3_REG_HALF;
600 instr->regs[1]->flags |= IR3_REG_HALF;
601
602 return instr;
603 }
604
605 /* caches addr values to avoid generating multiple cov/shl/mova
606 * sequences for each use of a given NIR level src as address
607 */
608 static struct ir3_instruction *
609 get_addr(struct ir3_context *ctx, struct ir3_instruction *src, int align)
610 {
611 struct ir3_instruction *addr;
612 unsigned idx = align - 1;
613
614 compile_assert(ctx, idx < ARRAY_SIZE(ctx->addr_ht));
615
616 if (!ctx->addr_ht[idx]) {
617 ctx->addr_ht[idx] = _mesa_hash_table_create(ctx,
618 _mesa_hash_pointer, _mesa_key_pointer_equal);
619 } else {
620 struct hash_entry *entry;
621 entry = _mesa_hash_table_search(ctx->addr_ht[idx], src);
622 if (entry)
623 return entry->data;
624 }
625
626 addr = create_addr(ctx->block, src, align);
627 _mesa_hash_table_insert(ctx->addr_ht[idx], src, addr);
628
629 return addr;
630 }
631
632 static struct ir3_instruction *
633 get_predicate(struct ir3_context *ctx, struct ir3_instruction *src)
634 {
635 struct ir3_block *b = ctx->block;
636 struct ir3_instruction *cond;
637
638 /* NOTE: only cmps.*.* can write p0.x: */
639 cond = ir3_CMPS_S(b, src, 0, create_immed(b, 0), 0);
640 cond->cat2.condition = IR3_COND_NE;
641
642 /* condition always goes in predicate register: */
643 cond->regs[0]->num = regid(REG_P0, 0);
644
645 return cond;
646 }
647
648 static struct ir3_instruction *
649 create_uniform(struct ir3_context *ctx, unsigned n)
650 {
651 struct ir3_instruction *mov;
652
653 mov = ir3_instr_create(ctx->block, OPC_MOV);
654 /* TODO get types right? */
655 mov->cat1.src_type = TYPE_F32;
656 mov->cat1.dst_type = TYPE_F32;
657 ir3_reg_create(mov, 0, 0);
658 ir3_reg_create(mov, n, IR3_REG_CONST);
659
660 return mov;
661 }
662
663 static struct ir3_instruction *
664 create_uniform_indirect(struct ir3_context *ctx, int n,
665 struct ir3_instruction *address)
666 {
667 struct ir3_instruction *mov;
668
669 mov = ir3_instr_create(ctx->block, OPC_MOV);
670 mov->cat1.src_type = TYPE_U32;
671 mov->cat1.dst_type = TYPE_U32;
672 ir3_reg_create(mov, 0, 0);
673 ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
674
675 ir3_instr_set_address(mov, address);
676
677 return mov;
678 }
679
680 static struct ir3_instruction *
681 create_collect(struct ir3_context *ctx, struct ir3_instruction *const *arr,
682 unsigned arrsz)
683 {
684 struct ir3_block *block = ctx->block;
685 struct ir3_instruction *collect;
686
687 if (arrsz == 0)
688 return NULL;
689
690 unsigned flags = arr[0]->regs[0]->flags & IR3_REG_HALF;
691
692 collect = ir3_instr_create2(block, OPC_META_FI, 1 + arrsz);
693 ir3_reg_create(collect, 0, flags); /* dst */
694 for (unsigned i = 0; i < arrsz; i++) {
695 struct ir3_instruction *elem = arr[i];
696
697 /* Since arrays are pre-colored in RA, we can't assume that
698 * things will end up in the right place. (Ie. if a collect
699 * joins elements from two different arrays.) So insert an
700 * extra mov.
701 *
702 * We could possibly skip this if all the collected elements
703 * are contiguous elements in a single array.. not sure how
704 * likely that is to happen.
705 *
706 * Fixes a problem with glamor shaders, that in effect do
707 * something like:
708 *
709 * if (foo)
710 * texcoord = ..
711 * else
712 * texcoord = ..
713 * color = texture2D(tex, texcoord);
714 *
715 * In this case, texcoord will end up as nir registers (which
716 * translate to ir3 array's of length 1. And we can't assume
717 * the two (or more) arrays will get allocated in consecutive
718 * scalar registers.
719 *
720 */
721 if (elem->regs[0]->flags & IR3_REG_ARRAY) {
722 type_t type = (flags & IR3_REG_HALF) ? TYPE_U16 : TYPE_U32;
723 elem = ir3_MOV(block, elem, type);
724 }
725
726 compile_assert(ctx, (elem->regs[0]->flags & IR3_REG_HALF) == flags);
727 ir3_reg_create(collect, 0, IR3_REG_SSA | flags)->instr = elem;
728 }
729
730 return collect;
731 }
732
733 static struct ir3_instruction *
734 create_indirect_load(struct ir3_context *ctx, unsigned arrsz, int n,
735 struct ir3_instruction *address, struct ir3_instruction *collect)
736 {
737 struct ir3_block *block = ctx->block;
738 struct ir3_instruction *mov;
739 struct ir3_register *src;
740
741 mov = ir3_instr_create(block, OPC_MOV);
742 mov->cat1.src_type = TYPE_U32;
743 mov->cat1.dst_type = TYPE_U32;
744 ir3_reg_create(mov, 0, 0);
745 src = ir3_reg_create(mov, 0, IR3_REG_SSA | IR3_REG_RELATIV);
746 src->instr = collect;
747 src->size = arrsz;
748 src->array.offset = n;
749
750 ir3_instr_set_address(mov, address);
751
752 return mov;
753 }
754
755 static struct ir3_instruction *
756 create_input_compmask(struct ir3_block *block, unsigned n, unsigned compmask)
757 {
758 struct ir3_instruction *in;
759
760 in = ir3_instr_create(block, OPC_META_INPUT);
761 in->inout.block = block;
762 ir3_reg_create(in, n, 0);
763
764 in->regs[0]->wrmask = compmask;
765
766 return in;
767 }
768
769 static struct ir3_instruction *
770 create_input(struct ir3_block *block, unsigned n)
771 {
772 return create_input_compmask(block, n, 0x1);
773 }
774
775 static struct ir3_instruction *
776 create_frag_input(struct ir3_context *ctx, bool use_ldlv)
777 {
778 struct ir3_block *block = ctx->block;
779 struct ir3_instruction *instr;
780 /* actual inloc is assigned and fixed up later: */
781 struct ir3_instruction *inloc = create_immed(block, 0);
782
783 if (use_ldlv) {
784 instr = ir3_LDLV(block, inloc, 0, create_immed(block, 1), 0);
785 instr->cat6.type = TYPE_U32;
786 instr->cat6.iim_val = 1;
787 } else {
788 instr = ir3_BARY_F(block, inloc, 0, ctx->frag_pos, 0);
789 instr->regs[2]->wrmask = 0x3;
790 }
791
792 return instr;
793 }
794
795 static struct ir3_instruction *
796 create_frag_coord(struct ir3_context *ctx, unsigned comp)
797 {
798 struct ir3_block *block = ctx->block;
799 struct ir3_instruction *instr;
800
801 compile_assert(ctx, !ctx->frag_coord[comp]);
802
803 ctx->frag_coord[comp] = create_input(ctx->block, 0);
804
805 switch (comp) {
806 case 0: /* .x */
807 case 1: /* .y */
808 /* for frag_coord, we get unsigned values.. we need
809 * to subtract (integer) 8 and divide by 16 (right-
810 * shift by 4) then convert to float:
811 *
812 * sub.s tmp, src, 8
813 * shr.b tmp, tmp, 4
814 * mov.u32f32 dst, tmp
815 *
816 */
817 instr = ir3_SUB_S(block, ctx->frag_coord[comp], 0,
818 create_immed(block, 8), 0);
819 instr = ir3_SHR_B(block, instr, 0,
820 create_immed(block, 4), 0);
821 instr = ir3_COV(block, instr, TYPE_U32, TYPE_F32);
822
823 return instr;
824 case 2: /* .z */
825 case 3: /* .w */
826 default:
827 /* seems that we can use these as-is: */
828 return ctx->frag_coord[comp];
829 }
830 }
831
832 static struct ir3_instruction *
833 create_driver_param(struct ir3_context *ctx, enum ir3_driver_param dp)
834 {
835 /* first four vec4 sysval's reserved for UBOs: */
836 /* NOTE: dp is in scalar, but there can be >4 dp components: */
837 unsigned n = ctx->so->constbase.driver_param;
838 unsigned r = regid(n + dp / 4, dp % 4);
839 return create_uniform(ctx, r);
840 }
841
842 /* helper for instructions that produce multiple consecutive scalar
843 * outputs which need to have a split/fanout meta instruction inserted
844 */
845 static void
846 split_dest(struct ir3_block *block, struct ir3_instruction **dst,
847 struct ir3_instruction *src, unsigned base, unsigned n)
848 {
849 struct ir3_instruction *prev = NULL;
850
851 if ((n == 1) && (src->regs[0]->wrmask == 0x1)) {
852 dst[0] = src;
853 return;
854 }
855
856 for (int i = 0, j = 0; i < n; i++) {
857 struct ir3_instruction *split = ir3_instr_create(block, OPC_META_FO);
858 ir3_reg_create(split, 0, IR3_REG_SSA);
859 ir3_reg_create(split, 0, IR3_REG_SSA)->instr = src;
860 split->fo.off = i + base;
861
862 if (prev) {
863 split->cp.left = prev;
864 split->cp.left_cnt++;
865 prev->cp.right = split;
866 prev->cp.right_cnt++;
867 }
868 prev = split;
869
870 if (src->regs[0]->wrmask & (1 << (i + base)))
871 dst[j++] = split;
872 }
873 }
874
875 /*
876 * Adreno uses uint rather than having dedicated bool type,
877 * which (potentially) requires some conversion, in particular
878 * when using output of an bool instr to int input, or visa
879 * versa.
880 *
881 * | Adreno | NIR |
882 * -------+---------+-------+-
883 * true | 1 | ~0 |
884 * false | 0 | 0 |
885 *
886 * To convert from an adreno bool (uint) to nir, use:
887 *
888 * absneg.s dst, (neg)src
889 *
890 * To convert back in the other direction:
891 *
892 * absneg.s dst, (abs)arc
893 *
894 * The CP step can clean up the absneg.s that cancel each other
895 * out, and with a slight bit of extra cleverness (to recognize
896 * the instructions which produce either a 0 or 1) can eliminate
897 * the absneg.s's completely when an instruction that wants
898 * 0/1 consumes the result. For example, when a nir 'bcsel'
899 * consumes the result of 'feq'. So we should be able to get by
900 * without a boolean resolve step, and without incuring any
901 * extra penalty in instruction count.
902 */
903
904 /* NIR bool -> native (adreno): */
905 static struct ir3_instruction *
906 ir3_b2n(struct ir3_block *block, struct ir3_instruction *instr)
907 {
908 return ir3_ABSNEG_S(block, instr, IR3_REG_SABS);
909 }
910
911 /* native (adreno) -> NIR bool: */
912 static struct ir3_instruction *
913 ir3_n2b(struct ir3_block *block, struct ir3_instruction *instr)
914 {
915 return ir3_ABSNEG_S(block, instr, IR3_REG_SNEG);
916 }
917
918 /*
919 * alu/sfu instructions:
920 */
921
922 static struct ir3_instruction *
923 create_cov(struct ir3_context *ctx, struct ir3_instruction *src,
924 unsigned src_bitsize, nir_op op)
925 {
926 type_t src_type, dst_type;
927
928 switch (op) {
929 case nir_op_f2f32:
930 case nir_op_f2f16_rtne:
931 case nir_op_f2f16_rtz:
932 case nir_op_f2f16_undef:
933 case nir_op_f2i32:
934 case nir_op_f2i16:
935 case nir_op_f2i8:
936 case nir_op_f2u32:
937 case nir_op_f2u16:
938 case nir_op_f2u8:
939 switch (src_bitsize) {
940 case 32:
941 src_type = TYPE_F32;
942 break;
943 case 16:
944 src_type = TYPE_F16;
945 break;
946 default:
947 compile_error(ctx, "invalid src bit size: %u", src_bitsize);
948 }
949 break;
950
951 case nir_op_i2f32:
952 case nir_op_i2f16:
953 case nir_op_i2i32:
954 case nir_op_i2i16:
955 case nir_op_i2i8:
956 switch (src_bitsize) {
957 case 32:
958 src_type = TYPE_S32;
959 break;
960 case 16:
961 src_type = TYPE_S16;
962 break;
963 case 8:
964 src_type = TYPE_S8;
965 break;
966 default:
967 compile_error(ctx, "invalid src bit size: %u", src_bitsize);
968 }
969 break;
970
971 case nir_op_u2f32:
972 case nir_op_u2f16:
973 case nir_op_u2u32:
974 case nir_op_u2u16:
975 case nir_op_u2u8:
976 switch (src_bitsize) {
977 case 32:
978 src_type = TYPE_U32;
979 break;
980 case 16:
981 src_type = TYPE_U16;
982 break;
983 case 8:
984 src_type = TYPE_U8;
985 break;
986 default:
987 compile_error(ctx, "invalid src bit size: %u", src_bitsize);
988 }
989 break;
990
991 default:
992 compile_error(ctx, "invalid conversion op: %u", op);
993 }
994
995 switch (op) {
996 case nir_op_f2f32:
997 case nir_op_i2f32:
998 case nir_op_u2f32:
999 dst_type = TYPE_F32;
1000 break;
1001
1002 case nir_op_f2f16_rtne:
1003 case nir_op_f2f16_rtz:
1004 case nir_op_f2f16_undef:
1005 /* TODO how to handle rounding mode? */
1006 case nir_op_i2f16:
1007 case nir_op_u2f16:
1008 dst_type = TYPE_F16;
1009 break;
1010
1011 case nir_op_f2i32:
1012 case nir_op_i2i32:
1013 dst_type = TYPE_S32;
1014 break;
1015
1016 case nir_op_f2i16:
1017 case nir_op_i2i16:
1018 dst_type = TYPE_S16;
1019 break;
1020
1021 case nir_op_f2i8:
1022 case nir_op_i2i8:
1023 dst_type = TYPE_S8;
1024 break;
1025
1026 case nir_op_f2u32:
1027 case nir_op_u2u32:
1028 dst_type = TYPE_U32;
1029 break;
1030
1031 case nir_op_f2u16:
1032 case nir_op_u2u16:
1033 dst_type = TYPE_U16;
1034 break;
1035
1036 case nir_op_f2u8:
1037 case nir_op_u2u8:
1038 dst_type = TYPE_U8;
1039 break;
1040
1041 default:
1042 compile_error(ctx, "invalid conversion op: %u", op);
1043 }
1044
1045 return ir3_COV(ctx->block, src, src_type, dst_type);
1046 }
1047
1048 static void
1049 emit_alu(struct ir3_context *ctx, nir_alu_instr *alu)
1050 {
1051 const nir_op_info *info = &nir_op_infos[alu->op];
1052 struct ir3_instruction **dst, *src[info->num_inputs];
1053 unsigned bs[info->num_inputs]; /* bit size */
1054 struct ir3_block *b = ctx->block;
1055 unsigned dst_sz, wrmask;
1056
1057 if (alu->dest.dest.is_ssa) {
1058 dst_sz = alu->dest.dest.ssa.num_components;
1059 wrmask = (1 << dst_sz) - 1;
1060 } else {
1061 dst_sz = alu->dest.dest.reg.reg->num_components;
1062 wrmask = alu->dest.write_mask;
1063 }
1064
1065 dst = get_dst(ctx, &alu->dest.dest, dst_sz);
1066
1067 /* Vectors are special in that they have non-scalarized writemasks,
1068 * and just take the first swizzle channel for each argument in
1069 * order into each writemask channel.
1070 */
1071 if ((alu->op == nir_op_vec2) ||
1072 (alu->op == nir_op_vec3) ||
1073 (alu->op == nir_op_vec4)) {
1074
1075 for (int i = 0; i < info->num_inputs; i++) {
1076 nir_alu_src *asrc = &alu->src[i];
1077
1078 compile_assert(ctx, !asrc->abs);
1079 compile_assert(ctx, !asrc->negate);
1080
1081 src[i] = get_src(ctx, &asrc->src)[asrc->swizzle[0]];
1082 if (!src[i])
1083 src[i] = create_immed(ctx->block, 0);
1084 dst[i] = ir3_MOV(b, src[i], TYPE_U32);
1085 }
1086
1087 put_dst(ctx, &alu->dest.dest);
1088 return;
1089 }
1090
1091 /* We also get mov's with more than one component for mov's so
1092 * handle those specially:
1093 */
1094 if ((alu->op == nir_op_imov) || (alu->op == nir_op_fmov)) {
1095 type_t type = (alu->op == nir_op_imov) ? TYPE_U32 : TYPE_F32;
1096 nir_alu_src *asrc = &alu->src[0];
1097 struct ir3_instruction *const *src0 = get_src(ctx, &asrc->src);
1098
1099 for (unsigned i = 0; i < dst_sz; i++) {
1100 if (wrmask & (1 << i)) {
1101 dst[i] = ir3_MOV(b, src0[asrc->swizzle[i]], type);
1102 } else {
1103 dst[i] = NULL;
1104 }
1105 }
1106
1107 put_dst(ctx, &alu->dest.dest);
1108 return;
1109 }
1110
1111 /* General case: We can just grab the one used channel per src. */
1112 for (int i = 0; i < info->num_inputs; i++) {
1113 unsigned chan = ffs(alu->dest.write_mask) - 1;
1114 nir_alu_src *asrc = &alu->src[i];
1115
1116 compile_assert(ctx, !asrc->abs);
1117 compile_assert(ctx, !asrc->negate);
1118
1119 src[i] = get_src(ctx, &asrc->src)[asrc->swizzle[chan]];
1120 bs[i] = nir_src_bit_size(asrc->src);
1121
1122 compile_assert(ctx, src[i]);
1123 }
1124
1125 switch (alu->op) {
1126 case nir_op_f2f32:
1127 case nir_op_f2f16_rtne:
1128 case nir_op_f2f16_rtz:
1129 case nir_op_f2f16_undef:
1130 case nir_op_f2i32:
1131 case nir_op_f2i16:
1132 case nir_op_f2i8:
1133 case nir_op_f2u32:
1134 case nir_op_f2u16:
1135 case nir_op_f2u8:
1136 case nir_op_i2f32:
1137 case nir_op_i2f16:
1138 case nir_op_i2i32:
1139 case nir_op_i2i16:
1140 case nir_op_i2i8:
1141 case nir_op_u2f32:
1142 case nir_op_u2f16:
1143 case nir_op_u2u32:
1144 case nir_op_u2u16:
1145 case nir_op_u2u8:
1146 dst[0] = create_cov(ctx, src[0], bs[0], alu->op);
1147 break;
1148 case nir_op_f2b:
1149 dst[0] = ir3_CMPS_F(b, src[0], 0, create_immed(b, fui(0.0)), 0);
1150 dst[0]->cat2.condition = IR3_COND_NE;
1151 dst[0] = ir3_n2b(b, dst[0]);
1152 break;
1153 case nir_op_b2f:
1154 dst[0] = ir3_COV(b, ir3_b2n(b, src[0]), TYPE_U32, TYPE_F32);
1155 break;
1156 case nir_op_b2i:
1157 dst[0] = ir3_b2n(b, src[0]);
1158 break;
1159 case nir_op_i2b:
1160 dst[0] = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
1161 dst[0]->cat2.condition = IR3_COND_NE;
1162 dst[0] = ir3_n2b(b, dst[0]);
1163 break;
1164
1165 case nir_op_fneg:
1166 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FNEG);
1167 break;
1168 case nir_op_fabs:
1169 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FABS);
1170 break;
1171 case nir_op_fmax:
1172 dst[0] = ir3_MAX_F(b, src[0], 0, src[1], 0);
1173 break;
1174 case nir_op_fmin:
1175 dst[0] = ir3_MIN_F(b, src[0], 0, src[1], 0);
1176 break;
1177 case nir_op_fsat:
1178 /* if there is just a single use of the src, and it supports
1179 * (sat) bit, we can just fold the (sat) flag back to the
1180 * src instruction and create a mov. This is easier for cp
1181 * to eliminate.
1182 *
1183 * TODO probably opc_cat==4 is ok too
1184 */
1185 if (alu->src[0].src.is_ssa &&
1186 (list_length(&alu->src[0].src.ssa->uses) == 1) &&
1187 ((opc_cat(src[0]->opc) == 2) || (opc_cat(src[0]->opc) == 3))) {
1188 src[0]->flags |= IR3_INSTR_SAT;
1189 dst[0] = ir3_MOV(b, src[0], TYPE_U32);
1190 } else {
1191 /* otherwise generate a max.f that saturates.. blob does
1192 * similar (generating a cat2 mov using max.f)
1193 */
1194 dst[0] = ir3_MAX_F(b, src[0], 0, src[0], 0);
1195 dst[0]->flags |= IR3_INSTR_SAT;
1196 }
1197 break;
1198 case nir_op_fmul:
1199 dst[0] = ir3_MUL_F(b, src[0], 0, src[1], 0);
1200 break;
1201 case nir_op_fadd:
1202 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], 0);
1203 break;
1204 case nir_op_fsub:
1205 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], IR3_REG_FNEG);
1206 break;
1207 case nir_op_ffma:
1208 dst[0] = ir3_MAD_F32(b, src[0], 0, src[1], 0, src[2], 0);
1209 break;
1210 case nir_op_fddx:
1211 dst[0] = ir3_DSX(b, src[0], 0);
1212 dst[0]->cat5.type = TYPE_F32;
1213 break;
1214 case nir_op_fddy:
1215 dst[0] = ir3_DSY(b, src[0], 0);
1216 dst[0]->cat5.type = TYPE_F32;
1217 break;
1218 break;
1219 case nir_op_flt:
1220 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
1221 dst[0]->cat2.condition = IR3_COND_LT;
1222 dst[0] = ir3_n2b(b, dst[0]);
1223 break;
1224 case nir_op_fge:
1225 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
1226 dst[0]->cat2.condition = IR3_COND_GE;
1227 dst[0] = ir3_n2b(b, dst[0]);
1228 break;
1229 case nir_op_feq:
1230 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
1231 dst[0]->cat2.condition = IR3_COND_EQ;
1232 dst[0] = ir3_n2b(b, dst[0]);
1233 break;
1234 case nir_op_fne:
1235 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
1236 dst[0]->cat2.condition = IR3_COND_NE;
1237 dst[0] = ir3_n2b(b, dst[0]);
1238 break;
1239 case nir_op_fceil:
1240 dst[0] = ir3_CEIL_F(b, src[0], 0);
1241 break;
1242 case nir_op_ffloor:
1243 dst[0] = ir3_FLOOR_F(b, src[0], 0);
1244 break;
1245 case nir_op_ftrunc:
1246 dst[0] = ir3_TRUNC_F(b, src[0], 0);
1247 break;
1248 case nir_op_fround_even:
1249 dst[0] = ir3_RNDNE_F(b, src[0], 0);
1250 break;
1251 case nir_op_fsign:
1252 dst[0] = ir3_SIGN_F(b, src[0], 0);
1253 break;
1254
1255 case nir_op_fsin:
1256 dst[0] = ir3_SIN(b, src[0], 0);
1257 break;
1258 case nir_op_fcos:
1259 dst[0] = ir3_COS(b, src[0], 0);
1260 break;
1261 case nir_op_frsq:
1262 dst[0] = ir3_RSQ(b, src[0], 0);
1263 break;
1264 case nir_op_frcp:
1265 dst[0] = ir3_RCP(b, src[0], 0);
1266 break;
1267 case nir_op_flog2:
1268 dst[0] = ir3_LOG2(b, src[0], 0);
1269 break;
1270 case nir_op_fexp2:
1271 dst[0] = ir3_EXP2(b, src[0], 0);
1272 break;
1273 case nir_op_fsqrt:
1274 dst[0] = ir3_SQRT(b, src[0], 0);
1275 break;
1276
1277 case nir_op_iabs:
1278 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SABS);
1279 break;
1280 case nir_op_iadd:
1281 dst[0] = ir3_ADD_U(b, src[0], 0, src[1], 0);
1282 break;
1283 case nir_op_iand:
1284 dst[0] = ir3_AND_B(b, src[0], 0, src[1], 0);
1285 break;
1286 case nir_op_imax:
1287 dst[0] = ir3_MAX_S(b, src[0], 0, src[1], 0);
1288 break;
1289 case nir_op_umax:
1290 dst[0] = ir3_MAX_U(b, src[0], 0, src[1], 0);
1291 break;
1292 case nir_op_imin:
1293 dst[0] = ir3_MIN_S(b, src[0], 0, src[1], 0);
1294 break;
1295 case nir_op_umin:
1296 dst[0] = ir3_MIN_U(b, src[0], 0, src[1], 0);
1297 break;
1298 case nir_op_imul:
1299 /*
1300 * dst = (al * bl) + (ah * bl << 16) + (al * bh << 16)
1301 * mull.u tmp0, a, b ; mul low, i.e. al * bl
1302 * madsh.m16 tmp1, a, b, tmp0 ; mul-add shift high mix, i.e. ah * bl << 16
1303 * madsh.m16 dst, b, a, tmp1 ; i.e. al * bh << 16
1304 */
1305 dst[0] = ir3_MADSH_M16(b, src[1], 0, src[0], 0,
1306 ir3_MADSH_M16(b, src[0], 0, src[1], 0,
1307 ir3_MULL_U(b, src[0], 0, src[1], 0), 0), 0);
1308 break;
1309 case nir_op_ineg:
1310 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
1311 break;
1312 case nir_op_inot:
1313 dst[0] = ir3_NOT_B(b, src[0], 0);
1314 break;
1315 case nir_op_ior:
1316 dst[0] = ir3_OR_B(b, src[0], 0, src[1], 0);
1317 break;
1318 case nir_op_ishl:
1319 dst[0] = ir3_SHL_B(b, src[0], 0, src[1], 0);
1320 break;
1321 case nir_op_ishr:
1322 dst[0] = ir3_ASHR_B(b, src[0], 0, src[1], 0);
1323 break;
1324 case nir_op_isign: {
1325 /* maybe this would be sane to lower in nir.. */
1326 struct ir3_instruction *neg, *pos;
1327
1328 neg = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
1329 neg->cat2.condition = IR3_COND_LT;
1330
1331 pos = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
1332 pos->cat2.condition = IR3_COND_GT;
1333
1334 dst[0] = ir3_SUB_U(b, pos, 0, neg, 0);
1335
1336 break;
1337 }
1338 case nir_op_isub:
1339 dst[0] = ir3_SUB_U(b, src[0], 0, src[1], 0);
1340 break;
1341 case nir_op_ixor:
1342 dst[0] = ir3_XOR_B(b, src[0], 0, src[1], 0);
1343 break;
1344 case nir_op_ushr:
1345 dst[0] = ir3_SHR_B(b, src[0], 0, src[1], 0);
1346 break;
1347 case nir_op_ilt:
1348 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
1349 dst[0]->cat2.condition = IR3_COND_LT;
1350 dst[0] = ir3_n2b(b, dst[0]);
1351 break;
1352 case nir_op_ige:
1353 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
1354 dst[0]->cat2.condition = IR3_COND_GE;
1355 dst[0] = ir3_n2b(b, dst[0]);
1356 break;
1357 case nir_op_ieq:
1358 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
1359 dst[0]->cat2.condition = IR3_COND_EQ;
1360 dst[0] = ir3_n2b(b, dst[0]);
1361 break;
1362 case nir_op_ine:
1363 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
1364 dst[0]->cat2.condition = IR3_COND_NE;
1365 dst[0] = ir3_n2b(b, dst[0]);
1366 break;
1367 case nir_op_ult:
1368 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
1369 dst[0]->cat2.condition = IR3_COND_LT;
1370 dst[0] = ir3_n2b(b, dst[0]);
1371 break;
1372 case nir_op_uge:
1373 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
1374 dst[0]->cat2.condition = IR3_COND_GE;
1375 dst[0] = ir3_n2b(b, dst[0]);
1376 break;
1377
1378 case nir_op_bcsel: {
1379 struct ir3_instruction *cond = ir3_b2n(b, src[0]);
1380 compile_assert(ctx, bs[1] == bs[2]);
1381 /* the boolean condition is 32b even if src[1] and src[2] are
1382 * half-precision, but sel.b16 wants all three src's to be the
1383 * same type.
1384 */
1385 if (bs[1] < 32)
1386 cond = ir3_COV(b, cond, TYPE_U32, TYPE_U16);
1387 dst[0] = ir3_SEL_B32(b, src[1], 0, cond, 0, src[2], 0);
1388 break;
1389 }
1390 case nir_op_bit_count:
1391 dst[0] = ir3_CBITS_B(b, src[0], 0);
1392 break;
1393 case nir_op_ifind_msb: {
1394 struct ir3_instruction *cmp;
1395 dst[0] = ir3_CLZ_S(b, src[0], 0);
1396 cmp = ir3_CMPS_S(b, dst[0], 0, create_immed(b, 0), 0);
1397 cmp->cat2.condition = IR3_COND_GE;
1398 dst[0] = ir3_SEL_B32(b,
1399 ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
1400 cmp, 0, dst[0], 0);
1401 break;
1402 }
1403 case nir_op_ufind_msb:
1404 dst[0] = ir3_CLZ_B(b, src[0], 0);
1405 dst[0] = ir3_SEL_B32(b,
1406 ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
1407 src[0], 0, dst[0], 0);
1408 break;
1409 case nir_op_find_lsb:
1410 dst[0] = ir3_BFREV_B(b, src[0], 0);
1411 dst[0] = ir3_CLZ_B(b, dst[0], 0);
1412 break;
1413 case nir_op_bitfield_reverse:
1414 dst[0] = ir3_BFREV_B(b, src[0], 0);
1415 break;
1416
1417 default:
1418 compile_error(ctx, "Unhandled ALU op: %s\n",
1419 nir_op_infos[alu->op].name);
1420 break;
1421 }
1422
1423 put_dst(ctx, &alu->dest.dest);
1424 }
1425
1426 /* handles direct/indirect UBO reads: */
1427 static void
1428 emit_intrinsic_load_ubo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1429 struct ir3_instruction **dst)
1430 {
1431 struct ir3_block *b = ctx->block;
1432 struct ir3_instruction *base_lo, *base_hi, *addr, *src0, *src1;
1433 nir_const_value *const_offset;
1434 /* UBO addresses are the first driver params: */
1435 unsigned ubo = regid(ctx->so->constbase.ubo, 0);
1436 const unsigned ptrsz = pointer_size(ctx);
1437
1438 int off = 0;
1439
1440 /* First src is ubo index, which could either be an immed or not: */
1441 src0 = get_src(ctx, &intr->src[0])[0];
1442 if (is_same_type_mov(src0) &&
1443 (src0->regs[1]->flags & IR3_REG_IMMED)) {
1444 base_lo = create_uniform(ctx, ubo + (src0->regs[1]->iim_val * ptrsz));
1445 base_hi = create_uniform(ctx, ubo + (src0->regs[1]->iim_val * ptrsz) + 1);
1446 } else {
1447 base_lo = create_uniform_indirect(ctx, ubo, get_addr(ctx, src0, 4));
1448 base_hi = create_uniform_indirect(ctx, ubo + 1, get_addr(ctx, src0, 4));
1449 }
1450
1451 /* note: on 32bit gpu's base_hi is ignored and DCE'd */
1452 addr = base_lo;
1453
1454 const_offset = nir_src_as_const_value(intr->src[1]);
1455 if (const_offset) {
1456 off += const_offset->u32[0];
1457 } else {
1458 /* For load_ubo_indirect, second src is indirect offset: */
1459 src1 = get_src(ctx, &intr->src[1])[0];
1460
1461 /* and add offset to addr: */
1462 addr = ir3_ADD_S(b, addr, 0, src1, 0);
1463 }
1464
1465 /* if offset is to large to encode in the ldg, split it out: */
1466 if ((off + (intr->num_components * 4)) > 1024) {
1467 /* split out the minimal amount to improve the odds that
1468 * cp can fit the immediate in the add.s instruction:
1469 */
1470 unsigned off2 = off + (intr->num_components * 4) - 1024;
1471 addr = ir3_ADD_S(b, addr, 0, create_immed(b, off2), 0);
1472 off -= off2;
1473 }
1474
1475 if (ptrsz == 2) {
1476 struct ir3_instruction *carry;
1477
1478 /* handle 32b rollover, ie:
1479 * if (addr < base_lo)
1480 * base_hi++
1481 */
1482 carry = ir3_CMPS_U(b, addr, 0, base_lo, 0);
1483 carry->cat2.condition = IR3_COND_LT;
1484 base_hi = ir3_ADD_S(b, base_hi, 0, carry, 0);
1485
1486 addr = create_collect(ctx, (struct ir3_instruction*[]){ addr, base_hi }, 2);
1487 }
1488
1489 for (int i = 0; i < intr->num_components; i++) {
1490 struct ir3_instruction *load =
1491 ir3_LDG(b, addr, 0, create_immed(b, 1), 0);
1492 load->cat6.type = TYPE_U32;
1493 load->cat6.src_offset = off + i * 4; /* byte offset */
1494 dst[i] = load;
1495 }
1496 }
1497
1498 /* src[] = { buffer_index, offset }. No const_index */
1499 static void
1500 emit_intrinsic_load_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1501 struct ir3_instruction **dst)
1502 {
1503 struct ir3_block *b = ctx->block;
1504 struct ir3_instruction *ldgb, *src0, *src1, *offset;
1505 nir_const_value *const_offset;
1506
1507 /* can this be non-const buffer_index? how do we handle that? */
1508 const_offset = nir_src_as_const_value(intr->src[0]);
1509 compile_assert(ctx, const_offset);
1510
1511 offset = get_src(ctx, &intr->src[1])[0];
1512
1513 /* src0 is uvec2(offset*4, 0), src1 is offset.. nir already *= 4: */
1514 src0 = create_collect(ctx, (struct ir3_instruction*[]){
1515 offset,
1516 create_immed(b, 0),
1517 }, 2);
1518 src1 = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
1519
1520 ldgb = ir3_LDGB(b, create_immed(b, const_offset->u32[0]), 0,
1521 src0, 0, src1, 0);
1522 ldgb->regs[0]->wrmask = MASK(intr->num_components);
1523 ldgb->cat6.iim_val = intr->num_components;
1524 ldgb->cat6.d = 4;
1525 ldgb->cat6.type = TYPE_U32;
1526 ldgb->barrier_class = IR3_BARRIER_BUFFER_R;
1527 ldgb->barrier_conflict = IR3_BARRIER_BUFFER_W;
1528
1529 split_dest(b, dst, ldgb, 0, intr->num_components);
1530 }
1531
1532 /* src[] = { value, block_index, offset }. const_index[] = { write_mask } */
1533 static void
1534 emit_intrinsic_store_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1535 {
1536 struct ir3_block *b = ctx->block;
1537 struct ir3_instruction *stgb, *src0, *src1, *src2, *offset;
1538 nir_const_value *const_offset;
1539 /* TODO handle wrmask properly, see _store_shared().. but I think
1540 * it is more a PITA than that, since blob ends up loading the
1541 * masked components and writing them back out.
1542 */
1543 unsigned wrmask = intr->const_index[0];
1544 unsigned ncomp = ffs(~wrmask) - 1;
1545
1546 /* can this be non-const buffer_index? how do we handle that? */
1547 const_offset = nir_src_as_const_value(intr->src[1]);
1548 compile_assert(ctx, const_offset);
1549
1550 offset = get_src(ctx, &intr->src[2])[0];
1551
1552 /* src0 is value, src1 is offset, src2 is uvec2(offset*4, 0)..
1553 * nir already *= 4:
1554 */
1555 src0 = create_collect(ctx, get_src(ctx, &intr->src[0]), ncomp);
1556 src1 = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
1557 src2 = create_collect(ctx, (struct ir3_instruction*[]){
1558 offset,
1559 create_immed(b, 0),
1560 }, 2);
1561
1562 stgb = ir3_STGB(b, create_immed(b, const_offset->u32[0]), 0,
1563 src0, 0, src1, 0, src2, 0);
1564 stgb->cat6.iim_val = ncomp;
1565 stgb->cat6.d = 4;
1566 stgb->cat6.type = TYPE_U32;
1567 stgb->barrier_class = IR3_BARRIER_BUFFER_W;
1568 stgb->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1569
1570 array_insert(b, b->keeps, stgb);
1571 }
1572
1573 /* src[] = { block_index } */
1574 static void
1575 emit_intrinsic_ssbo_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1576 struct ir3_instruction **dst)
1577 {
1578 /* SSBO size stored as a const starting at ssbo_sizes: */
1579 unsigned blk_idx = nir_src_as_const_value(intr->src[0])->u32[0];
1580 unsigned idx = regid(ctx->so->constbase.ssbo_sizes, 0) +
1581 ctx->so->const_layout.ssbo_size.off[blk_idx];
1582
1583 debug_assert(ctx->so->const_layout.ssbo_size.mask & (1 << blk_idx));
1584
1585 dst[0] = create_uniform(ctx, idx);
1586 }
1587
1588 /*
1589 * SSBO atomic intrinsics
1590 *
1591 * All of the SSBO atomic memory operations read a value from memory,
1592 * compute a new value using one of the operations below, write the new
1593 * value to memory, and return the original value read.
1594 *
1595 * All operations take 3 sources except CompSwap that takes 4. These
1596 * sources represent:
1597 *
1598 * 0: The SSBO buffer index.
1599 * 1: The offset into the SSBO buffer of the variable that the atomic
1600 * operation will operate on.
1601 * 2: The data parameter to the atomic function (i.e. the value to add
1602 * in ssbo_atomic_add, etc).
1603 * 3: For CompSwap only: the second data parameter.
1604 */
1605 static struct ir3_instruction *
1606 emit_intrinsic_atomic_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1607 {
1608 struct ir3_block *b = ctx->block;
1609 struct ir3_instruction *atomic, *ssbo, *src0, *src1, *src2, *offset;
1610 nir_const_value *const_offset;
1611 type_t type = TYPE_U32;
1612
1613 /* can this be non-const buffer_index? how do we handle that? */
1614 const_offset = nir_src_as_const_value(intr->src[0]);
1615 compile_assert(ctx, const_offset);
1616 ssbo = create_immed(b, const_offset->u32[0]);
1617
1618 offset = get_src(ctx, &intr->src[1])[0];
1619
1620 /* src0 is data (or uvec2(data, compare))
1621 * src1 is offset
1622 * src2 is uvec2(offset*4, 0) (appears to be 64b byte offset)
1623 *
1624 * Note that nir already multiplies the offset by four
1625 */
1626 src0 = get_src(ctx, &intr->src[2])[0];
1627 src1 = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
1628 src2 = create_collect(ctx, (struct ir3_instruction*[]){
1629 offset,
1630 create_immed(b, 0),
1631 }, 2);
1632
1633 switch (intr->intrinsic) {
1634 case nir_intrinsic_ssbo_atomic_add:
1635 atomic = ir3_ATOMIC_ADD_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1636 break;
1637 case nir_intrinsic_ssbo_atomic_imin:
1638 atomic = ir3_ATOMIC_MIN_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1639 type = TYPE_S32;
1640 break;
1641 case nir_intrinsic_ssbo_atomic_umin:
1642 atomic = ir3_ATOMIC_MIN_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1643 break;
1644 case nir_intrinsic_ssbo_atomic_imax:
1645 atomic = ir3_ATOMIC_MAX_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1646 type = TYPE_S32;
1647 break;
1648 case nir_intrinsic_ssbo_atomic_umax:
1649 atomic = ir3_ATOMIC_MAX_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1650 break;
1651 case nir_intrinsic_ssbo_atomic_and:
1652 atomic = ir3_ATOMIC_AND_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1653 break;
1654 case nir_intrinsic_ssbo_atomic_or:
1655 atomic = ir3_ATOMIC_OR_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1656 break;
1657 case nir_intrinsic_ssbo_atomic_xor:
1658 atomic = ir3_ATOMIC_XOR_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1659 break;
1660 case nir_intrinsic_ssbo_atomic_exchange:
1661 atomic = ir3_ATOMIC_XCHG_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1662 break;
1663 case nir_intrinsic_ssbo_atomic_comp_swap:
1664 /* for cmpxchg, src0 is [ui]vec2(data, compare): */
1665 src0 = create_collect(ctx, (struct ir3_instruction*[]){
1666 src0,
1667 get_src(ctx, &intr->src[3])[0],
1668 }, 2);
1669 atomic = ir3_ATOMIC_CMPXCHG_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1670 break;
1671 default:
1672 unreachable("boo");
1673 }
1674
1675 atomic->cat6.iim_val = 1;
1676 atomic->cat6.d = 4;
1677 atomic->cat6.type = type;
1678 atomic->barrier_class = IR3_BARRIER_BUFFER_W;
1679 atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1680
1681 /* even if nothing consume the result, we can't DCE the instruction: */
1682 array_insert(b, b->keeps, atomic);
1683
1684 return atomic;
1685 }
1686
1687 /* src[] = { offset }. const_index[] = { base } */
1688 static void
1689 emit_intrinsic_load_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1690 struct ir3_instruction **dst)
1691 {
1692 struct ir3_block *b = ctx->block;
1693 struct ir3_instruction *ldl, *offset;
1694 unsigned base;
1695
1696 offset = get_src(ctx, &intr->src[0])[0];
1697 base = nir_intrinsic_base(intr);
1698
1699 ldl = ir3_LDL(b, offset, 0, create_immed(b, intr->num_components), 0);
1700 ldl->cat6.src_offset = base;
1701 ldl->cat6.type = utype_dst(intr->dest);
1702 ldl->regs[0]->wrmask = MASK(intr->num_components);
1703
1704 ldl->barrier_class = IR3_BARRIER_SHARED_R;
1705 ldl->barrier_conflict = IR3_BARRIER_SHARED_W;
1706
1707 split_dest(b, dst, ldl, 0, intr->num_components);
1708 }
1709
1710 /* src[] = { value, offset }. const_index[] = { base, write_mask } */
1711 static void
1712 emit_intrinsic_store_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1713 {
1714 struct ir3_block *b = ctx->block;
1715 struct ir3_instruction *stl, *offset;
1716 struct ir3_instruction * const *value;
1717 unsigned base, wrmask;
1718
1719 value = get_src(ctx, &intr->src[0]);
1720 offset = get_src(ctx, &intr->src[1])[0];
1721
1722 base = nir_intrinsic_base(intr);
1723 wrmask = nir_intrinsic_write_mask(intr);
1724
1725 /* Combine groups of consecutive enabled channels in one write
1726 * message. We use ffs to find the first enabled channel and then ffs on
1727 * the bit-inverse, down-shifted writemask to determine the length of
1728 * the block of enabled bits.
1729 *
1730 * (trick stolen from i965's fs_visitor::nir_emit_cs_intrinsic())
1731 */
1732 while (wrmask) {
1733 unsigned first_component = ffs(wrmask) - 1;
1734 unsigned length = ffs(~(wrmask >> first_component)) - 1;
1735
1736 stl = ir3_STL(b, offset, 0,
1737 create_collect(ctx, &value[first_component], length), 0,
1738 create_immed(b, length), 0);
1739 stl->cat6.dst_offset = first_component + base;
1740 stl->cat6.type = utype_src(intr->src[0]);
1741 stl->barrier_class = IR3_BARRIER_SHARED_W;
1742 stl->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1743
1744 array_insert(b, b->keeps, stl);
1745
1746 /* Clear the bits in the writemask that we just wrote, then try
1747 * again to see if more channels are left.
1748 */
1749 wrmask &= (15 << (first_component + length));
1750 }
1751 }
1752
1753 /*
1754 * CS shared variable atomic intrinsics
1755 *
1756 * All of the shared variable atomic memory operations read a value from
1757 * memory, compute a new value using one of the operations below, write the
1758 * new value to memory, and return the original value read.
1759 *
1760 * All operations take 2 sources except CompSwap that takes 3. These
1761 * sources represent:
1762 *
1763 * 0: The offset into the shared variable storage region that the atomic
1764 * operation will operate on.
1765 * 1: The data parameter to the atomic function (i.e. the value to add
1766 * in shared_atomic_add, etc).
1767 * 2: For CompSwap only: the second data parameter.
1768 */
1769 static struct ir3_instruction *
1770 emit_intrinsic_atomic_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1771 {
1772 struct ir3_block *b = ctx->block;
1773 struct ir3_instruction *atomic, *src0, *src1;
1774 type_t type = TYPE_U32;
1775
1776 src0 = get_src(ctx, &intr->src[0])[0]; /* offset */
1777 src1 = get_src(ctx, &intr->src[1])[0]; /* value */
1778
1779 switch (intr->intrinsic) {
1780 case nir_intrinsic_shared_atomic_add:
1781 atomic = ir3_ATOMIC_ADD(b, src0, 0, src1, 0);
1782 break;
1783 case nir_intrinsic_shared_atomic_imin:
1784 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
1785 type = TYPE_S32;
1786 break;
1787 case nir_intrinsic_shared_atomic_umin:
1788 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
1789 break;
1790 case nir_intrinsic_shared_atomic_imax:
1791 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1792 type = TYPE_S32;
1793 break;
1794 case nir_intrinsic_shared_atomic_umax:
1795 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1796 break;
1797 case nir_intrinsic_shared_atomic_and:
1798 atomic = ir3_ATOMIC_AND(b, src0, 0, src1, 0);
1799 break;
1800 case nir_intrinsic_shared_atomic_or:
1801 atomic = ir3_ATOMIC_OR(b, src0, 0, src1, 0);
1802 break;
1803 case nir_intrinsic_shared_atomic_xor:
1804 atomic = ir3_ATOMIC_XOR(b, src0, 0, src1, 0);
1805 break;
1806 case nir_intrinsic_shared_atomic_exchange:
1807 atomic = ir3_ATOMIC_XCHG(b, src0, 0, src1, 0);
1808 break;
1809 case nir_intrinsic_shared_atomic_comp_swap:
1810 /* for cmpxchg, src1 is [ui]vec2(data, compare): */
1811 src1 = create_collect(ctx, (struct ir3_instruction*[]){
1812 get_src(ctx, &intr->src[2])[0],
1813 src1,
1814 }, 2);
1815 atomic = ir3_ATOMIC_CMPXCHG(b, src0, 0, src1, 0);
1816 break;
1817 default:
1818 unreachable("boo");
1819 }
1820
1821 atomic->cat6.iim_val = 1;
1822 atomic->cat6.d = 1;
1823 atomic->cat6.type = type;
1824 atomic->barrier_class = IR3_BARRIER_SHARED_W;
1825 atomic->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1826
1827 /* even if nothing consume the result, we can't DCE the instruction: */
1828 array_insert(b, b->keeps, atomic);
1829
1830 return atomic;
1831 }
1832
1833 /* Images get mapped into SSBO/image state (for store/atomic) and texture
1834 * state block (for load). To simplify things, invert the image id and
1835 * map it from end of state block, ie. image 0 becomes num-1, image 1
1836 * becomes num-2, etc. This potentially avoids needing to re-emit texture
1837 * state when switching shaders.
1838 *
1839 * TODO is max # of samplers and SSBOs the same. This shouldn't be hard-
1840 * coded. Also, since all the gl shader stages (ie. everything but CS)
1841 * share the same SSBO/image state block, this might require some more
1842 * logic if we supported images in anything other than FS..
1843 */
1844 static unsigned
1845 get_image_slot(struct ir3_context *ctx, const nir_variable *var)
1846 {
1847 /* TODO figure out real limit per generation, and don't hardcode: */
1848 const unsigned max_samplers = 16;
1849 return max_samplers - var->data.driver_location - 1;
1850 }
1851
1852 static unsigned
1853 get_image_coords(const nir_variable *var)
1854 {
1855 switch (glsl_get_sampler_dim(glsl_without_array(var->type))) {
1856 case GLSL_SAMPLER_DIM_1D:
1857 case GLSL_SAMPLER_DIM_BUF:
1858 return 1;
1859 break;
1860 case GLSL_SAMPLER_DIM_2D:
1861 case GLSL_SAMPLER_DIM_RECT:
1862 case GLSL_SAMPLER_DIM_EXTERNAL:
1863 case GLSL_SAMPLER_DIM_MS:
1864 return 2;
1865 case GLSL_SAMPLER_DIM_3D:
1866 case GLSL_SAMPLER_DIM_CUBE:
1867 return 3;
1868 default:
1869 unreachable("bad sampler dim");
1870 return 0;
1871 }
1872 }
1873
1874 static type_t
1875 get_image_type(const nir_variable *var)
1876 {
1877 switch (glsl_get_sampler_result_type(glsl_without_array(var->type))) {
1878 case GLSL_TYPE_UINT:
1879 return TYPE_U32;
1880 case GLSL_TYPE_INT:
1881 return TYPE_S32;
1882 case GLSL_TYPE_FLOAT:
1883 return TYPE_F32;
1884 default:
1885 unreachable("bad sampler type.");
1886 return 0;
1887 }
1888 }
1889
1890 static struct ir3_instruction *
1891 get_image_offset(struct ir3_context *ctx, const nir_variable *var,
1892 struct ir3_instruction * const *coords, bool byteoff)
1893 {
1894 struct ir3_block *b = ctx->block;
1895 struct ir3_instruction *offset;
1896 unsigned ncoords = get_image_coords(var);
1897
1898 /* to calculate the byte offset (yes, uggg) we need (up to) three
1899 * const values to know the bytes per pixel, and y and z stride:
1900 */
1901 unsigned cb = regid(ctx->so->constbase.image_dims, 0) +
1902 ctx->so->const_layout.image_dims.off[var->data.driver_location];
1903
1904 debug_assert(ctx->so->const_layout.image_dims.mask &
1905 (1 << var->data.driver_location));
1906
1907 /* offset = coords.x * bytes_per_pixel: */
1908 offset = ir3_MUL_S(b, coords[0], 0, create_uniform(ctx, cb + 0), 0);
1909 if (ncoords > 1) {
1910 /* offset += coords.y * y_pitch: */
1911 offset = ir3_MAD_S24(b, create_uniform(ctx, cb + 1), 0,
1912 coords[1], 0, offset, 0);
1913 }
1914 if (ncoords > 2) {
1915 /* offset += coords.z * z_pitch: */
1916 offset = ir3_MAD_S24(b, create_uniform(ctx, cb + 2), 0,
1917 coords[2], 0, offset, 0);
1918 }
1919
1920 if (!byteoff) {
1921 /* Some cases, like atomics, seem to use dword offset instead
1922 * of byte offsets.. blob just puts an extra shr.b in there
1923 * in those cases:
1924 */
1925 offset = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
1926 }
1927
1928 return create_collect(ctx, (struct ir3_instruction*[]){
1929 offset,
1930 create_immed(b, 0),
1931 }, 2);
1932 }
1933
1934 /* src[] = { coord, sample_index }. const_index[] = {} */
1935 static void
1936 emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1937 struct ir3_instruction **dst)
1938 {
1939 struct ir3_block *b = ctx->block;
1940 const nir_variable *var = intr->variables[0]->var;
1941 struct ir3_instruction *sam;
1942 struct ir3_instruction * const *coords = get_src(ctx, &intr->src[0]);
1943 unsigned ncoords = get_image_coords(var);
1944 unsigned tex_idx = get_image_slot(ctx, var);
1945 type_t type = get_image_type(var);
1946 unsigned flags = 0;
1947
1948 if (ncoords == 3)
1949 flags |= IR3_INSTR_3D;
1950
1951 sam = ir3_SAM(b, OPC_ISAM, type, TGSI_WRITEMASK_XYZW, flags,
1952 tex_idx, tex_idx, create_collect(ctx, coords, ncoords), NULL);
1953
1954 sam->barrier_class = IR3_BARRIER_IMAGE_R;
1955 sam->barrier_conflict = IR3_BARRIER_IMAGE_W;
1956
1957 split_dest(b, dst, sam, 0, 4);
1958 }
1959
1960 /* src[] = { coord, sample_index, value }. const_index[] = {} */
1961 static void
1962 emit_intrinsic_store_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1963 {
1964 struct ir3_block *b = ctx->block;
1965 const nir_variable *var = intr->variables[0]->var;
1966 struct ir3_instruction *stib, *offset;
1967 struct ir3_instruction * const *value = get_src(ctx, &intr->src[2]);
1968 struct ir3_instruction * const *coords = get_src(ctx, &intr->src[0]);
1969 unsigned ncoords = get_image_coords(var);
1970 unsigned tex_idx = get_image_slot(ctx, var);
1971
1972 /* src0 is value
1973 * src1 is coords
1974 * src2 is 64b byte offset
1975 */
1976
1977 offset = get_image_offset(ctx, var, coords, true);
1978
1979 /* NOTE: stib seems to take byte offset, but stgb.typed can be used
1980 * too and takes a dword offset.. not quite sure yet why blob uses
1981 * one over the other in various cases.
1982 */
1983
1984 stib = ir3_STIB(b, create_immed(b, tex_idx), 0,
1985 create_collect(ctx, value, 4), 0,
1986 create_collect(ctx, coords, ncoords), 0,
1987 offset, 0);
1988 stib->cat6.iim_val = 4;
1989 stib->cat6.d = ncoords;
1990 stib->cat6.type = get_image_type(var);
1991 stib->cat6.typed = true;
1992 stib->barrier_class = IR3_BARRIER_IMAGE_W;
1993 stib->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
1994
1995 array_insert(b, b->keeps, stib);
1996 }
1997
1998 static void
1999 emit_intrinsic_image_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
2000 struct ir3_instruction **dst)
2001 {
2002 struct ir3_block *b = ctx->block;
2003 const nir_variable *var = intr->variables[0]->var;
2004 unsigned ncoords = get_image_coords(var);
2005 unsigned tex_idx = get_image_slot(ctx, var);
2006 struct ir3_instruction *sam, *lod;
2007 unsigned flags = 0;
2008
2009 if (ncoords == 3)
2010 flags = IR3_INSTR_3D;
2011
2012 lod = create_immed(b, 0);
2013 sam = ir3_SAM(b, OPC_GETSIZE, TYPE_U32, TGSI_WRITEMASK_XYZW, flags,
2014 tex_idx, tex_idx, lod, NULL);
2015
2016 split_dest(b, dst, sam, 0, ncoords);
2017 }
2018
2019 /* src[] = { coord, sample_index, value, compare }. const_index[] = {} */
2020 static struct ir3_instruction *
2021 emit_intrinsic_atomic_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
2022 {
2023 struct ir3_block *b = ctx->block;
2024 const nir_variable *var = intr->variables[0]->var;
2025 struct ir3_instruction *atomic, *image, *src0, *src1, *src2;
2026 struct ir3_instruction * const *coords = get_src(ctx, &intr->src[0]);
2027 unsigned ncoords = get_image_coords(var);
2028
2029 image = create_immed(b, get_image_slot(ctx, var));
2030
2031 /* src0 is value (or uvec2(value, compare))
2032 * src1 is coords
2033 * src2 is 64b byte offset
2034 */
2035 src0 = get_src(ctx, &intr->src[2])[0];
2036 src1 = create_collect(ctx, coords, ncoords);
2037 src2 = get_image_offset(ctx, var, coords, false);
2038
2039 switch (intr->intrinsic) {
2040 case nir_intrinsic_image_var_atomic_add:
2041 atomic = ir3_ATOMIC_ADD_G(b, image, 0, src0, 0, src1, 0, src2, 0);
2042 break;
2043 case nir_intrinsic_image_var_atomic_min:
2044 atomic = ir3_ATOMIC_MIN_G(b, image, 0, src0, 0, src1, 0, src2, 0);
2045 break;
2046 case nir_intrinsic_image_var_atomic_max:
2047 atomic = ir3_ATOMIC_MAX_G(b, image, 0, src0, 0, src1, 0, src2, 0);
2048 break;
2049 case nir_intrinsic_image_var_atomic_and:
2050 atomic = ir3_ATOMIC_AND_G(b, image, 0, src0, 0, src1, 0, src2, 0);
2051 break;
2052 case nir_intrinsic_image_var_atomic_or:
2053 atomic = ir3_ATOMIC_OR_G(b, image, 0, src0, 0, src1, 0, src2, 0);
2054 break;
2055 case nir_intrinsic_image_var_atomic_xor:
2056 atomic = ir3_ATOMIC_XOR_G(b, image, 0, src0, 0, src1, 0, src2, 0);
2057 break;
2058 case nir_intrinsic_image_var_atomic_exchange:
2059 atomic = ir3_ATOMIC_XCHG_G(b, image, 0, src0, 0, src1, 0, src2, 0);
2060 break;
2061 case nir_intrinsic_image_var_atomic_comp_swap:
2062 /* for cmpxchg, src0 is [ui]vec2(data, compare): */
2063 src0 = create_collect(ctx, (struct ir3_instruction*[]){
2064 src0,
2065 get_src(ctx, &intr->src[3])[0],
2066 }, 2);
2067 atomic = ir3_ATOMIC_CMPXCHG_G(b, image, 0, src0, 0, src1, 0, src2, 0);
2068 break;
2069 default:
2070 unreachable("boo");
2071 }
2072
2073 atomic->cat6.iim_val = 1;
2074 atomic->cat6.d = ncoords;
2075 atomic->cat6.type = get_image_type(var);
2076 atomic->cat6.typed = true;
2077 atomic->barrier_class = IR3_BARRIER_IMAGE_W;
2078 atomic->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
2079
2080 /* even if nothing consume the result, we can't DCE the instruction: */
2081 array_insert(b, b->keeps, atomic);
2082
2083 return atomic;
2084 }
2085
2086 static void
2087 emit_intrinsic_barrier(struct ir3_context *ctx, nir_intrinsic_instr *intr)
2088 {
2089 struct ir3_block *b = ctx->block;
2090 struct ir3_instruction *barrier;
2091
2092 switch (intr->intrinsic) {
2093 case nir_intrinsic_barrier:
2094 barrier = ir3_BAR(b);
2095 barrier->cat7.g = true;
2096 barrier->cat7.l = true;
2097 barrier->flags = IR3_INSTR_SS | IR3_INSTR_SY;
2098 barrier->barrier_class = IR3_BARRIER_EVERYTHING;
2099 break;
2100 case nir_intrinsic_memory_barrier:
2101 barrier = ir3_FENCE(b);
2102 barrier->cat7.g = true;
2103 barrier->cat7.r = true;
2104 barrier->cat7.w = true;
2105 barrier->barrier_class = IR3_BARRIER_IMAGE_W |
2106 IR3_BARRIER_BUFFER_W;
2107 barrier->barrier_conflict =
2108 IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
2109 IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
2110 break;
2111 case nir_intrinsic_memory_barrier_atomic_counter:
2112 case nir_intrinsic_memory_barrier_buffer:
2113 barrier = ir3_FENCE(b);
2114 barrier->cat7.g = true;
2115 barrier->cat7.r = true;
2116 barrier->cat7.w = true;
2117 barrier->barrier_class = IR3_BARRIER_BUFFER_W;
2118 barrier->barrier_conflict = IR3_BARRIER_BUFFER_R |
2119 IR3_BARRIER_BUFFER_W;
2120 break;
2121 case nir_intrinsic_memory_barrier_image:
2122 // TODO double check if this should have .g set
2123 barrier = ir3_FENCE(b);
2124 barrier->cat7.g = true;
2125 barrier->cat7.r = true;
2126 barrier->cat7.w = true;
2127 barrier->barrier_class = IR3_BARRIER_IMAGE_W;
2128 barrier->barrier_conflict = IR3_BARRIER_IMAGE_R |
2129 IR3_BARRIER_IMAGE_W;
2130 break;
2131 case nir_intrinsic_memory_barrier_shared:
2132 barrier = ir3_FENCE(b);
2133 barrier->cat7.g = true;
2134 barrier->cat7.l = true;
2135 barrier->cat7.r = true;
2136 barrier->cat7.w = true;
2137 barrier->barrier_class = IR3_BARRIER_SHARED_W;
2138 barrier->barrier_conflict = IR3_BARRIER_SHARED_R |
2139 IR3_BARRIER_SHARED_W;
2140 break;
2141 case nir_intrinsic_group_memory_barrier:
2142 barrier = ir3_FENCE(b);
2143 barrier->cat7.g = true;
2144 barrier->cat7.l = true;
2145 barrier->cat7.r = true;
2146 barrier->cat7.w = true;
2147 barrier->barrier_class = IR3_BARRIER_SHARED_W |
2148 IR3_BARRIER_IMAGE_W |
2149 IR3_BARRIER_BUFFER_W;
2150 barrier->barrier_conflict =
2151 IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W |
2152 IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
2153 IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
2154 break;
2155 default:
2156 unreachable("boo");
2157 }
2158
2159 /* make sure barrier doesn't get DCE'd */
2160 array_insert(b, b->keeps, barrier);
2161 }
2162
2163 static void add_sysval_input_compmask(struct ir3_context *ctx,
2164 gl_system_value slot, unsigned compmask,
2165 struct ir3_instruction *instr)
2166 {
2167 struct ir3_shader_variant *so = ctx->so;
2168 unsigned r = regid(so->inputs_count, 0);
2169 unsigned n = so->inputs_count++;
2170
2171 so->inputs[n].sysval = true;
2172 so->inputs[n].slot = slot;
2173 so->inputs[n].compmask = compmask;
2174 so->inputs[n].regid = r;
2175 so->inputs[n].interpolate = INTERP_MODE_FLAT;
2176 so->total_in++;
2177
2178 ctx->ir->ninputs = MAX2(ctx->ir->ninputs, r + 1);
2179 ctx->ir->inputs[r] = instr;
2180 }
2181
2182 static void add_sysval_input(struct ir3_context *ctx, gl_system_value slot,
2183 struct ir3_instruction *instr)
2184 {
2185 add_sysval_input_compmask(ctx, slot, 0x1, instr);
2186 }
2187
2188 static void
2189 emit_intrinsic(struct ir3_context *ctx, nir_intrinsic_instr *intr)
2190 {
2191 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
2192 struct ir3_instruction **dst;
2193 struct ir3_instruction * const *src;
2194 struct ir3_block *b = ctx->block;
2195 nir_const_value *const_offset;
2196 int idx, comp;
2197
2198 if (info->has_dest) {
2199 unsigned n = nir_intrinsic_dest_components(intr);
2200 dst = get_dst(ctx, &intr->dest, n);
2201 } else {
2202 dst = NULL;
2203 }
2204
2205 switch (intr->intrinsic) {
2206 case nir_intrinsic_load_uniform:
2207 idx = nir_intrinsic_base(intr);
2208 const_offset = nir_src_as_const_value(intr->src[0]);
2209 if (const_offset) {
2210 idx += const_offset->u32[0];
2211 for (int i = 0; i < intr->num_components; i++) {
2212 unsigned n = idx * 4 + i;
2213 dst[i] = create_uniform(ctx, n);
2214 }
2215 } else {
2216 src = get_src(ctx, &intr->src[0]);
2217 for (int i = 0; i < intr->num_components; i++) {
2218 int n = idx * 4 + i;
2219 dst[i] = create_uniform_indirect(ctx, n,
2220 get_addr(ctx, src[0], 4));
2221 }
2222 /* NOTE: if relative addressing is used, we set
2223 * constlen in the compiler (to worst-case value)
2224 * since we don't know in the assembler what the max
2225 * addr reg value can be:
2226 */
2227 ctx->so->constlen = ctx->s->num_uniforms;
2228 }
2229 break;
2230 case nir_intrinsic_load_ubo:
2231 emit_intrinsic_load_ubo(ctx, intr, dst);
2232 break;
2233 case nir_intrinsic_load_input:
2234 idx = nir_intrinsic_base(intr);
2235 comp = nir_intrinsic_component(intr);
2236 const_offset = nir_src_as_const_value(intr->src[0]);
2237 if (const_offset) {
2238 idx += const_offset->u32[0];
2239 for (int i = 0; i < intr->num_components; i++) {
2240 unsigned n = idx * 4 + i + comp;
2241 dst[i] = ctx->ir->inputs[n];
2242 }
2243 } else {
2244 src = get_src(ctx, &intr->src[0]);
2245 struct ir3_instruction *collect =
2246 create_collect(ctx, ctx->ir->inputs, ctx->ir->ninputs);
2247 struct ir3_instruction *addr = get_addr(ctx, src[0], 4);
2248 for (int i = 0; i < intr->num_components; i++) {
2249 unsigned n = idx * 4 + i + comp;
2250 dst[i] = create_indirect_load(ctx, ctx->ir->ninputs,
2251 n, addr, collect);
2252 }
2253 }
2254 break;
2255 case nir_intrinsic_load_ssbo:
2256 emit_intrinsic_load_ssbo(ctx, intr, dst);
2257 break;
2258 case nir_intrinsic_store_ssbo:
2259 emit_intrinsic_store_ssbo(ctx, intr);
2260 break;
2261 case nir_intrinsic_get_buffer_size:
2262 emit_intrinsic_ssbo_size(ctx, intr, dst);
2263 break;
2264 case nir_intrinsic_ssbo_atomic_add:
2265 case nir_intrinsic_ssbo_atomic_imin:
2266 case nir_intrinsic_ssbo_atomic_umin:
2267 case nir_intrinsic_ssbo_atomic_imax:
2268 case nir_intrinsic_ssbo_atomic_umax:
2269 case nir_intrinsic_ssbo_atomic_and:
2270 case nir_intrinsic_ssbo_atomic_or:
2271 case nir_intrinsic_ssbo_atomic_xor:
2272 case nir_intrinsic_ssbo_atomic_exchange:
2273 case nir_intrinsic_ssbo_atomic_comp_swap:
2274 dst[0] = emit_intrinsic_atomic_ssbo(ctx, intr);
2275 break;
2276 case nir_intrinsic_load_shared:
2277 emit_intrinsic_load_shared(ctx, intr, dst);
2278 break;
2279 case nir_intrinsic_store_shared:
2280 emit_intrinsic_store_shared(ctx, intr);
2281 break;
2282 case nir_intrinsic_shared_atomic_add:
2283 case nir_intrinsic_shared_atomic_imin:
2284 case nir_intrinsic_shared_atomic_umin:
2285 case nir_intrinsic_shared_atomic_imax:
2286 case nir_intrinsic_shared_atomic_umax:
2287 case nir_intrinsic_shared_atomic_and:
2288 case nir_intrinsic_shared_atomic_or:
2289 case nir_intrinsic_shared_atomic_xor:
2290 case nir_intrinsic_shared_atomic_exchange:
2291 case nir_intrinsic_shared_atomic_comp_swap:
2292 dst[0] = emit_intrinsic_atomic_shared(ctx, intr);
2293 break;
2294 case nir_intrinsic_image_var_load:
2295 emit_intrinsic_load_image(ctx, intr, dst);
2296 break;
2297 case nir_intrinsic_image_var_store:
2298 emit_intrinsic_store_image(ctx, intr);
2299 break;
2300 case nir_intrinsic_image_var_size:
2301 emit_intrinsic_image_size(ctx, intr, dst);
2302 break;
2303 case nir_intrinsic_image_var_atomic_add:
2304 case nir_intrinsic_image_var_atomic_min:
2305 case nir_intrinsic_image_var_atomic_max:
2306 case nir_intrinsic_image_var_atomic_and:
2307 case nir_intrinsic_image_var_atomic_or:
2308 case nir_intrinsic_image_var_atomic_xor:
2309 case nir_intrinsic_image_var_atomic_exchange:
2310 case nir_intrinsic_image_var_atomic_comp_swap:
2311 dst[0] = emit_intrinsic_atomic_image(ctx, intr);
2312 break;
2313 case nir_intrinsic_barrier:
2314 case nir_intrinsic_memory_barrier:
2315 case nir_intrinsic_group_memory_barrier:
2316 case nir_intrinsic_memory_barrier_atomic_counter:
2317 case nir_intrinsic_memory_barrier_buffer:
2318 case nir_intrinsic_memory_barrier_image:
2319 case nir_intrinsic_memory_barrier_shared:
2320 emit_intrinsic_barrier(ctx, intr);
2321 /* note that blk ptr no longer valid, make that obvious: */
2322 b = NULL;
2323 break;
2324 case nir_intrinsic_store_output:
2325 idx = nir_intrinsic_base(intr);
2326 comp = nir_intrinsic_component(intr);
2327 const_offset = nir_src_as_const_value(intr->src[1]);
2328 compile_assert(ctx, const_offset != NULL);
2329 idx += const_offset->u32[0];
2330
2331 src = get_src(ctx, &intr->src[0]);
2332 for (int i = 0; i < intr->num_components; i++) {
2333 unsigned n = idx * 4 + i + comp;
2334 ctx->ir->outputs[n] = src[i];
2335 }
2336 break;
2337 case nir_intrinsic_load_first_vertex:
2338 if (!ctx->basevertex) {
2339 ctx->basevertex = create_driver_param(ctx, IR3_DP_VTXID_BASE);
2340 add_sysval_input(ctx, SYSTEM_VALUE_FIRST_VERTEX, ctx->basevertex);
2341 }
2342 dst[0] = ctx->basevertex;
2343 break;
2344 case nir_intrinsic_load_vertex_id_zero_base:
2345 case nir_intrinsic_load_vertex_id:
2346 if (!ctx->vertex_id) {
2347 gl_system_value sv = (intr->intrinsic == nir_intrinsic_load_vertex_id) ?
2348 SYSTEM_VALUE_VERTEX_ID : SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
2349 ctx->vertex_id = create_input(b, 0);
2350 add_sysval_input(ctx, sv, ctx->vertex_id);
2351 }
2352 dst[0] = ctx->vertex_id;
2353 break;
2354 case nir_intrinsic_load_instance_id:
2355 if (!ctx->instance_id) {
2356 ctx->instance_id = create_input(b, 0);
2357 add_sysval_input(ctx, SYSTEM_VALUE_INSTANCE_ID,
2358 ctx->instance_id);
2359 }
2360 dst[0] = ctx->instance_id;
2361 break;
2362 case nir_intrinsic_load_sample_id:
2363 if (!ctx->samp_id) {
2364 ctx->samp_id = create_input(b, 0);
2365 ctx->samp_id->regs[0]->flags |= IR3_REG_HALF;
2366 add_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_ID,
2367 ctx->samp_id);
2368 }
2369 dst[0] = ir3_COV(b, ctx->samp_id, TYPE_U16, TYPE_U32);
2370 break;
2371 case nir_intrinsic_load_sample_mask_in:
2372 if (!ctx->samp_mask_in) {
2373 ctx->samp_mask_in = create_input(b, 0);
2374 add_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_MASK_IN,
2375 ctx->samp_mask_in);
2376 }
2377 dst[0] = ctx->samp_mask_in;
2378 break;
2379 case nir_intrinsic_load_user_clip_plane:
2380 idx = nir_intrinsic_ucp_id(intr);
2381 for (int i = 0; i < intr->num_components; i++) {
2382 unsigned n = idx * 4 + i;
2383 dst[i] = create_driver_param(ctx, IR3_DP_UCP0_X + n);
2384 }
2385 break;
2386 case nir_intrinsic_load_front_face:
2387 if (!ctx->frag_face) {
2388 ctx->so->frag_face = true;
2389 ctx->frag_face = create_input(b, 0);
2390 ctx->frag_face->regs[0]->flags |= IR3_REG_HALF;
2391 }
2392 /* for fragface, we get -1 for back and 0 for front. However this is
2393 * the inverse of what nir expects (where ~0 is true).
2394 */
2395 dst[0] = ir3_COV(b, ctx->frag_face, TYPE_S16, TYPE_S32);
2396 dst[0] = ir3_NOT_B(b, dst[0], 0);
2397 break;
2398 case nir_intrinsic_load_local_invocation_id:
2399 if (!ctx->local_invocation_id) {
2400 ctx->local_invocation_id = create_input_compmask(b, 0, 0x7);
2401 add_sysval_input_compmask(ctx, SYSTEM_VALUE_LOCAL_INVOCATION_ID,
2402 0x7, ctx->local_invocation_id);
2403 }
2404 split_dest(b, dst, ctx->local_invocation_id, 0, 3);
2405 break;
2406 case nir_intrinsic_load_work_group_id:
2407 if (!ctx->work_group_id) {
2408 ctx->work_group_id = create_input_compmask(b, 0, 0x7);
2409 add_sysval_input_compmask(ctx, SYSTEM_VALUE_WORK_GROUP_ID,
2410 0x7, ctx->work_group_id);
2411 ctx->work_group_id->regs[0]->flags |= IR3_REG_HIGH;
2412 }
2413 split_dest(b, dst, ctx->work_group_id, 0, 3);
2414 break;
2415 case nir_intrinsic_load_num_work_groups:
2416 for (int i = 0; i < intr->num_components; i++) {
2417 dst[i] = create_driver_param(ctx, IR3_DP_NUM_WORK_GROUPS_X + i);
2418 }
2419 break;
2420 case nir_intrinsic_load_local_group_size:
2421 for (int i = 0; i < intr->num_components; i++) {
2422 dst[i] = create_driver_param(ctx, IR3_DP_LOCAL_GROUP_SIZE_X + i);
2423 }
2424 break;
2425 case nir_intrinsic_discard_if:
2426 case nir_intrinsic_discard: {
2427 struct ir3_instruction *cond, *kill;
2428
2429 if (intr->intrinsic == nir_intrinsic_discard_if) {
2430 /* conditional discard: */
2431 src = get_src(ctx, &intr->src[0]);
2432 cond = ir3_b2n(b, src[0]);
2433 } else {
2434 /* unconditional discard: */
2435 cond = create_immed(b, 1);
2436 }
2437
2438 /* NOTE: only cmps.*.* can write p0.x: */
2439 cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
2440 cond->cat2.condition = IR3_COND_NE;
2441
2442 /* condition always goes in predicate register: */
2443 cond->regs[0]->num = regid(REG_P0, 0);
2444
2445 kill = ir3_KILL(b, cond, 0);
2446 array_insert(ctx->ir, ctx->ir->predicates, kill);
2447
2448 array_insert(b, b->keeps, kill);
2449 ctx->so->has_kill = true;
2450
2451 break;
2452 }
2453 default:
2454 compile_error(ctx, "Unhandled intrinsic type: %s\n",
2455 nir_intrinsic_infos[intr->intrinsic].name);
2456 break;
2457 }
2458
2459 if (info->has_dest)
2460 put_dst(ctx, &intr->dest);
2461 }
2462
2463 static void
2464 emit_load_const(struct ir3_context *ctx, nir_load_const_instr *instr)
2465 {
2466 struct ir3_instruction **dst = get_dst_ssa(ctx, &instr->def,
2467 instr->def.num_components);
2468 type_t type = (instr->def.bit_size < 32) ? TYPE_U16 : TYPE_U32;
2469
2470 for (int i = 0; i < instr->def.num_components; i++)
2471 dst[i] = create_immed_typed(ctx->block, instr->value.u32[i], type);
2472 }
2473
2474 static void
2475 emit_undef(struct ir3_context *ctx, nir_ssa_undef_instr *undef)
2476 {
2477 struct ir3_instruction **dst = get_dst_ssa(ctx, &undef->def,
2478 undef->def.num_components);
2479 type_t type = (undef->def.bit_size < 32) ? TYPE_U16 : TYPE_U32;
2480
2481 /* backend doesn't want undefined instructions, so just plug
2482 * in 0.0..
2483 */
2484 for (int i = 0; i < undef->def.num_components; i++)
2485 dst[i] = create_immed_typed(ctx->block, fui(0.0), type);
2486 }
2487
2488 /*
2489 * texture fetch/sample instructions:
2490 */
2491
2492 static void
2493 tex_info(nir_tex_instr *tex, unsigned *flagsp, unsigned *coordsp)
2494 {
2495 unsigned coords, flags = 0;
2496
2497 /* note: would use tex->coord_components.. except txs.. also,
2498 * since array index goes after shadow ref, we don't want to
2499 * count it:
2500 */
2501 switch (tex->sampler_dim) {
2502 case GLSL_SAMPLER_DIM_1D:
2503 case GLSL_SAMPLER_DIM_BUF:
2504 coords = 1;
2505 break;
2506 case GLSL_SAMPLER_DIM_2D:
2507 case GLSL_SAMPLER_DIM_RECT:
2508 case GLSL_SAMPLER_DIM_EXTERNAL:
2509 case GLSL_SAMPLER_DIM_MS:
2510 coords = 2;
2511 break;
2512 case GLSL_SAMPLER_DIM_3D:
2513 case GLSL_SAMPLER_DIM_CUBE:
2514 coords = 3;
2515 flags |= IR3_INSTR_3D;
2516 break;
2517 default:
2518 unreachable("bad sampler_dim");
2519 }
2520
2521 if (tex->is_shadow && tex->op != nir_texop_lod)
2522 flags |= IR3_INSTR_S;
2523
2524 if (tex->is_array && tex->op != nir_texop_lod)
2525 flags |= IR3_INSTR_A;
2526
2527 *flagsp = flags;
2528 *coordsp = coords;
2529 }
2530
2531 static void
2532 emit_tex(struct ir3_context *ctx, nir_tex_instr *tex)
2533 {
2534 struct ir3_block *b = ctx->block;
2535 struct ir3_instruction **dst, *sam, *src0[12], *src1[4];
2536 struct ir3_instruction * const *coord, * const *off, * const *ddx, * const *ddy;
2537 struct ir3_instruction *lod, *compare, *proj;
2538 bool has_bias = false, has_lod = false, has_proj = false, has_off = false;
2539 unsigned i, coords, flags;
2540 unsigned nsrc0 = 0, nsrc1 = 0;
2541 type_t type;
2542 opc_t opc = 0;
2543
2544 coord = off = ddx = ddy = NULL;
2545 lod = proj = compare = NULL;
2546
2547 /* TODO: might just be one component for gathers? */
2548 dst = get_dst(ctx, &tex->dest, 4);
2549
2550 for (unsigned i = 0; i < tex->num_srcs; i++) {
2551 switch (tex->src[i].src_type) {
2552 case nir_tex_src_coord:
2553 coord = get_src(ctx, &tex->src[i].src);
2554 break;
2555 case nir_tex_src_bias:
2556 lod = get_src(ctx, &tex->src[i].src)[0];
2557 has_bias = true;
2558 break;
2559 case nir_tex_src_lod:
2560 lod = get_src(ctx, &tex->src[i].src)[0];
2561 has_lod = true;
2562 break;
2563 case nir_tex_src_comparator: /* shadow comparator */
2564 compare = get_src(ctx, &tex->src[i].src)[0];
2565 break;
2566 case nir_tex_src_projector:
2567 proj = get_src(ctx, &tex->src[i].src)[0];
2568 has_proj = true;
2569 break;
2570 case nir_tex_src_offset:
2571 off = get_src(ctx, &tex->src[i].src);
2572 has_off = true;
2573 break;
2574 case nir_tex_src_ddx:
2575 ddx = get_src(ctx, &tex->src[i].src);
2576 break;
2577 case nir_tex_src_ddy:
2578 ddy = get_src(ctx, &tex->src[i].src);
2579 break;
2580 default:
2581 compile_error(ctx, "Unhandled NIR tex src type: %d\n",
2582 tex->src[i].src_type);
2583 return;
2584 }
2585 }
2586
2587 switch (tex->op) {
2588 case nir_texop_tex: opc = has_lod ? OPC_SAML : OPC_SAM; break;
2589 case nir_texop_txb: opc = OPC_SAMB; break;
2590 case nir_texop_txl: opc = OPC_SAML; break;
2591 case nir_texop_txd: opc = OPC_SAMGQ; break;
2592 case nir_texop_txf: opc = OPC_ISAML; break;
2593 case nir_texop_lod: opc = OPC_GETLOD; break;
2594 case nir_texop_tg4:
2595 /* NOTE: a4xx might need to emulate gather w/ txf (this is
2596 * what blob does, seems gather is broken?), and a3xx did
2597 * not support it (but probably could also emulate).
2598 */
2599 switch (tex->component) {
2600 case 0: opc = OPC_GATHER4R; break;
2601 case 1: opc = OPC_GATHER4G; break;
2602 case 2: opc = OPC_GATHER4B; break;
2603 case 3: opc = OPC_GATHER4A; break;
2604 }
2605 break;
2606 case nir_texop_txf_ms:
2607 case nir_texop_txs:
2608 case nir_texop_query_levels:
2609 case nir_texop_texture_samples:
2610 case nir_texop_samples_identical:
2611 case nir_texop_txf_ms_mcs:
2612 compile_error(ctx, "Unhandled NIR tex type: %d\n", tex->op);
2613 return;
2614 }
2615
2616 tex_info(tex, &flags, &coords);
2617
2618 /*
2619 * lay out the first argument in the proper order:
2620 * - actual coordinates first
2621 * - shadow reference
2622 * - array index
2623 * - projection w
2624 * - starting at offset 4, dpdx.xy, dpdy.xy
2625 *
2626 * bias/lod go into the second arg
2627 */
2628
2629 /* insert tex coords: */
2630 for (i = 0; i < coords; i++)
2631 src0[i] = coord[i];
2632
2633 nsrc0 = i;
2634
2635 /* scale up integer coords for TXF based on the LOD */
2636 if (ctx->unminify_coords && (opc == OPC_ISAML)) {
2637 assert(has_lod);
2638 for (i = 0; i < coords; i++)
2639 src0[i] = ir3_SHL_B(b, src0[i], 0, lod, 0);
2640 }
2641
2642 if (coords == 1) {
2643 /* hw doesn't do 1d, so we treat it as 2d with
2644 * height of 1, and patch up the y coord.
2645 * TODO: y coord should be (int)0 in some cases..
2646 */
2647 src0[nsrc0++] = create_immed(b, fui(0.5));
2648 }
2649
2650 if (tex->is_shadow && tex->op != nir_texop_lod)
2651 src0[nsrc0++] = compare;
2652
2653 if (tex->is_array && tex->op != nir_texop_lod) {
2654 struct ir3_instruction *idx = coord[coords];
2655
2656 /* the array coord for cube arrays needs 0.5 added to it */
2657 if (ctx->array_index_add_half && (opc != OPC_ISAML))
2658 idx = ir3_ADD_F(b, idx, 0, create_immed(b, fui(0.5)), 0);
2659
2660 src0[nsrc0++] = idx;
2661 }
2662
2663 if (has_proj) {
2664 src0[nsrc0++] = proj;
2665 flags |= IR3_INSTR_P;
2666 }
2667
2668 /* pad to 4, then ddx/ddy: */
2669 if (tex->op == nir_texop_txd) {
2670 while (nsrc0 < 4)
2671 src0[nsrc0++] = create_immed(b, fui(0.0));
2672 for (i = 0; i < coords; i++)
2673 src0[nsrc0++] = ddx[i];
2674 if (coords < 2)
2675 src0[nsrc0++] = create_immed(b, fui(0.0));
2676 for (i = 0; i < coords; i++)
2677 src0[nsrc0++] = ddy[i];
2678 if (coords < 2)
2679 src0[nsrc0++] = create_immed(b, fui(0.0));
2680 }
2681
2682 /*
2683 * second argument (if applicable):
2684 * - offsets
2685 * - lod
2686 * - bias
2687 */
2688 if (has_off | has_lod | has_bias) {
2689 if (has_off) {
2690 unsigned off_coords = coords;
2691 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2692 off_coords--;
2693 for (i = 0; i < off_coords; i++)
2694 src1[nsrc1++] = off[i];
2695 if (off_coords < 2)
2696 src1[nsrc1++] = create_immed(b, fui(0.0));
2697 flags |= IR3_INSTR_O;
2698 }
2699
2700 if (has_lod | has_bias)
2701 src1[nsrc1++] = lod;
2702 }
2703
2704 switch (tex->dest_type) {
2705 case nir_type_invalid:
2706 case nir_type_float:
2707 type = TYPE_F32;
2708 break;
2709 case nir_type_int:
2710 type = TYPE_S32;
2711 break;
2712 case nir_type_uint:
2713 case nir_type_bool:
2714 type = TYPE_U32;
2715 break;
2716 default:
2717 unreachable("bad dest_type");
2718 }
2719
2720 if (opc == OPC_GETLOD)
2721 type = TYPE_U32;
2722
2723 unsigned tex_idx = tex->texture_index;
2724
2725 ctx->max_texture_index = MAX2(ctx->max_texture_index, tex_idx);
2726
2727 struct ir3_instruction *col0 = create_collect(ctx, src0, nsrc0);
2728 struct ir3_instruction *col1 = create_collect(ctx, src1, nsrc1);
2729
2730 sam = ir3_SAM(b, opc, type, TGSI_WRITEMASK_XYZW, flags,
2731 tex_idx, tex_idx, col0, col1);
2732
2733 if ((ctx->astc_srgb & (1 << tex_idx)) && !nir_tex_instr_is_query(tex)) {
2734 /* only need first 3 components: */
2735 sam->regs[0]->wrmask = 0x7;
2736 split_dest(b, dst, sam, 0, 3);
2737
2738 /* we need to sample the alpha separately with a non-ASTC
2739 * texture state:
2740 */
2741 sam = ir3_SAM(b, opc, type, TGSI_WRITEMASK_W, flags,
2742 tex_idx, tex_idx, col0, col1);
2743
2744 array_insert(ctx->ir, ctx->ir->astc_srgb, sam);
2745
2746 /* fixup .w component: */
2747 split_dest(b, &dst[3], sam, 3, 1);
2748 } else {
2749 /* normal (non-workaround) case: */
2750 split_dest(b, dst, sam, 0, 4);
2751 }
2752
2753 /* GETLOD returns results in 4.8 fixed point */
2754 if (opc == OPC_GETLOD) {
2755 struct ir3_instruction *factor = create_immed(b, fui(1.0 / 256));
2756
2757 compile_assert(ctx, tex->dest_type == nir_type_float);
2758 for (i = 0; i < 2; i++) {
2759 dst[i] = ir3_MUL_F(b, ir3_COV(b, dst[i], TYPE_U32, TYPE_F32), 0,
2760 factor, 0);
2761 }
2762 }
2763
2764 put_dst(ctx, &tex->dest);
2765 }
2766
2767 static void
2768 emit_tex_query_levels(struct ir3_context *ctx, nir_tex_instr *tex)
2769 {
2770 struct ir3_block *b = ctx->block;
2771 struct ir3_instruction **dst, *sam;
2772
2773 dst = get_dst(ctx, &tex->dest, 1);
2774
2775 sam = ir3_SAM(b, OPC_GETINFO, TYPE_U32, TGSI_WRITEMASK_Z, 0,
2776 tex->texture_index, tex->texture_index, NULL, NULL);
2777
2778 /* even though there is only one component, since it ends
2779 * up in .z rather than .x, we need a split_dest()
2780 */
2781 split_dest(b, dst, sam, 0, 3);
2782
2783 /* The # of levels comes from getinfo.z. We need to add 1 to it, since
2784 * the value in TEX_CONST_0 is zero-based.
2785 */
2786 if (ctx->levels_add_one)
2787 dst[0] = ir3_ADD_U(b, dst[0], 0, create_immed(b, 1), 0);
2788
2789 put_dst(ctx, &tex->dest);
2790 }
2791
2792 static void
2793 emit_tex_txs(struct ir3_context *ctx, nir_tex_instr *tex)
2794 {
2795 struct ir3_block *b = ctx->block;
2796 struct ir3_instruction **dst, *sam;
2797 struct ir3_instruction *lod;
2798 unsigned flags, coords;
2799
2800 tex_info(tex, &flags, &coords);
2801
2802 /* Actually we want the number of dimensions, not coordinates. This
2803 * distinction only matters for cubes.
2804 */
2805 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2806 coords = 2;
2807
2808 dst = get_dst(ctx, &tex->dest, 4);
2809
2810 compile_assert(ctx, tex->num_srcs == 1);
2811 compile_assert(ctx, tex->src[0].src_type == nir_tex_src_lod);
2812
2813 lod = get_src(ctx, &tex->src[0].src)[0];
2814
2815 sam = ir3_SAM(b, OPC_GETSIZE, TYPE_U32, TGSI_WRITEMASK_XYZW, flags,
2816 tex->texture_index, tex->texture_index, lod, NULL);
2817
2818 split_dest(b, dst, sam, 0, 4);
2819
2820 /* Array size actually ends up in .w rather than .z. This doesn't
2821 * matter for miplevel 0, but for higher mips the value in z is
2822 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
2823 * returned, which means that we have to add 1 to it for arrays.
2824 */
2825 if (tex->is_array) {
2826 if (ctx->levels_add_one) {
2827 dst[coords] = ir3_ADD_U(b, dst[3], 0, create_immed(b, 1), 0);
2828 } else {
2829 dst[coords] = ir3_MOV(b, dst[3], TYPE_U32);
2830 }
2831 }
2832
2833 put_dst(ctx, &tex->dest);
2834 }
2835
2836 static void
2837 emit_jump(struct ir3_context *ctx, nir_jump_instr *jump)
2838 {
2839 switch (jump->type) {
2840 case nir_jump_break:
2841 case nir_jump_continue:
2842 case nir_jump_return:
2843 /* I *think* we can simply just ignore this, and use the
2844 * successor block link to figure out where we need to
2845 * jump to for break/continue
2846 */
2847 break;
2848 default:
2849 compile_error(ctx, "Unhandled NIR jump type: %d\n", jump->type);
2850 break;
2851 }
2852 }
2853
2854 static void
2855 emit_instr(struct ir3_context *ctx, nir_instr *instr)
2856 {
2857 switch (instr->type) {
2858 case nir_instr_type_alu:
2859 emit_alu(ctx, nir_instr_as_alu(instr));
2860 break;
2861 case nir_instr_type_intrinsic:
2862 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
2863 break;
2864 case nir_instr_type_load_const:
2865 emit_load_const(ctx, nir_instr_as_load_const(instr));
2866 break;
2867 case nir_instr_type_ssa_undef:
2868 emit_undef(ctx, nir_instr_as_ssa_undef(instr));
2869 break;
2870 case nir_instr_type_tex: {
2871 nir_tex_instr *tex = nir_instr_as_tex(instr);
2872 /* couple tex instructions get special-cased:
2873 */
2874 switch (tex->op) {
2875 case nir_texop_txs:
2876 emit_tex_txs(ctx, tex);
2877 break;
2878 case nir_texop_query_levels:
2879 emit_tex_query_levels(ctx, tex);
2880 break;
2881 default:
2882 emit_tex(ctx, tex);
2883 break;
2884 }
2885 break;
2886 }
2887 case nir_instr_type_jump:
2888 emit_jump(ctx, nir_instr_as_jump(instr));
2889 break;
2890 case nir_instr_type_phi:
2891 /* we have converted phi webs to regs in NIR by now */
2892 compile_error(ctx, "Unexpected NIR instruction type: %d\n", instr->type);
2893 break;
2894 case nir_instr_type_call:
2895 case nir_instr_type_parallel_copy:
2896 compile_error(ctx, "Unhandled NIR instruction type: %d\n", instr->type);
2897 break;
2898 }
2899 }
2900
2901 static struct ir3_block *
2902 get_block(struct ir3_context *ctx, const nir_block *nblock)
2903 {
2904 struct ir3_block *block;
2905 struct hash_entry *hentry;
2906 struct set_entry *sentry;
2907 unsigned i;
2908
2909 hentry = _mesa_hash_table_search(ctx->block_ht, nblock);
2910 if (hentry)
2911 return hentry->data;
2912
2913 block = ir3_block_create(ctx->ir);
2914 block->nblock = nblock;
2915 _mesa_hash_table_insert(ctx->block_ht, nblock, block);
2916
2917 block->predecessors_count = nblock->predecessors->entries;
2918 block->predecessors = ralloc_array_size(block,
2919 sizeof(block->predecessors[0]), block->predecessors_count);
2920 i = 0;
2921 set_foreach(nblock->predecessors, sentry) {
2922 block->predecessors[i++] = get_block(ctx, sentry->key);
2923 }
2924
2925 return block;
2926 }
2927
2928 static void
2929 emit_block(struct ir3_context *ctx, nir_block *nblock)
2930 {
2931 struct ir3_block *block = get_block(ctx, nblock);
2932
2933 for (int i = 0; i < ARRAY_SIZE(block->successors); i++) {
2934 if (nblock->successors[i]) {
2935 block->successors[i] =
2936 get_block(ctx, nblock->successors[i]);
2937 }
2938 }
2939
2940 ctx->block = block;
2941 list_addtail(&block->node, &ctx->ir->block_list);
2942
2943 /* re-emit addr register in each block if needed: */
2944 for (int i = 0; i < ARRAY_SIZE(ctx->addr_ht); i++) {
2945 _mesa_hash_table_destroy(ctx->addr_ht[i], NULL);
2946 ctx->addr_ht[i] = NULL;
2947 }
2948
2949 nir_foreach_instr(instr, nblock) {
2950 emit_instr(ctx, instr);
2951 if (ctx->error)
2952 return;
2953 }
2954 }
2955
2956 static void emit_cf_list(struct ir3_context *ctx, struct exec_list *list);
2957
2958 static void
2959 emit_if(struct ir3_context *ctx, nir_if *nif)
2960 {
2961 struct ir3_instruction *condition = get_src(ctx, &nif->condition)[0];
2962
2963 ctx->block->condition =
2964 get_predicate(ctx, ir3_b2n(condition->block, condition));
2965
2966 emit_cf_list(ctx, &nif->then_list);
2967 emit_cf_list(ctx, &nif->else_list);
2968 }
2969
2970 static void
2971 emit_loop(struct ir3_context *ctx, nir_loop *nloop)
2972 {
2973 emit_cf_list(ctx, &nloop->body);
2974 }
2975
2976 static void
2977 emit_cf_list(struct ir3_context *ctx, struct exec_list *list)
2978 {
2979 foreach_list_typed(nir_cf_node, node, node, list) {
2980 switch (node->type) {
2981 case nir_cf_node_block:
2982 emit_block(ctx, nir_cf_node_as_block(node));
2983 break;
2984 case nir_cf_node_if:
2985 emit_if(ctx, nir_cf_node_as_if(node));
2986 break;
2987 case nir_cf_node_loop:
2988 emit_loop(ctx, nir_cf_node_as_loop(node));
2989 break;
2990 case nir_cf_node_function:
2991 compile_error(ctx, "TODO\n");
2992 break;
2993 }
2994 }
2995 }
2996
2997 /* emit stream-out code. At this point, the current block is the original
2998 * (nir) end block, and nir ensures that all flow control paths terminate
2999 * into the end block. We re-purpose the original end block to generate
3000 * the 'if (vtxcnt < maxvtxcnt)' condition, then append the conditional
3001 * block holding stream-out write instructions, followed by the new end
3002 * block:
3003 *
3004 * blockOrigEnd {
3005 * p0.x = (vtxcnt < maxvtxcnt)
3006 * // succs: blockStreamOut, blockNewEnd
3007 * }
3008 * blockStreamOut {
3009 * ... stream-out instructions ...
3010 * // succs: blockNewEnd
3011 * }
3012 * blockNewEnd {
3013 * }
3014 */
3015 static void
3016 emit_stream_out(struct ir3_context *ctx)
3017 {
3018 struct ir3_shader_variant *v = ctx->so;
3019 struct ir3 *ir = ctx->ir;
3020 struct pipe_stream_output_info *strmout =
3021 &ctx->so->shader->stream_output;
3022 struct ir3_block *orig_end_block, *stream_out_block, *new_end_block;
3023 struct ir3_instruction *vtxcnt, *maxvtxcnt, *cond;
3024 struct ir3_instruction *bases[PIPE_MAX_SO_BUFFERS];
3025
3026 /* create vtxcnt input in input block at top of shader,
3027 * so that it is seen as live over the entire duration
3028 * of the shader:
3029 */
3030 vtxcnt = create_input(ctx->in_block, 0);
3031 add_sysval_input(ctx, SYSTEM_VALUE_VERTEX_CNT, vtxcnt);
3032
3033 maxvtxcnt = create_driver_param(ctx, IR3_DP_VTXCNT_MAX);
3034
3035 /* at this point, we are at the original 'end' block,
3036 * re-purpose this block to stream-out condition, then
3037 * append stream-out block and new-end block
3038 */
3039 orig_end_block = ctx->block;
3040
3041 // TODO these blocks need to update predecessors..
3042 // maybe w/ store_global intrinsic, we could do this
3043 // stuff in nir->nir pass
3044
3045 stream_out_block = ir3_block_create(ir);
3046 list_addtail(&stream_out_block->node, &ir->block_list);
3047
3048 new_end_block = ir3_block_create(ir);
3049 list_addtail(&new_end_block->node, &ir->block_list);
3050
3051 orig_end_block->successors[0] = stream_out_block;
3052 orig_end_block->successors[1] = new_end_block;
3053 stream_out_block->successors[0] = new_end_block;
3054
3055 /* setup 'if (vtxcnt < maxvtxcnt)' condition: */
3056 cond = ir3_CMPS_S(ctx->block, vtxcnt, 0, maxvtxcnt, 0);
3057 cond->regs[0]->num = regid(REG_P0, 0);
3058 cond->cat2.condition = IR3_COND_LT;
3059
3060 /* condition goes on previous block to the conditional,
3061 * since it is used to pick which of the two successor
3062 * paths to take:
3063 */
3064 orig_end_block->condition = cond;
3065
3066 /* switch to stream_out_block to generate the stream-out
3067 * instructions:
3068 */
3069 ctx->block = stream_out_block;
3070
3071 /* Calculate base addresses based on vtxcnt. Instructions
3072 * generated for bases not used in following loop will be
3073 * stripped out in the backend.
3074 */
3075 for (unsigned i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
3076 unsigned stride = strmout->stride[i];
3077 struct ir3_instruction *base, *off;
3078
3079 base = create_uniform(ctx, regid(v->constbase.tfbo, i));
3080
3081 /* 24-bit should be enough: */
3082 off = ir3_MUL_U(ctx->block, vtxcnt, 0,
3083 create_immed(ctx->block, stride * 4), 0);
3084
3085 bases[i] = ir3_ADD_S(ctx->block, off, 0, base, 0);
3086 }
3087
3088 /* Generate the per-output store instructions: */
3089 for (unsigned i = 0; i < strmout->num_outputs; i++) {
3090 for (unsigned j = 0; j < strmout->output[i].num_components; j++) {
3091 unsigned c = j + strmout->output[i].start_component;
3092 struct ir3_instruction *base, *out, *stg;
3093
3094 base = bases[strmout->output[i].output_buffer];
3095 out = ctx->ir->outputs[regid(strmout->output[i].register_index, c)];
3096
3097 stg = ir3_STG(ctx->block, base, 0, out, 0,
3098 create_immed(ctx->block, 1), 0);
3099 stg->cat6.type = TYPE_U32;
3100 stg->cat6.dst_offset = (strmout->output[i].dst_offset + j) * 4;
3101
3102 array_insert(ctx->block, ctx->block->keeps, stg);
3103 }
3104 }
3105
3106 /* and finally switch to the new_end_block: */
3107 ctx->block = new_end_block;
3108 }
3109
3110 static void
3111 emit_function(struct ir3_context *ctx, nir_function_impl *impl)
3112 {
3113 nir_metadata_require(impl, nir_metadata_block_index);
3114
3115 emit_cf_list(ctx, &impl->body);
3116 emit_block(ctx, impl->end_block);
3117
3118 /* at this point, we should have a single empty block,
3119 * into which we emit the 'end' instruction.
3120 */
3121 compile_assert(ctx, list_empty(&ctx->block->instr_list));
3122
3123 /* If stream-out (aka transform-feedback) enabled, emit the
3124 * stream-out instructions, followed by a new empty block (into
3125 * which the 'end' instruction lands).
3126 *
3127 * NOTE: it is done in this order, rather than inserting before
3128 * we emit end_block, because NIR guarantees that all blocks
3129 * flow into end_block, and that end_block has no successors.
3130 * So by re-purposing end_block as the first block of stream-
3131 * out, we guarantee that all exit paths flow into the stream-
3132 * out instructions.
3133 */
3134 if ((ctx->compiler->gpu_id < 500) &&
3135 (ctx->so->shader->stream_output.num_outputs > 0) &&
3136 !ctx->so->key.binning_pass) {
3137 debug_assert(ctx->so->type == SHADER_VERTEX);
3138 emit_stream_out(ctx);
3139 }
3140
3141 ir3_END(ctx->block);
3142 }
3143
3144 static void
3145 setup_input(struct ir3_context *ctx, nir_variable *in)
3146 {
3147 struct ir3_shader_variant *so = ctx->so;
3148 unsigned array_len = MAX2(glsl_get_length(in->type), 1);
3149 unsigned ncomp = glsl_get_components(in->type);
3150 unsigned n = in->data.driver_location;
3151 unsigned slot = in->data.location;
3152
3153 DBG("; in: slot=%u, len=%ux%u, drvloc=%u",
3154 slot, array_len, ncomp, n);
3155
3156 /* let's pretend things other than vec4 don't exist: */
3157 ncomp = MAX2(ncomp, 4);
3158 compile_assert(ctx, ncomp == 4);
3159
3160 so->inputs[n].slot = slot;
3161 so->inputs[n].compmask = (1 << ncomp) - 1;
3162 so->inputs_count = MAX2(so->inputs_count, n + 1);
3163 so->inputs[n].interpolate = in->data.interpolation;
3164
3165 if (ctx->so->type == SHADER_FRAGMENT) {
3166 for (int i = 0; i < ncomp; i++) {
3167 struct ir3_instruction *instr = NULL;
3168 unsigned idx = (n * 4) + i;
3169
3170 if (slot == VARYING_SLOT_POS) {
3171 so->inputs[n].bary = false;
3172 so->frag_coord = true;
3173 instr = create_frag_coord(ctx, i);
3174 } else if (slot == VARYING_SLOT_PNTC) {
3175 /* see for example st_get_generic_varying_index().. this is
3176 * maybe a bit mesa/st specific. But we need things to line
3177 * up for this in fdN_program:
3178 * unsigned texmask = 1 << (slot - VARYING_SLOT_VAR0);
3179 * if (emit->sprite_coord_enable & texmask) {
3180 * ...
3181 * }
3182 */
3183 so->inputs[n].slot = VARYING_SLOT_VAR8;
3184 so->inputs[n].bary = true;
3185 instr = create_frag_input(ctx, false);
3186 } else {
3187 bool use_ldlv = false;
3188
3189 /* detect the special case for front/back colors where
3190 * we need to do flat vs smooth shading depending on
3191 * rast state:
3192 */
3193 if (in->data.interpolation == INTERP_MODE_NONE) {
3194 switch (slot) {
3195 case VARYING_SLOT_COL0:
3196 case VARYING_SLOT_COL1:
3197 case VARYING_SLOT_BFC0:
3198 case VARYING_SLOT_BFC1:
3199 so->inputs[n].rasterflat = true;
3200 break;
3201 default:
3202 break;
3203 }
3204 }
3205
3206 if (ctx->flat_bypass) {
3207 if ((so->inputs[n].interpolate == INTERP_MODE_FLAT) ||
3208 (so->inputs[n].rasterflat && ctx->so->key.rasterflat))
3209 use_ldlv = true;
3210 }
3211
3212 so->inputs[n].bary = true;
3213
3214 instr = create_frag_input(ctx, use_ldlv);
3215 }
3216
3217 compile_assert(ctx, idx < ctx->ir->ninputs);
3218
3219 ctx->ir->inputs[idx] = instr;
3220 }
3221 } else if (ctx->so->type == SHADER_VERTEX) {
3222 for (int i = 0; i < ncomp; i++) {
3223 unsigned idx = (n * 4) + i;
3224 compile_assert(ctx, idx < ctx->ir->ninputs);
3225 ctx->ir->inputs[idx] = create_input(ctx->block, idx);
3226 }
3227 } else {
3228 compile_error(ctx, "unknown shader type: %d\n", ctx->so->type);
3229 }
3230
3231 if (so->inputs[n].bary || (ctx->so->type == SHADER_VERTEX)) {
3232 so->total_in += ncomp;
3233 }
3234 }
3235
3236 static void
3237 setup_output(struct ir3_context *ctx, nir_variable *out)
3238 {
3239 struct ir3_shader_variant *so = ctx->so;
3240 unsigned array_len = MAX2(glsl_get_length(out->type), 1);
3241 unsigned ncomp = glsl_get_components(out->type);
3242 unsigned n = out->data.driver_location;
3243 unsigned slot = out->data.location;
3244 unsigned comp = 0;
3245
3246 DBG("; out: slot=%u, len=%ux%u, drvloc=%u",
3247 slot, array_len, ncomp, n);
3248
3249 /* let's pretend things other than vec4 don't exist: */
3250 ncomp = MAX2(ncomp, 4);
3251 compile_assert(ctx, ncomp == 4);
3252
3253 if (ctx->so->type == SHADER_FRAGMENT) {
3254 switch (slot) {
3255 case FRAG_RESULT_DEPTH:
3256 comp = 2; /* tgsi will write to .z component */
3257 so->writes_pos = true;
3258 break;
3259 case FRAG_RESULT_COLOR:
3260 so->color0_mrt = 1;
3261 break;
3262 default:
3263 if (slot >= FRAG_RESULT_DATA0)
3264 break;
3265 compile_error(ctx, "unknown FS output name: %s\n",
3266 gl_frag_result_name(slot));
3267 }
3268 } else if (ctx->so->type == SHADER_VERTEX) {
3269 switch (slot) {
3270 case VARYING_SLOT_POS:
3271 so->writes_pos = true;
3272 break;
3273 case VARYING_SLOT_PSIZ:
3274 so->writes_psize = true;
3275 break;
3276 case VARYING_SLOT_COL0:
3277 case VARYING_SLOT_COL1:
3278 case VARYING_SLOT_BFC0:
3279 case VARYING_SLOT_BFC1:
3280 case VARYING_SLOT_FOGC:
3281 case VARYING_SLOT_CLIP_DIST0:
3282 case VARYING_SLOT_CLIP_DIST1:
3283 case VARYING_SLOT_CLIP_VERTEX:
3284 break;
3285 default:
3286 if (slot >= VARYING_SLOT_VAR0)
3287 break;
3288 if ((VARYING_SLOT_TEX0 <= slot) && (slot <= VARYING_SLOT_TEX7))
3289 break;
3290 compile_error(ctx, "unknown VS output name: %s\n",
3291 gl_varying_slot_name(slot));
3292 }
3293 } else {
3294 compile_error(ctx, "unknown shader type: %d\n", ctx->so->type);
3295 }
3296
3297 compile_assert(ctx, n < ARRAY_SIZE(so->outputs));
3298
3299 so->outputs[n].slot = slot;
3300 so->outputs[n].regid = regid(n, comp);
3301 so->outputs_count = MAX2(so->outputs_count, n + 1);
3302
3303 for (int i = 0; i < ncomp; i++) {
3304 unsigned idx = (n * 4) + i;
3305 compile_assert(ctx, idx < ctx->ir->noutputs);
3306 ctx->ir->outputs[idx] = create_immed(ctx->block, fui(0.0));
3307 }
3308 }
3309
3310 static int
3311 max_drvloc(struct exec_list *vars)
3312 {
3313 int drvloc = -1;
3314 nir_foreach_variable(var, vars) {
3315 drvloc = MAX2(drvloc, (int)var->data.driver_location);
3316 }
3317 return drvloc;
3318 }
3319
3320 static const unsigned max_sysvals[SHADER_MAX] = {
3321 [SHADER_FRAGMENT] = 8,
3322 [SHADER_VERTEX] = 16,
3323 [SHADER_COMPUTE] = 16, // TODO how many do we actually need?
3324 };
3325
3326 static void
3327 emit_instructions(struct ir3_context *ctx)
3328 {
3329 unsigned ninputs, noutputs;
3330 nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->s);
3331
3332 ninputs = (max_drvloc(&ctx->s->inputs) + 1) * 4;
3333 noutputs = (max_drvloc(&ctx->s->outputs) + 1) * 4;
3334
3335 /* we need to leave room for sysvals:
3336 */
3337 ninputs += max_sysvals[ctx->so->type];
3338
3339 ctx->ir = ir3_create(ctx->compiler, ninputs, noutputs);
3340
3341 /* Create inputs in first block: */
3342 ctx->block = get_block(ctx, nir_start_block(fxn));
3343 ctx->in_block = ctx->block;
3344 list_addtail(&ctx->block->node, &ctx->ir->block_list);
3345
3346 ninputs -= max_sysvals[ctx->so->type];
3347
3348 /* for fragment shader, we have a single input register (usually
3349 * r0.xy) which is used as the base for bary.f varying fetch instrs:
3350 */
3351 if (ctx->so->type == SHADER_FRAGMENT) {
3352 // TODO maybe a helper for fi since we need it a few places..
3353 struct ir3_instruction *instr;
3354 instr = ir3_instr_create(ctx->block, OPC_META_FI);
3355 ir3_reg_create(instr, 0, 0);
3356 ir3_reg_create(instr, 0, IR3_REG_SSA); /* r0.x */
3357 ir3_reg_create(instr, 0, IR3_REG_SSA); /* r0.y */
3358 ctx->frag_pos = instr;
3359 }
3360
3361 /* Setup inputs: */
3362 nir_foreach_variable(var, &ctx->s->inputs) {
3363 setup_input(ctx, var);
3364 }
3365
3366 /* Setup outputs: */
3367 nir_foreach_variable(var, &ctx->s->outputs) {
3368 setup_output(ctx, var);
3369 }
3370
3371 /* Setup registers (which should only be arrays): */
3372 nir_foreach_register(reg, &ctx->s->registers) {
3373 declare_array(ctx, reg);
3374 }
3375
3376 /* NOTE: need to do something more clever when we support >1 fxn */
3377 nir_foreach_register(reg, &fxn->registers) {
3378 declare_array(ctx, reg);
3379 }
3380 /* And emit the body: */
3381 ctx->impl = fxn;
3382 emit_function(ctx, fxn);
3383 }
3384
3385 /* from NIR perspective, we actually have inputs. But most of the "inputs"
3386 * for a fragment shader are just bary.f instructions. The *actual* inputs
3387 * from the hw perspective are the frag_pos and optionally frag_coord and
3388 * frag_face.
3389 */
3390 static void
3391 fixup_frag_inputs(struct ir3_context *ctx)
3392 {
3393 struct ir3_shader_variant *so = ctx->so;
3394 struct ir3 *ir = ctx->ir;
3395 struct ir3_instruction **inputs;
3396 struct ir3_instruction *instr;
3397 int n, regid = 0;
3398
3399 ir->ninputs = 0;
3400
3401 n = 4; /* always have frag_pos */
3402 n += COND(so->frag_face, 4);
3403 n += COND(so->frag_coord, 4);
3404
3405 inputs = ir3_alloc(ctx->ir, n * (sizeof(struct ir3_instruction *)));
3406
3407 if (so->frag_face) {
3408 /* this ultimately gets assigned to hr0.x so doesn't conflict
3409 * with frag_coord/frag_pos..
3410 */
3411 inputs[ir->ninputs++] = ctx->frag_face;
3412 ctx->frag_face->regs[0]->num = 0;
3413
3414 /* remaining channels not used, but let's avoid confusing
3415 * other parts that expect inputs to come in groups of vec4
3416 */
3417 inputs[ir->ninputs++] = NULL;
3418 inputs[ir->ninputs++] = NULL;
3419 inputs[ir->ninputs++] = NULL;
3420 }
3421
3422 /* since we don't know where to set the regid for frag_coord,
3423 * we have to use r0.x for it. But we don't want to *always*
3424 * use r1.x for frag_pos as that could increase the register
3425 * footprint on simple shaders:
3426 */
3427 if (so->frag_coord) {
3428 ctx->frag_coord[0]->regs[0]->num = regid++;
3429 ctx->frag_coord[1]->regs[0]->num = regid++;
3430 ctx->frag_coord[2]->regs[0]->num = regid++;
3431 ctx->frag_coord[3]->regs[0]->num = regid++;
3432
3433 inputs[ir->ninputs++] = ctx->frag_coord[0];
3434 inputs[ir->ninputs++] = ctx->frag_coord[1];
3435 inputs[ir->ninputs++] = ctx->frag_coord[2];
3436 inputs[ir->ninputs++] = ctx->frag_coord[3];
3437 }
3438
3439 /* we always have frag_pos: */
3440 so->pos_regid = regid;
3441
3442 /* r0.x */
3443 instr = create_input(ctx->in_block, ir->ninputs);
3444 instr->regs[0]->num = regid++;
3445 inputs[ir->ninputs++] = instr;
3446 ctx->frag_pos->regs[1]->instr = instr;
3447
3448 /* r0.y */
3449 instr = create_input(ctx->in_block, ir->ninputs);
3450 instr->regs[0]->num = regid++;
3451 inputs[ir->ninputs++] = instr;
3452 ctx->frag_pos->regs[2]->instr = instr;
3453
3454 ir->inputs = inputs;
3455 }
3456
3457 /* Fixup tex sampler state for astc/srgb workaround instructions. We
3458 * need to assign the tex state indexes for these after we know the
3459 * max tex index.
3460 */
3461 static void
3462 fixup_astc_srgb(struct ir3_context *ctx)
3463 {
3464 struct ir3_shader_variant *so = ctx->so;
3465 /* indexed by original tex idx, value is newly assigned alpha sampler
3466 * state tex idx. Zero is invalid since there is at least one sampler
3467 * if we get here.
3468 */
3469 unsigned alt_tex_state[16] = {0};
3470 unsigned tex_idx = ctx->max_texture_index + 1;
3471 unsigned idx = 0;
3472
3473 so->astc_srgb.base = tex_idx;
3474
3475 for (unsigned i = 0; i < ctx->ir->astc_srgb_count; i++) {
3476 struct ir3_instruction *sam = ctx->ir->astc_srgb[i];
3477
3478 compile_assert(ctx, sam->cat5.tex < ARRAY_SIZE(alt_tex_state));
3479
3480 if (alt_tex_state[sam->cat5.tex] == 0) {
3481 /* assign new alternate/alpha tex state slot: */
3482 alt_tex_state[sam->cat5.tex] = tex_idx++;
3483 so->astc_srgb.orig_idx[idx++] = sam->cat5.tex;
3484 so->astc_srgb.count++;
3485 }
3486
3487 sam->cat5.tex = alt_tex_state[sam->cat5.tex];
3488 }
3489 }
3490
3491 int
3492 ir3_compile_shader_nir(struct ir3_compiler *compiler,
3493 struct ir3_shader_variant *so)
3494 {
3495 struct ir3_context *ctx;
3496 struct ir3 *ir;
3497 struct ir3_instruction **inputs;
3498 unsigned i, j, actual_in, inloc;
3499 int ret = 0, max_bary;
3500
3501 assert(!so->ir);
3502
3503 ctx = compile_init(compiler, so);
3504 if (!ctx) {
3505 DBG("INIT failed!");
3506 ret = -1;
3507 goto out;
3508 }
3509
3510 emit_instructions(ctx);
3511
3512 if (ctx->error) {
3513 DBG("EMIT failed!");
3514 ret = -1;
3515 goto out;
3516 }
3517
3518 ir = so->ir = ctx->ir;
3519
3520 /* keep track of the inputs from TGSI perspective.. */
3521 inputs = ir->inputs;
3522
3523 /* but fixup actual inputs for frag shader: */
3524 if (so->type == SHADER_FRAGMENT)
3525 fixup_frag_inputs(ctx);
3526
3527 /* at this point, for binning pass, throw away unneeded outputs: */
3528 if (so->key.binning_pass) {
3529 for (i = 0, j = 0; i < so->outputs_count; i++) {
3530 unsigned slot = so->outputs[i].slot;
3531
3532 /* throw away everything but first position/psize */
3533 if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) {
3534 if (i != j) {
3535 so->outputs[j] = so->outputs[i];
3536 ir->outputs[(j*4)+0] = ir->outputs[(i*4)+0];
3537 ir->outputs[(j*4)+1] = ir->outputs[(i*4)+1];
3538 ir->outputs[(j*4)+2] = ir->outputs[(i*4)+2];
3539 ir->outputs[(j*4)+3] = ir->outputs[(i*4)+3];
3540 }
3541 j++;
3542 }
3543 }
3544 so->outputs_count = j;
3545 ir->noutputs = j * 4;
3546 }
3547
3548 /* if we want half-precision outputs, mark the output registers
3549 * as half:
3550 */
3551 if (so->key.half_precision) {
3552 for (i = 0; i < ir->noutputs; i++) {
3553 struct ir3_instruction *out = ir->outputs[i];
3554
3555 if (!out)
3556 continue;
3557
3558 /* if frag shader writes z, that needs to be full precision: */
3559 if (so->outputs[i/4].slot == FRAG_RESULT_DEPTH)
3560 continue;
3561
3562 out->regs[0]->flags |= IR3_REG_HALF;
3563 /* output could be a fanout (ie. texture fetch output)
3564 * in which case we need to propagate the half-reg flag
3565 * up to the definer so that RA sees it:
3566 */
3567 if (out->opc == OPC_META_FO) {
3568 out = out->regs[1]->instr;
3569 out->regs[0]->flags |= IR3_REG_HALF;
3570 }
3571
3572 if (out->opc == OPC_MOV) {
3573 out->cat1.dst_type = half_type(out->cat1.dst_type);
3574 }
3575 }
3576 }
3577
3578 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3579 printf("BEFORE CP:\n");
3580 ir3_print(ir);
3581 }
3582
3583 ir3_cp(ir, so);
3584
3585 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3586 printf("BEFORE GROUPING:\n");
3587 ir3_print(ir);
3588 }
3589
3590 ir3_sched_add_deps(ir);
3591
3592 /* Group left/right neighbors, inserting mov's where needed to
3593 * solve conflicts:
3594 */
3595 ir3_group(ir);
3596
3597 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3598 printf("AFTER GROUPING:\n");
3599 ir3_print(ir);
3600 }
3601
3602 ir3_depth(ir);
3603
3604 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3605 printf("AFTER DEPTH:\n");
3606 ir3_print(ir);
3607 }
3608
3609 ret = ir3_sched(ir);
3610 if (ret) {
3611 DBG("SCHED failed!");
3612 goto out;
3613 }
3614
3615 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3616 printf("AFTER SCHED:\n");
3617 ir3_print(ir);
3618 }
3619
3620 ret = ir3_ra(ir, so->type, so->frag_coord, so->frag_face);
3621 if (ret) {
3622 DBG("RA failed!");
3623 goto out;
3624 }
3625
3626 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3627 printf("AFTER RA:\n");
3628 ir3_print(ir);
3629 }
3630
3631 /* fixup input/outputs: */
3632 for (i = 0; i < so->outputs_count; i++) {
3633 so->outputs[i].regid = ir->outputs[i*4]->regs[0]->num;
3634 }
3635
3636 /* Note that some or all channels of an input may be unused: */
3637 actual_in = 0;
3638 inloc = 0;
3639 for (i = 0; i < so->inputs_count; i++) {
3640 unsigned j, regid = ~0, compmask = 0, maxcomp = 0;
3641 so->inputs[i].ncomp = 0;
3642 so->inputs[i].inloc = inloc;
3643 for (j = 0; j < 4; j++) {
3644 struct ir3_instruction *in = inputs[(i*4) + j];
3645 if (in && !(in->flags & IR3_INSTR_UNUSED)) {
3646 compmask |= (1 << j);
3647 regid = in->regs[0]->num - j;
3648 actual_in++;
3649 so->inputs[i].ncomp++;
3650 if ((so->type == SHADER_FRAGMENT) && so->inputs[i].bary) {
3651 /* assign inloc: */
3652 assert(in->regs[1]->flags & IR3_REG_IMMED);
3653 in->regs[1]->iim_val = inloc + j;
3654 maxcomp = j + 1;
3655 }
3656 }
3657 }
3658 if ((so->type == SHADER_FRAGMENT) && compmask && so->inputs[i].bary) {
3659 so->varying_in++;
3660 so->inputs[i].compmask = (1 << maxcomp) - 1;
3661 inloc += maxcomp;
3662 } else if (!so->inputs[i].sysval){
3663 so->inputs[i].compmask = compmask;
3664 }
3665 so->inputs[i].regid = regid;
3666 }
3667
3668 if (ctx->astc_srgb)
3669 fixup_astc_srgb(ctx);
3670
3671 /* We need to do legalize after (for frag shader's) the "bary.f"
3672 * offsets (inloc) have been assigned.
3673 */
3674 ir3_legalize(ir, &so->has_samp, &so->has_ssbo, &max_bary);
3675
3676 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3677 printf("AFTER LEGALIZE:\n");
3678 ir3_print(ir);
3679 }
3680
3681 /* Note that actual_in counts inputs that are not bary.f'd for FS: */
3682 if (so->type == SHADER_VERTEX)
3683 so->total_in = actual_in;
3684 else
3685 so->total_in = max_bary + 1;
3686
3687 out:
3688 if (ret) {
3689 if (so->ir)
3690 ir3_destroy(so->ir);
3691 so->ir = NULL;
3692 }
3693 compile_free(ctx);
3694
3695 return ret;
3696 }