freedreno/ir3: support non-user_buffer consts
[mesa.git] / src / gallium / drivers / freedreno / ir3 / ir3_compiler_nir.c
1 /* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */
2
3 /*
4 * Copyright (C) 2015 Rob Clark <robclark@freedesktop.org>
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 * Rob Clark <robclark@freedesktop.org>
27 */
28
29 #include <stdarg.h>
30
31 #include "pipe/p_state.h"
32 #include "util/u_string.h"
33 #include "util/u_memory.h"
34 #include "util/u_inlines.h"
35
36 #include "freedreno_util.h"
37
38 #include "ir3_compiler.h"
39 #include "ir3_shader.h"
40 #include "ir3_nir.h"
41
42 #include "instr-a3xx.h"
43 #include "ir3.h"
44
45
46 struct ir3_compile {
47 struct ir3_compiler *compiler;
48
49 struct nir_shader *s;
50
51 struct ir3 *ir;
52 struct ir3_shader_variant *so;
53
54 struct ir3_block *block; /* the current block */
55 struct ir3_block *in_block; /* block created for shader inputs */
56
57 nir_function_impl *impl;
58
59 /* For fragment shaders, from the hw perspective the only
60 * actual input is r0.xy position register passed to bary.f.
61 * But TGSI doesn't know that, it still declares things as
62 * IN[] registers. So we do all the input tracking normally
63 * and fix things up after compile_instructions()
64 *
65 * NOTE that frag_pos is the hardware position (possibly it
66 * is actually an index or tag or some such.. it is *not*
67 * values that can be directly used for gl_FragCoord..)
68 */
69 struct ir3_instruction *frag_pos, *frag_face, *frag_coord[4];
70
71 /* For vertex shaders, keep track of the system values sources */
72 struct ir3_instruction *vertex_id, *basevertex, *instance_id;
73
74 /* mapping from nir_register to defining instruction: */
75 struct hash_table *def_ht;
76
77 unsigned num_arrays;
78
79 /* a common pattern for indirect addressing is to request the
80 * same address register multiple times. To avoid generating
81 * duplicate instruction sequences (which our backend does not
82 * try to clean up, since that should be done as the NIR stage)
83 * we cache the address value generated for a given src value:
84 */
85 struct hash_table *addr_ht;
86
87 /* maps nir_block to ir3_block, mostly for the purposes of
88 * figuring out the blocks successors
89 */
90 struct hash_table *block_ht;
91
92 /* a4xx (at least patchlevel 0) cannot seem to flat-interpolate
93 * so we need to use ldlv.u32 to load the varying directly:
94 */
95 bool flat_bypass;
96
97 /* on a3xx, we need to add one to # of array levels:
98 */
99 bool levels_add_one;
100
101 /* on a3xx, we need to scale up integer coords for isaml based
102 * on LoD:
103 */
104 bool unminify_coords;
105
106 /* on a4xx, for array textures we need to add 0.5 to the array
107 * index coordinate:
108 */
109 bool array_index_add_half;
110
111 /* on a4xx, bitmask of samplers which need astc+srgb workaround: */
112 unsigned astc_srgb;
113
114 unsigned max_texture_index;
115
116 /* set if we encounter something we can't handle yet, so we
117 * can bail cleanly and fallback to TGSI compiler f/e
118 */
119 bool error;
120 };
121
122
123 static struct ir3_instruction * create_immed(struct ir3_block *block, uint32_t val);
124 static struct ir3_block * get_block(struct ir3_compile *ctx, nir_block *nblock);
125
126
127 static struct ir3_compile *
128 compile_init(struct ir3_compiler *compiler,
129 struct ir3_shader_variant *so)
130 {
131 struct ir3_compile *ctx = rzalloc(NULL, struct ir3_compile);
132
133 if (compiler->gpu_id >= 400) {
134 /* need special handling for "flat" */
135 ctx->flat_bypass = true;
136 ctx->levels_add_one = false;
137 ctx->unminify_coords = false;
138 ctx->array_index_add_half = true;
139
140 if (so->type == SHADER_VERTEX)
141 ctx->astc_srgb = so->key.vastc_srgb;
142 else if (so->type == SHADER_FRAGMENT)
143 ctx->astc_srgb = so->key.fastc_srgb;
144
145 } else {
146 /* no special handling for "flat" */
147 ctx->flat_bypass = false;
148 ctx->levels_add_one = true;
149 ctx->unminify_coords = true;
150 ctx->array_index_add_half = false;
151 }
152
153 ctx->compiler = compiler;
154 ctx->ir = so->ir;
155 ctx->so = so;
156 ctx->def_ht = _mesa_hash_table_create(ctx,
157 _mesa_hash_pointer, _mesa_key_pointer_equal);
158 ctx->block_ht = _mesa_hash_table_create(ctx,
159 _mesa_hash_pointer, _mesa_key_pointer_equal);
160
161 /* TODO: maybe generate some sort of bitmask of what key
162 * lowers vs what shader has (ie. no need to lower
163 * texture clamp lowering if no texture sample instrs)..
164 * although should be done further up the stack to avoid
165 * creating duplicate variants..
166 */
167
168 if (ir3_key_lowers_nir(&so->key)) {
169 nir_shader *s = nir_shader_clone(ctx, so->shader->nir);
170 ctx->s = ir3_optimize_nir(so->shader, s, &so->key);
171 } else {
172 /* fast-path for shader key that lowers nothing in NIR: */
173 ctx->s = so->shader->nir;
174 }
175
176 if (fd_mesa_debug & FD_DBG_DISASM) {
177 DBG("dump nir%dv%d: type=%d, k={bp=%u,cts=%u,hp=%u}",
178 so->shader->id, so->id, so->type,
179 so->key.binning_pass, so->key.color_two_side,
180 so->key.half_precision);
181 nir_print_shader(ctx->s, stdout);
182 }
183
184 so->first_driver_param = so->first_immediate = align(ctx->s->num_uniforms, 4);
185
186 /* Layout of constant registers:
187 *
188 * num_uniform * vec4 - user consts
189 * 4 * vec4 - UBO addresses
190 * if (vertex shader) {
191 * N * vec4 - driver params (IR3_DP_*)
192 * 1 * vec4 - stream-out addresses
193 * }
194 *
195 * TODO this could be made more dynamic, to at least skip sections
196 * that we don't need..
197 */
198
199 /* reserve 4 (vec4) slots for ubo base addresses: */
200 so->first_immediate += 4;
201
202 if (so->type == SHADER_VERTEX) {
203 /* driver params (see ir3_driver_param): */
204 so->first_immediate += IR3_DP_COUNT/4; /* convert to vec4 */
205 /* one (vec4) slot for stream-output base addresses: */
206 so->first_immediate++;
207 }
208
209 return ctx;
210 }
211
212 static void
213 compile_error(struct ir3_compile *ctx, const char *format, ...)
214 {
215 va_list ap;
216 va_start(ap, format);
217 _debug_vprintf(format, ap);
218 va_end(ap);
219 nir_print_shader(ctx->s, stdout);
220 ctx->error = true;
221 debug_assert(0);
222 }
223
224 #define compile_assert(ctx, cond) do { \
225 if (!(cond)) compile_error((ctx), "failed assert: "#cond"\n"); \
226 } while (0)
227
228 static void
229 compile_free(struct ir3_compile *ctx)
230 {
231 ralloc_free(ctx);
232 }
233
234 static void
235 declare_var(struct ir3_compile *ctx, nir_variable *var)
236 {
237 unsigned length = glsl_get_length(var->type) * 4; /* always vec4, at least with ttn */
238 struct ir3_array *arr = ralloc(ctx, struct ir3_array);
239 arr->id = ++ctx->num_arrays;
240 arr->length = length;
241 arr->var = var;
242 list_addtail(&arr->node, &ctx->ir->array_list);
243 }
244
245 static struct ir3_array *
246 get_var(struct ir3_compile *ctx, nir_variable *var)
247 {
248 list_for_each_entry (struct ir3_array, arr, &ctx->ir->array_list, node) {
249 if (arr->var == var)
250 return arr;
251 }
252 compile_error(ctx, "bogus var: %s\n", var->name);
253 return NULL;
254 }
255
256 /* allocate a n element value array (to be populated by caller) and
257 * insert in def_ht
258 */
259 static struct ir3_instruction **
260 __get_dst(struct ir3_compile *ctx, void *key, unsigned n)
261 {
262 struct ir3_instruction **value =
263 ralloc_array(ctx->def_ht, struct ir3_instruction *, n);
264 _mesa_hash_table_insert(ctx->def_ht, key, value);
265 return value;
266 }
267
268 static struct ir3_instruction **
269 get_dst(struct ir3_compile *ctx, nir_dest *dst, unsigned n)
270 {
271 compile_assert(ctx, dst->is_ssa);
272 if (dst->is_ssa) {
273 return __get_dst(ctx, &dst->ssa, n);
274 } else {
275 return __get_dst(ctx, dst->reg.reg, n);
276 }
277 }
278
279 static struct ir3_instruction **
280 get_dst_ssa(struct ir3_compile *ctx, nir_ssa_def *dst, unsigned n)
281 {
282 return __get_dst(ctx, dst, n);
283 }
284
285 static struct ir3_instruction **
286 get_src(struct ir3_compile *ctx, nir_src *src)
287 {
288 struct hash_entry *entry;
289 compile_assert(ctx, src->is_ssa);
290 if (src->is_ssa) {
291 entry = _mesa_hash_table_search(ctx->def_ht, src->ssa);
292 } else {
293 entry = _mesa_hash_table_search(ctx->def_ht, src->reg.reg);
294 }
295 compile_assert(ctx, entry);
296 return entry->data;
297 }
298
299 static struct ir3_instruction *
300 create_immed(struct ir3_block *block, uint32_t val)
301 {
302 struct ir3_instruction *mov;
303
304 mov = ir3_instr_create(block, OPC_MOV);
305 mov->cat1.src_type = TYPE_U32;
306 mov->cat1.dst_type = TYPE_U32;
307 ir3_reg_create(mov, 0, 0);
308 ir3_reg_create(mov, 0, IR3_REG_IMMED)->uim_val = val;
309
310 return mov;
311 }
312
313 static struct ir3_instruction *
314 create_addr(struct ir3_block *block, struct ir3_instruction *src)
315 {
316 struct ir3_instruction *instr, *immed;
317
318 /* TODO in at least some cases, the backend could probably be
319 * made clever enough to propagate IR3_REG_HALF..
320 */
321 instr = ir3_COV(block, src, TYPE_U32, TYPE_S16);
322 instr->regs[0]->flags |= IR3_REG_HALF;
323
324 immed = create_immed(block, 2);
325 immed->regs[0]->flags |= IR3_REG_HALF;
326
327 instr = ir3_SHL_B(block, instr, 0, immed, 0);
328 instr->regs[0]->flags |= IR3_REG_HALF;
329 instr->regs[1]->flags |= IR3_REG_HALF;
330
331 instr = ir3_MOV(block, instr, TYPE_S16);
332 instr->regs[0]->num = regid(REG_A0, 0);
333 instr->regs[0]->flags |= IR3_REG_HALF;
334 instr->regs[1]->flags |= IR3_REG_HALF;
335
336 return instr;
337 }
338
339 /* caches addr values to avoid generating multiple cov/shl/mova
340 * sequences for each use of a given NIR level src as address
341 */
342 static struct ir3_instruction *
343 get_addr(struct ir3_compile *ctx, struct ir3_instruction *src)
344 {
345 struct ir3_instruction *addr;
346
347 if (!ctx->addr_ht) {
348 ctx->addr_ht = _mesa_hash_table_create(ctx,
349 _mesa_hash_pointer, _mesa_key_pointer_equal);
350 } else {
351 struct hash_entry *entry;
352 entry = _mesa_hash_table_search(ctx->addr_ht, src);
353 if (entry)
354 return entry->data;
355 }
356
357 addr = create_addr(ctx->block, src);
358 _mesa_hash_table_insert(ctx->addr_ht, src, addr);
359
360 return addr;
361 }
362
363 static struct ir3_instruction *
364 get_predicate(struct ir3_compile *ctx, struct ir3_instruction *src)
365 {
366 struct ir3_block *b = ctx->block;
367 struct ir3_instruction *cond;
368
369 /* NOTE: only cmps.*.* can write p0.x: */
370 cond = ir3_CMPS_S(b, src, 0, create_immed(b, 0), 0);
371 cond->cat2.condition = IR3_COND_NE;
372
373 /* condition always goes in predicate register: */
374 cond->regs[0]->num = regid(REG_P0, 0);
375
376 return cond;
377 }
378
379 static struct ir3_instruction *
380 create_uniform(struct ir3_compile *ctx, unsigned n)
381 {
382 struct ir3_instruction *mov;
383
384 mov = ir3_instr_create(ctx->block, OPC_MOV);
385 /* TODO get types right? */
386 mov->cat1.src_type = TYPE_F32;
387 mov->cat1.dst_type = TYPE_F32;
388 ir3_reg_create(mov, 0, 0);
389 ir3_reg_create(mov, n, IR3_REG_CONST);
390
391 return mov;
392 }
393
394 static struct ir3_instruction *
395 create_uniform_indirect(struct ir3_compile *ctx, int n,
396 struct ir3_instruction *address)
397 {
398 struct ir3_instruction *mov;
399
400 mov = ir3_instr_create(ctx->block, OPC_MOV);
401 mov->cat1.src_type = TYPE_U32;
402 mov->cat1.dst_type = TYPE_U32;
403 ir3_reg_create(mov, 0, 0);
404 ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
405
406 ir3_instr_set_address(mov, address);
407
408 return mov;
409 }
410
411 static struct ir3_instruction *
412 create_collect(struct ir3_block *block, struct ir3_instruction **arr,
413 unsigned arrsz)
414 {
415 struct ir3_instruction *collect;
416
417 if (arrsz == 0)
418 return NULL;
419
420 collect = ir3_instr_create2(block, OPC_META_FI, 1 + arrsz);
421 ir3_reg_create(collect, 0, 0); /* dst */
422 for (unsigned i = 0; i < arrsz; i++)
423 ir3_reg_create(collect, 0, IR3_REG_SSA)->instr = arr[i];
424
425 return collect;
426 }
427
428 static struct ir3_instruction *
429 create_indirect_load(struct ir3_compile *ctx, unsigned arrsz, int n,
430 struct ir3_instruction *address, struct ir3_instruction *collect)
431 {
432 struct ir3_block *block = ctx->block;
433 struct ir3_instruction *mov;
434 struct ir3_register *src;
435
436 mov = ir3_instr_create(block, OPC_MOV);
437 mov->cat1.src_type = TYPE_U32;
438 mov->cat1.dst_type = TYPE_U32;
439 ir3_reg_create(mov, 0, 0);
440 src = ir3_reg_create(mov, 0, IR3_REG_SSA | IR3_REG_RELATIV);
441 src->instr = collect;
442 src->size = arrsz;
443 src->array.offset = n;
444
445 ir3_instr_set_address(mov, address);
446
447 return mov;
448 }
449
450 /* relative (indirect) if address!=NULL */
451 static struct ir3_instruction *
452 create_var_load(struct ir3_compile *ctx, struct ir3_array *arr, int n,
453 struct ir3_instruction *address)
454 {
455 struct ir3_block *block = ctx->block;
456 struct ir3_instruction *mov;
457 struct ir3_register *src;
458
459 mov = ir3_instr_create(block, OPC_MOV);
460 mov->cat1.src_type = TYPE_U32;
461 mov->cat1.dst_type = TYPE_U32;
462 ir3_reg_create(mov, 0, 0);
463 src = ir3_reg_create(mov, 0, IR3_REG_ARRAY |
464 COND(address, IR3_REG_RELATIV));
465 src->instr = arr->last_write;
466 src->size = arr->length;
467 src->array.id = arr->id;
468 src->array.offset = n;
469
470 if (address)
471 ir3_instr_set_address(mov, address);
472
473 arr->last_access = mov;
474
475 return mov;
476 }
477
478 /* relative (indirect) if address!=NULL */
479 static struct ir3_instruction *
480 create_var_store(struct ir3_compile *ctx, struct ir3_array *arr, int n,
481 struct ir3_instruction *src, struct ir3_instruction *address)
482 {
483 struct ir3_block *block = ctx->block;
484 struct ir3_instruction *mov;
485 struct ir3_register *dst;
486
487 mov = ir3_instr_create(block, OPC_MOV);
488 mov->cat1.src_type = TYPE_U32;
489 mov->cat1.dst_type = TYPE_U32;
490 dst = ir3_reg_create(mov, 0, IR3_REG_ARRAY |
491 COND(address, IR3_REG_RELATIV));
492 dst->instr = arr->last_access;
493 dst->size = arr->length;
494 dst->array.id = arr->id;
495 dst->array.offset = n;
496 ir3_reg_create(mov, 0, IR3_REG_SSA)->instr = src;
497
498 ir3_instr_set_address(mov, address);
499
500 arr->last_write = arr->last_access = mov;
501
502 return mov;
503 }
504
505 static struct ir3_instruction *
506 create_input(struct ir3_block *block, unsigned n)
507 {
508 struct ir3_instruction *in;
509
510 in = ir3_instr_create(block, OPC_META_INPUT);
511 in->inout.block = block;
512 ir3_reg_create(in, n, 0);
513
514 return in;
515 }
516
517 static struct ir3_instruction *
518 create_frag_input(struct ir3_compile *ctx, bool use_ldlv)
519 {
520 struct ir3_block *block = ctx->block;
521 struct ir3_instruction *instr;
522 /* actual inloc is assigned and fixed up later: */
523 struct ir3_instruction *inloc = create_immed(block, 0);
524
525 if (use_ldlv) {
526 instr = ir3_LDLV(block, inloc, 0, create_immed(block, 1), 0);
527 instr->cat6.type = TYPE_U32;
528 instr->cat6.iim_val = 1;
529 } else {
530 instr = ir3_BARY_F(block, inloc, 0, ctx->frag_pos, 0);
531 instr->regs[2]->wrmask = 0x3;
532 }
533
534 return instr;
535 }
536
537 static struct ir3_instruction *
538 create_frag_coord(struct ir3_compile *ctx, unsigned comp)
539 {
540 struct ir3_block *block = ctx->block;
541 struct ir3_instruction *instr;
542
543 compile_assert(ctx, !ctx->frag_coord[comp]);
544
545 ctx->frag_coord[comp] = create_input(ctx->block, 0);
546
547 switch (comp) {
548 case 0: /* .x */
549 case 1: /* .y */
550 /* for frag_coord, we get unsigned values.. we need
551 * to subtract (integer) 8 and divide by 16 (right-
552 * shift by 4) then convert to float:
553 *
554 * sub.s tmp, src, 8
555 * shr.b tmp, tmp, 4
556 * mov.u32f32 dst, tmp
557 *
558 */
559 instr = ir3_SUB_S(block, ctx->frag_coord[comp], 0,
560 create_immed(block, 8), 0);
561 instr = ir3_SHR_B(block, instr, 0,
562 create_immed(block, 4), 0);
563 instr = ir3_COV(block, instr, TYPE_U32, TYPE_F32);
564
565 return instr;
566 case 2: /* .z */
567 case 3: /* .w */
568 default:
569 /* seems that we can use these as-is: */
570 return ctx->frag_coord[comp];
571 }
572 }
573
574 /* NOTE: this creates the "TGSI" style fragface (ie. input slot
575 * VARYING_SLOT_FACE). For NIR style nir_intrinsic_load_front_face
576 * we can just use the value from hw directly (since it is boolean)
577 */
578 static struct ir3_instruction *
579 create_frag_face(struct ir3_compile *ctx, unsigned comp)
580 {
581 struct ir3_block *block = ctx->block;
582 struct ir3_instruction *instr;
583
584 switch (comp) {
585 case 0: /* .x */
586 compile_assert(ctx, !ctx->frag_face);
587
588 ctx->frag_face = create_input(block, 0);
589 ctx->frag_face->regs[0]->flags |= IR3_REG_HALF;
590
591 /* for faceness, we always get -1 or 0 (int).. but TGSI expects
592 * positive vs negative float.. and piglit further seems to
593 * expect -1.0 or 1.0:
594 *
595 * mul.s tmp, hr0.x, 2
596 * add.s tmp, tmp, 1
597 * mov.s32f32, dst, tmp
598 *
599 */
600 instr = ir3_MUL_S(block, ctx->frag_face, 0,
601 create_immed(block, 2), 0);
602 instr = ir3_ADD_S(block, instr, 0,
603 create_immed(block, 1), 0);
604 instr = ir3_COV(block, instr, TYPE_S32, TYPE_F32);
605
606 return instr;
607 case 1: /* .y */
608 case 2: /* .z */
609 return create_immed(block, fui(0.0));
610 default:
611 case 3: /* .w */
612 return create_immed(block, fui(1.0));
613 }
614 }
615
616 static struct ir3_instruction *
617 create_driver_param(struct ir3_compile *ctx, enum ir3_driver_param dp)
618 {
619 /* first four vec4 sysval's reserved for UBOs: */
620 /* NOTE: dp is in scalar, but there can be >4 dp components: */
621 unsigned n = ctx->so->first_driver_param + IR3_DRIVER_PARAM_OFF;
622 unsigned r = regid(n + dp / 4, dp % 4);
623 return create_uniform(ctx, r);
624 }
625
626 /* helper for instructions that produce multiple consecutive scalar
627 * outputs which need to have a split/fanout meta instruction inserted
628 */
629 static void
630 split_dest(struct ir3_block *block, struct ir3_instruction **dst,
631 struct ir3_instruction *src, unsigned base, unsigned n)
632 {
633 struct ir3_instruction *prev = NULL;
634 for (int i = 0, j = 0; i < n; i++) {
635 struct ir3_instruction *split = ir3_instr_create(block, OPC_META_FO);
636 ir3_reg_create(split, 0, IR3_REG_SSA);
637 ir3_reg_create(split, 0, IR3_REG_SSA)->instr = src;
638 split->fo.off = i + base;
639
640 if (prev) {
641 split->cp.left = prev;
642 split->cp.left_cnt++;
643 prev->cp.right = split;
644 prev->cp.right_cnt++;
645 }
646 prev = split;
647
648 if (src->regs[0]->wrmask & (1 << (i + base)))
649 dst[j++] = split;
650 }
651 }
652
653 /*
654 * Adreno uses uint rather than having dedicated bool type,
655 * which (potentially) requires some conversion, in particular
656 * when using output of an bool instr to int input, or visa
657 * versa.
658 *
659 * | Adreno | NIR |
660 * -------+---------+-------+-
661 * true | 1 | ~0 |
662 * false | 0 | 0 |
663 *
664 * To convert from an adreno bool (uint) to nir, use:
665 *
666 * absneg.s dst, (neg)src
667 *
668 * To convert back in the other direction:
669 *
670 * absneg.s dst, (abs)arc
671 *
672 * The CP step can clean up the absneg.s that cancel each other
673 * out, and with a slight bit of extra cleverness (to recognize
674 * the instructions which produce either a 0 or 1) can eliminate
675 * the absneg.s's completely when an instruction that wants
676 * 0/1 consumes the result. For example, when a nir 'bcsel'
677 * consumes the result of 'feq'. So we should be able to get by
678 * without a boolean resolve step, and without incuring any
679 * extra penalty in instruction count.
680 */
681
682 /* NIR bool -> native (adreno): */
683 static struct ir3_instruction *
684 ir3_b2n(struct ir3_block *block, struct ir3_instruction *instr)
685 {
686 return ir3_ABSNEG_S(block, instr, IR3_REG_SABS);
687 }
688
689 /* native (adreno) -> NIR bool: */
690 static struct ir3_instruction *
691 ir3_n2b(struct ir3_block *block, struct ir3_instruction *instr)
692 {
693 return ir3_ABSNEG_S(block, instr, IR3_REG_SNEG);
694 }
695
696 /*
697 * alu/sfu instructions:
698 */
699
700 static void
701 emit_alu(struct ir3_compile *ctx, nir_alu_instr *alu)
702 {
703 const nir_op_info *info = &nir_op_infos[alu->op];
704 struct ir3_instruction **dst, *src[info->num_inputs];
705 struct ir3_block *b = ctx->block;
706
707 dst = get_dst(ctx, &alu->dest.dest, MAX2(info->output_size, 1));
708
709 /* Vectors are special in that they have non-scalarized writemasks,
710 * and just take the first swizzle channel for each argument in
711 * order into each writemask channel.
712 */
713 if ((alu->op == nir_op_vec2) ||
714 (alu->op == nir_op_vec3) ||
715 (alu->op == nir_op_vec4)) {
716
717 for (int i = 0; i < info->num_inputs; i++) {
718 nir_alu_src *asrc = &alu->src[i];
719
720 compile_assert(ctx, !asrc->abs);
721 compile_assert(ctx, !asrc->negate);
722
723 src[i] = get_src(ctx, &asrc->src)[asrc->swizzle[0]];
724 if (!src[i])
725 src[i] = create_immed(ctx->block, 0);
726 dst[i] = ir3_MOV(b, src[i], TYPE_U32);
727 }
728
729 return;
730 }
731
732 /* General case: We can just grab the one used channel per src. */
733 for (int i = 0; i < info->num_inputs; i++) {
734 unsigned chan = ffs(alu->dest.write_mask) - 1;
735 nir_alu_src *asrc = &alu->src[i];
736
737 compile_assert(ctx, !asrc->abs);
738 compile_assert(ctx, !asrc->negate);
739
740 src[i] = get_src(ctx, &asrc->src)[asrc->swizzle[chan]];
741
742 compile_assert(ctx, src[i]);
743 }
744
745 switch (alu->op) {
746 case nir_op_f2i:
747 dst[0] = ir3_COV(b, src[0], TYPE_F32, TYPE_S32);
748 break;
749 case nir_op_f2u:
750 dst[0] = ir3_COV(b, src[0], TYPE_F32, TYPE_U32);
751 break;
752 case nir_op_i2f:
753 dst[0] = ir3_COV(b, src[0], TYPE_S32, TYPE_F32);
754 break;
755 case nir_op_u2f:
756 dst[0] = ir3_COV(b, src[0], TYPE_U32, TYPE_F32);
757 break;
758 case nir_op_imov:
759 dst[0] = ir3_MOV(b, src[0], TYPE_S32);
760 break;
761 case nir_op_fmov:
762 dst[0] = ir3_MOV(b, src[0], TYPE_F32);
763 break;
764 case nir_op_f2b:
765 dst[0] = ir3_CMPS_F(b, src[0], 0, create_immed(b, fui(0.0)), 0);
766 dst[0]->cat2.condition = IR3_COND_NE;
767 dst[0] = ir3_n2b(b, dst[0]);
768 break;
769 case nir_op_b2f:
770 dst[0] = ir3_COV(b, ir3_b2n(b, src[0]), TYPE_U32, TYPE_F32);
771 break;
772 case nir_op_b2i:
773 dst[0] = ir3_b2n(b, src[0]);
774 break;
775 case nir_op_i2b:
776 dst[0] = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
777 dst[0]->cat2.condition = IR3_COND_NE;
778 dst[0] = ir3_n2b(b, dst[0]);
779 break;
780
781 case nir_op_fneg:
782 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FNEG);
783 break;
784 case nir_op_fabs:
785 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FABS);
786 break;
787 case nir_op_fmax:
788 dst[0] = ir3_MAX_F(b, src[0], 0, src[1], 0);
789 break;
790 case nir_op_fmin:
791 dst[0] = ir3_MIN_F(b, src[0], 0, src[1], 0);
792 break;
793 case nir_op_fmul:
794 dst[0] = ir3_MUL_F(b, src[0], 0, src[1], 0);
795 break;
796 case nir_op_fadd:
797 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], 0);
798 break;
799 case nir_op_fsub:
800 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], IR3_REG_FNEG);
801 break;
802 case nir_op_ffma:
803 dst[0] = ir3_MAD_F32(b, src[0], 0, src[1], 0, src[2], 0);
804 break;
805 case nir_op_fddx:
806 dst[0] = ir3_DSX(b, src[0], 0);
807 dst[0]->cat5.type = TYPE_F32;
808 break;
809 case nir_op_fddy:
810 dst[0] = ir3_DSY(b, src[0], 0);
811 dst[0]->cat5.type = TYPE_F32;
812 break;
813 break;
814 case nir_op_flt:
815 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
816 dst[0]->cat2.condition = IR3_COND_LT;
817 dst[0] = ir3_n2b(b, dst[0]);
818 break;
819 case nir_op_fge:
820 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
821 dst[0]->cat2.condition = IR3_COND_GE;
822 dst[0] = ir3_n2b(b, dst[0]);
823 break;
824 case nir_op_feq:
825 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
826 dst[0]->cat2.condition = IR3_COND_EQ;
827 dst[0] = ir3_n2b(b, dst[0]);
828 break;
829 case nir_op_fne:
830 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
831 dst[0]->cat2.condition = IR3_COND_NE;
832 dst[0] = ir3_n2b(b, dst[0]);
833 break;
834 case nir_op_fceil:
835 dst[0] = ir3_CEIL_F(b, src[0], 0);
836 break;
837 case nir_op_ffloor:
838 dst[0] = ir3_FLOOR_F(b, src[0], 0);
839 break;
840 case nir_op_ftrunc:
841 dst[0] = ir3_TRUNC_F(b, src[0], 0);
842 break;
843 case nir_op_fround_even:
844 dst[0] = ir3_RNDNE_F(b, src[0], 0);
845 break;
846 case nir_op_fsign:
847 dst[0] = ir3_SIGN_F(b, src[0], 0);
848 break;
849
850 case nir_op_fsin:
851 dst[0] = ir3_SIN(b, src[0], 0);
852 break;
853 case nir_op_fcos:
854 dst[0] = ir3_COS(b, src[0], 0);
855 break;
856 case nir_op_frsq:
857 dst[0] = ir3_RSQ(b, src[0], 0);
858 break;
859 case nir_op_frcp:
860 dst[0] = ir3_RCP(b, src[0], 0);
861 break;
862 case nir_op_flog2:
863 dst[0] = ir3_LOG2(b, src[0], 0);
864 break;
865 case nir_op_fexp2:
866 dst[0] = ir3_EXP2(b, src[0], 0);
867 break;
868 case nir_op_fsqrt:
869 dst[0] = ir3_SQRT(b, src[0], 0);
870 break;
871
872 case nir_op_iabs:
873 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SABS);
874 break;
875 case nir_op_iadd:
876 dst[0] = ir3_ADD_U(b, src[0], 0, src[1], 0);
877 break;
878 case nir_op_iand:
879 dst[0] = ir3_AND_B(b, src[0], 0, src[1], 0);
880 break;
881 case nir_op_imax:
882 dst[0] = ir3_MAX_S(b, src[0], 0, src[1], 0);
883 break;
884 case nir_op_umax:
885 dst[0] = ir3_MAX_U(b, src[0], 0, src[1], 0);
886 break;
887 case nir_op_imin:
888 dst[0] = ir3_MIN_S(b, src[0], 0, src[1], 0);
889 break;
890 case nir_op_umin:
891 dst[0] = ir3_MIN_U(b, src[0], 0, src[1], 0);
892 break;
893 case nir_op_imul:
894 /*
895 * dst = (al * bl) + (ah * bl << 16) + (al * bh << 16)
896 * mull.u tmp0, a, b ; mul low, i.e. al * bl
897 * madsh.m16 tmp1, a, b, tmp0 ; mul-add shift high mix, i.e. ah * bl << 16
898 * madsh.m16 dst, b, a, tmp1 ; i.e. al * bh << 16
899 */
900 dst[0] = ir3_MADSH_M16(b, src[1], 0, src[0], 0,
901 ir3_MADSH_M16(b, src[0], 0, src[1], 0,
902 ir3_MULL_U(b, src[0], 0, src[1], 0), 0), 0);
903 break;
904 case nir_op_ineg:
905 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
906 break;
907 case nir_op_inot:
908 dst[0] = ir3_NOT_B(b, src[0], 0);
909 break;
910 case nir_op_ior:
911 dst[0] = ir3_OR_B(b, src[0], 0, src[1], 0);
912 break;
913 case nir_op_ishl:
914 dst[0] = ir3_SHL_B(b, src[0], 0, src[1], 0);
915 break;
916 case nir_op_ishr:
917 dst[0] = ir3_ASHR_B(b, src[0], 0, src[1], 0);
918 break;
919 case nir_op_isign: {
920 /* maybe this would be sane to lower in nir.. */
921 struct ir3_instruction *neg, *pos;
922
923 neg = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
924 neg->cat2.condition = IR3_COND_LT;
925
926 pos = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
927 pos->cat2.condition = IR3_COND_GT;
928
929 dst[0] = ir3_SUB_U(b, pos, 0, neg, 0);
930
931 break;
932 }
933 case nir_op_isub:
934 dst[0] = ir3_SUB_U(b, src[0], 0, src[1], 0);
935 break;
936 case nir_op_ixor:
937 dst[0] = ir3_XOR_B(b, src[0], 0, src[1], 0);
938 break;
939 case nir_op_ushr:
940 dst[0] = ir3_SHR_B(b, src[0], 0, src[1], 0);
941 break;
942 case nir_op_ilt:
943 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
944 dst[0]->cat2.condition = IR3_COND_LT;
945 dst[0] = ir3_n2b(b, dst[0]);
946 break;
947 case nir_op_ige:
948 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
949 dst[0]->cat2.condition = IR3_COND_GE;
950 dst[0] = ir3_n2b(b, dst[0]);
951 break;
952 case nir_op_ieq:
953 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
954 dst[0]->cat2.condition = IR3_COND_EQ;
955 dst[0] = ir3_n2b(b, dst[0]);
956 break;
957 case nir_op_ine:
958 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
959 dst[0]->cat2.condition = IR3_COND_NE;
960 dst[0] = ir3_n2b(b, dst[0]);
961 break;
962 case nir_op_ult:
963 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
964 dst[0]->cat2.condition = IR3_COND_LT;
965 dst[0] = ir3_n2b(b, dst[0]);
966 break;
967 case nir_op_uge:
968 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
969 dst[0]->cat2.condition = IR3_COND_GE;
970 dst[0] = ir3_n2b(b, dst[0]);
971 break;
972
973 case nir_op_bcsel:
974 dst[0] = ir3_SEL_B32(b, src[1], 0, ir3_b2n(b, src[0]), 0, src[2], 0);
975 break;
976
977 case nir_op_bit_count:
978 dst[0] = ir3_CBITS_B(b, src[0], 0);
979 break;
980 case nir_op_ifind_msb: {
981 struct ir3_instruction *cmp;
982 dst[0] = ir3_CLZ_S(b, src[0], 0);
983 cmp = ir3_CMPS_S(b, dst[0], 0, create_immed(b, 0), 0);
984 cmp->cat2.condition = IR3_COND_GE;
985 dst[0] = ir3_SEL_B32(b,
986 ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
987 cmp, 0, dst[0], 0);
988 break;
989 }
990 case nir_op_ufind_msb:
991 dst[0] = ir3_CLZ_B(b, src[0], 0);
992 dst[0] = ir3_SEL_B32(b,
993 ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
994 src[0], 0, dst[0], 0);
995 break;
996 case nir_op_find_lsb:
997 dst[0] = ir3_BFREV_B(b, src[0], 0);
998 dst[0] = ir3_CLZ_B(b, dst[0], 0);
999 break;
1000 case nir_op_bitfield_reverse:
1001 dst[0] = ir3_BFREV_B(b, src[0], 0);
1002 break;
1003
1004 default:
1005 compile_error(ctx, "Unhandled ALU op: %s\n",
1006 nir_op_infos[alu->op].name);
1007 break;
1008 }
1009 }
1010
1011 /* handles direct/indirect UBO reads: */
1012 static void
1013 emit_intrinsic_load_ubo(struct ir3_compile *ctx, nir_intrinsic_instr *intr,
1014 struct ir3_instruction **dst)
1015 {
1016 struct ir3_block *b = ctx->block;
1017 struct ir3_instruction *addr, *src0, *src1;
1018 nir_const_value *const_offset;
1019 /* UBO addresses are the first driver params: */
1020 unsigned ubo = regid(ctx->so->first_driver_param + IR3_UBOS_OFF, 0);
1021 int off = 0;
1022
1023 /* First src is ubo index, which could either be an immed or not: */
1024 src0 = get_src(ctx, &intr->src[0])[0];
1025 if (is_same_type_mov(src0) &&
1026 (src0->regs[1]->flags & IR3_REG_IMMED)) {
1027 addr = create_uniform(ctx, ubo + src0->regs[1]->iim_val);
1028 } else {
1029 addr = create_uniform_indirect(ctx, ubo, get_addr(ctx, src0));
1030 }
1031
1032 const_offset = nir_src_as_const_value(intr->src[1]);
1033 if (const_offset) {
1034 off += const_offset->u32[0];
1035 } else {
1036 /* For load_ubo_indirect, second src is indirect offset: */
1037 src1 = get_src(ctx, &intr->src[1])[0];
1038
1039 /* and add offset to addr: */
1040 addr = ir3_ADD_S(b, addr, 0, src1, 0);
1041 }
1042
1043 /* if offset is to large to encode in the ldg, split it out: */
1044 if ((off + (intr->num_components * 4)) > 1024) {
1045 /* split out the minimal amount to improve the odds that
1046 * cp can fit the immediate in the add.s instruction:
1047 */
1048 unsigned off2 = off + (intr->num_components * 4) - 1024;
1049 addr = ir3_ADD_S(b, addr, 0, create_immed(b, off2), 0);
1050 off -= off2;
1051 }
1052
1053 for (int i = 0; i < intr->num_components; i++) {
1054 struct ir3_instruction *load =
1055 ir3_LDG(b, addr, 0, create_immed(b, 1), 0);
1056 load->cat6.type = TYPE_U32;
1057 load->cat6.src_offset = off + i * 4; /* byte offset */
1058 dst[i] = load;
1059 }
1060 }
1061
1062 /* handles array reads: */
1063 static void
1064 emit_intrinsic_load_var(struct ir3_compile *ctx, nir_intrinsic_instr *intr,
1065 struct ir3_instruction **dst)
1066 {
1067 nir_deref_var *dvar = intr->variables[0];
1068 nir_deref_array *darr = nir_deref_as_array(dvar->deref.child);
1069 struct ir3_array *arr = get_var(ctx, dvar->var);
1070
1071 compile_assert(ctx, dvar->deref.child &&
1072 (dvar->deref.child->deref_type == nir_deref_type_array));
1073
1074 switch (darr->deref_array_type) {
1075 case nir_deref_array_type_direct:
1076 /* direct access does not require anything special: */
1077 for (int i = 0; i < intr->num_components; i++) {
1078 unsigned n = darr->base_offset * 4 + i;
1079 compile_assert(ctx, n < arr->length);
1080 dst[i] = create_var_load(ctx, arr, n, NULL);
1081 }
1082 break;
1083 case nir_deref_array_type_indirect: {
1084 /* for indirect, we need to collect all the array elements: */
1085 struct ir3_instruction *addr =
1086 get_addr(ctx, get_src(ctx, &darr->indirect)[0]);
1087 for (int i = 0; i < intr->num_components; i++) {
1088 unsigned n = darr->base_offset * 4 + i;
1089 compile_assert(ctx, n < arr->length);
1090 dst[i] = create_var_load(ctx, arr, n, addr);
1091 }
1092 break;
1093 }
1094 default:
1095 compile_error(ctx, "Unhandled load deref type: %u\n",
1096 darr->deref_array_type);
1097 break;
1098 }
1099 }
1100
1101 /* handles array writes: */
1102 static void
1103 emit_intrinsic_store_var(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
1104 {
1105 nir_deref_var *dvar = intr->variables[0];
1106 nir_deref_array *darr = nir_deref_as_array(dvar->deref.child);
1107 struct ir3_array *arr = get_var(ctx, dvar->var);
1108 struct ir3_instruction *addr, **src;
1109 unsigned wrmask = nir_intrinsic_write_mask(intr);
1110
1111 compile_assert(ctx, dvar->deref.child &&
1112 (dvar->deref.child->deref_type == nir_deref_type_array));
1113
1114 src = get_src(ctx, &intr->src[0]);
1115
1116 switch (darr->deref_array_type) {
1117 case nir_deref_array_type_direct:
1118 addr = NULL;
1119 break;
1120 case nir_deref_array_type_indirect:
1121 addr = get_addr(ctx, get_src(ctx, &darr->indirect)[0]);
1122 break;
1123 default:
1124 compile_error(ctx, "Unhandled store deref type: %u\n",
1125 darr->deref_array_type);
1126 return;
1127 }
1128
1129 for (int i = 0; i < intr->num_components; i++) {
1130 if (!(wrmask & (1 << i)))
1131 continue;
1132 unsigned n = darr->base_offset * 4 + i;
1133 compile_assert(ctx, n < arr->length);
1134 create_var_store(ctx, arr, n, src[i], addr);
1135 }
1136 }
1137
1138 static void add_sysval_input(struct ir3_compile *ctx, gl_system_value slot,
1139 struct ir3_instruction *instr)
1140 {
1141 struct ir3_shader_variant *so = ctx->so;
1142 unsigned r = regid(so->inputs_count, 0);
1143 unsigned n = so->inputs_count++;
1144
1145 so->inputs[n].sysval = true;
1146 so->inputs[n].slot = slot;
1147 so->inputs[n].compmask = 1;
1148 so->inputs[n].regid = r;
1149 so->inputs[n].interpolate = INTERP_QUALIFIER_FLAT;
1150 so->total_in++;
1151
1152 ctx->ir->ninputs = MAX2(ctx->ir->ninputs, r + 1);
1153 ctx->ir->inputs[r] = instr;
1154 }
1155
1156 static void
1157 emit_intrinsic(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
1158 {
1159 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1160 struct ir3_instruction **dst, **src;
1161 struct ir3_block *b = ctx->block;
1162 nir_const_value *const_offset;
1163 int idx;
1164
1165 if (info->has_dest) {
1166 dst = get_dst(ctx, &intr->dest, intr->num_components);
1167 } else {
1168 dst = NULL;
1169 }
1170
1171 switch (intr->intrinsic) {
1172 case nir_intrinsic_load_uniform:
1173 idx = nir_intrinsic_base(intr);
1174 const_offset = nir_src_as_const_value(intr->src[0]);
1175 if (const_offset) {
1176 idx += const_offset->u32[0];
1177 for (int i = 0; i < intr->num_components; i++) {
1178 unsigned n = idx * 4 + i;
1179 dst[i] = create_uniform(ctx, n);
1180 }
1181 } else {
1182 src = get_src(ctx, &intr->src[0]);
1183 for (int i = 0; i < intr->num_components; i++) {
1184 int n = idx * 4 + i;
1185 dst[i] = create_uniform_indirect(ctx, n,
1186 get_addr(ctx, src[0]));
1187 }
1188 /* NOTE: if relative addressing is used, we set
1189 * constlen in the compiler (to worst-case value)
1190 * since we don't know in the assembler what the max
1191 * addr reg value can be:
1192 */
1193 ctx->so->constlen = ctx->s->num_uniforms;
1194 }
1195 break;
1196 case nir_intrinsic_load_ubo:
1197 emit_intrinsic_load_ubo(ctx, intr, dst);
1198 break;
1199 case nir_intrinsic_load_input:
1200 idx = nir_intrinsic_base(intr);
1201 const_offset = nir_src_as_const_value(intr->src[0]);
1202 if (const_offset) {
1203 idx += const_offset->u32[0];
1204 for (int i = 0; i < intr->num_components; i++) {
1205 unsigned n = idx * 4 + i;
1206 dst[i] = ctx->ir->inputs[n];
1207 }
1208 } else {
1209 src = get_src(ctx, &intr->src[0]);
1210 struct ir3_instruction *collect =
1211 create_collect(b, ctx->ir->inputs, ctx->ir->ninputs);
1212 struct ir3_instruction *addr = get_addr(ctx, src[0]);
1213 for (int i = 0; i < intr->num_components; i++) {
1214 unsigned n = idx * 4 + i;
1215 dst[i] = create_indirect_load(ctx, ctx->ir->ninputs,
1216 n, addr, collect);
1217 }
1218 }
1219 break;
1220 case nir_intrinsic_load_var:
1221 emit_intrinsic_load_var(ctx, intr, dst);
1222 break;
1223 case nir_intrinsic_store_var:
1224 emit_intrinsic_store_var(ctx, intr);
1225 break;
1226 case nir_intrinsic_store_output:
1227 idx = nir_intrinsic_base(intr);
1228 const_offset = nir_src_as_const_value(intr->src[1]);
1229 compile_assert(ctx, const_offset != NULL);
1230 idx += const_offset->u32[0];
1231
1232 src = get_src(ctx, &intr->src[0]);
1233 for (int i = 0; i < intr->num_components; i++) {
1234 unsigned n = idx * 4 + i;
1235 ctx->ir->outputs[n] = src[i];
1236 }
1237 break;
1238 case nir_intrinsic_load_base_vertex:
1239 if (!ctx->basevertex) {
1240 ctx->basevertex = create_driver_param(ctx, IR3_DP_VTXID_BASE);
1241 add_sysval_input(ctx, SYSTEM_VALUE_BASE_VERTEX,
1242 ctx->basevertex);
1243 }
1244 dst[0] = ctx->basevertex;
1245 break;
1246 case nir_intrinsic_load_vertex_id_zero_base:
1247 if (!ctx->vertex_id) {
1248 ctx->vertex_id = create_input(b, 0);
1249 add_sysval_input(ctx, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE,
1250 ctx->vertex_id);
1251 }
1252 dst[0] = ctx->vertex_id;
1253 break;
1254 case nir_intrinsic_load_instance_id:
1255 if (!ctx->instance_id) {
1256 ctx->instance_id = create_input(b, 0);
1257 add_sysval_input(ctx, SYSTEM_VALUE_INSTANCE_ID,
1258 ctx->instance_id);
1259 }
1260 dst[0] = ctx->instance_id;
1261 break;
1262 case nir_intrinsic_load_user_clip_plane:
1263 idx = nir_intrinsic_ucp_id(intr);
1264 for (int i = 0; i < intr->num_components; i++) {
1265 unsigned n = idx * 4 + i;
1266 dst[i] = create_driver_param(ctx, IR3_DP_UCP0_X + n);
1267 }
1268 break;
1269 case nir_intrinsic_load_front_face:
1270 if (!ctx->frag_face) {
1271 ctx->so->frag_face = true;
1272 ctx->frag_face = create_input(b, 0);
1273 ctx->frag_face->regs[0]->flags |= IR3_REG_HALF;
1274 }
1275 /* for fragface, we always get -1 or 0, but that is inverse
1276 * of what nir expects (where ~0 is true). Unfortunately
1277 * trying to widen from half to full in add.s seems to do a
1278 * non-sign-extending widen (resulting in something that
1279 * gets interpreted as float Inf??)
1280 */
1281 dst[0] = ir3_COV(b, ctx->frag_face, TYPE_S16, TYPE_S32);
1282 dst[0] = ir3_ADD_S(b, dst[0], 0, create_immed(b, 1), 0);
1283 break;
1284 case nir_intrinsic_discard_if:
1285 case nir_intrinsic_discard: {
1286 struct ir3_instruction *cond, *kill;
1287
1288 if (intr->intrinsic == nir_intrinsic_discard_if) {
1289 /* conditional discard: */
1290 src = get_src(ctx, &intr->src[0]);
1291 cond = ir3_b2n(b, src[0]);
1292 } else {
1293 /* unconditional discard: */
1294 cond = create_immed(b, 1);
1295 }
1296
1297 /* NOTE: only cmps.*.* can write p0.x: */
1298 cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
1299 cond->cat2.condition = IR3_COND_NE;
1300
1301 /* condition always goes in predicate register: */
1302 cond->regs[0]->num = regid(REG_P0, 0);
1303
1304 kill = ir3_KILL(b, cond, 0);
1305 array_insert(ctx->ir->predicates, kill);
1306
1307 array_insert(ctx->ir->keeps, kill);
1308 ctx->so->has_kill = true;
1309
1310 break;
1311 }
1312 default:
1313 compile_error(ctx, "Unhandled intrinsic type: %s\n",
1314 nir_intrinsic_infos[intr->intrinsic].name);
1315 break;
1316 }
1317 }
1318
1319 static void
1320 emit_load_const(struct ir3_compile *ctx, nir_load_const_instr *instr)
1321 {
1322 struct ir3_instruction **dst = get_dst_ssa(ctx, &instr->def,
1323 instr->def.num_components);
1324 for (int i = 0; i < instr->def.num_components; i++)
1325 dst[i] = create_immed(ctx->block, instr->value.u32[i]);
1326 }
1327
1328 static void
1329 emit_undef(struct ir3_compile *ctx, nir_ssa_undef_instr *undef)
1330 {
1331 struct ir3_instruction **dst = get_dst_ssa(ctx, &undef->def,
1332 undef->def.num_components);
1333 /* backend doesn't want undefined instructions, so just plug
1334 * in 0.0..
1335 */
1336 for (int i = 0; i < undef->def.num_components; i++)
1337 dst[i] = create_immed(ctx->block, fui(0.0));
1338 }
1339
1340 /*
1341 * texture fetch/sample instructions:
1342 */
1343
1344 static void
1345 tex_info(nir_tex_instr *tex, unsigned *flagsp, unsigned *coordsp)
1346 {
1347 unsigned coords, flags = 0;
1348
1349 /* note: would use tex->coord_components.. except txs.. also,
1350 * since array index goes after shadow ref, we don't want to
1351 * count it:
1352 */
1353 switch (tex->sampler_dim) {
1354 case GLSL_SAMPLER_DIM_1D:
1355 case GLSL_SAMPLER_DIM_BUF:
1356 coords = 1;
1357 break;
1358 case GLSL_SAMPLER_DIM_2D:
1359 case GLSL_SAMPLER_DIM_RECT:
1360 case GLSL_SAMPLER_DIM_EXTERNAL:
1361 case GLSL_SAMPLER_DIM_MS:
1362 coords = 2;
1363 break;
1364 case GLSL_SAMPLER_DIM_3D:
1365 case GLSL_SAMPLER_DIM_CUBE:
1366 coords = 3;
1367 flags |= IR3_INSTR_3D;
1368 break;
1369 default:
1370 unreachable("bad sampler_dim");
1371 }
1372
1373 if (tex->is_shadow && tex->op != nir_texop_lod)
1374 flags |= IR3_INSTR_S;
1375
1376 if (tex->is_array && tex->op != nir_texop_lod)
1377 flags |= IR3_INSTR_A;
1378
1379 *flagsp = flags;
1380 *coordsp = coords;
1381 }
1382
1383 static void
1384 emit_tex(struct ir3_compile *ctx, nir_tex_instr *tex)
1385 {
1386 struct ir3_block *b = ctx->block;
1387 struct ir3_instruction **dst, *sam, *src0[12], *src1[4];
1388 struct ir3_instruction **coord, *lod, *compare, *proj, **off, **ddx, **ddy;
1389 bool has_bias = false, has_lod = false, has_proj = false, has_off = false;
1390 unsigned i, coords, flags;
1391 unsigned nsrc0 = 0, nsrc1 = 0;
1392 type_t type;
1393 opc_t opc = 0;
1394
1395 coord = off = ddx = ddy = NULL;
1396 lod = proj = compare = NULL;
1397
1398 /* TODO: might just be one component for gathers? */
1399 dst = get_dst(ctx, &tex->dest, 4);
1400
1401 for (unsigned i = 0; i < tex->num_srcs; i++) {
1402 switch (tex->src[i].src_type) {
1403 case nir_tex_src_coord:
1404 coord = get_src(ctx, &tex->src[i].src);
1405 break;
1406 case nir_tex_src_bias:
1407 lod = get_src(ctx, &tex->src[i].src)[0];
1408 has_bias = true;
1409 break;
1410 case nir_tex_src_lod:
1411 lod = get_src(ctx, &tex->src[i].src)[0];
1412 has_lod = true;
1413 break;
1414 case nir_tex_src_comparitor: /* shadow comparator */
1415 compare = get_src(ctx, &tex->src[i].src)[0];
1416 break;
1417 case nir_tex_src_projector:
1418 proj = get_src(ctx, &tex->src[i].src)[0];
1419 has_proj = true;
1420 break;
1421 case nir_tex_src_offset:
1422 off = get_src(ctx, &tex->src[i].src);
1423 has_off = true;
1424 break;
1425 case nir_tex_src_ddx:
1426 ddx = get_src(ctx, &tex->src[i].src);
1427 break;
1428 case nir_tex_src_ddy:
1429 ddy = get_src(ctx, &tex->src[i].src);
1430 break;
1431 default:
1432 compile_error(ctx, "Unhandled NIR tex src type: %d\n",
1433 tex->src[i].src_type);
1434 return;
1435 }
1436 }
1437
1438 switch (tex->op) {
1439 case nir_texop_tex: opc = OPC_SAM; break;
1440 case nir_texop_txb: opc = OPC_SAMB; break;
1441 case nir_texop_txl: opc = OPC_SAML; break;
1442 case nir_texop_txd: opc = OPC_SAMGQ; break;
1443 case nir_texop_txf: opc = OPC_ISAML; break;
1444 case nir_texop_lod: opc = OPC_GETLOD; break;
1445 case nir_texop_txf_ms:
1446 case nir_texop_txs:
1447 case nir_texop_tg4:
1448 case nir_texop_query_levels:
1449 case nir_texop_texture_samples:
1450 case nir_texop_samples_identical:
1451 case nir_texop_txf_ms_mcs:
1452 compile_error(ctx, "Unhandled NIR tex type: %d\n", tex->op);
1453 return;
1454 }
1455
1456 tex_info(tex, &flags, &coords);
1457
1458 /* scale up integer coords for TXF based on the LOD */
1459 if (ctx->unminify_coords && (opc == OPC_ISAML)) {
1460 assert(has_lod);
1461 for (i = 0; i < coords; i++)
1462 coord[i] = ir3_SHL_B(b, coord[i], 0, lod, 0);
1463 }
1464
1465 /* the array coord for cube arrays needs 0.5 added to it */
1466 if (ctx->array_index_add_half && tex->is_array && (opc != OPC_ISAML))
1467 coord[coords] = ir3_ADD_F(b, coord[coords], 0, create_immed(b, fui(0.5)), 0);
1468
1469 /*
1470 * lay out the first argument in the proper order:
1471 * - actual coordinates first
1472 * - shadow reference
1473 * - array index
1474 * - projection w
1475 * - starting at offset 4, dpdx.xy, dpdy.xy
1476 *
1477 * bias/lod go into the second arg
1478 */
1479
1480 /* insert tex coords: */
1481 for (i = 0; i < coords; i++)
1482 src0[nsrc0++] = coord[i];
1483
1484 if (coords == 1) {
1485 /* hw doesn't do 1d, so we treat it as 2d with
1486 * height of 1, and patch up the y coord.
1487 * TODO: y coord should be (int)0 in some cases..
1488 */
1489 src0[nsrc0++] = create_immed(b, fui(0.5));
1490 }
1491
1492 if (tex->is_shadow && tex->op != nir_texop_lod)
1493 src0[nsrc0++] = compare;
1494
1495 if (tex->is_array && tex->op != nir_texop_lod)
1496 src0[nsrc0++] = coord[coords];
1497
1498 if (has_proj) {
1499 src0[nsrc0++] = proj;
1500 flags |= IR3_INSTR_P;
1501 }
1502
1503 /* pad to 4, then ddx/ddy: */
1504 if (tex->op == nir_texop_txd) {
1505 while (nsrc0 < 4)
1506 src0[nsrc0++] = create_immed(b, fui(0.0));
1507 for (i = 0; i < coords; i++)
1508 src0[nsrc0++] = ddx[i];
1509 if (coords < 2)
1510 src0[nsrc0++] = create_immed(b, fui(0.0));
1511 for (i = 0; i < coords; i++)
1512 src0[nsrc0++] = ddy[i];
1513 if (coords < 2)
1514 src0[nsrc0++] = create_immed(b, fui(0.0));
1515 }
1516
1517 /*
1518 * second argument (if applicable):
1519 * - offsets
1520 * - lod
1521 * - bias
1522 */
1523 if (has_off | has_lod | has_bias) {
1524 if (has_off) {
1525 for (i = 0; i < coords; i++)
1526 src1[nsrc1++] = off[i];
1527 if (coords < 2)
1528 src1[nsrc1++] = create_immed(b, fui(0.0));
1529 flags |= IR3_INSTR_O;
1530 }
1531
1532 if (has_lod | has_bias)
1533 src1[nsrc1++] = lod;
1534 }
1535
1536 switch (tex->dest_type) {
1537 case nir_type_invalid:
1538 case nir_type_float:
1539 type = TYPE_F32;
1540 break;
1541 case nir_type_int:
1542 type = TYPE_S32;
1543 break;
1544 case nir_type_uint:
1545 case nir_type_bool:
1546 type = TYPE_U32;
1547 break;
1548 default:
1549 unreachable("bad dest_type");
1550 }
1551
1552 if (opc == OPC_GETLOD)
1553 type = TYPE_U32;
1554
1555 unsigned tex_idx = tex->texture_index;
1556
1557 ctx->max_texture_index = MAX2(ctx->max_texture_index, tex_idx);
1558
1559 struct ir3_instruction *col0 = create_collect(b, src0, nsrc0);
1560 struct ir3_instruction *col1 = create_collect(b, src1, nsrc1);
1561
1562 sam = ir3_SAM(b, opc, type, TGSI_WRITEMASK_XYZW, flags,
1563 tex_idx, tex_idx, col0, col1);
1564
1565 if ((ctx->astc_srgb & (1 << tex_idx)) && !nir_tex_instr_is_query(tex)) {
1566 /* only need first 3 components: */
1567 sam->regs[0]->wrmask = 0x7;
1568 split_dest(b, dst, sam, 0, 3);
1569
1570 /* we need to sample the alpha separately with a non-ASTC
1571 * texture state:
1572 */
1573 sam = ir3_SAM(b, opc, type, TGSI_WRITEMASK_W, flags,
1574 tex_idx, tex_idx, col0, col1);
1575
1576 array_insert(ctx->ir->astc_srgb, sam);
1577
1578 /* fixup .w component: */
1579 split_dest(b, &dst[3], sam, 3, 1);
1580 } else {
1581 /* normal (non-workaround) case: */
1582 split_dest(b, dst, sam, 0, 4);
1583 }
1584
1585 /* GETLOD returns results in 4.8 fixed point */
1586 if (opc == OPC_GETLOD) {
1587 struct ir3_instruction *factor = create_immed(b, fui(1.0 / 256));
1588
1589 compile_assert(ctx, tex->dest_type == nir_type_float);
1590 for (i = 0; i < 2; i++) {
1591 dst[i] = ir3_MUL_F(b, ir3_COV(b, dst[i], TYPE_U32, TYPE_F32), 0,
1592 factor, 0);
1593 }
1594 }
1595 }
1596
1597 static void
1598 emit_tex_query_levels(struct ir3_compile *ctx, nir_tex_instr *tex)
1599 {
1600 struct ir3_block *b = ctx->block;
1601 struct ir3_instruction **dst, *sam;
1602
1603 dst = get_dst(ctx, &tex->dest, 1);
1604
1605 sam = ir3_SAM(b, OPC_GETINFO, TYPE_U32, TGSI_WRITEMASK_Z, 0,
1606 tex->texture_index, tex->texture_index, NULL, NULL);
1607
1608 /* even though there is only one component, since it ends
1609 * up in .z rather than .x, we need a split_dest()
1610 */
1611 split_dest(b, dst, sam, 0, 3);
1612
1613 /* The # of levels comes from getinfo.z. We need to add 1 to it, since
1614 * the value in TEX_CONST_0 is zero-based.
1615 */
1616 if (ctx->levels_add_one)
1617 dst[0] = ir3_ADD_U(b, dst[0], 0, create_immed(b, 1), 0);
1618 }
1619
1620 static void
1621 emit_tex_txs(struct ir3_compile *ctx, nir_tex_instr *tex)
1622 {
1623 struct ir3_block *b = ctx->block;
1624 struct ir3_instruction **dst, *sam, *lod;
1625 unsigned flags, coords;
1626
1627 tex_info(tex, &flags, &coords);
1628
1629 /* Actually we want the number of dimensions, not coordinates. This
1630 * distinction only matters for cubes.
1631 */
1632 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1633 coords = 2;
1634
1635 dst = get_dst(ctx, &tex->dest, 4);
1636
1637 compile_assert(ctx, tex->num_srcs == 1);
1638 compile_assert(ctx, tex->src[0].src_type == nir_tex_src_lod);
1639
1640 lod = get_src(ctx, &tex->src[0].src)[0];
1641
1642 sam = ir3_SAM(b, OPC_GETSIZE, TYPE_U32, TGSI_WRITEMASK_XYZW, flags,
1643 tex->texture_index, tex->texture_index, lod, NULL);
1644
1645 split_dest(b, dst, sam, 0, 4);
1646
1647 /* Array size actually ends up in .w rather than .z. This doesn't
1648 * matter for miplevel 0, but for higher mips the value in z is
1649 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
1650 * returned, which means that we have to add 1 to it for arrays.
1651 */
1652 if (tex->is_array) {
1653 if (ctx->levels_add_one) {
1654 dst[coords] = ir3_ADD_U(b, dst[3], 0, create_immed(b, 1), 0);
1655 } else {
1656 dst[coords] = ir3_MOV(b, dst[3], TYPE_U32);
1657 }
1658 }
1659 }
1660
1661 static void
1662 emit_phi(struct ir3_compile *ctx, nir_phi_instr *nphi)
1663 {
1664 struct ir3_instruction *phi, **dst;
1665
1666 /* NOTE: phi's should be lowered to scalar at this point */
1667 compile_assert(ctx, nphi->dest.ssa.num_components == 1);
1668
1669 dst = get_dst(ctx, &nphi->dest, 1);
1670
1671 phi = ir3_instr_create2(ctx->block, OPC_META_PHI,
1672 1 + exec_list_length(&nphi->srcs));
1673 ir3_reg_create(phi, 0, 0); /* dst */
1674 phi->phi.nphi = nphi;
1675
1676 dst[0] = phi;
1677 }
1678
1679 /* phi instructions are left partially constructed. We don't resolve
1680 * their srcs until the end of the block, since (eg. loops) one of
1681 * the phi's srcs might be defined after the phi due to back edges in
1682 * the CFG.
1683 */
1684 static void
1685 resolve_phis(struct ir3_compile *ctx, struct ir3_block *block)
1686 {
1687 list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
1688 nir_phi_instr *nphi;
1689
1690 /* phi's only come at start of block: */
1691 if (instr->opc != OPC_META_PHI)
1692 break;
1693
1694 if (!instr->phi.nphi)
1695 break;
1696
1697 nphi = instr->phi.nphi;
1698 instr->phi.nphi = NULL;
1699
1700 foreach_list_typed(nir_phi_src, nsrc, node, &nphi->srcs) {
1701 struct ir3_instruction *src = get_src(ctx, &nsrc->src)[0];
1702
1703 /* NOTE: src might not be in the same block as it comes from
1704 * according to the phi.. but in the end the backend assumes
1705 * it will be able to assign the same register to each (which
1706 * only works if it is assigned in the src block), so insert
1707 * an extra mov to make sure the phi src is assigned in the
1708 * block it comes from:
1709 */
1710 src = ir3_MOV(get_block(ctx, nsrc->pred), src, TYPE_U32);
1711
1712 ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
1713 }
1714 }
1715 }
1716
1717 static void
1718 emit_jump(struct ir3_compile *ctx, nir_jump_instr *jump)
1719 {
1720 switch (jump->type) {
1721 case nir_jump_break:
1722 case nir_jump_continue:
1723 /* I *think* we can simply just ignore this, and use the
1724 * successor block link to figure out where we need to
1725 * jump to for break/continue
1726 */
1727 break;
1728 default:
1729 compile_error(ctx, "Unhandled NIR jump type: %d\n", jump->type);
1730 break;
1731 }
1732 }
1733
1734 static void
1735 emit_instr(struct ir3_compile *ctx, nir_instr *instr)
1736 {
1737 switch (instr->type) {
1738 case nir_instr_type_alu:
1739 emit_alu(ctx, nir_instr_as_alu(instr));
1740 break;
1741 case nir_instr_type_intrinsic:
1742 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1743 break;
1744 case nir_instr_type_load_const:
1745 emit_load_const(ctx, nir_instr_as_load_const(instr));
1746 break;
1747 case nir_instr_type_ssa_undef:
1748 emit_undef(ctx, nir_instr_as_ssa_undef(instr));
1749 break;
1750 case nir_instr_type_tex: {
1751 nir_tex_instr *tex = nir_instr_as_tex(instr);
1752 /* couple tex instructions get special-cased:
1753 */
1754 switch (tex->op) {
1755 case nir_texop_txs:
1756 emit_tex_txs(ctx, tex);
1757 break;
1758 case nir_texop_query_levels:
1759 emit_tex_query_levels(ctx, tex);
1760 break;
1761 default:
1762 emit_tex(ctx, tex);
1763 break;
1764 }
1765 break;
1766 }
1767 case nir_instr_type_phi:
1768 emit_phi(ctx, nir_instr_as_phi(instr));
1769 break;
1770 case nir_instr_type_jump:
1771 emit_jump(ctx, nir_instr_as_jump(instr));
1772 break;
1773 case nir_instr_type_call:
1774 case nir_instr_type_parallel_copy:
1775 compile_error(ctx, "Unhandled NIR instruction type: %d\n", instr->type);
1776 break;
1777 }
1778 }
1779
1780 static struct ir3_block *
1781 get_block(struct ir3_compile *ctx, nir_block *nblock)
1782 {
1783 struct ir3_block *block;
1784 struct hash_entry *entry;
1785 entry = _mesa_hash_table_search(ctx->block_ht, nblock);
1786 if (entry)
1787 return entry->data;
1788
1789 block = ir3_block_create(ctx->ir);
1790 block->nblock = nblock;
1791 _mesa_hash_table_insert(ctx->block_ht, nblock, block);
1792
1793 return block;
1794 }
1795
1796 static void
1797 emit_block(struct ir3_compile *ctx, nir_block *nblock)
1798 {
1799 struct ir3_block *block = get_block(ctx, nblock);
1800
1801 for (int i = 0; i < ARRAY_SIZE(block->successors); i++) {
1802 if (nblock->successors[i]) {
1803 block->successors[i] =
1804 get_block(ctx, nblock->successors[i]);
1805 }
1806 }
1807
1808 ctx->block = block;
1809 list_addtail(&block->node, &ctx->ir->block_list);
1810
1811 /* re-emit addr register in each block if needed: */
1812 _mesa_hash_table_destroy(ctx->addr_ht, NULL);
1813 ctx->addr_ht = NULL;
1814
1815 nir_foreach_instr(instr, nblock) {
1816 emit_instr(ctx, instr);
1817 if (ctx->error)
1818 return;
1819 }
1820 }
1821
1822 static void emit_cf_list(struct ir3_compile *ctx, struct exec_list *list);
1823
1824 static void
1825 emit_if(struct ir3_compile *ctx, nir_if *nif)
1826 {
1827 struct ir3_instruction *condition = get_src(ctx, &nif->condition)[0];
1828
1829 ctx->block->condition =
1830 get_predicate(ctx, ir3_b2n(condition->block, condition));
1831
1832 emit_cf_list(ctx, &nif->then_list);
1833 emit_cf_list(ctx, &nif->else_list);
1834 }
1835
1836 static void
1837 emit_loop(struct ir3_compile *ctx, nir_loop *nloop)
1838 {
1839 emit_cf_list(ctx, &nloop->body);
1840 }
1841
1842 static void
1843 emit_cf_list(struct ir3_compile *ctx, struct exec_list *list)
1844 {
1845 foreach_list_typed(nir_cf_node, node, node, list) {
1846 switch (node->type) {
1847 case nir_cf_node_block:
1848 emit_block(ctx, nir_cf_node_as_block(node));
1849 break;
1850 case nir_cf_node_if:
1851 emit_if(ctx, nir_cf_node_as_if(node));
1852 break;
1853 case nir_cf_node_loop:
1854 emit_loop(ctx, nir_cf_node_as_loop(node));
1855 break;
1856 case nir_cf_node_function:
1857 compile_error(ctx, "TODO\n");
1858 break;
1859 }
1860 }
1861 }
1862
1863 /* emit stream-out code. At this point, the current block is the original
1864 * (nir) end block, and nir ensures that all flow control paths terminate
1865 * into the end block. We re-purpose the original end block to generate
1866 * the 'if (vtxcnt < maxvtxcnt)' condition, then append the conditional
1867 * block holding stream-out write instructions, followed by the new end
1868 * block:
1869 *
1870 * blockOrigEnd {
1871 * p0.x = (vtxcnt < maxvtxcnt)
1872 * // succs: blockStreamOut, blockNewEnd
1873 * }
1874 * blockStreamOut {
1875 * ... stream-out instructions ...
1876 * // succs: blockNewEnd
1877 * }
1878 * blockNewEnd {
1879 * }
1880 */
1881 static void
1882 emit_stream_out(struct ir3_compile *ctx)
1883 {
1884 struct ir3_shader_variant *v = ctx->so;
1885 struct ir3 *ir = ctx->ir;
1886 struct pipe_stream_output_info *strmout =
1887 &ctx->so->shader->stream_output;
1888 struct ir3_block *orig_end_block, *stream_out_block, *new_end_block;
1889 struct ir3_instruction *vtxcnt, *maxvtxcnt, *cond;
1890 struct ir3_instruction *bases[PIPE_MAX_SO_BUFFERS];
1891
1892 /* create vtxcnt input in input block at top of shader,
1893 * so that it is seen as live over the entire duration
1894 * of the shader:
1895 */
1896 vtxcnt = create_input(ctx->in_block, 0);
1897 add_sysval_input(ctx, SYSTEM_VALUE_VERTEX_CNT, vtxcnt);
1898
1899 maxvtxcnt = create_driver_param(ctx, IR3_DP_VTXCNT_MAX);
1900
1901 /* at this point, we are at the original 'end' block,
1902 * re-purpose this block to stream-out condition, then
1903 * append stream-out block and new-end block
1904 */
1905 orig_end_block = ctx->block;
1906
1907 stream_out_block = ir3_block_create(ir);
1908 list_addtail(&stream_out_block->node, &ir->block_list);
1909
1910 new_end_block = ir3_block_create(ir);
1911 list_addtail(&new_end_block->node, &ir->block_list);
1912
1913 orig_end_block->successors[0] = stream_out_block;
1914 orig_end_block->successors[1] = new_end_block;
1915 stream_out_block->successors[0] = new_end_block;
1916
1917 /* setup 'if (vtxcnt < maxvtxcnt)' condition: */
1918 cond = ir3_CMPS_S(ctx->block, vtxcnt, 0, maxvtxcnt, 0);
1919 cond->regs[0]->num = regid(REG_P0, 0);
1920 cond->cat2.condition = IR3_COND_LT;
1921
1922 /* condition goes on previous block to the conditional,
1923 * since it is used to pick which of the two successor
1924 * paths to take:
1925 */
1926 orig_end_block->condition = cond;
1927
1928 /* switch to stream_out_block to generate the stream-out
1929 * instructions:
1930 */
1931 ctx->block = stream_out_block;
1932
1933 /* Calculate base addresses based on vtxcnt. Instructions
1934 * generated for bases not used in following loop will be
1935 * stripped out in the backend.
1936 */
1937 for (unsigned i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
1938 unsigned stride = strmout->stride[i];
1939 struct ir3_instruction *base, *off;
1940
1941 base = create_uniform(ctx, regid(v->first_driver_param + IR3_TFBOS_OFF, i));
1942
1943 /* 24-bit should be enough: */
1944 off = ir3_MUL_U(ctx->block, vtxcnt, 0,
1945 create_immed(ctx->block, stride * 4), 0);
1946
1947 bases[i] = ir3_ADD_S(ctx->block, off, 0, base, 0);
1948 }
1949
1950 /* Generate the per-output store instructions: */
1951 for (unsigned i = 0; i < strmout->num_outputs; i++) {
1952 for (unsigned j = 0; j < strmout->output[i].num_components; j++) {
1953 unsigned c = j + strmout->output[i].start_component;
1954 struct ir3_instruction *base, *out, *stg;
1955
1956 base = bases[strmout->output[i].output_buffer];
1957 out = ctx->ir->outputs[regid(strmout->output[i].register_index, c)];
1958
1959 stg = ir3_STG(ctx->block, base, 0, out, 0,
1960 create_immed(ctx->block, 1), 0);
1961 stg->cat6.type = TYPE_U32;
1962 stg->cat6.dst_offset = (strmout->output[i].dst_offset + j) * 4;
1963
1964 array_insert(ctx->ir->keeps, stg);
1965 }
1966 }
1967
1968 /* and finally switch to the new_end_block: */
1969 ctx->block = new_end_block;
1970 }
1971
1972 static void
1973 emit_function(struct ir3_compile *ctx, nir_function_impl *impl)
1974 {
1975 nir_metadata_require(impl, nir_metadata_block_index);
1976
1977 emit_cf_list(ctx, &impl->body);
1978 emit_block(ctx, impl->end_block);
1979
1980 /* at this point, we should have a single empty block,
1981 * into which we emit the 'end' instruction.
1982 */
1983 compile_assert(ctx, list_empty(&ctx->block->instr_list));
1984
1985 /* If stream-out (aka transform-feedback) enabled, emit the
1986 * stream-out instructions, followed by a new empty block (into
1987 * which the 'end' instruction lands).
1988 *
1989 * NOTE: it is done in this order, rather than inserting before
1990 * we emit end_block, because NIR guarantees that all blocks
1991 * flow into end_block, and that end_block has no successors.
1992 * So by re-purposing end_block as the first block of stream-
1993 * out, we guarantee that all exit paths flow into the stream-
1994 * out instructions.
1995 */
1996 if ((ctx->so->shader->stream_output.num_outputs > 0) &&
1997 !ctx->so->key.binning_pass) {
1998 debug_assert(ctx->so->type == SHADER_VERTEX);
1999 emit_stream_out(ctx);
2000 }
2001
2002 ir3_END(ctx->block);
2003 }
2004
2005 static void
2006 setup_input(struct ir3_compile *ctx, nir_variable *in)
2007 {
2008 struct ir3_shader_variant *so = ctx->so;
2009 unsigned array_len = MAX2(glsl_get_length(in->type), 1);
2010 unsigned ncomp = glsl_get_components(in->type);
2011 unsigned n = in->data.driver_location;
2012 unsigned slot = in->data.location;
2013
2014 DBG("; in: slot=%u, len=%ux%u, drvloc=%u",
2015 slot, array_len, ncomp, n);
2016
2017 /* let's pretend things other than vec4 don't exist: */
2018 ncomp = MAX2(ncomp, 4);
2019 compile_assert(ctx, ncomp == 4);
2020
2021 so->inputs[n].slot = slot;
2022 so->inputs[n].compmask = (1 << ncomp) - 1;
2023 so->inputs_count = MAX2(so->inputs_count, n + 1);
2024 so->inputs[n].interpolate = in->data.interpolation;
2025
2026 if (ctx->so->type == SHADER_FRAGMENT) {
2027 for (int i = 0; i < ncomp; i++) {
2028 struct ir3_instruction *instr = NULL;
2029 unsigned idx = (n * 4) + i;
2030
2031 if (slot == VARYING_SLOT_POS) {
2032 so->inputs[n].bary = false;
2033 so->frag_coord = true;
2034 instr = create_frag_coord(ctx, i);
2035 } else if (slot == VARYING_SLOT_PNTC) {
2036 /* see for example st_get_generic_varying_index().. this is
2037 * maybe a bit mesa/st specific. But we need things to line
2038 * up for this in fdN_program:
2039 * unsigned texmask = 1 << (slot - VARYING_SLOT_VAR0);
2040 * if (emit->sprite_coord_enable & texmask) {
2041 * ...
2042 * }
2043 */
2044 so->inputs[n].slot = VARYING_SLOT_VAR8;
2045 so->inputs[n].bary = true;
2046 instr = create_frag_input(ctx, false);
2047 } else if (slot == VARYING_SLOT_FACE) {
2048 so->inputs[n].bary = false;
2049 so->frag_face = true;
2050 instr = create_frag_face(ctx, i);
2051 } else {
2052 bool use_ldlv = false;
2053
2054 /* detect the special case for front/back colors where
2055 * we need to do flat vs smooth shading depending on
2056 * rast state:
2057 */
2058 if (in->data.interpolation == INTERP_QUALIFIER_NONE) {
2059 switch (slot) {
2060 case VARYING_SLOT_COL0:
2061 case VARYING_SLOT_COL1:
2062 case VARYING_SLOT_BFC0:
2063 case VARYING_SLOT_BFC1:
2064 so->inputs[n].rasterflat = true;
2065 break;
2066 default:
2067 break;
2068 }
2069 }
2070
2071 if (ctx->flat_bypass) {
2072 if ((so->inputs[n].interpolate == INTERP_QUALIFIER_FLAT) ||
2073 (so->inputs[n].rasterflat && ctx->so->key.rasterflat))
2074 use_ldlv = true;
2075 }
2076
2077 so->inputs[n].bary = true;
2078
2079 instr = create_frag_input(ctx, use_ldlv);
2080 }
2081
2082 compile_assert(ctx, idx < ctx->ir->ninputs);
2083
2084 ctx->ir->inputs[idx] = instr;
2085 }
2086 } else if (ctx->so->type == SHADER_VERTEX) {
2087 for (int i = 0; i < ncomp; i++) {
2088 unsigned idx = (n * 4) + i;
2089 compile_assert(ctx, idx < ctx->ir->ninputs);
2090 ctx->ir->inputs[idx] = create_input(ctx->block, idx);
2091 }
2092 } else {
2093 compile_error(ctx, "unknown shader type: %d\n", ctx->so->type);
2094 }
2095
2096 if (so->inputs[n].bary || (ctx->so->type == SHADER_VERTEX)) {
2097 so->total_in += ncomp;
2098 }
2099 }
2100
2101 static void
2102 setup_output(struct ir3_compile *ctx, nir_variable *out)
2103 {
2104 struct ir3_shader_variant *so = ctx->so;
2105 unsigned array_len = MAX2(glsl_get_length(out->type), 1);
2106 unsigned ncomp = glsl_get_components(out->type);
2107 unsigned n = out->data.driver_location;
2108 unsigned slot = out->data.location;
2109 unsigned comp = 0;
2110
2111 DBG("; out: slot=%u, len=%ux%u, drvloc=%u",
2112 slot, array_len, ncomp, n);
2113
2114 /* let's pretend things other than vec4 don't exist: */
2115 ncomp = MAX2(ncomp, 4);
2116 compile_assert(ctx, ncomp == 4);
2117
2118 if (ctx->so->type == SHADER_FRAGMENT) {
2119 switch (slot) {
2120 case FRAG_RESULT_DEPTH:
2121 comp = 2; /* tgsi will write to .z component */
2122 so->writes_pos = true;
2123 break;
2124 case FRAG_RESULT_COLOR:
2125 so->color0_mrt = 1;
2126 break;
2127 default:
2128 if (slot >= FRAG_RESULT_DATA0)
2129 break;
2130 compile_error(ctx, "unknown FS output name: %s\n",
2131 gl_frag_result_name(slot));
2132 }
2133 } else if (ctx->so->type == SHADER_VERTEX) {
2134 switch (slot) {
2135 case VARYING_SLOT_POS:
2136 so->writes_pos = true;
2137 break;
2138 case VARYING_SLOT_PSIZ:
2139 so->writes_psize = true;
2140 break;
2141 case VARYING_SLOT_COL0:
2142 case VARYING_SLOT_COL1:
2143 case VARYING_SLOT_BFC0:
2144 case VARYING_SLOT_BFC1:
2145 case VARYING_SLOT_FOGC:
2146 case VARYING_SLOT_CLIP_DIST0:
2147 case VARYING_SLOT_CLIP_DIST1:
2148 break;
2149 case VARYING_SLOT_CLIP_VERTEX:
2150 /* handled entirely in nir_lower_clip: */
2151 return;
2152 default:
2153 if (slot >= VARYING_SLOT_VAR0)
2154 break;
2155 if ((VARYING_SLOT_TEX0 <= slot) && (slot <= VARYING_SLOT_TEX7))
2156 break;
2157 compile_error(ctx, "unknown VS output name: %s\n",
2158 gl_varying_slot_name(slot));
2159 }
2160 } else {
2161 compile_error(ctx, "unknown shader type: %d\n", ctx->so->type);
2162 }
2163
2164 compile_assert(ctx, n < ARRAY_SIZE(so->outputs));
2165
2166 so->outputs[n].slot = slot;
2167 so->outputs[n].regid = regid(n, comp);
2168 so->outputs_count = MAX2(so->outputs_count, n + 1);
2169
2170 for (int i = 0; i < ncomp; i++) {
2171 unsigned idx = (n * 4) + i;
2172 compile_assert(ctx, idx < ctx->ir->noutputs);
2173 ctx->ir->outputs[idx] = create_immed(ctx->block, fui(0.0));
2174 }
2175 }
2176
2177 static int
2178 max_drvloc(struct exec_list *vars)
2179 {
2180 int drvloc = -1;
2181 nir_foreach_variable(var, vars) {
2182 drvloc = MAX2(drvloc, (int)var->data.driver_location);
2183 }
2184 return drvloc;
2185 }
2186
2187 static void
2188 emit_instructions(struct ir3_compile *ctx)
2189 {
2190 unsigned ninputs, noutputs;
2191 nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->s)->impl;
2192
2193 ninputs = (max_drvloc(&ctx->s->inputs) + 1) * 4;
2194 noutputs = (max_drvloc(&ctx->s->outputs) + 1) * 4;
2195
2196 /* or vtx shaders, we need to leave room for sysvals:
2197 */
2198 if (ctx->so->type == SHADER_VERTEX) {
2199 ninputs += 16;
2200 }
2201
2202 ctx->ir = ir3_create(ctx->compiler, ninputs, noutputs);
2203
2204 /* Create inputs in first block: */
2205 ctx->block = get_block(ctx, nir_start_block(fxn));
2206 ctx->in_block = ctx->block;
2207 list_addtail(&ctx->block->node, &ctx->ir->block_list);
2208
2209 if (ctx->so->type == SHADER_VERTEX) {
2210 ctx->ir->ninputs -= 16;
2211 }
2212
2213 /* for fragment shader, we have a single input register (usually
2214 * r0.xy) which is used as the base for bary.f varying fetch instrs:
2215 */
2216 if (ctx->so->type == SHADER_FRAGMENT) {
2217 // TODO maybe a helper for fi since we need it a few places..
2218 struct ir3_instruction *instr;
2219 instr = ir3_instr_create(ctx->block, OPC_META_FI);
2220 ir3_reg_create(instr, 0, 0);
2221 ir3_reg_create(instr, 0, IR3_REG_SSA); /* r0.x */
2222 ir3_reg_create(instr, 0, IR3_REG_SSA); /* r0.y */
2223 ctx->frag_pos = instr;
2224 }
2225
2226 /* Setup inputs: */
2227 nir_foreach_variable(var, &ctx->s->inputs) {
2228 setup_input(ctx, var);
2229 }
2230
2231 /* Setup outputs: */
2232 nir_foreach_variable(var, &ctx->s->outputs) {
2233 setup_output(ctx, var);
2234 }
2235
2236 /* Setup global variables (which should only be arrays): */
2237 nir_foreach_variable(var, &ctx->s->globals) {
2238 declare_var(ctx, var);
2239 }
2240
2241 /* Setup local variables (which should only be arrays): */
2242 /* NOTE: need to do something more clever when we support >1 fxn */
2243 nir_foreach_variable(var, &fxn->locals) {
2244 declare_var(ctx, var);
2245 }
2246
2247 /* And emit the body: */
2248 ctx->impl = fxn;
2249 emit_function(ctx, fxn);
2250
2251 list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
2252 resolve_phis(ctx, block);
2253 }
2254 }
2255
2256 /* from NIR perspective, we actually have inputs. But most of the "inputs"
2257 * for a fragment shader are just bary.f instructions. The *actual* inputs
2258 * from the hw perspective are the frag_pos and optionally frag_coord and
2259 * frag_face.
2260 */
2261 static void
2262 fixup_frag_inputs(struct ir3_compile *ctx)
2263 {
2264 struct ir3_shader_variant *so = ctx->so;
2265 struct ir3 *ir = ctx->ir;
2266 struct ir3_instruction **inputs;
2267 struct ir3_instruction *instr;
2268 int n, regid = 0;
2269
2270 ir->ninputs = 0;
2271
2272 n = 4; /* always have frag_pos */
2273 n += COND(so->frag_face, 4);
2274 n += COND(so->frag_coord, 4);
2275
2276 inputs = ir3_alloc(ctx->ir, n * (sizeof(struct ir3_instruction *)));
2277
2278 if (so->frag_face) {
2279 /* this ultimately gets assigned to hr0.x so doesn't conflict
2280 * with frag_coord/frag_pos..
2281 */
2282 inputs[ir->ninputs++] = ctx->frag_face;
2283 ctx->frag_face->regs[0]->num = 0;
2284
2285 /* remaining channels not used, but let's avoid confusing
2286 * other parts that expect inputs to come in groups of vec4
2287 */
2288 inputs[ir->ninputs++] = NULL;
2289 inputs[ir->ninputs++] = NULL;
2290 inputs[ir->ninputs++] = NULL;
2291 }
2292
2293 /* since we don't know where to set the regid for frag_coord,
2294 * we have to use r0.x for it. But we don't want to *always*
2295 * use r1.x for frag_pos as that could increase the register
2296 * footprint on simple shaders:
2297 */
2298 if (so->frag_coord) {
2299 ctx->frag_coord[0]->regs[0]->num = regid++;
2300 ctx->frag_coord[1]->regs[0]->num = regid++;
2301 ctx->frag_coord[2]->regs[0]->num = regid++;
2302 ctx->frag_coord[3]->regs[0]->num = regid++;
2303
2304 inputs[ir->ninputs++] = ctx->frag_coord[0];
2305 inputs[ir->ninputs++] = ctx->frag_coord[1];
2306 inputs[ir->ninputs++] = ctx->frag_coord[2];
2307 inputs[ir->ninputs++] = ctx->frag_coord[3];
2308 }
2309
2310 /* we always have frag_pos: */
2311 so->pos_regid = regid;
2312
2313 /* r0.x */
2314 instr = create_input(ctx->in_block, ir->ninputs);
2315 instr->regs[0]->num = regid++;
2316 inputs[ir->ninputs++] = instr;
2317 ctx->frag_pos->regs[1]->instr = instr;
2318
2319 /* r0.y */
2320 instr = create_input(ctx->in_block, ir->ninputs);
2321 instr->regs[0]->num = regid++;
2322 inputs[ir->ninputs++] = instr;
2323 ctx->frag_pos->regs[2]->instr = instr;
2324
2325 ir->inputs = inputs;
2326 }
2327
2328 /* Fixup tex sampler state for astc/srgb workaround instructions. We
2329 * need to assign the tex state indexes for these after we know the
2330 * max tex index.
2331 */
2332 static void
2333 fixup_astc_srgb(struct ir3_compile *ctx)
2334 {
2335 struct ir3_shader_variant *so = ctx->so;
2336 /* indexed by original tex idx, value is newly assigned alpha sampler
2337 * state tex idx. Zero is invalid since there is at least one sampler
2338 * if we get here.
2339 */
2340 unsigned alt_tex_state[16] = {0};
2341 unsigned tex_idx = ctx->max_texture_index + 1;
2342 unsigned idx = 0;
2343
2344 so->astc_srgb.base = tex_idx;
2345
2346 for (unsigned i = 0; i < ctx->ir->astc_srgb_count; i++) {
2347 struct ir3_instruction *sam = ctx->ir->astc_srgb[i];
2348
2349 compile_assert(ctx, sam->cat5.tex < ARRAY_SIZE(alt_tex_state));
2350
2351 if (alt_tex_state[sam->cat5.tex] == 0) {
2352 /* assign new alternate/alpha tex state slot: */
2353 alt_tex_state[sam->cat5.tex] = tex_idx++;
2354 so->astc_srgb.orig_idx[idx++] = sam->cat5.tex;
2355 so->astc_srgb.count++;
2356 }
2357
2358 sam->cat5.tex = alt_tex_state[sam->cat5.tex];
2359 }
2360 }
2361
2362 int
2363 ir3_compile_shader_nir(struct ir3_compiler *compiler,
2364 struct ir3_shader_variant *so)
2365 {
2366 struct ir3_compile *ctx;
2367 struct ir3 *ir;
2368 struct ir3_instruction **inputs;
2369 unsigned i, j, actual_in, inloc;
2370 int ret = 0, max_bary;
2371
2372 assert(!so->ir);
2373
2374 ctx = compile_init(compiler, so);
2375 if (!ctx) {
2376 DBG("INIT failed!");
2377 ret = -1;
2378 goto out;
2379 }
2380
2381 emit_instructions(ctx);
2382
2383 if (ctx->error) {
2384 DBG("EMIT failed!");
2385 ret = -1;
2386 goto out;
2387 }
2388
2389 ir = so->ir = ctx->ir;
2390
2391 /* keep track of the inputs from TGSI perspective.. */
2392 inputs = ir->inputs;
2393
2394 /* but fixup actual inputs for frag shader: */
2395 if (so->type == SHADER_FRAGMENT)
2396 fixup_frag_inputs(ctx);
2397
2398 /* at this point, for binning pass, throw away unneeded outputs: */
2399 if (so->key.binning_pass) {
2400 for (i = 0, j = 0; i < so->outputs_count; i++) {
2401 unsigned slot = so->outputs[i].slot;
2402
2403 /* throw away everything but first position/psize */
2404 if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) {
2405 if (i != j) {
2406 so->outputs[j] = so->outputs[i];
2407 ir->outputs[(j*4)+0] = ir->outputs[(i*4)+0];
2408 ir->outputs[(j*4)+1] = ir->outputs[(i*4)+1];
2409 ir->outputs[(j*4)+2] = ir->outputs[(i*4)+2];
2410 ir->outputs[(j*4)+3] = ir->outputs[(i*4)+3];
2411 }
2412 j++;
2413 }
2414 }
2415 so->outputs_count = j;
2416 ir->noutputs = j * 4;
2417 }
2418
2419 /* if we want half-precision outputs, mark the output registers
2420 * as half:
2421 */
2422 if (so->key.half_precision) {
2423 for (i = 0; i < ir->noutputs; i++) {
2424 struct ir3_instruction *out = ir->outputs[i];
2425 if (!out)
2426 continue;
2427 out->regs[0]->flags |= IR3_REG_HALF;
2428 /* output could be a fanout (ie. texture fetch output)
2429 * in which case we need to propagate the half-reg flag
2430 * up to the definer so that RA sees it:
2431 */
2432 if (out->opc == OPC_META_FO) {
2433 out = out->regs[1]->instr;
2434 out->regs[0]->flags |= IR3_REG_HALF;
2435 }
2436
2437 if (out->opc == OPC_MOV) {
2438 out->cat1.dst_type = half_type(out->cat1.dst_type);
2439 }
2440 }
2441 }
2442
2443 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
2444 printf("BEFORE CP:\n");
2445 ir3_print(ir);
2446 }
2447
2448 ir3_cp(ir, so);
2449
2450 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
2451 printf("BEFORE GROUPING:\n");
2452 ir3_print(ir);
2453 }
2454
2455 /* Group left/right neighbors, inserting mov's where needed to
2456 * solve conflicts:
2457 */
2458 ir3_group(ir);
2459
2460 ir3_depth(ir);
2461
2462 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
2463 printf("AFTER DEPTH:\n");
2464 ir3_print(ir);
2465 }
2466
2467 ret = ir3_sched(ir);
2468 if (ret) {
2469 DBG("SCHED failed!");
2470 goto out;
2471 }
2472
2473 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
2474 printf("AFTER SCHED:\n");
2475 ir3_print(ir);
2476 }
2477
2478 ret = ir3_ra(ir, so->type, so->frag_coord, so->frag_face);
2479 if (ret) {
2480 DBG("RA failed!");
2481 goto out;
2482 }
2483
2484 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
2485 printf("AFTER RA:\n");
2486 ir3_print(ir);
2487 }
2488
2489 /* fixup input/outputs: */
2490 for (i = 0; i < so->outputs_count; i++) {
2491 so->outputs[i].regid = ir->outputs[i*4]->regs[0]->num;
2492 /* preserve hack for depth output.. tgsi writes depth to .z,
2493 * but what we give the hw is the scalar register:
2494 */
2495 if (so->shader->from_tgsi && (so->type == SHADER_FRAGMENT) &&
2496 (so->outputs[i].slot == FRAG_RESULT_DEPTH))
2497 so->outputs[i].regid += 2;
2498 }
2499
2500 /* Note that some or all channels of an input may be unused: */
2501 actual_in = 0;
2502 inloc = 0;
2503 for (i = 0; i < so->inputs_count; i++) {
2504 unsigned j, regid = ~0, compmask = 0;
2505 so->inputs[i].ncomp = 0;
2506 so->inputs[i].inloc = inloc + 8;
2507 for (j = 0; j < 4; j++) {
2508 struct ir3_instruction *in = inputs[(i*4) + j];
2509 if (in && !(in->flags & IR3_INSTR_UNUSED)) {
2510 compmask |= (1 << j);
2511 regid = in->regs[0]->num - j;
2512 actual_in++;
2513 so->inputs[i].ncomp++;
2514 if ((so->type == SHADER_FRAGMENT) && so->inputs[i].bary) {
2515 /* assign inloc: */
2516 assert(in->regs[1]->flags & IR3_REG_IMMED);
2517 in->regs[1]->iim_val = inloc++;
2518 }
2519 }
2520 }
2521 if ((so->type == SHADER_FRAGMENT) && compmask && so->inputs[i].bary)
2522 so->varying_in++;
2523 so->inputs[i].regid = regid;
2524 so->inputs[i].compmask = compmask;
2525 }
2526
2527 if (ctx->astc_srgb)
2528 fixup_astc_srgb(ctx);
2529
2530 /* We need to do legalize after (for frag shader's) the "bary.f"
2531 * offsets (inloc) have been assigned.
2532 */
2533 ir3_legalize(ir, &so->has_samp, &max_bary);
2534
2535 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
2536 printf("AFTER LEGALIZE:\n");
2537 ir3_print(ir);
2538 }
2539
2540 /* Note that actual_in counts inputs that are not bary.f'd for FS: */
2541 if (so->type == SHADER_VERTEX)
2542 so->total_in = actual_in;
2543 else
2544 so->total_in = max_bary + 1;
2545
2546 out:
2547 if (ret) {
2548 if (so->ir)
2549 ir3_destroy(so->ir);
2550 so->ir = NULL;
2551 }
2552 compile_free(ctx);
2553
2554 return ret;
2555 }