Merge branch 'wip/nir-vtn' into vulkan
[mesa.git] / src / gallium / drivers / freedreno / ir3 / ir3_legalize.c
1 /* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */
2
3 /*
4 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 * Rob Clark <robclark@freedesktop.org>
27 */
28
29 #include "util/u_math.h"
30
31 #include "freedreno_util.h"
32
33 #include "ir3.h"
34
35 /*
36 * Legalize:
37 *
38 * We currently require that scheduling ensures that we have enough nop's
39 * in all the right places. The legalize step mostly handles fixing up
40 * instruction flags ((ss)/(sy)/(ei)), and collapses sequences of nop's
41 * into fewer nop's w/ rpt flag.
42 */
43
44 struct ir3_legalize_ctx {
45 bool has_samp;
46 int max_bary;
47 };
48
49 /* We want to evaluate each block from the position of any other
50 * predecessor block, in order that the flags set are the union
51 * of all possible program paths. For stopping condition, we
52 * want to stop when the pair of <pred-block, current-block> has
53 * been visited already.
54 *
55 * XXX is that completely true? We could have different needs_xyz
56 * flags set depending on path leading to pred-block.. we could
57 * do *most* of this based on chasing src instructions ptrs (and
58 * following all phi srcs).. except the write-after-read hazzard.
59 *
60 * For now we just set ss/sy flag on first instruction on block,
61 * and handle everything within the block as before.
62 */
63
64 static void
65 legalize_block(struct ir3_legalize_ctx *ctx, struct ir3_block *block)
66 {
67 struct ir3_instruction *last_input = NULL;
68 struct ir3_instruction *last_rel = NULL;
69 struct list_head instr_list;
70 regmask_t needs_ss_war; /* write after read */
71 regmask_t needs_ss;
72 regmask_t needs_sy;
73
74 regmask_init(&needs_ss_war);
75 regmask_init(&needs_ss);
76 regmask_init(&needs_sy);
77
78 /* remove all the instructions from the list, we'll be adding
79 * them back in as we go
80 */
81 list_replace(&block->instr_list, &instr_list);
82 list_inithead(&block->instr_list);
83
84 list_for_each_entry_safe (struct ir3_instruction, n, &instr_list, node) {
85 struct ir3_register *reg;
86 unsigned i;
87
88 if (is_meta(n))
89 continue;
90
91 if (is_input(n)) {
92 struct ir3_register *inloc = n->regs[1];
93 assert(inloc->flags & IR3_REG_IMMED);
94 ctx->max_bary = MAX2(ctx->max_bary, inloc->iim_val);
95 }
96
97 /* NOTE: consider dst register too.. it could happen that
98 * texture sample instruction (for example) writes some
99 * components which are unused. A subsequent instruction
100 * that writes the same register can race w/ the sam instr
101 * resulting in undefined results:
102 */
103 for (i = 0; i < n->regs_count; i++) {
104 reg = n->regs[i];
105
106 if (reg_gpr(reg)) {
107
108 /* TODO: we probably only need (ss) for alu
109 * instr consuming sfu result.. need to make
110 * some tests for both this and (sy)..
111 */
112 if (regmask_get(&needs_ss, reg)) {
113 n->flags |= IR3_INSTR_SS;
114 regmask_init(&needs_ss);
115 }
116
117 if (regmask_get(&needs_sy, reg)) {
118 n->flags |= IR3_INSTR_SY;
119 regmask_init(&needs_sy);
120 }
121 }
122
123 /* TODO: is it valid to have address reg loaded from a
124 * relative src (ie. mova a0, c<a0.x+4>)? If so, the
125 * last_rel check below should be moved ahead of this:
126 */
127 if (reg->flags & IR3_REG_RELATIV)
128 last_rel = n;
129 }
130
131 if (n->regs_count > 0) {
132 reg = n->regs[0];
133 if (regmask_get(&needs_ss_war, reg)) {
134 n->flags |= IR3_INSTR_SS;
135 regmask_init(&needs_ss_war); // ??? I assume?
136 }
137
138 if (last_rel && (reg->num == regid(REG_A0, 0))) {
139 last_rel->flags |= IR3_INSTR_UL;
140 last_rel = NULL;
141 }
142 }
143
144 /* cat5+ does not have an (ss) bit, if needed we need to
145 * insert a nop to carry the sync flag. Would be kinda
146 * clever if we were aware of this during scheduling, but
147 * this should be a pretty rare case:
148 */
149 if ((n->flags & IR3_INSTR_SS) && (n->category >= 5)) {
150 struct ir3_instruction *nop;
151 nop = ir3_NOP(block);
152 nop->flags |= IR3_INSTR_SS;
153 n->flags &= ~IR3_INSTR_SS;
154 }
155
156 /* need to be able to set (ss) on first instruction: */
157 if (list_empty(&block->instr_list) && (n->category >= 5))
158 ir3_NOP(block);
159
160 if (is_nop(n) && !list_empty(&block->instr_list)) {
161 struct ir3_instruction *last = list_last_entry(&block->instr_list,
162 struct ir3_instruction, node);
163 if (is_nop(last) && (last->repeat < 5)) {
164 last->repeat++;
165 last->flags |= n->flags;
166 continue;
167 }
168 }
169
170 list_addtail(&n->node, &block->instr_list);
171
172 if (is_sfu(n))
173 regmask_set(&needs_ss, n->regs[0]);
174
175 if (is_tex(n)) {
176 /* this ends up being the # of samp instructions.. but that
177 * is ok, everything else only cares whether it is zero or
178 * not. We do this here, rather than when we encounter a
179 * SAMP decl, because (especially in binning pass shader)
180 * the samp instruction(s) could get eliminated if the
181 * result is not used.
182 */
183 ctx->has_samp = true;
184 regmask_set(&needs_sy, n->regs[0]);
185 } else if (is_mem(n)) {
186 regmask_set(&needs_sy, n->regs[0]);
187 }
188
189 /* both tex/sfu appear to not always immediately consume
190 * their src register(s):
191 */
192 if (is_tex(n) || is_sfu(n) || is_mem(n)) {
193 foreach_src(reg, n) {
194 if (reg_gpr(reg))
195 regmask_set(&needs_ss_war, reg);
196 }
197 }
198
199 if (is_input(n))
200 last_input = n;
201 }
202
203 if (last_input) {
204 /* special hack.. if using ldlv to bypass interpolation,
205 * we need to insert a dummy bary.f on which we can set
206 * the (ei) flag:
207 */
208 if (is_mem(last_input) && (last_input->opc == OPC_LDLV)) {
209 struct ir3_instruction *baryf;
210
211 /* (ss)bary.f (ei)r63.x, 0, r0.x */
212 baryf = ir3_instr_create(block, 2, OPC_BARY_F);
213 baryf->flags |= IR3_INSTR_SS;
214 ir3_reg_create(baryf, regid(63, 0), 0);
215 ir3_reg_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0;
216 ir3_reg_create(baryf, regid(0, 0), 0);
217
218 /* insert the dummy bary.f after last_input: */
219 list_delinit(&baryf->node);
220 list_add(&baryf->node, &last_input->node);
221
222 last_input = baryf;
223 }
224 last_input->regs[0]->flags |= IR3_REG_EI;
225 }
226
227 if (last_rel)
228 last_rel->flags |= IR3_INSTR_UL;
229
230 list_first_entry(&block->instr_list, struct ir3_instruction, node)
231 ->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
232 }
233
234 /* NOTE: branch instructions are always the last instruction(s)
235 * in the block. We take advantage of this as we resolve the
236 * branches, since "if (foo) break;" constructs turn into
237 * something like:
238 *
239 * block3 {
240 * ...
241 * 0029:021: mov.s32s32 r62.x, r1.y
242 * 0082:022: br !p0.x, target=block5
243 * 0083:023: br p0.x, target=block4
244 * // succs: if _[0029:021: mov.s32s32] block4; else block5;
245 * }
246 * block4 {
247 * 0084:024: jump, target=block6
248 * // succs: block6;
249 * }
250 * block5 {
251 * 0085:025: jump, target=block7
252 * // succs: block7;
253 * }
254 *
255 * ie. only instruction in block4/block5 is a jump, so when
256 * resolving branches we can easily detect this by checking
257 * that the first instruction in the target block is itself
258 * a jump, and setup the br directly to the jump's target
259 * (and strip back out the now unreached jump)
260 *
261 * TODO sometimes we end up with things like:
262 *
263 * br !p0.x, #2
264 * br p0.x, #12
265 * add.u r0.y, r0.y, 1
266 *
267 * If we swapped the order of the branches, we could drop one.
268 */
269 static struct ir3_block *
270 resolve_dest_block(struct ir3_block *block)
271 {
272 /* special case for last block: */
273 if (!block->successors[0])
274 return block;
275
276 /* NOTE that we may or may not have inserted the jump
277 * in the target block yet, so conditions to resolve
278 * the dest to the dest block's successor are:
279 *
280 * (1) successor[1] == NULL &&
281 * (2) (block-is-empty || only-instr-is-jump)
282 */
283 if (block->successors[1] == NULL) {
284 if (list_empty(&block->instr_list)) {
285 return block->successors[0];
286 } else if (list_length(&block->instr_list) == 1) {
287 struct ir3_instruction *instr = list_first_entry(
288 &block->instr_list, struct ir3_instruction, node);
289 if (is_flow(instr) && (instr->opc == OPC_JUMP))
290 return block->successors[0];
291 }
292 }
293 return block;
294 }
295
296 static bool
297 resolve_jump(struct ir3_instruction *instr)
298 {
299 struct ir3_block *tblock =
300 resolve_dest_block(instr->cat0.target);
301 struct ir3_instruction *target;
302
303 if (tblock != instr->cat0.target) {
304 list_delinit(&instr->cat0.target->node);
305 instr->cat0.target = tblock;
306 return true;
307 }
308
309 target = list_first_entry(&tblock->instr_list,
310 struct ir3_instruction, node);
311
312 if ((!target) || (target->ip == (instr->ip + 1))) {
313 list_delinit(&instr->node);
314 return true;
315 } else {
316 instr->cat0.immed =
317 (int)target->ip - (int)instr->ip;
318 }
319 return false;
320 }
321
322 /* resolve jumps, removing jumps/branches to immediately following
323 * instruction which we end up with from earlier stages. Since
324 * removing an instruction can invalidate earlier instruction's
325 * branch offsets, we need to do this iteratively until no more
326 * branches are removed.
327 */
328 static bool
329 resolve_jumps(struct ir3 *ir)
330 {
331 list_for_each_entry (struct ir3_block, block, &ir->block_list, node)
332 list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node)
333 if (is_flow(instr) && instr->cat0.target)
334 if (resolve_jump(instr))
335 return true;
336
337 return false;
338 }
339
340 /* we want to mark points where divergent flow control re-converges
341 * with (jp) flags. For now, since we don't do any optimization for
342 * things that start out as a 'do {} while()', re-convergence points
343 * will always be a branch or jump target. Note that this is overly
344 * conservative, since unconditional jump targets are not convergence
345 * points, we are just assuming that the other path to reach the jump
346 * target was divergent. If we were clever enough to optimize the
347 * jump at end of a loop back to a conditional branch into a single
348 * conditional branch, ie. like:
349 *
350 * add.f r1.w, r0.x, (neg)(r)c2.x <= loop start
351 * mul.f r1.z, r1.z, r0.x
352 * mul.f r1.y, r1.y, r0.x
353 * mul.f r0.z, r1.x, r0.x
354 * mul.f r0.w, r0.y, r0.x
355 * cmps.f.ge r0.x, (r)c2.y, (r)r1.w
356 * add.s r0.x, (r)r0.x, (r)-1
357 * sel.f32 r0.x, (r)c3.y, (r)r0.x, c3.x
358 * cmps.f.eq p0.x, r0.x, c3.y
359 * mov.f32f32 r0.x, r1.w
360 * mov.f32f32 r0.y, r0.w
361 * mov.f32f32 r1.x, r0.z
362 * (rpt2)nop
363 * br !p0.x, #-13
364 * (jp)mul.f r0.x, c263.y, r1.y
365 *
366 * Then we'd have to be more clever, as the convergence point is no
367 * longer a branch or jump target.
368 */
369 static void
370 mark_convergence_points(struct ir3 *ir)
371 {
372 list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
373 list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
374 if (is_flow(instr) && instr->cat0.target) {
375 struct ir3_instruction *target =
376 list_first_entry(&instr->cat0.target->instr_list,
377 struct ir3_instruction, node);
378 target->flags |= IR3_INSTR_JP;
379 }
380 }
381 }
382 }
383
384 void
385 ir3_legalize(struct ir3 *ir, bool *has_samp, int *max_bary)
386 {
387 struct ir3_legalize_ctx ctx = {
388 .max_bary = -1,
389 };
390
391 list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
392 legalize_block(&ctx, block);
393 }
394
395 *has_samp = ctx.has_samp;
396 *max_bary = ctx.max_bary;
397
398 do {
399 ir3_count_instructions(ir);
400 } while(resolve_jumps(ir));
401
402 mark_convergence_points(ir);
403 }