i965g: consolidate some includes
[mesa.git] / src / gallium / drivers / i965 / brw_wm.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31 #include "tgsi/tgsi_info.h"
32
33 #include "brw_context.h"
34 #include "brw_screen.h"
35 #include "brw_util.h"
36 #include "brw_wm.h"
37 #include "brw_state.h"
38 #include "brw_debug.h"
39 #include "brw_pipe_rast.h"
40
41
42 /** Return number of src args for given instruction */
43 GLuint brw_wm_nr_args( GLuint opcode )
44 {
45 switch (opcode) {
46 case WM_FRONTFACING:
47 case WM_PIXELXY:
48 return 0;
49 case WM_CINTERP:
50 case WM_WPOSXY:
51 case WM_DELTAXY:
52 return 1;
53 case WM_LINTERP:
54 case WM_PIXELW:
55 return 2;
56 case WM_FB_WRITE:
57 case WM_PINTERP:
58 return 3;
59 default:
60 assert(opcode < MAX_OPCODE);
61 return tgsi_get_opcode_info(opcode)->num_src;
62 }
63 }
64
65
66 GLuint brw_wm_is_scalar_result( GLuint opcode )
67 {
68 switch (opcode) {
69 case TGSI_OPCODE_COS:
70 case TGSI_OPCODE_EX2:
71 case TGSI_OPCODE_LG2:
72 case TGSI_OPCODE_POW:
73 case TGSI_OPCODE_RCP:
74 case TGSI_OPCODE_RSQ:
75 case TGSI_OPCODE_SIN:
76 case TGSI_OPCODE_DP3:
77 case TGSI_OPCODE_DP4:
78 case TGSI_OPCODE_DPH:
79 case TGSI_OPCODE_DST:
80 return 1;
81
82 default:
83 return 0;
84 }
85 }
86
87
88 /**
89 * Do GPU code generation for shaders without flow control. Shaders
90 * without flow control instructions can more readily be analysed for
91 * SSA-style optimizations.
92 */
93 static void
94 brw_wm_linear_shader_emit(struct brw_context *brw, struct brw_wm_compile *c)
95 {
96 /* Augment fragment program. Add instructions for pre- and
97 * post-fragment-program tasks such as interpolation and fogging.
98 */
99 brw_wm_pass_fp(c);
100
101 /* Translate to intermediate representation. Build register usage
102 * chains.
103 */
104 brw_wm_pass0(c);
105
106 /* Dead code removal.
107 */
108 brw_wm_pass1(c);
109
110 /* Register allocation.
111 * Divide by two because we operate on 16 pixels at a time and require
112 * two GRF entries for each logical shader register.
113 */
114 c->grf_limit = BRW_WM_MAX_GRF / 2;
115
116 brw_wm_pass2(c);
117
118 /* how many general-purpose registers are used */
119 c->prog_data.total_grf = c->max_wm_grf;
120
121 /* Scratch space is used for register spilling */
122 if (c->last_scratch) {
123 c->prog_data.total_scratch = c->last_scratch + 0x40;
124 }
125 else {
126 c->prog_data.total_scratch = 0;
127 }
128
129 /* Emit GEN4 code.
130 */
131 brw_wm_emit(c);
132 }
133
134
135 /**
136 * All Mesa program -> GPU code generation goes through this function.
137 * Depending on the instructions used (i.e. flow control instructions)
138 * we'll use one of two code generators.
139 */
140 static int do_wm_prog( struct brw_context *brw,
141 struct brw_fragment_shader *fp,
142 struct brw_wm_prog_key *key)
143 {
144 struct brw_wm_compile *c;
145 const GLuint *program;
146 GLuint program_size;
147
148 c = brw->wm.compile_data;
149 if (c == NULL) {
150 brw->wm.compile_data = calloc(1, sizeof(*brw->wm.compile_data));
151 c = brw->wm.compile_data;
152 if (c == NULL) {
153 /* Ouch - big out of memory problem. Can't continue
154 * without triggering a segfault, no way to signal,
155 * so just return.
156 */
157 return PIPE_ERROR_OUT_OF_MEMORY;
158 }
159 } else {
160 memset(c, 0, sizeof(*brw->wm.compile_data));
161 }
162 memcpy(&c->key, key, sizeof(*key));
163
164 c->fp = fp;
165 c->env_param = NULL; /*brw->intel.ctx.FragmentProgram.Parameters;*/
166
167 brw_init_compile(brw, &c->func);
168
169 /* temporary sanity check assertion */
170 assert(fp->has_flow_control == brw_wm_has_flow_control(c->fp));
171
172 /*
173 * Shader which use GLSL features such as flow control are handled
174 * differently from "simple" shaders.
175 */
176 if (fp->has_flow_control) {
177 c->dispatch_width = 8;
178 /* XXX: GLSL support
179 */
180 exit(1);
181 //brw_wm_branching_shader_emit(brw, c);
182 }
183 else {
184 c->dispatch_width = 16;
185 brw_wm_linear_shader_emit(brw, c);
186 }
187
188 if (BRW_DEBUG & DEBUG_WM)
189 debug_printf("\n");
190
191 /* get the program
192 */
193 program = brw_get_program(&c->func, &program_size);
194
195 brw->sws->bo_unreference(brw->wm.prog_bo);
196 brw->wm.prog_bo = brw_upload_cache( &brw->cache, BRW_WM_PROG,
197 &c->key, sizeof(c->key),
198 NULL, 0,
199 program, program_size,
200 &c->prog_data,
201 &brw->wm.prog_data );
202
203 return 0;
204 }
205
206
207
208 static void brw_wm_populate_key( struct brw_context *brw,
209 struct brw_wm_prog_key *key )
210 {
211 unsigned lookup, line_aa;
212 unsigned i;
213
214 memset(key, 0, sizeof(*key));
215
216 /* PIPE_NEW_FRAGMENT_SHADER
217 * PIPE_NEW_DEPTH_STENCIL_ALPHA
218 */
219 lookup = (brw->curr.zstencil->iz_lookup |
220 brw->curr.fragment_shader->iz_lookup);
221
222
223 /* PIPE_NEW_RAST
224 * BRW_NEW_REDUCED_PRIMITIVE
225 */
226 switch (brw->reduced_primitive) {
227 case PIPE_PRIM_POINTS:
228 line_aa = AA_NEVER;
229 break;
230 case PIPE_PRIM_LINES:
231 line_aa = AA_ALWAYS;
232 break;
233 default:
234 line_aa = brw->curr.rast->unfilled_aa_line;
235 break;
236 }
237
238 brw_wm_lookup_iz(line_aa,
239 lookup,
240 brw->curr.fragment_shader->uses_depth,
241 key);
242
243 /* PIPE_NEW_RAST */
244 key->flat_shade = brw->curr.rast->templ.flatshade;
245
246
247 /* PIPE_NEW_BOUND_TEXTURES */
248 for (i = 0; i < brw->curr.num_textures; i++) {
249 const struct brw_texture *tex = brw_texture(brw->curr.texture[i]);
250
251 if (tex->base.format == PIPE_FORMAT_YCBCR)
252 key->yuvtex_mask |= 1 << i;
253
254 if (tex->base.format == PIPE_FORMAT_YCBCR_REV)
255 key->yuvtex_swap_mask |= 1 << i;
256
257 /* XXX: shadow texture
258 */
259 /* key->shadowtex_mask |= 1<<i; */
260 }
261
262 /* CACHE_NEW_VS_PROG */
263 key->vp_nr_outputs = brw->vs.prog_data->nr_outputs;
264
265 /* The unique fragment program ID */
266 key->program_string_id = brw->curr.fragment_shader->id;
267 }
268
269
270 static int brw_prepare_wm_prog(struct brw_context *brw)
271 {
272 struct brw_wm_prog_key key;
273 struct brw_fragment_shader *fs = brw->curr.fragment_shader;
274
275 brw_wm_populate_key(brw, &key);
276
277 /* Make an early check for the key.
278 */
279 brw->sws->bo_unreference(brw->wm.prog_bo);
280 brw->wm.prog_bo = brw_search_cache(&brw->cache, BRW_WM_PROG,
281 &key, sizeof(key),
282 NULL, 0,
283 &brw->wm.prog_data);
284 if (brw->wm.prog_bo == NULL)
285 return do_wm_prog(brw, fs, &key);
286
287 return 0;
288 }
289
290
291 const struct brw_tracked_state brw_wm_prog = {
292 .dirty = {
293 .mesa = (PIPE_NEW_FRAGMENT_SHADER |
294 PIPE_NEW_DEPTH_STENCIL_ALPHA |
295 PIPE_NEW_RAST |
296 PIPE_NEW_BOUND_TEXTURES),
297 .brw = (BRW_NEW_WM_INPUT_DIMENSIONS |
298 BRW_NEW_REDUCED_PRIMITIVE),
299 .cache = CACHE_NEW_VS_PROG,
300 },
301 .prepare = brw_prepare_wm_prog
302 };
303