1351e1967d92f9193992fd5e4e247a05d250b499
[mesa.git] / src / gallium / drivers / ilo / ilo_gpe_gen6.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 2012-2013 LunarG, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Authors:
25 * Chia-I Wu <olv@lunarg.com>
26 */
27
28 #include "util/u_dual_blend.h"
29 #include "util/u_framebuffer.h"
30 #include "util/u_half.h"
31 #include "brw_defines.h"
32 #include "intel_reg.h"
33
34 #include "ilo_context.h"
35 #include "ilo_format.h"
36 #include "ilo_resource.h"
37 #include "ilo_shader.h"
38 #include "ilo_state.h"
39 #include "ilo_gpe_gen6.h"
40
41 /**
42 * Translate a pipe logicop to the matching hardware logicop.
43 */
44 static int
45 gen6_translate_pipe_logicop(unsigned logicop)
46 {
47 switch (logicop) {
48 case PIPE_LOGICOP_CLEAR: return BRW_LOGICOPFUNCTION_CLEAR;
49 case PIPE_LOGICOP_NOR: return BRW_LOGICOPFUNCTION_NOR;
50 case PIPE_LOGICOP_AND_INVERTED: return BRW_LOGICOPFUNCTION_AND_INVERTED;
51 case PIPE_LOGICOP_COPY_INVERTED: return BRW_LOGICOPFUNCTION_COPY_INVERTED;
52 case PIPE_LOGICOP_AND_REVERSE: return BRW_LOGICOPFUNCTION_AND_REVERSE;
53 case PIPE_LOGICOP_INVERT: return BRW_LOGICOPFUNCTION_INVERT;
54 case PIPE_LOGICOP_XOR: return BRW_LOGICOPFUNCTION_XOR;
55 case PIPE_LOGICOP_NAND: return BRW_LOGICOPFUNCTION_NAND;
56 case PIPE_LOGICOP_AND: return BRW_LOGICOPFUNCTION_AND;
57 case PIPE_LOGICOP_EQUIV: return BRW_LOGICOPFUNCTION_EQUIV;
58 case PIPE_LOGICOP_NOOP: return BRW_LOGICOPFUNCTION_NOOP;
59 case PIPE_LOGICOP_OR_INVERTED: return BRW_LOGICOPFUNCTION_OR_INVERTED;
60 case PIPE_LOGICOP_COPY: return BRW_LOGICOPFUNCTION_COPY;
61 case PIPE_LOGICOP_OR_REVERSE: return BRW_LOGICOPFUNCTION_OR_REVERSE;
62 case PIPE_LOGICOP_OR: return BRW_LOGICOPFUNCTION_OR;
63 case PIPE_LOGICOP_SET: return BRW_LOGICOPFUNCTION_SET;
64 default:
65 assert(!"unknown logicop function");
66 return BRW_LOGICOPFUNCTION_CLEAR;
67 }
68 }
69
70 /**
71 * Translate a pipe blend function to the matching hardware blend function.
72 */
73 static int
74 gen6_translate_pipe_blend(unsigned blend)
75 {
76 switch (blend) {
77 case PIPE_BLEND_ADD: return BRW_BLENDFUNCTION_ADD;
78 case PIPE_BLEND_SUBTRACT: return BRW_BLENDFUNCTION_SUBTRACT;
79 case PIPE_BLEND_REVERSE_SUBTRACT: return BRW_BLENDFUNCTION_REVERSE_SUBTRACT;
80 case PIPE_BLEND_MIN: return BRW_BLENDFUNCTION_MIN;
81 case PIPE_BLEND_MAX: return BRW_BLENDFUNCTION_MAX;
82 default:
83 assert(!"unknown blend function");
84 return BRW_BLENDFUNCTION_ADD;
85 };
86 }
87
88 /**
89 * Translate a pipe blend factor to the matching hardware blend factor.
90 */
91 static int
92 gen6_translate_pipe_blendfactor(unsigned blendfactor)
93 {
94 switch (blendfactor) {
95 case PIPE_BLENDFACTOR_ONE: return BRW_BLENDFACTOR_ONE;
96 case PIPE_BLENDFACTOR_SRC_COLOR: return BRW_BLENDFACTOR_SRC_COLOR;
97 case PIPE_BLENDFACTOR_SRC_ALPHA: return BRW_BLENDFACTOR_SRC_ALPHA;
98 case PIPE_BLENDFACTOR_DST_ALPHA: return BRW_BLENDFACTOR_DST_ALPHA;
99 case PIPE_BLENDFACTOR_DST_COLOR: return BRW_BLENDFACTOR_DST_COLOR;
100 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: return BRW_BLENDFACTOR_SRC_ALPHA_SATURATE;
101 case PIPE_BLENDFACTOR_CONST_COLOR: return BRW_BLENDFACTOR_CONST_COLOR;
102 case PIPE_BLENDFACTOR_CONST_ALPHA: return BRW_BLENDFACTOR_CONST_ALPHA;
103 case PIPE_BLENDFACTOR_SRC1_COLOR: return BRW_BLENDFACTOR_SRC1_COLOR;
104 case PIPE_BLENDFACTOR_SRC1_ALPHA: return BRW_BLENDFACTOR_SRC1_ALPHA;
105 case PIPE_BLENDFACTOR_ZERO: return BRW_BLENDFACTOR_ZERO;
106 case PIPE_BLENDFACTOR_INV_SRC_COLOR: return BRW_BLENDFACTOR_INV_SRC_COLOR;
107 case PIPE_BLENDFACTOR_INV_SRC_ALPHA: return BRW_BLENDFACTOR_INV_SRC_ALPHA;
108 case PIPE_BLENDFACTOR_INV_DST_ALPHA: return BRW_BLENDFACTOR_INV_DST_ALPHA;
109 case PIPE_BLENDFACTOR_INV_DST_COLOR: return BRW_BLENDFACTOR_INV_DST_COLOR;
110 case PIPE_BLENDFACTOR_INV_CONST_COLOR: return BRW_BLENDFACTOR_INV_CONST_COLOR;
111 case PIPE_BLENDFACTOR_INV_CONST_ALPHA: return BRW_BLENDFACTOR_INV_CONST_ALPHA;
112 case PIPE_BLENDFACTOR_INV_SRC1_COLOR: return BRW_BLENDFACTOR_INV_SRC1_COLOR;
113 case PIPE_BLENDFACTOR_INV_SRC1_ALPHA: return BRW_BLENDFACTOR_INV_SRC1_ALPHA;
114 default:
115 assert(!"unknown blend factor");
116 return BRW_BLENDFACTOR_ONE;
117 };
118 }
119
120 /**
121 * Translate a pipe stencil op to the matching hardware stencil op.
122 */
123 static int
124 gen6_translate_pipe_stencil_op(unsigned stencil_op)
125 {
126 switch (stencil_op) {
127 case PIPE_STENCIL_OP_KEEP: return BRW_STENCILOP_KEEP;
128 case PIPE_STENCIL_OP_ZERO: return BRW_STENCILOP_ZERO;
129 case PIPE_STENCIL_OP_REPLACE: return BRW_STENCILOP_REPLACE;
130 case PIPE_STENCIL_OP_INCR: return BRW_STENCILOP_INCRSAT;
131 case PIPE_STENCIL_OP_DECR: return BRW_STENCILOP_DECRSAT;
132 case PIPE_STENCIL_OP_INCR_WRAP: return BRW_STENCILOP_INCR;
133 case PIPE_STENCIL_OP_DECR_WRAP: return BRW_STENCILOP_DECR;
134 case PIPE_STENCIL_OP_INVERT: return BRW_STENCILOP_INVERT;
135 default:
136 assert(!"unknown stencil op");
137 return BRW_STENCILOP_KEEP;
138 }
139 }
140
141 /**
142 * Translate a pipe texture mipfilter to the matching hardware mipfilter.
143 */
144 static int
145 gen6_translate_tex_mipfilter(unsigned filter)
146 {
147 switch (filter) {
148 case PIPE_TEX_MIPFILTER_NEAREST: return BRW_MIPFILTER_NEAREST;
149 case PIPE_TEX_MIPFILTER_LINEAR: return BRW_MIPFILTER_LINEAR;
150 case PIPE_TEX_MIPFILTER_NONE: return BRW_MIPFILTER_NONE;
151 default:
152 assert(!"unknown mipfilter");
153 return BRW_MIPFILTER_NONE;
154 }
155 }
156
157 /**
158 * Translate a pipe texture filter to the matching hardware mapfilter.
159 */
160 static int
161 gen6_translate_tex_filter(unsigned filter)
162 {
163 switch (filter) {
164 case PIPE_TEX_FILTER_NEAREST: return BRW_MAPFILTER_NEAREST;
165 case PIPE_TEX_FILTER_LINEAR: return BRW_MAPFILTER_LINEAR;
166 default:
167 assert(!"unknown sampler filter");
168 return BRW_MAPFILTER_NEAREST;
169 }
170 }
171
172 /**
173 * Translate a pipe texture coordinate wrapping mode to the matching hardware
174 * wrapping mode.
175 */
176 static int
177 gen6_translate_tex_wrap(unsigned wrap, bool clamp_to_edge)
178 {
179 /* clamp to edge or border? */
180 if (wrap == PIPE_TEX_WRAP_CLAMP) {
181 wrap = (clamp_to_edge) ?
182 PIPE_TEX_WRAP_CLAMP_TO_EDGE : PIPE_TEX_WRAP_CLAMP_TO_BORDER;
183 }
184
185 switch (wrap) {
186 case PIPE_TEX_WRAP_REPEAT: return BRW_TEXCOORDMODE_WRAP;
187 case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return BRW_TEXCOORDMODE_CLAMP;
188 case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return BRW_TEXCOORDMODE_CLAMP_BORDER;
189 case PIPE_TEX_WRAP_MIRROR_REPEAT: return BRW_TEXCOORDMODE_MIRROR;
190 case PIPE_TEX_WRAP_CLAMP:
191 case PIPE_TEX_WRAP_MIRROR_CLAMP:
192 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
193 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
194 default:
195 assert(!"unknown sampler wrap mode");
196 return BRW_TEXCOORDMODE_WRAP;
197 }
198 }
199
200 /**
201 * Translate a pipe shadow compare function to the matching hardware shadow
202 * function.
203 */
204 static int
205 gen6_translate_shadow_func(unsigned func)
206 {
207 /*
208 * For PIPE_FUNC_x, the reference value is on the left-hand side of the
209 * comparison, and 1.0 is returned when the comparison is true.
210 *
211 * For BRW_PREFILTER_x, the reference value is on the right-hand side of
212 * the comparison, and 0.0 is returned when the comparison is true.
213 */
214 switch (func) {
215 case PIPE_FUNC_NEVER: return BRW_PREFILTER_ALWAYS;
216 case PIPE_FUNC_LESS: return BRW_PREFILTER_LEQUAL;
217 case PIPE_FUNC_EQUAL: return BRW_PREFILTER_NOTEQUAL;
218 case PIPE_FUNC_LEQUAL: return BRW_PREFILTER_LESS;
219 case PIPE_FUNC_GREATER: return BRW_PREFILTER_GEQUAL;
220 case PIPE_FUNC_NOTEQUAL: return BRW_PREFILTER_EQUAL;
221 case PIPE_FUNC_GEQUAL: return BRW_PREFILTER_GREATER;
222 case PIPE_FUNC_ALWAYS: return BRW_PREFILTER_NEVER;
223 default:
224 assert(!"unknown shadow compare function");
225 return BRW_PREFILTER_NEVER;
226 }
227 }
228
229 /**
230 * Translate a pipe DSA test function to the matching hardware compare
231 * function.
232 */
233 static int
234 gen6_translate_dsa_func(unsigned func)
235 {
236 switch (func) {
237 case PIPE_FUNC_NEVER: return BRW_COMPAREFUNCTION_NEVER;
238 case PIPE_FUNC_LESS: return BRW_COMPAREFUNCTION_LESS;
239 case PIPE_FUNC_EQUAL: return BRW_COMPAREFUNCTION_EQUAL;
240 case PIPE_FUNC_LEQUAL: return BRW_COMPAREFUNCTION_LEQUAL;
241 case PIPE_FUNC_GREATER: return BRW_COMPAREFUNCTION_GREATER;
242 case PIPE_FUNC_NOTEQUAL: return BRW_COMPAREFUNCTION_NOTEQUAL;
243 case PIPE_FUNC_GEQUAL: return BRW_COMPAREFUNCTION_GEQUAL;
244 case PIPE_FUNC_ALWAYS: return BRW_COMPAREFUNCTION_ALWAYS;
245 default:
246 assert(!"unknown depth/stencil/alpha test function");
247 return BRW_COMPAREFUNCTION_NEVER;
248 }
249 }
250
251 static void
252 ve_init_cso(const struct ilo_dev_info *dev,
253 const struct pipe_vertex_element *state,
254 unsigned vb_index,
255 struct ilo_ve_cso *cso)
256 {
257 int comp[4] = {
258 BRW_VE1_COMPONENT_STORE_SRC,
259 BRW_VE1_COMPONENT_STORE_SRC,
260 BRW_VE1_COMPONENT_STORE_SRC,
261 BRW_VE1_COMPONENT_STORE_SRC,
262 };
263 int format;
264
265 ILO_GPE_VALID_GEN(dev, 6, 7.5);
266
267 switch (util_format_get_nr_components(state->src_format)) {
268 case 1: comp[1] = BRW_VE1_COMPONENT_STORE_0;
269 case 2: comp[2] = BRW_VE1_COMPONENT_STORE_0;
270 case 3: comp[3] = (util_format_is_pure_integer(state->src_format)) ?
271 BRW_VE1_COMPONENT_STORE_1_INT :
272 BRW_VE1_COMPONENT_STORE_1_FLT;
273 }
274
275 format = ilo_translate_vertex_format(state->src_format);
276
277 STATIC_ASSERT(Elements(cso->payload) >= 2);
278 cso->payload[0] =
279 vb_index << GEN6_VE0_INDEX_SHIFT |
280 GEN6_VE0_VALID |
281 format << BRW_VE0_FORMAT_SHIFT |
282 state->src_offset << BRW_VE0_SRC_OFFSET_SHIFT;
283
284 cso->payload[1] =
285 comp[0] << BRW_VE1_COMPONENT_0_SHIFT |
286 comp[1] << BRW_VE1_COMPONENT_1_SHIFT |
287 comp[2] << BRW_VE1_COMPONENT_2_SHIFT |
288 comp[3] << BRW_VE1_COMPONENT_3_SHIFT;
289 }
290
291 void
292 ilo_gpe_init_ve(const struct ilo_dev_info *dev,
293 unsigned num_states,
294 const struct pipe_vertex_element *states,
295 struct ilo_ve_state *ve)
296 {
297 unsigned i;
298
299 ILO_GPE_VALID_GEN(dev, 6, 7.5);
300
301 ve->count = num_states;
302 ve->vb_count = 0;
303
304 for (i = 0; i < num_states; i++) {
305 const unsigned pipe_idx = states[i].vertex_buffer_index;
306 const unsigned instance_divisor = states[i].instance_divisor;
307 unsigned hw_idx;
308
309 /*
310 * map the pipe vb to the hardware vb, which has a fixed instance
311 * divisor
312 */
313 for (hw_idx = 0; hw_idx < ve->vb_count; hw_idx++) {
314 if (ve->vb_mapping[hw_idx] == pipe_idx &&
315 ve->instance_divisors[hw_idx] == instance_divisor)
316 break;
317 }
318
319 /* create one if there is no matching hardware vb */
320 if (hw_idx >= ve->vb_count) {
321 hw_idx = ve->vb_count++;
322
323 ve->vb_mapping[hw_idx] = pipe_idx;
324 ve->instance_divisors[hw_idx] = instance_divisor;
325 }
326
327 ve_init_cso(dev, &states[i], hw_idx, &ve->cso[i]);
328 }
329 }
330
331 void
332 ilo_gpe_init_vs_cso(const struct ilo_dev_info *dev,
333 const struct ilo_shader_state *vs,
334 struct ilo_shader_cso *cso)
335 {
336 int start_grf, vue_read_len, max_threads;
337 uint32_t dw2, dw4, dw5;
338
339 ILO_GPE_VALID_GEN(dev, 6, 7.5);
340
341 start_grf = ilo_shader_get_kernel_param(vs, ILO_KERNEL_URB_DATA_START_REG);
342 vue_read_len = ilo_shader_get_kernel_param(vs, ILO_KERNEL_INPUT_COUNT);
343
344 /*
345 * From the Sandy Bridge PRM, volume 2 part 1, page 135:
346 *
347 * "(Vertex URB Entry Read Length) Specifies the number of pairs of
348 * 128-bit vertex elements to be passed into the payload for each
349 * vertex."
350 *
351 * "It is UNDEFINED to set this field to 0 indicating no Vertex URB
352 * data to be read and passed to the thread."
353 */
354 vue_read_len = (vue_read_len + 1) / 2;
355 if (!vue_read_len)
356 vue_read_len = 1;
357
358 switch (dev->gen) {
359 case ILO_GEN(6):
360 /*
361 * From the Sandy Bridge PRM, volume 1 part 1, page 22:
362 *
363 * "Device # of EUs #Threads/EU
364 * SNB GT2 12 5
365 * SNB GT1 6 4"
366 */
367 max_threads = (dev->gt == 2) ? 60 : 24;
368 break;
369 case ILO_GEN(7):
370 /*
371 * From the Ivy Bridge PRM, volume 1 part 1, page 18:
372 *
373 * "Device # of EUs #Threads/EU
374 * Ivy Bridge (GT2) 16 8
375 * Ivy Bridge (GT1) 6 6"
376 */
377 max_threads = (dev->gt == 2) ? 128 : 36;
378 break;
379 case ILO_GEN(7.5):
380 /* see brwCreateContext() */
381 max_threads = (dev->gt >= 2) ? 280 : 70;
382 break;
383 default:
384 max_threads = 1;
385 break;
386 }
387
388 dw2 = (true) ? 0 : GEN6_VS_FLOATING_POINT_MODE_ALT;
389
390 dw4 = start_grf << GEN6_VS_DISPATCH_START_GRF_SHIFT |
391 vue_read_len << GEN6_VS_URB_READ_LENGTH_SHIFT |
392 0 << GEN6_VS_URB_ENTRY_READ_OFFSET_SHIFT;
393
394 dw5 = GEN6_VS_STATISTICS_ENABLE |
395 GEN6_VS_ENABLE;
396
397 if (dev->gen >= ILO_GEN(7.5))
398 dw5 |= (max_threads - 1) << HSW_VS_MAX_THREADS_SHIFT;
399 else
400 dw5 |= (max_threads - 1) << GEN6_VS_MAX_THREADS_SHIFT;
401
402 STATIC_ASSERT(Elements(cso->payload) >= 3);
403 cso->payload[0] = dw2;
404 cso->payload[1] = dw4;
405 cso->payload[2] = dw5;
406 }
407
408 void
409 ilo_gpe_init_gs_cso_gen6(const struct ilo_dev_info *dev,
410 const struct ilo_shader_state *gs,
411 struct ilo_shader_cso *cso)
412 {
413 int start_grf, vue_read_len, max_threads;
414 uint32_t dw2, dw4, dw5, dw6;
415
416 ILO_GPE_VALID_GEN(dev, 6, 6);
417
418 if (ilo_shader_get_type(gs) == PIPE_SHADER_GEOMETRY) {
419 start_grf = ilo_shader_get_kernel_param(gs,
420 ILO_KERNEL_URB_DATA_START_REG);
421
422 vue_read_len = ilo_shader_get_kernel_param(gs, ILO_KERNEL_INPUT_COUNT);
423 }
424 else {
425 start_grf = ilo_shader_get_kernel_param(gs,
426 ILO_KERNEL_VS_GEN6_SO_START_REG);
427
428 vue_read_len = ilo_shader_get_kernel_param(gs, ILO_KERNEL_OUTPUT_COUNT);
429 }
430
431 /*
432 * From the Sandy Bridge PRM, volume 2 part 1, page 153:
433 *
434 * "Specifies the amount of URB data read and passed in the thread
435 * payload for each Vertex URB entry, in 256-bit register increments.
436 *
437 * It is UNDEFINED to set this field (Vertex URB Entry Read Length) to
438 * 0 indicating no Vertex URB data to be read and passed to the
439 * thread."
440 */
441 vue_read_len = (vue_read_len + 1) / 2;
442 if (!vue_read_len)
443 vue_read_len = 1;
444
445 /*
446 * From the Sandy Bridge PRM, volume 2 part 1, page 154:
447 *
448 * "Maximum Number of Threads valid range is [0,27] when Rendering
449 * Enabled bit is set."
450 *
451 * From the Sandy Bridge PRM, volume 2 part 1, page 173:
452 *
453 * "Programming Note: If the GS stage is enabled, software must always
454 * allocate at least one GS URB Entry. This is true even if the GS
455 * thread never needs to output vertices to the pipeline, e.g., when
456 * only performing stream output. This is an artifact of the need to
457 * pass the GS thread an initial destination URB handle."
458 *
459 * As such, we always enable rendering, and limit the number of threads.
460 */
461 if (dev->gt == 2) {
462 /* maximum is 60, but limited to 28 */
463 max_threads = 28;
464 }
465 else {
466 /* maximum is 24, but limited to 21 (see brwCreateContext()) */
467 max_threads = 21;
468 }
469
470 dw2 = GEN6_GS_SPF_MODE;
471
472 dw4 = vue_read_len << GEN6_GS_URB_READ_LENGTH_SHIFT |
473 0 << GEN6_GS_URB_ENTRY_READ_OFFSET_SHIFT |
474 start_grf << GEN6_GS_DISPATCH_START_GRF_SHIFT;
475
476 dw5 = (max_threads - 1) << GEN6_GS_MAX_THREADS_SHIFT |
477 GEN6_GS_STATISTICS_ENABLE |
478 GEN6_GS_SO_STATISTICS_ENABLE |
479 GEN6_GS_RENDERING_ENABLE;
480
481 /*
482 * we cannot make use of GEN6_GS_REORDER because it will reorder
483 * triangle strips according to D3D rules (triangle 2N+1 uses vertices
484 * (2N+1, 2N+3, 2N+2)), instead of GL rules (triangle 2N+1 uses vertices
485 * (2N+2, 2N+1, 2N+3)).
486 */
487 dw6 = GEN6_GS_ENABLE;
488
489 if (ilo_shader_get_kernel_param(gs, ILO_KERNEL_GS_DISCARD_ADJACENCY))
490 dw6 |= GEN6_GS_DISCARD_ADJACENCY;
491
492 if (ilo_shader_get_kernel_param(gs, ILO_KERNEL_VS_GEN6_SO)) {
493 const uint32_t svbi_post_inc =
494 ilo_shader_get_kernel_param(gs, ILO_KERNEL_GS_GEN6_SVBI_POST_INC);
495
496 dw6 |= GEN6_GS_SVBI_PAYLOAD_ENABLE;
497 if (svbi_post_inc) {
498 dw6 |= GEN6_GS_SVBI_POSTINCREMENT_ENABLE |
499 svbi_post_inc << GEN6_GS_SVBI_POSTINCREMENT_VALUE_SHIFT;
500 }
501 }
502
503 STATIC_ASSERT(Elements(cso->payload) >= 4);
504 cso->payload[0] = dw2;
505 cso->payload[1] = dw4;
506 cso->payload[2] = dw5;
507 cso->payload[3] = dw6;
508 }
509
510 void
511 ilo_gpe_init_rasterizer_clip(const struct ilo_dev_info *dev,
512 const struct pipe_rasterizer_state *state,
513 struct ilo_rasterizer_clip *clip)
514 {
515 uint32_t dw1, dw2, dw3;
516
517 ILO_GPE_VALID_GEN(dev, 6, 7.5);
518
519 dw1 = GEN6_CLIP_STATISTICS_ENABLE;
520
521 if (dev->gen >= ILO_GEN(7)) {
522 /*
523 * From the Ivy Bridge PRM, volume 2 part 1, page 219:
524 *
525 * "Workaround : Due to Hardware issue "EarlyCull" needs to be
526 * enabled only for the cases where the incoming primitive topology
527 * into the clipper guaranteed to be Trilist."
528 *
529 * What does this mean?
530 */
531 dw1 |= 0 << 19 |
532 GEN7_CLIP_EARLY_CULL;
533
534 if (state->front_ccw)
535 dw1 |= GEN7_CLIP_WINDING_CCW;
536
537 switch (state->cull_face) {
538 case PIPE_FACE_NONE:
539 dw1 |= GEN7_CLIP_CULLMODE_NONE;
540 break;
541 case PIPE_FACE_FRONT:
542 dw1 |= GEN7_CLIP_CULLMODE_FRONT;
543 break;
544 case PIPE_FACE_BACK:
545 dw1 |= GEN7_CLIP_CULLMODE_BACK;
546 break;
547 case PIPE_FACE_FRONT_AND_BACK:
548 dw1 |= GEN7_CLIP_CULLMODE_BOTH;
549 break;
550 }
551 }
552
553 dw2 = GEN6_CLIP_ENABLE |
554 GEN6_CLIP_XY_TEST |
555 state->clip_plane_enable << GEN6_USER_CLIP_CLIP_DISTANCES_SHIFT |
556 GEN6_CLIP_MODE_NORMAL;
557
558 if (state->clip_halfz)
559 dw2 |= GEN6_CLIP_API_D3D;
560 else
561 dw2 |= GEN6_CLIP_API_OGL;
562
563 if (state->depth_clip)
564 dw2 |= GEN6_CLIP_Z_TEST;
565
566 if (state->flatshade_first) {
567 dw2 |= 0 << GEN6_CLIP_TRI_PROVOKE_SHIFT |
568 0 << GEN6_CLIP_LINE_PROVOKE_SHIFT |
569 1 << GEN6_CLIP_TRIFAN_PROVOKE_SHIFT;
570 }
571 else {
572 dw2 |= 2 << GEN6_CLIP_TRI_PROVOKE_SHIFT |
573 1 << GEN6_CLIP_LINE_PROVOKE_SHIFT |
574 2 << GEN6_CLIP_TRIFAN_PROVOKE_SHIFT;
575 }
576
577 dw3 = 0x1 << GEN6_CLIP_MIN_POINT_WIDTH_SHIFT |
578 0x7ff << GEN6_CLIP_MAX_POINT_WIDTH_SHIFT;
579
580 clip->payload[0] = dw1;
581 clip->payload[1] = dw2;
582 clip->payload[2] = dw3;
583
584 clip->can_enable_guardband = true;
585
586 /*
587 * There are several reasons that guard band test should be disabled
588 *
589 * - GL wide points (to avoid partially visibie object)
590 * - GL wide or AA lines (to avoid partially visibie object)
591 */
592 if (state->point_size_per_vertex || state->point_size > 1.0f)
593 clip->can_enable_guardband = false;
594 if (state->line_smooth || state->line_width > 1.0f)
595 clip->can_enable_guardband = false;
596 }
597
598 void
599 ilo_gpe_init_rasterizer_sf(const struct ilo_dev_info *dev,
600 const struct pipe_rasterizer_state *state,
601 struct ilo_rasterizer_sf *sf)
602 {
603 float offset_const, offset_scale, offset_clamp;
604 int line_width, point_width;
605 uint32_t dw1, dw2, dw3;
606
607 ILO_GPE_VALID_GEN(dev, 6, 7.5);
608
609 /*
610 * Scale the constant term. The minimum representable value used by the HW
611 * is not large enouch to be the minimum resolvable difference.
612 */
613 offset_const = state->offset_units * 2.0f;
614
615 offset_scale = state->offset_scale;
616 offset_clamp = state->offset_clamp;
617
618 /*
619 * From the Sandy Bridge PRM, volume 2 part 1, page 248:
620 *
621 * "This bit (Statistics Enable) should be set whenever clipping is
622 * enabled and the Statistics Enable bit is set in CLIP_STATE. It
623 * should be cleared if clipping is disabled or Statistics Enable in
624 * CLIP_STATE is clear."
625 */
626 dw1 = GEN6_SF_STATISTICS_ENABLE |
627 GEN6_SF_VIEWPORT_TRANSFORM_ENABLE;
628
629 /* XXX GEN6 path seems to work fine for GEN7 */
630 if (false && dev->gen >= ILO_GEN(7)) {
631 /*
632 * From the Ivy Bridge PRM, volume 2 part 1, page 258:
633 *
634 * "This bit (Legacy Global Depth Bias Enable, Global Depth Offset
635 * Enable Solid , Global Depth Offset Enable Wireframe, and Global
636 * Depth Offset Enable Point) should be set whenever non zero depth
637 * bias (Slope, Bias) values are used. Setting this bit may have
638 * some degradation of performance for some workloads."
639 */
640 if (state->offset_tri || state->offset_line || state->offset_point) {
641 /* XXX need to scale offset_const according to the depth format */
642 dw1 |= GEN6_SF_LEGACY_GLOBAL_DEPTH_BIAS;
643
644 dw1 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_SOLID |
645 GEN6_SF_GLOBAL_DEPTH_OFFSET_WIREFRAME |
646 GEN6_SF_GLOBAL_DEPTH_OFFSET_POINT;
647 }
648 else {
649 offset_const = 0.0f;
650 offset_scale = 0.0f;
651 offset_clamp = 0.0f;
652 }
653 }
654 else {
655 if (state->offset_tri)
656 dw1 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_SOLID;
657 if (state->offset_line)
658 dw1 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_WIREFRAME;
659 if (state->offset_point)
660 dw1 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_POINT;
661 }
662
663 switch (state->fill_front) {
664 case PIPE_POLYGON_MODE_FILL:
665 dw1 |= GEN6_SF_FRONT_SOLID;
666 break;
667 case PIPE_POLYGON_MODE_LINE:
668 dw1 |= GEN6_SF_FRONT_WIREFRAME;
669 break;
670 case PIPE_POLYGON_MODE_POINT:
671 dw1 |= GEN6_SF_FRONT_POINT;
672 break;
673 }
674
675 switch (state->fill_back) {
676 case PIPE_POLYGON_MODE_FILL:
677 dw1 |= GEN6_SF_BACK_SOLID;
678 break;
679 case PIPE_POLYGON_MODE_LINE:
680 dw1 |= GEN6_SF_BACK_WIREFRAME;
681 break;
682 case PIPE_POLYGON_MODE_POINT:
683 dw1 |= GEN6_SF_BACK_POINT;
684 break;
685 }
686
687 if (state->front_ccw)
688 dw1 |= GEN6_SF_WINDING_CCW;
689
690 dw2 = 0;
691
692 if (state->line_smooth) {
693 /*
694 * From the Sandy Bridge PRM, volume 2 part 1, page 251:
695 *
696 * "This field (Anti-aliasing Enable) must be disabled if any of the
697 * render targets have integer (UINT or SINT) surface format."
698 *
699 * From the Sandy Bridge PRM, volume 2 part 1, page 317:
700 *
701 * "This field (Hierarchical Depth Buffer Enable) must be disabled
702 * if Anti-aliasing Enable in 3DSTATE_SF is enabled.
703 *
704 * TODO We do not check those yet.
705 */
706 dw2 |= GEN6_SF_LINE_AA_ENABLE |
707 GEN6_SF_LINE_END_CAP_WIDTH_1_0;
708 }
709
710 switch (state->cull_face) {
711 case PIPE_FACE_NONE:
712 dw2 |= GEN6_SF_CULL_NONE;
713 break;
714 case PIPE_FACE_FRONT:
715 dw2 |= GEN6_SF_CULL_FRONT;
716 break;
717 case PIPE_FACE_BACK:
718 dw2 |= GEN6_SF_CULL_BACK;
719 break;
720 case PIPE_FACE_FRONT_AND_BACK:
721 dw2 |= GEN6_SF_CULL_BOTH;
722 break;
723 }
724
725 /*
726 * Smooth lines should intersect ceil(line_width) or (ceil(line_width) + 1)
727 * pixels in the minor direction. We have to make the lines slightly
728 * thicker, 0.5 pixel on both sides, so that they intersect that many
729 * pixels are considered into the lines.
730 *
731 * Line width is in U3.7.
732 */
733 line_width = (int) ((state->line_width +
734 (float) state->line_smooth) * 128.0f + 0.5f);
735 line_width = CLAMP(line_width, 0, 1023);
736
737 if (line_width == 128 && !state->line_smooth) {
738 /* use GIQ rules */
739 line_width = 0;
740 }
741
742 dw2 |= line_width << GEN6_SF_LINE_WIDTH_SHIFT;
743
744 if (dev->gen >= ILO_GEN(7.5) && state->line_stipple_enable)
745 dw2 |= HSW_SF_LINE_STIPPLE_ENABLE;
746
747 if (state->scissor)
748 dw2 |= GEN6_SF_SCISSOR_ENABLE;
749
750 dw3 = GEN6_SF_LINE_AA_MODE_TRUE |
751 GEN6_SF_VERTEX_SUBPIXEL_8BITS;
752
753 if (state->line_last_pixel)
754 dw3 |= 1 << 31;
755
756 if (state->flatshade_first) {
757 dw3 |= 0 << GEN6_SF_TRI_PROVOKE_SHIFT |
758 0 << GEN6_SF_LINE_PROVOKE_SHIFT |
759 1 << GEN6_SF_TRIFAN_PROVOKE_SHIFT;
760 }
761 else {
762 dw3 |= 2 << GEN6_SF_TRI_PROVOKE_SHIFT |
763 1 << GEN6_SF_LINE_PROVOKE_SHIFT |
764 2 << GEN6_SF_TRIFAN_PROVOKE_SHIFT;
765 }
766
767 if (!state->point_size_per_vertex)
768 dw3 |= GEN6_SF_USE_STATE_POINT_WIDTH;
769
770 /* in U8.3 */
771 point_width = (int) (state->point_size * 8.0f + 0.5f);
772 point_width = CLAMP(point_width, 1, 2047);
773
774 dw3 |= point_width;
775
776 STATIC_ASSERT(Elements(sf->payload) >= 6);
777 sf->payload[0] = dw1;
778 sf->payload[1] = dw2;
779 sf->payload[2] = dw3;
780 sf->payload[3] = fui(offset_const);
781 sf->payload[4] = fui(offset_scale);
782 sf->payload[5] = fui(offset_clamp);
783
784 if (state->multisample) {
785 sf->dw_msaa = GEN6_SF_MSRAST_ON_PATTERN;
786
787 /*
788 * From the Sandy Bridge PRM, volume 2 part 1, page 251:
789 *
790 * "Software must not program a value of 0.0 when running in
791 * MSRASTMODE_ON_xxx modes - zero-width lines are not available
792 * when multisampling rasterization is enabled."
793 */
794 if (!line_width) {
795 line_width = 128; /* 1.0f */
796
797 sf->dw_msaa |= line_width << GEN6_SF_LINE_WIDTH_SHIFT;
798 }
799 }
800 else {
801 sf->dw_msaa = 0;
802 }
803 }
804
805 void
806 ilo_gpe_init_rasterizer_wm_gen6(const struct ilo_dev_info *dev,
807 const struct pipe_rasterizer_state *state,
808 struct ilo_rasterizer_wm *wm)
809 {
810 uint32_t dw5, dw6;
811
812 ILO_GPE_VALID_GEN(dev, 6, 6);
813
814 /* only the FF unit states are set, as in GEN7 */
815
816 dw5 = GEN6_WM_LINE_AA_WIDTH_2_0;
817
818 /* same value as in 3DSTATE_SF */
819 if (state->line_smooth)
820 dw5 |= GEN6_WM_LINE_END_CAP_AA_WIDTH_1_0;
821
822 if (state->poly_stipple_enable)
823 dw5 |= GEN6_WM_POLYGON_STIPPLE_ENABLE;
824 if (state->line_stipple_enable)
825 dw5 |= GEN6_WM_LINE_STIPPLE_ENABLE;
826
827 dw6 = GEN6_WM_POSITION_ZW_PIXEL |
828 GEN6_WM_MSRAST_OFF_PIXEL |
829 GEN6_WM_MSDISPMODE_PERSAMPLE;
830
831 if (state->bottom_edge_rule)
832 dw6 |= GEN6_WM_POINT_RASTRULE_UPPER_RIGHT;
833
834 /*
835 * assertion that makes sure
836 *
837 * dw6 |= wm->dw_msaa_rast | wm->dw_msaa_disp;
838 *
839 * is valid
840 */
841 STATIC_ASSERT(GEN6_WM_MSRAST_OFF_PIXEL == 0 &&
842 GEN6_WM_MSDISPMODE_PERSAMPLE == 0);
843
844 wm->dw_msaa_rast =
845 (state->multisample) ? GEN6_WM_MSRAST_ON_PATTERN : 0;
846 wm->dw_msaa_disp = GEN6_WM_MSDISPMODE_PERPIXEL;
847
848 STATIC_ASSERT(Elements(wm->payload) >= 2);
849 wm->payload[0] = dw5;
850 wm->payload[1] = dw6;
851 }
852
853 void
854 ilo_gpe_init_fs_cso_gen6(const struct ilo_dev_info *dev,
855 const struct ilo_shader_state *fs,
856 struct ilo_shader_cso *cso)
857 {
858 int start_grf, input_count, interps, max_threads;
859 uint32_t dw2, dw4, dw5, dw6;
860
861 ILO_GPE_VALID_GEN(dev, 6, 6);
862
863 start_grf = ilo_shader_get_kernel_param(fs, ILO_KERNEL_URB_DATA_START_REG);
864 input_count = ilo_shader_get_kernel_param(fs, ILO_KERNEL_INPUT_COUNT);
865 interps = ilo_shader_get_kernel_param(fs,
866 ILO_KERNEL_FS_BARYCENTRIC_INTERPOLATIONS);
867
868 /* see brwCreateContext() */
869 max_threads = (dev->gt == 2) ? 80 : 40;
870
871 dw2 = (true) ? 0 : GEN6_WM_FLOATING_POINT_MODE_ALT;
872
873 dw4 = start_grf << GEN6_WM_DISPATCH_START_GRF_SHIFT_0 |
874 0 << GEN6_WM_DISPATCH_START_GRF_SHIFT_1 |
875 0 << GEN6_WM_DISPATCH_START_GRF_SHIFT_2;
876
877 dw5 = (max_threads - 1) << GEN6_WM_MAX_THREADS_SHIFT;
878
879 /*
880 * From the Sandy Bridge PRM, volume 2 part 1, page 275:
881 *
882 * "This bit (Pixel Shader Kill Pixel), if ENABLED, indicates that the
883 * PS kernel or color calculator has the ability to kill (discard)
884 * pixels or samples, other than due to depth or stencil testing.
885 * This bit is required to be ENABLED in the following situations:
886 *
887 * The API pixel shader program contains "killpix" or "discard"
888 * instructions, or other code in the pixel shader kernel that can
889 * cause the final pixel mask to differ from the pixel mask received
890 * on dispatch.
891 *
892 * A sampler with chroma key enabled with kill pixel mode is used by
893 * the pixel shader.
894 *
895 * Any render target has Alpha Test Enable or AlphaToCoverage Enable
896 * enabled.
897 *
898 * The pixel shader kernel generates and outputs oMask.
899 *
900 * Note: As ClipDistance clipping is fully supported in hardware and
901 * therefore not via PS instructions, there should be no need to
902 * ENABLE this bit due to ClipDistance clipping."
903 */
904 if (ilo_shader_get_kernel_param(fs, ILO_KERNEL_FS_USE_KILL))
905 dw5 |= GEN6_WM_KILL_ENABLE;
906
907 /*
908 * From the Sandy Bridge PRM, volume 2 part 1, page 275:
909 *
910 * "If a NULL Depth Buffer is selected, the Pixel Shader Computed Depth
911 * field must be set to disabled."
912 *
913 * TODO This is not checked yet.
914 */
915 if (ilo_shader_get_kernel_param(fs, ILO_KERNEL_FS_OUTPUT_Z))
916 dw5 |= GEN6_WM_COMPUTED_DEPTH;
917
918 if (ilo_shader_get_kernel_param(fs, ILO_KERNEL_FS_INPUT_Z))
919 dw5 |= GEN6_WM_USES_SOURCE_DEPTH;
920
921 if (ilo_shader_get_kernel_param(fs, ILO_KERNEL_FS_INPUT_W))
922 dw5 |= GEN6_WM_USES_SOURCE_W;
923
924 /*
925 * TODO set this bit only when
926 *
927 * a) fs writes colors and color is not masked, or
928 * b) fs writes depth, or
929 * c) fs or cc kills
930 */
931 if (true)
932 dw5 |= GEN6_WM_DISPATCH_ENABLE;
933
934 assert(!ilo_shader_get_kernel_param(fs, ILO_KERNEL_FS_DISPATCH_16_OFFSET));
935 dw5 |= GEN6_WM_8_DISPATCH_ENABLE;
936
937 dw6 = input_count << GEN6_WM_NUM_SF_OUTPUTS_SHIFT |
938 GEN6_WM_POSOFFSET_NONE |
939 interps << GEN6_WM_BARYCENTRIC_INTERPOLATION_MODE_SHIFT;
940
941 STATIC_ASSERT(Elements(cso->payload) >= 4);
942 cso->payload[0] = dw2;
943 cso->payload[1] = dw4;
944 cso->payload[2] = dw5;
945 cso->payload[3] = dw6;
946 }
947
948 struct ilo_zs_surface_info {
949 int surface_type;
950 int format;
951
952 struct {
953 struct intel_bo *bo;
954 unsigned stride;
955 enum intel_tiling_mode tiling;
956 uint32_t offset;
957 } zs, stencil, hiz;
958
959 unsigned width, height, depth;
960 unsigned lod, first_layer, num_layers;
961 uint32_t x_offset, y_offset;
962 };
963
964 static void
965 zs_init_info_null(const struct ilo_dev_info *dev,
966 struct ilo_zs_surface_info *info)
967 {
968 ILO_GPE_VALID_GEN(dev, 6, 7.5);
969
970 memset(info, 0, sizeof(*info));
971
972 info->surface_type = BRW_SURFACE_NULL;
973 info->format = BRW_DEPTHFORMAT_D32_FLOAT;
974 info->width = 1;
975 info->height = 1;
976 info->depth = 1;
977 info->num_layers = 1;
978 }
979
980 static void
981 zs_init_info(const struct ilo_dev_info *dev,
982 const struct ilo_texture *tex,
983 enum pipe_format format, unsigned level,
984 unsigned first_layer, unsigned num_layers,
985 bool offset_to_layer, struct ilo_zs_surface_info *info)
986 {
987 uint32_t x_offset[3], y_offset[3];
988 bool separate_stencil;
989
990 ILO_GPE_VALID_GEN(dev, 6, 7.5);
991
992 memset(info, 0, sizeof(*info));
993
994 info->surface_type = ilo_gpe_gen6_translate_texture(tex->base.target);
995
996 if (info->surface_type == BRW_SURFACE_CUBE) {
997 /*
998 * From the Sandy Bridge PRM, volume 2 part 1, page 325-326:
999 *
1000 * "For Other Surfaces (Cube Surfaces):
1001 * This field (Minimum Array Element) is ignored."
1002 *
1003 * "For Other Surfaces (Cube Surfaces):
1004 * This field (Render Target View Extent) is ignored."
1005 *
1006 * As such, we cannot set first_layer and num_layers on cube surfaces.
1007 * To work around that, treat it as a 2D surface.
1008 */
1009 info->surface_type = BRW_SURFACE_2D;
1010 }
1011
1012 if (dev->gen >= ILO_GEN(7)) {
1013 separate_stencil = true;
1014 }
1015 else {
1016 /*
1017 * From the Sandy Bridge PRM, volume 2 part 1, page 317:
1018 *
1019 * "This field (Separate Stencil Buffer Enable) must be set to the
1020 * same value (enabled or disabled) as Hierarchical Depth Buffer
1021 * Enable."
1022 */
1023 separate_stencil = (tex->hiz.bo != NULL);
1024 }
1025
1026 /*
1027 * From the Sandy Bridge PRM, volume 2 part 1, page 317:
1028 *
1029 * "If this field (Hierarchical Depth Buffer Enable) is enabled, the
1030 * Surface Format of the depth buffer cannot be
1031 * D32_FLOAT_S8X24_UINT or D24_UNORM_S8_UINT. Use of stencil
1032 * requires the separate stencil buffer."
1033 *
1034 * From the Ironlake PRM, volume 2 part 1, page 330:
1035 *
1036 * "If this field (Separate Stencil Buffer Enable) is disabled, the
1037 * Surface Format of the depth buffer cannot be D24_UNORM_X8_UINT."
1038 *
1039 * There is no similar restriction for GEN6. But when D24_UNORM_X8_UINT
1040 * is indeed used, the depth values output by the fragment shaders will
1041 * be different when read back.
1042 *
1043 * As for GEN7+, separate_stencil is always true.
1044 */
1045 switch (format) {
1046 case PIPE_FORMAT_Z16_UNORM:
1047 info->format = BRW_DEPTHFORMAT_D16_UNORM;
1048 break;
1049 case PIPE_FORMAT_Z32_FLOAT:
1050 info->format = BRW_DEPTHFORMAT_D32_FLOAT;
1051 break;
1052 case PIPE_FORMAT_Z24X8_UNORM:
1053 case PIPE_FORMAT_Z24_UNORM_S8_UINT:
1054 info->format = (separate_stencil) ?
1055 BRW_DEPTHFORMAT_D24_UNORM_X8_UINT :
1056 BRW_DEPTHFORMAT_D24_UNORM_S8_UINT;
1057 break;
1058 case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
1059 info->format = (separate_stencil) ?
1060 BRW_DEPTHFORMAT_D32_FLOAT :
1061 BRW_DEPTHFORMAT_D32_FLOAT_S8X24_UINT;
1062 break;
1063 case PIPE_FORMAT_S8_UINT:
1064 if (separate_stencil) {
1065 info->format = BRW_DEPTHFORMAT_D32_FLOAT;
1066 break;
1067 }
1068 /* fall through */
1069 default:
1070 assert(!"unsupported depth/stencil format");
1071 zs_init_info_null(dev, info);
1072 return;
1073 break;
1074 }
1075
1076 if (format != PIPE_FORMAT_S8_UINT) {
1077 info->zs.bo = tex->bo;
1078 info->zs.stride = tex->bo_stride;
1079 info->zs.tiling = tex->tiling;
1080
1081 if (offset_to_layer) {
1082 info->zs.offset = ilo_texture_get_slice_offset(tex,
1083 level, first_layer, &x_offset[0], &y_offset[0]);
1084 }
1085 }
1086
1087 if (tex->separate_s8 || format == PIPE_FORMAT_S8_UINT) {
1088 const struct ilo_texture *s8_tex =
1089 (tex->separate_s8) ? tex->separate_s8 : tex;
1090
1091 info->stencil.bo = s8_tex->bo;
1092
1093 /*
1094 * From the Sandy Bridge PRM, volume 2 part 1, page 329:
1095 *
1096 * "The pitch must be set to 2x the value computed based on width,
1097 * as the stencil buffer is stored with two rows interleaved."
1098 *
1099 * According to the classic driver, we need to do the same for GEN7+
1100 * even though the Ivy Bridge PRM does not say anything about it.
1101 */
1102 info->stencil.stride = s8_tex->bo_stride * 2;
1103
1104 info->stencil.tiling = s8_tex->tiling;
1105
1106 if (offset_to_layer) {
1107 info->stencil.offset = ilo_texture_get_slice_offset(s8_tex,
1108 level, first_layer, &x_offset[1], &y_offset[1]);
1109 }
1110 }
1111
1112 if (tex->hiz.bo) {
1113 info->hiz.bo = tex->hiz.bo;
1114 info->hiz.stride = tex->hiz.bo_stride;
1115 info->hiz.tiling = INTEL_TILING_Y;
1116
1117 assert(!offset_to_layer);
1118 info->hiz.offset = 0;
1119 x_offset[2] = 0;
1120 y_offset[2] = 0;
1121 }
1122
1123 info->width = tex->base.width0;
1124 info->height = tex->base.height0;
1125 info->depth = (tex->base.target == PIPE_TEXTURE_3D) ?
1126 tex->base.depth0 : num_layers;
1127
1128 info->lod = level;
1129 info->first_layer = first_layer;
1130 info->num_layers = num_layers;
1131
1132 if (offset_to_layer) {
1133 /* the size of the layer */
1134 info->width = u_minify(info->width, level);
1135 info->height = u_minify(info->height, level);
1136 if (info->surface_type == BRW_SURFACE_3D)
1137 info->depth = u_minify(info->depth, level);
1138 else
1139 info->depth = 1;
1140
1141 /* no layered rendering */
1142 assert(num_layers == 1);
1143
1144 info->lod = 0;
1145 info->first_layer = 0;
1146 info->num_layers = 1;
1147
1148 /* all three share the same X/Y offsets */
1149 if (info->zs.bo) {
1150 if (info->stencil.bo) {
1151 assert(x_offset[0] == x_offset[1]);
1152 assert(y_offset[0] == y_offset[1]);
1153 }
1154
1155 info->x_offset = x_offset[0];
1156 info->y_offset = y_offset[0];
1157 }
1158 else {
1159 assert(info->stencil.bo);
1160
1161 info->x_offset = x_offset[1];
1162 info->y_offset = y_offset[1];
1163 }
1164
1165 if (info->hiz.bo) {
1166 assert(info->x_offset == x_offset[2]);
1167 assert(info->y_offset == y_offset[2]);
1168 }
1169
1170 /*
1171 * From the Sandy Bridge PRM, volume 2 part 1, page 326:
1172 *
1173 * "The 3 LSBs of both offsets (Depth Coordinate Offset Y and Depth
1174 * Coordinate Offset X) must be zero to ensure correct alignment"
1175 *
1176 * XXX Skip the check for gen6, which seems to be fine. We need to make
1177 * sure that does not happen eventually.
1178 */
1179 if (dev->gen >= ILO_GEN(7)) {
1180 assert((info->x_offset & 7) == 0 && (info->y_offset & 7) == 0);
1181 info->x_offset &= ~7;
1182 info->y_offset &= ~7;
1183 }
1184
1185 info->width += info->x_offset;
1186 info->height += info->y_offset;
1187
1188 /* we have to treat them as 2D surfaces */
1189 if (info->surface_type == BRW_SURFACE_CUBE) {
1190 assert(tex->base.width0 == tex->base.height0);
1191 /* we will set slice_offset to point to the single face */
1192 info->surface_type = BRW_SURFACE_2D;
1193 }
1194 else if (info->surface_type == BRW_SURFACE_1D && info->height > 1) {
1195 assert(tex->base.height0 == 1);
1196 info->surface_type = BRW_SURFACE_2D;
1197 }
1198 }
1199 }
1200
1201 void
1202 ilo_gpe_init_zs_surface(const struct ilo_dev_info *dev,
1203 const struct ilo_texture *tex,
1204 enum pipe_format format, unsigned level,
1205 unsigned first_layer, unsigned num_layers,
1206 bool offset_to_layer, struct ilo_zs_surface *zs)
1207 {
1208 const int max_2d_size = (dev->gen >= ILO_GEN(7)) ? 16384 : 8192;
1209 const int max_array_size = (dev->gen >= ILO_GEN(7)) ? 2048 : 512;
1210 struct ilo_zs_surface_info info;
1211 uint32_t dw1, dw2, dw3, dw4, dw5, dw6;
1212
1213 ILO_GPE_VALID_GEN(dev, 6, 7.5);
1214
1215 if (tex) {
1216 zs_init_info(dev, tex, format, level, first_layer, num_layers,
1217 offset_to_layer, &info);
1218 }
1219 else {
1220 zs_init_info_null(dev, &info);
1221 }
1222
1223 switch (info.surface_type) {
1224 case BRW_SURFACE_NULL:
1225 break;
1226 case BRW_SURFACE_1D:
1227 assert(info.width <= max_2d_size && info.height == 1 &&
1228 info.depth <= max_array_size);
1229 assert(info.first_layer < max_array_size - 1 &&
1230 info.num_layers <= max_array_size);
1231 break;
1232 case BRW_SURFACE_2D:
1233 assert(info.width <= max_2d_size && info.height <= max_2d_size &&
1234 info.depth <= max_array_size);
1235 assert(info.first_layer < max_array_size - 1 &&
1236 info.num_layers <= max_array_size);
1237 break;
1238 case BRW_SURFACE_3D:
1239 assert(info.width <= 2048 && info.height <= 2048 && info.depth <= 2048);
1240 assert(info.first_layer < 2048 && info.num_layers <= max_array_size);
1241 assert(info.x_offset == 0 && info.y_offset == 0);
1242 break;
1243 case BRW_SURFACE_CUBE:
1244 assert(info.width <= max_2d_size && info.height <= max_2d_size &&
1245 info.depth == 1);
1246 assert(info.first_layer == 0 && info.num_layers == 1);
1247 assert(info.width == info.height);
1248 assert(info.x_offset == 0 && info.y_offset == 0);
1249 break;
1250 default:
1251 assert(!"unexpected depth surface type");
1252 break;
1253 }
1254
1255 dw1 = info.surface_type << 29 |
1256 info.format << 18;
1257
1258 if (info.zs.bo) {
1259 /* required for GEN6+ */
1260 assert(info.zs.tiling == INTEL_TILING_Y);
1261 assert(info.zs.stride > 0 && info.zs.stride < 128 * 1024 &&
1262 info.zs.stride % 128 == 0);
1263 assert(info.width <= info.zs.stride);
1264
1265 dw1 |= (info.zs.stride - 1);
1266 dw2 = info.zs.offset;
1267 }
1268 else {
1269 dw2 = 0;
1270 }
1271
1272 if (dev->gen >= ILO_GEN(7)) {
1273 if (info.zs.bo)
1274 dw1 |= 1 << 28;
1275
1276 if (info.stencil.bo)
1277 dw1 |= 1 << 27;
1278
1279 if (info.hiz.bo)
1280 dw1 |= 1 << 22;
1281
1282 dw3 = (info.height - 1) << 18 |
1283 (info.width - 1) << 4 |
1284 info.lod;
1285
1286 dw4 = (info.depth - 1) << 21 |
1287 info.first_layer << 10;
1288
1289 dw5 = info.y_offset << 16 | info.x_offset;
1290
1291 dw6 = (info.num_layers - 1) << 21;
1292 }
1293 else {
1294 /* always Y-tiled */
1295 dw1 |= 1 << 27 |
1296 1 << 26;
1297
1298 if (info.hiz.bo) {
1299 dw1 |= 1 << 22 |
1300 1 << 21;
1301 }
1302
1303 dw3 = (info.height - 1) << 19 |
1304 (info.width - 1) << 6 |
1305 info.lod << 2 |
1306 BRW_SURFACE_MIPMAPLAYOUT_BELOW << 1;
1307
1308 dw4 = (info.depth - 1) << 21 |
1309 info.first_layer << 10 |
1310 (info.num_layers - 1) << 1;
1311
1312 dw5 = info.y_offset << 16 | info.x_offset;
1313
1314 dw6 = 0;
1315 }
1316
1317 STATIC_ASSERT(Elements(zs->payload) >= 10);
1318
1319 zs->payload[0] = dw1;
1320 zs->payload[1] = dw2;
1321 zs->payload[2] = dw3;
1322 zs->payload[3] = dw4;
1323 zs->payload[4] = dw5;
1324 zs->payload[5] = dw6;
1325
1326 /* do not increment reference count */
1327 zs->bo = info.zs.bo;
1328
1329 /* separate stencil */
1330 if (info.stencil.bo) {
1331 assert(info.stencil.stride > 0 && info.stencil.stride < 128 * 1024 &&
1332 info.stencil.stride % 128 == 0);
1333
1334 zs->payload[6] = info.stencil.stride - 1;
1335 zs->payload[7] = info.stencil.offset;
1336
1337 if (dev->gen >= ILO_GEN(7.5))
1338 zs->payload[6] |= HSW_STENCIL_ENABLED;
1339
1340 /* do not increment reference count */
1341 zs->separate_s8_bo = info.stencil.bo;
1342 }
1343 else {
1344 zs->payload[6] = 0;
1345 zs->payload[7] = 0;
1346 zs->separate_s8_bo = NULL;
1347 }
1348
1349 /* hiz */
1350 if (info.hiz.bo) {
1351 zs->payload[8] = info.hiz.stride - 1;
1352 zs->payload[9] = info.hiz.offset;
1353
1354 /* do not increment reference count */
1355 zs->hiz_bo = info.hiz.bo;
1356 }
1357 else {
1358 zs->payload[8] = 0;
1359 zs->payload[9] = 0;
1360 zs->hiz_bo = NULL;
1361 }
1362 }
1363
1364 static void
1365 viewport_get_guardband(const struct ilo_dev_info *dev,
1366 int center_x, int center_y,
1367 int *min_gbx, int *max_gbx,
1368 int *min_gby, int *max_gby)
1369 {
1370 /*
1371 * From the Sandy Bridge PRM, volume 2 part 1, page 234:
1372 *
1373 * "Per-Device Guardband Extents
1374 *
1375 * - Supported X,Y ScreenSpace "Guardband" Extent: [-16K,16K-1]
1376 * - Maximum Post-Clamp Delta (X or Y): 16K"
1377 *
1378 * "In addition, in order to be correctly rendered, objects must have a
1379 * screenspace bounding box not exceeding 8K in the X or Y direction.
1380 * This additional restriction must also be comprehended by software,
1381 * i.e., enforced by use of clipping."
1382 *
1383 * From the Ivy Bridge PRM, volume 2 part 1, page 248:
1384 *
1385 * "Per-Device Guardband Extents
1386 *
1387 * - Supported X,Y ScreenSpace "Guardband" Extent: [-32K,32K-1]
1388 * - Maximum Post-Clamp Delta (X or Y): N/A"
1389 *
1390 * "In addition, in order to be correctly rendered, objects must have a
1391 * screenspace bounding box not exceeding 8K in the X or Y direction.
1392 * This additional restriction must also be comprehended by software,
1393 * i.e., enforced by use of clipping."
1394 *
1395 * Combined, the bounding box of any object can not exceed 8K in both
1396 * width and height.
1397 *
1398 * Below we set the guardband as a squre of length 8K, centered at where
1399 * the viewport is. This makes sure all objects passing the GB test are
1400 * valid to the renderer, and those failing the XY clipping have a
1401 * better chance of passing the GB test.
1402 */
1403 const int max_extent = (dev->gen >= ILO_GEN(7)) ? 32768 : 16384;
1404 const int half_len = 8192 / 2;
1405
1406 /* make sure the guardband is within the valid range */
1407 if (center_x - half_len < -max_extent)
1408 center_x = -max_extent + half_len;
1409 else if (center_x + half_len > max_extent - 1)
1410 center_x = max_extent - half_len;
1411
1412 if (center_y - half_len < -max_extent)
1413 center_y = -max_extent + half_len;
1414 else if (center_y + half_len > max_extent - 1)
1415 center_y = max_extent - half_len;
1416
1417 *min_gbx = (float) (center_x - half_len);
1418 *max_gbx = (float) (center_x + half_len);
1419 *min_gby = (float) (center_y - half_len);
1420 *max_gby = (float) (center_y + half_len);
1421 }
1422
1423 void
1424 ilo_gpe_set_viewport_cso(const struct ilo_dev_info *dev,
1425 const struct pipe_viewport_state *state,
1426 struct ilo_viewport_cso *vp)
1427 {
1428 const float scale_x = fabs(state->scale[0]);
1429 const float scale_y = fabs(state->scale[1]);
1430 const float scale_z = fabs(state->scale[2]);
1431 int min_gbx, max_gbx, min_gby, max_gby;
1432
1433 ILO_GPE_VALID_GEN(dev, 6, 7.5);
1434
1435 viewport_get_guardband(dev,
1436 (int) state->translate[0],
1437 (int) state->translate[1],
1438 &min_gbx, &max_gbx, &min_gby, &max_gby);
1439
1440 /* matrix form */
1441 vp->m00 = state->scale[0];
1442 vp->m11 = state->scale[1];
1443 vp->m22 = state->scale[2];
1444 vp->m30 = state->translate[0];
1445 vp->m31 = state->translate[1];
1446 vp->m32 = state->translate[2];
1447
1448 /* guardband in NDC space */
1449 vp->min_gbx = ((float) min_gbx - state->translate[0]) / scale_x;
1450 vp->max_gbx = ((float) max_gbx - state->translate[0]) / scale_x;
1451 vp->min_gby = ((float) min_gby - state->translate[1]) / scale_y;
1452 vp->max_gby = ((float) max_gby - state->translate[1]) / scale_y;
1453
1454 /* viewport in screen space */
1455 vp->min_x = scale_x * -1.0f + state->translate[0];
1456 vp->max_x = scale_x * 1.0f + state->translate[0];
1457 vp->min_y = scale_y * -1.0f + state->translate[1];
1458 vp->max_y = scale_y * 1.0f + state->translate[1];
1459 vp->min_z = scale_z * -1.0f + state->translate[2];
1460 vp->max_z = scale_z * 1.0f + state->translate[2];
1461 }
1462
1463 static int
1464 gen6_blend_factor_dst_alpha_forced_one(int factor)
1465 {
1466 switch (factor) {
1467 case BRW_BLENDFACTOR_DST_ALPHA:
1468 return BRW_BLENDFACTOR_ONE;
1469 case BRW_BLENDFACTOR_INV_DST_ALPHA:
1470 case BRW_BLENDFACTOR_SRC_ALPHA_SATURATE:
1471 return BRW_BLENDFACTOR_ZERO;
1472 default:
1473 return factor;
1474 }
1475 }
1476
1477 static uint32_t
1478 blend_get_rt_blend_enable(const struct ilo_dev_info *dev,
1479 const struct pipe_rt_blend_state *rt,
1480 bool dst_alpha_forced_one)
1481 {
1482 int rgb_src, rgb_dst, a_src, a_dst;
1483 uint32_t dw;
1484
1485 if (!rt->blend_enable)
1486 return 0;
1487
1488 rgb_src = gen6_translate_pipe_blendfactor(rt->rgb_src_factor);
1489 rgb_dst = gen6_translate_pipe_blendfactor(rt->rgb_dst_factor);
1490 a_src = gen6_translate_pipe_blendfactor(rt->alpha_src_factor);
1491 a_dst = gen6_translate_pipe_blendfactor(rt->alpha_dst_factor);
1492
1493 if (dst_alpha_forced_one) {
1494 rgb_src = gen6_blend_factor_dst_alpha_forced_one(rgb_src);
1495 rgb_dst = gen6_blend_factor_dst_alpha_forced_one(rgb_dst);
1496 a_src = gen6_blend_factor_dst_alpha_forced_one(a_src);
1497 a_dst = gen6_blend_factor_dst_alpha_forced_one(a_dst);
1498 }
1499
1500 dw = 1 << 31 |
1501 gen6_translate_pipe_blend(rt->alpha_func) << 26 |
1502 a_src << 20 |
1503 a_dst << 15 |
1504 gen6_translate_pipe_blend(rt->rgb_func) << 11 |
1505 rgb_src << 5 |
1506 rgb_dst;
1507
1508 if (rt->rgb_func != rt->alpha_func ||
1509 rgb_src != a_src || rgb_dst != a_dst)
1510 dw |= 1 << 30;
1511
1512 return dw;
1513 }
1514
1515 void
1516 ilo_gpe_init_blend(const struct ilo_dev_info *dev,
1517 const struct pipe_blend_state *state,
1518 struct ilo_blend_state *blend)
1519 {
1520 unsigned num_cso, i;
1521
1522 ILO_GPE_VALID_GEN(dev, 6, 7.5);
1523
1524 if (state->independent_blend_enable) {
1525 num_cso = Elements(blend->cso);
1526 }
1527 else {
1528 memset(blend->cso, 0, sizeof(blend->cso));
1529 num_cso = 1;
1530 }
1531
1532 blend->independent_blend_enable = state->independent_blend_enable;
1533 blend->alpha_to_coverage = state->alpha_to_coverage;
1534 blend->dual_blend = false;
1535
1536 for (i = 0; i < num_cso; i++) {
1537 const struct pipe_rt_blend_state *rt = &state->rt[i];
1538 struct ilo_blend_cso *cso = &blend->cso[i];
1539 bool dual_blend;
1540
1541 cso->payload[0] = 0;
1542 cso->payload[1] = BRW_RENDERTARGET_CLAMPRANGE_FORMAT << 2 |
1543 0x3;
1544
1545 if (!(rt->colormask & PIPE_MASK_A))
1546 cso->payload[1] |= 1 << 27;
1547 if (!(rt->colormask & PIPE_MASK_R))
1548 cso->payload[1] |= 1 << 26;
1549 if (!(rt->colormask & PIPE_MASK_G))
1550 cso->payload[1] |= 1 << 25;
1551 if (!(rt->colormask & PIPE_MASK_B))
1552 cso->payload[1] |= 1 << 24;
1553
1554 if (state->dither)
1555 cso->payload[1] |= 1 << 12;
1556
1557 /*
1558 * From the Sandy Bridge PRM, volume 2 part 1, page 365:
1559 *
1560 * "Color Buffer Blending and Logic Ops must not be enabled
1561 * simultaneously, or behavior is UNDEFINED."
1562 *
1563 * Since state->logicop_enable takes precedence over rt->blend_enable,
1564 * no special care is needed.
1565 */
1566 if (state->logicop_enable) {
1567 cso->dw_logicop = 1 << 22 |
1568 gen6_translate_pipe_logicop(state->logicop_func) << 18;
1569
1570 cso->dw_blend = 0;
1571 cso->dw_blend_dst_alpha_forced_one = 0;
1572
1573 dual_blend = false;
1574 }
1575 else {
1576 cso->dw_logicop = 0;
1577
1578 cso->dw_blend = blend_get_rt_blend_enable(dev, rt, false);
1579 cso->dw_blend_dst_alpha_forced_one =
1580 blend_get_rt_blend_enable(dev, rt, true);
1581
1582 dual_blend = (rt->blend_enable &&
1583 util_blend_state_is_dual(state, i));
1584 }
1585
1586 cso->dw_alpha_mod = 0;
1587
1588 if (state->alpha_to_coverage) {
1589 cso->dw_alpha_mod |= 1 << 31;
1590
1591 if (dev->gen >= ILO_GEN(7))
1592 cso->dw_alpha_mod |= 1 << 29;
1593 }
1594
1595 /*
1596 * From the Sandy Bridge PRM, volume 2 part 1, page 378:
1597 *
1598 * "If Dual Source Blending is enabled, this bit (AlphaToOne Enable)
1599 * must be disabled."
1600 */
1601 if (state->alpha_to_one && !dual_blend)
1602 cso->dw_alpha_mod |= 1 << 30;
1603
1604 if (dual_blend)
1605 blend->dual_blend = true;
1606 }
1607 }
1608
1609 void
1610 ilo_gpe_init_dsa(const struct ilo_dev_info *dev,
1611 const struct pipe_depth_stencil_alpha_state *state,
1612 struct ilo_dsa_state *dsa)
1613 {
1614 const struct pipe_depth_state *depth = &state->depth;
1615 const struct pipe_stencil_state *stencil0 = &state->stencil[0];
1616 const struct pipe_stencil_state *stencil1 = &state->stencil[1];
1617 const struct pipe_alpha_state *alpha = &state->alpha;
1618 uint32_t *dw;
1619
1620 ILO_GPE_VALID_GEN(dev, 6, 7.5);
1621
1622 STATIC_ASSERT(Elements(dsa->payload) >= 3);
1623 dw = dsa->payload;
1624
1625 /*
1626 * From the Sandy Bridge PRM, volume 2 part 1, page 359:
1627 *
1628 * "If the Depth Buffer is either undefined or does not have a surface
1629 * format of D32_FLOAT_S8X24_UINT or D24_UNORM_S8_UINT and separate
1630 * stencil buffer is disabled, Stencil Test Enable must be DISABLED"
1631 *
1632 * From the Sandy Bridge PRM, volume 2 part 1, page 370:
1633 *
1634 * "This field (Stencil Test Enable) cannot be enabled if
1635 * Surface Format in 3DSTATE_DEPTH_BUFFER is set to D16_UNORM."
1636 *
1637 * TODO We do not check these yet.
1638 */
1639 if (stencil0->enabled) {
1640 dw[0] = 1 << 31 |
1641 gen6_translate_dsa_func(stencil0->func) << 28 |
1642 gen6_translate_pipe_stencil_op(stencil0->fail_op) << 25 |
1643 gen6_translate_pipe_stencil_op(stencil0->zfail_op) << 22 |
1644 gen6_translate_pipe_stencil_op(stencil0->zpass_op) << 19;
1645 if (stencil0->writemask)
1646 dw[0] |= 1 << 18;
1647
1648 dw[1] = stencil0->valuemask << 24 |
1649 stencil0->writemask << 16;
1650
1651 if (stencil1->enabled) {
1652 dw[0] |= 1 << 15 |
1653 gen6_translate_dsa_func(stencil1->func) << 12 |
1654 gen6_translate_pipe_stencil_op(stencil1->fail_op) << 9 |
1655 gen6_translate_pipe_stencil_op(stencil1->zfail_op) << 6 |
1656 gen6_translate_pipe_stencil_op(stencil1->zpass_op) << 3;
1657 if (stencil1->writemask)
1658 dw[0] |= 1 << 18;
1659
1660 dw[1] |= stencil1->valuemask << 8 |
1661 stencil1->writemask;
1662 }
1663 }
1664 else {
1665 dw[0] = 0;
1666 dw[1] = 0;
1667 }
1668
1669 /*
1670 * From the Sandy Bridge PRM, volume 2 part 1, page 360:
1671 *
1672 * "Enabling the Depth Test function without defining a Depth Buffer is
1673 * UNDEFINED."
1674 *
1675 * From the Sandy Bridge PRM, volume 2 part 1, page 375:
1676 *
1677 * "A Depth Buffer must be defined before enabling writes to it, or
1678 * operation is UNDEFINED."
1679 *
1680 * TODO We do not check these yet.
1681 */
1682 dw[2] = depth->enabled << 31 |
1683 depth->writemask << 26;
1684 if (depth->enabled)
1685 dw[2] |= gen6_translate_dsa_func(depth->func) << 27;
1686 else
1687 dw[2] |= BRW_COMPAREFUNCTION_ALWAYS << 27;
1688
1689 /* dw_alpha will be ORed to BLEND_STATE */
1690 if (alpha->enabled) {
1691 dsa->dw_alpha = 1 << 16 |
1692 gen6_translate_dsa_func(alpha->func) << 13;
1693 }
1694 else {
1695 dsa->dw_alpha = 0;
1696 }
1697
1698 dsa->alpha_ref = float_to_ubyte(alpha->ref_value);
1699 }
1700
1701 void
1702 ilo_gpe_set_scissor(const struct ilo_dev_info *dev,
1703 unsigned start_slot,
1704 unsigned num_states,
1705 const struct pipe_scissor_state *states,
1706 struct ilo_scissor_state *scissor)
1707 {
1708 unsigned i;
1709
1710 ILO_GPE_VALID_GEN(dev, 6, 7.5);
1711
1712 for (i = 0; i < num_states; i++) {
1713 uint16_t min_x, min_y, max_x, max_y;
1714
1715 /* both max and min are inclusive in SCISSOR_RECT */
1716 if (states[i].minx < states[i].maxx &&
1717 states[i].miny < states[i].maxy) {
1718 min_x = states[i].minx;
1719 min_y = states[i].miny;
1720 max_x = states[i].maxx - 1;
1721 max_y = states[i].maxy - 1;
1722 }
1723 else {
1724 /* we have to make min greater than max */
1725 min_x = 1;
1726 min_y = 1;
1727 max_x = 0;
1728 max_y = 0;
1729 }
1730
1731 scissor->payload[(start_slot + i) * 2 + 0] = min_y << 16 | min_x;
1732 scissor->payload[(start_slot + i) * 2 + 1] = max_y << 16 | max_x;
1733 }
1734
1735 if (!start_slot && num_states)
1736 scissor->scissor0 = states[0];
1737 }
1738
1739 void
1740 ilo_gpe_set_scissor_null(const struct ilo_dev_info *dev,
1741 struct ilo_scissor_state *scissor)
1742 {
1743 unsigned i;
1744
1745 for (i = 0; i < Elements(scissor->payload); i += 2) {
1746 scissor->payload[i + 0] = 1 << 16 | 1;
1747 scissor->payload[i + 1] = 0;
1748 }
1749 }
1750
1751 void
1752 ilo_gpe_init_view_surface_null_gen6(const struct ilo_dev_info *dev,
1753 unsigned width, unsigned height,
1754 unsigned depth, unsigned level,
1755 struct ilo_view_surface *surf)
1756 {
1757 uint32_t *dw;
1758
1759 ILO_GPE_VALID_GEN(dev, 6, 6);
1760
1761 /*
1762 * From the Sandy Bridge PRM, volume 4 part 1, page 71:
1763 *
1764 * "A null surface will be used in instances where an actual surface is
1765 * not bound. When a write message is generated to a null surface, no
1766 * actual surface is written to. When a read message (including any
1767 * sampling engine message) is generated to a null surface, the result
1768 * is all zeros. Note that a null surface type is allowed to be used
1769 * with all messages, even if it is not specificially indicated as
1770 * supported. All of the remaining fields in surface state are ignored
1771 * for null surfaces, with the following exceptions:
1772 *
1773 * * [DevSNB+]: Width, Height, Depth, and LOD fields must match the
1774 * depth buffer's corresponding state for all render target
1775 * surfaces, including null.
1776 * * Surface Format must be R8G8B8A8_UNORM."
1777 *
1778 * From the Sandy Bridge PRM, volume 4 part 1, page 82:
1779 *
1780 * "If Surface Type is SURFTYPE_NULL, this field (Tiled Surface) must be
1781 * true"
1782 */
1783
1784 STATIC_ASSERT(Elements(surf->payload) >= 6);
1785 dw = surf->payload;
1786
1787 dw[0] = BRW_SURFACE_NULL << BRW_SURFACE_TYPE_SHIFT |
1788 BRW_SURFACEFORMAT_B8G8R8A8_UNORM << BRW_SURFACE_FORMAT_SHIFT;
1789
1790 dw[1] = 0;
1791
1792 dw[2] = (height - 1) << BRW_SURFACE_HEIGHT_SHIFT |
1793 (width - 1) << BRW_SURFACE_WIDTH_SHIFT |
1794 level << BRW_SURFACE_LOD_SHIFT;
1795
1796 dw[3] = (depth - 1) << BRW_SURFACE_DEPTH_SHIFT |
1797 BRW_SURFACE_TILED;
1798
1799 dw[4] = 0;
1800 dw[5] = 0;
1801
1802 surf->bo = NULL;
1803 }
1804
1805 void
1806 ilo_gpe_init_view_surface_for_buffer_gen6(const struct ilo_dev_info *dev,
1807 const struct ilo_buffer *buf,
1808 unsigned offset, unsigned size,
1809 unsigned struct_size,
1810 enum pipe_format elem_format,
1811 bool is_rt, bool render_cache_rw,
1812 struct ilo_view_surface *surf)
1813 {
1814 const int elem_size = util_format_get_blocksize(elem_format);
1815 int width, height, depth, pitch;
1816 int surface_format, num_entries;
1817 uint32_t *dw;
1818
1819 ILO_GPE_VALID_GEN(dev, 6, 6);
1820
1821 /*
1822 * For SURFTYPE_BUFFER, a SURFACE_STATE specifies an element of a
1823 * structure in a buffer.
1824 */
1825
1826 surface_format = ilo_translate_color_format(elem_format);
1827
1828 num_entries = size / struct_size;
1829 /* see if there is enough space to fit another element */
1830 if (size % struct_size >= elem_size)
1831 num_entries++;
1832
1833 /*
1834 * From the Sandy Bridge PRM, volume 4 part 1, page 76:
1835 *
1836 * "For SURFTYPE_BUFFER render targets, this field (Surface Base
1837 * Address) specifies the base address of first element of the
1838 * surface. The surface is interpreted as a simple array of that
1839 * single element type. The address must be naturally-aligned to the
1840 * element size (e.g., a buffer containing R32G32B32A32_FLOAT elements
1841 * must be 16-byte aligned).
1842 *
1843 * For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
1844 * the base address of the first element of the surface, computed in
1845 * software by adding the surface base address to the byte offset of
1846 * the element in the buffer."
1847 */
1848 if (is_rt)
1849 assert(offset % elem_size == 0);
1850
1851 /*
1852 * From the Sandy Bridge PRM, volume 4 part 1, page 77:
1853 *
1854 * "For buffer surfaces, the number of entries in the buffer ranges
1855 * from 1 to 2^27."
1856 */
1857 assert(num_entries >= 1 && num_entries <= 1 << 27);
1858
1859 /*
1860 * From the Sandy Bridge PRM, volume 4 part 1, page 81:
1861 *
1862 * "For surfaces of type SURFTYPE_BUFFER, this field (Surface Pitch)
1863 * indicates the size of the structure."
1864 */
1865 pitch = struct_size;
1866
1867 pitch--;
1868 num_entries--;
1869 /* bits [6:0] */
1870 width = (num_entries & 0x0000007f);
1871 /* bits [19:7] */
1872 height = (num_entries & 0x000fff80) >> 7;
1873 /* bits [26:20] */
1874 depth = (num_entries & 0x07f00000) >> 20;
1875
1876 STATIC_ASSERT(Elements(surf->payload) >= 6);
1877 dw = surf->payload;
1878
1879 dw[0] = BRW_SURFACE_BUFFER << BRW_SURFACE_TYPE_SHIFT |
1880 surface_format << BRW_SURFACE_FORMAT_SHIFT;
1881 if (render_cache_rw)
1882 dw[0] |= BRW_SURFACE_RC_READ_WRITE;
1883
1884 dw[1] = offset;
1885
1886 dw[2] = height << BRW_SURFACE_HEIGHT_SHIFT |
1887 width << BRW_SURFACE_WIDTH_SHIFT;
1888
1889 dw[3] = depth << BRW_SURFACE_DEPTH_SHIFT |
1890 pitch << BRW_SURFACE_PITCH_SHIFT;
1891
1892 dw[4] = 0;
1893 dw[5] = 0;
1894
1895 /* do not increment reference count */
1896 surf->bo = buf->bo;
1897 }
1898
1899 void
1900 ilo_gpe_init_view_surface_for_texture_gen6(const struct ilo_dev_info *dev,
1901 const struct ilo_texture *tex,
1902 enum pipe_format format,
1903 unsigned first_level,
1904 unsigned num_levels,
1905 unsigned first_layer,
1906 unsigned num_layers,
1907 bool is_rt, bool offset_to_layer,
1908 struct ilo_view_surface *surf)
1909 {
1910 int surface_type, surface_format;
1911 int width, height, depth, pitch, lod;
1912 unsigned layer_offset, x_offset, y_offset;
1913 uint32_t *dw;
1914
1915 ILO_GPE_VALID_GEN(dev, 6, 6);
1916
1917 surface_type = ilo_gpe_gen6_translate_texture(tex->base.target);
1918 assert(surface_type != BRW_SURFACE_BUFFER);
1919
1920 if (format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT && tex->separate_s8)
1921 format = PIPE_FORMAT_Z32_FLOAT;
1922
1923 if (is_rt)
1924 surface_format = ilo_translate_render_format(format);
1925 else
1926 surface_format = ilo_translate_texture_format(format);
1927 assert(surface_format >= 0);
1928
1929 width = tex->base.width0;
1930 height = tex->base.height0;
1931 depth = (tex->base.target == PIPE_TEXTURE_3D) ?
1932 tex->base.depth0 : num_layers;
1933 pitch = tex->bo_stride;
1934
1935 if (surface_type == BRW_SURFACE_CUBE) {
1936 /*
1937 * From the Sandy Bridge PRM, volume 4 part 1, page 81:
1938 *
1939 * "For SURFTYPE_CUBE: [DevSNB+]: for Sampling Engine Surfaces, the
1940 * range of this field (Depth) is [0,84], indicating the number of
1941 * cube array elements (equal to the number of underlying 2D array
1942 * elements divided by 6). For other surfaces, this field must be
1943 * zero."
1944 *
1945 * When is_rt is true, we treat the texture as a 2D one to avoid the
1946 * restriction.
1947 */
1948 if (is_rt) {
1949 surface_type = BRW_SURFACE_2D;
1950 }
1951 else {
1952 assert(num_layers % 6 == 0);
1953 depth = num_layers / 6;
1954 }
1955 }
1956
1957 /* sanity check the size */
1958 assert(width >= 1 && height >= 1 && depth >= 1 && pitch >= 1);
1959 switch (surface_type) {
1960 case BRW_SURFACE_1D:
1961 assert(width <= 8192 && height == 1 && depth <= 512);
1962 assert(first_layer < 512 && num_layers <= 512);
1963 break;
1964 case BRW_SURFACE_2D:
1965 assert(width <= 8192 && height <= 8192 && depth <= 512);
1966 assert(first_layer < 512 && num_layers <= 512);
1967 break;
1968 case BRW_SURFACE_3D:
1969 assert(width <= 2048 && height <= 2048 && depth <= 2048);
1970 assert(first_layer < 2048 && num_layers <= 512);
1971 if (!is_rt)
1972 assert(first_layer == 0);
1973 break;
1974 case BRW_SURFACE_CUBE:
1975 assert(width <= 8192 && height <= 8192 && depth <= 85);
1976 assert(width == height);
1977 assert(first_layer < 512 && num_layers <= 512);
1978 if (is_rt)
1979 assert(first_layer == 0);
1980 break;
1981 default:
1982 assert(!"unexpected surface type");
1983 break;
1984 }
1985
1986 /* non-full array spacing is supported only on GEN7+ */
1987 assert(tex->array_spacing_full);
1988 /* non-interleaved samples are supported only on GEN7+ */
1989 if (tex->base.nr_samples > 1)
1990 assert(tex->interleaved);
1991
1992 if (is_rt) {
1993 assert(num_levels == 1);
1994 lod = first_level;
1995 }
1996 else {
1997 lod = num_levels - 1;
1998 }
1999
2000 /*
2001 * Offset to the layer. When rendering, the hardware requires LOD and
2002 * Depth to be the same for all render targets and the depth buffer. We
2003 * need to offset to the layer manually and always set LOD and Depth to 0.
2004 */
2005 if (offset_to_layer) {
2006 /* we lose the capability for layered rendering */
2007 assert(is_rt && num_layers == 1);
2008
2009 layer_offset = ilo_texture_get_slice_offset(tex,
2010 first_level, first_layer, &x_offset, &y_offset);
2011
2012 assert(x_offset % 4 == 0);
2013 assert(y_offset % 2 == 0);
2014 x_offset /= 4;
2015 y_offset /= 2;
2016
2017 /* derive the size for the LOD */
2018 width = u_minify(width, first_level);
2019 height = u_minify(height, first_level);
2020
2021 first_level = 0;
2022 first_layer = 0;
2023
2024 lod = 0;
2025 depth = 1;
2026 }
2027 else {
2028 layer_offset = 0;
2029 x_offset = 0;
2030 y_offset = 0;
2031 }
2032
2033 /*
2034 * From the Sandy Bridge PRM, volume 4 part 1, page 76:
2035 *
2036 * "Linear render target surface base addresses must be element-size
2037 * aligned, for non-YUV surface formats, or a multiple of 2
2038 * element-sizes for YUV surface formats. Other linear surfaces have
2039 * no alignment requirements (byte alignment is sufficient.)"
2040 *
2041 * From the Sandy Bridge PRM, volume 4 part 1, page 81:
2042 *
2043 * "For linear render target surfaces, the pitch must be a multiple
2044 * of the element size for non-YUV surface formats. Pitch must be a
2045 * multiple of 2 * element size for YUV surface formats."
2046 *
2047 * From the Sandy Bridge PRM, volume 4 part 1, page 86:
2048 *
2049 * "For linear surfaces, this field (X Offset) must be zero"
2050 */
2051 if (tex->tiling == INTEL_TILING_NONE) {
2052 if (is_rt) {
2053 const int elem_size = util_format_get_blocksize(format);
2054 assert(layer_offset % elem_size == 0);
2055 assert(pitch % elem_size == 0);
2056 }
2057
2058 assert(!x_offset);
2059 }
2060
2061 STATIC_ASSERT(Elements(surf->payload) >= 6);
2062 dw = surf->payload;
2063
2064 dw[0] = surface_type << BRW_SURFACE_TYPE_SHIFT |
2065 surface_format << BRW_SURFACE_FORMAT_SHIFT |
2066 BRW_SURFACE_MIPMAPLAYOUT_BELOW << BRW_SURFACE_MIPLAYOUT_SHIFT;
2067
2068 if (surface_type == BRW_SURFACE_CUBE && !is_rt) {
2069 dw[0] |= 1 << 9 |
2070 BRW_SURFACE_CUBEFACE_ENABLES;
2071 }
2072
2073 if (is_rt)
2074 dw[0] |= BRW_SURFACE_RC_READ_WRITE;
2075
2076 dw[1] = layer_offset;
2077
2078 dw[2] = (height - 1) << BRW_SURFACE_HEIGHT_SHIFT |
2079 (width - 1) << BRW_SURFACE_WIDTH_SHIFT |
2080 lod << BRW_SURFACE_LOD_SHIFT;
2081
2082 dw[3] = (depth - 1) << BRW_SURFACE_DEPTH_SHIFT |
2083 (pitch - 1) << BRW_SURFACE_PITCH_SHIFT |
2084 ilo_gpe_gen6_translate_winsys_tiling(tex->tiling);
2085
2086 dw[4] = first_level << BRW_SURFACE_MIN_LOD_SHIFT |
2087 first_layer << 17 |
2088 (num_layers - 1) << 8 |
2089 ((tex->base.nr_samples > 1) ? BRW_SURFACE_MULTISAMPLECOUNT_4 :
2090 BRW_SURFACE_MULTISAMPLECOUNT_1);
2091
2092 dw[5] = x_offset << BRW_SURFACE_X_OFFSET_SHIFT |
2093 y_offset << BRW_SURFACE_Y_OFFSET_SHIFT;
2094 if (tex->valign_4)
2095 dw[5] |= BRW_SURFACE_VERTICAL_ALIGN_ENABLE;
2096
2097 /* do not increment reference count */
2098 surf->bo = tex->bo;
2099 }
2100
2101 static void
2102 sampler_init_border_color_gen6(const struct ilo_dev_info *dev,
2103 const union pipe_color_union *color,
2104 uint32_t *dw, int num_dwords)
2105 {
2106 float rgba[4] = {
2107 color->f[0], color->f[1], color->f[2], color->f[3],
2108 };
2109
2110 ILO_GPE_VALID_GEN(dev, 6, 6);
2111
2112 assert(num_dwords >= 12);
2113
2114 /*
2115 * This state is not documented in the Sandy Bridge PRM, but in the
2116 * Ironlake PRM. SNORM8 seems to be in DW11 instead of DW1.
2117 */
2118
2119 /* IEEE_FP */
2120 dw[1] = fui(rgba[0]);
2121 dw[2] = fui(rgba[1]);
2122 dw[3] = fui(rgba[2]);
2123 dw[4] = fui(rgba[3]);
2124
2125 /* FLOAT_16 */
2126 dw[5] = util_float_to_half(rgba[0]) |
2127 util_float_to_half(rgba[1]) << 16;
2128 dw[6] = util_float_to_half(rgba[2]) |
2129 util_float_to_half(rgba[3]) << 16;
2130
2131 /* clamp to [-1.0f, 1.0f] */
2132 rgba[0] = CLAMP(rgba[0], -1.0f, 1.0f);
2133 rgba[1] = CLAMP(rgba[1], -1.0f, 1.0f);
2134 rgba[2] = CLAMP(rgba[2], -1.0f, 1.0f);
2135 rgba[3] = CLAMP(rgba[3], -1.0f, 1.0f);
2136
2137 /* SNORM16 */
2138 dw[9] = (int16_t) util_iround(rgba[0] * 32767.0f) |
2139 (int16_t) util_iround(rgba[1] * 32767.0f) << 16;
2140 dw[10] = (int16_t) util_iround(rgba[2] * 32767.0f) |
2141 (int16_t) util_iround(rgba[3] * 32767.0f) << 16;
2142
2143 /* SNORM8 */
2144 dw[11] = (int8_t) util_iround(rgba[0] * 127.0f) |
2145 (int8_t) util_iround(rgba[1] * 127.0f) << 8 |
2146 (int8_t) util_iround(rgba[2] * 127.0f) << 16 |
2147 (int8_t) util_iround(rgba[3] * 127.0f) << 24;
2148
2149 /* clamp to [0.0f, 1.0f] */
2150 rgba[0] = CLAMP(rgba[0], 0.0f, 1.0f);
2151 rgba[1] = CLAMP(rgba[1], 0.0f, 1.0f);
2152 rgba[2] = CLAMP(rgba[2], 0.0f, 1.0f);
2153 rgba[3] = CLAMP(rgba[3], 0.0f, 1.0f);
2154
2155 /* UNORM8 */
2156 dw[0] = (uint8_t) util_iround(rgba[0] * 255.0f) |
2157 (uint8_t) util_iround(rgba[1] * 255.0f) << 8 |
2158 (uint8_t) util_iround(rgba[2] * 255.0f) << 16 |
2159 (uint8_t) util_iround(rgba[3] * 255.0f) << 24;
2160
2161 /* UNORM16 */
2162 dw[7] = (uint16_t) util_iround(rgba[0] * 65535.0f) |
2163 (uint16_t) util_iround(rgba[1] * 65535.0f) << 16;
2164 dw[8] = (uint16_t) util_iround(rgba[2] * 65535.0f) |
2165 (uint16_t) util_iround(rgba[3] * 65535.0f) << 16;
2166 }
2167
2168 void
2169 ilo_gpe_init_sampler_cso(const struct ilo_dev_info *dev,
2170 const struct pipe_sampler_state *state,
2171 struct ilo_sampler_cso *sampler)
2172 {
2173 int mip_filter, min_filter, mag_filter, max_aniso;
2174 int lod_bias, max_lod, min_lod;
2175 int wrap_s, wrap_t, wrap_r, wrap_cube;
2176 bool clamp_is_to_edge;
2177 uint32_t dw0, dw1, dw3;
2178
2179 ILO_GPE_VALID_GEN(dev, 6, 7.5);
2180
2181 memset(sampler, 0, sizeof(*sampler));
2182
2183 mip_filter = gen6_translate_tex_mipfilter(state->min_mip_filter);
2184 min_filter = gen6_translate_tex_filter(state->min_img_filter);
2185 mag_filter = gen6_translate_tex_filter(state->mag_img_filter);
2186
2187 sampler->anisotropic = state->max_anisotropy;
2188
2189 if (state->max_anisotropy >= 2 && state->max_anisotropy <= 16)
2190 max_aniso = state->max_anisotropy / 2 - 1;
2191 else if (state->max_anisotropy > 16)
2192 max_aniso = BRW_ANISORATIO_16;
2193 else
2194 max_aniso = BRW_ANISORATIO_2;
2195
2196 /*
2197 *
2198 * Here is how the hardware calculate per-pixel LOD, from my reading of the
2199 * PRMs:
2200 *
2201 * 1) LOD is set to log2(ratio of texels to pixels) if not specified in
2202 * other ways. The number of texels is measured using level
2203 * SurfMinLod.
2204 * 2) Bias is added to LOD.
2205 * 3) LOD is clamped to [MinLod, MaxLod], and the clamped value is
2206 * compared with Base to determine whether magnification or
2207 * minification is needed. (if preclamp is disabled, LOD is compared
2208 * with Base before clamping)
2209 * 4) If magnification is needed, or no mipmapping is requested, LOD is
2210 * set to floor(MinLod).
2211 * 5) LOD is clamped to [0, MIPCnt], and SurfMinLod is added to LOD.
2212 *
2213 * With Gallium interface, Base is always zero and
2214 * pipe_sampler_view::u.tex.first_level specifies SurfMinLod.
2215 */
2216 if (dev->gen >= ILO_GEN(7)) {
2217 const float scale = 256.0f;
2218
2219 /* [-16.0, 16.0) in S4.8 */
2220 lod_bias = (int)
2221 (CLAMP(state->lod_bias, -16.0f, 15.9f) * scale);
2222 lod_bias &= 0x1fff;
2223
2224 /* [0.0, 14.0] in U4.8 */
2225 max_lod = (int) (CLAMP(state->max_lod, 0.0f, 14.0f) * scale);
2226 min_lod = (int) (CLAMP(state->min_lod, 0.0f, 14.0f) * scale);
2227 }
2228 else {
2229 const float scale = 64.0f;
2230
2231 /* [-16.0, 16.0) in S4.6 */
2232 lod_bias = (int)
2233 (CLAMP(state->lod_bias, -16.0f, 15.9f) * scale);
2234 lod_bias &= 0x7ff;
2235
2236 /* [0.0, 13.0] in U4.6 */
2237 max_lod = (int) (CLAMP(state->max_lod, 0.0f, 13.0f) * scale);
2238 min_lod = (int) (CLAMP(state->min_lod, 0.0f, 13.0f) * scale);
2239 }
2240
2241 /*
2242 * We want LOD to be clamped to determine magnification/minification, and
2243 * get set to zero when it is magnification or when mipmapping is disabled.
2244 * The hardware would set LOD to floor(MinLod) and that is a problem when
2245 * MinLod is greater than or equal to 1.0f.
2246 *
2247 * With Base being zero, it is always minification when MinLod is non-zero.
2248 * To achieve our goal, we just need to set MinLod to zero and set
2249 * MagFilter to MinFilter when mipmapping is disabled.
2250 */
2251 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE && min_lod) {
2252 min_lod = 0;
2253 mag_filter = min_filter;
2254 }
2255
2256 /*
2257 * For nearest filtering, PIPE_TEX_WRAP_CLAMP means
2258 * PIPE_TEX_WRAP_CLAMP_TO_EDGE; for linear filtering, PIPE_TEX_WRAP_CLAMP
2259 * means PIPE_TEX_WRAP_CLAMP_TO_BORDER while additionally clamping the
2260 * texture coordinates to [0.0, 1.0].
2261 *
2262 * The clamping will be taken care of in the shaders. There are two
2263 * filters here, but let the minification one has a say.
2264 */
2265 clamp_is_to_edge = (state->min_img_filter == PIPE_TEX_FILTER_NEAREST);
2266 if (!clamp_is_to_edge) {
2267 sampler->saturate_s = (state->wrap_s == PIPE_TEX_WRAP_CLAMP);
2268 sampler->saturate_t = (state->wrap_t == PIPE_TEX_WRAP_CLAMP);
2269 sampler->saturate_r = (state->wrap_r == PIPE_TEX_WRAP_CLAMP);
2270 }
2271
2272 /* determine wrap s/t/r */
2273 wrap_s = gen6_translate_tex_wrap(state->wrap_s, clamp_is_to_edge);
2274 wrap_t = gen6_translate_tex_wrap(state->wrap_t, clamp_is_to_edge);
2275 wrap_r = gen6_translate_tex_wrap(state->wrap_r, clamp_is_to_edge);
2276
2277 /*
2278 * From the Sandy Bridge PRM, volume 4 part 1, page 107:
2279 *
2280 * "When using cube map texture coordinates, only TEXCOORDMODE_CLAMP
2281 * and TEXCOORDMODE_CUBE settings are valid, and each TC component
2282 * must have the same Address Control mode."
2283 *
2284 * From the Ivy Bridge PRM, volume 4 part 1, page 96:
2285 *
2286 * "This field (Cube Surface Control Mode) must be set to
2287 * CUBECTRLMODE_PROGRAMMED"
2288 *
2289 * Therefore, we cannot use "Cube Surface Control Mode" for semless cube
2290 * map filtering.
2291 */
2292 if (state->seamless_cube_map &&
2293 (state->min_img_filter != PIPE_TEX_FILTER_NEAREST ||
2294 state->mag_img_filter != PIPE_TEX_FILTER_NEAREST)) {
2295 wrap_cube = BRW_TEXCOORDMODE_CUBE;
2296 }
2297 else {
2298 wrap_cube = BRW_TEXCOORDMODE_CLAMP;
2299 }
2300
2301 if (!state->normalized_coords) {
2302 /*
2303 * From the Ivy Bridge PRM, volume 4 part 1, page 98:
2304 *
2305 * "The following state must be set as indicated if this field
2306 * (Non-normalized Coordinate Enable) is enabled:
2307 *
2308 * - TCX/Y/Z Address Control Mode must be TEXCOORDMODE_CLAMP,
2309 * TEXCOORDMODE_HALF_BORDER, or TEXCOORDMODE_CLAMP_BORDER.
2310 * - Surface Type must be SURFTYPE_2D or SURFTYPE_3D.
2311 * - Mag Mode Filter must be MAPFILTER_NEAREST or
2312 * MAPFILTER_LINEAR.
2313 * - Min Mode Filter must be MAPFILTER_NEAREST or
2314 * MAPFILTER_LINEAR.
2315 * - Mip Mode Filter must be MIPFILTER_NONE.
2316 * - Min LOD must be 0.
2317 * - Max LOD must be 0.
2318 * - MIP Count must be 0.
2319 * - Surface Min LOD must be 0.
2320 * - Texture LOD Bias must be 0."
2321 */
2322 assert(wrap_s == BRW_TEXCOORDMODE_CLAMP ||
2323 wrap_s == BRW_TEXCOORDMODE_CLAMP_BORDER);
2324 assert(wrap_t == BRW_TEXCOORDMODE_CLAMP ||
2325 wrap_t == BRW_TEXCOORDMODE_CLAMP_BORDER);
2326 assert(wrap_r == BRW_TEXCOORDMODE_CLAMP ||
2327 wrap_r == BRW_TEXCOORDMODE_CLAMP_BORDER);
2328
2329 assert(mag_filter == BRW_MAPFILTER_NEAREST ||
2330 mag_filter == BRW_MAPFILTER_LINEAR);
2331 assert(min_filter == BRW_MAPFILTER_NEAREST ||
2332 min_filter == BRW_MAPFILTER_LINEAR);
2333
2334 /* work around a bug in util_blitter */
2335 mip_filter = BRW_MIPFILTER_NONE;
2336
2337 assert(mip_filter == BRW_MIPFILTER_NONE);
2338 }
2339
2340 if (dev->gen >= ILO_GEN(7)) {
2341 dw0 = 1 << 28 |
2342 mip_filter << 20 |
2343 lod_bias << 1;
2344
2345 sampler->dw_filter = mag_filter << 17 |
2346 min_filter << 14;
2347
2348 sampler->dw_filter_aniso = BRW_MAPFILTER_ANISOTROPIC << 17 |
2349 BRW_MAPFILTER_ANISOTROPIC << 14 |
2350 1;
2351
2352 dw1 = min_lod << 20 |
2353 max_lod << 8;
2354
2355 if (state->compare_mode != PIPE_TEX_COMPARE_NONE)
2356 dw1 |= gen6_translate_shadow_func(state->compare_func) << 1;
2357
2358 dw3 = max_aniso << 19;
2359
2360 /* round the coordinates for linear filtering */
2361 if (min_filter != BRW_MAPFILTER_NEAREST) {
2362 dw3 |= (BRW_ADDRESS_ROUNDING_ENABLE_U_MIN |
2363 BRW_ADDRESS_ROUNDING_ENABLE_V_MIN |
2364 BRW_ADDRESS_ROUNDING_ENABLE_R_MIN) << 13;
2365 }
2366 if (mag_filter != BRW_MAPFILTER_NEAREST) {
2367 dw3 |= (BRW_ADDRESS_ROUNDING_ENABLE_U_MAG |
2368 BRW_ADDRESS_ROUNDING_ENABLE_V_MAG |
2369 BRW_ADDRESS_ROUNDING_ENABLE_R_MAG) << 13;
2370 }
2371
2372 if (!state->normalized_coords)
2373 dw3 |= 1 << 10;
2374
2375 sampler->dw_wrap = wrap_s << 6 |
2376 wrap_t << 3 |
2377 wrap_r;
2378
2379 /*
2380 * As noted in the classic i965 driver, the HW may still reference
2381 * wrap_t and wrap_r for 1D textures. We need to set them to a safe
2382 * mode
2383 */
2384 sampler->dw_wrap_1d = wrap_s << 6 |
2385 BRW_TEXCOORDMODE_WRAP << 3 |
2386 BRW_TEXCOORDMODE_WRAP;
2387
2388 sampler->dw_wrap_cube = wrap_cube << 6 |
2389 wrap_cube << 3 |
2390 wrap_cube;
2391
2392 STATIC_ASSERT(Elements(sampler->payload) >= 7);
2393
2394 sampler->payload[0] = dw0;
2395 sampler->payload[1] = dw1;
2396 sampler->payload[2] = dw3;
2397
2398 memcpy(&sampler->payload[3],
2399 state->border_color.ui, sizeof(state->border_color.ui));
2400 }
2401 else {
2402 dw0 = 1 << 28 |
2403 mip_filter << 20 |
2404 lod_bias << 3;
2405
2406 if (state->compare_mode != PIPE_TEX_COMPARE_NONE)
2407 dw0 |= gen6_translate_shadow_func(state->compare_func);
2408
2409 sampler->dw_filter = (min_filter != mag_filter) << 27 |
2410 mag_filter << 17 |
2411 min_filter << 14;
2412
2413 sampler->dw_filter_aniso = BRW_MAPFILTER_ANISOTROPIC << 17 |
2414 BRW_MAPFILTER_ANISOTROPIC << 14;
2415
2416 dw1 = min_lod << 22 |
2417 max_lod << 12;
2418
2419 sampler->dw_wrap = wrap_s << 6 |
2420 wrap_t << 3 |
2421 wrap_r;
2422
2423 sampler->dw_wrap_1d = wrap_s << 6 |
2424 BRW_TEXCOORDMODE_WRAP << 3 |
2425 BRW_TEXCOORDMODE_WRAP;
2426
2427 sampler->dw_wrap_cube = wrap_cube << 6 |
2428 wrap_cube << 3 |
2429 wrap_cube;
2430
2431 dw3 = max_aniso << 19;
2432
2433 /* round the coordinates for linear filtering */
2434 if (min_filter != BRW_MAPFILTER_NEAREST) {
2435 dw3 |= (BRW_ADDRESS_ROUNDING_ENABLE_U_MIN |
2436 BRW_ADDRESS_ROUNDING_ENABLE_V_MIN |
2437 BRW_ADDRESS_ROUNDING_ENABLE_R_MIN) << 13;
2438 }
2439 if (mag_filter != BRW_MAPFILTER_NEAREST) {
2440 dw3 |= (BRW_ADDRESS_ROUNDING_ENABLE_U_MAG |
2441 BRW_ADDRESS_ROUNDING_ENABLE_V_MAG |
2442 BRW_ADDRESS_ROUNDING_ENABLE_R_MAG) << 13;
2443 }
2444
2445 if (!state->normalized_coords)
2446 dw3 |= 1;
2447
2448 STATIC_ASSERT(Elements(sampler->payload) >= 15);
2449
2450 sampler->payload[0] = dw0;
2451 sampler->payload[1] = dw1;
2452 sampler->payload[2] = dw3;
2453
2454 sampler_init_border_color_gen6(dev,
2455 &state->border_color, &sampler->payload[3], 12);
2456 }
2457 }
2458
2459 void
2460 ilo_gpe_init_fb(const struct ilo_dev_info *dev,
2461 const struct pipe_framebuffer_state *state,
2462 struct ilo_fb_state *fb)
2463 {
2464 const struct pipe_surface *first;
2465 unsigned num_surfaces;
2466
2467 ILO_GPE_VALID_GEN(dev, 6, 7.5);
2468
2469 util_copy_framebuffer_state(&fb->state, state);
2470
2471 first = (state->nr_cbufs) ? state->cbufs[0] :
2472 (state->zsbuf) ? state->zsbuf :
2473 NULL;
2474 num_surfaces = state->nr_cbufs + !!state->zsbuf;
2475
2476 fb->num_samples = (first) ? first->texture->nr_samples : 1;
2477 if (!fb->num_samples)
2478 fb->num_samples = 1;
2479
2480 fb->offset_to_layers = false;
2481
2482 /*
2483 * The PRMs list several restrictions when the framebuffer has more than
2484 * one surface, but it seems they are lifted on GEN7+.
2485 */
2486 if (dev->gen < ILO_GEN(7) && num_surfaces > 1) {
2487 const unsigned first_depth =
2488 (first->texture->target == PIPE_TEXTURE_3D) ?
2489 first->texture->depth0 :
2490 first->u.tex.last_layer - first->u.tex.first_layer + 1;
2491 bool has_3d_target = (first->texture->target == PIPE_TEXTURE_3D);
2492 unsigned i;
2493
2494 for (i = 1; i < num_surfaces; i++) {
2495 const struct pipe_surface *surf =
2496 (i < state->nr_cbufs) ? state->cbufs[i] : state->zsbuf;
2497 const unsigned depth =
2498 (surf->texture->target == PIPE_TEXTURE_3D) ?
2499 surf->texture->depth0 :
2500 surf->u.tex.last_layer - surf->u.tex.first_layer + 1;
2501
2502 has_3d_target |= (surf->texture->target == PIPE_TEXTURE_3D);
2503
2504 /*
2505 * From the Sandy Bridge PRM, volume 4 part 1, page 79:
2506 *
2507 * "The LOD of a render target must be the same as the LOD of the
2508 * other render target(s) and of the depth buffer (defined in
2509 * 3DSTATE_DEPTH_BUFFER)."
2510 *
2511 * From the Sandy Bridge PRM, volume 4 part 1, page 81:
2512 *
2513 * "The Depth of a render target must be the same as the Depth of
2514 * the other render target(s) and of the depth buffer (defined
2515 * in 3DSTATE_DEPTH_BUFFER)."
2516 */
2517 if (surf->u.tex.level != first->u.tex.level ||
2518 depth != first_depth) {
2519 fb->offset_to_layers = true;
2520 break;
2521 }
2522
2523 /*
2524 * From the Sandy Bridge PRM, volume 4 part 1, page 77:
2525 *
2526 * "The Height of a render target must be the same as the Height
2527 * of the other render targets and the depth buffer (defined in
2528 * 3DSTATE_DEPTH_BUFFER), unless Surface Type is SURFTYPE_1D or
2529 * SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-mip
2530 * mapped)."
2531 *
2532 * From the Sandy Bridge PRM, volume 4 part 1, page 78:
2533 *
2534 * "The Width of a render target must be the same as the Width of
2535 * the other render target(s) and the depth buffer (defined in
2536 * 3DSTATE_DEPTH_BUFFER), unless Surface Type is SURFTYPE_1D or
2537 * SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-mip
2538 * mapped)."
2539 */
2540 if (surf->texture->width0 != first->texture->width0 ||
2541 surf->texture->height0 != first->texture->height0) {
2542 if (has_3d_target || first->u.tex.level || first_depth > 1) {
2543 fb->offset_to_layers = true;
2544 break;
2545 }
2546 }
2547 }
2548 }
2549 }
2550
2551 int
2552 ilo_gpe_gen6_estimate_command_size(const struct ilo_dev_info *dev,
2553 enum ilo_gpe_gen6_command cmd,
2554 int arg)
2555 {
2556 static const struct {
2557 int header;
2558 int body;
2559 } gen6_command_size_table[ILO_GPE_GEN6_COMMAND_COUNT] = {
2560 [ILO_GPE_GEN6_STATE_BASE_ADDRESS] = { 0, 10 },
2561 [ILO_GPE_GEN6_STATE_SIP] = { 0, 2 },
2562 [ILO_GPE_GEN6_3DSTATE_VF_STATISTICS] = { 0, 1 },
2563 [ILO_GPE_GEN6_PIPELINE_SELECT] = { 0, 1 },
2564 [ILO_GPE_GEN6_MEDIA_VFE_STATE] = { 0, 8 },
2565 [ILO_GPE_GEN6_MEDIA_CURBE_LOAD] = { 0, 4 },
2566 [ILO_GPE_GEN6_MEDIA_INTERFACE_DESCRIPTOR_LOAD] = { 0, 4 },
2567 [ILO_GPE_GEN6_MEDIA_GATEWAY_STATE] = { 0, 2 },
2568 [ILO_GPE_GEN6_MEDIA_STATE_FLUSH] = { 0, 2 },
2569 [ILO_GPE_GEN6_MEDIA_OBJECT_WALKER] = { 17, 1 },
2570 [ILO_GPE_GEN6_3DSTATE_BINDING_TABLE_POINTERS] = { 0, 4 },
2571 [ILO_GPE_GEN6_3DSTATE_SAMPLER_STATE_POINTERS] = { 0, 4 },
2572 [ILO_GPE_GEN6_3DSTATE_URB] = { 0, 3 },
2573 [ILO_GPE_GEN6_3DSTATE_VERTEX_BUFFERS] = { 1, 4 },
2574 [ILO_GPE_GEN6_3DSTATE_VERTEX_ELEMENTS] = { 1, 2 },
2575 [ILO_GPE_GEN6_3DSTATE_INDEX_BUFFER] = { 0, 3 },
2576 [ILO_GPE_GEN6_3DSTATE_VIEWPORT_STATE_POINTERS] = { 0, 4 },
2577 [ILO_GPE_GEN6_3DSTATE_CC_STATE_POINTERS] = { 0, 4 },
2578 [ILO_GPE_GEN6_3DSTATE_SCISSOR_STATE_POINTERS] = { 0, 2 },
2579 [ILO_GPE_GEN6_3DSTATE_VS] = { 0, 6 },
2580 [ILO_GPE_GEN6_3DSTATE_GS] = { 0, 7 },
2581 [ILO_GPE_GEN6_3DSTATE_CLIP] = { 0, 4 },
2582 [ILO_GPE_GEN6_3DSTATE_SF] = { 0, 20 },
2583 [ILO_GPE_GEN6_3DSTATE_WM] = { 0, 9 },
2584 [ILO_GPE_GEN6_3DSTATE_CONSTANT_VS] = { 0, 5 },
2585 [ILO_GPE_GEN6_3DSTATE_CONSTANT_GS] = { 0, 5 },
2586 [ILO_GPE_GEN6_3DSTATE_CONSTANT_PS] = { 0, 5 },
2587 [ILO_GPE_GEN6_3DSTATE_SAMPLE_MASK] = { 0, 2 },
2588 [ILO_GPE_GEN6_3DSTATE_DRAWING_RECTANGLE] = { 0, 4 },
2589 [ILO_GPE_GEN6_3DSTATE_DEPTH_BUFFER] = { 0, 7 },
2590 [ILO_GPE_GEN6_3DSTATE_POLY_STIPPLE_OFFSET] = { 0, 2 },
2591 [ILO_GPE_GEN6_3DSTATE_POLY_STIPPLE_PATTERN] = { 0, 33 },
2592 [ILO_GPE_GEN6_3DSTATE_LINE_STIPPLE] = { 0, 3 },
2593 [ILO_GPE_GEN6_3DSTATE_AA_LINE_PARAMETERS] = { 0, 3 },
2594 [ILO_GPE_GEN6_3DSTATE_GS_SVB_INDEX] = { 0, 4 },
2595 [ILO_GPE_GEN6_3DSTATE_MULTISAMPLE] = { 0, 3 },
2596 [ILO_GPE_GEN6_3DSTATE_STENCIL_BUFFER] = { 0, 3 },
2597 [ILO_GPE_GEN6_3DSTATE_HIER_DEPTH_BUFFER] = { 0, 3 },
2598 [ILO_GPE_GEN6_3DSTATE_CLEAR_PARAMS] = { 0, 2 },
2599 [ILO_GPE_GEN6_PIPE_CONTROL] = { 0, 5 },
2600 [ILO_GPE_GEN6_3DPRIMITIVE] = { 0, 6 },
2601 };
2602 const int header = gen6_command_size_table[cmd].header;
2603 const int body = gen6_command_size_table[arg].body;
2604 const int count = arg;
2605
2606 ILO_GPE_VALID_GEN(dev, 6, 6);
2607 assert(cmd < ILO_GPE_GEN6_COMMAND_COUNT);
2608
2609 return (likely(count)) ? header + body * count : 0;
2610 }
2611
2612 int
2613 ilo_gpe_gen6_estimate_state_size(const struct ilo_dev_info *dev,
2614 enum ilo_gpe_gen6_state state,
2615 int arg)
2616 {
2617 static const struct {
2618 int alignment;
2619 int body;
2620 bool is_array;
2621 } gen6_state_size_table[ILO_GPE_GEN6_STATE_COUNT] = {
2622 [ILO_GPE_GEN6_INTERFACE_DESCRIPTOR_DATA] = { 8, 8, true },
2623 [ILO_GPE_GEN6_SF_VIEWPORT] = { 8, 8, true },
2624 [ILO_GPE_GEN6_CLIP_VIEWPORT] = { 8, 4, true },
2625 [ILO_GPE_GEN6_CC_VIEWPORT] = { 8, 2, true },
2626 [ILO_GPE_GEN6_COLOR_CALC_STATE] = { 16, 6, false },
2627 [ILO_GPE_GEN6_BLEND_STATE] = { 16, 2, true },
2628 [ILO_GPE_GEN6_DEPTH_STENCIL_STATE] = { 16, 3, false },
2629 [ILO_GPE_GEN6_SCISSOR_RECT] = { 8, 2, true },
2630 [ILO_GPE_GEN6_BINDING_TABLE_STATE] = { 8, 1, true },
2631 [ILO_GPE_GEN6_SURFACE_STATE] = { 8, 6, false },
2632 [ILO_GPE_GEN6_SAMPLER_STATE] = { 8, 4, true },
2633 [ILO_GPE_GEN6_SAMPLER_BORDER_COLOR_STATE] = { 8, 12, false },
2634 [ILO_GPE_GEN6_PUSH_CONSTANT_BUFFER] = { 8, 1, true },
2635 };
2636 const int alignment = gen6_state_size_table[state].alignment;
2637 const int body = gen6_state_size_table[state].body;
2638 const bool is_array = gen6_state_size_table[state].is_array;
2639 const int count = arg;
2640 int estimate;
2641
2642 ILO_GPE_VALID_GEN(dev, 6, 6);
2643 assert(state < ILO_GPE_GEN6_STATE_COUNT);
2644
2645 if (likely(count)) {
2646 if (is_array) {
2647 estimate = (alignment - 1) + body * count;
2648 }
2649 else {
2650 estimate = (alignment - 1) + body;
2651 /* all states are aligned */
2652 if (count > 1)
2653 estimate += util_align_npot(body, alignment) * (count - 1);
2654 }
2655 }
2656 else {
2657 estimate = 0;
2658 }
2659
2660 return estimate;
2661 }