iris: Move SET_DOMAIN to alloc_fresh_bo()
[mesa.git] / src / gallium / drivers / iris / iris_bufmgr.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_bufmgr.c
25 *
26 * The Iris buffer manager.
27 *
28 * XXX: write better comments
29 * - BOs
30 * - Explain BO cache
31 * - main interface to GEM in the kernel
32 */
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <xf86drm.h>
39 #include <util/u_atomic.h>
40 #include <fcntl.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <assert.h>
46 #include <sys/ioctl.h>
47 #include <sys/mman.h>
48 #include <sys/stat.h>
49 #include <sys/types.h>
50 #include <stdbool.h>
51 #include <time.h>
52
53 #include "errno.h"
54 #ifndef ETIME
55 #define ETIME ETIMEDOUT
56 #endif
57 #include "common/gen_clflush.h"
58 #include "dev/gen_debug.h"
59 #include "common/gen_gem.h"
60 #include "dev/gen_device_info.h"
61 #include "main/macros.h"
62 #include "util/debug.h"
63 #include "util/macros.h"
64 #include "util/hash_table.h"
65 #include "util/list.h"
66 #include "util/u_dynarray.h"
67 #include "util/vma.h"
68 #include "iris_bufmgr.h"
69 #include "iris_context.h"
70 #include "string.h"
71
72 #include "drm-uapi/i915_drm.h"
73
74 #ifdef HAVE_VALGRIND
75 #include <valgrind.h>
76 #include <memcheck.h>
77 #define VG(x) x
78 #else
79 #define VG(x)
80 #endif
81
82 /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
83 * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
84 * leaked. All because it does not call VG(cli_free) from its
85 * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
86 * and allocation, we mark it available for use upon mmapping and remove
87 * it upon unmapping.
88 */
89 #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
90 #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
91
92 #define PAGE_SIZE 4096
93
94 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
95
96 /**
97 * Call ioctl, restarting if it is interupted
98 */
99 int
100 drm_ioctl(int fd, unsigned long request, void *arg)
101 {
102 int ret;
103
104 do {
105 ret = ioctl(fd, request, arg);
106 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
107 return ret;
108 }
109
110 static inline int
111 atomic_add_unless(int *v, int add, int unless)
112 {
113 int c, old;
114 c = p_atomic_read(v);
115 while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
116 c = old;
117 return c == unless;
118 }
119
120 static const char *
121 memzone_name(enum iris_memory_zone memzone)
122 {
123 const char *names[] = {
124 [IRIS_MEMZONE_SHADER] = "shader",
125 [IRIS_MEMZONE_BINDER] = "binder",
126 [IRIS_MEMZONE_SURFACE] = "surface",
127 [IRIS_MEMZONE_DYNAMIC] = "dynamic",
128 [IRIS_MEMZONE_OTHER] = "other",
129 [IRIS_MEMZONE_BORDER_COLOR_POOL] = "bordercolor",
130 };
131 assert(memzone < ARRAY_SIZE(names));
132 return names[memzone];
133 }
134
135 struct bo_cache_bucket {
136 /** List of cached BOs. */
137 struct list_head head;
138
139 /** Size of this bucket, in bytes. */
140 uint64_t size;
141 };
142
143 struct iris_bufmgr {
144 int fd;
145
146 mtx_t lock;
147
148 /** Array of lists of cached gem objects of power-of-two sizes */
149 struct bo_cache_bucket cache_bucket[14 * 4];
150 int num_buckets;
151 time_t time;
152
153 struct hash_table *name_table;
154 struct hash_table *handle_table;
155
156 struct util_vma_heap vma_allocator[IRIS_MEMZONE_COUNT];
157
158 bool has_llc:1;
159 bool bo_reuse:1;
160 };
161
162 static int bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode,
163 uint32_t stride);
164
165 static void bo_free(struct iris_bo *bo);
166
167 static uint64_t vma_alloc(struct iris_bufmgr *bufmgr,
168 enum iris_memory_zone memzone,
169 uint64_t size, uint64_t alignment);
170
171 static uint32_t
172 key_hash_uint(const void *key)
173 {
174 return _mesa_hash_data(key, 4);
175 }
176
177 static bool
178 key_uint_equal(const void *a, const void *b)
179 {
180 return *((unsigned *) a) == *((unsigned *) b);
181 }
182
183 static struct iris_bo *
184 hash_find_bo(struct hash_table *ht, unsigned int key)
185 {
186 struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
187 return entry ? (struct iris_bo *) entry->data : NULL;
188 }
189
190 /**
191 * This function finds the correct bucket fit for the input size.
192 * The function works with O(1) complexity when the requested size
193 * was queried instead of iterating the size through all the buckets.
194 */
195 static struct bo_cache_bucket *
196 bucket_for_size(struct iris_bufmgr *bufmgr, uint64_t size)
197 {
198 /* Calculating the pages and rounding up to the page size. */
199 const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
200
201 /* Row Bucket sizes clz((x-1) | 3) Row Column
202 * in pages stride size
203 * 0: 1 2 3 4 -> 30 30 30 30 4 1
204 * 1: 5 6 7 8 -> 29 29 29 29 4 1
205 * 2: 10 12 14 16 -> 28 28 28 28 8 2
206 * 3: 20 24 28 32 -> 27 27 27 27 16 4
207 */
208 const unsigned row = 30 - __builtin_clz((pages - 1) | 3);
209 const unsigned row_max_pages = 4 << row;
210
211 /* The '& ~2' is the special case for row 1. In row 1, max pages /
212 * 2 is 2, but the previous row maximum is zero (because there is
213 * no previous row). All row maximum sizes are power of 2, so that
214 * is the only case where that bit will be set.
215 */
216 const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2;
217 int col_size_log2 = row - 1;
218 col_size_log2 += (col_size_log2 < 0);
219
220 const unsigned col = (pages - prev_row_max_pages +
221 ((1 << col_size_log2) - 1)) >> col_size_log2;
222
223 /* Calculating the index based on the row and column. */
224 const unsigned index = (row * 4) + (col - 1);
225
226 return (index < bufmgr->num_buckets) ?
227 &bufmgr->cache_bucket[index] : NULL;
228 }
229
230 enum iris_memory_zone
231 iris_memzone_for_address(uint64_t address)
232 {
233 STATIC_ASSERT(IRIS_MEMZONE_OTHER_START > IRIS_MEMZONE_DYNAMIC_START);
234 STATIC_ASSERT(IRIS_MEMZONE_DYNAMIC_START > IRIS_MEMZONE_SURFACE_START);
235 STATIC_ASSERT(IRIS_MEMZONE_SURFACE_START > IRIS_MEMZONE_BINDER_START);
236 STATIC_ASSERT(IRIS_MEMZONE_BINDER_START > IRIS_MEMZONE_SHADER_START);
237 STATIC_ASSERT(IRIS_BORDER_COLOR_POOL_ADDRESS == IRIS_MEMZONE_DYNAMIC_START);
238
239 if (address >= IRIS_MEMZONE_OTHER_START)
240 return IRIS_MEMZONE_OTHER;
241
242 if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
243 return IRIS_MEMZONE_BORDER_COLOR_POOL;
244
245 if (address > IRIS_MEMZONE_DYNAMIC_START)
246 return IRIS_MEMZONE_DYNAMIC;
247
248 if (address >= IRIS_MEMZONE_SURFACE_START)
249 return IRIS_MEMZONE_SURFACE;
250
251 if (address >= IRIS_MEMZONE_BINDER_START)
252 return IRIS_MEMZONE_BINDER;
253
254 return IRIS_MEMZONE_SHADER;
255 }
256
257 /**
258 * Allocate a section of virtual memory for a buffer, assigning an address.
259 *
260 * This uses either the bucket allocator for the given size, or the large
261 * object allocator (util_vma).
262 */
263 static uint64_t
264 vma_alloc(struct iris_bufmgr *bufmgr,
265 enum iris_memory_zone memzone,
266 uint64_t size,
267 uint64_t alignment)
268 {
269 /* Force alignment to be some number of pages */
270 alignment = ALIGN(alignment, PAGE_SIZE);
271
272 if (memzone == IRIS_MEMZONE_BORDER_COLOR_POOL)
273 return IRIS_BORDER_COLOR_POOL_ADDRESS;
274
275 /* The binder handles its own allocations. Return non-zero here. */
276 if (memzone == IRIS_MEMZONE_BINDER)
277 return IRIS_MEMZONE_BINDER_START;
278
279 uint64_t addr =
280 util_vma_heap_alloc(&bufmgr->vma_allocator[memzone], size, alignment);
281
282 assert((addr >> 48ull) == 0);
283 assert((addr % alignment) == 0);
284
285 return gen_canonical_address(addr);
286 }
287
288 static void
289 vma_free(struct iris_bufmgr *bufmgr,
290 uint64_t address,
291 uint64_t size)
292 {
293 if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
294 return;
295
296 /* Un-canonicalize the address. */
297 address = gen_48b_address(address);
298
299 if (address == 0ull)
300 return;
301
302 enum iris_memory_zone memzone = iris_memzone_for_address(address);
303
304 /* The binder handles its own allocations. */
305 if (memzone == IRIS_MEMZONE_BINDER)
306 return;
307
308 util_vma_heap_free(&bufmgr->vma_allocator[memzone], address, size);
309 }
310
311 int
312 iris_bo_busy(struct iris_bo *bo)
313 {
314 struct iris_bufmgr *bufmgr = bo->bufmgr;
315 struct drm_i915_gem_busy busy = { .handle = bo->gem_handle };
316
317 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
318 if (ret == 0) {
319 bo->idle = !busy.busy;
320 return busy.busy;
321 }
322 return false;
323 }
324
325 int
326 iris_bo_madvise(struct iris_bo *bo, int state)
327 {
328 struct drm_i915_gem_madvise madv = {
329 .handle = bo->gem_handle,
330 .madv = state,
331 .retained = 1,
332 };
333
334 drm_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
335
336 return madv.retained;
337 }
338
339 static struct iris_bo *
340 bo_calloc(void)
341 {
342 struct iris_bo *bo = calloc(1, sizeof(*bo));
343 if (bo) {
344 bo->hash = _mesa_hash_pointer(bo);
345 }
346 return bo;
347 }
348
349 static struct iris_bo *
350 alloc_bo_from_cache(struct iris_bufmgr *bufmgr,
351 struct bo_cache_bucket *bucket,
352 enum iris_memory_zone memzone,
353 unsigned flags,
354 bool match_zone)
355 {
356 if (!bucket)
357 return NULL;
358
359 struct iris_bo *bo = NULL;
360
361 list_for_each_entry_safe(struct iris_bo, cur, &bucket->head, head) {
362 /* Try a little harder to find one that's already in the right memzone */
363 if (match_zone && memzone != iris_memzone_for_address(cur->gtt_offset))
364 continue;
365
366 /* If the last BO in the cache is busy, there are no idle BOs. Bail,
367 * either falling back to a non-matching memzone, or if that fails,
368 * allocating a fresh buffer.
369 */
370 if (iris_bo_busy(cur))
371 return NULL;
372
373 list_del(&cur->head);
374
375 /* Tell the kernel we need this BO. If it still exists, we're done! */
376 if (iris_bo_madvise(cur, I915_MADV_WILLNEED)) {
377 bo = cur;
378 break;
379 }
380
381 /* This BO was purged, throw it out and keep looking. */
382 bo_free(cur);
383 }
384
385 if (!bo)
386 return NULL;
387
388 /* If the cached BO isn't in the right memory zone, free the old
389 * memory and assign it a new address.
390 */
391 if (memzone != iris_memzone_for_address(bo->gtt_offset)) {
392 vma_free(bufmgr, bo->gtt_offset, bo->size);
393 bo->gtt_offset = 0ull;
394 }
395
396 /* Zero the contents if necessary. If this fails, fall back to
397 * allocating a fresh BO, which will always be zeroed by the kernel.
398 */
399 if (flags & BO_ALLOC_ZEROED) {
400 void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
401 if (map) {
402 memset(map, 0, bo->size);
403 } else {
404 bo_free(bo);
405 return NULL;
406 }
407 }
408
409 return bo;
410 }
411
412 static struct iris_bo *
413 alloc_fresh_bo(struct iris_bufmgr *bufmgr, uint64_t bo_size)
414 {
415 struct iris_bo *bo = bo_calloc();
416 if (!bo)
417 return NULL;
418
419 struct drm_i915_gem_create create = { .size = bo_size };
420
421 /* All new BOs we get from the kernel are zeroed, so we don't need to
422 * worry about that here.
423 */
424 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create) != 0) {
425 free(bo);
426 return NULL;
427 }
428
429 bo->gem_handle = create.handle;
430 bo->bufmgr = bufmgr;
431 bo->size = bo_size;
432 bo->idle = true;
433 bo->tiling_mode = I915_TILING_NONE;
434 bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
435 bo->stride = 0;
436
437 /* Calling set_domain() will allocate pages for the BO outside of the
438 * struct mutex lock in the kernel, which is more efficient than waiting
439 * to create them during the first execbuf that uses the BO.
440 */
441 struct drm_i915_gem_set_domain sd = {
442 .handle = bo->gem_handle,
443 .read_domains = I915_GEM_DOMAIN_CPU,
444 .write_domain = 0,
445 };
446
447 if (drm_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0) {
448 bo_free(bo);
449 return NULL;
450 }
451
452 return bo;
453 }
454
455 static struct iris_bo *
456 bo_alloc_internal(struct iris_bufmgr *bufmgr,
457 const char *name,
458 uint64_t size,
459 enum iris_memory_zone memzone,
460 unsigned flags,
461 uint32_t tiling_mode,
462 uint32_t stride)
463 {
464 struct iris_bo *bo;
465 unsigned int page_size = getpagesize();
466 struct bo_cache_bucket *bucket = bucket_for_size(bufmgr, size);
467
468 /* Round the size up to the bucket size, or if we don't have caching
469 * at this size, a multiple of the page size.
470 */
471 uint64_t bo_size =
472 bucket ? bucket->size : MAX2(ALIGN(size, page_size), page_size);
473
474 mtx_lock(&bufmgr->lock);
475
476 /* Get a buffer out of the cache if available. First, we try to find
477 * one with a matching memory zone so we can avoid reallocating VMA.
478 */
479 bo = alloc_bo_from_cache(bufmgr, bucket, memzone, flags, true);
480
481 /* If that fails, we try for any cached BO, without matching memzone. */
482 if (!bo)
483 bo = alloc_bo_from_cache(bufmgr, bucket, memzone, flags, false);
484
485 if (!bo) {
486 bo = alloc_fresh_bo(bufmgr, bo_size);
487 if (!bo)
488 goto err;
489 }
490
491 if (bo->gtt_offset == 0ull) {
492 bo->gtt_offset = vma_alloc(bufmgr, memzone, bo->size, 1);
493
494 if (bo->gtt_offset == 0ull)
495 goto err_free;
496 }
497
498 if (bo_set_tiling_internal(bo, tiling_mode, stride))
499 goto err_free;
500
501 mtx_unlock(&bufmgr->lock);
502
503 bo->name = name;
504 p_atomic_set(&bo->refcount, 1);
505 bo->reusable = bucket && bufmgr->bo_reuse;
506 bo->cache_coherent = bufmgr->has_llc;
507 bo->index = -1;
508 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
509
510 /* By default, capture all driver-internal buffers like shader kernels,
511 * surface states, dynamic states, border colors, and so on.
512 */
513 if (memzone < IRIS_MEMZONE_OTHER)
514 bo->kflags |= EXEC_OBJECT_CAPTURE;
515
516 if ((flags & BO_ALLOC_COHERENT) && !bo->cache_coherent) {
517 struct drm_i915_gem_caching arg = {
518 .handle = bo->gem_handle,
519 .caching = 1,
520 };
521 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_CACHING, &arg) == 0) {
522 bo->cache_coherent = true;
523 bo->reusable = false;
524 }
525 }
526
527 DBG("bo_create: buf %d (%s) (%s memzone) %llub\n", bo->gem_handle,
528 bo->name, memzone_name(memzone), (unsigned long long) size);
529
530 return bo;
531
532 err_free:
533 bo_free(bo);
534 err:
535 mtx_unlock(&bufmgr->lock);
536 return NULL;
537 }
538
539 struct iris_bo *
540 iris_bo_alloc(struct iris_bufmgr *bufmgr,
541 const char *name,
542 uint64_t size,
543 enum iris_memory_zone memzone)
544 {
545 return bo_alloc_internal(bufmgr, name, size, memzone,
546 0, I915_TILING_NONE, 0);
547 }
548
549 struct iris_bo *
550 iris_bo_alloc_tiled(struct iris_bufmgr *bufmgr, const char *name,
551 uint64_t size, enum iris_memory_zone memzone,
552 uint32_t tiling_mode, uint32_t pitch, unsigned flags)
553 {
554 return bo_alloc_internal(bufmgr, name, size, memzone,
555 flags, tiling_mode, pitch);
556 }
557
558 struct iris_bo *
559 iris_bo_create_userptr(struct iris_bufmgr *bufmgr, const char *name,
560 void *ptr, size_t size,
561 enum iris_memory_zone memzone)
562 {
563 struct iris_bo *bo;
564
565 bo = bo_calloc();
566 if (!bo)
567 return NULL;
568
569 struct drm_i915_gem_userptr arg = {
570 .user_ptr = (uintptr_t)ptr,
571 .user_size = size,
572 };
573 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_USERPTR, &arg))
574 goto err_free;
575 bo->gem_handle = arg.handle;
576
577 /* Check the buffer for validity before we try and use it in a batch */
578 struct drm_i915_gem_set_domain sd = {
579 .handle = bo->gem_handle,
580 .read_domains = I915_GEM_DOMAIN_CPU,
581 };
582 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd))
583 goto err_close;
584
585 bo->name = name;
586 bo->size = size;
587 bo->map_cpu = ptr;
588
589 bo->bufmgr = bufmgr;
590 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
591
592 mtx_lock(&bufmgr->lock);
593 bo->gtt_offset = vma_alloc(bufmgr, memzone, size, 1);
594 mtx_unlock(&bufmgr->lock);
595
596 if (bo->gtt_offset == 0ull)
597 goto err_close;
598
599 p_atomic_set(&bo->refcount, 1);
600 bo->userptr = true;
601 bo->cache_coherent = true;
602 bo->index = -1;
603 bo->idle = true;
604
605 return bo;
606
607 err_close:
608 drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &bo->gem_handle);
609 err_free:
610 free(bo);
611 return NULL;
612 }
613
614 /**
615 * Returns a iris_bo wrapping the given buffer object handle.
616 *
617 * This can be used when one application needs to pass a buffer object
618 * to another.
619 */
620 struct iris_bo *
621 iris_bo_gem_create_from_name(struct iris_bufmgr *bufmgr,
622 const char *name, unsigned int handle)
623 {
624 struct iris_bo *bo;
625
626 /* At the moment most applications only have a few named bo.
627 * For instance, in a DRI client only the render buffers passed
628 * between X and the client are named. And since X returns the
629 * alternating names for the front/back buffer a linear search
630 * provides a sufficiently fast match.
631 */
632 mtx_lock(&bufmgr->lock);
633 bo = hash_find_bo(bufmgr->name_table, handle);
634 if (bo) {
635 iris_bo_reference(bo);
636 goto out;
637 }
638
639 struct drm_gem_open open_arg = { .name = handle };
640 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
641 if (ret != 0) {
642 DBG("Couldn't reference %s handle 0x%08x: %s\n",
643 name, handle, strerror(errno));
644 bo = NULL;
645 goto out;
646 }
647 /* Now see if someone has used a prime handle to get this
648 * object from the kernel before by looking through the list
649 * again for a matching gem_handle
650 */
651 bo = hash_find_bo(bufmgr->handle_table, open_arg.handle);
652 if (bo) {
653 iris_bo_reference(bo);
654 goto out;
655 }
656
657 bo = bo_calloc();
658 if (!bo)
659 goto out;
660
661 p_atomic_set(&bo->refcount, 1);
662
663 bo->size = open_arg.size;
664 bo->gtt_offset = 0;
665 bo->bufmgr = bufmgr;
666 bo->gem_handle = open_arg.handle;
667 bo->name = name;
668 bo->global_name = handle;
669 bo->reusable = false;
670 bo->external = true;
671 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
672 bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
673
674 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
675 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
676
677 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
678 ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
679 if (ret != 0)
680 goto err_unref;
681
682 bo->tiling_mode = get_tiling.tiling_mode;
683 bo->swizzle_mode = get_tiling.swizzle_mode;
684 /* XXX stride is unknown */
685 DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
686
687 out:
688 mtx_unlock(&bufmgr->lock);
689 return bo;
690
691 err_unref:
692 bo_free(bo);
693 mtx_unlock(&bufmgr->lock);
694 return NULL;
695 }
696
697 static void
698 bo_free(struct iris_bo *bo)
699 {
700 struct iris_bufmgr *bufmgr = bo->bufmgr;
701
702 if (bo->map_cpu && !bo->userptr) {
703 VG_NOACCESS(bo->map_cpu, bo->size);
704 munmap(bo->map_cpu, bo->size);
705 }
706 if (bo->map_wc) {
707 VG_NOACCESS(bo->map_wc, bo->size);
708 munmap(bo->map_wc, bo->size);
709 }
710 if (bo->map_gtt) {
711 VG_NOACCESS(bo->map_gtt, bo->size);
712 munmap(bo->map_gtt, bo->size);
713 }
714
715 if (bo->external) {
716 struct hash_entry *entry;
717
718 if (bo->global_name) {
719 entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
720 _mesa_hash_table_remove(bufmgr->name_table, entry);
721 }
722
723 entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
724 _mesa_hash_table_remove(bufmgr->handle_table, entry);
725 }
726
727 /* Close this object */
728 struct drm_gem_close close = { .handle = bo->gem_handle };
729 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
730 if (ret != 0) {
731 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
732 bo->gem_handle, bo->name, strerror(errno));
733 }
734
735 vma_free(bo->bufmgr, bo->gtt_offset, bo->size);
736
737 free(bo);
738 }
739
740 /** Frees all cached buffers significantly older than @time. */
741 static void
742 cleanup_bo_cache(struct iris_bufmgr *bufmgr, time_t time)
743 {
744 int i;
745
746 if (bufmgr->time == time)
747 return;
748
749 for (i = 0; i < bufmgr->num_buckets; i++) {
750 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
751
752 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
753 if (time - bo->free_time <= 1)
754 break;
755
756 list_del(&bo->head);
757
758 bo_free(bo);
759 }
760 }
761
762 bufmgr->time = time;
763 }
764
765 static void
766 bo_unreference_final(struct iris_bo *bo, time_t time)
767 {
768 struct iris_bufmgr *bufmgr = bo->bufmgr;
769 struct bo_cache_bucket *bucket;
770
771 DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
772
773 bucket = NULL;
774 if (bo->reusable)
775 bucket = bucket_for_size(bufmgr, bo->size);
776 /* Put the buffer into our internal cache for reuse if we can. */
777 if (bucket && iris_bo_madvise(bo, I915_MADV_DONTNEED)) {
778 bo->free_time = time;
779 bo->name = NULL;
780
781 list_addtail(&bo->head, &bucket->head);
782 } else {
783 bo_free(bo);
784 }
785 }
786
787 void
788 iris_bo_unreference(struct iris_bo *bo)
789 {
790 if (bo == NULL)
791 return;
792
793 assert(p_atomic_read(&bo->refcount) > 0);
794
795 if (atomic_add_unless(&bo->refcount, -1, 1)) {
796 struct iris_bufmgr *bufmgr = bo->bufmgr;
797 struct timespec time;
798
799 clock_gettime(CLOCK_MONOTONIC, &time);
800
801 mtx_lock(&bufmgr->lock);
802
803 if (p_atomic_dec_zero(&bo->refcount)) {
804 bo_unreference_final(bo, time.tv_sec);
805 cleanup_bo_cache(bufmgr, time.tv_sec);
806 }
807
808 mtx_unlock(&bufmgr->lock);
809 }
810 }
811
812 static void
813 bo_wait_with_stall_warning(struct pipe_debug_callback *dbg,
814 struct iris_bo *bo,
815 const char *action)
816 {
817 bool busy = dbg && !bo->idle;
818 double elapsed = unlikely(busy) ? -get_time() : 0.0;
819
820 iris_bo_wait_rendering(bo);
821
822 if (unlikely(busy)) {
823 elapsed += get_time();
824 if (elapsed > 1e-5) /* 0.01ms */ {
825 perf_debug(dbg, "%s a busy \"%s\" BO stalled and took %.03f ms.\n",
826 action, bo->name, elapsed * 1000);
827 }
828 }
829 }
830
831 static void
832 print_flags(unsigned flags)
833 {
834 if (flags & MAP_READ)
835 DBG("READ ");
836 if (flags & MAP_WRITE)
837 DBG("WRITE ");
838 if (flags & MAP_ASYNC)
839 DBG("ASYNC ");
840 if (flags & MAP_PERSISTENT)
841 DBG("PERSISTENT ");
842 if (flags & MAP_COHERENT)
843 DBG("COHERENT ");
844 if (flags & MAP_RAW)
845 DBG("RAW ");
846 DBG("\n");
847 }
848
849 static void *
850 iris_bo_map_cpu(struct pipe_debug_callback *dbg,
851 struct iris_bo *bo, unsigned flags)
852 {
853 struct iris_bufmgr *bufmgr = bo->bufmgr;
854
855 /* We disallow CPU maps for writing to non-coherent buffers, as the
856 * CPU map can become invalidated when a batch is flushed out, which
857 * can happen at unpredictable times. You should use WC maps instead.
858 */
859 assert(bo->cache_coherent || !(flags & MAP_WRITE));
860
861 if (!bo->map_cpu) {
862 DBG("iris_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name);
863
864 struct drm_i915_gem_mmap mmap_arg = {
865 .handle = bo->gem_handle,
866 .size = bo->size,
867 };
868 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
869 if (ret != 0) {
870 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
871 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
872 return NULL;
873 }
874 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
875 VG_DEFINED(map, bo->size);
876
877 if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) {
878 VG_NOACCESS(map, bo->size);
879 munmap(map, bo->size);
880 }
881 }
882 assert(bo->map_cpu);
883
884 DBG("iris_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name,
885 bo->map_cpu);
886 print_flags(flags);
887
888 if (!(flags & MAP_ASYNC)) {
889 bo_wait_with_stall_warning(dbg, bo, "CPU mapping");
890 }
891
892 if (!bo->cache_coherent && !bo->bufmgr->has_llc) {
893 /* If we're reusing an existing CPU mapping, the CPU caches may
894 * contain stale data from the last time we read from that mapping.
895 * (With the BO cache, it might even be data from a previous buffer!)
896 * Even if it's a brand new mapping, the kernel may have zeroed the
897 * buffer via CPU writes.
898 *
899 * We need to invalidate those cachelines so that we see the latest
900 * contents, and so long as we only read from the CPU mmap we do not
901 * need to write those cachelines back afterwards.
902 *
903 * On LLC, the emprical evidence suggests that writes from the GPU
904 * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU
905 * cachelines. (Other reads, such as the display engine, bypass the
906 * LLC entirely requiring us to keep dirty pixels for the scanout
907 * out of any cache.)
908 */
909 gen_invalidate_range(bo->map_cpu, bo->size);
910 }
911
912 return bo->map_cpu;
913 }
914
915 static void *
916 iris_bo_map_wc(struct pipe_debug_callback *dbg,
917 struct iris_bo *bo, unsigned flags)
918 {
919 struct iris_bufmgr *bufmgr = bo->bufmgr;
920
921 if (!bo->map_wc) {
922 DBG("iris_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name);
923
924 struct drm_i915_gem_mmap mmap_arg = {
925 .handle = bo->gem_handle,
926 .size = bo->size,
927 .flags = I915_MMAP_WC,
928 };
929 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
930 if (ret != 0) {
931 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
932 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
933 return NULL;
934 }
935
936 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
937 VG_DEFINED(map, bo->size);
938
939 if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) {
940 VG_NOACCESS(map, bo->size);
941 munmap(map, bo->size);
942 }
943 }
944 assert(bo->map_wc);
945
946 DBG("iris_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc);
947 print_flags(flags);
948
949 if (!(flags & MAP_ASYNC)) {
950 bo_wait_with_stall_warning(dbg, bo, "WC mapping");
951 }
952
953 return bo->map_wc;
954 }
955
956 /**
957 * Perform an uncached mapping via the GTT.
958 *
959 * Write access through the GTT is not quite fully coherent. On low power
960 * systems especially, like modern Atoms, we can observe reads from RAM before
961 * the write via GTT has landed. A write memory barrier that flushes the Write
962 * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later
963 * read after the write as the GTT write suffers a small delay through the GTT
964 * indirection. The kernel uses an uncached mmio read to ensure the GTT write
965 * is ordered with reads (either by the GPU, WB or WC) and unconditionally
966 * flushes prior to execbuf submission. However, if we are not informing the
967 * kernel about our GTT writes, it will not flush before earlier access, such
968 * as when using the cmdparser. Similarly, we need to be careful if we should
969 * ever issue a CPU read immediately following a GTT write.
970 *
971 * Telling the kernel about write access also has one more important
972 * side-effect. Upon receiving notification about the write, it cancels any
973 * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by
974 * either SW_FINISH or DIRTYFB. The presumption is that we never write to the
975 * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR
976 * tracking is handled on the buffer exchange instead.
977 */
978 static void *
979 iris_bo_map_gtt(struct pipe_debug_callback *dbg,
980 struct iris_bo *bo, unsigned flags)
981 {
982 struct iris_bufmgr *bufmgr = bo->bufmgr;
983
984 /* Get a mapping of the buffer if we haven't before. */
985 if (bo->map_gtt == NULL) {
986 DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name);
987
988 struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle };
989
990 /* Get the fake offset back... */
991 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
992 if (ret != 0) {
993 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
994 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
995 return NULL;
996 }
997
998 /* and mmap it. */
999 void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE,
1000 MAP_SHARED, bufmgr->fd, mmap_arg.offset);
1001 if (map == MAP_FAILED) {
1002 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1003 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1004 return NULL;
1005 }
1006
1007 /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will
1008 * already intercept this mmap call. However, for consistency between
1009 * all the mmap paths, we mark the pointer as defined now and mark it
1010 * as inaccessible afterwards.
1011 */
1012 VG_DEFINED(map, bo->size);
1013
1014 if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) {
1015 VG_NOACCESS(map, bo->size);
1016 munmap(map, bo->size);
1017 }
1018 }
1019 assert(bo->map_gtt);
1020
1021 DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt);
1022 print_flags(flags);
1023
1024 if (!(flags & MAP_ASYNC)) {
1025 bo_wait_with_stall_warning(dbg, bo, "GTT mapping");
1026 }
1027
1028 return bo->map_gtt;
1029 }
1030
1031 static bool
1032 can_map_cpu(struct iris_bo *bo, unsigned flags)
1033 {
1034 if (bo->cache_coherent)
1035 return true;
1036
1037 /* Even if the buffer itself is not cache-coherent (such as a scanout), on
1038 * an LLC platform reads always are coherent (as they are performed via the
1039 * central system agent). It is just the writes that we need to take special
1040 * care to ensure that land in main memory and not stick in the CPU cache.
1041 */
1042 if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc)
1043 return true;
1044
1045 /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid
1046 * across batch flushes where the kernel will change cache domains of the
1047 * bo, invalidating continued access to the CPU mmap on non-LLC device.
1048 *
1049 * Similarly, ASYNC typically means that the buffer will be accessed via
1050 * both the CPU and the GPU simultaneously. Batches may be executed that
1051 * use the BO even while it is mapped. While OpenGL technically disallows
1052 * most drawing while non-persistent mappings are active, we may still use
1053 * the GPU for blits or other operations, causing batches to happen at
1054 * inconvenient times.
1055 *
1056 * If RAW is set, we expect the caller to be able to handle a WC buffer
1057 * more efficiently than the involuntary clflushes.
1058 */
1059 if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC | MAP_RAW))
1060 return false;
1061
1062 return !(flags & MAP_WRITE);
1063 }
1064
1065 void *
1066 iris_bo_map(struct pipe_debug_callback *dbg,
1067 struct iris_bo *bo, unsigned flags)
1068 {
1069 if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW))
1070 return iris_bo_map_gtt(dbg, bo, flags);
1071
1072 void *map;
1073
1074 if (can_map_cpu(bo, flags))
1075 map = iris_bo_map_cpu(dbg, bo, flags);
1076 else
1077 map = iris_bo_map_wc(dbg, bo, flags);
1078
1079 /* Allow the attempt to fail by falling back to the GTT where necessary.
1080 *
1081 * Not every buffer can be mmaped directly using the CPU (or WC), for
1082 * example buffers that wrap stolen memory or are imported from other
1083 * devices. For those, we have little choice but to use a GTT mmapping.
1084 * However, if we use a slow GTT mmapping for reads where we expected fast
1085 * access, that order of magnitude difference in throughput will be clearly
1086 * expressed by angry users.
1087 *
1088 * We skip MAP_RAW because we want to avoid map_gtt's fence detiling.
1089 */
1090 if (!map && !(flags & MAP_RAW)) {
1091 perf_debug(dbg, "Fallback GTT mapping for %s with access flags %x\n",
1092 bo->name, flags);
1093 map = iris_bo_map_gtt(dbg, bo, flags);
1094 }
1095
1096 return map;
1097 }
1098
1099 /** Waits for all GPU rendering with the object to have completed. */
1100 void
1101 iris_bo_wait_rendering(struct iris_bo *bo)
1102 {
1103 /* We require a kernel recent enough for WAIT_IOCTL support.
1104 * See intel_init_bufmgr()
1105 */
1106 iris_bo_wait(bo, -1);
1107 }
1108
1109 /**
1110 * Waits on a BO for the given amount of time.
1111 *
1112 * @bo: buffer object to wait for
1113 * @timeout_ns: amount of time to wait in nanoseconds.
1114 * If value is less than 0, an infinite wait will occur.
1115 *
1116 * Returns 0 if the wait was successful ie. the last batch referencing the
1117 * object has completed within the allotted time. Otherwise some negative return
1118 * value describes the error. Of particular interest is -ETIME when the wait has
1119 * failed to yield the desired result.
1120 *
1121 * Similar to iris_bo_wait_rendering except a timeout parameter allows
1122 * the operation to give up after a certain amount of time. Another subtle
1123 * difference is the internal locking semantics are different (this variant does
1124 * not hold the lock for the duration of the wait). This makes the wait subject
1125 * to a larger userspace race window.
1126 *
1127 * The implementation shall wait until the object is no longer actively
1128 * referenced within a batch buffer at the time of the call. The wait will
1129 * not guarantee that the buffer is re-issued via another thread, or an flinked
1130 * handle. Userspace must make sure this race does not occur if such precision
1131 * is important.
1132 *
1133 * Note that some kernels have broken the inifite wait for negative values
1134 * promise, upgrade to latest stable kernels if this is the case.
1135 */
1136 int
1137 iris_bo_wait(struct iris_bo *bo, int64_t timeout_ns)
1138 {
1139 struct iris_bufmgr *bufmgr = bo->bufmgr;
1140
1141 /* If we know it's idle, don't bother with the kernel round trip */
1142 if (bo->idle && !bo->external)
1143 return 0;
1144
1145 struct drm_i915_gem_wait wait = {
1146 .bo_handle = bo->gem_handle,
1147 .timeout_ns = timeout_ns,
1148 };
1149 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1150 if (ret != 0)
1151 return -errno;
1152
1153 bo->idle = true;
1154
1155 return ret;
1156 }
1157
1158 void
1159 iris_bufmgr_destroy(struct iris_bufmgr *bufmgr)
1160 {
1161 mtx_destroy(&bufmgr->lock);
1162
1163 /* Free any cached buffer objects we were going to reuse */
1164 for (int i = 0; i < bufmgr->num_buckets; i++) {
1165 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1166
1167 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1168 list_del(&bo->head);
1169
1170 bo_free(bo);
1171 }
1172 }
1173
1174 _mesa_hash_table_destroy(bufmgr->name_table, NULL);
1175 _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
1176
1177 for (int z = 0; z < IRIS_MEMZONE_COUNT; z++) {
1178 if (z != IRIS_MEMZONE_BINDER)
1179 util_vma_heap_finish(&bufmgr->vma_allocator[z]);
1180 }
1181
1182 free(bufmgr);
1183 }
1184
1185 static int
1186 bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode,
1187 uint32_t stride)
1188 {
1189 struct iris_bufmgr *bufmgr = bo->bufmgr;
1190 struct drm_i915_gem_set_tiling set_tiling;
1191 int ret;
1192
1193 if (bo->global_name == 0 &&
1194 tiling_mode == bo->tiling_mode && stride == bo->stride)
1195 return 0;
1196
1197 memset(&set_tiling, 0, sizeof(set_tiling));
1198 do {
1199 /* set_tiling is slightly broken and overwrites the
1200 * input on the error path, so we have to open code
1201 * drm_ioctl.
1202 */
1203 set_tiling.handle = bo->gem_handle;
1204 set_tiling.tiling_mode = tiling_mode;
1205 set_tiling.stride = stride;
1206
1207 ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
1208 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
1209 if (ret == -1)
1210 return -errno;
1211
1212 bo->tiling_mode = set_tiling.tiling_mode;
1213 bo->swizzle_mode = set_tiling.swizzle_mode;
1214 bo->stride = set_tiling.stride;
1215 return 0;
1216 }
1217
1218 int
1219 iris_bo_get_tiling(struct iris_bo *bo, uint32_t *tiling_mode,
1220 uint32_t *swizzle_mode)
1221 {
1222 *tiling_mode = bo->tiling_mode;
1223 *swizzle_mode = bo->swizzle_mode;
1224 return 0;
1225 }
1226
1227 struct iris_bo *
1228 iris_bo_import_dmabuf(struct iris_bufmgr *bufmgr, int prime_fd)
1229 {
1230 uint32_t handle;
1231 struct iris_bo *bo;
1232
1233 mtx_lock(&bufmgr->lock);
1234 int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1235 if (ret) {
1236 DBG("import_dmabuf: failed to obtain handle from fd: %s\n",
1237 strerror(errno));
1238 mtx_unlock(&bufmgr->lock);
1239 return NULL;
1240 }
1241
1242 /*
1243 * See if the kernel has already returned this buffer to us. Just as
1244 * for named buffers, we must not create two bo's pointing at the same
1245 * kernel object
1246 */
1247 bo = hash_find_bo(bufmgr->handle_table, handle);
1248 if (bo) {
1249 iris_bo_reference(bo);
1250 goto out;
1251 }
1252
1253 bo = bo_calloc();
1254 if (!bo)
1255 goto out;
1256
1257 p_atomic_set(&bo->refcount, 1);
1258
1259 /* Determine size of bo. The fd-to-handle ioctl really should
1260 * return the size, but it doesn't. If we have kernel 3.12 or
1261 * later, we can lseek on the prime fd to get the size. Older
1262 * kernels will just fail, in which case we fall back to the
1263 * provided (estimated or guess size). */
1264 ret = lseek(prime_fd, 0, SEEK_END);
1265 if (ret != -1)
1266 bo->size = ret;
1267
1268 bo->bufmgr = bufmgr;
1269
1270 bo->gem_handle = handle;
1271 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1272
1273 bo->name = "prime";
1274 bo->reusable = false;
1275 bo->external = true;
1276 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1277 bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
1278
1279 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
1280 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
1281 goto err;
1282
1283 bo->tiling_mode = get_tiling.tiling_mode;
1284 bo->swizzle_mode = get_tiling.swizzle_mode;
1285 /* XXX stride is unknown */
1286
1287 out:
1288 mtx_unlock(&bufmgr->lock);
1289 return bo;
1290
1291 err:
1292 bo_free(bo);
1293 mtx_unlock(&bufmgr->lock);
1294 return NULL;
1295 }
1296
1297 static void
1298 iris_bo_make_external_locked(struct iris_bo *bo)
1299 {
1300 if (!bo->external) {
1301 _mesa_hash_table_insert(bo->bufmgr->handle_table, &bo->gem_handle, bo);
1302 bo->external = true;
1303 }
1304 }
1305
1306 static void
1307 iris_bo_make_external(struct iris_bo *bo)
1308 {
1309 struct iris_bufmgr *bufmgr = bo->bufmgr;
1310
1311 if (bo->external)
1312 return;
1313
1314 mtx_lock(&bufmgr->lock);
1315 iris_bo_make_external_locked(bo);
1316 mtx_unlock(&bufmgr->lock);
1317 }
1318
1319 int
1320 iris_bo_export_dmabuf(struct iris_bo *bo, int *prime_fd)
1321 {
1322 struct iris_bufmgr *bufmgr = bo->bufmgr;
1323
1324 iris_bo_make_external(bo);
1325
1326 if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1327 DRM_CLOEXEC, prime_fd) != 0)
1328 return -errno;
1329
1330 bo->reusable = false;
1331
1332 return 0;
1333 }
1334
1335 uint32_t
1336 iris_bo_export_gem_handle(struct iris_bo *bo)
1337 {
1338 iris_bo_make_external(bo);
1339
1340 return bo->gem_handle;
1341 }
1342
1343 int
1344 iris_bo_flink(struct iris_bo *bo, uint32_t *name)
1345 {
1346 struct iris_bufmgr *bufmgr = bo->bufmgr;
1347
1348 if (!bo->global_name) {
1349 struct drm_gem_flink flink = { .handle = bo->gem_handle };
1350
1351 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
1352 return -errno;
1353
1354 mtx_lock(&bufmgr->lock);
1355 if (!bo->global_name) {
1356 iris_bo_make_external_locked(bo);
1357 bo->global_name = flink.name;
1358 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
1359 }
1360 mtx_unlock(&bufmgr->lock);
1361
1362 bo->reusable = false;
1363 }
1364
1365 *name = bo->global_name;
1366 return 0;
1367 }
1368
1369 static void
1370 add_bucket(struct iris_bufmgr *bufmgr, int size)
1371 {
1372 unsigned int i = bufmgr->num_buckets;
1373
1374 assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
1375
1376 list_inithead(&bufmgr->cache_bucket[i].head);
1377 bufmgr->cache_bucket[i].size = size;
1378 bufmgr->num_buckets++;
1379
1380 assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]);
1381 assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]);
1382 assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]);
1383 }
1384
1385 static void
1386 init_cache_buckets(struct iris_bufmgr *bufmgr)
1387 {
1388 uint64_t size, cache_max_size = 64 * 1024 * 1024;
1389
1390 /* OK, so power of two buckets was too wasteful of memory.
1391 * Give 3 other sizes between each power of two, to hopefully
1392 * cover things accurately enough. (The alternative is
1393 * probably to just go for exact matching of sizes, and assume
1394 * that for things like composited window resize the tiled
1395 * width/height alignment and rounding of sizes to pages will
1396 * get us useful cache hit rates anyway)
1397 */
1398 add_bucket(bufmgr, PAGE_SIZE);
1399 add_bucket(bufmgr, PAGE_SIZE * 2);
1400 add_bucket(bufmgr, PAGE_SIZE * 3);
1401
1402 /* Initialize the linked lists for BO reuse cache. */
1403 for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) {
1404 add_bucket(bufmgr, size);
1405
1406 add_bucket(bufmgr, size + size * 1 / 4);
1407 add_bucket(bufmgr, size + size * 2 / 4);
1408 add_bucket(bufmgr, size + size * 3 / 4);
1409 }
1410 }
1411
1412 uint32_t
1413 iris_create_hw_context(struct iris_bufmgr *bufmgr)
1414 {
1415 struct drm_i915_gem_context_create create = { };
1416 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
1417 if (ret != 0) {
1418 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
1419 return 0;
1420 }
1421
1422 /* Upon declaring a GPU hang, the kernel will zap the guilty context
1423 * back to the default logical HW state and attempt to continue on to
1424 * our next submitted batchbuffer. However, our render batches assume
1425 * the previous GPU state is preserved, and only emit commands needed
1426 * to incrementally change that state. In particular, we inherit the
1427 * STATE_BASE_ADDRESS and PIPELINE_SELECT settings, which are critical.
1428 * With default base addresses, our next batches will almost certainly
1429 * cause more GPU hangs, leading to repeated hangs until we're banned
1430 * or the machine is dead.
1431 *
1432 * Here we tell the kernel not to attempt to recover our context but
1433 * immediately (on the next batchbuffer submission) report that the
1434 * context is lost, and we will do the recovery ourselves. Ideally,
1435 * we'll have two lost batches instead of a continual stream of hangs.
1436 */
1437 struct drm_i915_gem_context_param p = {
1438 .ctx_id = create.ctx_id,
1439 .param = I915_CONTEXT_PARAM_RECOVERABLE,
1440 .value = false,
1441 };
1442 drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p);
1443
1444 return create.ctx_id;
1445 }
1446
1447 static int
1448 iris_hw_context_get_priority(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
1449 {
1450 struct drm_i915_gem_context_param p = {
1451 .ctx_id = ctx_id,
1452 .param = I915_CONTEXT_PARAM_PRIORITY,
1453 };
1454 drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p);
1455 return p.value; /* on error, return 0 i.e. default priority */
1456 }
1457
1458 int
1459 iris_hw_context_set_priority(struct iris_bufmgr *bufmgr,
1460 uint32_t ctx_id,
1461 int priority)
1462 {
1463 struct drm_i915_gem_context_param p = {
1464 .ctx_id = ctx_id,
1465 .param = I915_CONTEXT_PARAM_PRIORITY,
1466 .value = priority,
1467 };
1468 int err;
1469
1470 err = 0;
1471 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p))
1472 err = -errno;
1473
1474 return err;
1475 }
1476
1477 uint32_t
1478 iris_clone_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
1479 {
1480 uint32_t new_ctx = iris_create_hw_context(bufmgr);
1481
1482 if (new_ctx) {
1483 int priority = iris_hw_context_get_priority(bufmgr, ctx_id);
1484 iris_hw_context_set_priority(bufmgr, new_ctx, priority);
1485 }
1486
1487 return new_ctx;
1488 }
1489
1490 void
1491 iris_destroy_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
1492 {
1493 struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id };
1494
1495 if (ctx_id != 0 &&
1496 drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
1497 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
1498 strerror(errno));
1499 }
1500 }
1501
1502 int
1503 iris_reg_read(struct iris_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
1504 {
1505 struct drm_i915_reg_read reg_read = { .offset = offset };
1506 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
1507
1508 *result = reg_read.val;
1509 return ret;
1510 }
1511
1512 static uint64_t
1513 iris_gtt_size(int fd)
1514 {
1515 /* We use the default (already allocated) context to determine
1516 * the default configuration of the virtual address space.
1517 */
1518 struct drm_i915_gem_context_param p = {
1519 .param = I915_CONTEXT_PARAM_GTT_SIZE,
1520 };
1521 if (!drm_ioctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p))
1522 return p.value;
1523
1524 return 0;
1525 }
1526
1527 /**
1528 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
1529 * and manage map buffer objections.
1530 *
1531 * \param fd File descriptor of the opened DRM device.
1532 */
1533 struct iris_bufmgr *
1534 iris_bufmgr_init(struct gen_device_info *devinfo, int fd)
1535 {
1536 uint64_t gtt_size = iris_gtt_size(fd);
1537 if (gtt_size <= IRIS_MEMZONE_OTHER_START)
1538 return NULL;
1539
1540 struct iris_bufmgr *bufmgr = calloc(1, sizeof(*bufmgr));
1541 if (bufmgr == NULL)
1542 return NULL;
1543
1544 /* Handles to buffer objects belong to the device fd and are not
1545 * reference counted by the kernel. If the same fd is used by
1546 * multiple parties (threads sharing the same screen bufmgr, or
1547 * even worse the same device fd passed to multiple libraries)
1548 * ownership of those handles is shared by those independent parties.
1549 *
1550 * Don't do this! Ensure that each library/bufmgr has its own device
1551 * fd so that its namespace does not clash with another.
1552 */
1553 bufmgr->fd = fd;
1554
1555 if (mtx_init(&bufmgr->lock, mtx_plain) != 0) {
1556 free(bufmgr);
1557 return NULL;
1558 }
1559
1560 bufmgr->has_llc = devinfo->has_llc;
1561
1562 STATIC_ASSERT(IRIS_MEMZONE_SHADER_START == 0ull);
1563 const uint64_t _4GB = 1ull << 32;
1564
1565 /* The STATE_BASE_ADDRESS size field can only hold 1 page shy of 4GB */
1566 const uint64_t _4GB_minus_1 = _4GB - PAGE_SIZE;
1567
1568 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SHADER],
1569 PAGE_SIZE, _4GB_minus_1 - PAGE_SIZE);
1570 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SURFACE],
1571 IRIS_MEMZONE_SURFACE_START,
1572 _4GB_minus_1 - IRIS_MAX_BINDERS * IRIS_BINDER_SIZE);
1573 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_DYNAMIC],
1574 IRIS_MEMZONE_DYNAMIC_START + IRIS_BORDER_COLOR_POOL_SIZE,
1575 _4GB_minus_1 - IRIS_BORDER_COLOR_POOL_SIZE);
1576
1577 /* Leave the last 4GB out of the high vma range, so that no state
1578 * base address + size can overflow 48 bits.
1579 */
1580 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_OTHER],
1581 IRIS_MEMZONE_OTHER_START,
1582 (gtt_size - _4GB) - IRIS_MEMZONE_OTHER_START);
1583
1584 // XXX: driconf
1585 bufmgr->bo_reuse = env_var_as_boolean("bo_reuse", true);
1586
1587 init_cache_buckets(bufmgr);
1588
1589 bufmgr->name_table =
1590 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1591 bufmgr->handle_table =
1592 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1593
1594 return bufmgr;
1595 }