baedf5f0bca079f1c2967ae67a10926d6f07a15c
[mesa.git] / src / gallium / drivers / iris / iris_bufmgr.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_bufmgr.c
25 *
26 * The Iris buffer manager.
27 *
28 * XXX: write better comments
29 * - BOs
30 * - Explain BO cache
31 * - main interface to GEM in the kernel
32 */
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <xf86drm.h>
39 #include <util/u_atomic.h>
40 #include <fcntl.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <assert.h>
46 #include <sys/ioctl.h>
47 #include <sys/mman.h>
48 #include <sys/stat.h>
49 #include <sys/types.h>
50 #include <stdbool.h>
51 #include <time.h>
52 #include <unistd.h>
53
54 #include "errno.h"
55 #include "common/gen_aux_map.h"
56 #include "common/gen_clflush.h"
57 #include "dev/gen_debug.h"
58 #include "common/gen_gem.h"
59 #include "dev/gen_device_info.h"
60 #include "main/macros.h"
61 #include "os/os_mman.h"
62 #include "util/debug.h"
63 #include "util/macros.h"
64 #include "util/hash_table.h"
65 #include "util/list.h"
66 #include "util/u_dynarray.h"
67 #include "util/vma.h"
68 #include "iris_bufmgr.h"
69 #include "iris_context.h"
70 #include "string.h"
71
72 #include "drm-uapi/i915_drm.h"
73
74 #ifdef HAVE_VALGRIND
75 #include <valgrind.h>
76 #include <memcheck.h>
77 #define VG(x) x
78 #else
79 #define VG(x)
80 #endif
81
82 /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
83 * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
84 * leaked. All because it does not call VG(cli_free) from its
85 * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
86 * and allocation, we mark it available for use upon mmapping and remove
87 * it upon unmapping.
88 */
89 #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
90 #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
91
92 #define PAGE_SIZE 4096
93
94 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
95
96 static inline int
97 atomic_add_unless(int *v, int add, int unless)
98 {
99 int c, old;
100 c = p_atomic_read(v);
101 while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
102 c = old;
103 return c == unless;
104 }
105
106 static const char *
107 memzone_name(enum iris_memory_zone memzone)
108 {
109 const char *names[] = {
110 [IRIS_MEMZONE_SHADER] = "shader",
111 [IRIS_MEMZONE_BINDER] = "binder",
112 [IRIS_MEMZONE_SURFACE] = "surface",
113 [IRIS_MEMZONE_DYNAMIC] = "dynamic",
114 [IRIS_MEMZONE_OTHER] = "other",
115 [IRIS_MEMZONE_BORDER_COLOR_POOL] = "bordercolor",
116 };
117 assert(memzone < ARRAY_SIZE(names));
118 return names[memzone];
119 }
120
121 struct bo_cache_bucket {
122 /** List of cached BOs. */
123 struct list_head head;
124
125 /** Size of this bucket, in bytes. */
126 uint64_t size;
127 };
128
129 struct iris_bufmgr {
130 /**
131 * List into the list of bufmgr.
132 */
133 struct list_head link;
134
135 uint32_t refcount;
136
137 int fd;
138
139 mtx_t lock;
140
141 /** Array of lists of cached gem objects of power-of-two sizes */
142 struct bo_cache_bucket cache_bucket[14 * 4];
143 int num_buckets;
144 time_t time;
145
146 struct hash_table *name_table;
147 struct hash_table *handle_table;
148
149 /**
150 * List of BOs which we've effectively freed, but are hanging on to
151 * until they're idle before closing and returning the VMA.
152 */
153 struct list_head zombie_list;
154
155 struct util_vma_heap vma_allocator[IRIS_MEMZONE_COUNT];
156
157 bool has_llc:1;
158 bool bo_reuse:1;
159
160 struct gen_aux_map_context *aux_map_ctx;
161 };
162
163 static mtx_t global_bufmgr_list_mutex = _MTX_INITIALIZER_NP;
164 static struct list_head global_bufmgr_list = {
165 .next = &global_bufmgr_list,
166 .prev = &global_bufmgr_list,
167 };
168
169 static int bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode,
170 uint32_t stride);
171
172 static void bo_free(struct iris_bo *bo);
173
174 static struct iris_bo *
175 find_and_ref_external_bo(struct hash_table *ht, unsigned int key)
176 {
177 struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
178 struct iris_bo *bo = entry ? entry->data : NULL;
179
180 if (bo) {
181 assert(bo->external);
182 assert(!bo->reusable);
183
184 /* Being non-reusable, the BO cannot be in the cache lists, but it
185 * may be in the zombie list if it had reached zero references, but
186 * we hadn't yet closed it...and then reimported the same BO. If it
187 * is, then remove it since it's now been resurrected.
188 */
189 if (bo->head.prev || bo->head.next)
190 list_del(&bo->head);
191
192 iris_bo_reference(bo);
193 }
194
195 return bo;
196 }
197
198 /**
199 * This function finds the correct bucket fit for the input size.
200 * The function works with O(1) complexity when the requested size
201 * was queried instead of iterating the size through all the buckets.
202 */
203 static struct bo_cache_bucket *
204 bucket_for_size(struct iris_bufmgr *bufmgr, uint64_t size)
205 {
206 /* Calculating the pages and rounding up to the page size. */
207 const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
208
209 /* Row Bucket sizes clz((x-1) | 3) Row Column
210 * in pages stride size
211 * 0: 1 2 3 4 -> 30 30 30 30 4 1
212 * 1: 5 6 7 8 -> 29 29 29 29 4 1
213 * 2: 10 12 14 16 -> 28 28 28 28 8 2
214 * 3: 20 24 28 32 -> 27 27 27 27 16 4
215 */
216 const unsigned row = 30 - __builtin_clz((pages - 1) | 3);
217 const unsigned row_max_pages = 4 << row;
218
219 /* The '& ~2' is the special case for row 1. In row 1, max pages /
220 * 2 is 2, but the previous row maximum is zero (because there is
221 * no previous row). All row maximum sizes are power of 2, so that
222 * is the only case where that bit will be set.
223 */
224 const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2;
225 int col_size_log2 = row - 1;
226 col_size_log2 += (col_size_log2 < 0);
227
228 const unsigned col = (pages - prev_row_max_pages +
229 ((1 << col_size_log2) - 1)) >> col_size_log2;
230
231 /* Calculating the index based on the row and column. */
232 const unsigned index = (row * 4) + (col - 1);
233
234 return (index < bufmgr->num_buckets) ?
235 &bufmgr->cache_bucket[index] : NULL;
236 }
237
238 enum iris_memory_zone
239 iris_memzone_for_address(uint64_t address)
240 {
241 STATIC_ASSERT(IRIS_MEMZONE_OTHER_START > IRIS_MEMZONE_DYNAMIC_START);
242 STATIC_ASSERT(IRIS_MEMZONE_DYNAMIC_START > IRIS_MEMZONE_SURFACE_START);
243 STATIC_ASSERT(IRIS_MEMZONE_SURFACE_START > IRIS_MEMZONE_BINDER_START);
244 STATIC_ASSERT(IRIS_MEMZONE_BINDER_START > IRIS_MEMZONE_SHADER_START);
245 STATIC_ASSERT(IRIS_BORDER_COLOR_POOL_ADDRESS == IRIS_MEMZONE_DYNAMIC_START);
246
247 if (address >= IRIS_MEMZONE_OTHER_START)
248 return IRIS_MEMZONE_OTHER;
249
250 if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
251 return IRIS_MEMZONE_BORDER_COLOR_POOL;
252
253 if (address > IRIS_MEMZONE_DYNAMIC_START)
254 return IRIS_MEMZONE_DYNAMIC;
255
256 if (address >= IRIS_MEMZONE_SURFACE_START)
257 return IRIS_MEMZONE_SURFACE;
258
259 if (address >= IRIS_MEMZONE_BINDER_START)
260 return IRIS_MEMZONE_BINDER;
261
262 return IRIS_MEMZONE_SHADER;
263 }
264
265 /**
266 * Allocate a section of virtual memory for a buffer, assigning an address.
267 *
268 * This uses either the bucket allocator for the given size, or the large
269 * object allocator (util_vma).
270 */
271 static uint64_t
272 vma_alloc(struct iris_bufmgr *bufmgr,
273 enum iris_memory_zone memzone,
274 uint64_t size,
275 uint64_t alignment)
276 {
277 /* Force alignment to be some number of pages */
278 alignment = ALIGN(alignment, PAGE_SIZE);
279
280 if (memzone == IRIS_MEMZONE_BORDER_COLOR_POOL)
281 return IRIS_BORDER_COLOR_POOL_ADDRESS;
282
283 /* The binder handles its own allocations. Return non-zero here. */
284 if (memzone == IRIS_MEMZONE_BINDER)
285 return IRIS_MEMZONE_BINDER_START;
286
287 uint64_t addr =
288 util_vma_heap_alloc(&bufmgr->vma_allocator[memzone], size, alignment);
289
290 assert((addr >> 48ull) == 0);
291 assert((addr % alignment) == 0);
292
293 return gen_canonical_address(addr);
294 }
295
296 static void
297 vma_free(struct iris_bufmgr *bufmgr,
298 uint64_t address,
299 uint64_t size)
300 {
301 if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
302 return;
303
304 /* Un-canonicalize the address. */
305 address = gen_48b_address(address);
306
307 if (address == 0ull)
308 return;
309
310 enum iris_memory_zone memzone = iris_memzone_for_address(address);
311
312 /* The binder handles its own allocations. */
313 if (memzone == IRIS_MEMZONE_BINDER)
314 return;
315
316 util_vma_heap_free(&bufmgr->vma_allocator[memzone], address, size);
317 }
318
319 int
320 iris_bo_busy(struct iris_bo *bo)
321 {
322 struct iris_bufmgr *bufmgr = bo->bufmgr;
323 struct drm_i915_gem_busy busy = { .handle = bo->gem_handle };
324
325 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
326 if (ret == 0) {
327 bo->idle = !busy.busy;
328 return busy.busy;
329 }
330 return false;
331 }
332
333 int
334 iris_bo_madvise(struct iris_bo *bo, int state)
335 {
336 struct drm_i915_gem_madvise madv = {
337 .handle = bo->gem_handle,
338 .madv = state,
339 .retained = 1,
340 };
341
342 gen_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
343
344 return madv.retained;
345 }
346
347 static struct iris_bo *
348 bo_calloc(void)
349 {
350 struct iris_bo *bo = calloc(1, sizeof(*bo));
351 if (bo) {
352 bo->hash = _mesa_hash_pointer(bo);
353 }
354 return bo;
355 }
356
357 static struct iris_bo *
358 alloc_bo_from_cache(struct iris_bufmgr *bufmgr,
359 struct bo_cache_bucket *bucket,
360 uint32_t alignment,
361 enum iris_memory_zone memzone,
362 unsigned flags,
363 bool match_zone)
364 {
365 if (!bucket)
366 return NULL;
367
368 struct iris_bo *bo = NULL;
369
370 list_for_each_entry_safe(struct iris_bo, cur, &bucket->head, head) {
371 /* Try a little harder to find one that's already in the right memzone */
372 if (match_zone && memzone != iris_memzone_for_address(cur->gtt_offset))
373 continue;
374
375 /* If the last BO in the cache is busy, there are no idle BOs. Bail,
376 * either falling back to a non-matching memzone, or if that fails,
377 * allocating a fresh buffer.
378 */
379 if (iris_bo_busy(cur))
380 return NULL;
381
382 list_del(&cur->head);
383
384 /* Tell the kernel we need this BO. If it still exists, we're done! */
385 if (iris_bo_madvise(cur, I915_MADV_WILLNEED)) {
386 bo = cur;
387 break;
388 }
389
390 /* This BO was purged, throw it out and keep looking. */
391 bo_free(cur);
392 }
393
394 if (!bo)
395 return NULL;
396
397 if (bo->aux_map_address) {
398 /* This buffer was associated with an aux-buffer range. We make sure
399 * that buffers are not reused from the cache while the buffer is (busy)
400 * being used by an executing batch. Since we are here, the buffer is no
401 * longer being used by a batch and the buffer was deleted (in order to
402 * end up in the cache). Therefore its old aux-buffer range can be
403 * removed from the aux-map.
404 */
405 if (bo->bufmgr->aux_map_ctx)
406 gen_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->gtt_offset,
407 bo->size);
408 bo->aux_map_address = 0;
409 }
410
411 /* If the cached BO isn't in the right memory zone, or the alignment
412 * isn't sufficient, free the old memory and assign it a new address.
413 */
414 if (memzone != iris_memzone_for_address(bo->gtt_offset) ||
415 bo->gtt_offset % alignment != 0) {
416 vma_free(bufmgr, bo->gtt_offset, bo->size);
417 bo->gtt_offset = 0ull;
418 }
419
420 /* Zero the contents if necessary. If this fails, fall back to
421 * allocating a fresh BO, which will always be zeroed by the kernel.
422 */
423 if (flags & BO_ALLOC_ZEROED) {
424 void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
425 if (map) {
426 memset(map, 0, bo->size);
427 } else {
428 bo_free(bo);
429 return NULL;
430 }
431 }
432
433 return bo;
434 }
435
436 static struct iris_bo *
437 alloc_fresh_bo(struct iris_bufmgr *bufmgr, uint64_t bo_size)
438 {
439 struct iris_bo *bo = bo_calloc();
440 if (!bo)
441 return NULL;
442
443 struct drm_i915_gem_create create = { .size = bo_size };
444
445 /* All new BOs we get from the kernel are zeroed, so we don't need to
446 * worry about that here.
447 */
448 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create) != 0) {
449 free(bo);
450 return NULL;
451 }
452
453 bo->gem_handle = create.handle;
454 bo->bufmgr = bufmgr;
455 bo->size = bo_size;
456 bo->idle = true;
457 bo->tiling_mode = I915_TILING_NONE;
458 bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
459 bo->stride = 0;
460
461 /* Calling set_domain() will allocate pages for the BO outside of the
462 * struct mutex lock in the kernel, which is more efficient than waiting
463 * to create them during the first execbuf that uses the BO.
464 */
465 struct drm_i915_gem_set_domain sd = {
466 .handle = bo->gem_handle,
467 .read_domains = I915_GEM_DOMAIN_CPU,
468 .write_domain = 0,
469 };
470
471 if (gen_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0) {
472 bo_free(bo);
473 return NULL;
474 }
475
476 return bo;
477 }
478
479 static struct iris_bo *
480 bo_alloc_internal(struct iris_bufmgr *bufmgr,
481 const char *name,
482 uint64_t size,
483 uint32_t alignment,
484 enum iris_memory_zone memzone,
485 unsigned flags,
486 uint32_t tiling_mode,
487 uint32_t stride)
488 {
489 struct iris_bo *bo;
490 unsigned int page_size = getpagesize();
491 struct bo_cache_bucket *bucket = bucket_for_size(bufmgr, size);
492
493 /* Round the size up to the bucket size, or if we don't have caching
494 * at this size, a multiple of the page size.
495 */
496 uint64_t bo_size =
497 bucket ? bucket->size : MAX2(ALIGN(size, page_size), page_size);
498
499 mtx_lock(&bufmgr->lock);
500
501 /* Get a buffer out of the cache if available. First, we try to find
502 * one with a matching memory zone so we can avoid reallocating VMA.
503 */
504 bo = alloc_bo_from_cache(bufmgr, bucket, alignment, memzone, flags, true);
505
506 /* If that fails, we try for any cached BO, without matching memzone. */
507 if (!bo) {
508 bo = alloc_bo_from_cache(bufmgr, bucket, alignment, memzone, flags,
509 false);
510 }
511
512 mtx_unlock(&bufmgr->lock);
513
514 if (!bo) {
515 bo = alloc_fresh_bo(bufmgr, bo_size);
516 if (!bo)
517 return NULL;
518 }
519
520 if (bo->gtt_offset == 0ull) {
521 mtx_lock(&bufmgr->lock);
522 bo->gtt_offset = vma_alloc(bufmgr, memzone, bo->size, alignment);
523 mtx_unlock(&bufmgr->lock);
524
525 if (bo->gtt_offset == 0ull)
526 goto err_free;
527 }
528
529 if (bo_set_tiling_internal(bo, tiling_mode, stride))
530 goto err_free;
531
532 bo->name = name;
533 p_atomic_set(&bo->refcount, 1);
534 bo->reusable = bucket && bufmgr->bo_reuse;
535 bo->cache_coherent = bufmgr->has_llc;
536 bo->index = -1;
537 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
538
539 /* By default, capture all driver-internal buffers like shader kernels,
540 * surface states, dynamic states, border colors, and so on.
541 */
542 if (memzone < IRIS_MEMZONE_OTHER)
543 bo->kflags |= EXEC_OBJECT_CAPTURE;
544
545 if ((flags & BO_ALLOC_COHERENT) && !bo->cache_coherent) {
546 struct drm_i915_gem_caching arg = {
547 .handle = bo->gem_handle,
548 .caching = 1,
549 };
550 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_CACHING, &arg) == 0) {
551 bo->cache_coherent = true;
552 bo->reusable = false;
553 }
554 }
555
556 DBG("bo_create: buf %d (%s) (%s memzone) %llub\n", bo->gem_handle,
557 bo->name, memzone_name(memzone), (unsigned long long) size);
558
559 return bo;
560
561 err_free:
562 bo_free(bo);
563 return NULL;
564 }
565
566 struct iris_bo *
567 iris_bo_alloc(struct iris_bufmgr *bufmgr,
568 const char *name,
569 uint64_t size,
570 enum iris_memory_zone memzone)
571 {
572 return bo_alloc_internal(bufmgr, name, size, 1, memzone,
573 0, I915_TILING_NONE, 0);
574 }
575
576 struct iris_bo *
577 iris_bo_alloc_tiled(struct iris_bufmgr *bufmgr, const char *name,
578 uint64_t size, uint32_t alignment,
579 enum iris_memory_zone memzone,
580 uint32_t tiling_mode, uint32_t pitch, unsigned flags)
581 {
582 return bo_alloc_internal(bufmgr, name, size, alignment, memzone,
583 flags, tiling_mode, pitch);
584 }
585
586 struct iris_bo *
587 iris_bo_create_userptr(struct iris_bufmgr *bufmgr, const char *name,
588 void *ptr, size_t size,
589 enum iris_memory_zone memzone)
590 {
591 struct iris_bo *bo;
592
593 bo = bo_calloc();
594 if (!bo)
595 return NULL;
596
597 struct drm_i915_gem_userptr arg = {
598 .user_ptr = (uintptr_t)ptr,
599 .user_size = size,
600 };
601 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_USERPTR, &arg))
602 goto err_free;
603 bo->gem_handle = arg.handle;
604
605 /* Check the buffer for validity before we try and use it in a batch */
606 struct drm_i915_gem_set_domain sd = {
607 .handle = bo->gem_handle,
608 .read_domains = I915_GEM_DOMAIN_CPU,
609 };
610 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd))
611 goto err_close;
612
613 bo->name = name;
614 bo->size = size;
615 bo->map_cpu = ptr;
616
617 bo->bufmgr = bufmgr;
618 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
619
620 mtx_lock(&bufmgr->lock);
621 bo->gtt_offset = vma_alloc(bufmgr, memzone, size, 1);
622 mtx_unlock(&bufmgr->lock);
623
624 if (bo->gtt_offset == 0ull)
625 goto err_close;
626
627 p_atomic_set(&bo->refcount, 1);
628 bo->userptr = true;
629 bo->cache_coherent = true;
630 bo->index = -1;
631 bo->idle = true;
632
633 return bo;
634
635 err_close:
636 gen_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &bo->gem_handle);
637 err_free:
638 free(bo);
639 return NULL;
640 }
641
642 /**
643 * Returns a iris_bo wrapping the given buffer object handle.
644 *
645 * This can be used when one application needs to pass a buffer object
646 * to another.
647 */
648 struct iris_bo *
649 iris_bo_gem_create_from_name(struct iris_bufmgr *bufmgr,
650 const char *name, unsigned int handle)
651 {
652 struct iris_bo *bo;
653
654 /* At the moment most applications only have a few named bo.
655 * For instance, in a DRI client only the render buffers passed
656 * between X and the client are named. And since X returns the
657 * alternating names for the front/back buffer a linear search
658 * provides a sufficiently fast match.
659 */
660 mtx_lock(&bufmgr->lock);
661 bo = find_and_ref_external_bo(bufmgr->name_table, handle);
662 if (bo)
663 goto out;
664
665 struct drm_gem_open open_arg = { .name = handle };
666 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
667 if (ret != 0) {
668 DBG("Couldn't reference %s handle 0x%08x: %s\n",
669 name, handle, strerror(errno));
670 bo = NULL;
671 goto out;
672 }
673 /* Now see if someone has used a prime handle to get this
674 * object from the kernel before by looking through the list
675 * again for a matching gem_handle
676 */
677 bo = find_and_ref_external_bo(bufmgr->handle_table, open_arg.handle);
678 if (bo)
679 goto out;
680
681 bo = bo_calloc();
682 if (!bo)
683 goto out;
684
685 p_atomic_set(&bo->refcount, 1);
686
687 bo->size = open_arg.size;
688 bo->bufmgr = bufmgr;
689 bo->gem_handle = open_arg.handle;
690 bo->name = name;
691 bo->global_name = handle;
692 bo->reusable = false;
693 bo->external = true;
694 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
695 bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
696
697 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
698 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
699
700 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
701 ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
702 if (ret != 0)
703 goto err_unref;
704
705 bo->tiling_mode = get_tiling.tiling_mode;
706 bo->swizzle_mode = get_tiling.swizzle_mode;
707 /* XXX stride is unknown */
708 DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
709
710 out:
711 mtx_unlock(&bufmgr->lock);
712 return bo;
713
714 err_unref:
715 bo_free(bo);
716 mtx_unlock(&bufmgr->lock);
717 return NULL;
718 }
719
720 static void
721 bo_close(struct iris_bo *bo)
722 {
723 struct iris_bufmgr *bufmgr = bo->bufmgr;
724
725 if (bo->external) {
726 struct hash_entry *entry;
727
728 if (bo->global_name) {
729 entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
730 _mesa_hash_table_remove(bufmgr->name_table, entry);
731 }
732
733 entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
734 _mesa_hash_table_remove(bufmgr->handle_table, entry);
735 }
736
737 /* Close this object */
738 struct drm_gem_close close = { .handle = bo->gem_handle };
739 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
740 if (ret != 0) {
741 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
742 bo->gem_handle, bo->name, strerror(errno));
743 }
744
745 if (bo->aux_map_address && bo->bufmgr->aux_map_ctx) {
746 gen_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->gtt_offset,
747 bo->size);
748 }
749
750 /* Return the VMA for reuse */
751 vma_free(bo->bufmgr, bo->gtt_offset, bo->size);
752
753 free(bo);
754 }
755
756 static void
757 bo_free(struct iris_bo *bo)
758 {
759 struct iris_bufmgr *bufmgr = bo->bufmgr;
760
761 if (bo->map_cpu && !bo->userptr) {
762 VG_NOACCESS(bo->map_cpu, bo->size);
763 os_munmap(bo->map_cpu, bo->size);
764 }
765 if (bo->map_wc) {
766 VG_NOACCESS(bo->map_wc, bo->size);
767 os_munmap(bo->map_wc, bo->size);
768 }
769 if (bo->map_gtt) {
770 VG_NOACCESS(bo->map_gtt, bo->size);
771 os_munmap(bo->map_gtt, bo->size);
772 }
773
774 if (bo->idle) {
775 bo_close(bo);
776 } else {
777 /* Defer closing the GEM BO and returning the VMA for reuse until the
778 * BO is idle. Just move it to the dead list for now.
779 */
780 list_addtail(&bo->head, &bufmgr->zombie_list);
781 }
782 }
783
784 /** Frees all cached buffers significantly older than @time. */
785 static void
786 cleanup_bo_cache(struct iris_bufmgr *bufmgr, time_t time)
787 {
788 int i;
789
790 if (bufmgr->time == time)
791 return;
792
793 for (i = 0; i < bufmgr->num_buckets; i++) {
794 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
795
796 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
797 if (time - bo->free_time <= 1)
798 break;
799
800 list_del(&bo->head);
801
802 bo_free(bo);
803 }
804 }
805
806 list_for_each_entry_safe(struct iris_bo, bo, &bufmgr->zombie_list, head) {
807 /* Stop once we reach a busy BO - all others past this point were
808 * freed more recently so are likely also busy.
809 */
810 if (!bo->idle && iris_bo_busy(bo))
811 break;
812
813 list_del(&bo->head);
814 bo_close(bo);
815 }
816
817 bufmgr->time = time;
818 }
819
820 static void
821 bo_unreference_final(struct iris_bo *bo, time_t time)
822 {
823 struct iris_bufmgr *bufmgr = bo->bufmgr;
824 struct bo_cache_bucket *bucket;
825
826 DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
827
828 bucket = NULL;
829 if (bo->reusable)
830 bucket = bucket_for_size(bufmgr, bo->size);
831 /* Put the buffer into our internal cache for reuse if we can. */
832 if (bucket && iris_bo_madvise(bo, I915_MADV_DONTNEED)) {
833 bo->free_time = time;
834 bo->name = NULL;
835
836 list_addtail(&bo->head, &bucket->head);
837 } else {
838 bo_free(bo);
839 }
840 }
841
842 void
843 iris_bo_unreference(struct iris_bo *bo)
844 {
845 if (bo == NULL)
846 return;
847
848 assert(p_atomic_read(&bo->refcount) > 0);
849
850 if (atomic_add_unless(&bo->refcount, -1, 1)) {
851 struct iris_bufmgr *bufmgr = bo->bufmgr;
852 struct timespec time;
853
854 clock_gettime(CLOCK_MONOTONIC, &time);
855
856 mtx_lock(&bufmgr->lock);
857
858 if (p_atomic_dec_zero(&bo->refcount)) {
859 bo_unreference_final(bo, time.tv_sec);
860 cleanup_bo_cache(bufmgr, time.tv_sec);
861 }
862
863 mtx_unlock(&bufmgr->lock);
864 }
865 }
866
867 static void
868 bo_wait_with_stall_warning(struct pipe_debug_callback *dbg,
869 struct iris_bo *bo,
870 const char *action)
871 {
872 bool busy = dbg && !bo->idle;
873 double elapsed = unlikely(busy) ? -get_time() : 0.0;
874
875 iris_bo_wait_rendering(bo);
876
877 if (unlikely(busy)) {
878 elapsed += get_time();
879 if (elapsed > 1e-5) /* 0.01ms */ {
880 perf_debug(dbg, "%s a busy \"%s\" BO stalled and took %.03f ms.\n",
881 action, bo->name, elapsed * 1000);
882 }
883 }
884 }
885
886 static void
887 print_flags(unsigned flags)
888 {
889 if (flags & MAP_READ)
890 DBG("READ ");
891 if (flags & MAP_WRITE)
892 DBG("WRITE ");
893 if (flags & MAP_ASYNC)
894 DBG("ASYNC ");
895 if (flags & MAP_PERSISTENT)
896 DBG("PERSISTENT ");
897 if (flags & MAP_COHERENT)
898 DBG("COHERENT ");
899 if (flags & MAP_RAW)
900 DBG("RAW ");
901 DBG("\n");
902 }
903
904 static void *
905 iris_bo_map_cpu(struct pipe_debug_callback *dbg,
906 struct iris_bo *bo, unsigned flags)
907 {
908 struct iris_bufmgr *bufmgr = bo->bufmgr;
909
910 /* We disallow CPU maps for writing to non-coherent buffers, as the
911 * CPU map can become invalidated when a batch is flushed out, which
912 * can happen at unpredictable times. You should use WC maps instead.
913 */
914 assert(bo->cache_coherent || !(flags & MAP_WRITE));
915
916 if (!bo->map_cpu) {
917 DBG("iris_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name);
918
919 struct drm_i915_gem_mmap mmap_arg = {
920 .handle = bo->gem_handle,
921 .size = bo->size,
922 };
923 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
924 if (ret != 0) {
925 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
926 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
927 return NULL;
928 }
929 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
930 VG_DEFINED(map, bo->size);
931
932 if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) {
933 VG_NOACCESS(map, bo->size);
934 os_munmap(map, bo->size);
935 }
936 }
937 assert(bo->map_cpu);
938
939 DBG("iris_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name,
940 bo->map_cpu);
941 print_flags(flags);
942
943 if (!(flags & MAP_ASYNC)) {
944 bo_wait_with_stall_warning(dbg, bo, "CPU mapping");
945 }
946
947 if (!bo->cache_coherent && !bo->bufmgr->has_llc) {
948 /* If we're reusing an existing CPU mapping, the CPU caches may
949 * contain stale data from the last time we read from that mapping.
950 * (With the BO cache, it might even be data from a previous buffer!)
951 * Even if it's a brand new mapping, the kernel may have zeroed the
952 * buffer via CPU writes.
953 *
954 * We need to invalidate those cachelines so that we see the latest
955 * contents, and so long as we only read from the CPU mmap we do not
956 * need to write those cachelines back afterwards.
957 *
958 * On LLC, the emprical evidence suggests that writes from the GPU
959 * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU
960 * cachelines. (Other reads, such as the display engine, bypass the
961 * LLC entirely requiring us to keep dirty pixels for the scanout
962 * out of any cache.)
963 */
964 gen_invalidate_range(bo->map_cpu, bo->size);
965 }
966
967 return bo->map_cpu;
968 }
969
970 static void *
971 iris_bo_map_wc(struct pipe_debug_callback *dbg,
972 struct iris_bo *bo, unsigned flags)
973 {
974 struct iris_bufmgr *bufmgr = bo->bufmgr;
975
976 if (!bo->map_wc) {
977 DBG("iris_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name);
978
979 struct drm_i915_gem_mmap mmap_arg = {
980 .handle = bo->gem_handle,
981 .size = bo->size,
982 .flags = I915_MMAP_WC,
983 };
984 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
985 if (ret != 0) {
986 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
987 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
988 return NULL;
989 }
990
991 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
992 VG_DEFINED(map, bo->size);
993
994 if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) {
995 VG_NOACCESS(map, bo->size);
996 os_munmap(map, bo->size);
997 }
998 }
999 assert(bo->map_wc);
1000
1001 DBG("iris_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc);
1002 print_flags(flags);
1003
1004 if (!(flags & MAP_ASYNC)) {
1005 bo_wait_with_stall_warning(dbg, bo, "WC mapping");
1006 }
1007
1008 return bo->map_wc;
1009 }
1010
1011 /**
1012 * Perform an uncached mapping via the GTT.
1013 *
1014 * Write access through the GTT is not quite fully coherent. On low power
1015 * systems especially, like modern Atoms, we can observe reads from RAM before
1016 * the write via GTT has landed. A write memory barrier that flushes the Write
1017 * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later
1018 * read after the write as the GTT write suffers a small delay through the GTT
1019 * indirection. The kernel uses an uncached mmio read to ensure the GTT write
1020 * is ordered with reads (either by the GPU, WB or WC) and unconditionally
1021 * flushes prior to execbuf submission. However, if we are not informing the
1022 * kernel about our GTT writes, it will not flush before earlier access, such
1023 * as when using the cmdparser. Similarly, we need to be careful if we should
1024 * ever issue a CPU read immediately following a GTT write.
1025 *
1026 * Telling the kernel about write access also has one more important
1027 * side-effect. Upon receiving notification about the write, it cancels any
1028 * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by
1029 * either SW_FINISH or DIRTYFB. The presumption is that we never write to the
1030 * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR
1031 * tracking is handled on the buffer exchange instead.
1032 */
1033 static void *
1034 iris_bo_map_gtt(struct pipe_debug_callback *dbg,
1035 struct iris_bo *bo, unsigned flags)
1036 {
1037 struct iris_bufmgr *bufmgr = bo->bufmgr;
1038
1039 /* Get a mapping of the buffer if we haven't before. */
1040 if (bo->map_gtt == NULL) {
1041 DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name);
1042
1043 struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle };
1044
1045 /* Get the fake offset back... */
1046 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
1047 if (ret != 0) {
1048 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1049 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1050 return NULL;
1051 }
1052
1053 /* and mmap it. */
1054 void *map = os_mmap(0, bo->size, PROT_READ | PROT_WRITE,
1055 MAP_SHARED, bufmgr->fd, mmap_arg.offset);
1056 if (map == MAP_FAILED) {
1057 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1058 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1059 return NULL;
1060 }
1061
1062 /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will
1063 * already intercept this mmap call. However, for consistency between
1064 * all the mmap paths, we mark the pointer as defined now and mark it
1065 * as inaccessible afterwards.
1066 */
1067 VG_DEFINED(map, bo->size);
1068
1069 if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) {
1070 VG_NOACCESS(map, bo->size);
1071 os_munmap(map, bo->size);
1072 }
1073 }
1074 assert(bo->map_gtt);
1075
1076 DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt);
1077 print_flags(flags);
1078
1079 if (!(flags & MAP_ASYNC)) {
1080 bo_wait_with_stall_warning(dbg, bo, "GTT mapping");
1081 }
1082
1083 return bo->map_gtt;
1084 }
1085
1086 static bool
1087 can_map_cpu(struct iris_bo *bo, unsigned flags)
1088 {
1089 if (bo->cache_coherent)
1090 return true;
1091
1092 /* Even if the buffer itself is not cache-coherent (such as a scanout), on
1093 * an LLC platform reads always are coherent (as they are performed via the
1094 * central system agent). It is just the writes that we need to take special
1095 * care to ensure that land in main memory and not stick in the CPU cache.
1096 */
1097 if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc)
1098 return true;
1099
1100 /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid
1101 * across batch flushes where the kernel will change cache domains of the
1102 * bo, invalidating continued access to the CPU mmap on non-LLC device.
1103 *
1104 * Similarly, ASYNC typically means that the buffer will be accessed via
1105 * both the CPU and the GPU simultaneously. Batches may be executed that
1106 * use the BO even while it is mapped. While OpenGL technically disallows
1107 * most drawing while non-persistent mappings are active, we may still use
1108 * the GPU for blits or other operations, causing batches to happen at
1109 * inconvenient times.
1110 *
1111 * If RAW is set, we expect the caller to be able to handle a WC buffer
1112 * more efficiently than the involuntary clflushes.
1113 */
1114 if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC | MAP_RAW))
1115 return false;
1116
1117 return !(flags & MAP_WRITE);
1118 }
1119
1120 void *
1121 iris_bo_map(struct pipe_debug_callback *dbg,
1122 struct iris_bo *bo, unsigned flags)
1123 {
1124 if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW))
1125 return iris_bo_map_gtt(dbg, bo, flags);
1126
1127 void *map;
1128
1129 if (can_map_cpu(bo, flags))
1130 map = iris_bo_map_cpu(dbg, bo, flags);
1131 else
1132 map = iris_bo_map_wc(dbg, bo, flags);
1133
1134 /* Allow the attempt to fail by falling back to the GTT where necessary.
1135 *
1136 * Not every buffer can be mmaped directly using the CPU (or WC), for
1137 * example buffers that wrap stolen memory or are imported from other
1138 * devices. For those, we have little choice but to use a GTT mmapping.
1139 * However, if we use a slow GTT mmapping for reads where we expected fast
1140 * access, that order of magnitude difference in throughput will be clearly
1141 * expressed by angry users.
1142 *
1143 * We skip MAP_RAW because we want to avoid map_gtt's fence detiling.
1144 */
1145 if (!map && !(flags & MAP_RAW)) {
1146 perf_debug(dbg, "Fallback GTT mapping for %s with access flags %x\n",
1147 bo->name, flags);
1148 map = iris_bo_map_gtt(dbg, bo, flags);
1149 }
1150
1151 return map;
1152 }
1153
1154 /** Waits for all GPU rendering with the object to have completed. */
1155 void
1156 iris_bo_wait_rendering(struct iris_bo *bo)
1157 {
1158 /* We require a kernel recent enough for WAIT_IOCTL support.
1159 * See intel_init_bufmgr()
1160 */
1161 iris_bo_wait(bo, -1);
1162 }
1163
1164 /**
1165 * Waits on a BO for the given amount of time.
1166 *
1167 * @bo: buffer object to wait for
1168 * @timeout_ns: amount of time to wait in nanoseconds.
1169 * If value is less than 0, an infinite wait will occur.
1170 *
1171 * Returns 0 if the wait was successful ie. the last batch referencing the
1172 * object has completed within the allotted time. Otherwise some negative return
1173 * value describes the error. Of particular interest is -ETIME when the wait has
1174 * failed to yield the desired result.
1175 *
1176 * Similar to iris_bo_wait_rendering except a timeout parameter allows
1177 * the operation to give up after a certain amount of time. Another subtle
1178 * difference is the internal locking semantics are different (this variant does
1179 * not hold the lock for the duration of the wait). This makes the wait subject
1180 * to a larger userspace race window.
1181 *
1182 * The implementation shall wait until the object is no longer actively
1183 * referenced within a batch buffer at the time of the call. The wait will
1184 * not guarantee that the buffer is re-issued via another thread, or an flinked
1185 * handle. Userspace must make sure this race does not occur if such precision
1186 * is important.
1187 *
1188 * Note that some kernels have broken the inifite wait for negative values
1189 * promise, upgrade to latest stable kernels if this is the case.
1190 */
1191 int
1192 iris_bo_wait(struct iris_bo *bo, int64_t timeout_ns)
1193 {
1194 struct iris_bufmgr *bufmgr = bo->bufmgr;
1195
1196 /* If we know it's idle, don't bother with the kernel round trip */
1197 if (bo->idle && !bo->external)
1198 return 0;
1199
1200 struct drm_i915_gem_wait wait = {
1201 .bo_handle = bo->gem_handle,
1202 .timeout_ns = timeout_ns,
1203 };
1204 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1205 if (ret != 0)
1206 return -errno;
1207
1208 bo->idle = true;
1209
1210 return ret;
1211 }
1212
1213 static void
1214 iris_bufmgr_destroy(struct iris_bufmgr *bufmgr)
1215 {
1216 /* Free aux-map buffers */
1217 gen_aux_map_finish(bufmgr->aux_map_ctx);
1218
1219 /* bufmgr will no longer try to free VMA entries in the aux-map */
1220 bufmgr->aux_map_ctx = NULL;
1221
1222 mtx_destroy(&bufmgr->lock);
1223
1224 /* Free any cached buffer objects we were going to reuse */
1225 for (int i = 0; i < bufmgr->num_buckets; i++) {
1226 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1227
1228 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1229 list_del(&bo->head);
1230
1231 bo_free(bo);
1232 }
1233 }
1234
1235 /* Close any buffer objects on the dead list. */
1236 list_for_each_entry_safe(struct iris_bo, bo, &bufmgr->zombie_list, head) {
1237 list_del(&bo->head);
1238 bo_close(bo);
1239 }
1240
1241 _mesa_hash_table_destroy(bufmgr->name_table, NULL);
1242 _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
1243
1244 for (int z = 0; z < IRIS_MEMZONE_COUNT; z++) {
1245 if (z != IRIS_MEMZONE_BINDER)
1246 util_vma_heap_finish(&bufmgr->vma_allocator[z]);
1247 }
1248
1249 close(bufmgr->fd);
1250
1251 free(bufmgr);
1252 }
1253
1254 static int
1255 bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode,
1256 uint32_t stride)
1257 {
1258 struct iris_bufmgr *bufmgr = bo->bufmgr;
1259 struct drm_i915_gem_set_tiling set_tiling;
1260 int ret;
1261
1262 if (bo->global_name == 0 &&
1263 tiling_mode == bo->tiling_mode && stride == bo->stride)
1264 return 0;
1265
1266 memset(&set_tiling, 0, sizeof(set_tiling));
1267 do {
1268 /* set_tiling is slightly broken and overwrites the
1269 * input on the error path, so we have to open code
1270 * drm_ioctl.
1271 */
1272 set_tiling.handle = bo->gem_handle;
1273 set_tiling.tiling_mode = tiling_mode;
1274 set_tiling.stride = stride;
1275
1276 ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
1277 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
1278 if (ret == -1)
1279 return -errno;
1280
1281 bo->tiling_mode = set_tiling.tiling_mode;
1282 bo->swizzle_mode = set_tiling.swizzle_mode;
1283 bo->stride = set_tiling.stride;
1284 return 0;
1285 }
1286
1287 int
1288 iris_bo_get_tiling(struct iris_bo *bo, uint32_t *tiling_mode,
1289 uint32_t *swizzle_mode)
1290 {
1291 *tiling_mode = bo->tiling_mode;
1292 *swizzle_mode = bo->swizzle_mode;
1293 return 0;
1294 }
1295
1296 struct iris_bo *
1297 iris_bo_import_dmabuf(struct iris_bufmgr *bufmgr, int prime_fd,
1298 uint32_t tiling, uint32_t stride)
1299 {
1300 uint32_t handle;
1301 struct iris_bo *bo;
1302
1303 mtx_lock(&bufmgr->lock);
1304 int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1305 if (ret) {
1306 DBG("import_dmabuf: failed to obtain handle from fd: %s\n",
1307 strerror(errno));
1308 mtx_unlock(&bufmgr->lock);
1309 return NULL;
1310 }
1311
1312 /*
1313 * See if the kernel has already returned this buffer to us. Just as
1314 * for named buffers, we must not create two bo's pointing at the same
1315 * kernel object
1316 */
1317 bo = find_and_ref_external_bo(bufmgr->handle_table, handle);
1318 if (bo)
1319 goto out;
1320
1321 bo = bo_calloc();
1322 if (!bo)
1323 goto out;
1324
1325 p_atomic_set(&bo->refcount, 1);
1326
1327 /* Determine size of bo. The fd-to-handle ioctl really should
1328 * return the size, but it doesn't. If we have kernel 3.12 or
1329 * later, we can lseek on the prime fd to get the size. Older
1330 * kernels will just fail, in which case we fall back to the
1331 * provided (estimated or guess size). */
1332 ret = lseek(prime_fd, 0, SEEK_END);
1333 if (ret != -1)
1334 bo->size = ret;
1335
1336 bo->bufmgr = bufmgr;
1337 bo->name = "prime";
1338 bo->reusable = false;
1339 bo->external = true;
1340 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1341 bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
1342 bo->gem_handle = handle;
1343 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1344
1345 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
1346 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
1347 goto err;
1348
1349 if (get_tiling.tiling_mode == tiling || tiling > I915_TILING_LAST) {
1350 bo->tiling_mode = get_tiling.tiling_mode;
1351 bo->swizzle_mode = get_tiling.swizzle_mode;
1352 /* XXX stride is unknown */
1353 } else {
1354 if (bo_set_tiling_internal(bo, tiling, stride)) {
1355 goto err;
1356 }
1357 }
1358
1359 out:
1360 mtx_unlock(&bufmgr->lock);
1361 return bo;
1362
1363 err:
1364 bo_free(bo);
1365 mtx_unlock(&bufmgr->lock);
1366 return NULL;
1367 }
1368
1369 static void
1370 iris_bo_make_external_locked(struct iris_bo *bo)
1371 {
1372 if (!bo->external) {
1373 _mesa_hash_table_insert(bo->bufmgr->handle_table, &bo->gem_handle, bo);
1374 /* If a BO is going to be used externally, it could be sent to the
1375 * display HW. So make sure our CPU mappings don't assume cache
1376 * coherency since display is outside that cache.
1377 */
1378 bo->cache_coherent = false;
1379 bo->external = true;
1380 bo->reusable = false;
1381 }
1382 }
1383
1384 void
1385 iris_bo_make_external(struct iris_bo *bo)
1386 {
1387 struct iris_bufmgr *bufmgr = bo->bufmgr;
1388
1389 if (bo->external) {
1390 assert(!bo->reusable);
1391 return;
1392 }
1393
1394 mtx_lock(&bufmgr->lock);
1395 iris_bo_make_external_locked(bo);
1396 mtx_unlock(&bufmgr->lock);
1397 }
1398
1399 int
1400 iris_bo_export_dmabuf(struct iris_bo *bo, int *prime_fd)
1401 {
1402 struct iris_bufmgr *bufmgr = bo->bufmgr;
1403
1404 iris_bo_make_external(bo);
1405
1406 if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1407 DRM_CLOEXEC, prime_fd) != 0)
1408 return -errno;
1409
1410 return 0;
1411 }
1412
1413 uint32_t
1414 iris_bo_export_gem_handle(struct iris_bo *bo)
1415 {
1416 iris_bo_make_external(bo);
1417
1418 return bo->gem_handle;
1419 }
1420
1421 int
1422 iris_bo_flink(struct iris_bo *bo, uint32_t *name)
1423 {
1424 struct iris_bufmgr *bufmgr = bo->bufmgr;
1425
1426 if (!bo->global_name) {
1427 struct drm_gem_flink flink = { .handle = bo->gem_handle };
1428
1429 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
1430 return -errno;
1431
1432 mtx_lock(&bufmgr->lock);
1433 if (!bo->global_name) {
1434 iris_bo_make_external_locked(bo);
1435 bo->global_name = flink.name;
1436 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
1437 }
1438 mtx_unlock(&bufmgr->lock);
1439 }
1440
1441 *name = bo->global_name;
1442 return 0;
1443 }
1444
1445 static void
1446 add_bucket(struct iris_bufmgr *bufmgr, int size)
1447 {
1448 unsigned int i = bufmgr->num_buckets;
1449
1450 assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
1451
1452 list_inithead(&bufmgr->cache_bucket[i].head);
1453 bufmgr->cache_bucket[i].size = size;
1454 bufmgr->num_buckets++;
1455
1456 assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]);
1457 assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]);
1458 assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]);
1459 }
1460
1461 static void
1462 init_cache_buckets(struct iris_bufmgr *bufmgr)
1463 {
1464 uint64_t size, cache_max_size = 64 * 1024 * 1024;
1465
1466 /* OK, so power of two buckets was too wasteful of memory.
1467 * Give 3 other sizes between each power of two, to hopefully
1468 * cover things accurately enough. (The alternative is
1469 * probably to just go for exact matching of sizes, and assume
1470 * that for things like composited window resize the tiled
1471 * width/height alignment and rounding of sizes to pages will
1472 * get us useful cache hit rates anyway)
1473 */
1474 add_bucket(bufmgr, PAGE_SIZE);
1475 add_bucket(bufmgr, PAGE_SIZE * 2);
1476 add_bucket(bufmgr, PAGE_SIZE * 3);
1477
1478 /* Initialize the linked lists for BO reuse cache. */
1479 for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) {
1480 add_bucket(bufmgr, size);
1481
1482 add_bucket(bufmgr, size + size * 1 / 4);
1483 add_bucket(bufmgr, size + size * 2 / 4);
1484 add_bucket(bufmgr, size + size * 3 / 4);
1485 }
1486 }
1487
1488 uint32_t
1489 iris_create_hw_context(struct iris_bufmgr *bufmgr)
1490 {
1491 struct drm_i915_gem_context_create create = { };
1492 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
1493 if (ret != 0) {
1494 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
1495 return 0;
1496 }
1497
1498 /* Upon declaring a GPU hang, the kernel will zap the guilty context
1499 * back to the default logical HW state and attempt to continue on to
1500 * our next submitted batchbuffer. However, our render batches assume
1501 * the previous GPU state is preserved, and only emit commands needed
1502 * to incrementally change that state. In particular, we inherit the
1503 * STATE_BASE_ADDRESS and PIPELINE_SELECT settings, which are critical.
1504 * With default base addresses, our next batches will almost certainly
1505 * cause more GPU hangs, leading to repeated hangs until we're banned
1506 * or the machine is dead.
1507 *
1508 * Here we tell the kernel not to attempt to recover our context but
1509 * immediately (on the next batchbuffer submission) report that the
1510 * context is lost, and we will do the recovery ourselves. Ideally,
1511 * we'll have two lost batches instead of a continual stream of hangs.
1512 */
1513 struct drm_i915_gem_context_param p = {
1514 .ctx_id = create.ctx_id,
1515 .param = I915_CONTEXT_PARAM_RECOVERABLE,
1516 .value = false,
1517 };
1518 drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p);
1519
1520 return create.ctx_id;
1521 }
1522
1523 static int
1524 iris_hw_context_get_priority(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
1525 {
1526 struct drm_i915_gem_context_param p = {
1527 .ctx_id = ctx_id,
1528 .param = I915_CONTEXT_PARAM_PRIORITY,
1529 };
1530 drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p);
1531 return p.value; /* on error, return 0 i.e. default priority */
1532 }
1533
1534 int
1535 iris_hw_context_set_priority(struct iris_bufmgr *bufmgr,
1536 uint32_t ctx_id,
1537 int priority)
1538 {
1539 struct drm_i915_gem_context_param p = {
1540 .ctx_id = ctx_id,
1541 .param = I915_CONTEXT_PARAM_PRIORITY,
1542 .value = priority,
1543 };
1544 int err;
1545
1546 err = 0;
1547 if (gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p))
1548 err = -errno;
1549
1550 return err;
1551 }
1552
1553 uint32_t
1554 iris_clone_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
1555 {
1556 uint32_t new_ctx = iris_create_hw_context(bufmgr);
1557
1558 if (new_ctx) {
1559 int priority = iris_hw_context_get_priority(bufmgr, ctx_id);
1560 iris_hw_context_set_priority(bufmgr, new_ctx, priority);
1561 }
1562
1563 return new_ctx;
1564 }
1565
1566 void
1567 iris_destroy_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
1568 {
1569 struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id };
1570
1571 if (ctx_id != 0 &&
1572 gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
1573 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
1574 strerror(errno));
1575 }
1576 }
1577
1578 int
1579 iris_reg_read(struct iris_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
1580 {
1581 struct drm_i915_reg_read reg_read = { .offset = offset };
1582 int ret = gen_ioctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
1583
1584 *result = reg_read.val;
1585 return ret;
1586 }
1587
1588 static uint64_t
1589 iris_gtt_size(int fd)
1590 {
1591 /* We use the default (already allocated) context to determine
1592 * the default configuration of the virtual address space.
1593 */
1594 struct drm_i915_gem_context_param p = {
1595 .param = I915_CONTEXT_PARAM_GTT_SIZE,
1596 };
1597 if (!gen_ioctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p))
1598 return p.value;
1599
1600 return 0;
1601 }
1602
1603 static struct gen_buffer *
1604 gen_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
1605 {
1606 struct gen_buffer *buf = malloc(sizeof(struct gen_buffer));
1607 if (!buf)
1608 return NULL;
1609
1610 struct iris_bufmgr *bufmgr = (struct iris_bufmgr *)driver_ctx;
1611
1612 struct iris_bo *bo =
1613 iris_bo_alloc_tiled(bufmgr, "aux-map", size, 64 * 1024,
1614 IRIS_MEMZONE_OTHER, I915_TILING_NONE, 0, 0);
1615
1616 buf->driver_bo = bo;
1617 buf->gpu = bo->gtt_offset;
1618 buf->gpu_end = buf->gpu + bo->size;
1619 buf->map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
1620 return buf;
1621 }
1622
1623 static void
1624 gen_aux_map_buffer_free(void *driver_ctx, struct gen_buffer *buffer)
1625 {
1626 iris_bo_unreference((struct iris_bo*)buffer->driver_bo);
1627 free(buffer);
1628 }
1629
1630 static struct gen_mapped_pinned_buffer_alloc aux_map_allocator = {
1631 .alloc = gen_aux_map_buffer_alloc,
1632 .free = gen_aux_map_buffer_free,
1633 };
1634
1635 /**
1636 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
1637 * and manage map buffer objections.
1638 *
1639 * \param fd File descriptor of the opened DRM device.
1640 */
1641 static struct iris_bufmgr *
1642 iris_bufmgr_create(struct gen_device_info *devinfo, int fd, bool bo_reuse)
1643 {
1644 uint64_t gtt_size = iris_gtt_size(fd);
1645 if (gtt_size <= IRIS_MEMZONE_OTHER_START)
1646 return NULL;
1647
1648 struct iris_bufmgr *bufmgr = calloc(1, sizeof(*bufmgr));
1649 if (bufmgr == NULL)
1650 return NULL;
1651
1652 /* Handles to buffer objects belong to the device fd and are not
1653 * reference counted by the kernel. If the same fd is used by
1654 * multiple parties (threads sharing the same screen bufmgr, or
1655 * even worse the same device fd passed to multiple libraries)
1656 * ownership of those handles is shared by those independent parties.
1657 *
1658 * Don't do this! Ensure that each library/bufmgr has its own device
1659 * fd so that its namespace does not clash with another.
1660 */
1661 bufmgr->fd = dup(fd);
1662
1663 p_atomic_set(&bufmgr->refcount, 1);
1664
1665 if (mtx_init(&bufmgr->lock, mtx_plain) != 0) {
1666 close(bufmgr->fd);
1667 free(bufmgr);
1668 return NULL;
1669 }
1670
1671 list_inithead(&bufmgr->zombie_list);
1672
1673 bufmgr->has_llc = devinfo->has_llc;
1674 bufmgr->bo_reuse = bo_reuse;
1675
1676 STATIC_ASSERT(IRIS_MEMZONE_SHADER_START == 0ull);
1677 const uint64_t _4GB = 1ull << 32;
1678 const uint64_t _2GB = 1ul << 31;
1679
1680 /* The STATE_BASE_ADDRESS size field can only hold 1 page shy of 4GB */
1681 const uint64_t _4GB_minus_1 = _4GB - PAGE_SIZE;
1682
1683 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SHADER],
1684 PAGE_SIZE, _4GB_minus_1 - PAGE_SIZE);
1685 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SURFACE],
1686 IRIS_MEMZONE_SURFACE_START,
1687 _4GB_minus_1 - IRIS_MAX_BINDERS * IRIS_BINDER_SIZE);
1688 /* TODO: Why does limiting to 2GB help some state items on gen12?
1689 * - CC Viewport Pointer
1690 * - Blend State Pointer
1691 * - Color Calc State Pointer
1692 */
1693 const uint64_t dynamic_pool_size =
1694 (devinfo->gen >= 12 ? _2GB : _4GB_minus_1) - IRIS_BORDER_COLOR_POOL_SIZE;
1695 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_DYNAMIC],
1696 IRIS_MEMZONE_DYNAMIC_START + IRIS_BORDER_COLOR_POOL_SIZE,
1697 dynamic_pool_size);
1698
1699 /* Leave the last 4GB out of the high vma range, so that no state
1700 * base address + size can overflow 48 bits.
1701 */
1702 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_OTHER],
1703 IRIS_MEMZONE_OTHER_START,
1704 (gtt_size - _4GB) - IRIS_MEMZONE_OTHER_START);
1705
1706 init_cache_buckets(bufmgr);
1707
1708 bufmgr->name_table =
1709 _mesa_hash_table_create(NULL, _mesa_hash_uint, _mesa_key_uint_equal);
1710 bufmgr->handle_table =
1711 _mesa_hash_table_create(NULL, _mesa_hash_uint, _mesa_key_uint_equal);
1712
1713 if (devinfo->gen >= 12) {
1714 bufmgr->aux_map_ctx = gen_aux_map_init(bufmgr, &aux_map_allocator,
1715 devinfo);
1716 assert(bufmgr->aux_map_ctx);
1717 }
1718
1719 return bufmgr;
1720 }
1721
1722 static struct iris_bufmgr *
1723 iris_bufmgr_ref(struct iris_bufmgr *bufmgr)
1724 {
1725 p_atomic_inc(&bufmgr->refcount);
1726 return bufmgr;
1727 }
1728
1729 void
1730 iris_bufmgr_unref(struct iris_bufmgr *bufmgr)
1731 {
1732 mtx_lock(&global_bufmgr_list_mutex);
1733 if (p_atomic_dec_zero(&bufmgr->refcount)) {
1734 list_del(&bufmgr->link);
1735 iris_bufmgr_destroy(bufmgr);
1736 }
1737 mtx_unlock(&global_bufmgr_list_mutex);
1738 }
1739
1740 /**
1741 * Gets an already existing GEM buffer manager or create a new one.
1742 *
1743 * \param fd File descriptor of the opened DRM device.
1744 */
1745 struct iris_bufmgr *
1746 iris_bufmgr_get_for_fd(struct gen_device_info *devinfo, int fd, bool bo_reuse)
1747 {
1748 struct stat st;
1749
1750 if (fstat(fd, &st))
1751 return NULL;
1752
1753 struct iris_bufmgr *bufmgr = NULL;
1754
1755 mtx_lock(&global_bufmgr_list_mutex);
1756 list_for_each_entry(struct iris_bufmgr, iter_bufmgr, &global_bufmgr_list, link) {
1757 struct stat iter_st;
1758 if (fstat(iter_bufmgr->fd, &iter_st))
1759 continue;
1760
1761 if (st.st_rdev == iter_st.st_rdev) {
1762 assert(iter_bufmgr->bo_reuse == bo_reuse);
1763 bufmgr = iris_bufmgr_ref(iter_bufmgr);
1764 goto unlock;
1765 }
1766 }
1767
1768 bufmgr = iris_bufmgr_create(devinfo, fd, bo_reuse);
1769 list_addtail(&bufmgr->link, &global_bufmgr_list);
1770
1771 unlock:
1772 mtx_unlock(&global_bufmgr_list_mutex);
1773
1774 return bufmgr;
1775 }
1776
1777 int
1778 iris_bufmgr_get_fd(struct iris_bufmgr *bufmgr)
1779 {
1780 return bufmgr->fd;
1781 }
1782
1783 void*
1784 iris_bufmgr_get_aux_map_context(struct iris_bufmgr *bufmgr)
1785 {
1786 return bufmgr->aux_map_ctx;
1787 }