e16226910b3a86c951bbcf321093bf0346ac2943
[mesa.git] / src / gallium / drivers / iris / iris_bufmgr.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_bufmgr.c
25 *
26 * The Iris buffer manager.
27 *
28 * XXX: write better comments
29 * - BOs
30 * - Explain BO cache
31 * - main interface to GEM in the kernel
32 */
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <xf86drm.h>
39 #include <util/u_atomic.h>
40 #include <fcntl.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <assert.h>
46 #include <sys/ioctl.h>
47 #include <sys/mman.h>
48 #include <sys/stat.h>
49 #include <sys/types.h>
50 #include <stdbool.h>
51 #include <time.h>
52
53 #include "errno.h"
54 #ifndef ETIME
55 #define ETIME ETIMEDOUT
56 #endif
57 #include "common/gen_clflush.h"
58 #include "common/gen_debug.h"
59 #include "common/gen_gem.h"
60 #include "dev/gen_device_info.h"
61 #include "main/macros.h"
62 #include "util/debug.h"
63 #include "util/macros.h"
64 #include "util/hash_table.h"
65 #include "util/list.h"
66 #include "util/u_dynarray.h"
67 #include "util/vma.h"
68 #include "iris_bufmgr.h"
69 #include "iris_context.h"
70 #include "string.h"
71
72 #include "drm-uapi/i915_drm.h"
73
74 #ifdef HAVE_VALGRIND
75 #include <valgrind.h>
76 #include <memcheck.h>
77 #define VG(x) x
78 #else
79 #define VG(x)
80 #endif
81
82 /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
83 * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
84 * leaked. All because it does not call VG(cli_free) from its
85 * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
86 * and allocation, we mark it available for use upon mmapping and remove
87 * it upon unmapping.
88 */
89 #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
90 #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
91
92 #define PAGE_SIZE 4096
93
94 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
95
96 /**
97 * Call ioctl, restarting if it is interupted
98 */
99 int
100 drm_ioctl(int fd, unsigned long request, void *arg)
101 {
102 int ret;
103
104 do {
105 ret = ioctl(fd, request, arg);
106 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
107 return ret;
108 }
109
110 static inline int
111 atomic_add_unless(int *v, int add, int unless)
112 {
113 int c, old;
114 c = p_atomic_read(v);
115 while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
116 c = old;
117 return c == unless;
118 }
119
120 /**
121 * Iris fixed-size bucketing VMA allocator.
122 *
123 * The BO cache maintains "cache buckets" for buffers of various sizes.
124 * All buffers in a given bucket are identically sized - when allocating,
125 * we always round up to the bucket size. This means that virtually all
126 * allocations are fixed-size; only buffers which are too large to fit in
127 * a bucket can be variably-sized.
128 *
129 * We create an allocator for each bucket. Each contains a free-list, where
130 * each node contains a <starting address, 64-bit bitmap> pair. Each bit
131 * represents a bucket-sized block of memory. (At the first level, each
132 * bit corresponds to a page. For the second bucket, bits correspond to
133 * two pages, and so on.) 1 means a block is free, and 0 means it's in-use.
134 * The lowest bit in the bitmap is for the first block.
135 *
136 * This makes allocations cheap - any bit of any node will do. We can pick
137 * the head of the list and use ffs() to find a free block. If there are
138 * none, we allocate 64 blocks from a larger allocator - either a bigger
139 * bucketing allocator, or a fallback top-level allocator for large objects.
140 */
141 struct vma_bucket_node {
142 uint64_t start_address;
143 uint64_t bitmap;
144 };
145
146 struct bo_cache_bucket {
147 /** List of cached BOs. */
148 struct list_head head;
149
150 /** Size of this bucket, in bytes. */
151 uint64_t size;
152
153 /** List of vma_bucket_nodes. */
154 struct util_dynarray vma_list[IRIS_MEMZONE_COUNT];
155 };
156
157 struct iris_bufmgr {
158 int fd;
159
160 mtx_t lock;
161
162 /** Array of lists of cached gem objects of power-of-two sizes */
163 struct bo_cache_bucket cache_bucket[14 * 4];
164 int num_buckets;
165 time_t time;
166
167 struct hash_table *name_table;
168 struct hash_table *handle_table;
169
170 struct util_vma_heap vma_allocator[IRIS_MEMZONE_COUNT];
171
172 bool has_llc:1;
173 bool bo_reuse:1;
174 };
175
176 static int bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode,
177 uint32_t stride);
178
179 static void bo_free(struct iris_bo *bo);
180
181 static uint64_t vma_alloc(struct iris_bufmgr *bufmgr,
182 enum iris_memory_zone memzone,
183 uint64_t size, uint64_t alignment);
184
185 static uint32_t
186 key_hash_uint(const void *key)
187 {
188 return _mesa_hash_data(key, 4);
189 }
190
191 static bool
192 key_uint_equal(const void *a, const void *b)
193 {
194 return *((unsigned *) a) == *((unsigned *) b);
195 }
196
197 static struct iris_bo *
198 hash_find_bo(struct hash_table *ht, unsigned int key)
199 {
200 struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
201 return entry ? (struct iris_bo *) entry->data : NULL;
202 }
203
204 /**
205 * This function finds the correct bucket fit for the input size.
206 * The function works with O(1) complexity when the requested size
207 * was queried instead of iterating the size through all the buckets.
208 */
209 static struct bo_cache_bucket *
210 bucket_for_size(struct iris_bufmgr *bufmgr, uint64_t size)
211 {
212 /* Calculating the pages and rounding up to the page size. */
213 const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
214
215 /* Row Bucket sizes clz((x-1) | 3) Row Column
216 * in pages stride size
217 * 0: 1 2 3 4 -> 30 30 30 30 4 1
218 * 1: 5 6 7 8 -> 29 29 29 29 4 1
219 * 2: 10 12 14 16 -> 28 28 28 28 8 2
220 * 3: 20 24 28 32 -> 27 27 27 27 16 4
221 */
222 const unsigned row = 30 - __builtin_clz((pages - 1) | 3);
223 const unsigned row_max_pages = 4 << row;
224
225 /* The '& ~2' is the special case for row 1. In row 1, max pages /
226 * 2 is 2, but the previous row maximum is zero (because there is
227 * no previous row). All row maximum sizes are power of 2, so that
228 * is the only case where that bit will be set.
229 */
230 const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2;
231 int col_size_log2 = row - 1;
232 col_size_log2 += (col_size_log2 < 0);
233
234 const unsigned col = (pages - prev_row_max_pages +
235 ((1 << col_size_log2) - 1)) >> col_size_log2;
236
237 /* Calculating the index based on the row and column. */
238 const unsigned index = (row * 4) + (col - 1);
239
240 return (index < bufmgr->num_buckets) ?
241 &bufmgr->cache_bucket[index] : NULL;
242 }
243
244 static enum iris_memory_zone
245 memzone_for_address(uint64_t address)
246 {
247 STATIC_ASSERT(IRIS_MEMZONE_OTHER_START > IRIS_MEMZONE_DYNAMIC_START);
248 STATIC_ASSERT(IRIS_MEMZONE_DYNAMIC_START > IRIS_MEMZONE_SURFACE_START);
249 STATIC_ASSERT(IRIS_MEMZONE_SURFACE_START > IRIS_MEMZONE_SHADER_START);
250 STATIC_ASSERT(IRIS_BINDER_ADDRESS == IRIS_MEMZONE_SURFACE_START);
251 STATIC_ASSERT(IRIS_BORDER_COLOR_POOL_ADDRESS == IRIS_MEMZONE_DYNAMIC_START);
252
253 if (address >= IRIS_MEMZONE_OTHER_START)
254 return IRIS_MEMZONE_OTHER;
255
256 if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
257 return IRIS_MEMZONE_BORDER_COLOR_POOL;
258
259 if (address > IRIS_MEMZONE_DYNAMIC_START)
260 return IRIS_MEMZONE_DYNAMIC;
261
262 if (address == IRIS_BINDER_ADDRESS)
263 return IRIS_MEMZONE_BINDER;
264
265 if (address > IRIS_MEMZONE_SURFACE_START)
266 return IRIS_MEMZONE_SURFACE;
267
268 return IRIS_MEMZONE_SHADER;
269 }
270
271 static uint64_t
272 bucket_vma_alloc(struct iris_bufmgr *bufmgr,
273 struct bo_cache_bucket *bucket,
274 enum iris_memory_zone memzone)
275 {
276 struct util_dynarray *vma_list = &bucket->vma_list[memzone];
277 struct vma_bucket_node *node;
278
279 if (vma_list->size == 0) {
280 /* This bucket allocator is out of space - allocate a new block of
281 * memory for 64 blocks from a larger allocator (either a larger
282 * bucket or util_vma).
283 *
284 * We align the address to the node size (64 blocks) so that
285 * bucket_vma_free can easily compute the starting address of this
286 * block by rounding any address we return down to the node size.
287 *
288 * Set the first bit used, and return the start address.
289 */
290 const uint64_t node_size = 64ull * bucket->size;
291 node = util_dynarray_grow(vma_list, sizeof(struct vma_bucket_node));
292
293 if (unlikely(!node))
294 return 0ull;
295
296 uint64_t addr = vma_alloc(bufmgr, memzone, node_size, node_size);
297 node->start_address = gen_48b_address(addr);
298 node->bitmap = ~1ull;
299 return node->start_address;
300 }
301
302 /* Pick any bit from any node - they're all the right size and free. */
303 node = util_dynarray_top_ptr(vma_list, struct vma_bucket_node);
304 int bit = ffsll(node->bitmap) - 1;
305 assert(bit >= 0 && bit <= 63);
306
307 /* Reserve the memory by clearing the bit. */
308 assert((node->bitmap & (1ull << bit)) != 0ull);
309 node->bitmap &= ~(1ull << bit);
310
311 uint64_t addr = node->start_address + bit * bucket->size;
312
313 /* If this node is now completely full, remove it from the free list. */
314 if (node->bitmap == 0ull) {
315 (void) util_dynarray_pop(vma_list, struct vma_bucket_node);
316 }
317
318 return addr;
319 }
320
321 static void
322 bucket_vma_free(struct bo_cache_bucket *bucket, uint64_t address)
323 {
324 enum iris_memory_zone memzone = memzone_for_address(address);
325 struct util_dynarray *vma_list = &bucket->vma_list[memzone];
326 const uint64_t node_bytes = 64ull * bucket->size;
327 struct vma_bucket_node *node = NULL;
328
329 /* bucket_vma_alloc allocates 64 blocks at a time, and aligns it to
330 * that 64 block size. So, we can round down to get the starting address.
331 */
332 uint64_t start = (address / node_bytes) * node_bytes;
333
334 /* Dividing the offset from start by bucket size gives us the bit index. */
335 int bit = (address - start) / bucket->size;
336
337 assert(start + bit * bucket->size == address);
338
339 util_dynarray_foreach(vma_list, struct vma_bucket_node, cur) {
340 if (cur->start_address == start) {
341 node = cur;
342 break;
343 }
344 }
345
346 if (!node) {
347 /* No node - the whole group of 64 blocks must have been in-use. */
348 node = util_dynarray_grow(vma_list, sizeof(struct vma_bucket_node));
349
350 if (unlikely(!node))
351 return; /* bogus, leaks some GPU VMA, but nothing we can do... */
352
353 node->start_address = start;
354 node->bitmap = 0ull;
355 }
356
357 /* Set the bit to return the memory. */
358 assert((node->bitmap & (1ull << bit)) == 0ull);
359 node->bitmap |= 1ull << bit;
360
361 /* The block might be entirely free now, and if so, we could return it
362 * to the larger allocator. But we may as well hang on to it, in case
363 * we get more allocations at this block size.
364 */
365 }
366
367 static struct bo_cache_bucket *
368 get_bucket_allocator(struct iris_bufmgr *bufmgr, uint64_t size)
369 {
370 /* Skip using the bucket allocator for very large sizes, as it allocates
371 * 64 of them and this can balloon rather quickly.
372 */
373 if (size > 1024 * PAGE_SIZE)
374 return NULL;
375
376 struct bo_cache_bucket *bucket = bucket_for_size(bufmgr, size);
377
378 if (bucket && bucket->size == size)
379 return bucket;
380
381 return NULL;
382 }
383
384 /**
385 * Allocate a section of virtual memory for a buffer, assigning an address.
386 *
387 * This uses either the bucket allocator for the given size, or the large
388 * object allocator (util_vma).
389 */
390 static uint64_t
391 vma_alloc(struct iris_bufmgr *bufmgr,
392 enum iris_memory_zone memzone,
393 uint64_t size,
394 uint64_t alignment)
395 {
396 if (memzone == IRIS_MEMZONE_BINDER)
397 return IRIS_BINDER_ADDRESS;
398 else if (memzone == IRIS_MEMZONE_BORDER_COLOR_POOL)
399 return IRIS_BORDER_COLOR_POOL_ADDRESS;
400
401 struct bo_cache_bucket *bucket = get_bucket_allocator(bufmgr, size);
402 uint64_t addr;
403
404 if (bucket) {
405 addr = bucket_vma_alloc(bufmgr, bucket, memzone);
406 } else {
407 addr = util_vma_heap_alloc(&bufmgr->vma_allocator[memzone], size,
408 alignment);
409 }
410
411 assert((addr >> 48ull) == 0);
412 assert((addr % alignment) == 0);
413
414 return gen_canonical_address(addr);
415 }
416
417 static void
418 vma_free(struct iris_bufmgr *bufmgr,
419 uint64_t address,
420 uint64_t size)
421 {
422 if (address == IRIS_BINDER_ADDRESS ||
423 address == IRIS_BORDER_COLOR_POOL_ADDRESS)
424 return;
425
426 /* Un-canonicalize the address. */
427 address = gen_48b_address(address);
428
429 if (address == 0ull)
430 return;
431
432 struct bo_cache_bucket *bucket = get_bucket_allocator(bufmgr, size);
433
434 if (bucket) {
435 bucket_vma_free(bucket, address);
436 } else {
437 enum iris_memory_zone memzone = memzone_for_address(address);
438 util_vma_heap_free(&bufmgr->vma_allocator[memzone], address, size);
439 }
440 }
441
442 int
443 iris_bo_busy(struct iris_bo *bo)
444 {
445 struct iris_bufmgr *bufmgr = bo->bufmgr;
446 struct drm_i915_gem_busy busy = { .handle = bo->gem_handle };
447
448 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
449 if (ret == 0) {
450 bo->idle = !busy.busy;
451 return busy.busy;
452 }
453 return false;
454 }
455
456 int
457 iris_bo_madvise(struct iris_bo *bo, int state)
458 {
459 struct drm_i915_gem_madvise madv = {
460 .handle = bo->gem_handle,
461 .madv = state,
462 .retained = 1,
463 };
464
465 drm_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
466
467 return madv.retained;
468 }
469
470 /* drop the oldest entries that have been purged by the kernel */
471 static void
472 iris_bo_cache_purge_bucket(struct iris_bufmgr *bufmgr,
473 struct bo_cache_bucket *bucket)
474 {
475 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
476 if (iris_bo_madvise(bo, I915_MADV_DONTNEED))
477 break;
478
479 list_del(&bo->head);
480 bo_free(bo);
481 }
482 }
483
484 static struct iris_bo *
485 bo_calloc(void)
486 {
487 struct iris_bo *bo = calloc(1, sizeof(*bo));
488 if (bo) {
489 bo->hash = _mesa_hash_pointer(bo);
490 }
491 return bo;
492 }
493
494 static struct iris_bo *
495 bo_alloc_internal(struct iris_bufmgr *bufmgr,
496 const char *name,
497 uint64_t size,
498 enum iris_memory_zone memzone,
499 unsigned flags,
500 uint32_t tiling_mode,
501 uint32_t stride)
502 {
503 struct iris_bo *bo;
504 unsigned int page_size = getpagesize();
505 int ret;
506 struct bo_cache_bucket *bucket;
507 bool alloc_from_cache;
508 uint64_t bo_size;
509 bool zeroed = false;
510
511 if (flags & BO_ALLOC_ZEROED)
512 zeroed = true;
513
514 /* Round the allocated size up to a power of two number of pages. */
515 bucket = bucket_for_size(bufmgr, size);
516
517 /* If we don't have caching at this size, don't actually round the
518 * allocation up.
519 */
520 if (bucket == NULL) {
521 bo_size = MAX2(ALIGN(size, page_size), page_size);
522 } else {
523 bo_size = bucket->size;
524 }
525
526 mtx_lock(&bufmgr->lock);
527 /* Get a buffer out of the cache if available */
528 retry:
529 alloc_from_cache = false;
530 if (bucket != NULL && !list_empty(&bucket->head)) {
531 /* If the last BO in the cache is idle, then reuse it. Otherwise,
532 * allocate a fresh buffer to avoid stalling.
533 */
534 bo = LIST_ENTRY(struct iris_bo, bucket->head.next, head);
535 if (!iris_bo_busy(bo)) {
536 alloc_from_cache = true;
537 list_del(&bo->head);
538 }
539
540 if (alloc_from_cache) {
541 if (!iris_bo_madvise(bo, I915_MADV_WILLNEED)) {
542 bo_free(bo);
543 iris_bo_cache_purge_bucket(bufmgr, bucket);
544 goto retry;
545 }
546
547 if (bo_set_tiling_internal(bo, tiling_mode, stride)) {
548 bo_free(bo);
549 goto retry;
550 }
551
552 if (zeroed) {
553 void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
554 if (!map) {
555 bo_free(bo);
556 goto retry;
557 }
558 memset(map, 0, bo_size);
559 }
560 }
561 }
562
563 if (alloc_from_cache) {
564 /* If the cached BO isn't in the right memory zone, free the old
565 * memory and assign it a new address.
566 */
567 if (memzone != memzone_for_address(bo->gtt_offset)) {
568 vma_free(bufmgr, bo->gtt_offset, bo_size);
569 bo->gtt_offset = 0ull;
570 }
571 } else {
572 bo = bo_calloc();
573 if (!bo)
574 goto err;
575
576 bo->size = bo_size;
577 bo->idle = true;
578
579 struct drm_i915_gem_create create = { .size = bo_size };
580
581 /* All new BOs we get from the kernel are zeroed, so we don't need to
582 * worry about that here.
583 */
584 ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create);
585 if (ret != 0) {
586 free(bo);
587 goto err;
588 }
589
590 bo->gem_handle = create.handle;
591
592 bo->bufmgr = bufmgr;
593
594 bo->tiling_mode = I915_TILING_NONE;
595 bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
596 bo->stride = 0;
597
598 if (bo_set_tiling_internal(bo, tiling_mode, stride))
599 goto err_free;
600
601 /* Calling set_domain() will allocate pages for the BO outside of the
602 * struct mutex lock in the kernel, which is more efficient than waiting
603 * to create them during the first execbuf that uses the BO.
604 */
605 struct drm_i915_gem_set_domain sd = {
606 .handle = bo->gem_handle,
607 .read_domains = I915_GEM_DOMAIN_CPU,
608 .write_domain = 0,
609 };
610
611 if (drm_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0)
612 goto err_free;
613 }
614
615 bo->name = name;
616 p_atomic_set(&bo->refcount, 1);
617 bo->reusable = bucket && bufmgr->bo_reuse;
618 bo->cache_coherent = bufmgr->has_llc;
619 bo->index = -1;
620 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
621
622 if (bo->gtt_offset == 0ull) {
623 bo->gtt_offset = vma_alloc(bufmgr, memzone, bo->size, 1);
624
625 if (bo->gtt_offset == 0ull)
626 goto err_free;
627 }
628
629 mtx_unlock(&bufmgr->lock);
630
631 DBG("bo_create: buf %d (%s) %llub\n", bo->gem_handle, bo->name,
632 (unsigned long long) size);
633
634 return bo;
635
636 err_free:
637 bo_free(bo);
638 err:
639 mtx_unlock(&bufmgr->lock);
640 return NULL;
641 }
642
643 struct iris_bo *
644 iris_bo_alloc(struct iris_bufmgr *bufmgr,
645 const char *name,
646 uint64_t size,
647 enum iris_memory_zone memzone)
648 {
649 return bo_alloc_internal(bufmgr, name, size, memzone,
650 0, I915_TILING_NONE, 0);
651 }
652
653 struct iris_bo *
654 iris_bo_alloc_tiled(struct iris_bufmgr *bufmgr, const char *name,
655 uint64_t size, enum iris_memory_zone memzone,
656 uint32_t tiling_mode, uint32_t pitch, unsigned flags)
657 {
658 return bo_alloc_internal(bufmgr, name, size, memzone,
659 flags, tiling_mode, pitch);
660 }
661
662 struct iris_bo *
663 iris_bo_create_userptr(struct iris_bufmgr *bufmgr, const char *name,
664 void *ptr, size_t size,
665 enum iris_memory_zone memzone)
666 {
667 struct iris_bo *bo;
668
669 bo = bo_calloc();
670 if (!bo)
671 return NULL;
672
673 struct drm_i915_gem_userptr arg = {
674 .user_ptr = (uintptr_t)ptr,
675 .user_size = size,
676 };
677 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_USERPTR, &arg))
678 goto err_free;
679 bo->gem_handle = arg.handle;
680
681 /* Check the buffer for validity before we try and use it in a batch */
682 struct drm_i915_gem_set_domain sd = {
683 .handle = bo->gem_handle,
684 .read_domains = I915_GEM_DOMAIN_CPU,
685 };
686 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd))
687 goto err_close;
688
689 bo->name = name;
690 bo->size = size;
691 bo->map_cpu = ptr;
692
693 bo->bufmgr = bufmgr;
694 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
695 bo->gtt_offset = vma_alloc(bufmgr, memzone, size, 1);
696 if (bo->gtt_offset == 0ull)
697 goto err_close;
698
699 p_atomic_set(&bo->refcount, 1);
700 bo->userptr = true;
701 bo->cache_coherent = true;
702 bo->index = -1;
703 bo->idle = true;
704
705 return bo;
706
707 err_close:
708 drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &bo->gem_handle);
709 err_free:
710 free(bo);
711 return NULL;
712 }
713
714 /**
715 * Returns a iris_bo wrapping the given buffer object handle.
716 *
717 * This can be used when one application needs to pass a buffer object
718 * to another.
719 */
720 struct iris_bo *
721 iris_bo_gem_create_from_name(struct iris_bufmgr *bufmgr,
722 const char *name, unsigned int handle)
723 {
724 struct iris_bo *bo;
725
726 /* At the moment most applications only have a few named bo.
727 * For instance, in a DRI client only the render buffers passed
728 * between X and the client are named. And since X returns the
729 * alternating names for the front/back buffer a linear search
730 * provides a sufficiently fast match.
731 */
732 mtx_lock(&bufmgr->lock);
733 bo = hash_find_bo(bufmgr->name_table, handle);
734 if (bo) {
735 iris_bo_reference(bo);
736 goto out;
737 }
738
739 struct drm_gem_open open_arg = { .name = handle };
740 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
741 if (ret != 0) {
742 DBG("Couldn't reference %s handle 0x%08x: %s\n",
743 name, handle, strerror(errno));
744 bo = NULL;
745 goto out;
746 }
747 /* Now see if someone has used a prime handle to get this
748 * object from the kernel before by looking through the list
749 * again for a matching gem_handle
750 */
751 bo = hash_find_bo(bufmgr->handle_table, open_arg.handle);
752 if (bo) {
753 iris_bo_reference(bo);
754 goto out;
755 }
756
757 bo = bo_calloc();
758 if (!bo)
759 goto out;
760
761 p_atomic_set(&bo->refcount, 1);
762
763 bo->size = open_arg.size;
764 bo->gtt_offset = 0;
765 bo->bufmgr = bufmgr;
766 bo->gem_handle = open_arg.handle;
767 bo->name = name;
768 bo->global_name = handle;
769 bo->reusable = false;
770 bo->external = true;
771 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
772 bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
773
774 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
775 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
776
777 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
778 ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
779 if (ret != 0)
780 goto err_unref;
781
782 bo->tiling_mode = get_tiling.tiling_mode;
783 bo->swizzle_mode = get_tiling.swizzle_mode;
784 /* XXX stride is unknown */
785 DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
786
787 out:
788 mtx_unlock(&bufmgr->lock);
789 return bo;
790
791 err_unref:
792 bo_free(bo);
793 mtx_unlock(&bufmgr->lock);
794 return NULL;
795 }
796
797 static void
798 bo_free(struct iris_bo *bo)
799 {
800 struct iris_bufmgr *bufmgr = bo->bufmgr;
801
802 if (bo->map_cpu && !bo->userptr) {
803 VG_NOACCESS(bo->map_cpu, bo->size);
804 munmap(bo->map_cpu, bo->size);
805 }
806 if (bo->map_wc) {
807 VG_NOACCESS(bo->map_wc, bo->size);
808 munmap(bo->map_wc, bo->size);
809 }
810 if (bo->map_gtt) {
811 VG_NOACCESS(bo->map_gtt, bo->size);
812 munmap(bo->map_gtt, bo->size);
813 }
814
815 if (bo->external) {
816 struct hash_entry *entry;
817
818 if (bo->global_name) {
819 entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
820 _mesa_hash_table_remove(bufmgr->name_table, entry);
821 }
822
823 entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
824 _mesa_hash_table_remove(bufmgr->handle_table, entry);
825 }
826
827 /* Close this object */
828 struct drm_gem_close close = { .handle = bo->gem_handle };
829 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
830 if (ret != 0) {
831 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
832 bo->gem_handle, bo->name, strerror(errno));
833 }
834
835 vma_free(bo->bufmgr, bo->gtt_offset, bo->size);
836
837 free(bo);
838 }
839
840 /** Frees all cached buffers significantly older than @time. */
841 static void
842 cleanup_bo_cache(struct iris_bufmgr *bufmgr, time_t time)
843 {
844 int i;
845
846 if (bufmgr->time == time)
847 return;
848
849 for (i = 0; i < bufmgr->num_buckets; i++) {
850 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
851
852 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
853 if (time - bo->free_time <= 1)
854 break;
855
856 list_del(&bo->head);
857
858 bo_free(bo);
859 }
860 }
861
862 bufmgr->time = time;
863 }
864
865 static void
866 bo_unreference_final(struct iris_bo *bo, time_t time)
867 {
868 struct iris_bufmgr *bufmgr = bo->bufmgr;
869 struct bo_cache_bucket *bucket;
870
871 DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
872
873 bucket = NULL;
874 if (bo->reusable)
875 bucket = bucket_for_size(bufmgr, bo->size);
876 /* Put the buffer into our internal cache for reuse if we can. */
877 if (bucket && iris_bo_madvise(bo, I915_MADV_DONTNEED)) {
878 bo->free_time = time;
879 bo->name = NULL;
880
881 list_addtail(&bo->head, &bucket->head);
882 } else {
883 bo_free(bo);
884 }
885 }
886
887 void
888 iris_bo_unreference(struct iris_bo *bo)
889 {
890 if (bo == NULL)
891 return;
892
893 assert(p_atomic_read(&bo->refcount) > 0);
894
895 if (atomic_add_unless(&bo->refcount, -1, 1)) {
896 struct iris_bufmgr *bufmgr = bo->bufmgr;
897 struct timespec time;
898
899 clock_gettime(CLOCK_MONOTONIC, &time);
900
901 mtx_lock(&bufmgr->lock);
902
903 if (p_atomic_dec_zero(&bo->refcount)) {
904 bo_unreference_final(bo, time.tv_sec);
905 cleanup_bo_cache(bufmgr, time.tv_sec);
906 }
907
908 mtx_unlock(&bufmgr->lock);
909 }
910 }
911
912 static void
913 bo_wait_with_stall_warning(struct pipe_debug_callback *dbg,
914 struct iris_bo *bo,
915 const char *action)
916 {
917 bool busy = dbg && !bo->idle;
918 double elapsed = unlikely(busy) ? -get_time() : 0.0;
919
920 iris_bo_wait_rendering(bo);
921
922 if (unlikely(busy)) {
923 elapsed += get_time();
924 if (elapsed > 1e-5) /* 0.01ms */ {
925 perf_debug(dbg, "%s a busy \"%s\" BO stalled and took %.03f ms.\n",
926 action, bo->name, elapsed * 1000);
927 }
928 }
929 }
930
931 static void
932 print_flags(unsigned flags)
933 {
934 if (flags & MAP_READ)
935 DBG("READ ");
936 if (flags & MAP_WRITE)
937 DBG("WRITE ");
938 if (flags & MAP_ASYNC)
939 DBG("ASYNC ");
940 if (flags & MAP_PERSISTENT)
941 DBG("PERSISTENT ");
942 if (flags & MAP_COHERENT)
943 DBG("COHERENT ");
944 if (flags & MAP_RAW)
945 DBG("RAW ");
946 DBG("\n");
947 }
948
949 static void *
950 iris_bo_map_cpu(struct pipe_debug_callback *dbg,
951 struct iris_bo *bo, unsigned flags)
952 {
953 struct iris_bufmgr *bufmgr = bo->bufmgr;
954
955 /* We disallow CPU maps for writing to non-coherent buffers, as the
956 * CPU map can become invalidated when a batch is flushed out, which
957 * can happen at unpredictable times. You should use WC maps instead.
958 */
959 assert(bo->cache_coherent || !(flags & MAP_WRITE));
960
961 if (!bo->map_cpu) {
962 DBG("iris_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name);
963
964 struct drm_i915_gem_mmap mmap_arg = {
965 .handle = bo->gem_handle,
966 .size = bo->size,
967 };
968 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
969 if (ret != 0) {
970 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
971 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
972 return NULL;
973 }
974 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
975 VG_DEFINED(map, bo->size);
976
977 if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) {
978 VG_NOACCESS(map, bo->size);
979 munmap(map, bo->size);
980 }
981 }
982 assert(bo->map_cpu);
983
984 DBG("iris_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name,
985 bo->map_cpu);
986 print_flags(flags);
987
988 if (!(flags & MAP_ASYNC)) {
989 bo_wait_with_stall_warning(dbg, bo, "CPU mapping");
990 }
991
992 if (!bo->cache_coherent && !bo->bufmgr->has_llc) {
993 /* If we're reusing an existing CPU mapping, the CPU caches may
994 * contain stale data from the last time we read from that mapping.
995 * (With the BO cache, it might even be data from a previous buffer!)
996 * Even if it's a brand new mapping, the kernel may have zeroed the
997 * buffer via CPU writes.
998 *
999 * We need to invalidate those cachelines so that we see the latest
1000 * contents, and so long as we only read from the CPU mmap we do not
1001 * need to write those cachelines back afterwards.
1002 *
1003 * On LLC, the emprical evidence suggests that writes from the GPU
1004 * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU
1005 * cachelines. (Other reads, such as the display engine, bypass the
1006 * LLC entirely requiring us to keep dirty pixels for the scanout
1007 * out of any cache.)
1008 */
1009 gen_invalidate_range(bo->map_cpu, bo->size);
1010 }
1011
1012 return bo->map_cpu;
1013 }
1014
1015 static void *
1016 iris_bo_map_wc(struct pipe_debug_callback *dbg,
1017 struct iris_bo *bo, unsigned flags)
1018 {
1019 struct iris_bufmgr *bufmgr = bo->bufmgr;
1020
1021 if (!bo->map_wc) {
1022 DBG("iris_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name);
1023
1024 struct drm_i915_gem_mmap mmap_arg = {
1025 .handle = bo->gem_handle,
1026 .size = bo->size,
1027 .flags = I915_MMAP_WC,
1028 };
1029 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
1030 if (ret != 0) {
1031 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1032 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1033 return NULL;
1034 }
1035
1036 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
1037 VG_DEFINED(map, bo->size);
1038
1039 if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) {
1040 VG_NOACCESS(map, bo->size);
1041 munmap(map, bo->size);
1042 }
1043 }
1044 assert(bo->map_wc);
1045
1046 DBG("iris_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc);
1047 print_flags(flags);
1048
1049 if (!(flags & MAP_ASYNC)) {
1050 bo_wait_with_stall_warning(dbg, bo, "WC mapping");
1051 }
1052
1053 return bo->map_wc;
1054 }
1055
1056 /**
1057 * Perform an uncached mapping via the GTT.
1058 *
1059 * Write access through the GTT is not quite fully coherent. On low power
1060 * systems especially, like modern Atoms, we can observe reads from RAM before
1061 * the write via GTT has landed. A write memory barrier that flushes the Write
1062 * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later
1063 * read after the write as the GTT write suffers a small delay through the GTT
1064 * indirection. The kernel uses an uncached mmio read to ensure the GTT write
1065 * is ordered with reads (either by the GPU, WB or WC) and unconditionally
1066 * flushes prior to execbuf submission. However, if we are not informing the
1067 * kernel about our GTT writes, it will not flush before earlier access, such
1068 * as when using the cmdparser. Similarly, we need to be careful if we should
1069 * ever issue a CPU read immediately following a GTT write.
1070 *
1071 * Telling the kernel about write access also has one more important
1072 * side-effect. Upon receiving notification about the write, it cancels any
1073 * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by
1074 * either SW_FINISH or DIRTYFB. The presumption is that we never write to the
1075 * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR
1076 * tracking is handled on the buffer exchange instead.
1077 */
1078 static void *
1079 iris_bo_map_gtt(struct pipe_debug_callback *dbg,
1080 struct iris_bo *bo, unsigned flags)
1081 {
1082 struct iris_bufmgr *bufmgr = bo->bufmgr;
1083
1084 /* Get a mapping of the buffer if we haven't before. */
1085 if (bo->map_gtt == NULL) {
1086 DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name);
1087
1088 struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle };
1089
1090 /* Get the fake offset back... */
1091 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
1092 if (ret != 0) {
1093 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1094 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1095 return NULL;
1096 }
1097
1098 /* and mmap it. */
1099 void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE,
1100 MAP_SHARED, bufmgr->fd, mmap_arg.offset);
1101 if (map == MAP_FAILED) {
1102 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1103 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1104 return NULL;
1105 }
1106
1107 /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will
1108 * already intercept this mmap call. However, for consistency between
1109 * all the mmap paths, we mark the pointer as defined now and mark it
1110 * as inaccessible afterwards.
1111 */
1112 VG_DEFINED(map, bo->size);
1113
1114 if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) {
1115 VG_NOACCESS(map, bo->size);
1116 munmap(map, bo->size);
1117 }
1118 }
1119 assert(bo->map_gtt);
1120
1121 DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt);
1122 print_flags(flags);
1123
1124 if (!(flags & MAP_ASYNC)) {
1125 bo_wait_with_stall_warning(dbg, bo, "GTT mapping");
1126 }
1127
1128 return bo->map_gtt;
1129 }
1130
1131 static bool
1132 can_map_cpu(struct iris_bo *bo, unsigned flags)
1133 {
1134 if (bo->cache_coherent)
1135 return true;
1136
1137 /* Even if the buffer itself is not cache-coherent (such as a scanout), on
1138 * an LLC platform reads always are coherent (as they are performed via the
1139 * central system agent). It is just the writes that we need to take special
1140 * care to ensure that land in main memory and not stick in the CPU cache.
1141 */
1142 if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc)
1143 return true;
1144
1145 /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid
1146 * across batch flushes where the kernel will change cache domains of the
1147 * bo, invalidating continued access to the CPU mmap on non-LLC device.
1148 *
1149 * Similarly, ASYNC typically means that the buffer will be accessed via
1150 * both the CPU and the GPU simultaneously. Batches may be executed that
1151 * use the BO even while it is mapped. While OpenGL technically disallows
1152 * most drawing while non-persistent mappings are active, we may still use
1153 * the GPU for blits or other operations, causing batches to happen at
1154 * inconvenient times.
1155 */
1156 if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC))
1157 return false;
1158
1159 return !(flags & MAP_WRITE);
1160 }
1161
1162 void *
1163 iris_bo_map(struct pipe_debug_callback *dbg,
1164 struct iris_bo *bo, unsigned flags)
1165 {
1166 if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW))
1167 return iris_bo_map_gtt(dbg, bo, flags);
1168
1169 void *map;
1170
1171 if (can_map_cpu(bo, flags))
1172 map = iris_bo_map_cpu(dbg, bo, flags);
1173 else
1174 map = iris_bo_map_wc(dbg, bo, flags);
1175
1176 /* Allow the attempt to fail by falling back to the GTT where necessary.
1177 *
1178 * Not every buffer can be mmaped directly using the CPU (or WC), for
1179 * example buffers that wrap stolen memory or are imported from other
1180 * devices. For those, we have little choice but to use a GTT mmapping.
1181 * However, if we use a slow GTT mmapping for reads where we expected fast
1182 * access, that order of magnitude difference in throughput will be clearly
1183 * expressed by angry users.
1184 *
1185 * We skip MAP_RAW because we want to avoid map_gtt's fence detiling.
1186 */
1187 if (!map && !(flags & MAP_RAW)) {
1188 perf_debug(dbg, "Fallback GTT mapping for %s with access flags %x\n",
1189 bo->name, flags);
1190 map = iris_bo_map_gtt(dbg, bo, flags);
1191 }
1192
1193 return map;
1194 }
1195
1196 /** Waits for all GPU rendering with the object to have completed. */
1197 void
1198 iris_bo_wait_rendering(struct iris_bo *bo)
1199 {
1200 /* We require a kernel recent enough for WAIT_IOCTL support.
1201 * See intel_init_bufmgr()
1202 */
1203 iris_bo_wait(bo, -1);
1204 }
1205
1206 /**
1207 * Waits on a BO for the given amount of time.
1208 *
1209 * @bo: buffer object to wait for
1210 * @timeout_ns: amount of time to wait in nanoseconds.
1211 * If value is less than 0, an infinite wait will occur.
1212 *
1213 * Returns 0 if the wait was successful ie. the last batch referencing the
1214 * object has completed within the allotted time. Otherwise some negative return
1215 * value describes the error. Of particular interest is -ETIME when the wait has
1216 * failed to yield the desired result.
1217 *
1218 * Similar to iris_bo_wait_rendering except a timeout parameter allows
1219 * the operation to give up after a certain amount of time. Another subtle
1220 * difference is the internal locking semantics are different (this variant does
1221 * not hold the lock for the duration of the wait). This makes the wait subject
1222 * to a larger userspace race window.
1223 *
1224 * The implementation shall wait until the object is no longer actively
1225 * referenced within a batch buffer at the time of the call. The wait will
1226 * not guarantee that the buffer is re-issued via another thread, or an flinked
1227 * handle. Userspace must make sure this race does not occur if such precision
1228 * is important.
1229 *
1230 * Note that some kernels have broken the inifite wait for negative values
1231 * promise, upgrade to latest stable kernels if this is the case.
1232 */
1233 int
1234 iris_bo_wait(struct iris_bo *bo, int64_t timeout_ns)
1235 {
1236 struct iris_bufmgr *bufmgr = bo->bufmgr;
1237
1238 /* If we know it's idle, don't bother with the kernel round trip */
1239 if (bo->idle && !bo->external)
1240 return 0;
1241
1242 struct drm_i915_gem_wait wait = {
1243 .bo_handle = bo->gem_handle,
1244 .timeout_ns = timeout_ns,
1245 };
1246 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1247 if (ret != 0)
1248 return -errno;
1249
1250 bo->idle = true;
1251
1252 return ret;
1253 }
1254
1255 void
1256 iris_bufmgr_destroy(struct iris_bufmgr *bufmgr)
1257 {
1258 mtx_destroy(&bufmgr->lock);
1259
1260 /* Free any cached buffer objects we were going to reuse */
1261 for (int i = 0; i < bufmgr->num_buckets; i++) {
1262 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1263
1264 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1265 list_del(&bo->head);
1266
1267 bo_free(bo);
1268 }
1269
1270 for (int z = 0; z < IRIS_MEMZONE_COUNT; z++)
1271 util_dynarray_fini(&bucket->vma_list[z]);
1272 }
1273
1274 _mesa_hash_table_destroy(bufmgr->name_table, NULL);
1275 _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
1276
1277 for (int z = 0; z < IRIS_MEMZONE_COUNT; z++) {
1278 util_vma_heap_finish(&bufmgr->vma_allocator[z]);
1279 }
1280
1281 free(bufmgr);
1282 }
1283
1284 static int
1285 bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode,
1286 uint32_t stride)
1287 {
1288 struct iris_bufmgr *bufmgr = bo->bufmgr;
1289 struct drm_i915_gem_set_tiling set_tiling;
1290 int ret;
1291
1292 if (bo->global_name == 0 &&
1293 tiling_mode == bo->tiling_mode && stride == bo->stride)
1294 return 0;
1295
1296 memset(&set_tiling, 0, sizeof(set_tiling));
1297 do {
1298 /* set_tiling is slightly broken and overwrites the
1299 * input on the error path, so we have to open code
1300 * drm_ioctl.
1301 */
1302 set_tiling.handle = bo->gem_handle;
1303 set_tiling.tiling_mode = tiling_mode;
1304 set_tiling.stride = stride;
1305
1306 ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
1307 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
1308 if (ret == -1)
1309 return -errno;
1310
1311 bo->tiling_mode = set_tiling.tiling_mode;
1312 bo->swizzle_mode = set_tiling.swizzle_mode;
1313 bo->stride = set_tiling.stride;
1314 return 0;
1315 }
1316
1317 int
1318 iris_bo_get_tiling(struct iris_bo *bo, uint32_t *tiling_mode,
1319 uint32_t *swizzle_mode)
1320 {
1321 *tiling_mode = bo->tiling_mode;
1322 *swizzle_mode = bo->swizzle_mode;
1323 return 0;
1324 }
1325
1326 struct iris_bo *
1327 iris_bo_import_dmabuf(struct iris_bufmgr *bufmgr, int prime_fd)
1328 {
1329 uint32_t handle;
1330 struct iris_bo *bo;
1331
1332 mtx_lock(&bufmgr->lock);
1333 int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1334 if (ret) {
1335 DBG("import_dmabuf: failed to obtain handle from fd: %s\n",
1336 strerror(errno));
1337 mtx_unlock(&bufmgr->lock);
1338 return NULL;
1339 }
1340
1341 /*
1342 * See if the kernel has already returned this buffer to us. Just as
1343 * for named buffers, we must not create two bo's pointing at the same
1344 * kernel object
1345 */
1346 bo = hash_find_bo(bufmgr->handle_table, handle);
1347 if (bo) {
1348 iris_bo_reference(bo);
1349 goto out;
1350 }
1351
1352 bo = bo_calloc();
1353 if (!bo)
1354 goto out;
1355
1356 p_atomic_set(&bo->refcount, 1);
1357
1358 /* Determine size of bo. The fd-to-handle ioctl really should
1359 * return the size, but it doesn't. If we have kernel 3.12 or
1360 * later, we can lseek on the prime fd to get the size. Older
1361 * kernels will just fail, in which case we fall back to the
1362 * provided (estimated or guess size). */
1363 ret = lseek(prime_fd, 0, SEEK_END);
1364 if (ret != -1)
1365 bo->size = ret;
1366
1367 bo->bufmgr = bufmgr;
1368
1369 bo->gem_handle = handle;
1370 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1371
1372 bo->name = "prime";
1373 bo->reusable = false;
1374 bo->external = true;
1375 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1376 bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
1377
1378 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
1379 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
1380 goto err;
1381
1382 bo->tiling_mode = get_tiling.tiling_mode;
1383 bo->swizzle_mode = get_tiling.swizzle_mode;
1384 /* XXX stride is unknown */
1385
1386 out:
1387 mtx_unlock(&bufmgr->lock);
1388 return bo;
1389
1390 err:
1391 bo_free(bo);
1392 mtx_unlock(&bufmgr->lock);
1393 return NULL;
1394 }
1395
1396 static void
1397 iris_bo_make_external(struct iris_bo *bo)
1398 {
1399 struct iris_bufmgr *bufmgr = bo->bufmgr;
1400
1401 if (!bo->external) {
1402 mtx_lock(&bufmgr->lock);
1403 if (!bo->external) {
1404 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1405 bo->external = true;
1406 }
1407 mtx_unlock(&bufmgr->lock);
1408 }
1409 }
1410
1411 int
1412 iris_bo_export_dmabuf(struct iris_bo *bo, int *prime_fd)
1413 {
1414 struct iris_bufmgr *bufmgr = bo->bufmgr;
1415
1416 iris_bo_make_external(bo);
1417
1418 if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1419 DRM_CLOEXEC, prime_fd) != 0)
1420 return -errno;
1421
1422 bo->reusable = false;
1423
1424 return 0;
1425 }
1426
1427 uint32_t
1428 iris_bo_export_gem_handle(struct iris_bo *bo)
1429 {
1430 iris_bo_make_external(bo);
1431
1432 return bo->gem_handle;
1433 }
1434
1435 int
1436 iris_bo_flink(struct iris_bo *bo, uint32_t *name)
1437 {
1438 struct iris_bufmgr *bufmgr = bo->bufmgr;
1439
1440 if (!bo->global_name) {
1441 struct drm_gem_flink flink = { .handle = bo->gem_handle };
1442
1443 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
1444 return -errno;
1445
1446 iris_bo_make_external(bo);
1447 mtx_lock(&bufmgr->lock);
1448 if (!bo->global_name) {
1449 bo->global_name = flink.name;
1450 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
1451 }
1452 mtx_unlock(&bufmgr->lock);
1453
1454 bo->reusable = false;
1455 }
1456
1457 *name = bo->global_name;
1458 return 0;
1459 }
1460
1461 static void
1462 add_bucket(struct iris_bufmgr *bufmgr, int size)
1463 {
1464 unsigned int i = bufmgr->num_buckets;
1465
1466 assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
1467
1468 list_inithead(&bufmgr->cache_bucket[i].head);
1469 for (int z = 0; z < IRIS_MEMZONE_COUNT; z++)
1470 util_dynarray_init(&bufmgr->cache_bucket[i].vma_list[z], NULL);
1471 bufmgr->cache_bucket[i].size = size;
1472 bufmgr->num_buckets++;
1473
1474 assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]);
1475 assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]);
1476 assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]);
1477 }
1478
1479 static void
1480 init_cache_buckets(struct iris_bufmgr *bufmgr)
1481 {
1482 uint64_t size, cache_max_size = 64 * 1024 * 1024;
1483
1484 /* OK, so power of two buckets was too wasteful of memory.
1485 * Give 3 other sizes between each power of two, to hopefully
1486 * cover things accurately enough. (The alternative is
1487 * probably to just go for exact matching of sizes, and assume
1488 * that for things like composited window resize the tiled
1489 * width/height alignment and rounding of sizes to pages will
1490 * get us useful cache hit rates anyway)
1491 */
1492 add_bucket(bufmgr, PAGE_SIZE);
1493 add_bucket(bufmgr, PAGE_SIZE * 2);
1494 add_bucket(bufmgr, PAGE_SIZE * 3);
1495
1496 /* Initialize the linked lists for BO reuse cache. */
1497 for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) {
1498 add_bucket(bufmgr, size);
1499
1500 add_bucket(bufmgr, size + size * 1 / 4);
1501 add_bucket(bufmgr, size + size * 2 / 4);
1502 add_bucket(bufmgr, size + size * 3 / 4);
1503 }
1504 }
1505
1506 uint32_t
1507 iris_create_hw_context(struct iris_bufmgr *bufmgr)
1508 {
1509 struct drm_i915_gem_context_create create = { };
1510 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
1511 if (ret != 0) {
1512 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
1513 return 0;
1514 }
1515
1516 return create.ctx_id;
1517 }
1518
1519 int
1520 iris_hw_context_set_priority(struct iris_bufmgr *bufmgr,
1521 uint32_t ctx_id,
1522 int priority)
1523 {
1524 struct drm_i915_gem_context_param p = {
1525 .ctx_id = ctx_id,
1526 .param = I915_CONTEXT_PARAM_PRIORITY,
1527 .value = priority,
1528 };
1529 int err;
1530
1531 err = 0;
1532 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p))
1533 err = -errno;
1534
1535 return err;
1536 }
1537
1538 void
1539 iris_destroy_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
1540 {
1541 struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id };
1542
1543 if (ctx_id != 0 &&
1544 drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
1545 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
1546 strerror(errno));
1547 }
1548 }
1549
1550 int
1551 iris_reg_read(struct iris_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
1552 {
1553 struct drm_i915_reg_read reg_read = { .offset = offset };
1554 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
1555
1556 *result = reg_read.val;
1557 return ret;
1558 }
1559
1560 /**
1561 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
1562 * and manage map buffer objections.
1563 *
1564 * \param fd File descriptor of the opened DRM device.
1565 */
1566 struct iris_bufmgr *
1567 iris_bufmgr_init(struct gen_device_info *devinfo, int fd)
1568 {
1569 struct iris_bufmgr *bufmgr = calloc(1, sizeof(*bufmgr));
1570 if (bufmgr == NULL)
1571 return NULL;
1572
1573 /* Handles to buffer objects belong to the device fd and are not
1574 * reference counted by the kernel. If the same fd is used by
1575 * multiple parties (threads sharing the same screen bufmgr, or
1576 * even worse the same device fd passed to multiple libraries)
1577 * ownership of those handles is shared by those independent parties.
1578 *
1579 * Don't do this! Ensure that each library/bufmgr has its own device
1580 * fd so that its namespace does not clash with another.
1581 */
1582 bufmgr->fd = fd;
1583
1584 if (mtx_init(&bufmgr->lock, mtx_plain) != 0) {
1585 free(bufmgr);
1586 return NULL;
1587 }
1588
1589 bufmgr->has_llc = devinfo->has_llc;
1590
1591 STATIC_ASSERT(IRIS_MEMZONE_SHADER_START == 0ull);
1592 const uint64_t _4GB = 1ull << 32;
1593
1594 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SHADER],
1595 PAGE_SIZE, _4GB);
1596 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SURFACE],
1597 IRIS_MEMZONE_SURFACE_START + IRIS_BINDER_SIZE,
1598 _4GB - IRIS_BINDER_SIZE);
1599 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_DYNAMIC],
1600 IRIS_MEMZONE_DYNAMIC_START + IRIS_BORDER_COLOR_POOL_SIZE,
1601 _4GB - IRIS_BORDER_COLOR_POOL_SIZE);
1602 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_OTHER],
1603 IRIS_MEMZONE_OTHER_START,
1604 (1ull << 48) - IRIS_MEMZONE_OTHER_START);
1605
1606 // XXX: driconf
1607 bufmgr->bo_reuse = env_var_as_boolean("bo_reuse", true);
1608
1609 init_cache_buckets(bufmgr);
1610
1611 bufmgr->name_table =
1612 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1613 bufmgr->handle_table =
1614 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1615
1616 return bufmgr;
1617 }