iris: Support multiple binder BOs, update Surface State Base Address
[mesa.git] / src / gallium / drivers / iris / iris_bufmgr.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_bufmgr.c
25 *
26 * The Iris buffer manager.
27 *
28 * XXX: write better comments
29 * - BOs
30 * - Explain BO cache
31 * - main interface to GEM in the kernel
32 */
33
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37
38 #include <xf86drm.h>
39 #include <util/u_atomic.h>
40 #include <fcntl.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <assert.h>
46 #include <sys/ioctl.h>
47 #include <sys/mman.h>
48 #include <sys/stat.h>
49 #include <sys/types.h>
50 #include <stdbool.h>
51 #include <time.h>
52
53 #include "errno.h"
54 #ifndef ETIME
55 #define ETIME ETIMEDOUT
56 #endif
57 #include "common/gen_clflush.h"
58 #include "common/gen_debug.h"
59 #include "common/gen_gem.h"
60 #include "dev/gen_device_info.h"
61 #include "main/macros.h"
62 #include "util/debug.h"
63 #include "util/macros.h"
64 #include "util/hash_table.h"
65 #include "util/list.h"
66 #include "util/u_dynarray.h"
67 #include "util/vma.h"
68 #include "iris_bufmgr.h"
69 #include "iris_context.h"
70 #include "string.h"
71
72 #include "drm-uapi/i915_drm.h"
73
74 #ifdef HAVE_VALGRIND
75 #include <valgrind.h>
76 #include <memcheck.h>
77 #define VG(x) x
78 #else
79 #define VG(x)
80 #endif
81
82 /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
83 * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
84 * leaked. All because it does not call VG(cli_free) from its
85 * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
86 * and allocation, we mark it available for use upon mmapping and remove
87 * it upon unmapping.
88 */
89 #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
90 #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
91
92 #define PAGE_SIZE 4096
93
94 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
95
96 /**
97 * Call ioctl, restarting if it is interupted
98 */
99 int
100 drm_ioctl(int fd, unsigned long request, void *arg)
101 {
102 int ret;
103
104 do {
105 ret = ioctl(fd, request, arg);
106 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
107 return ret;
108 }
109
110 static inline int
111 atomic_add_unless(int *v, int add, int unless)
112 {
113 int c, old;
114 c = p_atomic_read(v);
115 while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
116 c = old;
117 return c == unless;
118 }
119
120 /**
121 * Iris fixed-size bucketing VMA allocator.
122 *
123 * The BO cache maintains "cache buckets" for buffers of various sizes.
124 * All buffers in a given bucket are identically sized - when allocating,
125 * we always round up to the bucket size. This means that virtually all
126 * allocations are fixed-size; only buffers which are too large to fit in
127 * a bucket can be variably-sized.
128 *
129 * We create an allocator for each bucket. Each contains a free-list, where
130 * each node contains a <starting address, 64-bit bitmap> pair. Each bit
131 * represents a bucket-sized block of memory. (At the first level, each
132 * bit corresponds to a page. For the second bucket, bits correspond to
133 * two pages, and so on.) 1 means a block is free, and 0 means it's in-use.
134 * The lowest bit in the bitmap is for the first block.
135 *
136 * This makes allocations cheap - any bit of any node will do. We can pick
137 * the head of the list and use ffs() to find a free block. If there are
138 * none, we allocate 64 blocks from a larger allocator - either a bigger
139 * bucketing allocator, or a fallback top-level allocator for large objects.
140 */
141 struct vma_bucket_node {
142 uint64_t start_address;
143 uint64_t bitmap;
144 };
145
146 struct bo_cache_bucket {
147 /** List of cached BOs. */
148 struct list_head head;
149
150 /** Size of this bucket, in bytes. */
151 uint64_t size;
152
153 /** List of vma_bucket_nodes. */
154 struct util_dynarray vma_list[IRIS_MEMZONE_COUNT];
155 };
156
157 struct iris_bufmgr {
158 int fd;
159
160 mtx_t lock;
161
162 /** Array of lists of cached gem objects of power-of-two sizes */
163 struct bo_cache_bucket cache_bucket[14 * 4];
164 int num_buckets;
165 time_t time;
166
167 struct hash_table *name_table;
168 struct hash_table *handle_table;
169
170 struct util_vma_heap vma_allocator[IRIS_MEMZONE_COUNT];
171
172 bool has_llc:1;
173 bool bo_reuse:1;
174 };
175
176 static int bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode,
177 uint32_t stride);
178
179 static void bo_free(struct iris_bo *bo);
180
181 static uint64_t vma_alloc(struct iris_bufmgr *bufmgr,
182 enum iris_memory_zone memzone,
183 uint64_t size, uint64_t alignment);
184
185 static uint32_t
186 key_hash_uint(const void *key)
187 {
188 return _mesa_hash_data(key, 4);
189 }
190
191 static bool
192 key_uint_equal(const void *a, const void *b)
193 {
194 return *((unsigned *) a) == *((unsigned *) b);
195 }
196
197 static struct iris_bo *
198 hash_find_bo(struct hash_table *ht, unsigned int key)
199 {
200 struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
201 return entry ? (struct iris_bo *) entry->data : NULL;
202 }
203
204 /**
205 * This function finds the correct bucket fit for the input size.
206 * The function works with O(1) complexity when the requested size
207 * was queried instead of iterating the size through all the buckets.
208 */
209 static struct bo_cache_bucket *
210 bucket_for_size(struct iris_bufmgr *bufmgr, uint64_t size)
211 {
212 /* Calculating the pages and rounding up to the page size. */
213 const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
214
215 /* Row Bucket sizes clz((x-1) | 3) Row Column
216 * in pages stride size
217 * 0: 1 2 3 4 -> 30 30 30 30 4 1
218 * 1: 5 6 7 8 -> 29 29 29 29 4 1
219 * 2: 10 12 14 16 -> 28 28 28 28 8 2
220 * 3: 20 24 28 32 -> 27 27 27 27 16 4
221 */
222 const unsigned row = 30 - __builtin_clz((pages - 1) | 3);
223 const unsigned row_max_pages = 4 << row;
224
225 /* The '& ~2' is the special case for row 1. In row 1, max pages /
226 * 2 is 2, but the previous row maximum is zero (because there is
227 * no previous row). All row maximum sizes are power of 2, so that
228 * is the only case where that bit will be set.
229 */
230 const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2;
231 int col_size_log2 = row - 1;
232 col_size_log2 += (col_size_log2 < 0);
233
234 const unsigned col = (pages - prev_row_max_pages +
235 ((1 << col_size_log2) - 1)) >> col_size_log2;
236
237 /* Calculating the index based on the row and column. */
238 const unsigned index = (row * 4) + (col - 1);
239
240 return (index < bufmgr->num_buckets) ?
241 &bufmgr->cache_bucket[index] : NULL;
242 }
243
244 static enum iris_memory_zone
245 memzone_for_address(uint64_t address)
246 {
247 STATIC_ASSERT(IRIS_MEMZONE_OTHER_START > IRIS_MEMZONE_DYNAMIC_START);
248 STATIC_ASSERT(IRIS_MEMZONE_DYNAMIC_START > IRIS_MEMZONE_SURFACE_START);
249 STATIC_ASSERT(IRIS_MEMZONE_SURFACE_START > IRIS_MEMZONE_BINDER_START);
250 STATIC_ASSERT(IRIS_MEMZONE_BINDER_START > IRIS_MEMZONE_SHADER_START);
251 STATIC_ASSERT(IRIS_BORDER_COLOR_POOL_ADDRESS == IRIS_MEMZONE_DYNAMIC_START);
252
253 if (address >= IRIS_MEMZONE_OTHER_START)
254 return IRIS_MEMZONE_OTHER;
255
256 if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
257 return IRIS_MEMZONE_BORDER_COLOR_POOL;
258
259 if (address > IRIS_MEMZONE_DYNAMIC_START)
260 return IRIS_MEMZONE_DYNAMIC;
261
262 if (address > IRIS_MEMZONE_BINDER_START)
263 return IRIS_MEMZONE_BINDER;
264
265 if (address > IRIS_MEMZONE_SURFACE_START)
266 return IRIS_MEMZONE_SURFACE;
267
268 return IRIS_MEMZONE_SHADER;
269 }
270
271 static uint64_t
272 bucket_vma_alloc(struct iris_bufmgr *bufmgr,
273 struct bo_cache_bucket *bucket,
274 enum iris_memory_zone memzone)
275 {
276 struct util_dynarray *vma_list = &bucket->vma_list[memzone];
277 struct vma_bucket_node *node;
278
279 if (vma_list->size == 0) {
280 /* This bucket allocator is out of space - allocate a new block of
281 * memory for 64 blocks from a larger allocator (either a larger
282 * bucket or util_vma).
283 *
284 * We align the address to the node size (64 blocks) so that
285 * bucket_vma_free can easily compute the starting address of this
286 * block by rounding any address we return down to the node size.
287 *
288 * Set the first bit used, and return the start address.
289 */
290 const uint64_t node_size = 64ull * bucket->size;
291 node = util_dynarray_grow(vma_list, sizeof(struct vma_bucket_node));
292
293 if (unlikely(!node))
294 return 0ull;
295
296 uint64_t addr = vma_alloc(bufmgr, memzone, node_size, node_size);
297 node->start_address = gen_48b_address(addr);
298 node->bitmap = ~1ull;
299 return node->start_address;
300 }
301
302 /* Pick any bit from any node - they're all the right size and free. */
303 node = util_dynarray_top_ptr(vma_list, struct vma_bucket_node);
304 int bit = ffsll(node->bitmap) - 1;
305 assert(bit >= 0 && bit <= 63);
306
307 /* Reserve the memory by clearing the bit. */
308 assert((node->bitmap & (1ull << bit)) != 0ull);
309 node->bitmap &= ~(1ull << bit);
310
311 uint64_t addr = node->start_address + bit * bucket->size;
312
313 /* If this node is now completely full, remove it from the free list. */
314 if (node->bitmap == 0ull) {
315 (void) util_dynarray_pop(vma_list, struct vma_bucket_node);
316 }
317
318 return addr;
319 }
320
321 static void
322 bucket_vma_free(struct bo_cache_bucket *bucket, uint64_t address)
323 {
324 enum iris_memory_zone memzone = memzone_for_address(address);
325 struct util_dynarray *vma_list = &bucket->vma_list[memzone];
326 const uint64_t node_bytes = 64ull * bucket->size;
327 struct vma_bucket_node *node = NULL;
328
329 /* bucket_vma_alloc allocates 64 blocks at a time, and aligns it to
330 * that 64 block size. So, we can round down to get the starting address.
331 */
332 uint64_t start = (address / node_bytes) * node_bytes;
333
334 /* Dividing the offset from start by bucket size gives us the bit index. */
335 int bit = (address - start) / bucket->size;
336
337 assert(start + bit * bucket->size == address);
338
339 util_dynarray_foreach(vma_list, struct vma_bucket_node, cur) {
340 if (cur->start_address == start) {
341 node = cur;
342 break;
343 }
344 }
345
346 if (!node) {
347 /* No node - the whole group of 64 blocks must have been in-use. */
348 node = util_dynarray_grow(vma_list, sizeof(struct vma_bucket_node));
349
350 if (unlikely(!node))
351 return; /* bogus, leaks some GPU VMA, but nothing we can do... */
352
353 node->start_address = start;
354 node->bitmap = 0ull;
355 }
356
357 /* Set the bit to return the memory. */
358 assert((node->bitmap & (1ull << bit)) == 0ull);
359 node->bitmap |= 1ull << bit;
360
361 /* The block might be entirely free now, and if so, we could return it
362 * to the larger allocator. But we may as well hang on to it, in case
363 * we get more allocations at this block size.
364 */
365 }
366
367 static struct bo_cache_bucket *
368 get_bucket_allocator(struct iris_bufmgr *bufmgr,
369 enum iris_memory_zone memzone,
370 uint64_t size)
371 {
372 /* Bucketing is not worth using for binders...we'll never have 64... */
373 if (memzone == IRIS_MEMZONE_BINDER)
374 return NULL;
375
376 /* Skip using the bucket allocator for very large sizes, as it allocates
377 * 64 of them and this can balloon rather quickly.
378 */
379 if (size > 1024 * PAGE_SIZE)
380 return NULL;
381
382 struct bo_cache_bucket *bucket = bucket_for_size(bufmgr, size);
383
384 if (bucket && bucket->size == size)
385 return bucket;
386
387 return NULL;
388 }
389
390 /**
391 * Allocate a section of virtual memory for a buffer, assigning an address.
392 *
393 * This uses either the bucket allocator for the given size, or the large
394 * object allocator (util_vma).
395 */
396 static uint64_t
397 vma_alloc(struct iris_bufmgr *bufmgr,
398 enum iris_memory_zone memzone,
399 uint64_t size,
400 uint64_t alignment)
401 {
402 if (memzone == IRIS_MEMZONE_BORDER_COLOR_POOL)
403 return IRIS_BORDER_COLOR_POOL_ADDRESS;
404
405 struct bo_cache_bucket *bucket =
406 get_bucket_allocator(bufmgr, memzone, size);
407 uint64_t addr;
408
409 if (bucket) {
410 addr = bucket_vma_alloc(bufmgr, bucket, memzone);
411 } else {
412 addr = util_vma_heap_alloc(&bufmgr->vma_allocator[memzone], size,
413 alignment);
414 }
415
416 assert((addr >> 48ull) == 0);
417 assert((addr % alignment) == 0);
418
419 return gen_canonical_address(addr);
420 }
421
422 static void
423 vma_free(struct iris_bufmgr *bufmgr,
424 uint64_t address,
425 uint64_t size)
426 {
427 if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
428 return;
429
430 /* Un-canonicalize the address. */
431 address = gen_48b_address(address);
432
433 if (address == 0ull)
434 return;
435
436 enum iris_memory_zone memzone = memzone_for_address(address);
437 struct bo_cache_bucket *bucket =
438 get_bucket_allocator(bufmgr, memzone, size);
439
440 if (bucket) {
441 bucket_vma_free(bucket, address);
442 } else {
443 util_vma_heap_free(&bufmgr->vma_allocator[memzone], address, size);
444 }
445 }
446
447 int
448 iris_bo_busy(struct iris_bo *bo)
449 {
450 struct iris_bufmgr *bufmgr = bo->bufmgr;
451 struct drm_i915_gem_busy busy = { .handle = bo->gem_handle };
452
453 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
454 if (ret == 0) {
455 bo->idle = !busy.busy;
456 return busy.busy;
457 }
458 return false;
459 }
460
461 int
462 iris_bo_madvise(struct iris_bo *bo, int state)
463 {
464 struct drm_i915_gem_madvise madv = {
465 .handle = bo->gem_handle,
466 .madv = state,
467 .retained = 1,
468 };
469
470 drm_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
471
472 return madv.retained;
473 }
474
475 /* drop the oldest entries that have been purged by the kernel */
476 static void
477 iris_bo_cache_purge_bucket(struct iris_bufmgr *bufmgr,
478 struct bo_cache_bucket *bucket)
479 {
480 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
481 if (iris_bo_madvise(bo, I915_MADV_DONTNEED))
482 break;
483
484 list_del(&bo->head);
485 bo_free(bo);
486 }
487 }
488
489 static struct iris_bo *
490 bo_calloc(void)
491 {
492 struct iris_bo *bo = calloc(1, sizeof(*bo));
493 if (bo) {
494 bo->hash = _mesa_hash_pointer(bo);
495 }
496 return bo;
497 }
498
499 static struct iris_bo *
500 bo_alloc_internal(struct iris_bufmgr *bufmgr,
501 const char *name,
502 uint64_t size,
503 enum iris_memory_zone memzone,
504 unsigned flags,
505 uint32_t tiling_mode,
506 uint32_t stride)
507 {
508 struct iris_bo *bo;
509 unsigned int page_size = getpagesize();
510 int ret;
511 struct bo_cache_bucket *bucket;
512 bool alloc_from_cache;
513 uint64_t bo_size;
514 bool zeroed = false;
515
516 if (flags & BO_ALLOC_ZEROED)
517 zeroed = true;
518
519 /* Round the allocated size up to a power of two number of pages. */
520 bucket = bucket_for_size(bufmgr, size);
521
522 /* If we don't have caching at this size, don't actually round the
523 * allocation up.
524 */
525 if (bucket == NULL) {
526 bo_size = MAX2(ALIGN(size, page_size), page_size);
527 } else {
528 bo_size = bucket->size;
529 }
530
531 mtx_lock(&bufmgr->lock);
532 /* Get a buffer out of the cache if available */
533 retry:
534 alloc_from_cache = false;
535 if (bucket != NULL && !list_empty(&bucket->head)) {
536 /* If the last BO in the cache is idle, then reuse it. Otherwise,
537 * allocate a fresh buffer to avoid stalling.
538 */
539 bo = LIST_ENTRY(struct iris_bo, bucket->head.next, head);
540 if (!iris_bo_busy(bo)) {
541 alloc_from_cache = true;
542 list_del(&bo->head);
543 }
544
545 if (alloc_from_cache) {
546 if (!iris_bo_madvise(bo, I915_MADV_WILLNEED)) {
547 bo_free(bo);
548 iris_bo_cache_purge_bucket(bufmgr, bucket);
549 goto retry;
550 }
551
552 if (bo_set_tiling_internal(bo, tiling_mode, stride)) {
553 bo_free(bo);
554 goto retry;
555 }
556
557 if (zeroed) {
558 void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
559 if (!map) {
560 bo_free(bo);
561 goto retry;
562 }
563 memset(map, 0, bo_size);
564 }
565 }
566 }
567
568 if (alloc_from_cache) {
569 /* If the cached BO isn't in the right memory zone, free the old
570 * memory and assign it a new address.
571 */
572 if (memzone != memzone_for_address(bo->gtt_offset)) {
573 vma_free(bufmgr, bo->gtt_offset, bo_size);
574 bo->gtt_offset = 0ull;
575 }
576 } else {
577 bo = bo_calloc();
578 if (!bo)
579 goto err;
580
581 bo->size = bo_size;
582 bo->idle = true;
583
584 struct drm_i915_gem_create create = { .size = bo_size };
585
586 /* All new BOs we get from the kernel are zeroed, so we don't need to
587 * worry about that here.
588 */
589 ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create);
590 if (ret != 0) {
591 free(bo);
592 goto err;
593 }
594
595 bo->gem_handle = create.handle;
596
597 bo->bufmgr = bufmgr;
598
599 bo->tiling_mode = I915_TILING_NONE;
600 bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
601 bo->stride = 0;
602
603 if (bo_set_tiling_internal(bo, tiling_mode, stride))
604 goto err_free;
605
606 /* Calling set_domain() will allocate pages for the BO outside of the
607 * struct mutex lock in the kernel, which is more efficient than waiting
608 * to create them during the first execbuf that uses the BO.
609 */
610 struct drm_i915_gem_set_domain sd = {
611 .handle = bo->gem_handle,
612 .read_domains = I915_GEM_DOMAIN_CPU,
613 .write_domain = 0,
614 };
615
616 if (drm_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0)
617 goto err_free;
618 }
619
620 bo->name = name;
621 p_atomic_set(&bo->refcount, 1);
622 bo->reusable = bucket && bufmgr->bo_reuse;
623 bo->cache_coherent = bufmgr->has_llc;
624 bo->index = -1;
625 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
626
627 /* By default, capture all driver-internal buffers like shader kernels,
628 * surface states, dynamic states, border colors, and so on.
629 */
630 if (memzone < IRIS_MEMZONE_OTHER)
631 bo->kflags |= EXEC_OBJECT_CAPTURE;
632
633 if (bo->gtt_offset == 0ull) {
634 bo->gtt_offset = vma_alloc(bufmgr, memzone, bo->size, 1);
635
636 if (bo->gtt_offset == 0ull)
637 goto err_free;
638 }
639
640 mtx_unlock(&bufmgr->lock);
641
642 DBG("bo_create: buf %d (%s) %llub\n", bo->gem_handle, bo->name,
643 (unsigned long long) size);
644
645 return bo;
646
647 err_free:
648 bo_free(bo);
649 err:
650 mtx_unlock(&bufmgr->lock);
651 return NULL;
652 }
653
654 struct iris_bo *
655 iris_bo_alloc(struct iris_bufmgr *bufmgr,
656 const char *name,
657 uint64_t size,
658 enum iris_memory_zone memzone)
659 {
660 return bo_alloc_internal(bufmgr, name, size, memzone,
661 0, I915_TILING_NONE, 0);
662 }
663
664 struct iris_bo *
665 iris_bo_alloc_tiled(struct iris_bufmgr *bufmgr, const char *name,
666 uint64_t size, enum iris_memory_zone memzone,
667 uint32_t tiling_mode, uint32_t pitch, unsigned flags)
668 {
669 return bo_alloc_internal(bufmgr, name, size, memzone,
670 flags, tiling_mode, pitch);
671 }
672
673 struct iris_bo *
674 iris_bo_create_userptr(struct iris_bufmgr *bufmgr, const char *name,
675 void *ptr, size_t size,
676 enum iris_memory_zone memzone)
677 {
678 struct iris_bo *bo;
679
680 bo = bo_calloc();
681 if (!bo)
682 return NULL;
683
684 struct drm_i915_gem_userptr arg = {
685 .user_ptr = (uintptr_t)ptr,
686 .user_size = size,
687 };
688 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_USERPTR, &arg))
689 goto err_free;
690 bo->gem_handle = arg.handle;
691
692 /* Check the buffer for validity before we try and use it in a batch */
693 struct drm_i915_gem_set_domain sd = {
694 .handle = bo->gem_handle,
695 .read_domains = I915_GEM_DOMAIN_CPU,
696 };
697 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd))
698 goto err_close;
699
700 bo->name = name;
701 bo->size = size;
702 bo->map_cpu = ptr;
703
704 bo->bufmgr = bufmgr;
705 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
706 bo->gtt_offset = vma_alloc(bufmgr, memzone, size, 1);
707 if (bo->gtt_offset == 0ull)
708 goto err_close;
709
710 p_atomic_set(&bo->refcount, 1);
711 bo->userptr = true;
712 bo->cache_coherent = true;
713 bo->index = -1;
714 bo->idle = true;
715
716 return bo;
717
718 err_close:
719 drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &bo->gem_handle);
720 err_free:
721 free(bo);
722 return NULL;
723 }
724
725 /**
726 * Returns a iris_bo wrapping the given buffer object handle.
727 *
728 * This can be used when one application needs to pass a buffer object
729 * to another.
730 */
731 struct iris_bo *
732 iris_bo_gem_create_from_name(struct iris_bufmgr *bufmgr,
733 const char *name, unsigned int handle)
734 {
735 struct iris_bo *bo;
736
737 /* At the moment most applications only have a few named bo.
738 * For instance, in a DRI client only the render buffers passed
739 * between X and the client are named. And since X returns the
740 * alternating names for the front/back buffer a linear search
741 * provides a sufficiently fast match.
742 */
743 mtx_lock(&bufmgr->lock);
744 bo = hash_find_bo(bufmgr->name_table, handle);
745 if (bo) {
746 iris_bo_reference(bo);
747 goto out;
748 }
749
750 struct drm_gem_open open_arg = { .name = handle };
751 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
752 if (ret != 0) {
753 DBG("Couldn't reference %s handle 0x%08x: %s\n",
754 name, handle, strerror(errno));
755 bo = NULL;
756 goto out;
757 }
758 /* Now see if someone has used a prime handle to get this
759 * object from the kernel before by looking through the list
760 * again for a matching gem_handle
761 */
762 bo = hash_find_bo(bufmgr->handle_table, open_arg.handle);
763 if (bo) {
764 iris_bo_reference(bo);
765 goto out;
766 }
767
768 bo = bo_calloc();
769 if (!bo)
770 goto out;
771
772 p_atomic_set(&bo->refcount, 1);
773
774 bo->size = open_arg.size;
775 bo->gtt_offset = 0;
776 bo->bufmgr = bufmgr;
777 bo->gem_handle = open_arg.handle;
778 bo->name = name;
779 bo->global_name = handle;
780 bo->reusable = false;
781 bo->external = true;
782 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
783 bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
784
785 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
786 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
787
788 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
789 ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
790 if (ret != 0)
791 goto err_unref;
792
793 bo->tiling_mode = get_tiling.tiling_mode;
794 bo->swizzle_mode = get_tiling.swizzle_mode;
795 /* XXX stride is unknown */
796 DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
797
798 out:
799 mtx_unlock(&bufmgr->lock);
800 return bo;
801
802 err_unref:
803 bo_free(bo);
804 mtx_unlock(&bufmgr->lock);
805 return NULL;
806 }
807
808 static void
809 bo_free(struct iris_bo *bo)
810 {
811 struct iris_bufmgr *bufmgr = bo->bufmgr;
812
813 if (bo->map_cpu && !bo->userptr) {
814 VG_NOACCESS(bo->map_cpu, bo->size);
815 munmap(bo->map_cpu, bo->size);
816 }
817 if (bo->map_wc) {
818 VG_NOACCESS(bo->map_wc, bo->size);
819 munmap(bo->map_wc, bo->size);
820 }
821 if (bo->map_gtt) {
822 VG_NOACCESS(bo->map_gtt, bo->size);
823 munmap(bo->map_gtt, bo->size);
824 }
825
826 if (bo->external) {
827 struct hash_entry *entry;
828
829 if (bo->global_name) {
830 entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
831 _mesa_hash_table_remove(bufmgr->name_table, entry);
832 }
833
834 entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
835 _mesa_hash_table_remove(bufmgr->handle_table, entry);
836 }
837
838 /* Close this object */
839 struct drm_gem_close close = { .handle = bo->gem_handle };
840 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
841 if (ret != 0) {
842 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
843 bo->gem_handle, bo->name, strerror(errno));
844 }
845
846 vma_free(bo->bufmgr, bo->gtt_offset, bo->size);
847
848 free(bo);
849 }
850
851 /** Frees all cached buffers significantly older than @time. */
852 static void
853 cleanup_bo_cache(struct iris_bufmgr *bufmgr, time_t time)
854 {
855 int i;
856
857 if (bufmgr->time == time)
858 return;
859
860 for (i = 0; i < bufmgr->num_buckets; i++) {
861 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
862
863 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
864 if (time - bo->free_time <= 1)
865 break;
866
867 list_del(&bo->head);
868
869 bo_free(bo);
870 }
871 }
872
873 bufmgr->time = time;
874 }
875
876 static void
877 bo_unreference_final(struct iris_bo *bo, time_t time)
878 {
879 struct iris_bufmgr *bufmgr = bo->bufmgr;
880 struct bo_cache_bucket *bucket;
881
882 DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
883
884 bucket = NULL;
885 if (bo->reusable)
886 bucket = bucket_for_size(bufmgr, bo->size);
887 /* Put the buffer into our internal cache for reuse if we can. */
888 if (bucket && iris_bo_madvise(bo, I915_MADV_DONTNEED)) {
889 bo->free_time = time;
890 bo->name = NULL;
891
892 list_addtail(&bo->head, &bucket->head);
893 } else {
894 bo_free(bo);
895 }
896 }
897
898 void
899 iris_bo_unreference(struct iris_bo *bo)
900 {
901 if (bo == NULL)
902 return;
903
904 assert(p_atomic_read(&bo->refcount) > 0);
905
906 if (atomic_add_unless(&bo->refcount, -1, 1)) {
907 struct iris_bufmgr *bufmgr = bo->bufmgr;
908 struct timespec time;
909
910 clock_gettime(CLOCK_MONOTONIC, &time);
911
912 mtx_lock(&bufmgr->lock);
913
914 if (p_atomic_dec_zero(&bo->refcount)) {
915 bo_unreference_final(bo, time.tv_sec);
916 cleanup_bo_cache(bufmgr, time.tv_sec);
917 }
918
919 mtx_unlock(&bufmgr->lock);
920 }
921 }
922
923 static void
924 bo_wait_with_stall_warning(struct pipe_debug_callback *dbg,
925 struct iris_bo *bo,
926 const char *action)
927 {
928 bool busy = dbg && !bo->idle;
929 double elapsed = unlikely(busy) ? -get_time() : 0.0;
930
931 iris_bo_wait_rendering(bo);
932
933 if (unlikely(busy)) {
934 elapsed += get_time();
935 if (elapsed > 1e-5) /* 0.01ms */ {
936 perf_debug(dbg, "%s a busy \"%s\" BO stalled and took %.03f ms.\n",
937 action, bo->name, elapsed * 1000);
938 }
939 }
940 }
941
942 static void
943 print_flags(unsigned flags)
944 {
945 if (flags & MAP_READ)
946 DBG("READ ");
947 if (flags & MAP_WRITE)
948 DBG("WRITE ");
949 if (flags & MAP_ASYNC)
950 DBG("ASYNC ");
951 if (flags & MAP_PERSISTENT)
952 DBG("PERSISTENT ");
953 if (flags & MAP_COHERENT)
954 DBG("COHERENT ");
955 if (flags & MAP_RAW)
956 DBG("RAW ");
957 DBG("\n");
958 }
959
960 static void *
961 iris_bo_map_cpu(struct pipe_debug_callback *dbg,
962 struct iris_bo *bo, unsigned flags)
963 {
964 struct iris_bufmgr *bufmgr = bo->bufmgr;
965
966 /* We disallow CPU maps for writing to non-coherent buffers, as the
967 * CPU map can become invalidated when a batch is flushed out, which
968 * can happen at unpredictable times. You should use WC maps instead.
969 */
970 assert(bo->cache_coherent || !(flags & MAP_WRITE));
971
972 if (!bo->map_cpu) {
973 DBG("iris_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name);
974
975 struct drm_i915_gem_mmap mmap_arg = {
976 .handle = bo->gem_handle,
977 .size = bo->size,
978 };
979 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
980 if (ret != 0) {
981 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
982 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
983 return NULL;
984 }
985 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
986 VG_DEFINED(map, bo->size);
987
988 if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) {
989 VG_NOACCESS(map, bo->size);
990 munmap(map, bo->size);
991 }
992 }
993 assert(bo->map_cpu);
994
995 DBG("iris_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name,
996 bo->map_cpu);
997 print_flags(flags);
998
999 if (!(flags & MAP_ASYNC)) {
1000 bo_wait_with_stall_warning(dbg, bo, "CPU mapping");
1001 }
1002
1003 if (!bo->cache_coherent && !bo->bufmgr->has_llc) {
1004 /* If we're reusing an existing CPU mapping, the CPU caches may
1005 * contain stale data from the last time we read from that mapping.
1006 * (With the BO cache, it might even be data from a previous buffer!)
1007 * Even if it's a brand new mapping, the kernel may have zeroed the
1008 * buffer via CPU writes.
1009 *
1010 * We need to invalidate those cachelines so that we see the latest
1011 * contents, and so long as we only read from the CPU mmap we do not
1012 * need to write those cachelines back afterwards.
1013 *
1014 * On LLC, the emprical evidence suggests that writes from the GPU
1015 * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU
1016 * cachelines. (Other reads, such as the display engine, bypass the
1017 * LLC entirely requiring us to keep dirty pixels for the scanout
1018 * out of any cache.)
1019 */
1020 gen_invalidate_range(bo->map_cpu, bo->size);
1021 }
1022
1023 return bo->map_cpu;
1024 }
1025
1026 static void *
1027 iris_bo_map_wc(struct pipe_debug_callback *dbg,
1028 struct iris_bo *bo, unsigned flags)
1029 {
1030 struct iris_bufmgr *bufmgr = bo->bufmgr;
1031
1032 if (!bo->map_wc) {
1033 DBG("iris_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name);
1034
1035 struct drm_i915_gem_mmap mmap_arg = {
1036 .handle = bo->gem_handle,
1037 .size = bo->size,
1038 .flags = I915_MMAP_WC,
1039 };
1040 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
1041 if (ret != 0) {
1042 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1043 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1044 return NULL;
1045 }
1046
1047 void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
1048 VG_DEFINED(map, bo->size);
1049
1050 if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) {
1051 VG_NOACCESS(map, bo->size);
1052 munmap(map, bo->size);
1053 }
1054 }
1055 assert(bo->map_wc);
1056
1057 DBG("iris_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc);
1058 print_flags(flags);
1059
1060 if (!(flags & MAP_ASYNC)) {
1061 bo_wait_with_stall_warning(dbg, bo, "WC mapping");
1062 }
1063
1064 return bo->map_wc;
1065 }
1066
1067 /**
1068 * Perform an uncached mapping via the GTT.
1069 *
1070 * Write access through the GTT is not quite fully coherent. On low power
1071 * systems especially, like modern Atoms, we can observe reads from RAM before
1072 * the write via GTT has landed. A write memory barrier that flushes the Write
1073 * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later
1074 * read after the write as the GTT write suffers a small delay through the GTT
1075 * indirection. The kernel uses an uncached mmio read to ensure the GTT write
1076 * is ordered with reads (either by the GPU, WB or WC) and unconditionally
1077 * flushes prior to execbuf submission. However, if we are not informing the
1078 * kernel about our GTT writes, it will not flush before earlier access, such
1079 * as when using the cmdparser. Similarly, we need to be careful if we should
1080 * ever issue a CPU read immediately following a GTT write.
1081 *
1082 * Telling the kernel about write access also has one more important
1083 * side-effect. Upon receiving notification about the write, it cancels any
1084 * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by
1085 * either SW_FINISH or DIRTYFB. The presumption is that we never write to the
1086 * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR
1087 * tracking is handled on the buffer exchange instead.
1088 */
1089 static void *
1090 iris_bo_map_gtt(struct pipe_debug_callback *dbg,
1091 struct iris_bo *bo, unsigned flags)
1092 {
1093 struct iris_bufmgr *bufmgr = bo->bufmgr;
1094
1095 /* Get a mapping of the buffer if we haven't before. */
1096 if (bo->map_gtt == NULL) {
1097 DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name);
1098
1099 struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle };
1100
1101 /* Get the fake offset back... */
1102 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
1103 if (ret != 0) {
1104 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1105 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1106 return NULL;
1107 }
1108
1109 /* and mmap it. */
1110 void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE,
1111 MAP_SHARED, bufmgr->fd, mmap_arg.offset);
1112 if (map == MAP_FAILED) {
1113 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1114 __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1115 return NULL;
1116 }
1117
1118 /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will
1119 * already intercept this mmap call. However, for consistency between
1120 * all the mmap paths, we mark the pointer as defined now and mark it
1121 * as inaccessible afterwards.
1122 */
1123 VG_DEFINED(map, bo->size);
1124
1125 if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) {
1126 VG_NOACCESS(map, bo->size);
1127 munmap(map, bo->size);
1128 }
1129 }
1130 assert(bo->map_gtt);
1131
1132 DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt);
1133 print_flags(flags);
1134
1135 if (!(flags & MAP_ASYNC)) {
1136 bo_wait_with_stall_warning(dbg, bo, "GTT mapping");
1137 }
1138
1139 return bo->map_gtt;
1140 }
1141
1142 static bool
1143 can_map_cpu(struct iris_bo *bo, unsigned flags)
1144 {
1145 if (bo->cache_coherent)
1146 return true;
1147
1148 /* Even if the buffer itself is not cache-coherent (such as a scanout), on
1149 * an LLC platform reads always are coherent (as they are performed via the
1150 * central system agent). It is just the writes that we need to take special
1151 * care to ensure that land in main memory and not stick in the CPU cache.
1152 */
1153 if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc)
1154 return true;
1155
1156 /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid
1157 * across batch flushes where the kernel will change cache domains of the
1158 * bo, invalidating continued access to the CPU mmap on non-LLC device.
1159 *
1160 * Similarly, ASYNC typically means that the buffer will be accessed via
1161 * both the CPU and the GPU simultaneously. Batches may be executed that
1162 * use the BO even while it is mapped. While OpenGL technically disallows
1163 * most drawing while non-persistent mappings are active, we may still use
1164 * the GPU for blits or other operations, causing batches to happen at
1165 * inconvenient times.
1166 */
1167 if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC))
1168 return false;
1169
1170 return !(flags & MAP_WRITE);
1171 }
1172
1173 void *
1174 iris_bo_map(struct pipe_debug_callback *dbg,
1175 struct iris_bo *bo, unsigned flags)
1176 {
1177 if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW))
1178 return iris_bo_map_gtt(dbg, bo, flags);
1179
1180 void *map;
1181
1182 if (can_map_cpu(bo, flags))
1183 map = iris_bo_map_cpu(dbg, bo, flags);
1184 else
1185 map = iris_bo_map_wc(dbg, bo, flags);
1186
1187 /* Allow the attempt to fail by falling back to the GTT where necessary.
1188 *
1189 * Not every buffer can be mmaped directly using the CPU (or WC), for
1190 * example buffers that wrap stolen memory or are imported from other
1191 * devices. For those, we have little choice but to use a GTT mmapping.
1192 * However, if we use a slow GTT mmapping for reads where we expected fast
1193 * access, that order of magnitude difference in throughput will be clearly
1194 * expressed by angry users.
1195 *
1196 * We skip MAP_RAW because we want to avoid map_gtt's fence detiling.
1197 */
1198 if (!map && !(flags & MAP_RAW)) {
1199 perf_debug(dbg, "Fallback GTT mapping for %s with access flags %x\n",
1200 bo->name, flags);
1201 map = iris_bo_map_gtt(dbg, bo, flags);
1202 }
1203
1204 return map;
1205 }
1206
1207 /** Waits for all GPU rendering with the object to have completed. */
1208 void
1209 iris_bo_wait_rendering(struct iris_bo *bo)
1210 {
1211 /* We require a kernel recent enough for WAIT_IOCTL support.
1212 * See intel_init_bufmgr()
1213 */
1214 iris_bo_wait(bo, -1);
1215 }
1216
1217 /**
1218 * Waits on a BO for the given amount of time.
1219 *
1220 * @bo: buffer object to wait for
1221 * @timeout_ns: amount of time to wait in nanoseconds.
1222 * If value is less than 0, an infinite wait will occur.
1223 *
1224 * Returns 0 if the wait was successful ie. the last batch referencing the
1225 * object has completed within the allotted time. Otherwise some negative return
1226 * value describes the error. Of particular interest is -ETIME when the wait has
1227 * failed to yield the desired result.
1228 *
1229 * Similar to iris_bo_wait_rendering except a timeout parameter allows
1230 * the operation to give up after a certain amount of time. Another subtle
1231 * difference is the internal locking semantics are different (this variant does
1232 * not hold the lock for the duration of the wait). This makes the wait subject
1233 * to a larger userspace race window.
1234 *
1235 * The implementation shall wait until the object is no longer actively
1236 * referenced within a batch buffer at the time of the call. The wait will
1237 * not guarantee that the buffer is re-issued via another thread, or an flinked
1238 * handle. Userspace must make sure this race does not occur if such precision
1239 * is important.
1240 *
1241 * Note that some kernels have broken the inifite wait for negative values
1242 * promise, upgrade to latest stable kernels if this is the case.
1243 */
1244 int
1245 iris_bo_wait(struct iris_bo *bo, int64_t timeout_ns)
1246 {
1247 struct iris_bufmgr *bufmgr = bo->bufmgr;
1248
1249 /* If we know it's idle, don't bother with the kernel round trip */
1250 if (bo->idle && !bo->external)
1251 return 0;
1252
1253 struct drm_i915_gem_wait wait = {
1254 .bo_handle = bo->gem_handle,
1255 .timeout_ns = timeout_ns,
1256 };
1257 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1258 if (ret != 0)
1259 return -errno;
1260
1261 bo->idle = true;
1262
1263 return ret;
1264 }
1265
1266 void
1267 iris_bufmgr_destroy(struct iris_bufmgr *bufmgr)
1268 {
1269 mtx_destroy(&bufmgr->lock);
1270
1271 /* Free any cached buffer objects we were going to reuse */
1272 for (int i = 0; i < bufmgr->num_buckets; i++) {
1273 struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1274
1275 list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1276 list_del(&bo->head);
1277
1278 bo_free(bo);
1279 }
1280
1281 for (int z = 0; z < IRIS_MEMZONE_COUNT; z++)
1282 util_dynarray_fini(&bucket->vma_list[z]);
1283 }
1284
1285 _mesa_hash_table_destroy(bufmgr->name_table, NULL);
1286 _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
1287
1288 for (int z = 0; z < IRIS_MEMZONE_COUNT; z++) {
1289 util_vma_heap_finish(&bufmgr->vma_allocator[z]);
1290 }
1291
1292 free(bufmgr);
1293 }
1294
1295 static int
1296 bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode,
1297 uint32_t stride)
1298 {
1299 struct iris_bufmgr *bufmgr = bo->bufmgr;
1300 struct drm_i915_gem_set_tiling set_tiling;
1301 int ret;
1302
1303 if (bo->global_name == 0 &&
1304 tiling_mode == bo->tiling_mode && stride == bo->stride)
1305 return 0;
1306
1307 memset(&set_tiling, 0, sizeof(set_tiling));
1308 do {
1309 /* set_tiling is slightly broken and overwrites the
1310 * input on the error path, so we have to open code
1311 * drm_ioctl.
1312 */
1313 set_tiling.handle = bo->gem_handle;
1314 set_tiling.tiling_mode = tiling_mode;
1315 set_tiling.stride = stride;
1316
1317 ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
1318 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
1319 if (ret == -1)
1320 return -errno;
1321
1322 bo->tiling_mode = set_tiling.tiling_mode;
1323 bo->swizzle_mode = set_tiling.swizzle_mode;
1324 bo->stride = set_tiling.stride;
1325 return 0;
1326 }
1327
1328 int
1329 iris_bo_get_tiling(struct iris_bo *bo, uint32_t *tiling_mode,
1330 uint32_t *swizzle_mode)
1331 {
1332 *tiling_mode = bo->tiling_mode;
1333 *swizzle_mode = bo->swizzle_mode;
1334 return 0;
1335 }
1336
1337 struct iris_bo *
1338 iris_bo_import_dmabuf(struct iris_bufmgr *bufmgr, int prime_fd)
1339 {
1340 uint32_t handle;
1341 struct iris_bo *bo;
1342
1343 mtx_lock(&bufmgr->lock);
1344 int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1345 if (ret) {
1346 DBG("import_dmabuf: failed to obtain handle from fd: %s\n",
1347 strerror(errno));
1348 mtx_unlock(&bufmgr->lock);
1349 return NULL;
1350 }
1351
1352 /*
1353 * See if the kernel has already returned this buffer to us. Just as
1354 * for named buffers, we must not create two bo's pointing at the same
1355 * kernel object
1356 */
1357 bo = hash_find_bo(bufmgr->handle_table, handle);
1358 if (bo) {
1359 iris_bo_reference(bo);
1360 goto out;
1361 }
1362
1363 bo = bo_calloc();
1364 if (!bo)
1365 goto out;
1366
1367 p_atomic_set(&bo->refcount, 1);
1368
1369 /* Determine size of bo. The fd-to-handle ioctl really should
1370 * return the size, but it doesn't. If we have kernel 3.12 or
1371 * later, we can lseek on the prime fd to get the size. Older
1372 * kernels will just fail, in which case we fall back to the
1373 * provided (estimated or guess size). */
1374 ret = lseek(prime_fd, 0, SEEK_END);
1375 if (ret != -1)
1376 bo->size = ret;
1377
1378 bo->bufmgr = bufmgr;
1379
1380 bo->gem_handle = handle;
1381 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1382
1383 bo->name = "prime";
1384 bo->reusable = false;
1385 bo->external = true;
1386 bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1387 bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
1388
1389 struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
1390 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
1391 goto err;
1392
1393 bo->tiling_mode = get_tiling.tiling_mode;
1394 bo->swizzle_mode = get_tiling.swizzle_mode;
1395 /* XXX stride is unknown */
1396
1397 out:
1398 mtx_unlock(&bufmgr->lock);
1399 return bo;
1400
1401 err:
1402 bo_free(bo);
1403 mtx_unlock(&bufmgr->lock);
1404 return NULL;
1405 }
1406
1407 static void
1408 iris_bo_make_external(struct iris_bo *bo)
1409 {
1410 struct iris_bufmgr *bufmgr = bo->bufmgr;
1411
1412 if (!bo->external) {
1413 mtx_lock(&bufmgr->lock);
1414 if (!bo->external) {
1415 _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1416 bo->external = true;
1417 }
1418 mtx_unlock(&bufmgr->lock);
1419 }
1420 }
1421
1422 int
1423 iris_bo_export_dmabuf(struct iris_bo *bo, int *prime_fd)
1424 {
1425 struct iris_bufmgr *bufmgr = bo->bufmgr;
1426
1427 iris_bo_make_external(bo);
1428
1429 if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1430 DRM_CLOEXEC, prime_fd) != 0)
1431 return -errno;
1432
1433 bo->reusable = false;
1434
1435 return 0;
1436 }
1437
1438 uint32_t
1439 iris_bo_export_gem_handle(struct iris_bo *bo)
1440 {
1441 iris_bo_make_external(bo);
1442
1443 return bo->gem_handle;
1444 }
1445
1446 int
1447 iris_bo_flink(struct iris_bo *bo, uint32_t *name)
1448 {
1449 struct iris_bufmgr *bufmgr = bo->bufmgr;
1450
1451 if (!bo->global_name) {
1452 struct drm_gem_flink flink = { .handle = bo->gem_handle };
1453
1454 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
1455 return -errno;
1456
1457 iris_bo_make_external(bo);
1458 mtx_lock(&bufmgr->lock);
1459 if (!bo->global_name) {
1460 bo->global_name = flink.name;
1461 _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
1462 }
1463 mtx_unlock(&bufmgr->lock);
1464
1465 bo->reusable = false;
1466 }
1467
1468 *name = bo->global_name;
1469 return 0;
1470 }
1471
1472 static void
1473 add_bucket(struct iris_bufmgr *bufmgr, int size)
1474 {
1475 unsigned int i = bufmgr->num_buckets;
1476
1477 assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
1478
1479 list_inithead(&bufmgr->cache_bucket[i].head);
1480 for (int z = 0; z < IRIS_MEMZONE_COUNT; z++)
1481 util_dynarray_init(&bufmgr->cache_bucket[i].vma_list[z], NULL);
1482 bufmgr->cache_bucket[i].size = size;
1483 bufmgr->num_buckets++;
1484
1485 assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]);
1486 assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]);
1487 assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]);
1488 }
1489
1490 static void
1491 init_cache_buckets(struct iris_bufmgr *bufmgr)
1492 {
1493 uint64_t size, cache_max_size = 64 * 1024 * 1024;
1494
1495 /* OK, so power of two buckets was too wasteful of memory.
1496 * Give 3 other sizes between each power of two, to hopefully
1497 * cover things accurately enough. (The alternative is
1498 * probably to just go for exact matching of sizes, and assume
1499 * that for things like composited window resize the tiled
1500 * width/height alignment and rounding of sizes to pages will
1501 * get us useful cache hit rates anyway)
1502 */
1503 add_bucket(bufmgr, PAGE_SIZE);
1504 add_bucket(bufmgr, PAGE_SIZE * 2);
1505 add_bucket(bufmgr, PAGE_SIZE * 3);
1506
1507 /* Initialize the linked lists for BO reuse cache. */
1508 for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) {
1509 add_bucket(bufmgr, size);
1510
1511 add_bucket(bufmgr, size + size * 1 / 4);
1512 add_bucket(bufmgr, size + size * 2 / 4);
1513 add_bucket(bufmgr, size + size * 3 / 4);
1514 }
1515 }
1516
1517 uint32_t
1518 iris_create_hw_context(struct iris_bufmgr *bufmgr)
1519 {
1520 struct drm_i915_gem_context_create create = { };
1521 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
1522 if (ret != 0) {
1523 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
1524 return 0;
1525 }
1526
1527 return create.ctx_id;
1528 }
1529
1530 int
1531 iris_hw_context_set_priority(struct iris_bufmgr *bufmgr,
1532 uint32_t ctx_id,
1533 int priority)
1534 {
1535 struct drm_i915_gem_context_param p = {
1536 .ctx_id = ctx_id,
1537 .param = I915_CONTEXT_PARAM_PRIORITY,
1538 .value = priority,
1539 };
1540 int err;
1541
1542 err = 0;
1543 if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p))
1544 err = -errno;
1545
1546 return err;
1547 }
1548
1549 void
1550 iris_destroy_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
1551 {
1552 struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id };
1553
1554 if (ctx_id != 0 &&
1555 drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
1556 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
1557 strerror(errno));
1558 }
1559 }
1560
1561 int
1562 iris_reg_read(struct iris_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
1563 {
1564 struct drm_i915_reg_read reg_read = { .offset = offset };
1565 int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
1566
1567 *result = reg_read.val;
1568 return ret;
1569 }
1570
1571 /**
1572 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
1573 * and manage map buffer objections.
1574 *
1575 * \param fd File descriptor of the opened DRM device.
1576 */
1577 struct iris_bufmgr *
1578 iris_bufmgr_init(struct gen_device_info *devinfo, int fd)
1579 {
1580 struct iris_bufmgr *bufmgr = calloc(1, sizeof(*bufmgr));
1581 if (bufmgr == NULL)
1582 return NULL;
1583
1584 /* Handles to buffer objects belong to the device fd and are not
1585 * reference counted by the kernel. If the same fd is used by
1586 * multiple parties (threads sharing the same screen bufmgr, or
1587 * even worse the same device fd passed to multiple libraries)
1588 * ownership of those handles is shared by those independent parties.
1589 *
1590 * Don't do this! Ensure that each library/bufmgr has its own device
1591 * fd so that its namespace does not clash with another.
1592 */
1593 bufmgr->fd = fd;
1594
1595 if (mtx_init(&bufmgr->lock, mtx_plain) != 0) {
1596 free(bufmgr);
1597 return NULL;
1598 }
1599
1600 bufmgr->has_llc = devinfo->has_llc;
1601
1602 STATIC_ASSERT(IRIS_MEMZONE_SHADER_START == 0ull);
1603 const uint64_t _4GB = 1ull << 32;
1604
1605 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SHADER],
1606 PAGE_SIZE, _4GB);
1607 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_BINDER],
1608 IRIS_MEMZONE_BINDER_START,
1609 IRIS_MAX_BINDERS * IRIS_BINDER_SIZE);
1610 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SURFACE],
1611 IRIS_MEMZONE_SURFACE_START,
1612 _4GB - IRIS_MAX_BINDERS * IRIS_BINDER_SIZE);
1613 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_DYNAMIC],
1614 IRIS_MEMZONE_DYNAMIC_START + IRIS_BORDER_COLOR_POOL_SIZE,
1615 _4GB - IRIS_BORDER_COLOR_POOL_SIZE);
1616 util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_OTHER],
1617 IRIS_MEMZONE_OTHER_START,
1618 (1ull << 48) - IRIS_MEMZONE_OTHER_START);
1619
1620 // XXX: driconf
1621 bufmgr->bo_reuse = env_var_as_boolean("bo_reuse", true);
1622
1623 init_cache_buckets(bufmgr);
1624
1625 bufmgr->name_table =
1626 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1627 bufmgr->handle_table =
1628 _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1629
1630 return bufmgr;
1631 }