iris: Use modfiy disables for 3DSTATE_WM_DEPTH_STENCIL command
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/format/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "util/u_memory.h"
99 #include "drm-uapi/i915_drm.h"
100 #include "nir.h"
101 #include "intel/compiler/brw_compiler.h"
102 #include "intel/common/gen_aux_map.h"
103 #include "intel/common/gen_l3_config.h"
104 #include "intel/common/gen_sample_positions.h"
105 #include "iris_batch.h"
106 #include "iris_context.h"
107 #include "iris_defines.h"
108 #include "iris_pipe.h"
109 #include "iris_resource.h"
110
111 #include "iris_genx_macros.h"
112 #include "intel/common/gen_guardband.h"
113
114 /**
115 * Statically assert that PIPE_* enums match the hardware packets.
116 * (As long as they match, we don't need to translate them.)
117 */
118 UNUSED static void pipe_asserts()
119 {
120 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
121
122 /* pipe_logicop happens to match the hardware. */
123 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
124 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
125 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
126 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
127 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
128 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
129 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
130 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
131 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
132 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
133 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
134 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
135 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
136 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
137 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
138 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
139
140 /* pipe_blend_func happens to match the hardware. */
141 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
142 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
143 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
144 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
145 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
146 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
147 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
148 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
149 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
150 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
151 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
152 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
153 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
157 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
158 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
159 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
160
161 /* pipe_blend_func happens to match the hardware. */
162 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
163 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
164 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
165 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
166 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
167
168 /* pipe_stencil_op happens to match the hardware. */
169 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
170 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
171 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
172 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
173 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
174 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
175 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
176 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
177
178 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
179 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
180 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
181 #undef PIPE_ASSERT
182 }
183
184 static unsigned
185 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
186 {
187 static const unsigned map[] = {
188 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
189 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
190 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
191 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
192 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
193 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
194 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
195 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
196 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
197 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
198 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
199 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
200 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
201 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
202 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
203 };
204
205 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
206 }
207
208 static unsigned
209 translate_compare_func(enum pipe_compare_func pipe_func)
210 {
211 static const unsigned map[] = {
212 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
213 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
214 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
215 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
216 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
217 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
218 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
219 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
220 };
221 return map[pipe_func];
222 }
223
224 static unsigned
225 translate_shadow_func(enum pipe_compare_func pipe_func)
226 {
227 /* Gallium specifies the result of shadow comparisons as:
228 *
229 * 1 if ref <op> texel,
230 * 0 otherwise.
231 *
232 * The hardware does:
233 *
234 * 0 if texel <op> ref,
235 * 1 otherwise.
236 *
237 * So we need to flip the operator and also negate.
238 */
239 static const unsigned map[] = {
240 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
241 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
242 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
243 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
244 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
245 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
246 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
247 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
248 };
249 return map[pipe_func];
250 }
251
252 static unsigned
253 translate_cull_mode(unsigned pipe_face)
254 {
255 static const unsigned map[4] = {
256 [PIPE_FACE_NONE] = CULLMODE_NONE,
257 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
258 [PIPE_FACE_BACK] = CULLMODE_BACK,
259 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
260 };
261 return map[pipe_face];
262 }
263
264 static unsigned
265 translate_fill_mode(unsigned pipe_polymode)
266 {
267 static const unsigned map[4] = {
268 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
269 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
270 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
271 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
272 };
273 return map[pipe_polymode];
274 }
275
276 static unsigned
277 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
278 {
279 static const unsigned map[] = {
280 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
281 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
282 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
283 };
284 return map[pipe_mip];
285 }
286
287 static uint32_t
288 translate_wrap(unsigned pipe_wrap)
289 {
290 static const unsigned map[] = {
291 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
292 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
293 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
294 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
295 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
296 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
297
298 /* These are unsupported. */
299 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
300 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
301 };
302 return map[pipe_wrap];
303 }
304
305 /**
306 * Allocate space for some indirect state.
307 *
308 * Return a pointer to the map (to fill it out) and a state ref (for
309 * referring to the state in GPU commands).
310 */
311 static void *
312 upload_state(struct u_upload_mgr *uploader,
313 struct iris_state_ref *ref,
314 unsigned size,
315 unsigned alignment)
316 {
317 void *p = NULL;
318 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
319 return p;
320 }
321
322 /**
323 * Stream out temporary/short-lived state.
324 *
325 * This allocates space, pins the BO, and includes the BO address in the
326 * returned offset (which works because all state lives in 32-bit memory
327 * zones).
328 */
329 static uint32_t *
330 stream_state(struct iris_batch *batch,
331 struct u_upload_mgr *uploader,
332 struct pipe_resource **out_res,
333 unsigned size,
334 unsigned alignment,
335 uint32_t *out_offset)
336 {
337 void *ptr = NULL;
338
339 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
340
341 struct iris_bo *bo = iris_resource_bo(*out_res);
342 iris_use_pinned_bo(batch, bo, false);
343
344 iris_record_state_size(batch->state_sizes,
345 bo->gtt_offset + *out_offset, size);
346
347 *out_offset += iris_bo_offset_from_base_address(bo);
348
349 return ptr;
350 }
351
352 /**
353 * stream_state() + memcpy.
354 */
355 static uint32_t
356 emit_state(struct iris_batch *batch,
357 struct u_upload_mgr *uploader,
358 struct pipe_resource **out_res,
359 const void *data,
360 unsigned size,
361 unsigned alignment)
362 {
363 unsigned offset = 0;
364 uint32_t *map =
365 stream_state(batch, uploader, out_res, size, alignment, &offset);
366
367 if (map)
368 memcpy(map, data, size);
369
370 return offset;
371 }
372
373 /**
374 * Did field 'x' change between 'old_cso' and 'new_cso'?
375 *
376 * (If so, we may want to set some dirty flags.)
377 */
378 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
379 #define cso_changed_memcmp(x) \
380 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
381
382 static void
383 flush_before_state_base_change(struct iris_batch *batch)
384 {
385 const struct gen_device_info *devinfo = &batch->screen->devinfo;
386
387 /* Flush before emitting STATE_BASE_ADDRESS.
388 *
389 * This isn't documented anywhere in the PRM. However, it seems to be
390 * necessary prior to changing the surface state base adress. We've
391 * seen issues in Vulkan where we get GPU hangs when using multi-level
392 * command buffers which clear depth, reset state base address, and then
393 * go render stuff.
394 *
395 * Normally, in GL, we would trust the kernel to do sufficient stalls
396 * and flushes prior to executing our batch. However, it doesn't seem
397 * as if the kernel's flushing is always sufficient and we don't want to
398 * rely on it.
399 *
400 * We make this an end-of-pipe sync instead of a normal flush because we
401 * do not know the current status of the GPU. On Haswell at least,
402 * having a fast-clear operation in flight at the same time as a normal
403 * rendering operation can cause hangs. Since the kernel's flushing is
404 * insufficient, we need to ensure that any rendering operations from
405 * other processes are definitely complete before we try to do our own
406 * rendering. It's a bit of a big hammer but it appears to work.
407 */
408 iris_emit_end_of_pipe_sync(batch,
409 "change STATE_BASE_ADDRESS (flushes)",
410 PIPE_CONTROL_RENDER_TARGET_FLUSH |
411 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
412 PIPE_CONTROL_DATA_CACHE_FLUSH |
413 /* GEN:BUG:1606662791:
414 *
415 * Software must program PIPE_CONTROL command
416 * with "HDC Pipeline Flush" prior to
417 * programming of the below two non-pipeline
418 * state :
419 * * STATE_BASE_ADDRESS
420 * * 3DSTATE_BINDING_TABLE_POOL_ALLOC
421 */
422 ((GEN_GEN == 12 && devinfo->revision == 0 /* A0 */ ?
423 PIPE_CONTROL_FLUSH_HDC : 0)));
424 }
425
426 static void
427 flush_after_state_base_change(struct iris_batch *batch)
428 {
429 /* After re-setting the surface state base address, we have to do some
430 * cache flusing so that the sampler engine will pick up the new
431 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
432 * Shared Function > 3D Sampler > State > State Caching (page 96):
433 *
434 * Coherency with system memory in the state cache, like the texture
435 * cache is handled partially by software. It is expected that the
436 * command stream or shader will issue Cache Flush operation or
437 * Cache_Flush sampler message to ensure that the L1 cache remains
438 * coherent with system memory.
439 *
440 * [...]
441 *
442 * Whenever the value of the Dynamic_State_Base_Addr,
443 * Surface_State_Base_Addr are altered, the L1 state cache must be
444 * invalidated to ensure the new surface or sampler state is fetched
445 * from system memory.
446 *
447 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
448 * which, according the PIPE_CONTROL instruction documentation in the
449 * Broadwell PRM:
450 *
451 * Setting this bit is independent of any other bit in this packet.
452 * This bit controls the invalidation of the L1 and L2 state caches
453 * at the top of the pipe i.e. at the parsing time.
454 *
455 * Unfortunately, experimentation seems to indicate that state cache
456 * invalidation through a PIPE_CONTROL does nothing whatsoever in
457 * regards to surface state and binding tables. In stead, it seems that
458 * invalidating the texture cache is what is actually needed.
459 *
460 * XXX: As far as we have been able to determine through
461 * experimentation, shows that flush the texture cache appears to be
462 * sufficient. The theory here is that all of the sampling/rendering
463 * units cache the binding table in the texture cache. However, we have
464 * yet to be able to actually confirm this.
465 */
466 iris_emit_end_of_pipe_sync(batch,
467 "change STATE_BASE_ADDRESS (invalidates)",
468 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
469 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
470 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
471 }
472
473 static void
474 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
475 {
476 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
477 lri.RegisterOffset = reg;
478 lri.DataDWord = val;
479 }
480 }
481 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
482
483 static void
484 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
485 {
486 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
487 lrr.SourceRegisterAddress = src;
488 lrr.DestinationRegisterAddress = dst;
489 }
490 }
491
492 static void
493 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
494 uint32_t src)
495 {
496 _iris_emit_lrr(batch, dst, src);
497 }
498
499 static void
500 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
501 uint32_t src)
502 {
503 _iris_emit_lrr(batch, dst, src);
504 _iris_emit_lrr(batch, dst + 4, src + 4);
505 }
506
507 static void
508 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
509 uint32_t val)
510 {
511 _iris_emit_lri(batch, reg, val);
512 }
513
514 static void
515 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
516 uint64_t val)
517 {
518 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
519 _iris_emit_lri(batch, reg + 4, val >> 32);
520 }
521
522 /**
523 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
524 */
525 static void
526 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
527 struct iris_bo *bo, uint32_t offset)
528 {
529 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
530 lrm.RegisterAddress = reg;
531 lrm.MemoryAddress = ro_bo(bo, offset);
532 }
533 }
534
535 /**
536 * Load a 64-bit value from a buffer into a MMIO register via
537 * two MI_LOAD_REGISTER_MEM commands.
538 */
539 static void
540 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
541 struct iris_bo *bo, uint32_t offset)
542 {
543 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
544 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
545 }
546
547 static void
548 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
549 struct iris_bo *bo, uint32_t offset,
550 bool predicated)
551 {
552 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
553 srm.RegisterAddress = reg;
554 srm.MemoryAddress = rw_bo(bo, offset);
555 srm.PredicateEnable = predicated;
556 }
557 }
558
559 static void
560 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
561 struct iris_bo *bo, uint32_t offset,
562 bool predicated)
563 {
564 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
565 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
566 }
567
568 static void
569 iris_store_data_imm32(struct iris_batch *batch,
570 struct iris_bo *bo, uint32_t offset,
571 uint32_t imm)
572 {
573 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
574 sdi.Address = rw_bo(bo, offset);
575 sdi.ImmediateData = imm;
576 }
577 }
578
579 static void
580 iris_store_data_imm64(struct iris_batch *batch,
581 struct iris_bo *bo, uint32_t offset,
582 uint64_t imm)
583 {
584 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
585 * 2 in genxml but it's actually variable length and we need 5 DWords.
586 */
587 void *map = iris_get_command_space(batch, 4 * 5);
588 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
589 sdi.DWordLength = 5 - 2;
590 sdi.Address = rw_bo(bo, offset);
591 sdi.ImmediateData = imm;
592 }
593 }
594
595 static void
596 iris_copy_mem_mem(struct iris_batch *batch,
597 struct iris_bo *dst_bo, uint32_t dst_offset,
598 struct iris_bo *src_bo, uint32_t src_offset,
599 unsigned bytes)
600 {
601 /* MI_COPY_MEM_MEM operates on DWords. */
602 assert(bytes % 4 == 0);
603 assert(dst_offset % 4 == 0);
604 assert(src_offset % 4 == 0);
605
606 for (unsigned i = 0; i < bytes; i += 4) {
607 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
608 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
609 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
610 }
611 }
612 }
613
614 static void
615 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
616 {
617 #if GEN_GEN >= 8 && GEN_GEN < 10
618 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
619 *
620 * Software must clear the COLOR_CALC_STATE Valid field in
621 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
622 * with Pipeline Select set to GPGPU.
623 *
624 * The internal hardware docs recommend the same workaround for Gen9
625 * hardware too.
626 */
627 if (pipeline == GPGPU)
628 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
629 #endif
630
631
632 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
633 * PIPELINE_SELECT [DevBWR+]":
634 *
635 * "Project: DEVSNB+
636 *
637 * Software must ensure all the write caches are flushed through a
638 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
639 * command to invalidate read only caches prior to programming
640 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
641 */
642 iris_emit_pipe_control_flush(batch,
643 "workaround: PIPELINE_SELECT flushes (1/2)",
644 PIPE_CONTROL_RENDER_TARGET_FLUSH |
645 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
646 PIPE_CONTROL_DATA_CACHE_FLUSH |
647 PIPE_CONTROL_CS_STALL);
648
649 iris_emit_pipe_control_flush(batch,
650 "workaround: PIPELINE_SELECT flushes (2/2)",
651 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
652 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
653 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
654 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
655
656 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
657 #if GEN_GEN >= 9
658 sel.MaskBits = 3;
659 #endif
660 sel.PipelineSelection = pipeline;
661 }
662 }
663
664 UNUSED static void
665 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
666 {
667 #if GEN_GEN == 9
668 /* Project: DevGLK
669 *
670 * "This chicken bit works around a hardware issue with barrier
671 * logic encountered when switching between GPGPU and 3D pipelines.
672 * To workaround the issue, this mode bit should be set after a
673 * pipeline is selected."
674 */
675 uint32_t reg_val;
676 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
677 reg.GLKBarrierMode = value;
678 reg.GLKBarrierModeMask = 1;
679 }
680 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
681 #endif
682 }
683
684 static void
685 init_state_base_address(struct iris_batch *batch)
686 {
687 uint32_t mocs = batch->screen->isl_dev.mocs.internal;
688 flush_before_state_base_change(batch);
689
690 /* We program most base addresses once at context initialization time.
691 * Each base address points at a 4GB memory zone, and never needs to
692 * change. See iris_bufmgr.h for a description of the memory zones.
693 *
694 * The one exception is Surface State Base Address, which needs to be
695 * updated occasionally. See iris_binder.c for the details there.
696 */
697 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
698 sba.GeneralStateMOCS = mocs;
699 sba.StatelessDataPortAccessMOCS = mocs;
700 sba.DynamicStateMOCS = mocs;
701 sba.IndirectObjectMOCS = mocs;
702 sba.InstructionMOCS = mocs;
703 sba.SurfaceStateMOCS = mocs;
704
705 sba.GeneralStateBaseAddressModifyEnable = true;
706 sba.DynamicStateBaseAddressModifyEnable = true;
707 sba.IndirectObjectBaseAddressModifyEnable = true;
708 sba.InstructionBaseAddressModifyEnable = true;
709 sba.GeneralStateBufferSizeModifyEnable = true;
710 sba.DynamicStateBufferSizeModifyEnable = true;
711 #if (GEN_GEN >= 9)
712 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
713 sba.BindlessSurfaceStateMOCS = mocs;
714 #endif
715 sba.IndirectObjectBufferSizeModifyEnable = true;
716 sba.InstructionBuffersizeModifyEnable = true;
717
718 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
719 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
720
721 sba.GeneralStateBufferSize = 0xfffff;
722 sba.IndirectObjectBufferSize = 0xfffff;
723 sba.InstructionBufferSize = 0xfffff;
724 sba.DynamicStateBufferSize = 0xfffff;
725 }
726
727 flush_after_state_base_change(batch);
728 }
729
730 static void
731 iris_emit_l3_config(struct iris_batch *batch,
732 const struct gen_l3_config *cfg)
733 {
734 uint32_t reg_val;
735
736 #if GEN_GEN >= 12
737 #define L3_ALLOCATION_REG GENX(L3ALLOC)
738 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
739 #else
740 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
741 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
742 #endif
743
744 iris_pack_state(L3_ALLOCATION_REG, &reg_val, reg) {
745 #if GEN_GEN < 11
746 reg.SLMEnable = cfg->n[GEN_L3P_SLM] > 0;
747 #endif
748 #if GEN_GEN == 11
749 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
750 * in L3CNTLREG register. The default setting of the bit is not the
751 * desirable behavior.
752 */
753 reg.ErrorDetectionBehaviorControl = true;
754 reg.UseFullWays = true;
755 #endif
756 reg.URBAllocation = cfg->n[GEN_L3P_URB];
757 reg.ROAllocation = cfg->n[GEN_L3P_RO];
758 reg.DCAllocation = cfg->n[GEN_L3P_DC];
759 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
760 }
761 _iris_emit_lri(batch, L3_ALLOCATION_REG_num, reg_val);
762 }
763
764 #if GEN_GEN == 9
765 static void
766 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
767 {
768 uint32_t reg_val;
769
770 /* A fixed function pipe flush is required before modifying this field */
771 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
772 : "disable preemption",
773 PIPE_CONTROL_RENDER_TARGET_FLUSH);
774
775 /* enable object level preemption */
776 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
777 reg.ReplayMode = enable;
778 reg.ReplayModeMask = true;
779 }
780 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
781 }
782 #endif
783
784 #if GEN_GEN == 11
785 static void
786 iris_upload_slice_hashing_state(struct iris_batch *batch)
787 {
788 const struct gen_device_info *devinfo = &batch->screen->devinfo;
789 int subslices_delta =
790 devinfo->ppipe_subslices[0] - devinfo->ppipe_subslices[1];
791 if (subslices_delta == 0)
792 return;
793
794 struct iris_context *ice = NULL;
795 ice = container_of(batch, ice, batches[IRIS_BATCH_RENDER]);
796 assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
797
798 unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
799 uint32_t hash_address;
800 struct pipe_resource *tmp = NULL;
801 uint32_t *map =
802 stream_state(batch, ice->state.dynamic_uploader, &tmp,
803 size, 64, &hash_address);
804 pipe_resource_reference(&tmp, NULL);
805
806 struct GENX(SLICE_HASH_TABLE) table0 = {
807 .Entry = {
808 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
809 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
810 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
811 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
812 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
813 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
814 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
815 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
816 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
817 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
818 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
819 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
820 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
821 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
822 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
823 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 }
824 }
825 };
826
827 struct GENX(SLICE_HASH_TABLE) table1 = {
828 .Entry = {
829 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
830 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
831 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
832 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
833 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
834 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
835 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
836 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
837 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
838 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
839 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
840 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
841 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
842 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
843 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
844 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 }
845 }
846 };
847
848 const struct GENX(SLICE_HASH_TABLE) *table =
849 subslices_delta < 0 ? &table0 : &table1;
850 GENX(SLICE_HASH_TABLE_pack)(NULL, map, table);
851
852 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
853 ptr.SliceHashStatePointerValid = true;
854 ptr.SliceHashTableStatePointer = hash_address;
855 }
856
857 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
858 mode.SliceHashingTableEnable = true;
859 }
860 }
861 #endif
862
863 static void
864 iris_alloc_push_constants(struct iris_batch *batch)
865 {
866 /* For now, we set a static partitioning of the push constant area,
867 * assuming that all stages could be in use.
868 *
869 * TODO: Try lazily allocating the HS/DS/GS sections as needed, and
870 * see if that improves performance by offering more space to
871 * the VS/FS when those aren't in use. Also, try dynamically
872 * enabling/disabling it like i965 does. This would be more
873 * stalls and may not actually help; we don't know yet.
874 */
875 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
876 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
877 alloc._3DCommandSubOpcode = 18 + i;
878 alloc.ConstantBufferOffset = 6 * i;
879 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
880 }
881 }
882 }
883
884 #if GEN_GEN >= 12
885 static void
886 init_aux_map_state(struct iris_batch *batch);
887 #endif
888
889 /**
890 * Upload the initial GPU state for a render context.
891 *
892 * This sets some invariant state that needs to be programmed a particular
893 * way, but we never actually change.
894 */
895 static void
896 iris_init_render_context(struct iris_batch *batch)
897 {
898 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
899 uint32_t reg_val;
900
901 emit_pipeline_select(batch, _3D);
902
903 iris_emit_l3_config(batch, batch->screen->l3_config_3d);
904
905 init_state_base_address(batch);
906
907 #if GEN_GEN >= 9
908 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
909 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
910 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
911 }
912 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
913 #else
914 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
915 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
916 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
917 }
918 iris_emit_lri(batch, INSTPM, reg_val);
919 #endif
920
921 #if GEN_GEN == 9
922 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
923 reg.FloatBlendOptimizationEnable = true;
924 reg.FloatBlendOptimizationEnableMask = true;
925 reg.PartialResolveDisableInVC = true;
926 reg.PartialResolveDisableInVCMask = true;
927 }
928 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
929
930 if (devinfo->is_geminilake)
931 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
932 #endif
933
934 #if GEN_GEN == 11
935 iris_pack_state(GENX(TCCNTLREG), &reg_val, reg) {
936 reg.L3DataPartialWriteMergingEnable = true;
937 reg.ColorZPartialWriteMergingEnable = true;
938 reg.URBPartialWriteMergingEnable = true;
939 reg.TCDisable = true;
940 }
941 iris_emit_lri(batch, TCCNTLREG, reg_val);
942
943 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
944 reg.HeaderlessMessageforPreemptableContexts = 1;
945 reg.HeaderlessMessageforPreemptableContextsMask = 1;
946 }
947 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
948
949 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
950 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
951 reg.EnabledTexelOffsetPrecisionFix = 1;
952 reg.EnabledTexelOffsetPrecisionFixMask = 1;
953 }
954 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
955
956 /* Hardware specification recommends disabling repacking for the
957 * compatibility with decompression mechanism in display controller.
958 */
959 if (devinfo->disable_ccs_repack) {
960 iris_pack_state(GENX(CACHE_MODE_0), &reg_val, reg) {
961 reg.DisableRepackingforCompression = true;
962 reg.DisableRepackingforCompressionMask = true;
963 }
964 iris_emit_lri(batch, CACHE_MODE_0, reg_val);
965 }
966
967 iris_upload_slice_hashing_state(batch);
968 #endif
969
970 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
971 * changing it dynamically. We set it to the maximum size here, and
972 * instead include the render target dimensions in the viewport, so
973 * viewport extents clipping takes care of pruning stray geometry.
974 */
975 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
976 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
977 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
978 }
979
980 /* Set the initial MSAA sample positions. */
981 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
982 GEN_SAMPLE_POS_1X(pat._1xSample);
983 GEN_SAMPLE_POS_2X(pat._2xSample);
984 GEN_SAMPLE_POS_4X(pat._4xSample);
985 GEN_SAMPLE_POS_8X(pat._8xSample);
986 #if GEN_GEN >= 9
987 GEN_SAMPLE_POS_16X(pat._16xSample);
988 #endif
989 }
990
991 /* Use the legacy AA line coverage computation. */
992 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
993
994 /* Disable chromakeying (it's for media) */
995 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
996
997 /* We want regular rendering, not special HiZ operations. */
998 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
999
1000 /* No polygon stippling offsets are necessary. */
1001 /* TODO: may need to set an offset for origin-UL framebuffers */
1002 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
1003
1004 iris_alloc_push_constants(batch);
1005
1006 #if GEN_GEN >= 12
1007 init_aux_map_state(batch);
1008 #endif
1009 }
1010
1011 static void
1012 iris_init_compute_context(struct iris_batch *batch)
1013 {
1014 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
1015
1016 /* GEN:BUG:1607854226:
1017 *
1018 * Start with pipeline in 3D mode to set the STATE_BASE_ADDRESS.
1019 */
1020 #if GEN_GEN == 12
1021 emit_pipeline_select(batch, _3D);
1022 #else
1023 emit_pipeline_select(batch, GPGPU);
1024 #endif
1025
1026 iris_emit_l3_config(batch, batch->screen->l3_config_cs);
1027
1028 init_state_base_address(batch);
1029
1030 #if GEN_GEN == 12
1031 emit_pipeline_select(batch, GPGPU);
1032 #endif
1033
1034 #if GEN_GEN == 9
1035 if (devinfo->is_geminilake)
1036 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
1037 #endif
1038
1039 #if GEN_GEN >= 12
1040 init_aux_map_state(batch);
1041 #endif
1042
1043 }
1044
1045 struct iris_vertex_buffer_state {
1046 /** The VERTEX_BUFFER_STATE hardware structure. */
1047 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
1048
1049 /** The resource to source vertex data from. */
1050 struct pipe_resource *resource;
1051
1052 int offset;
1053 };
1054
1055 struct iris_depth_buffer_state {
1056 /* Depth/HiZ/Stencil related hardware packets. */
1057 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
1058 GENX(3DSTATE_STENCIL_BUFFER_length) +
1059 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
1060 GENX(3DSTATE_CLEAR_PARAMS_length) +
1061 GENX(MI_LOAD_REGISTER_IMM_length) * 2];
1062 };
1063
1064 /**
1065 * Generation-specific context state (ice->state.genx->...).
1066 *
1067 * Most state can go in iris_context directly, but these encode hardware
1068 * packets which vary by generation.
1069 */
1070 struct iris_genx_state {
1071 struct iris_vertex_buffer_state vertex_buffers[33];
1072 uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
1073
1074 struct iris_depth_buffer_state depth_buffer;
1075
1076 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
1077
1078 #if GEN_GEN == 8
1079 bool pma_fix_enabled;
1080 #endif
1081
1082 #if GEN_GEN == 9
1083 /* Is object level preemption enabled? */
1084 bool object_preemption;
1085 #endif
1086
1087 struct {
1088 #if GEN_GEN == 8
1089 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
1090 #endif
1091 } shaders[MESA_SHADER_STAGES];
1092 };
1093
1094 /**
1095 * The pipe->set_blend_color() driver hook.
1096 *
1097 * This corresponds to our COLOR_CALC_STATE.
1098 */
1099 static void
1100 iris_set_blend_color(struct pipe_context *ctx,
1101 const struct pipe_blend_color *state)
1102 {
1103 struct iris_context *ice = (struct iris_context *) ctx;
1104
1105 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
1106 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
1107 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1108 }
1109
1110 /**
1111 * Gallium CSO for blend state (see pipe_blend_state).
1112 */
1113 struct iris_blend_state {
1114 /** Partial 3DSTATE_PS_BLEND */
1115 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
1116
1117 /** Partial BLEND_STATE */
1118 uint32_t blend_state[GENX(BLEND_STATE_length) +
1119 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
1120
1121 bool alpha_to_coverage; /* for shader key */
1122
1123 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
1124 uint8_t blend_enables;
1125
1126 /** Bitfield of whether color writes are enabled for RT[i] */
1127 uint8_t color_write_enables;
1128
1129 /** Does RT[0] use dual color blending? */
1130 bool dual_color_blending;
1131 };
1132
1133 static enum pipe_blendfactor
1134 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
1135 {
1136 if (alpha_to_one) {
1137 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
1138 return PIPE_BLENDFACTOR_ONE;
1139
1140 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
1141 return PIPE_BLENDFACTOR_ZERO;
1142 }
1143
1144 return f;
1145 }
1146
1147 /**
1148 * The pipe->create_blend_state() driver hook.
1149 *
1150 * Translates a pipe_blend_state into iris_blend_state.
1151 */
1152 static void *
1153 iris_create_blend_state(struct pipe_context *ctx,
1154 const struct pipe_blend_state *state)
1155 {
1156 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
1157 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
1158
1159 cso->blend_enables = 0;
1160 cso->color_write_enables = 0;
1161 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
1162
1163 cso->alpha_to_coverage = state->alpha_to_coverage;
1164
1165 bool indep_alpha_blend = false;
1166
1167 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
1168 const struct pipe_rt_blend_state *rt =
1169 &state->rt[state->independent_blend_enable ? i : 0];
1170
1171 enum pipe_blendfactor src_rgb =
1172 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
1173 enum pipe_blendfactor src_alpha =
1174 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
1175 enum pipe_blendfactor dst_rgb =
1176 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
1177 enum pipe_blendfactor dst_alpha =
1178 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
1179
1180 if (rt->rgb_func != rt->alpha_func ||
1181 src_rgb != src_alpha || dst_rgb != dst_alpha)
1182 indep_alpha_blend = true;
1183
1184 if (rt->blend_enable)
1185 cso->blend_enables |= 1u << i;
1186
1187 if (rt->colormask)
1188 cso->color_write_enables |= 1u << i;
1189
1190 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
1191 be.LogicOpEnable = state->logicop_enable;
1192 be.LogicOpFunction = state->logicop_func;
1193
1194 be.PreBlendSourceOnlyClampEnable = false;
1195 be.ColorClampRange = COLORCLAMP_RTFORMAT;
1196 be.PreBlendColorClampEnable = true;
1197 be.PostBlendColorClampEnable = true;
1198
1199 be.ColorBufferBlendEnable = rt->blend_enable;
1200
1201 be.ColorBlendFunction = rt->rgb_func;
1202 be.AlphaBlendFunction = rt->alpha_func;
1203 be.SourceBlendFactor = src_rgb;
1204 be.SourceAlphaBlendFactor = src_alpha;
1205 be.DestinationBlendFactor = dst_rgb;
1206 be.DestinationAlphaBlendFactor = dst_alpha;
1207
1208 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
1209 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
1210 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
1211 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
1212 }
1213 blend_entry += GENX(BLEND_STATE_ENTRY_length);
1214 }
1215
1216 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
1217 /* pb.HasWriteableRT is filled in at draw time.
1218 * pb.AlphaTestEnable is filled in at draw time.
1219 *
1220 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
1221 * setting it when dual color blending without an appropriate shader.
1222 */
1223
1224 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
1225 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
1226
1227 pb.SourceBlendFactor =
1228 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1229 pb.SourceAlphaBlendFactor =
1230 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1231 pb.DestinationBlendFactor =
1232 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
1233 pb.DestinationAlphaBlendFactor =
1234 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
1235 }
1236
1237 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1238 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1239 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1240 bs.AlphaToOneEnable = state->alpha_to_one;
1241 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
1242 bs.ColorDitherEnable = state->dither;
1243 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1244 }
1245
1246 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1247
1248 return cso;
1249 }
1250
1251 /**
1252 * The pipe->bind_blend_state() driver hook.
1253 *
1254 * Bind a blending CSO and flag related dirty bits.
1255 */
1256 static void
1257 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1258 {
1259 struct iris_context *ice = (struct iris_context *) ctx;
1260 struct iris_blend_state *cso = state;
1261
1262 ice->state.cso_blend = cso;
1263 ice->state.blend_enables = cso ? cso->blend_enables : 0;
1264
1265 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1266 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1267 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1268 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
1269
1270 if (GEN_GEN == 8)
1271 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
1272 }
1273
1274 /**
1275 * Return true if the FS writes to any color outputs which are not disabled
1276 * via color masking.
1277 */
1278 static bool
1279 has_writeable_rt(const struct iris_blend_state *cso_blend,
1280 const struct shader_info *fs_info)
1281 {
1282 if (!fs_info)
1283 return false;
1284
1285 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1286
1287 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1288 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
1289
1290 return cso_blend->color_write_enables & rt_outputs;
1291 }
1292
1293 /**
1294 * Gallium CSO for depth, stencil, and alpha testing state.
1295 */
1296 struct iris_depth_stencil_alpha_state {
1297 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1298 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1299
1300 #if GEN_GEN >= 12
1301 uint32_t depth_bounds[GENX(3DSTATE_DEPTH_BOUNDS_length)];
1302 #endif
1303
1304 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1305 struct pipe_alpha_state alpha;
1306
1307 /** Outbound to resolve and cache set tracking. */
1308 bool depth_writes_enabled;
1309 bool stencil_writes_enabled;
1310
1311 /** Outbound to Gen8-9 PMA stall equations */
1312 bool depth_test_enabled;
1313 };
1314
1315 /**
1316 * The pipe->create_depth_stencil_alpha_state() driver hook.
1317 *
1318 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1319 * testing state since we need pieces of it in a variety of places.
1320 */
1321 static void *
1322 iris_create_zsa_state(struct pipe_context *ctx,
1323 const struct pipe_depth_stencil_alpha_state *state)
1324 {
1325 struct iris_depth_stencil_alpha_state *cso =
1326 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1327
1328 bool two_sided_stencil = state->stencil[1].enabled;
1329
1330 cso->alpha = state->alpha;
1331 cso->depth_writes_enabled = state->depth.writemask;
1332 cso->depth_test_enabled = state->depth.enabled;
1333 cso->stencil_writes_enabled =
1334 state->stencil[0].writemask != 0 ||
1335 (two_sided_stencil && state->stencil[1].writemask != 0);
1336
1337 /* gallium frontends need to optimize away EQUAL writes for us. */
1338 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1339
1340 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1341 wmds.StencilFailOp = state->stencil[0].fail_op;
1342 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1343 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1344 wmds.StencilTestFunction =
1345 translate_compare_func(state->stencil[0].func);
1346 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1347 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1348 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1349 wmds.BackfaceStencilTestFunction =
1350 translate_compare_func(state->stencil[1].func);
1351 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1352 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1353 wmds.StencilTestEnable = state->stencil[0].enabled;
1354 wmds.StencilBufferWriteEnable =
1355 state->stencil[0].writemask != 0 ||
1356 (two_sided_stencil && state->stencil[1].writemask != 0);
1357 wmds.DepthTestEnable = state->depth.enabled;
1358 wmds.DepthBufferWriteEnable = state->depth.writemask;
1359 wmds.StencilTestMask = state->stencil[0].valuemask;
1360 wmds.StencilWriteMask = state->stencil[0].writemask;
1361 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1362 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1363 /* wmds.[Backface]StencilReferenceValue are merged later */
1364 #if GEN_GEN >= 12
1365 wmds.StencilReferenceValueModifyDisable = true;
1366 #endif
1367 }
1368
1369 #if GEN_GEN >= 12
1370 iris_pack_command(GENX(3DSTATE_DEPTH_BOUNDS), cso->depth_bounds, depth_bounds) {
1371 depth_bounds.DepthBoundsTestValueModifyDisable = false;
1372 depth_bounds.DepthBoundsTestEnableModifyDisable = false;
1373 depth_bounds.DepthBoundsTestEnable = state->depth.bounds_test;
1374 depth_bounds.DepthBoundsTestMinValue = state->depth.bounds_min;
1375 depth_bounds.DepthBoundsTestMaxValue = state->depth.bounds_max;
1376 }
1377 #endif
1378
1379 return cso;
1380 }
1381
1382 /**
1383 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1384 *
1385 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1386 */
1387 static void
1388 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1389 {
1390 struct iris_context *ice = (struct iris_context *) ctx;
1391 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1392 struct iris_depth_stencil_alpha_state *new_cso = state;
1393
1394 if (new_cso) {
1395 if (cso_changed(alpha.ref_value))
1396 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1397
1398 if (cso_changed(alpha.enabled))
1399 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1400
1401 if (cso_changed(alpha.func))
1402 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1403
1404 if (cso_changed(depth_writes_enabled))
1405 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1406
1407 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1408 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1409
1410 #if GEN_GEN >= 12
1411 if (cso_changed(depth_bounds))
1412 ice->state.dirty |= IRIS_DIRTY_DEPTH_BOUNDS;
1413 #endif
1414 }
1415
1416 ice->state.cso_zsa = new_cso;
1417 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1418 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1419 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1420
1421 if (GEN_GEN == 8)
1422 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
1423 }
1424
1425 #if GEN_GEN == 8
1426 static bool
1427 want_pma_fix(struct iris_context *ice)
1428 {
1429 UNUSED struct iris_screen *screen = (void *) ice->ctx.screen;
1430 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
1431 const struct brw_wm_prog_data *wm_prog_data = (void *)
1432 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
1433 const struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
1434 const struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
1435 const struct iris_blend_state *cso_blend = ice->state.cso_blend;
1436
1437 /* In very specific combinations of state, we can instruct Gen8-9 hardware
1438 * to avoid stalling at the pixel mask array. The state equations are
1439 * documented in these places:
1440 *
1441 * - Gen8 Depth PMA Fix: CACHE_MODE_1::NP_PMA_FIX_ENABLE
1442 * - Gen9 Stencil PMA Fix: CACHE_MODE_0::STC PMA Optimization Enable
1443 *
1444 * Both equations share some common elements:
1445 *
1446 * no_hiz_op =
1447 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
1448 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
1449 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
1450 * 3DSTATE_WM_HZ_OP::StencilBufferClear) &&
1451 *
1452 * killpixels =
1453 * 3DSTATE_WM::ForceKillPix != ForceOff &&
1454 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1455 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1456 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1457 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1458 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1459 *
1460 * (Technically the stencil PMA treats ForceKillPix differently,
1461 * but I think this is a documentation oversight, and we don't
1462 * ever use it in this way, so it doesn't matter).
1463 *
1464 * common_pma_fix =
1465 * 3DSTATE_WM::ForceThreadDispatch != 1 &&
1466 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0 &&
1467 * 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
1468 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
1469 * 3DSTATE_WM::EDSC_Mode != EDSC_PREPS &&
1470 * 3DSTATE_PS_EXTRA::PixelShaderValid &&
1471 * no_hiz_op
1472 *
1473 * These are always true:
1474 *
1475 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0
1476 * 3DSTATE_PS_EXTRA::PixelShaderValid
1477 *
1478 * Also, we never use the normal drawing path for HiZ ops; these are true:
1479 *
1480 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
1481 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
1482 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
1483 * 3DSTATE_WM_HZ_OP::StencilBufferClear)
1484 *
1485 * This happens sometimes:
1486 *
1487 * 3DSTATE_WM::ForceThreadDispatch != 1
1488 *
1489 * However, we choose to ignore it as it either agrees with the signal
1490 * (dispatch was already enabled, so nothing out of the ordinary), or
1491 * there are no framebuffer attachments (so no depth or HiZ anyway,
1492 * meaning the PMA signal will already be disabled).
1493 */
1494
1495 if (!cso_fb->zsbuf)
1496 return false;
1497
1498 struct iris_resource *zres, *sres;
1499 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture, &zres, &sres);
1500
1501 /* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
1502 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
1503 */
1504 if (!zres || !iris_resource_level_has_hiz(zres, cso_fb->zsbuf->u.tex.level))
1505 return false;
1506
1507 /* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS */
1508 if (wm_prog_data->early_fragment_tests)
1509 return false;
1510
1511 /* 3DSTATE_WM::ForceKillPix != ForceOff &&
1512 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1513 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1514 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1515 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1516 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1517 */
1518 bool killpixels = wm_prog_data->uses_kill || wm_prog_data->uses_omask ||
1519 cso_blend->alpha_to_coverage || cso_zsa->alpha.enabled;
1520
1521 /* The Gen8 depth PMA equation becomes:
1522 *
1523 * depth_writes =
1524 * 3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable &&
1525 * 3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE
1526 *
1527 * stencil_writes =
1528 * 3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable &&
1529 * 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE &&
1530 * 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE
1531 *
1532 * Z_PMA_OPT =
1533 * common_pma_fix &&
1534 * 3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable &&
1535 * ((killpixels && (depth_writes || stencil_writes)) ||
1536 * 3DSTATE_PS_EXTRA::PixelShaderComputedDepthMode != PSCDEPTH_OFF)
1537 *
1538 */
1539 if (!cso_zsa->depth_test_enabled)
1540 return false;
1541
1542 return wm_prog_data->computed_depth_mode != PSCDEPTH_OFF ||
1543 (killpixels && (cso_zsa->depth_writes_enabled ||
1544 (sres && cso_zsa->stencil_writes_enabled)));
1545 }
1546 #endif
1547
1548 void
1549 genX(update_pma_fix)(struct iris_context *ice,
1550 struct iris_batch *batch,
1551 bool enable)
1552 {
1553 #if GEN_GEN == 8
1554 struct iris_genx_state *genx = ice->state.genx;
1555
1556 if (genx->pma_fix_enabled == enable)
1557 return;
1558
1559 genx->pma_fix_enabled = enable;
1560
1561 /* According to the Broadwell PIPE_CONTROL documentation, software should
1562 * emit a PIPE_CONTROL with the CS Stall and Depth Cache Flush bits set
1563 * prior to the LRI. If stencil buffer writes are enabled, then a Render * Cache Flush is also necessary.
1564 *
1565 * The Gen9 docs say to use a depth stall rather than a command streamer
1566 * stall. However, the hardware seems to violently disagree. A full
1567 * command streamer stall seems to be needed in both cases.
1568 */
1569 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
1570 PIPE_CONTROL_CS_STALL |
1571 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1572 PIPE_CONTROL_RENDER_TARGET_FLUSH);
1573
1574 uint32_t reg_val;
1575 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
1576 reg.NPPMAFixEnable = enable;
1577 reg.NPEarlyZFailsDisable = enable;
1578 reg.NPPMAFixEnableMask = true;
1579 reg.NPEarlyZFailsDisableMask = true;
1580 }
1581 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
1582
1583 /* After the LRI, a PIPE_CONTROL with both the Depth Stall and Depth Cache
1584 * Flush bits is often necessary. We do it regardless because it's easier.
1585 * The render cache flush is also necessary if stencil writes are enabled.
1586 *
1587 * Again, the Gen9 docs give a different set of flushes but the Broadwell
1588 * flushes seem to work just as well.
1589 */
1590 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
1591 PIPE_CONTROL_DEPTH_STALL |
1592 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1593 PIPE_CONTROL_RENDER_TARGET_FLUSH);
1594 #endif
1595 }
1596
1597 /**
1598 * Gallium CSO for rasterizer state.
1599 */
1600 struct iris_rasterizer_state {
1601 uint32_t sf[GENX(3DSTATE_SF_length)];
1602 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1603 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1604 uint32_t wm[GENX(3DSTATE_WM_length)];
1605 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1606
1607 uint8_t num_clip_plane_consts;
1608 bool clip_halfz; /* for CC_VIEWPORT */
1609 bool depth_clip_near; /* for CC_VIEWPORT */
1610 bool depth_clip_far; /* for CC_VIEWPORT */
1611 bool flatshade; /* for shader state */
1612 bool flatshade_first; /* for stream output */
1613 bool clamp_fragment_color; /* for shader state */
1614 bool light_twoside; /* for shader state */
1615 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1616 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1617 bool line_stipple_enable;
1618 bool poly_stipple_enable;
1619 bool multisample;
1620 bool force_persample_interp;
1621 bool conservative_rasterization;
1622 bool fill_mode_point_or_line;
1623 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1624 uint16_t sprite_coord_enable;
1625 };
1626
1627 static float
1628 get_line_width(const struct pipe_rasterizer_state *state)
1629 {
1630 float line_width = state->line_width;
1631
1632 /* From the OpenGL 4.4 spec:
1633 *
1634 * "The actual width of non-antialiased lines is determined by rounding
1635 * the supplied width to the nearest integer, then clamping it to the
1636 * implementation-dependent maximum non-antialiased line width."
1637 */
1638 if (!state->multisample && !state->line_smooth)
1639 line_width = roundf(state->line_width);
1640
1641 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1642 /* For 1 pixel line thickness or less, the general anti-aliasing
1643 * algorithm gives up, and a garbage line is generated. Setting a
1644 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1645 * (one-pixel-wide), non-antialiased lines.
1646 *
1647 * Lines rendered with zero Line Width are rasterized using the
1648 * "Grid Intersection Quantization" rules as specified by the
1649 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1650 */
1651 line_width = 0.0f;
1652 }
1653
1654 return line_width;
1655 }
1656
1657 /**
1658 * The pipe->create_rasterizer_state() driver hook.
1659 */
1660 static void *
1661 iris_create_rasterizer_state(struct pipe_context *ctx,
1662 const struct pipe_rasterizer_state *state)
1663 {
1664 struct iris_rasterizer_state *cso =
1665 malloc(sizeof(struct iris_rasterizer_state));
1666
1667 cso->multisample = state->multisample;
1668 cso->force_persample_interp = state->force_persample_interp;
1669 cso->clip_halfz = state->clip_halfz;
1670 cso->depth_clip_near = state->depth_clip_near;
1671 cso->depth_clip_far = state->depth_clip_far;
1672 cso->flatshade = state->flatshade;
1673 cso->flatshade_first = state->flatshade_first;
1674 cso->clamp_fragment_color = state->clamp_fragment_color;
1675 cso->light_twoside = state->light_twoside;
1676 cso->rasterizer_discard = state->rasterizer_discard;
1677 cso->half_pixel_center = state->half_pixel_center;
1678 cso->sprite_coord_mode = state->sprite_coord_mode;
1679 cso->sprite_coord_enable = state->sprite_coord_enable;
1680 cso->line_stipple_enable = state->line_stipple_enable;
1681 cso->poly_stipple_enable = state->poly_stipple_enable;
1682 cso->conservative_rasterization =
1683 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1684
1685 cso->fill_mode_point_or_line =
1686 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1687 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1688 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1689 state->fill_back == PIPE_POLYGON_MODE_POINT;
1690
1691 if (state->clip_plane_enable != 0)
1692 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1693 else
1694 cso->num_clip_plane_consts = 0;
1695
1696 float line_width = get_line_width(state);
1697
1698 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1699 sf.StatisticsEnable = true;
1700 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1701 sf.LineEndCapAntialiasingRegionWidth =
1702 state->line_smooth ? _10pixels : _05pixels;
1703 sf.LastPixelEnable = state->line_last_pixel;
1704 sf.LineWidth = line_width;
1705 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1706 !state->point_quad_rasterization;
1707 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1708 sf.PointWidth = state->point_size;
1709
1710 if (state->flatshade_first) {
1711 sf.TriangleFanProvokingVertexSelect = 1;
1712 } else {
1713 sf.TriangleStripListProvokingVertexSelect = 2;
1714 sf.TriangleFanProvokingVertexSelect = 2;
1715 sf.LineStripListProvokingVertexSelect = 1;
1716 }
1717 }
1718
1719 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1720 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1721 rr.CullMode = translate_cull_mode(state->cull_face);
1722 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1723 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1724 rr.DXMultisampleRasterizationEnable = state->multisample;
1725 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1726 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1727 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1728 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1729 rr.GlobalDepthOffsetScale = state->offset_scale;
1730 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1731 rr.SmoothPointEnable = state->point_smooth;
1732 rr.AntialiasingEnable = state->line_smooth;
1733 rr.ScissorRectangleEnable = state->scissor;
1734 #if GEN_GEN >= 9
1735 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1736 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1737 rr.ConservativeRasterizationEnable =
1738 cso->conservative_rasterization;
1739 #else
1740 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1741 #endif
1742 }
1743
1744 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1745 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1746 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1747 */
1748 cl.EarlyCullEnable = true;
1749 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1750 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1751 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1752 cl.GuardbandClipTestEnable = true;
1753 cl.ClipEnable = true;
1754 cl.MinimumPointWidth = 0.125;
1755 cl.MaximumPointWidth = 255.875;
1756
1757 if (state->flatshade_first) {
1758 cl.TriangleFanProvokingVertexSelect = 1;
1759 } else {
1760 cl.TriangleStripListProvokingVertexSelect = 2;
1761 cl.TriangleFanProvokingVertexSelect = 2;
1762 cl.LineStripListProvokingVertexSelect = 1;
1763 }
1764 }
1765
1766 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1767 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1768 * filled in at draw time from the FS program.
1769 */
1770 wm.LineAntialiasingRegionWidth = _10pixels;
1771 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1772 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1773 wm.LineStippleEnable = state->line_stipple_enable;
1774 wm.PolygonStippleEnable = state->poly_stipple_enable;
1775 }
1776
1777 /* Remap from 0..255 back to 1..256 */
1778 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1779
1780 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1781 if (state->line_stipple_enable) {
1782 line.LineStipplePattern = state->line_stipple_pattern;
1783 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1784 line.LineStippleRepeatCount = line_stipple_factor;
1785 }
1786 }
1787
1788 return cso;
1789 }
1790
1791 /**
1792 * The pipe->bind_rasterizer_state() driver hook.
1793 *
1794 * Bind a rasterizer CSO and flag related dirty bits.
1795 */
1796 static void
1797 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1798 {
1799 struct iris_context *ice = (struct iris_context *) ctx;
1800 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1801 struct iris_rasterizer_state *new_cso = state;
1802
1803 if (new_cso) {
1804 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1805 if (cso_changed_memcmp(line_stipple))
1806 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1807
1808 if (cso_changed(half_pixel_center))
1809 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1810
1811 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1812 ice->state.dirty |= IRIS_DIRTY_WM;
1813
1814 if (cso_changed(rasterizer_discard))
1815 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1816
1817 if (cso_changed(flatshade_first))
1818 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1819
1820 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1821 cso_changed(clip_halfz))
1822 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1823
1824 if (cso_changed(sprite_coord_enable) ||
1825 cso_changed(sprite_coord_mode) ||
1826 cso_changed(light_twoside))
1827 ice->state.dirty |= IRIS_DIRTY_SBE;
1828
1829 if (cso_changed(conservative_rasterization))
1830 ice->state.dirty |= IRIS_DIRTY_FS;
1831 }
1832
1833 ice->state.cso_rast = new_cso;
1834 ice->state.dirty |= IRIS_DIRTY_RASTER;
1835 ice->state.dirty |= IRIS_DIRTY_CLIP;
1836 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1837 }
1838
1839 /**
1840 * Return true if the given wrap mode requires the border color to exist.
1841 *
1842 * (We can skip uploading it if the sampler isn't going to use it.)
1843 */
1844 static bool
1845 wrap_mode_needs_border_color(unsigned wrap_mode)
1846 {
1847 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1848 }
1849
1850 /**
1851 * Gallium CSO for sampler state.
1852 */
1853 struct iris_sampler_state {
1854 union pipe_color_union border_color;
1855 bool needs_border_color;
1856
1857 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1858 };
1859
1860 /**
1861 * The pipe->create_sampler_state() driver hook.
1862 *
1863 * We fill out SAMPLER_STATE (except for the border color pointer), and
1864 * store that on the CPU. It doesn't make sense to upload it to a GPU
1865 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1866 * all bound sampler states to be in contiguous memor.
1867 */
1868 static void *
1869 iris_create_sampler_state(struct pipe_context *ctx,
1870 const struct pipe_sampler_state *state)
1871 {
1872 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1873
1874 if (!cso)
1875 return NULL;
1876
1877 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1878 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1879
1880 unsigned wrap_s = translate_wrap(state->wrap_s);
1881 unsigned wrap_t = translate_wrap(state->wrap_t);
1882 unsigned wrap_r = translate_wrap(state->wrap_r);
1883
1884 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1885
1886 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1887 wrap_mode_needs_border_color(wrap_t) ||
1888 wrap_mode_needs_border_color(wrap_r);
1889
1890 float min_lod = state->min_lod;
1891 unsigned mag_img_filter = state->mag_img_filter;
1892
1893 // XXX: explain this code ported from ilo...I don't get it at all...
1894 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1895 state->min_lod > 0.0f) {
1896 min_lod = 0.0f;
1897 mag_img_filter = state->min_img_filter;
1898 }
1899
1900 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1901 samp.TCXAddressControlMode = wrap_s;
1902 samp.TCYAddressControlMode = wrap_t;
1903 samp.TCZAddressControlMode = wrap_r;
1904 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1905 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1906 samp.MinModeFilter = state->min_img_filter;
1907 samp.MagModeFilter = mag_img_filter;
1908 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1909 samp.MaximumAnisotropy = RATIO21;
1910
1911 if (state->max_anisotropy >= 2) {
1912 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1913 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1914 samp.AnisotropicAlgorithm = EWAApproximation;
1915 }
1916
1917 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1918 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1919
1920 samp.MaximumAnisotropy =
1921 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1922 }
1923
1924 /* Set address rounding bits if not using nearest filtering. */
1925 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1926 samp.UAddressMinFilterRoundingEnable = true;
1927 samp.VAddressMinFilterRoundingEnable = true;
1928 samp.RAddressMinFilterRoundingEnable = true;
1929 }
1930
1931 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1932 samp.UAddressMagFilterRoundingEnable = true;
1933 samp.VAddressMagFilterRoundingEnable = true;
1934 samp.RAddressMagFilterRoundingEnable = true;
1935 }
1936
1937 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1938 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1939
1940 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1941
1942 samp.LODPreClampMode = CLAMP_MODE_OGL;
1943 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1944 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1945 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1946
1947 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1948 }
1949
1950 return cso;
1951 }
1952
1953 /**
1954 * The pipe->bind_sampler_states() driver hook.
1955 */
1956 static void
1957 iris_bind_sampler_states(struct pipe_context *ctx,
1958 enum pipe_shader_type p_stage,
1959 unsigned start, unsigned count,
1960 void **states)
1961 {
1962 struct iris_context *ice = (struct iris_context *) ctx;
1963 gl_shader_stage stage = stage_from_pipe(p_stage);
1964 struct iris_shader_state *shs = &ice->state.shaders[stage];
1965
1966 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1967
1968 bool dirty = false;
1969
1970 for (int i = 0; i < count; i++) {
1971 if (shs->samplers[start + i] != states[i]) {
1972 shs->samplers[start + i] = states[i];
1973 dirty = true;
1974 }
1975 }
1976
1977 if (dirty)
1978 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1979 }
1980
1981 /**
1982 * Upload the sampler states into a contiguous area of GPU memory, for
1983 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1984 *
1985 * Also fill out the border color state pointers.
1986 */
1987 static void
1988 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1989 {
1990 struct iris_shader_state *shs = &ice->state.shaders[stage];
1991 const struct shader_info *info = iris_get_shader_info(ice, stage);
1992
1993 /* We assume gallium frontends will call pipe->bind_sampler_states()
1994 * if the program's number of textures changes.
1995 */
1996 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1997
1998 if (!count)
1999 return;
2000
2001 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
2002 * in the dynamic state memory zone, so we can point to it via the
2003 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
2004 */
2005 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
2006 uint32_t *map =
2007 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
2008 if (unlikely(!map))
2009 return;
2010
2011 struct pipe_resource *res = shs->sampler_table.res;
2012 struct iris_bo *bo = iris_resource_bo(res);
2013
2014 iris_record_state_size(ice->state.sizes,
2015 bo->gtt_offset + shs->sampler_table.offset, size);
2016
2017 shs->sampler_table.offset += iris_bo_offset_from_base_address(bo);
2018
2019 /* Make sure all land in the same BO */
2020 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
2021
2022 ice->state.need_border_colors &= ~(1 << stage);
2023
2024 for (int i = 0; i < count; i++) {
2025 struct iris_sampler_state *state = shs->samplers[i];
2026 struct iris_sampler_view *tex = shs->textures[i];
2027
2028 if (!state) {
2029 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
2030 } else if (!state->needs_border_color) {
2031 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
2032 } else {
2033 ice->state.need_border_colors |= 1 << stage;
2034
2035 /* We may need to swizzle the border color for format faking.
2036 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
2037 * This means we need to move the border color's A channel into
2038 * the R or G channels so that those read swizzles will move it
2039 * back into A.
2040 */
2041 union pipe_color_union *color = &state->border_color;
2042 union pipe_color_union tmp;
2043 if (tex) {
2044 enum pipe_format internal_format = tex->res->internal_format;
2045
2046 if (util_format_is_alpha(internal_format)) {
2047 unsigned char swz[4] = {
2048 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
2049 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2050 };
2051 util_format_apply_color_swizzle(&tmp, color, swz, true);
2052 color = &tmp;
2053 } else if (util_format_is_luminance_alpha(internal_format) &&
2054 internal_format != PIPE_FORMAT_L8A8_SRGB) {
2055 unsigned char swz[4] = {
2056 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
2057 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2058 };
2059 util_format_apply_color_swizzle(&tmp, color, swz, true);
2060 color = &tmp;
2061 }
2062 }
2063
2064 /* Stream out the border color and merge the pointer. */
2065 uint32_t offset = iris_upload_border_color(ice, color);
2066
2067 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
2068 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
2069 dyns.BorderColorPointer = offset;
2070 }
2071
2072 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
2073 map[j] = state->sampler_state[j] | dynamic[j];
2074 }
2075
2076 map += GENX(SAMPLER_STATE_length);
2077 }
2078 }
2079
2080 static enum isl_channel_select
2081 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
2082 {
2083 switch (swz) {
2084 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
2085 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
2086 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
2087 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
2088 case PIPE_SWIZZLE_1: return SCS_ONE;
2089 case PIPE_SWIZZLE_0: return SCS_ZERO;
2090 default: unreachable("invalid swizzle");
2091 }
2092 }
2093
2094 static void
2095 fill_buffer_surface_state(struct isl_device *isl_dev,
2096 struct iris_resource *res,
2097 void *map,
2098 enum isl_format format,
2099 struct isl_swizzle swizzle,
2100 unsigned offset,
2101 unsigned size)
2102 {
2103 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
2104 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
2105
2106 /* The ARB_texture_buffer_specification says:
2107 *
2108 * "The number of texels in the buffer texture's texel array is given by
2109 *
2110 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
2111 *
2112 * where <buffer_size> is the size of the buffer object, in basic
2113 * machine units and <components> and <base_type> are the element count
2114 * and base data type for elements, as specified in Table X.1. The
2115 * number of texels in the texel array is then clamped to the
2116 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
2117 *
2118 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
2119 * so that when ISL divides by stride to obtain the number of texels, that
2120 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
2121 */
2122 unsigned final_size =
2123 MIN3(size, res->bo->size - res->offset - offset,
2124 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
2125
2126 isl_buffer_fill_state(isl_dev, map,
2127 .address = res->bo->gtt_offset + res->offset + offset,
2128 .size_B = final_size,
2129 .format = format,
2130 .swizzle = swizzle,
2131 .stride_B = cpp,
2132 .mocs = iris_mocs(res->bo, isl_dev));
2133 }
2134
2135 #define SURFACE_STATE_ALIGNMENT 64
2136
2137 /**
2138 * Allocate several contiguous SURFACE_STATE structures, one for each
2139 * supported auxiliary surface mode. This only allocates the CPU-side
2140 * copy, they will need to be uploaded later after they're filled in.
2141 */
2142 static void
2143 alloc_surface_states(struct iris_surface_state *surf_state,
2144 unsigned aux_usages)
2145 {
2146 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
2147
2148 /* If this changes, update this to explicitly align pointers */
2149 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
2150
2151 assert(aux_usages != 0);
2152
2153 /* In case we're re-allocating them... */
2154 free(surf_state->cpu);
2155
2156 surf_state->num_states = util_bitcount(aux_usages);
2157 surf_state->cpu = calloc(surf_state->num_states, surf_size);
2158 surf_state->ref.offset = 0;
2159 pipe_resource_reference(&surf_state->ref.res, NULL);
2160
2161 assert(surf_state->cpu);
2162 }
2163
2164 /**
2165 * Upload the CPU side SURFACE_STATEs into a GPU buffer.
2166 */
2167 static void
2168 upload_surface_states(struct u_upload_mgr *mgr,
2169 struct iris_surface_state *surf_state)
2170 {
2171 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
2172 const unsigned bytes = surf_state->num_states * surf_size;
2173
2174 void *map =
2175 upload_state(mgr, &surf_state->ref, bytes, SURFACE_STATE_ALIGNMENT);
2176
2177 surf_state->ref.offset +=
2178 iris_bo_offset_from_base_address(iris_resource_bo(surf_state->ref.res));
2179
2180 if (map)
2181 memcpy(map, surf_state->cpu, bytes);
2182 }
2183
2184 /**
2185 * Update resource addresses in a set of SURFACE_STATE descriptors,
2186 * and re-upload them if necessary.
2187 */
2188 static bool
2189 update_surface_state_addrs(struct u_upload_mgr *mgr,
2190 struct iris_surface_state *surf_state,
2191 struct iris_bo *bo)
2192 {
2193 if (surf_state->bo_address == bo->gtt_offset)
2194 return false;
2195
2196 STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) % 64 == 0);
2197 STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_bits) == 64);
2198
2199 uint64_t *ss_addr = (uint64_t *) &surf_state->cpu[GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) / 32];
2200
2201 /* First, update the CPU copies. We assume no other fields exist in
2202 * the QWord containing Surface Base Address.
2203 */
2204 for (unsigned i = 0; i < surf_state->num_states; i++) {
2205 *ss_addr = *ss_addr - surf_state->bo_address + bo->gtt_offset;
2206 ss_addr = ((void *) ss_addr) + SURFACE_STATE_ALIGNMENT;
2207 }
2208
2209 /* Next, upload the updated copies to a GPU buffer. */
2210 upload_surface_states(mgr, surf_state);
2211
2212 surf_state->bo_address = bo->gtt_offset;
2213
2214 return true;
2215 }
2216
2217 #if GEN_GEN == 8
2218 /**
2219 * Return an ISL surface for use with non-coherent render target reads.
2220 *
2221 * In a few complex cases, we can't use the SURFACE_STATE for normal render
2222 * target writes. We need to make a separate one for sampling which refers
2223 * to the single slice of the texture being read.
2224 */
2225 static void
2226 get_rt_read_isl_surf(const struct gen_device_info *devinfo,
2227 struct iris_resource *res,
2228 enum pipe_texture_target target,
2229 struct isl_view *view,
2230 uint32_t *offset_to_tile,
2231 uint32_t *tile_x_sa,
2232 uint32_t *tile_y_sa,
2233 struct isl_surf *surf)
2234 {
2235 *surf = res->surf;
2236
2237 const enum isl_dim_layout dim_layout =
2238 iris_get_isl_dim_layout(devinfo, res->surf.tiling, target);
2239
2240 surf->dim = target_to_isl_surf_dim(target);
2241
2242 if (surf->dim_layout == dim_layout)
2243 return;
2244
2245 /* The layout of the specified texture target is not compatible with the
2246 * actual layout of the miptree structure in memory -- You're entering
2247 * dangerous territory, this can only possibly work if you only intended
2248 * to access a single level and slice of the texture, and the hardware
2249 * supports the tile offset feature in order to allow non-tile-aligned
2250 * base offsets, since we'll have to point the hardware to the first
2251 * texel of the level instead of relying on the usual base level/layer
2252 * controls.
2253 */
2254 assert(view->levels == 1 && view->array_len == 1);
2255 assert(*tile_x_sa == 0 && *tile_y_sa == 0);
2256
2257 *offset_to_tile = iris_resource_get_tile_offsets(res, view->base_level,
2258 view->base_array_layer,
2259 tile_x_sa, tile_y_sa);
2260 const unsigned l = view->base_level;
2261
2262 surf->logical_level0_px.width = minify(surf->logical_level0_px.width, l);
2263 surf->logical_level0_px.height = surf->dim <= ISL_SURF_DIM_1D ? 1 :
2264 minify(surf->logical_level0_px.height, l);
2265 surf->logical_level0_px.depth = surf->dim <= ISL_SURF_DIM_2D ? 1 :
2266 minify(surf->logical_level0_px.depth, l);
2267
2268 surf->logical_level0_px.array_len = 1;
2269 surf->levels = 1;
2270 surf->dim_layout = dim_layout;
2271
2272 view->base_level = 0;
2273 view->base_array_layer = 0;
2274 }
2275 #endif
2276
2277 static void
2278 fill_surface_state(struct isl_device *isl_dev,
2279 void *map,
2280 struct iris_resource *res,
2281 struct isl_surf *surf,
2282 struct isl_view *view,
2283 unsigned aux_usage,
2284 uint32_t extra_main_offset,
2285 uint32_t tile_x_sa,
2286 uint32_t tile_y_sa)
2287 {
2288 struct isl_surf_fill_state_info f = {
2289 .surf = surf,
2290 .view = view,
2291 .mocs = iris_mocs(res->bo, isl_dev),
2292 .address = res->bo->gtt_offset + res->offset + extra_main_offset,
2293 .x_offset_sa = tile_x_sa,
2294 .y_offset_sa = tile_y_sa,
2295 };
2296
2297 assert(!iris_resource_unfinished_aux_import(res));
2298
2299 if (aux_usage != ISL_AUX_USAGE_NONE) {
2300 f.aux_surf = &res->aux.surf;
2301 f.aux_usage = aux_usage;
2302 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
2303
2304 struct iris_bo *clear_bo = NULL;
2305 uint64_t clear_offset = 0;
2306 f.clear_color =
2307 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
2308 if (clear_bo) {
2309 f.clear_address = clear_bo->gtt_offset + clear_offset;
2310 f.use_clear_address = isl_dev->info->gen > 9;
2311 }
2312 }
2313
2314 isl_surf_fill_state_s(isl_dev, map, &f);
2315 }
2316
2317 /**
2318 * The pipe->create_sampler_view() driver hook.
2319 */
2320 static struct pipe_sampler_view *
2321 iris_create_sampler_view(struct pipe_context *ctx,
2322 struct pipe_resource *tex,
2323 const struct pipe_sampler_view *tmpl)
2324 {
2325 struct iris_context *ice = (struct iris_context *) ctx;
2326 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2327 const struct gen_device_info *devinfo = &screen->devinfo;
2328 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
2329
2330 if (!isv)
2331 return NULL;
2332
2333 /* initialize base object */
2334 isv->base = *tmpl;
2335 isv->base.context = ctx;
2336 isv->base.texture = NULL;
2337 pipe_reference_init(&isv->base.reference, 1);
2338 pipe_resource_reference(&isv->base.texture, tex);
2339
2340 if (util_format_is_depth_or_stencil(tmpl->format)) {
2341 struct iris_resource *zres, *sres;
2342 const struct util_format_description *desc =
2343 util_format_description(tmpl->format);
2344
2345 iris_get_depth_stencil_resources(tex, &zres, &sres);
2346
2347 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
2348 }
2349
2350 isv->res = (struct iris_resource *) tex;
2351
2352 alloc_surface_states(&isv->surface_state, isv->res->aux.sampler_usages);
2353
2354 isv->surface_state.bo_address = isv->res->bo->gtt_offset;
2355
2356 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
2357
2358 if (isv->base.target == PIPE_TEXTURE_CUBE ||
2359 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
2360 usage |= ISL_SURF_USAGE_CUBE_BIT;
2361
2362 const struct iris_format_info fmt =
2363 iris_format_for_usage(devinfo, tmpl->format, usage);
2364
2365 isv->clear_color = isv->res->aux.clear_color;
2366
2367 isv->view = (struct isl_view) {
2368 .format = fmt.fmt,
2369 .swizzle = (struct isl_swizzle) {
2370 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
2371 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
2372 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
2373 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
2374 },
2375 .usage = usage,
2376 };
2377
2378 void *map = isv->surface_state.cpu;
2379
2380 /* Fill out SURFACE_STATE for this view. */
2381 if (tmpl->target != PIPE_BUFFER) {
2382 isv->view.base_level = tmpl->u.tex.first_level;
2383 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
2384 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
2385 isv->view.base_array_layer = tmpl->u.tex.first_layer;
2386 isv->view.array_len =
2387 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2388
2389 if (iris_resource_unfinished_aux_import(isv->res))
2390 iris_resource_finish_aux_import(&screen->base, isv->res);
2391
2392 unsigned aux_modes = isv->res->aux.sampler_usages;
2393 while (aux_modes) {
2394 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2395
2396 /* If we have a multisampled depth buffer, do not create a sampler
2397 * surface state with HiZ.
2398 */
2399 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->res->surf,
2400 &isv->view, aux_usage, 0, 0, 0);
2401
2402 map += SURFACE_STATE_ALIGNMENT;
2403 }
2404 } else {
2405 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
2406 isv->view.format, isv->view.swizzle,
2407 tmpl->u.buf.offset, tmpl->u.buf.size);
2408 }
2409
2410 upload_surface_states(ice->state.surface_uploader, &isv->surface_state);
2411
2412 return &isv->base;
2413 }
2414
2415 static void
2416 iris_sampler_view_destroy(struct pipe_context *ctx,
2417 struct pipe_sampler_view *state)
2418 {
2419 struct iris_sampler_view *isv = (void *) state;
2420 pipe_resource_reference(&state->texture, NULL);
2421 pipe_resource_reference(&isv->surface_state.ref.res, NULL);
2422 free(isv->surface_state.cpu);
2423 free(isv);
2424 }
2425
2426 /**
2427 * The pipe->create_surface() driver hook.
2428 *
2429 * In Gallium nomenclature, "surfaces" are a view of a resource that
2430 * can be bound as a render target or depth/stencil buffer.
2431 */
2432 static struct pipe_surface *
2433 iris_create_surface(struct pipe_context *ctx,
2434 struct pipe_resource *tex,
2435 const struct pipe_surface *tmpl)
2436 {
2437 struct iris_context *ice = (struct iris_context *) ctx;
2438 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2439 const struct gen_device_info *devinfo = &screen->devinfo;
2440
2441 isl_surf_usage_flags_t usage = 0;
2442 if (tmpl->writable)
2443 usage = ISL_SURF_USAGE_STORAGE_BIT;
2444 else if (util_format_is_depth_or_stencil(tmpl->format))
2445 usage = ISL_SURF_USAGE_DEPTH_BIT;
2446 else
2447 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
2448
2449 const struct iris_format_info fmt =
2450 iris_format_for_usage(devinfo, tmpl->format, usage);
2451
2452 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
2453 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
2454 /* Framebuffer validation will reject this invalid case, but it
2455 * hasn't had the opportunity yet. In the meantime, we need to
2456 * avoid hitting ISL asserts about unsupported formats below.
2457 */
2458 return NULL;
2459 }
2460
2461 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
2462 struct pipe_surface *psurf = &surf->base;
2463 struct iris_resource *res = (struct iris_resource *) tex;
2464
2465 if (!surf)
2466 return NULL;
2467
2468 pipe_reference_init(&psurf->reference, 1);
2469 pipe_resource_reference(&psurf->texture, tex);
2470 psurf->context = ctx;
2471 psurf->format = tmpl->format;
2472 psurf->width = tex->width0;
2473 psurf->height = tex->height0;
2474 psurf->texture = tex;
2475 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
2476 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
2477 psurf->u.tex.level = tmpl->u.tex.level;
2478
2479 uint32_t array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2480
2481 struct isl_view *view = &surf->view;
2482 *view = (struct isl_view) {
2483 .format = fmt.fmt,
2484 .base_level = tmpl->u.tex.level,
2485 .levels = 1,
2486 .base_array_layer = tmpl->u.tex.first_layer,
2487 .array_len = array_len,
2488 .swizzle = ISL_SWIZZLE_IDENTITY,
2489 .usage = usage,
2490 };
2491
2492 #if GEN_GEN == 8
2493 enum pipe_texture_target target = (tex->target == PIPE_TEXTURE_3D &&
2494 array_len == 1) ? PIPE_TEXTURE_2D :
2495 tex->target == PIPE_TEXTURE_1D_ARRAY ?
2496 PIPE_TEXTURE_2D_ARRAY : tex->target;
2497
2498 struct isl_view *read_view = &surf->read_view;
2499 *read_view = (struct isl_view) {
2500 .format = fmt.fmt,
2501 .base_level = tmpl->u.tex.level,
2502 .levels = 1,
2503 .base_array_layer = tmpl->u.tex.first_layer,
2504 .array_len = array_len,
2505 .swizzle = ISL_SWIZZLE_IDENTITY,
2506 .usage = ISL_SURF_USAGE_TEXTURE_BIT,
2507 };
2508 #endif
2509
2510 surf->clear_color = res->aux.clear_color;
2511
2512 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
2513 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
2514 ISL_SURF_USAGE_STENCIL_BIT))
2515 return psurf;
2516
2517
2518 alloc_surface_states(&surf->surface_state, res->aux.possible_usages);
2519 surf->surface_state.bo_address = res->bo->gtt_offset;
2520
2521 #if GEN_GEN == 8
2522 alloc_surface_states(&surf->surface_state_read, res->aux.possible_usages);
2523 surf->surface_state_read.bo_address = res->bo->gtt_offset;
2524 #endif
2525
2526 if (!isl_format_is_compressed(res->surf.format)) {
2527 if (iris_resource_unfinished_aux_import(res))
2528 iris_resource_finish_aux_import(&screen->base, res);
2529
2530 void *map = surf->surface_state.cpu;
2531 UNUSED void *map_read = surf->surface_state_read.cpu;
2532
2533 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
2534 * auxiliary surface mode and return the pipe_surface.
2535 */
2536 unsigned aux_modes = res->aux.possible_usages;
2537 while (aux_modes) {
2538 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2539 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2540 view, aux_usage, 0, 0, 0);
2541 map += SURFACE_STATE_ALIGNMENT;
2542
2543 #if GEN_GEN == 8
2544 struct isl_surf surf;
2545 uint32_t offset_to_tile = 0, tile_x_sa = 0, tile_y_sa = 0;
2546 get_rt_read_isl_surf(devinfo, res, target, read_view,
2547 &offset_to_tile, &tile_x_sa, &tile_y_sa, &surf);
2548 fill_surface_state(&screen->isl_dev, map_read, res, &surf, read_view,
2549 aux_usage, offset_to_tile, tile_x_sa, tile_y_sa);
2550 map_read += SURFACE_STATE_ALIGNMENT;
2551 #endif
2552 }
2553
2554 upload_surface_states(ice->state.surface_uploader, &surf->surface_state);
2555
2556 #if GEN_GEN == 8
2557 upload_surface_states(ice->state.surface_uploader,
2558 &surf->surface_state_read);
2559 #endif
2560
2561 return psurf;
2562 }
2563
2564 /* The resource has a compressed format, which is not renderable, but we
2565 * have a renderable view format. We must be attempting to upload blocks
2566 * of compressed data via an uncompressed view.
2567 *
2568 * In this case, we can assume there are no auxiliary buffers, a single
2569 * miplevel, and that the resource is single-sampled. Gallium may try
2570 * and create an uncompressed view with multiple layers, however.
2571 */
2572 assert(!isl_format_is_compressed(fmt.fmt));
2573 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
2574 assert(res->surf.samples == 1);
2575 assert(view->levels == 1);
2576
2577 struct isl_surf isl_surf;
2578 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
2579
2580 if (view->base_level > 0) {
2581 /* We can't rely on the hardware's miplevel selection with such
2582 * a substantial lie about the format, so we select a single image
2583 * using the Tile X/Y Offset fields. In this case, we can't handle
2584 * multiple array slices.
2585 *
2586 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
2587 * hard-coded to align to exactly the block size of the compressed
2588 * texture. This means that, when reinterpreted as a non-compressed
2589 * texture, the tile offsets may be anything and we can't rely on
2590 * X/Y Offset.
2591 *
2592 * Return NULL to force gallium frontends to take fallback paths.
2593 */
2594 if (view->array_len > 1 || GEN_GEN == 8)
2595 return NULL;
2596
2597 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
2598 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
2599 view->base_level,
2600 is_3d ? 0 : view->base_array_layer,
2601 is_3d ? view->base_array_layer : 0,
2602 &isl_surf,
2603 &offset_B, &tile_x_sa, &tile_y_sa);
2604
2605 /* We use address and tile offsets to access a single level/layer
2606 * as a subimage, so reset level/layer so it doesn't offset again.
2607 */
2608 view->base_array_layer = 0;
2609 view->base_level = 0;
2610 } else {
2611 /* Level 0 doesn't require tile offsets, and the hardware can find
2612 * array slices using QPitch even with the format override, so we
2613 * can allow layers in this case. Copy the original ISL surface.
2614 */
2615 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
2616 }
2617
2618 /* Scale down the image dimensions by the block size. */
2619 const struct isl_format_layout *fmtl =
2620 isl_format_get_layout(res->surf.format);
2621 isl_surf.format = fmt.fmt;
2622 isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
2623 isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
2624 tile_x_sa /= fmtl->bw;
2625 tile_y_sa /= fmtl->bh;
2626
2627 psurf->width = isl_surf.logical_level0_px.width;
2628 psurf->height = isl_surf.logical_level0_px.height;
2629
2630 struct isl_surf_fill_state_info f = {
2631 .surf = &isl_surf,
2632 .view = view,
2633 .mocs = iris_mocs(res->bo, &screen->isl_dev),
2634 .address = res->bo->gtt_offset + offset_B,
2635 .x_offset_sa = tile_x_sa,
2636 .y_offset_sa = tile_y_sa,
2637 };
2638
2639 isl_surf_fill_state_s(&screen->isl_dev, surf->surface_state.cpu, &f);
2640
2641 upload_surface_states(ice->state.surface_uploader, &surf->surface_state);
2642
2643 return psurf;
2644 }
2645
2646 #if GEN_GEN < 9
2647 static void
2648 fill_default_image_param(struct brw_image_param *param)
2649 {
2650 memset(param, 0, sizeof(*param));
2651 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
2652 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
2653 * detailed explanation of these parameters.
2654 */
2655 param->swizzling[0] = 0xff;
2656 param->swizzling[1] = 0xff;
2657 }
2658
2659 static void
2660 fill_buffer_image_param(struct brw_image_param *param,
2661 enum pipe_format pfmt,
2662 unsigned size)
2663 {
2664 const unsigned cpp = util_format_get_blocksize(pfmt);
2665
2666 fill_default_image_param(param);
2667 param->size[0] = size / cpp;
2668 param->stride[0] = cpp;
2669 }
2670 #else
2671 #define isl_surf_fill_image_param(x, ...)
2672 #define fill_default_image_param(x, ...)
2673 #define fill_buffer_image_param(x, ...)
2674 #endif
2675
2676 /**
2677 * The pipe->set_shader_images() driver hook.
2678 */
2679 static void
2680 iris_set_shader_images(struct pipe_context *ctx,
2681 enum pipe_shader_type p_stage,
2682 unsigned start_slot, unsigned count,
2683 const struct pipe_image_view *p_images)
2684 {
2685 struct iris_context *ice = (struct iris_context *) ctx;
2686 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2687 gl_shader_stage stage = stage_from_pipe(p_stage);
2688 struct iris_shader_state *shs = &ice->state.shaders[stage];
2689 #if GEN_GEN == 8
2690 struct iris_genx_state *genx = ice->state.genx;
2691 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2692 #endif
2693
2694 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2695
2696 for (unsigned i = 0; i < count; i++) {
2697 struct iris_image_view *iv = &shs->image[start_slot + i];
2698
2699 if (p_images && p_images[i].resource) {
2700 const struct pipe_image_view *img = &p_images[i];
2701 struct iris_resource *res = (void *) img->resource;
2702
2703 util_copy_image_view(&iv->base, img);
2704
2705 shs->bound_image_views |= 1 << (start_slot + i);
2706
2707 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2708 res->bind_stages |= 1 << stage;
2709
2710 enum isl_format isl_fmt = iris_image_view_get_format(ice, img);
2711
2712 /* Render compression with images supported on gen12+ only. */
2713 unsigned aux_usages = GEN_GEN >= 12 ? res->aux.possible_usages :
2714 1 << ISL_AUX_USAGE_NONE;
2715
2716 alloc_surface_states(&iv->surface_state, aux_usages);
2717 iv->surface_state.bo_address = res->bo->gtt_offset;
2718
2719 void *map = iv->surface_state.cpu;
2720
2721 if (res->base.target != PIPE_BUFFER) {
2722 struct isl_view view = {
2723 .format = isl_fmt,
2724 .base_level = img->u.tex.level,
2725 .levels = 1,
2726 .base_array_layer = img->u.tex.first_layer,
2727 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2728 .swizzle = ISL_SWIZZLE_IDENTITY,
2729 .usage = ISL_SURF_USAGE_STORAGE_BIT,
2730 };
2731
2732 /* If using untyped fallback. */
2733 if (isl_fmt == ISL_FORMAT_RAW) {
2734 fill_buffer_surface_state(&screen->isl_dev, res, map,
2735 isl_fmt, ISL_SWIZZLE_IDENTITY,
2736 0, res->bo->size);
2737 } else {
2738 unsigned aux_modes = aux_usages;
2739 while (aux_modes) {
2740 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2741
2742 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2743 &view, usage, 0, 0, 0);
2744
2745 map += SURFACE_STATE_ALIGNMENT;
2746 }
2747 }
2748
2749 isl_surf_fill_image_param(&screen->isl_dev,
2750 &image_params[start_slot + i],
2751 &res->surf, &view);
2752 } else {
2753 util_range_add(&res->base, &res->valid_buffer_range, img->u.buf.offset,
2754 img->u.buf.offset + img->u.buf.size);
2755
2756 fill_buffer_surface_state(&screen->isl_dev, res, map,
2757 isl_fmt, ISL_SWIZZLE_IDENTITY,
2758 img->u.buf.offset, img->u.buf.size);
2759 fill_buffer_image_param(&image_params[start_slot + i],
2760 img->format, img->u.buf.size);
2761 }
2762
2763 upload_surface_states(ice->state.surface_uploader, &iv->surface_state);
2764 } else {
2765 pipe_resource_reference(&iv->base.resource, NULL);
2766 pipe_resource_reference(&iv->surface_state.ref.res, NULL);
2767 fill_default_image_param(&image_params[start_slot + i]);
2768 }
2769 }
2770
2771 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2772 ice->state.dirty |=
2773 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2774 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2775
2776 /* Broadwell also needs brw_image_params re-uploaded */
2777 if (GEN_GEN < 9) {
2778 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2779 shs->sysvals_need_upload = true;
2780 }
2781 }
2782
2783
2784 /**
2785 * The pipe->set_sampler_views() driver hook.
2786 */
2787 static void
2788 iris_set_sampler_views(struct pipe_context *ctx,
2789 enum pipe_shader_type p_stage,
2790 unsigned start, unsigned count,
2791 struct pipe_sampler_view **views)
2792 {
2793 struct iris_context *ice = (struct iris_context *) ctx;
2794 gl_shader_stage stage = stage_from_pipe(p_stage);
2795 struct iris_shader_state *shs = &ice->state.shaders[stage];
2796
2797 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2798
2799 for (unsigned i = 0; i < count; i++) {
2800 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2801 pipe_sampler_view_reference((struct pipe_sampler_view **)
2802 &shs->textures[start + i], pview);
2803 struct iris_sampler_view *view = (void *) pview;
2804 if (view) {
2805 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2806 view->res->bind_stages |= 1 << stage;
2807
2808 shs->bound_sampler_views |= 1 << (start + i);
2809
2810 update_surface_state_addrs(ice->state.surface_uploader,
2811 &view->surface_state, view->res->bo);
2812 }
2813 }
2814
2815 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2816 ice->state.dirty |=
2817 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2818 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2819 }
2820
2821 /**
2822 * The pipe->set_tess_state() driver hook.
2823 */
2824 static void
2825 iris_set_tess_state(struct pipe_context *ctx,
2826 const float default_outer_level[4],
2827 const float default_inner_level[2])
2828 {
2829 struct iris_context *ice = (struct iris_context *) ctx;
2830 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2831
2832 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2833 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2834
2835 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2836 shs->sysvals_need_upload = true;
2837 }
2838
2839 static void
2840 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2841 {
2842 struct iris_surface *surf = (void *) p_surf;
2843 pipe_resource_reference(&p_surf->texture, NULL);
2844 pipe_resource_reference(&surf->surface_state.ref.res, NULL);
2845 pipe_resource_reference(&surf->surface_state_read.ref.res, NULL);
2846 free(surf->surface_state.cpu);
2847 free(surf);
2848 }
2849
2850 static void
2851 iris_set_clip_state(struct pipe_context *ctx,
2852 const struct pipe_clip_state *state)
2853 {
2854 struct iris_context *ice = (struct iris_context *) ctx;
2855 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2856 struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
2857 struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
2858
2859 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2860
2861 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS | IRIS_DIRTY_CONSTANTS_GS |
2862 IRIS_DIRTY_CONSTANTS_TES;
2863 shs->sysvals_need_upload = true;
2864 gshs->sysvals_need_upload = true;
2865 tshs->sysvals_need_upload = true;
2866 }
2867
2868 /**
2869 * The pipe->set_polygon_stipple() driver hook.
2870 */
2871 static void
2872 iris_set_polygon_stipple(struct pipe_context *ctx,
2873 const struct pipe_poly_stipple *state)
2874 {
2875 struct iris_context *ice = (struct iris_context *) ctx;
2876 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2877 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2878 }
2879
2880 /**
2881 * The pipe->set_sample_mask() driver hook.
2882 */
2883 static void
2884 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2885 {
2886 struct iris_context *ice = (struct iris_context *) ctx;
2887
2888 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2889 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2890 */
2891 ice->state.sample_mask = sample_mask & 0xffff;
2892 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2893 }
2894
2895 /**
2896 * The pipe->set_scissor_states() driver hook.
2897 *
2898 * This corresponds to our SCISSOR_RECT state structures. It's an
2899 * exact match, so we just store them, and memcpy them out later.
2900 */
2901 static void
2902 iris_set_scissor_states(struct pipe_context *ctx,
2903 unsigned start_slot,
2904 unsigned num_scissors,
2905 const struct pipe_scissor_state *rects)
2906 {
2907 struct iris_context *ice = (struct iris_context *) ctx;
2908
2909 for (unsigned i = 0; i < num_scissors; i++) {
2910 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2911 /* If the scissor was out of bounds and got clamped to 0 width/height
2912 * at the bounds, the subtraction of 1 from maximums could produce a
2913 * negative number and thus not clip anything. Instead, just provide
2914 * a min > max scissor inside the bounds, which produces the expected
2915 * no rendering.
2916 */
2917 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2918 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2919 };
2920 } else {
2921 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2922 .minx = rects[i].minx, .miny = rects[i].miny,
2923 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2924 };
2925 }
2926 }
2927
2928 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2929 }
2930
2931 /**
2932 * The pipe->set_stencil_ref() driver hook.
2933 *
2934 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2935 */
2936 static void
2937 iris_set_stencil_ref(struct pipe_context *ctx,
2938 const struct pipe_stencil_ref *state)
2939 {
2940 struct iris_context *ice = (struct iris_context *) ctx;
2941 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2942 if (GEN_GEN >= 12)
2943 ice->state.dirty |= IRIS_DIRTY_STENCIL_REF;
2944 else if (GEN_GEN >= 9)
2945 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2946 else
2947 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2948 }
2949
2950 static float
2951 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2952 {
2953 return copysignf(state->scale[axis], sign) + state->translate[axis];
2954 }
2955
2956 /**
2957 * The pipe->set_viewport_states() driver hook.
2958 *
2959 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2960 * the guardband yet, as we need the framebuffer dimensions, but we can
2961 * at least fill out the rest.
2962 */
2963 static void
2964 iris_set_viewport_states(struct pipe_context *ctx,
2965 unsigned start_slot,
2966 unsigned count,
2967 const struct pipe_viewport_state *states)
2968 {
2969 struct iris_context *ice = (struct iris_context *) ctx;
2970
2971 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2972
2973 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2974
2975 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2976 !ice->state.cso_rast->depth_clip_far))
2977 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2978 }
2979
2980 /**
2981 * The pipe->set_framebuffer_state() driver hook.
2982 *
2983 * Sets the current draw FBO, including color render targets, depth,
2984 * and stencil buffers.
2985 */
2986 static void
2987 iris_set_framebuffer_state(struct pipe_context *ctx,
2988 const struct pipe_framebuffer_state *state)
2989 {
2990 struct iris_context *ice = (struct iris_context *) ctx;
2991 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2992 struct isl_device *isl_dev = &screen->isl_dev;
2993 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2994 struct iris_resource *zres;
2995 struct iris_resource *stencil_res;
2996
2997 unsigned samples = util_framebuffer_get_num_samples(state);
2998 unsigned layers = util_framebuffer_get_num_layers(state);
2999
3000 if (cso->samples != samples) {
3001 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
3002
3003 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
3004 if (GEN_GEN >= 9 && (cso->samples == 16 || samples == 16))
3005 ice->state.dirty |= IRIS_DIRTY_FS;
3006 }
3007
3008 if (cso->nr_cbufs != state->nr_cbufs) {
3009 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
3010 }
3011
3012 if ((cso->layers == 0) != (layers == 0)) {
3013 ice->state.dirty |= IRIS_DIRTY_CLIP;
3014 }
3015
3016 if (cso->width != state->width || cso->height != state->height) {
3017 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
3018 }
3019
3020 if (cso->zsbuf || state->zsbuf) {
3021 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
3022 }
3023
3024 util_copy_framebuffer_state(cso, state);
3025 cso->samples = samples;
3026 cso->layers = layers;
3027
3028 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
3029
3030 struct isl_view view = {
3031 .base_level = 0,
3032 .levels = 1,
3033 .base_array_layer = 0,
3034 .array_len = 1,
3035 .swizzle = ISL_SWIZZLE_IDENTITY,
3036 };
3037
3038 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
3039
3040 if (cso->zsbuf) {
3041 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
3042 &stencil_res);
3043
3044 view.base_level = cso->zsbuf->u.tex.level;
3045 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
3046 view.array_len =
3047 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
3048
3049 if (zres) {
3050 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
3051
3052 info.depth_surf = &zres->surf;
3053 info.depth_address = zres->bo->gtt_offset + zres->offset;
3054 info.mocs = iris_mocs(zres->bo, isl_dev);
3055
3056 view.format = zres->surf.format;
3057
3058 if (iris_resource_level_has_hiz(zres, view.base_level)) {
3059 info.hiz_usage = zres->aux.usage;
3060 info.hiz_surf = &zres->aux.surf;
3061 info.hiz_address = zres->aux.bo->gtt_offset + zres->aux.offset;
3062 }
3063 }
3064
3065 if (stencil_res) {
3066 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
3067 info.stencil_aux_usage = stencil_res->aux.usage;
3068 info.stencil_surf = &stencil_res->surf;
3069 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
3070 if (!zres) {
3071 view.format = stencil_res->surf.format;
3072 info.mocs = iris_mocs(stencil_res->bo, isl_dev);
3073 }
3074 }
3075 }
3076
3077 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
3078
3079 /* Make a null surface for unbound buffers */
3080 void *null_surf_map =
3081 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
3082 4 * GENX(RENDER_SURFACE_STATE_length), 64);
3083 isl_null_fill_state(&screen->isl_dev, null_surf_map,
3084 isl_extent3d(MAX2(cso->width, 1),
3085 MAX2(cso->height, 1),
3086 cso->layers ? cso->layers : 1));
3087 ice->state.null_fb.offset +=
3088 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
3089
3090 /* Render target change */
3091 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
3092
3093 ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER;
3094
3095 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
3096
3097 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
3098
3099 if (GEN_GEN == 8)
3100 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
3101 }
3102
3103 /**
3104 * The pipe->set_constant_buffer() driver hook.
3105 *
3106 * This uploads any constant data in user buffers, and references
3107 * any UBO resources containing constant data.
3108 */
3109 static void
3110 iris_set_constant_buffer(struct pipe_context *ctx,
3111 enum pipe_shader_type p_stage, unsigned index,
3112 const struct pipe_constant_buffer *input)
3113 {
3114 struct iris_context *ice = (struct iris_context *) ctx;
3115 gl_shader_stage stage = stage_from_pipe(p_stage);
3116 struct iris_shader_state *shs = &ice->state.shaders[stage];
3117 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
3118
3119 /* TODO: Only do this if the buffer changes? */
3120 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
3121
3122 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
3123 shs->bound_cbufs |= 1u << index;
3124
3125 if (input->user_buffer) {
3126 void *map = NULL;
3127 pipe_resource_reference(&cbuf->buffer, NULL);
3128 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
3129 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
3130
3131 if (!cbuf->buffer) {
3132 /* Allocation was unsuccessful - just unbind */
3133 iris_set_constant_buffer(ctx, p_stage, index, NULL);
3134 return;
3135 }
3136
3137 assert(map);
3138 memcpy(map, input->user_buffer, input->buffer_size);
3139 } else if (input->buffer) {
3140 pipe_resource_reference(&cbuf->buffer, input->buffer);
3141
3142 cbuf->buffer_offset = input->buffer_offset;
3143 }
3144
3145 cbuf->buffer_size =
3146 MIN2(input->buffer_size,
3147 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
3148
3149 struct iris_resource *res = (void *) cbuf->buffer;
3150 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
3151 res->bind_stages |= 1 << stage;
3152 } else {
3153 shs->bound_cbufs &= ~(1u << index);
3154 pipe_resource_reference(&cbuf->buffer, NULL);
3155 }
3156
3157 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
3158 }
3159
3160 static void
3161 upload_sysvals(struct iris_context *ice,
3162 gl_shader_stage stage)
3163 {
3164 UNUSED struct iris_genx_state *genx = ice->state.genx;
3165 struct iris_shader_state *shs = &ice->state.shaders[stage];
3166
3167 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3168 if (!shader || shader->num_system_values == 0)
3169 return;
3170
3171 assert(shader->num_cbufs > 0);
3172
3173 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
3174 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
3175 unsigned upload_size = shader->num_system_values * sizeof(uint32_t);
3176 uint32_t *map = NULL;
3177
3178 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
3179 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
3180 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
3181
3182 for (int i = 0; i < shader->num_system_values; i++) {
3183 uint32_t sysval = shader->system_values[i];
3184 uint32_t value = 0;
3185
3186 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
3187 #if GEN_GEN == 8
3188 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
3189 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
3190 struct brw_image_param *param =
3191 &genx->shaders[stage].image_param[img];
3192
3193 assert(offset < sizeof(struct brw_image_param));
3194 value = ((uint32_t *) param)[offset];
3195 #endif
3196 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
3197 value = 0;
3198 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
3199 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
3200 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
3201 value = fui(ice->state.clip_planes.ucp[plane][comp]);
3202 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
3203 if (stage == MESA_SHADER_TESS_CTRL) {
3204 value = ice->state.vertices_per_patch;
3205 } else {
3206 assert(stage == MESA_SHADER_TESS_EVAL);
3207 const struct shader_info *tcs_info =
3208 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
3209 if (tcs_info)
3210 value = tcs_info->tess.tcs_vertices_out;
3211 else
3212 value = ice->state.vertices_per_patch;
3213 }
3214 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
3215 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
3216 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
3217 value = fui(ice->state.default_outer_level[i]);
3218 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
3219 value = fui(ice->state.default_inner_level[0]);
3220 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
3221 value = fui(ice->state.default_inner_level[1]);
3222 } else if (sysval >= BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X &&
3223 sysval <= BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z) {
3224 unsigned i = sysval - BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X;
3225 value = ice->state.last_block[i];
3226 } else {
3227 assert(!"unhandled system value");
3228 }
3229
3230 *map++ = value;
3231 }
3232
3233 cbuf->buffer_size = upload_size;
3234 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
3235 &shs->constbuf_surf_state[sysval_cbuf_index], false);
3236
3237 shs->sysvals_need_upload = false;
3238 }
3239
3240 /**
3241 * The pipe->set_shader_buffers() driver hook.
3242 *
3243 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
3244 * SURFACE_STATE here, as the buffer offset may change each time.
3245 */
3246 static void
3247 iris_set_shader_buffers(struct pipe_context *ctx,
3248 enum pipe_shader_type p_stage,
3249 unsigned start_slot, unsigned count,
3250 const struct pipe_shader_buffer *buffers,
3251 unsigned writable_bitmask)
3252 {
3253 struct iris_context *ice = (struct iris_context *) ctx;
3254 gl_shader_stage stage = stage_from_pipe(p_stage);
3255 struct iris_shader_state *shs = &ice->state.shaders[stage];
3256
3257 unsigned modified_bits = u_bit_consecutive(start_slot, count);
3258
3259 shs->bound_ssbos &= ~modified_bits;
3260 shs->writable_ssbos &= ~modified_bits;
3261 shs->writable_ssbos |= writable_bitmask << start_slot;
3262
3263 for (unsigned i = 0; i < count; i++) {
3264 if (buffers && buffers[i].buffer) {
3265 struct iris_resource *res = (void *) buffers[i].buffer;
3266 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
3267 struct iris_state_ref *surf_state =
3268 &shs->ssbo_surf_state[start_slot + i];
3269 pipe_resource_reference(&ssbo->buffer, &res->base);
3270 ssbo->buffer_offset = buffers[i].buffer_offset;
3271 ssbo->buffer_size =
3272 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
3273
3274 shs->bound_ssbos |= 1 << (start_slot + i);
3275
3276 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
3277
3278 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
3279 res->bind_stages |= 1 << stage;
3280
3281 util_range_add(&res->base, &res->valid_buffer_range, ssbo->buffer_offset,
3282 ssbo->buffer_offset + ssbo->buffer_size);
3283 } else {
3284 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
3285 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
3286 NULL);
3287 }
3288 }
3289
3290 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
3291 }
3292
3293 static void
3294 iris_delete_state(struct pipe_context *ctx, void *state)
3295 {
3296 free(state);
3297 }
3298
3299 /**
3300 * The pipe->set_vertex_buffers() driver hook.
3301 *
3302 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
3303 */
3304 static void
3305 iris_set_vertex_buffers(struct pipe_context *ctx,
3306 unsigned start_slot, unsigned count,
3307 const struct pipe_vertex_buffer *buffers)
3308 {
3309 struct iris_context *ice = (struct iris_context *) ctx;
3310 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3311 struct iris_genx_state *genx = ice->state.genx;
3312
3313 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
3314
3315 for (unsigned i = 0; i < count; i++) {
3316 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
3317 struct iris_vertex_buffer_state *state =
3318 &genx->vertex_buffers[start_slot + i];
3319
3320 if (!buffer) {
3321 pipe_resource_reference(&state->resource, NULL);
3322 continue;
3323 }
3324
3325 /* We may see user buffers that are NULL bindings. */
3326 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
3327
3328 pipe_resource_reference(&state->resource, buffer->buffer.resource);
3329 struct iris_resource *res = (void *) state->resource;
3330
3331 state->offset = (int) buffer->buffer_offset;
3332
3333 if (res) {
3334 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
3335 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
3336 }
3337
3338 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
3339 vb.VertexBufferIndex = start_slot + i;
3340 vb.AddressModifyEnable = true;
3341 vb.BufferPitch = buffer->stride;
3342 if (res) {
3343 vb.BufferSize = res->base.width0 - (int) buffer->buffer_offset;
3344 vb.BufferStartingAddress =
3345 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
3346 vb.MOCS = iris_mocs(res->bo, &screen->isl_dev);
3347 } else {
3348 vb.NullVertexBuffer = true;
3349 }
3350 }
3351 }
3352
3353 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
3354 }
3355
3356 /**
3357 * Gallium CSO for vertex elements.
3358 */
3359 struct iris_vertex_element_state {
3360 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
3361 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
3362 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
3363 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
3364 unsigned count;
3365 };
3366
3367 /**
3368 * The pipe->create_vertex_elements() driver hook.
3369 *
3370 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
3371 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
3372 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
3373 * needed. In these cases we will need information available at draw time.
3374 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
3375 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
3376 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
3377 */
3378 static void *
3379 iris_create_vertex_elements(struct pipe_context *ctx,
3380 unsigned count,
3381 const struct pipe_vertex_element *state)
3382 {
3383 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3384 const struct gen_device_info *devinfo = &screen->devinfo;
3385 struct iris_vertex_element_state *cso =
3386 malloc(sizeof(struct iris_vertex_element_state));
3387
3388 cso->count = count;
3389
3390 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
3391 ve.DWordLength =
3392 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
3393 }
3394
3395 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
3396 uint32_t *vfi_pack_dest = cso->vf_instancing;
3397
3398 if (count == 0) {
3399 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3400 ve.Valid = true;
3401 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
3402 ve.Component0Control = VFCOMP_STORE_0;
3403 ve.Component1Control = VFCOMP_STORE_0;
3404 ve.Component2Control = VFCOMP_STORE_0;
3405 ve.Component3Control = VFCOMP_STORE_1_FP;
3406 }
3407
3408 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3409 }
3410 }
3411
3412 for (int i = 0; i < count; i++) {
3413 const struct iris_format_info fmt =
3414 iris_format_for_usage(devinfo, state[i].src_format, 0);
3415 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
3416 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
3417
3418 switch (isl_format_get_num_channels(fmt.fmt)) {
3419 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
3420 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
3421 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
3422 case 3:
3423 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
3424 : VFCOMP_STORE_1_FP;
3425 break;
3426 }
3427 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3428 ve.EdgeFlagEnable = false;
3429 ve.VertexBufferIndex = state[i].vertex_buffer_index;
3430 ve.Valid = true;
3431 ve.SourceElementOffset = state[i].src_offset;
3432 ve.SourceElementFormat = fmt.fmt;
3433 ve.Component0Control = comp[0];
3434 ve.Component1Control = comp[1];
3435 ve.Component2Control = comp[2];
3436 ve.Component3Control = comp[3];
3437 }
3438
3439 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3440 vi.VertexElementIndex = i;
3441 vi.InstancingEnable = state[i].instance_divisor > 0;
3442 vi.InstanceDataStepRate = state[i].instance_divisor;
3443 }
3444
3445 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
3446 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
3447 }
3448
3449 /* An alternative version of the last VE and VFI is stored so it
3450 * can be used at draw time in case Vertex Shader uses EdgeFlag
3451 */
3452 if (count) {
3453 const unsigned edgeflag_index = count - 1;
3454 const struct iris_format_info fmt =
3455 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
3456 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
3457 ve.EdgeFlagEnable = true ;
3458 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
3459 ve.Valid = true;
3460 ve.SourceElementOffset = state[edgeflag_index].src_offset;
3461 ve.SourceElementFormat = fmt.fmt;
3462 ve.Component0Control = VFCOMP_STORE_SRC;
3463 ve.Component1Control = VFCOMP_STORE_0;
3464 ve.Component2Control = VFCOMP_STORE_0;
3465 ve.Component3Control = VFCOMP_STORE_0;
3466 }
3467 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
3468 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
3469 * at draw time, as it should change if SGVs are emitted.
3470 */
3471 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
3472 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
3473 }
3474 }
3475
3476 return cso;
3477 }
3478
3479 /**
3480 * The pipe->bind_vertex_elements_state() driver hook.
3481 */
3482 static void
3483 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
3484 {
3485 struct iris_context *ice = (struct iris_context *) ctx;
3486 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
3487 struct iris_vertex_element_state *new_cso = state;
3488
3489 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
3490 * we need to re-emit it to ensure we're overriding the right one.
3491 */
3492 if (new_cso && cso_changed(count))
3493 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
3494
3495 ice->state.cso_vertex_elements = state;
3496 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
3497 }
3498
3499 /**
3500 * The pipe->create_stream_output_target() driver hook.
3501 *
3502 * "Target" here refers to a destination buffer. We translate this into
3503 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
3504 * know which buffer this represents, or whether we ought to zero the
3505 * write-offsets, or append. Those are handled in the set() hook.
3506 */
3507 static struct pipe_stream_output_target *
3508 iris_create_stream_output_target(struct pipe_context *ctx,
3509 struct pipe_resource *p_res,
3510 unsigned buffer_offset,
3511 unsigned buffer_size)
3512 {
3513 struct iris_resource *res = (void *) p_res;
3514 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
3515 if (!cso)
3516 return NULL;
3517
3518 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
3519
3520 pipe_reference_init(&cso->base.reference, 1);
3521 pipe_resource_reference(&cso->base.buffer, p_res);
3522 cso->base.buffer_offset = buffer_offset;
3523 cso->base.buffer_size = buffer_size;
3524 cso->base.context = ctx;
3525
3526 util_range_add(&res->base, &res->valid_buffer_range, buffer_offset,
3527 buffer_offset + buffer_size);
3528
3529 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
3530
3531 return &cso->base;
3532 }
3533
3534 static void
3535 iris_stream_output_target_destroy(struct pipe_context *ctx,
3536 struct pipe_stream_output_target *state)
3537 {
3538 struct iris_stream_output_target *cso = (void *) state;
3539
3540 pipe_resource_reference(&cso->base.buffer, NULL);
3541 pipe_resource_reference(&cso->offset.res, NULL);
3542
3543 free(cso);
3544 }
3545
3546 /**
3547 * The pipe->set_stream_output_targets() driver hook.
3548 *
3549 * At this point, we know which targets are bound to a particular index,
3550 * and also whether we want to append or start over. We can finish the
3551 * 3DSTATE_SO_BUFFER packets we started earlier.
3552 */
3553 static void
3554 iris_set_stream_output_targets(struct pipe_context *ctx,
3555 unsigned num_targets,
3556 struct pipe_stream_output_target **targets,
3557 const unsigned *offsets)
3558 {
3559 struct iris_context *ice = (struct iris_context *) ctx;
3560 struct iris_genx_state *genx = ice->state.genx;
3561 uint32_t *so_buffers = genx->so_buffers;
3562 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3563
3564 const bool active = num_targets > 0;
3565 if (ice->state.streamout_active != active) {
3566 ice->state.streamout_active = active;
3567 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
3568
3569 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
3570 * it's a non-pipelined command. If we're switching streamout on, we
3571 * may have missed emitting it earlier, so do so now. (We're already
3572 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
3573 */
3574 if (active) {
3575 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
3576 } else {
3577 uint32_t flush = 0;
3578 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
3579 struct iris_stream_output_target *tgt =
3580 (void *) ice->state.so_target[i];
3581 if (tgt) {
3582 struct iris_resource *res = (void *) tgt->base.buffer;
3583
3584 flush |= iris_flush_bits_for_history(res);
3585 iris_dirty_for_history(ice, res);
3586 }
3587 }
3588 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
3589 "make streamout results visible", flush);
3590 }
3591 }
3592
3593 for (int i = 0; i < 4; i++) {
3594 pipe_so_target_reference(&ice->state.so_target[i],
3595 i < num_targets ? targets[i] : NULL);
3596 }
3597
3598 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
3599 if (!active)
3600 return;
3601
3602 for (unsigned i = 0; i < 4; i++,
3603 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
3604
3605 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
3606 unsigned offset = offsets[i];
3607
3608 if (!tgt) {
3609 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3610 #if GEN_GEN < 12
3611 sob.SOBufferIndex = i;
3612 #else
3613 sob._3DCommandOpcode = 0;
3614 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
3615 #endif
3616 }
3617 continue;
3618 }
3619
3620 struct iris_resource *res = (void *) tgt->base.buffer;
3621
3622 /* Note that offsets[i] will either be 0, causing us to zero
3623 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
3624 * "continue appending at the existing offset."
3625 */
3626 assert(offset == 0 || offset == 0xFFFFFFFF);
3627
3628 /* We might be called by Begin (offset = 0), Pause, then Resume
3629 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
3630 * will actually be sent to the GPU). In this case, we don't want
3631 * to append - we still want to do our initial zeroing.
3632 */
3633 if (!tgt->zeroed)
3634 offset = 0;
3635
3636 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3637 #if GEN_GEN < 12
3638 sob.SOBufferIndex = i;
3639 #else
3640 sob._3DCommandOpcode = 0;
3641 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
3642 #endif
3643 sob.SurfaceBaseAddress =
3644 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
3645 sob.SOBufferEnable = true;
3646 sob.StreamOffsetWriteEnable = true;
3647 sob.StreamOutputBufferOffsetAddressEnable = true;
3648 sob.MOCS = iris_mocs(res->bo, &screen->isl_dev);
3649
3650 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
3651 sob.StreamOffset = offset;
3652 sob.StreamOutputBufferOffsetAddress =
3653 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
3654 tgt->offset.offset);
3655 }
3656 }
3657
3658 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
3659 }
3660
3661 /**
3662 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
3663 * 3DSTATE_STREAMOUT packets.
3664 *
3665 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
3666 * hardware to record. We can create it entirely based on the shader, with
3667 * no dynamic state dependencies.
3668 *
3669 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
3670 * state-based settings. We capture the shader-related ones here, and merge
3671 * the rest in at draw time.
3672 */
3673 static uint32_t *
3674 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
3675 const struct brw_vue_map *vue_map)
3676 {
3677 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3678 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3679 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3680 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3681 int max_decls = 0;
3682 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3683
3684 memset(so_decl, 0, sizeof(so_decl));
3685
3686 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3687 * command feels strange -- each dword pair contains a SO_DECL per stream.
3688 */
3689 for (unsigned i = 0; i < info->num_outputs; i++) {
3690 const struct pipe_stream_output *output = &info->output[i];
3691 const int buffer = output->output_buffer;
3692 const int varying = output->register_index;
3693 const unsigned stream_id = output->stream;
3694 assert(stream_id < MAX_VERTEX_STREAMS);
3695
3696 buffer_mask[stream_id] |= 1 << buffer;
3697
3698 assert(vue_map->varying_to_slot[varying] >= 0);
3699
3700 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3701 * array. Instead, it simply increments DstOffset for the following
3702 * input by the number of components that should be skipped.
3703 *
3704 * Our hardware is unusual in that it requires us to program SO_DECLs
3705 * for fake "hole" components, rather than simply taking the offset
3706 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3707 * program as many size = 4 holes as we can, then a final hole to
3708 * accommodate the final 1, 2, or 3 remaining.
3709 */
3710 int skip_components = output->dst_offset - next_offset[buffer];
3711
3712 while (skip_components > 0) {
3713 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3714 .HoleFlag = 1,
3715 .OutputBufferSlot = output->output_buffer,
3716 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3717 };
3718 skip_components -= 4;
3719 }
3720
3721 next_offset[buffer] = output->dst_offset + output->num_components;
3722
3723 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3724 .OutputBufferSlot = output->output_buffer,
3725 .RegisterIndex = vue_map->varying_to_slot[varying],
3726 .ComponentMask =
3727 ((1 << output->num_components) - 1) << output->start_component,
3728 };
3729
3730 if (decls[stream_id] > max_decls)
3731 max_decls = decls[stream_id];
3732 }
3733
3734 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3735 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3736 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3737
3738 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3739 int urb_entry_read_offset = 0;
3740 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3741 urb_entry_read_offset;
3742
3743 /* We always read the whole vertex. This could be reduced at some
3744 * point by reading less and offsetting the register index in the
3745 * SO_DECLs.
3746 */
3747 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3748 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3749 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3750 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3751 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3752 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3753 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3754 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3755
3756 /* Set buffer pitches; 0 means unbound. */
3757 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3758 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3759 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3760 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3761 }
3762
3763 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3764 list.DWordLength = 3 + 2 * max_decls - 2;
3765 list.StreamtoBufferSelects0 = buffer_mask[0];
3766 list.StreamtoBufferSelects1 = buffer_mask[1];
3767 list.StreamtoBufferSelects2 = buffer_mask[2];
3768 list.StreamtoBufferSelects3 = buffer_mask[3];
3769 list.NumEntries0 = decls[0];
3770 list.NumEntries1 = decls[1];
3771 list.NumEntries2 = decls[2];
3772 list.NumEntries3 = decls[3];
3773 }
3774
3775 for (int i = 0; i < max_decls; i++) {
3776 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3777 entry.Stream0Decl = so_decl[0][i];
3778 entry.Stream1Decl = so_decl[1][i];
3779 entry.Stream2Decl = so_decl[2][i];
3780 entry.Stream3Decl = so_decl[3][i];
3781 }
3782 }
3783
3784 return map;
3785 }
3786
3787 static void
3788 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3789 const struct brw_vue_map *last_vue_map,
3790 bool two_sided_color,
3791 unsigned *out_offset,
3792 unsigned *out_length)
3793 {
3794 /* The compiler computes the first URB slot without considering COL/BFC
3795 * swizzling (because it doesn't know whether it's enabled), so we need
3796 * to do that here too. This may result in a smaller offset, which
3797 * should be safe.
3798 */
3799 const unsigned first_slot =
3800 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3801
3802 /* This becomes the URB read offset (counted in pairs of slots). */
3803 assert(first_slot % 2 == 0);
3804 *out_offset = first_slot / 2;
3805
3806 /* We need to adjust the inputs read to account for front/back color
3807 * swizzling, as it can make the URB length longer.
3808 */
3809 for (int c = 0; c <= 1; c++) {
3810 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3811 /* If two sided color is enabled, the fragment shader's gl_Color
3812 * (COL0) input comes from either the gl_FrontColor (COL0) or
3813 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3814 */
3815 if (two_sided_color)
3816 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3817
3818 /* If front color isn't written, we opt to give them back color
3819 * instead of an undefined value. Switch from COL to BFC.
3820 */
3821 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3822 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3823 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3824 }
3825 }
3826 }
3827
3828 /* Compute the minimum URB Read Length necessary for the FS inputs.
3829 *
3830 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3831 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3832 *
3833 * "This field should be set to the minimum length required to read the
3834 * maximum source attribute. The maximum source attribute is indicated
3835 * by the maximum value of the enabled Attribute # Source Attribute if
3836 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3837 * enable is not set.
3838 * read_length = ceiling((max_source_attr + 1) / 2)
3839 *
3840 * [errata] Corruption/Hang possible if length programmed larger than
3841 * recommended"
3842 *
3843 * Similar text exists for Ivy Bridge.
3844 *
3845 * We find the last URB slot that's actually read by the FS.
3846 */
3847 unsigned last_read_slot = last_vue_map->num_slots - 1;
3848 while (last_read_slot > first_slot && !(fs_input_slots &
3849 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3850 --last_read_slot;
3851
3852 /* The URB read length is the difference of the two, counted in pairs. */
3853 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3854 }
3855
3856 static void
3857 iris_emit_sbe_swiz(struct iris_batch *batch,
3858 const struct iris_context *ice,
3859 unsigned urb_read_offset,
3860 unsigned sprite_coord_enables)
3861 {
3862 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3863 const struct brw_wm_prog_data *wm_prog_data = (void *)
3864 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3865 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3866 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3867
3868 /* XXX: this should be generated when putting programs in place */
3869
3870 for (uint8_t idx = 0; idx < wm_prog_data->urb_setup_attribs_count; idx++) {
3871 const uint8_t fs_attr = wm_prog_data->urb_setup_attribs[idx];
3872 const int input_index = wm_prog_data->urb_setup[fs_attr];
3873 if (input_index < 0 || input_index >= 16)
3874 continue;
3875
3876 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3877 &attr_overrides[input_index];
3878 int slot = vue_map->varying_to_slot[fs_attr];
3879
3880 /* Viewport and Layer are stored in the VUE header. We need to override
3881 * them to zero if earlier stages didn't write them, as GL requires that
3882 * they read back as zero when not explicitly set.
3883 */
3884 switch (fs_attr) {
3885 case VARYING_SLOT_VIEWPORT:
3886 case VARYING_SLOT_LAYER:
3887 attr->ComponentOverrideX = true;
3888 attr->ComponentOverrideW = true;
3889 attr->ConstantSource = CONST_0000;
3890
3891 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3892 attr->ComponentOverrideY = true;
3893 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3894 attr->ComponentOverrideZ = true;
3895 continue;
3896
3897 case VARYING_SLOT_PRIMITIVE_ID:
3898 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3899 if (slot == -1) {
3900 attr->ComponentOverrideX = true;
3901 attr->ComponentOverrideY = true;
3902 attr->ComponentOverrideZ = true;
3903 attr->ComponentOverrideW = true;
3904 attr->ConstantSource = PRIM_ID;
3905 continue;
3906 }
3907
3908 default:
3909 break;
3910 }
3911
3912 if (sprite_coord_enables & (1 << input_index))
3913 continue;
3914
3915 /* If there was only a back color written but not front, use back
3916 * as the color instead of undefined.
3917 */
3918 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3919 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3920 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3921 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3922
3923 /* Not written by the previous stage - undefined. */
3924 if (slot == -1) {
3925 attr->ComponentOverrideX = true;
3926 attr->ComponentOverrideY = true;
3927 attr->ComponentOverrideZ = true;
3928 attr->ComponentOverrideW = true;
3929 attr->ConstantSource = CONST_0001_FLOAT;
3930 continue;
3931 }
3932
3933 /* Compute the location of the attribute relative to the read offset,
3934 * which is counted in 256-bit increments (two 128-bit VUE slots).
3935 */
3936 const int source_attr = slot - 2 * urb_read_offset;
3937 assert(source_attr >= 0 && source_attr <= 32);
3938 attr->SourceAttribute = source_attr;
3939
3940 /* If we are doing two-sided color, and the VUE slot following this one
3941 * represents a back-facing color, then we need to instruct the SF unit
3942 * to do back-facing swizzling.
3943 */
3944 if (cso_rast->light_twoside &&
3945 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3946 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3947 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3948 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3949 attr->SwizzleSelect = INPUTATTR_FACING;
3950 }
3951
3952 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3953 for (int i = 0; i < 16; i++)
3954 sbes.Attribute[i] = attr_overrides[i];
3955 }
3956 }
3957
3958 static unsigned
3959 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3960 const struct iris_rasterizer_state *cso)
3961 {
3962 unsigned overrides = 0;
3963
3964 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3965 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3966
3967 for (int i = 0; i < 8; i++) {
3968 if ((cso->sprite_coord_enable & (1 << i)) &&
3969 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3970 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3971 }
3972
3973 return overrides;
3974 }
3975
3976 static void
3977 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3978 {
3979 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3980 const struct brw_wm_prog_data *wm_prog_data = (void *)
3981 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3982 const struct shader_info *fs_info =
3983 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3984
3985 unsigned urb_read_offset, urb_read_length;
3986 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3987 ice->shaders.last_vue_map,
3988 cso_rast->light_twoside,
3989 &urb_read_offset, &urb_read_length);
3990
3991 unsigned sprite_coord_overrides =
3992 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3993
3994 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3995 sbe.AttributeSwizzleEnable = true;
3996 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3997 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3998 sbe.VertexURBEntryReadOffset = urb_read_offset;
3999 sbe.VertexURBEntryReadLength = urb_read_length;
4000 sbe.ForceVertexURBEntryReadOffset = true;
4001 sbe.ForceVertexURBEntryReadLength = true;
4002 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
4003 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
4004 #if GEN_GEN >= 9
4005 for (int i = 0; i < 32; i++) {
4006 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
4007 }
4008 #endif
4009 }
4010
4011 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
4012 }
4013
4014 /* ------------------------------------------------------------------- */
4015
4016 /**
4017 * Populate VS program key fields based on the current state.
4018 */
4019 static void
4020 iris_populate_vs_key(const struct iris_context *ice,
4021 const struct shader_info *info,
4022 gl_shader_stage last_stage,
4023 struct iris_vs_prog_key *key)
4024 {
4025 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4026
4027 if (info->clip_distance_array_size == 0 &&
4028 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4029 last_stage == MESA_SHADER_VERTEX)
4030 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4031 }
4032
4033 /**
4034 * Populate TCS program key fields based on the current state.
4035 */
4036 static void
4037 iris_populate_tcs_key(const struct iris_context *ice,
4038 struct iris_tcs_prog_key *key)
4039 {
4040 }
4041
4042 /**
4043 * Populate TES program key fields based on the current state.
4044 */
4045 static void
4046 iris_populate_tes_key(const struct iris_context *ice,
4047 const struct shader_info *info,
4048 gl_shader_stage last_stage,
4049 struct iris_tes_prog_key *key)
4050 {
4051 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4052
4053 if (info->clip_distance_array_size == 0 &&
4054 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4055 last_stage == MESA_SHADER_TESS_EVAL)
4056 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4057 }
4058
4059 /**
4060 * Populate GS program key fields based on the current state.
4061 */
4062 static void
4063 iris_populate_gs_key(const struct iris_context *ice,
4064 const struct shader_info *info,
4065 gl_shader_stage last_stage,
4066 struct iris_gs_prog_key *key)
4067 {
4068 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4069
4070 if (info->clip_distance_array_size == 0 &&
4071 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4072 last_stage == MESA_SHADER_GEOMETRY)
4073 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4074 }
4075
4076 /**
4077 * Populate FS program key fields based on the current state.
4078 */
4079 static void
4080 iris_populate_fs_key(const struct iris_context *ice,
4081 const struct shader_info *info,
4082 struct iris_fs_prog_key *key)
4083 {
4084 struct iris_screen *screen = (void *) ice->ctx.screen;
4085 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
4086 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
4087 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
4088 const struct iris_blend_state *blend = ice->state.cso_blend;
4089
4090 key->nr_color_regions = fb->nr_cbufs;
4091
4092 key->clamp_fragment_color = rast->clamp_fragment_color;
4093
4094 key->alpha_to_coverage = blend->alpha_to_coverage;
4095
4096 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
4097
4098 key->flat_shade = rast->flatshade &&
4099 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
4100
4101 key->persample_interp = rast->force_persample_interp;
4102 key->multisample_fbo = rast->multisample && fb->samples > 1;
4103
4104 key->coherent_fb_fetch = GEN_GEN >= 9;
4105
4106 key->force_dual_color_blend =
4107 screen->driconf.dual_color_blend_by_location &&
4108 (blend->blend_enables & 1) && blend->dual_color_blending;
4109
4110 /* TODO: Respect glHint for key->high_quality_derivatives */
4111 }
4112
4113 static void
4114 iris_populate_cs_key(const struct iris_context *ice,
4115 struct iris_cs_prog_key *key)
4116 {
4117 }
4118
4119 static uint64_t
4120 KSP(const struct iris_compiled_shader *shader)
4121 {
4122 struct iris_resource *res = (void *) shader->assembly.res;
4123 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
4124 }
4125
4126 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
4127 pkt.KernelStartPointer = KSP(shader); \
4128 pkt.BindingTableEntryCount = shader->bt.size_bytes / 4; \
4129 pkt.FloatingPointMode = prog_data->use_alt_mode; \
4130 \
4131 pkt.DispatchGRFStartRegisterForURBData = \
4132 prog_data->dispatch_grf_start_reg; \
4133 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
4134 pkt.prefix##URBEntryReadOffset = 0; \
4135 \
4136 pkt.StatisticsEnable = true; \
4137 pkt.Enable = true; \
4138 \
4139 if (prog_data->total_scratch) { \
4140 struct iris_bo *bo = \
4141 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
4142 uint32_t scratch_addr = bo->gtt_offset; \
4143 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
4144 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
4145 }
4146
4147 /**
4148 * Encode most of 3DSTATE_VS based on the compiled shader.
4149 */
4150 static void
4151 iris_store_vs_state(struct iris_context *ice,
4152 const struct gen_device_info *devinfo,
4153 struct iris_compiled_shader *shader)
4154 {
4155 struct brw_stage_prog_data *prog_data = shader->prog_data;
4156 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4157
4158 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
4159 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
4160 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
4161 vs.SIMD8DispatchEnable = true;
4162 vs.UserClipDistanceCullTestEnableBitmask =
4163 vue_prog_data->cull_distance_mask;
4164 }
4165 }
4166
4167 /**
4168 * Encode most of 3DSTATE_HS based on the compiled shader.
4169 */
4170 static void
4171 iris_store_tcs_state(struct iris_context *ice,
4172 const struct gen_device_info *devinfo,
4173 struct iris_compiled_shader *shader)
4174 {
4175 struct brw_stage_prog_data *prog_data = shader->prog_data;
4176 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4177 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
4178
4179 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
4180 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
4181
4182 #if GEN_GEN >= 12
4183 /* GEN:BUG:1604578095:
4184 *
4185 * Hang occurs when the number of max threads is less than 2 times
4186 * the number of instance count. The number of max threads must be
4187 * more than 2 times the number of instance count.
4188 */
4189 assert((devinfo->max_tcs_threads / 2) > tcs_prog_data->instances);
4190 hs.DispatchGRFStartRegisterForURBData = prog_data->dispatch_grf_start_reg & 0x1f;
4191 hs.DispatchGRFStartRegisterForURBData5 = prog_data->dispatch_grf_start_reg >> 5;
4192 #endif
4193
4194 hs.InstanceCount = tcs_prog_data->instances - 1;
4195 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
4196 hs.IncludeVertexHandles = true;
4197
4198 #if GEN_GEN == 12
4199 /* Patch Count threshold specifies the maximum number of patches that
4200 * will be accumulated before a thread dispatch is forced.
4201 */
4202 hs.PatchCountThreshold = tcs_prog_data->patch_count_threshold;
4203 #endif
4204
4205 #if GEN_GEN >= 9
4206 hs.DispatchMode = vue_prog_data->dispatch_mode;
4207 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
4208 #endif
4209 }
4210 }
4211
4212 /**
4213 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
4214 */
4215 static void
4216 iris_store_tes_state(struct iris_context *ice,
4217 const struct gen_device_info *devinfo,
4218 struct iris_compiled_shader *shader)
4219 {
4220 struct brw_stage_prog_data *prog_data = shader->prog_data;
4221 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4222 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
4223
4224 uint32_t *te_state = (void *) shader->derived_data;
4225 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
4226
4227 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
4228 te.Partitioning = tes_prog_data->partitioning;
4229 te.OutputTopology = tes_prog_data->output_topology;
4230 te.TEDomain = tes_prog_data->domain;
4231 te.TEEnable = true;
4232 te.MaximumTessellationFactorOdd = 63.0;
4233 te.MaximumTessellationFactorNotOdd = 64.0;
4234 }
4235
4236 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
4237 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
4238
4239 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
4240 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
4241 ds.ComputeWCoordinateEnable =
4242 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
4243
4244 ds.UserClipDistanceCullTestEnableBitmask =
4245 vue_prog_data->cull_distance_mask;
4246 }
4247
4248 }
4249
4250 /**
4251 * Encode most of 3DSTATE_GS based on the compiled shader.
4252 */
4253 static void
4254 iris_store_gs_state(struct iris_context *ice,
4255 const struct gen_device_info *devinfo,
4256 struct iris_compiled_shader *shader)
4257 {
4258 struct brw_stage_prog_data *prog_data = shader->prog_data;
4259 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4260 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
4261
4262 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
4263 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
4264
4265 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
4266 gs.OutputTopology = gs_prog_data->output_topology;
4267 gs.ControlDataHeaderSize =
4268 gs_prog_data->control_data_header_size_hwords;
4269 gs.InstanceControl = gs_prog_data->invocations - 1;
4270 gs.DispatchMode = DISPATCH_MODE_SIMD8;
4271 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
4272 gs.ControlDataFormat = gs_prog_data->control_data_format;
4273 gs.ReorderMode = TRAILING;
4274 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
4275 gs.MaximumNumberofThreads =
4276 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
4277 : (devinfo->max_gs_threads - 1);
4278
4279 if (gs_prog_data->static_vertex_count != -1) {
4280 gs.StaticOutput = true;
4281 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
4282 }
4283 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
4284
4285 gs.UserClipDistanceCullTestEnableBitmask =
4286 vue_prog_data->cull_distance_mask;
4287
4288 const int urb_entry_write_offset = 1;
4289 const uint32_t urb_entry_output_length =
4290 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
4291 urb_entry_write_offset;
4292
4293 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
4294 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
4295 }
4296 }
4297
4298 /**
4299 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
4300 */
4301 static void
4302 iris_store_fs_state(struct iris_context *ice,
4303 const struct gen_device_info *devinfo,
4304 struct iris_compiled_shader *shader)
4305 {
4306 struct brw_stage_prog_data *prog_data = shader->prog_data;
4307 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
4308
4309 uint32_t *ps_state = (void *) shader->derived_data;
4310 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
4311
4312 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
4313 ps.VectorMaskEnable = true;
4314 ps.BindingTableEntryCount = shader->bt.size_bytes / 4;
4315 ps.FloatingPointMode = prog_data->use_alt_mode;
4316 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
4317
4318 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
4319
4320 /* From the documentation for this packet:
4321 * "If the PS kernel does not need the Position XY Offsets to
4322 * compute a Position Value, then this field should be programmed
4323 * to POSOFFSET_NONE."
4324 *
4325 * "SW Recommendation: If the PS kernel needs the Position Offsets
4326 * to compute a Position XY value, this field should match Position
4327 * ZW Interpolation Mode to ensure a consistent position.xyzw
4328 * computation."
4329 *
4330 * We only require XY sample offsets. So, this recommendation doesn't
4331 * look useful at the moment. We might need this in future.
4332 */
4333 ps.PositionXYOffsetSelect =
4334 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
4335
4336 if (prog_data->total_scratch) {
4337 struct iris_bo *bo =
4338 iris_get_scratch_space(ice, prog_data->total_scratch,
4339 MESA_SHADER_FRAGMENT);
4340 uint32_t scratch_addr = bo->gtt_offset;
4341 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4342 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
4343 }
4344 }
4345
4346 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
4347 psx.PixelShaderValid = true;
4348 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
4349 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
4350 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
4351 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
4352 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
4353 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
4354 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
4355
4356 #if GEN_GEN >= 9
4357 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
4358 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
4359 #endif
4360 }
4361 }
4362
4363 /**
4364 * Compute the size of the derived data (shader command packets).
4365 *
4366 * This must match the data written by the iris_store_xs_state() functions.
4367 */
4368 static void
4369 iris_store_cs_state(struct iris_context *ice,
4370 const struct gen_device_info *devinfo,
4371 struct iris_compiled_shader *shader)
4372 {
4373 struct brw_stage_prog_data *prog_data = shader->prog_data;
4374 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
4375 void *map = shader->derived_data;
4376
4377 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
4378 desc.KernelStartPointer = KSP(shader);
4379 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
4380 desc.SharedLocalMemorySize =
4381 encode_slm_size(GEN_GEN, prog_data->total_shared);
4382 desc.BarrierEnable = cs_prog_data->uses_barrier;
4383 desc.CrossThreadConstantDataReadLength =
4384 cs_prog_data->push.cross_thread.regs;
4385 #if GEN_GEN >= 12
4386 /* TODO: Check if we are missing workarounds and enable mid-thread
4387 * preemption.
4388 *
4389 * We still have issues with mid-thread preemption (it was already
4390 * disabled by the kernel on gen11, due to missing workarounds). It's
4391 * possible that we are just missing some workarounds, and could enable
4392 * it later, but for now let's disable it to fix a GPU in compute in Car
4393 * Chase (and possibly more).
4394 */
4395 desc.ThreadPreemptionDisable = true;
4396 #endif
4397 }
4398 }
4399
4400 static unsigned
4401 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
4402 {
4403 assert(cache_id <= IRIS_CACHE_BLORP);
4404
4405 static const unsigned dwords[] = {
4406 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
4407 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
4408 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
4409 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
4410 [IRIS_CACHE_FS] =
4411 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
4412 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
4413 [IRIS_CACHE_BLORP] = 0,
4414 };
4415
4416 return sizeof(uint32_t) * dwords[cache_id];
4417 }
4418
4419 /**
4420 * Create any state packets corresponding to the given shader stage
4421 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
4422 * This means that we can look up a program in the in-memory cache and
4423 * get most of the state packet without having to reconstruct it.
4424 */
4425 static void
4426 iris_store_derived_program_state(struct iris_context *ice,
4427 enum iris_program_cache_id cache_id,
4428 struct iris_compiled_shader *shader)
4429 {
4430 struct iris_screen *screen = (void *) ice->ctx.screen;
4431 const struct gen_device_info *devinfo = &screen->devinfo;
4432
4433 switch (cache_id) {
4434 case IRIS_CACHE_VS:
4435 iris_store_vs_state(ice, devinfo, shader);
4436 break;
4437 case IRIS_CACHE_TCS:
4438 iris_store_tcs_state(ice, devinfo, shader);
4439 break;
4440 case IRIS_CACHE_TES:
4441 iris_store_tes_state(ice, devinfo, shader);
4442 break;
4443 case IRIS_CACHE_GS:
4444 iris_store_gs_state(ice, devinfo, shader);
4445 break;
4446 case IRIS_CACHE_FS:
4447 iris_store_fs_state(ice, devinfo, shader);
4448 break;
4449 case IRIS_CACHE_CS:
4450 iris_store_cs_state(ice, devinfo, shader);
4451 case IRIS_CACHE_BLORP:
4452 break;
4453 default:
4454 break;
4455 }
4456 }
4457
4458 /* ------------------------------------------------------------------- */
4459
4460 static const uint32_t push_constant_opcodes[] = {
4461 [MESA_SHADER_VERTEX] = 21,
4462 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
4463 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
4464 [MESA_SHADER_GEOMETRY] = 22,
4465 [MESA_SHADER_FRAGMENT] = 23,
4466 [MESA_SHADER_COMPUTE] = 0,
4467 };
4468
4469 static uint32_t
4470 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
4471 {
4472 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
4473
4474 iris_use_pinned_bo(batch, state_bo, false);
4475
4476 return ice->state.unbound_tex.offset;
4477 }
4478
4479 static uint32_t
4480 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
4481 {
4482 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
4483 if (!ice->state.null_fb.res)
4484 return use_null_surface(batch, ice);
4485
4486 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
4487
4488 iris_use_pinned_bo(batch, state_bo, false);
4489
4490 return ice->state.null_fb.offset;
4491 }
4492
4493 static uint32_t
4494 surf_state_offset_for_aux(struct iris_resource *res,
4495 unsigned aux_modes,
4496 enum isl_aux_usage aux_usage)
4497 {
4498 return SURFACE_STATE_ALIGNMENT *
4499 util_bitcount(aux_modes & ((1 << aux_usage) - 1));
4500 }
4501
4502 #if GEN_GEN == 9
4503 static void
4504 surf_state_update_clear_value(struct iris_batch *batch,
4505 struct iris_resource *res,
4506 struct iris_state_ref *state,
4507 unsigned aux_modes,
4508 enum isl_aux_usage aux_usage)
4509 {
4510 struct isl_device *isl_dev = &batch->screen->isl_dev;
4511 struct iris_bo *state_bo = iris_resource_bo(state->res);
4512 uint64_t real_offset = state->offset + IRIS_MEMZONE_BINDER_START;
4513 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
4514 uint32_t clear_offset = offset_into_bo +
4515 isl_dev->ss.clear_value_offset +
4516 surf_state_offset_for_aux(res, aux_modes, aux_usage);
4517 uint32_t *color = res->aux.clear_color.u32;
4518
4519 assert(isl_dev->ss.clear_value_size == 16);
4520
4521 if (aux_usage == ISL_AUX_USAGE_HIZ) {
4522 iris_emit_pipe_control_write(batch, "update fast clear value (Z)",
4523 PIPE_CONTROL_WRITE_IMMEDIATE,
4524 state_bo, clear_offset, color[0]);
4525 } else {
4526 iris_emit_pipe_control_write(batch, "update fast clear color (RG__)",
4527 PIPE_CONTROL_WRITE_IMMEDIATE,
4528 state_bo, clear_offset,
4529 (uint64_t) color[0] |
4530 (uint64_t) color[1] << 32);
4531 iris_emit_pipe_control_write(batch, "update fast clear color (__BA)",
4532 PIPE_CONTROL_WRITE_IMMEDIATE,
4533 state_bo, clear_offset + 8,
4534 (uint64_t) color[2] |
4535 (uint64_t) color[3] << 32);
4536 }
4537
4538 iris_emit_pipe_control_flush(batch,
4539 "update fast clear: state cache invalidate",
4540 PIPE_CONTROL_FLUSH_ENABLE |
4541 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
4542 }
4543 #endif
4544
4545 static void
4546 update_clear_value(struct iris_context *ice,
4547 struct iris_batch *batch,
4548 struct iris_resource *res,
4549 struct iris_surface_state *surf_state,
4550 unsigned all_aux_modes,
4551 struct isl_view *view)
4552 {
4553 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
4554 UNUSED unsigned aux_modes = all_aux_modes;
4555
4556 /* We only need to update the clear color in the surface state for gen8 and
4557 * gen9. Newer gens can read it directly from the clear color state buffer.
4558 */
4559 #if GEN_GEN == 9
4560 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
4561 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
4562
4563 while (aux_modes) {
4564 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4565
4566 surf_state_update_clear_value(batch, res, &surf_state->ref,
4567 all_aux_modes, aux_usage);
4568 }
4569 #elif GEN_GEN == 8
4570 /* TODO: Could update rather than re-filling */
4571 alloc_surface_states(surf_state, all_aux_modes);
4572
4573 void *map = surf_state->cpu;
4574
4575 while (aux_modes) {
4576 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4577 fill_surface_state(isl_dev, map, res, &res->surf, view, aux_usage,
4578 0, 0, 0);
4579 map += SURFACE_STATE_ALIGNMENT;
4580 }
4581
4582 upload_surface_states(ice->state.surface_uploader, surf_state);
4583 #endif
4584 }
4585
4586 /**
4587 * Add a surface to the validation list, as well as the buffer containing
4588 * the corresponding SURFACE_STATE.
4589 *
4590 * Returns the binding table entry (offset to SURFACE_STATE).
4591 */
4592 static uint32_t
4593 use_surface(struct iris_context *ice,
4594 struct iris_batch *batch,
4595 struct pipe_surface *p_surf,
4596 bool writeable,
4597 enum isl_aux_usage aux_usage,
4598 bool is_read_surface)
4599 {
4600 struct iris_surface *surf = (void *) p_surf;
4601 struct iris_resource *res = (void *) p_surf->texture;
4602 uint32_t offset = 0;
4603
4604 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
4605 if (GEN_GEN == 8 && is_read_surface) {
4606 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state_read.ref.res), false);
4607 } else {
4608 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.ref.res), false);
4609 }
4610
4611 if (res->aux.bo) {
4612 iris_use_pinned_bo(batch, res->aux.bo, writeable);
4613 if (res->aux.clear_color_bo)
4614 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false);
4615
4616 if (memcmp(&res->aux.clear_color, &surf->clear_color,
4617 sizeof(surf->clear_color)) != 0) {
4618 update_clear_value(ice, batch, res, &surf->surface_state,
4619 res->aux.possible_usages, &surf->view);
4620 if (GEN_GEN == 8) {
4621 update_clear_value(ice, batch, res, &surf->surface_state_read,
4622 res->aux.possible_usages, &surf->read_view);
4623 }
4624 surf->clear_color = res->aux.clear_color;
4625 }
4626 }
4627
4628 offset = (GEN_GEN == 8 && is_read_surface)
4629 ? surf->surface_state_read.ref.offset
4630 : surf->surface_state.ref.offset;
4631
4632 return offset +
4633 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
4634 }
4635
4636 static uint32_t
4637 use_sampler_view(struct iris_context *ice,
4638 struct iris_batch *batch,
4639 struct iris_sampler_view *isv)
4640 {
4641 enum isl_aux_usage aux_usage =
4642 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format);
4643
4644 iris_use_pinned_bo(batch, isv->res->bo, false);
4645 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.ref.res), false);
4646
4647 if (isv->res->aux.bo) {
4648 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
4649 if (isv->res->aux.clear_color_bo)
4650 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, false);
4651 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
4652 sizeof(isv->clear_color)) != 0) {
4653 update_clear_value(ice, batch, isv->res, &isv->surface_state,
4654 isv->res->aux.sampler_usages, &isv->view);
4655 isv->clear_color = isv->res->aux.clear_color;
4656 }
4657 }
4658
4659 return isv->surface_state.ref.offset +
4660 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
4661 aux_usage);
4662 }
4663
4664 static uint32_t
4665 use_ubo_ssbo(struct iris_batch *batch,
4666 struct iris_context *ice,
4667 struct pipe_shader_buffer *buf,
4668 struct iris_state_ref *surf_state,
4669 bool writable)
4670 {
4671 if (!buf->buffer || !surf_state->res)
4672 return use_null_surface(batch, ice);
4673
4674 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable);
4675 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
4676
4677 return surf_state->offset;
4678 }
4679
4680 static uint32_t
4681 use_image(struct iris_batch *batch, struct iris_context *ice,
4682 struct iris_shader_state *shs, const struct shader_info *info,
4683 int i)
4684 {
4685 struct iris_image_view *iv = &shs->image[i];
4686 struct iris_resource *res = (void *) iv->base.resource;
4687
4688 if (!res)
4689 return use_null_surface(batch, ice);
4690
4691 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
4692
4693 iris_use_pinned_bo(batch, res->bo, write);
4694 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.ref.res), false);
4695
4696 if (res->aux.bo)
4697 iris_use_pinned_bo(batch, res->aux.bo, write);
4698
4699 enum isl_aux_usage aux_usage =
4700 iris_image_view_aux_usage(ice, &iv->base, info);
4701
4702 return iv->surface_state.ref.offset +
4703 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
4704 }
4705
4706 #define push_bt_entry(addr) \
4707 assert(addr >= binder_addr); \
4708 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
4709 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
4710
4711 #define bt_assert(section) \
4712 if (!pin_only && shader->bt.used_mask[section] != 0) \
4713 assert(shader->bt.offsets[section] == s);
4714
4715 /**
4716 * Populate the binding table for a given shader stage.
4717 *
4718 * This fills out the table of pointers to surfaces required by the shader,
4719 * and also adds those buffers to the validation list so the kernel can make
4720 * resident before running our batch.
4721 */
4722 static void
4723 iris_populate_binding_table(struct iris_context *ice,
4724 struct iris_batch *batch,
4725 gl_shader_stage stage,
4726 bool pin_only)
4727 {
4728 const struct iris_binder *binder = &ice->state.binder;
4729 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
4730 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4731 if (!shader)
4732 return;
4733
4734 struct iris_binding_table *bt = &shader->bt;
4735 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
4736 struct iris_shader_state *shs = &ice->state.shaders[stage];
4737 uint32_t binder_addr = binder->bo->gtt_offset;
4738
4739 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4740 int s = 0;
4741
4742 const struct shader_info *info = iris_get_shader_info(ice, stage);
4743 if (!info) {
4744 /* TCS passthrough doesn't need a binding table. */
4745 assert(stage == MESA_SHADER_TESS_CTRL);
4746 return;
4747 }
4748
4749 if (stage == MESA_SHADER_COMPUTE &&
4750 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4751 /* surface for gl_NumWorkGroups */
4752 struct iris_state_ref *grid_data = &ice->state.grid_size;
4753 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4754 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
4755 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
4756 push_bt_entry(grid_state->offset);
4757 }
4758
4759 if (stage == MESA_SHADER_FRAGMENT) {
4760 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4761 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4762 if (cso_fb->nr_cbufs) {
4763 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4764 uint32_t addr;
4765 if (cso_fb->cbufs[i]) {
4766 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4767 ice->state.draw_aux_usage[i], false);
4768 } else {
4769 addr = use_null_fb_surface(batch, ice);
4770 }
4771 push_bt_entry(addr);
4772 }
4773 } else if (GEN_GEN < 11) {
4774 uint32_t addr = use_null_fb_surface(batch, ice);
4775 push_bt_entry(addr);
4776 }
4777 }
4778
4779 #define foreach_surface_used(index, group) \
4780 bt_assert(group); \
4781 for (int index = 0; index < bt->sizes[group]; index++) \
4782 if (iris_group_index_to_bti(bt, group, index) != \
4783 IRIS_SURFACE_NOT_USED)
4784
4785 foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) {
4786 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4787 uint32_t addr;
4788 if (cso_fb->cbufs[i]) {
4789 addr = use_surface(ice, batch, cso_fb->cbufs[i],
4790 true, ice->state.draw_aux_usage[i], true);
4791 push_bt_entry(addr);
4792 }
4793 }
4794
4795 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4796 struct iris_sampler_view *view = shs->textures[i];
4797 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4798 : use_null_surface(batch, ice);
4799 push_bt_entry(addr);
4800 }
4801
4802 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4803 uint32_t addr = use_image(batch, ice, shs, info, i);
4804 push_bt_entry(addr);
4805 }
4806
4807 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4808 uint32_t addr;
4809
4810 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4811 if (ish->const_data) {
4812 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false);
4813 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4814 false);
4815 addr = ish->const_data_state.offset;
4816 } else {
4817 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4818 addr = use_null_surface(batch, ice);
4819 }
4820 } else {
4821 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4822 &shs->constbuf_surf_state[i], false);
4823 }
4824
4825 push_bt_entry(addr);
4826 }
4827
4828 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4829 uint32_t addr =
4830 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4831 shs->writable_ssbos & (1u << i));
4832 push_bt_entry(addr);
4833 }
4834
4835 #if 0
4836 /* XXX: YUV surfaces not implemented yet */
4837 bt_assert(plane_start[1], ...);
4838 bt_assert(plane_start[2], ...);
4839 #endif
4840 }
4841
4842 static void
4843 iris_use_optional_res(struct iris_batch *batch,
4844 struct pipe_resource *res,
4845 bool writeable)
4846 {
4847 if (res) {
4848 struct iris_bo *bo = iris_resource_bo(res);
4849 iris_use_pinned_bo(batch, bo, writeable);
4850 }
4851 }
4852
4853 static void
4854 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4855 struct pipe_surface *zsbuf,
4856 struct iris_depth_stencil_alpha_state *cso_zsa)
4857 {
4858 if (!zsbuf)
4859 return;
4860
4861 struct iris_resource *zres, *sres;
4862 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4863
4864 if (zres) {
4865 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled);
4866 if (zres->aux.bo) {
4867 iris_use_pinned_bo(batch, zres->aux.bo,
4868 cso_zsa->depth_writes_enabled);
4869 }
4870 }
4871
4872 if (sres) {
4873 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled);
4874 }
4875 }
4876
4877 /* ------------------------------------------------------------------- */
4878
4879 /**
4880 * Pin any BOs which were installed by a previous batch, and restored
4881 * via the hardware logical context mechanism.
4882 *
4883 * We don't need to re-emit all state every batch - the hardware context
4884 * mechanism will save and restore it for us. This includes pointers to
4885 * various BOs...which won't exist unless we ask the kernel to pin them
4886 * by adding them to the validation list.
4887 *
4888 * We can skip buffers if we've re-emitted those packets, as we're
4889 * overwriting those stale pointers with new ones, and don't actually
4890 * refer to the old BOs.
4891 */
4892 static void
4893 iris_restore_render_saved_bos(struct iris_context *ice,
4894 struct iris_batch *batch,
4895 const struct pipe_draw_info *draw)
4896 {
4897 struct iris_genx_state *genx = ice->state.genx;
4898
4899 const uint64_t clean = ~ice->state.dirty;
4900
4901 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4902 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
4903 }
4904
4905 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4906 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
4907 }
4908
4909 if (clean & IRIS_DIRTY_BLEND_STATE) {
4910 iris_use_optional_res(batch, ice->state.last_res.blend, false);
4911 }
4912
4913 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4914 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
4915 }
4916
4917 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4918 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
4919 }
4920
4921 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4922 for (int i = 0; i < 4; i++) {
4923 struct iris_stream_output_target *tgt =
4924 (void *) ice->state.so_target[i];
4925 if (tgt) {
4926 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4927 true);
4928 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4929 true);
4930 }
4931 }
4932 }
4933
4934 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4935 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4936 continue;
4937
4938 struct iris_shader_state *shs = &ice->state.shaders[stage];
4939 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4940
4941 if (!shader)
4942 continue;
4943
4944 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4945
4946 for (int i = 0; i < 4; i++) {
4947 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4948
4949 if (range->length == 0)
4950 continue;
4951
4952 /* Range block is a binding table index, map back to UBO index. */
4953 unsigned block_index = iris_bti_to_group_index(
4954 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4955 assert(block_index != IRIS_SURFACE_NOT_USED);
4956
4957 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4958 struct iris_resource *res = (void *) cbuf->buffer;
4959
4960 if (res)
4961 iris_use_pinned_bo(batch, res->bo, false);
4962 else
4963 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4964 }
4965 }
4966
4967 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4968 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4969 /* Re-pin any buffers referred to by the binding table. */
4970 iris_populate_binding_table(ice, batch, stage, true);
4971 }
4972 }
4973
4974 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4975 struct iris_shader_state *shs = &ice->state.shaders[stage];
4976 struct pipe_resource *res = shs->sampler_table.res;
4977 if (res)
4978 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4979 }
4980
4981 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4982 if (clean & (IRIS_DIRTY_VS << stage)) {
4983 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4984
4985 if (shader) {
4986 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4987 iris_use_pinned_bo(batch, bo, false);
4988
4989 struct brw_stage_prog_data *prog_data = shader->prog_data;
4990
4991 if (prog_data->total_scratch > 0) {
4992 struct iris_bo *bo =
4993 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4994 iris_use_pinned_bo(batch, bo, true);
4995 }
4996 }
4997 }
4998 }
4999
5000 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
5001 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
5002 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5003 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
5004 }
5005
5006 iris_use_optional_res(batch, ice->state.last_res.index_buffer, false);
5007
5008 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
5009 uint64_t bound = ice->state.bound_vertex_buffers;
5010 while (bound) {
5011 const int i = u_bit_scan64(&bound);
5012 struct pipe_resource *res = genx->vertex_buffers[i].resource;
5013 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
5014 }
5015 }
5016 }
5017
5018 static void
5019 iris_restore_compute_saved_bos(struct iris_context *ice,
5020 struct iris_batch *batch,
5021 const struct pipe_grid_info *grid)
5022 {
5023 const uint64_t clean = ~ice->state.dirty;
5024
5025 const int stage = MESA_SHADER_COMPUTE;
5026 struct iris_shader_state *shs = &ice->state.shaders[stage];
5027
5028 if (clean & IRIS_DIRTY_BINDINGS_CS) {
5029 /* Re-pin any buffers referred to by the binding table. */
5030 iris_populate_binding_table(ice, batch, stage, true);
5031 }
5032
5033 struct pipe_resource *sampler_res = shs->sampler_table.res;
5034 if (sampler_res)
5035 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
5036
5037 if ((clean & IRIS_DIRTY_SAMPLER_STATES_CS) &&
5038 (clean & IRIS_DIRTY_BINDINGS_CS) &&
5039 (clean & IRIS_DIRTY_CONSTANTS_CS) &&
5040 (clean & IRIS_DIRTY_CS)) {
5041 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false);
5042 }
5043
5044 if (clean & IRIS_DIRTY_CS) {
5045 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5046
5047 if (shader) {
5048 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
5049 iris_use_pinned_bo(batch, bo, false);
5050
5051 struct iris_bo *curbe_bo =
5052 iris_resource_bo(ice->state.last_res.cs_thread_ids);
5053 iris_use_pinned_bo(batch, curbe_bo, false);
5054
5055 struct brw_stage_prog_data *prog_data = shader->prog_data;
5056
5057 if (prog_data->total_scratch > 0) {
5058 struct iris_bo *bo =
5059 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
5060 iris_use_pinned_bo(batch, bo, true);
5061 }
5062 }
5063 }
5064 }
5065
5066 /**
5067 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
5068 */
5069 static void
5070 iris_update_surface_base_address(struct iris_batch *batch,
5071 struct iris_binder *binder)
5072 {
5073 if (batch->last_surface_base_address == binder->bo->gtt_offset)
5074 return;
5075
5076 uint32_t mocs = batch->screen->isl_dev.mocs.internal;
5077
5078 flush_before_state_base_change(batch);
5079
5080 #if GEN_GEN == 12
5081 /* GEN:BUG:1607854226:
5082 *
5083 * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
5084 * mode by putting the pipeline temporarily in 3D mode..
5085 */
5086 if (batch->name == IRIS_BATCH_COMPUTE)
5087 emit_pipeline_select(batch, _3D);
5088 #endif
5089
5090 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
5091 sba.SurfaceStateBaseAddressModifyEnable = true;
5092 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
5093
5094 /* The hardware appears to pay attention to the MOCS fields even
5095 * if you don't set the "Address Modify Enable" bit for the base.
5096 */
5097 sba.GeneralStateMOCS = mocs;
5098 sba.StatelessDataPortAccessMOCS = mocs;
5099 sba.DynamicStateMOCS = mocs;
5100 sba.IndirectObjectMOCS = mocs;
5101 sba.InstructionMOCS = mocs;
5102 sba.SurfaceStateMOCS = mocs;
5103 #if GEN_GEN >= 9
5104 sba.BindlessSurfaceStateMOCS = mocs;
5105 #endif
5106 }
5107
5108 #if GEN_GEN == 12
5109 /* GEN:BUG:1607854226:
5110 *
5111 * Put the pipeline back into compute mode.
5112 */
5113 if (batch->name == IRIS_BATCH_COMPUTE)
5114 emit_pipeline_select(batch, GPGPU);
5115 #endif
5116
5117 flush_after_state_base_change(batch);
5118
5119 batch->last_surface_base_address = binder->bo->gtt_offset;
5120 }
5121
5122 static inline void
5123 iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
5124 bool window_space_position, float *zmin, float *zmax)
5125 {
5126 if (window_space_position) {
5127 *zmin = 0.f;
5128 *zmax = 1.f;
5129 return;
5130 }
5131 util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
5132 }
5133
5134 #if GEN_GEN >= 12
5135 void
5136 genX(invalidate_aux_map_state)(struct iris_batch *batch)
5137 {
5138 struct iris_screen *screen = batch->screen;
5139 void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
5140 if (!aux_map_ctx)
5141 return;
5142 uint32_t aux_map_state_num = gen_aux_map_get_state_num(aux_map_ctx);
5143 if (batch->last_aux_map_state != aux_map_state_num) {
5144 /* HSD 1209978178: docs say that before programming the aux table:
5145 *
5146 * "Driver must ensure that the engine is IDLE but ensure it doesn't
5147 * add extra flushes in the case it knows that the engine is already
5148 * IDLE."
5149 *
5150 * An end of pipe sync is needed here, otherwise we see GPU hangs in
5151 * dEQP-GLES31.functional.copy_image.* tests.
5152 */
5153 iris_emit_end_of_pipe_sync(batch, "Invalidate aux map table",
5154 PIPE_CONTROL_CS_STALL);
5155
5156 /* If the aux-map state number increased, then we need to rewrite the
5157 * register. Rewriting the register is used to both set the aux-map
5158 * translation table address, and also to invalidate any previously
5159 * cached translations.
5160 */
5161 iris_load_register_imm32(batch, GENX(GFX_CCS_AUX_INV_num), 1);
5162 batch->last_aux_map_state = aux_map_state_num;
5163 }
5164 }
5165
5166 static void
5167 init_aux_map_state(struct iris_batch *batch)
5168 {
5169 struct iris_screen *screen = batch->screen;
5170 void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
5171 if (!aux_map_ctx)
5172 return;
5173
5174 uint64_t base_addr = gen_aux_map_get_base(aux_map_ctx);
5175 assert(base_addr != 0 && align64(base_addr, 32 * 1024) == base_addr);
5176 iris_load_register_imm64(batch, GENX(GFX_AUX_TABLE_BASE_ADDR_num),
5177 base_addr);
5178 }
5179 #endif
5180
5181 struct push_bos {
5182 struct {
5183 struct iris_address addr;
5184 uint32_t length;
5185 } buffers[4];
5186 int buffer_count;
5187 uint32_t max_length;
5188 };
5189
5190 static void
5191 setup_constant_buffers(struct iris_context *ice,
5192 struct iris_batch *batch,
5193 int stage,
5194 struct push_bos *push_bos)
5195 {
5196 struct iris_shader_state *shs = &ice->state.shaders[stage];
5197 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5198 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
5199
5200 uint32_t push_range_sum = 0;
5201
5202 int n = 0;
5203 for (int i = 0; i < 4; i++) {
5204 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
5205
5206 if (range->length == 0)
5207 continue;
5208
5209 push_range_sum += range->length;
5210
5211 if (range->length > push_bos->max_length)
5212 push_bos->max_length = range->length;
5213
5214 /* Range block is a binding table index, map back to UBO index. */
5215 unsigned block_index = iris_bti_to_group_index(
5216 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
5217 assert(block_index != IRIS_SURFACE_NOT_USED);
5218
5219 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
5220 struct iris_resource *res = (void *) cbuf->buffer;
5221
5222 assert(cbuf->buffer_offset % 32 == 0);
5223
5224 push_bos->buffers[n].length = range->length;
5225 push_bos->buffers[n].addr =
5226 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
5227 : ro_bo(batch->screen->workaround_bo, 0);
5228 n++;
5229 }
5230
5231 /* From the 3DSTATE_CONSTANT_XS and 3DSTATE_CONSTANT_ALL programming notes:
5232 *
5233 * "The sum of all four read length fields must be less than or
5234 * equal to the size of 64."
5235 */
5236 assert(push_range_sum <= 64);
5237
5238 push_bos->buffer_count = n;
5239 }
5240
5241 static void
5242 emit_push_constant_packets(struct iris_context *ice,
5243 struct iris_batch *batch,
5244 int stage,
5245 const struct push_bos *push_bos)
5246 {
5247 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
5248 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5249 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
5250
5251 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
5252 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
5253 #if GEN_GEN >= 12
5254 pkt.MOCS = isl_dev->mocs.internal;
5255 #endif
5256 if (prog_data) {
5257 /* The Skylake PRM contains the following restriction:
5258 *
5259 * "The driver must ensure The following case does not occur
5260 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
5261 * buffer 3 read length equal to zero committed followed by a
5262 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
5263 * zero committed."
5264 *
5265 * To avoid this, we program the buffers in the highest slots.
5266 * This way, slot 0 is only used if slot 3 is also used.
5267 */
5268 int n = push_bos->buffer_count;
5269 assert(n <= 4);
5270 const unsigned shift = 4 - n;
5271 for (int i = 0; i < n; i++) {
5272 pkt.ConstantBody.ReadLength[i + shift] =
5273 push_bos->buffers[i].length;
5274 pkt.ConstantBody.Buffer[i + shift] = push_bos->buffers[i].addr;
5275 }
5276 }
5277 }
5278 }
5279
5280 #if GEN_GEN >= 12
5281 static void
5282 emit_push_constant_packet_all(struct iris_context *ice,
5283 struct iris_batch *batch,
5284 uint32_t shader_mask,
5285 const struct push_bos *push_bos)
5286 {
5287 struct isl_device *isl_dev = &batch->screen->isl_dev;
5288
5289 if (!push_bos) {
5290 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_ALL), pc) {
5291 pc.ShaderUpdateEnable = shader_mask;
5292 }
5293 return;
5294 }
5295
5296 const uint32_t n = push_bos->buffer_count;
5297 const uint32_t max_pointers = 4;
5298 const uint32_t num_dwords = 2 + 2 * n;
5299 uint32_t const_all[2 + 2 * max_pointers];
5300 uint32_t *dw = &const_all[0];
5301
5302 assert(n <= max_pointers);
5303 iris_pack_command(GENX(3DSTATE_CONSTANT_ALL), dw, all) {
5304 all.DWordLength = num_dwords - 2;
5305 all.MOCS = isl_dev->mocs.internal;
5306 all.ShaderUpdateEnable = shader_mask;
5307 all.PointerBufferMask = (1 << n) - 1;
5308 }
5309 dw += 2;
5310
5311 for (int i = 0; i < n; i++) {
5312 _iris_pack_state(batch, GENX(3DSTATE_CONSTANT_ALL_DATA),
5313 dw + i * 2, data) {
5314 data.PointerToConstantBuffer = push_bos->buffers[i].addr;
5315 data.ConstantBufferReadLength = push_bos->buffers[i].length;
5316 }
5317 }
5318 iris_batch_emit(batch, const_all, sizeof(uint32_t) * num_dwords);
5319 }
5320 #endif
5321
5322 static void
5323 iris_upload_dirty_render_state(struct iris_context *ice,
5324 struct iris_batch *batch,
5325 const struct pipe_draw_info *draw)
5326 {
5327 const uint64_t dirty = ice->state.dirty;
5328
5329 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
5330 return;
5331
5332 struct iris_genx_state *genx = ice->state.genx;
5333 struct iris_binder *binder = &ice->state.binder;
5334 struct brw_wm_prog_data *wm_prog_data = (void *)
5335 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
5336
5337 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
5338 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5339 uint32_t cc_vp_address;
5340
5341 /* XXX: could avoid streaming for depth_clip [0,1] case. */
5342 uint32_t *cc_vp_map =
5343 stream_state(batch, ice->state.dynamic_uploader,
5344 &ice->state.last_res.cc_vp,
5345 4 * ice->state.num_viewports *
5346 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
5347 for (int i = 0; i < ice->state.num_viewports; i++) {
5348 float zmin, zmax;
5349 iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
5350 ice->state.window_space_position,
5351 &zmin, &zmax);
5352 if (cso_rast->depth_clip_near)
5353 zmin = 0.0;
5354 if (cso_rast->depth_clip_far)
5355 zmax = 1.0;
5356
5357 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
5358 ccv.MinimumDepth = zmin;
5359 ccv.MaximumDepth = zmax;
5360 }
5361
5362 cc_vp_map += GENX(CC_VIEWPORT_length);
5363 }
5364
5365 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
5366 ptr.CCViewportPointer = cc_vp_address;
5367 }
5368 }
5369
5370 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
5371 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5372 uint32_t sf_cl_vp_address;
5373 uint32_t *vp_map =
5374 stream_state(batch, ice->state.dynamic_uploader,
5375 &ice->state.last_res.sf_cl_vp,
5376 4 * ice->state.num_viewports *
5377 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
5378
5379 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
5380 const struct pipe_viewport_state *state = &ice->state.viewports[i];
5381 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
5382
5383 float vp_xmin = viewport_extent(state, 0, -1.0f);
5384 float vp_xmax = viewport_extent(state, 0, 1.0f);
5385 float vp_ymin = viewport_extent(state, 1, -1.0f);
5386 float vp_ymax = viewport_extent(state, 1, 1.0f);
5387
5388 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
5389 state->scale[0], state->scale[1],
5390 state->translate[0], state->translate[1],
5391 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
5392
5393 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
5394 vp.ViewportMatrixElementm00 = state->scale[0];
5395 vp.ViewportMatrixElementm11 = state->scale[1];
5396 vp.ViewportMatrixElementm22 = state->scale[2];
5397 vp.ViewportMatrixElementm30 = state->translate[0];
5398 vp.ViewportMatrixElementm31 = state->translate[1];
5399 vp.ViewportMatrixElementm32 = state->translate[2];
5400 vp.XMinClipGuardband = gb_xmin;
5401 vp.XMaxClipGuardband = gb_xmax;
5402 vp.YMinClipGuardband = gb_ymin;
5403 vp.YMaxClipGuardband = gb_ymax;
5404 vp.XMinViewPort = MAX2(vp_xmin, 0);
5405 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
5406 vp.YMinViewPort = MAX2(vp_ymin, 0);
5407 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
5408 }
5409
5410 vp_map += GENX(SF_CLIP_VIEWPORT_length);
5411 }
5412
5413 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
5414 ptr.SFClipViewportPointer = sf_cl_vp_address;
5415 }
5416 }
5417
5418 if (dirty & IRIS_DIRTY_URB) {
5419 unsigned size[4];
5420
5421 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
5422 if (!ice->shaders.prog[i]) {
5423 size[i] = 1;
5424 } else {
5425 struct brw_vue_prog_data *vue_prog_data =
5426 (void *) ice->shaders.prog[i]->prog_data;
5427 size[i] = vue_prog_data->urb_entry_size;
5428 }
5429 assert(size[i] != 0);
5430 }
5431
5432 unsigned entries[4], start[4];
5433 gen_get_urb_config(&batch->screen->devinfo,
5434 batch->screen->l3_config_3d,
5435 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
5436 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
5437 size, entries, start,
5438 &ice->state.urb_deref_block_size);
5439
5440 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
5441 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
5442 urb._3DCommandSubOpcode += i;
5443 urb.VSURBStartingAddress = start[i];
5444 urb.VSURBEntryAllocationSize = size[i] - 1;
5445 urb.VSNumberofURBEntries = entries[i];
5446 }
5447 }
5448 }
5449
5450 if (dirty & IRIS_DIRTY_BLEND_STATE) {
5451 struct iris_blend_state *cso_blend = ice->state.cso_blend;
5452 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5453 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
5454 const int header_dwords = GENX(BLEND_STATE_length);
5455
5456 /* Always write at least one BLEND_STATE - the final RT message will
5457 * reference BLEND_STATE[0] even if there aren't color writes. There
5458 * may still be alpha testing, computed depth, and so on.
5459 */
5460 const int rt_dwords =
5461 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
5462
5463 uint32_t blend_offset;
5464 uint32_t *blend_map =
5465 stream_state(batch, ice->state.dynamic_uploader,
5466 &ice->state.last_res.blend,
5467 4 * (header_dwords + rt_dwords), 64, &blend_offset);
5468
5469 uint32_t blend_state_header;
5470 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
5471 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
5472 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
5473 }
5474
5475 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
5476 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
5477
5478 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
5479 ptr.BlendStatePointer = blend_offset;
5480 ptr.BlendStatePointerValid = true;
5481 }
5482 }
5483
5484 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
5485 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
5486 #if GEN_GEN == 8
5487 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5488 #endif
5489 uint32_t cc_offset;
5490 void *cc_map =
5491 stream_state(batch, ice->state.dynamic_uploader,
5492 &ice->state.last_res.color_calc,
5493 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
5494 64, &cc_offset);
5495 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
5496 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
5497 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
5498 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
5499 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
5500 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
5501 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
5502 #if GEN_GEN == 8
5503 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
5504 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
5505 #endif
5506 }
5507 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
5508 ptr.ColorCalcStatePointer = cc_offset;
5509 ptr.ColorCalcStatePointerValid = true;
5510 }
5511 }
5512
5513 /* GEN:BUG:1604061319
5514 *
5515 * 3DSTATE_CONSTANT_* needs to be programmed before BTP_*
5516 *
5517 * Testing shows that all the 3DSTATE_CONSTANT_XS need to be emitted if
5518 * any stage has a dirty binding table.
5519 */
5520 const bool emit_const_wa = GEN_GEN >= 11 &&
5521 (dirty & IRIS_ALL_DIRTY_BINDINGS) != 0;
5522
5523 #if GEN_GEN >= 12
5524 uint32_t nobuffer_stages = 0;
5525 #endif
5526
5527 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5528 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)) &&
5529 !emit_const_wa)
5530 continue;
5531
5532 struct iris_shader_state *shs = &ice->state.shaders[stage];
5533 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5534
5535 if (!shader)
5536 continue;
5537
5538 if (shs->sysvals_need_upload)
5539 upload_sysvals(ice, stage);
5540
5541 struct push_bos push_bos = {};
5542 setup_constant_buffers(ice, batch, stage, &push_bos);
5543
5544 #if GEN_GEN >= 12
5545 /* If this stage doesn't have any push constants, emit it later in a
5546 * single CONSTANT_ALL packet with all the other stages.
5547 */
5548 if (push_bos.buffer_count == 0) {
5549 nobuffer_stages |= 1 << stage;
5550 continue;
5551 }
5552
5553 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
5554 * contains only 5 bits, so we can only use it for buffers smaller than
5555 * 32.
5556 */
5557 if (push_bos.max_length < 32) {
5558 emit_push_constant_packet_all(ice, batch, 1 << stage, &push_bos);
5559 continue;
5560 }
5561 #endif
5562 emit_push_constant_packets(ice, batch, stage, &push_bos);
5563 }
5564
5565 #if GEN_GEN >= 12
5566 if (nobuffer_stages)
5567 emit_push_constant_packet_all(ice, batch, nobuffer_stages, NULL);
5568 #endif
5569
5570 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5571 /* Gen9 requires 3DSTATE_BINDING_TABLE_POINTERS_XS to be re-emitted
5572 * in order to commit constants. TODO: Investigate "Disable Gather
5573 * at Set Shader" to go back to legacy mode...
5574 */
5575 if (dirty & ((IRIS_DIRTY_BINDINGS_VS |
5576 (GEN_GEN == 9 ? IRIS_DIRTY_CONSTANTS_VS : 0)) << stage)) {
5577 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
5578 ptr._3DCommandSubOpcode = 38 + stage;
5579 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
5580 }
5581 }
5582 }
5583
5584 if (GEN_GEN >= 11 && (dirty & IRIS_DIRTY_RENDER_BUFFER)) {
5585 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
5586 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
5587
5588 /* The PIPE_CONTROL command description says:
5589 *
5590 * "Whenever a Binding Table Index (BTI) used by a Render Target
5591 * Message points to a different RENDER_SURFACE_STATE, SW must issue a
5592 * Render Target Cache Flush by enabling this bit. When render target
5593 * flush is set due to new association of BTI, PS Scoreboard Stall bit
5594 * must be set in this packet."
5595 */
5596 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
5597 iris_emit_pipe_control_flush(batch, "workaround: RT BTI change [draw]",
5598 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5599 PIPE_CONTROL_STALL_AT_SCOREBOARD);
5600 }
5601
5602 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5603 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
5604 iris_populate_binding_table(ice, batch, stage, false);
5605 }
5606 }
5607
5608 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5609 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
5610 !ice->shaders.prog[stage])
5611 continue;
5612
5613 iris_upload_sampler_states(ice, stage);
5614
5615 struct iris_shader_state *shs = &ice->state.shaders[stage];
5616 struct pipe_resource *res = shs->sampler_table.res;
5617 if (res)
5618 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
5619
5620 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
5621 ptr._3DCommandSubOpcode = 43 + stage;
5622 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
5623 }
5624 }
5625
5626 if (ice->state.need_border_colors)
5627 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5628
5629 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
5630 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
5631 ms.PixelLocation =
5632 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
5633 if (ice->state.framebuffer.samples > 0)
5634 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
5635 }
5636 }
5637
5638 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
5639 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
5640 ms.SampleMask = ice->state.sample_mask;
5641 }
5642 }
5643
5644 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5645 if (!(dirty & (IRIS_DIRTY_VS << stage)))
5646 continue;
5647
5648 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5649
5650 if (shader) {
5651 struct brw_stage_prog_data *prog_data = shader->prog_data;
5652 struct iris_resource *cache = (void *) shader->assembly.res;
5653 iris_use_pinned_bo(batch, cache->bo, false);
5654
5655 if (prog_data->total_scratch > 0) {
5656 struct iris_bo *bo =
5657 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
5658 iris_use_pinned_bo(batch, bo, true);
5659 }
5660
5661 if (stage == MESA_SHADER_FRAGMENT) {
5662 UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
5663 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5664
5665 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
5666 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
5667 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
5668 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
5669 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
5670
5671 /* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say:
5672 *
5673 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16,
5674 * SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch
5675 * mode."
5676 *
5677 * 16x MSAA only exists on Gen9+, so we can skip this on Gen8.
5678 */
5679 if (GEN_GEN >= 9 && cso_fb->samples == 16 &&
5680 !wm_prog_data->persample_dispatch) {
5681 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
5682 ps._32PixelDispatchEnable = false;
5683 }
5684
5685 ps.DispatchGRFStartRegisterForConstantSetupData0 =
5686 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
5687 ps.DispatchGRFStartRegisterForConstantSetupData1 =
5688 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
5689 ps.DispatchGRFStartRegisterForConstantSetupData2 =
5690 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
5691
5692 ps.KernelStartPointer0 = KSP(shader) +
5693 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
5694 ps.KernelStartPointer1 = KSP(shader) +
5695 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
5696 ps.KernelStartPointer2 = KSP(shader) +
5697 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
5698 }
5699
5700 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
5701 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
5702 #if GEN_GEN >= 9
5703 if (!wm_prog_data->uses_sample_mask)
5704 psx.InputCoverageMaskState = ICMS_NONE;
5705 else if (wm_prog_data->post_depth_coverage)
5706 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
5707 else if (wm_prog_data->inner_coverage &&
5708 cso->conservative_rasterization)
5709 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
5710 else
5711 psx.InputCoverageMaskState = ICMS_NORMAL;
5712 #else
5713 psx.PixelShaderUsesInputCoverageMask =
5714 wm_prog_data->uses_sample_mask;
5715 #endif
5716 }
5717
5718 uint32_t *shader_ps = (uint32_t *) shader->derived_data;
5719 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
5720 iris_emit_merge(batch, shader_ps, ps_state,
5721 GENX(3DSTATE_PS_length));
5722 iris_emit_merge(batch, shader_psx, psx_state,
5723 GENX(3DSTATE_PS_EXTRA_length));
5724 } else {
5725 iris_batch_emit(batch, shader->derived_data,
5726 iris_derived_program_state_size(stage));
5727 }
5728 } else {
5729 if (stage == MESA_SHADER_TESS_EVAL) {
5730 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
5731 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
5732 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
5733 } else if (stage == MESA_SHADER_GEOMETRY) {
5734 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
5735 }
5736 }
5737 }
5738
5739 if (ice->state.streamout_active) {
5740 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
5741 iris_batch_emit(batch, genx->so_buffers,
5742 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
5743 for (int i = 0; i < 4; i++) {
5744 struct iris_stream_output_target *tgt =
5745 (void *) ice->state.so_target[i];
5746 if (tgt) {
5747 tgt->zeroed = true;
5748 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
5749 true);
5750 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
5751 true);
5752 }
5753 }
5754 }
5755
5756 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
5757 uint32_t *decl_list =
5758 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
5759 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
5760 }
5761
5762 if (dirty & IRIS_DIRTY_STREAMOUT) {
5763 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5764
5765 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
5766 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
5767 sol.SOFunctionEnable = true;
5768 sol.SOStatisticsEnable = true;
5769
5770 sol.RenderingDisable = cso_rast->rasterizer_discard &&
5771 !ice->state.prims_generated_query_active;
5772 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
5773 }
5774
5775 assert(ice->state.streamout);
5776
5777 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
5778 GENX(3DSTATE_STREAMOUT_length));
5779 }
5780 } else {
5781 if (dirty & IRIS_DIRTY_STREAMOUT) {
5782 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
5783 }
5784 }
5785
5786 if (dirty & IRIS_DIRTY_CLIP) {
5787 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5788 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5789
5790 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
5791 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
5792 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
5793 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
5794 : ice->state.prim_is_points_or_lines);
5795
5796 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
5797 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
5798 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
5799 if (cso_rast->rasterizer_discard)
5800 cl.ClipMode = CLIPMODE_REJECT_ALL;
5801 else if (ice->state.window_space_position)
5802 cl.ClipMode = CLIPMODE_ACCEPT_ALL;
5803 else
5804 cl.ClipMode = CLIPMODE_NORMAL;
5805
5806 cl.PerspectiveDivideDisable = ice->state.window_space_position;
5807 cl.ViewportXYClipTestEnable = !points_or_lines;
5808
5809 if (wm_prog_data->barycentric_interp_modes &
5810 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
5811 cl.NonPerspectiveBarycentricEnable = true;
5812
5813 cl.ForceZeroRTAIndexEnable = cso_fb->layers <= 1;
5814 cl.MaximumVPIndex = ice->state.num_viewports - 1;
5815 }
5816 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
5817 ARRAY_SIZE(cso_rast->clip));
5818 }
5819
5820 if (dirty & (IRIS_DIRTY_RASTER | IRIS_DIRTY_URB)) {
5821 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5822 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
5823
5824 uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
5825 iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
5826 sf.ViewportTransformEnable = !ice->state.window_space_position;
5827
5828 #if GEN_GEN >= 12
5829 sf.DerefBlockSize = ice->state.urb_deref_block_size;
5830 #endif
5831 }
5832 iris_emit_merge(batch, cso->sf, dynamic_sf,
5833 ARRAY_SIZE(dynamic_sf));
5834 }
5835
5836 if (dirty & IRIS_DIRTY_WM) {
5837 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5838 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
5839
5840 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
5841 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
5842
5843 wm.BarycentricInterpolationMode =
5844 wm_prog_data->barycentric_interp_modes;
5845
5846 if (wm_prog_data->early_fragment_tests)
5847 wm.EarlyDepthStencilControl = EDSC_PREPS;
5848 else if (wm_prog_data->has_side_effects)
5849 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
5850
5851 /* We could skip this bit if color writes are enabled. */
5852 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
5853 wm.ForceThreadDispatchEnable = ForceON;
5854 }
5855 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
5856 }
5857
5858 if (dirty & IRIS_DIRTY_SBE) {
5859 iris_emit_sbe(batch, ice);
5860 }
5861
5862 if (dirty & IRIS_DIRTY_PS_BLEND) {
5863 struct iris_blend_state *cso_blend = ice->state.cso_blend;
5864 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
5865 const struct shader_info *fs_info =
5866 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
5867
5868 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
5869 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
5870 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
5871 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
5872
5873 /* The dual source blending docs caution against using SRC1 factors
5874 * when the shader doesn't use a dual source render target write.
5875 * Empirically, this can lead to GPU hangs, and the results are
5876 * undefined anyway, so simply disable blending to avoid the hang.
5877 */
5878 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
5879 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
5880 }
5881
5882 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
5883 ARRAY_SIZE(cso_blend->ps_blend));
5884 }
5885
5886 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
5887 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
5888 #if GEN_GEN >= 9 && GEN_GEN < 12
5889 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5890 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
5891 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
5892 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
5893 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
5894 }
5895 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
5896 #else
5897 /* Use modify disable fields which allow us to emit packets
5898 * directly instead of merging them later.
5899 */
5900 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
5901 #endif
5902
5903 #if GEN_GEN >= 12
5904 iris_batch_emit(batch, cso->depth_bounds, sizeof(cso->depth_bounds));
5905 #endif
5906 }
5907
5908 if (dirty & IRIS_DIRTY_STENCIL_REF) {
5909 #if GEN_GEN >= 12
5910 /* Use modify disable fields which allow us to emit packets
5911 * directly instead of merging them later.
5912 */
5913 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5914 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
5915 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
5916 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
5917 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
5918 wmds.StencilTestMaskModifyDisable = true;
5919 wmds.StencilWriteMaskModifyDisable = true;
5920 wmds.StencilStateModifyDisable = true;
5921 wmds.DepthStateModifyDisable = true;
5922 }
5923 iris_batch_emit(batch, stencil_refs, sizeof(stencil_refs));
5924 #endif
5925 }
5926
5927 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
5928 uint32_t scissor_offset =
5929 emit_state(batch, ice->state.dynamic_uploader,
5930 &ice->state.last_res.scissor,
5931 ice->state.scissors,
5932 sizeof(struct pipe_scissor_state) *
5933 ice->state.num_viewports, 32);
5934
5935 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
5936 ptr.ScissorRectPointer = scissor_offset;
5937 }
5938 }
5939
5940 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
5941 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
5942
5943 /* Do not emit the clear params yets. We need to update the clear value
5944 * first.
5945 */
5946 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
5947 uint32_t cso_z_size = batch->screen->isl_dev.ds.size - clear_length;;
5948
5949 #if GEN_GEN == 12
5950 /* GEN:BUG:14010455700
5951 *
5952 * ISL will change some CHICKEN registers depending on the depth surface
5953 * format, along with emitting the depth and stencil packets. In that
5954 * case, we want to do a depth flush and stall, so the pipeline is not
5955 * using these settings while we change the registers.
5956 */
5957 iris_emit_end_of_pipe_sync(batch,
5958 "Workaround: Stop pipeline for 14010455700",
5959 PIPE_CONTROL_DEPTH_STALL |
5960 PIPE_CONTROL_DEPTH_CACHE_FLUSH);
5961 #endif
5962
5963 iris_batch_emit(batch, cso_z->packets, cso_z_size);
5964 if (GEN_GEN >= 12) {
5965 /* GEN:BUG:1408224581
5966 *
5967 * Workaround: Gen12LP Astep only An additional pipe control with
5968 * post-sync = store dword operation would be required.( w/a is to
5969 * have an additional pipe control after the stencil state whenever
5970 * the surface state bits of this state is changing).
5971 */
5972 iris_emit_pipe_control_write(batch, "WA for stencil state",
5973 PIPE_CONTROL_WRITE_IMMEDIATE,
5974 batch->screen->workaround_bo, 0, 0);
5975 }
5976
5977 union isl_color_value clear_value = { .f32 = { 0, } };
5978
5979 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5980 if (cso_fb->zsbuf) {
5981 struct iris_resource *zres, *sres;
5982 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
5983 &zres, &sres);
5984 if (zres && zres->aux.bo)
5985 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
5986 }
5987
5988 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
5989 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
5990 clear.DepthClearValueValid = true;
5991 clear.DepthClearValue = clear_value.f32[0];
5992 }
5993 iris_batch_emit(batch, clear_params, clear_length);
5994 }
5995
5996 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
5997 /* Listen for buffer changes, and also write enable changes. */
5998 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5999 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
6000 }
6001
6002 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
6003 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
6004 for (int i = 0; i < 32; i++) {
6005 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
6006 }
6007 }
6008 }
6009
6010 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
6011 struct iris_rasterizer_state *cso = ice->state.cso_rast;
6012 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
6013 }
6014
6015 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
6016 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
6017 topo.PrimitiveTopologyType =
6018 translate_prim_type(draw->mode, draw->vertices_per_patch);
6019 }
6020 }
6021
6022 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
6023 int count = util_bitcount64(ice->state.bound_vertex_buffers);
6024 uint64_t dynamic_bound = ice->state.bound_vertex_buffers;
6025
6026 if (ice->state.vs_uses_draw_params) {
6027 assert(ice->draw.draw_params.res);
6028
6029 struct iris_vertex_buffer_state *state =
6030 &(ice->state.genx->vertex_buffers[count]);
6031 pipe_resource_reference(&state->resource, ice->draw.draw_params.res);
6032 struct iris_resource *res = (void *) state->resource;
6033
6034 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
6035 vb.VertexBufferIndex = count;
6036 vb.AddressModifyEnable = true;
6037 vb.BufferPitch = 0;
6038 vb.BufferSize = res->bo->size - ice->draw.draw_params.offset;
6039 vb.BufferStartingAddress =
6040 ro_bo(NULL, res->bo->gtt_offset +
6041 (int) ice->draw.draw_params.offset);
6042 vb.MOCS = iris_mocs(res->bo, &batch->screen->isl_dev);
6043 }
6044 dynamic_bound |= 1ull << count;
6045 count++;
6046 }
6047
6048 if (ice->state.vs_uses_derived_draw_params) {
6049 struct iris_vertex_buffer_state *state =
6050 &(ice->state.genx->vertex_buffers[count]);
6051 pipe_resource_reference(&state->resource,
6052 ice->draw.derived_draw_params.res);
6053 struct iris_resource *res = (void *) ice->draw.derived_draw_params.res;
6054
6055 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
6056 vb.VertexBufferIndex = count;
6057 vb.AddressModifyEnable = true;
6058 vb.BufferPitch = 0;
6059 vb.BufferSize =
6060 res->bo->size - ice->draw.derived_draw_params.offset;
6061 vb.BufferStartingAddress =
6062 ro_bo(NULL, res->bo->gtt_offset +
6063 (int) ice->draw.derived_draw_params.offset);
6064 vb.MOCS = iris_mocs(res->bo, &batch->screen->isl_dev);
6065 }
6066 dynamic_bound |= 1ull << count;
6067 count++;
6068 }
6069
6070 if (count) {
6071 #if GEN_GEN >= 11
6072 /* Gen11+ doesn't need the cache workaround below */
6073 uint64_t bound = dynamic_bound;
6074 while (bound) {
6075 const int i = u_bit_scan64(&bound);
6076 iris_use_optional_res(batch, genx->vertex_buffers[i].resource,
6077 false);
6078 }
6079 #else
6080 /* The VF cache designers cut corners, and made the cache key's
6081 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
6082 * 32 bits of the address. If you have two vertex buffers which get
6083 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
6084 * you can get collisions (even within a single batch).
6085 *
6086 * So, we need to do a VF cache invalidate if the buffer for a VB
6087 * slot slot changes [48:32] address bits from the previous time.
6088 */
6089 unsigned flush_flags = 0;
6090
6091 uint64_t bound = dynamic_bound;
6092 while (bound) {
6093 const int i = u_bit_scan64(&bound);
6094 uint16_t high_bits = 0;
6095
6096 struct iris_resource *res =
6097 (void *) genx->vertex_buffers[i].resource;
6098 if (res) {
6099 iris_use_pinned_bo(batch, res->bo, false);
6100
6101 high_bits = res->bo->gtt_offset >> 32ull;
6102 if (high_bits != ice->state.last_vbo_high_bits[i]) {
6103 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
6104 PIPE_CONTROL_CS_STALL;
6105 ice->state.last_vbo_high_bits[i] = high_bits;
6106 }
6107 }
6108 }
6109
6110 if (flush_flags) {
6111 iris_emit_pipe_control_flush(batch,
6112 "workaround: VF cache 32-bit key [VB]",
6113 flush_flags);
6114 }
6115 #endif
6116
6117 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
6118
6119 uint32_t *map =
6120 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
6121 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
6122 vb.DWordLength = (vb_dwords * count + 1) - 2;
6123 }
6124 map += 1;
6125
6126 bound = dynamic_bound;
6127 while (bound) {
6128 const int i = u_bit_scan64(&bound);
6129 memcpy(map, genx->vertex_buffers[i].state,
6130 sizeof(uint32_t) * vb_dwords);
6131 map += vb_dwords;
6132 }
6133 }
6134 }
6135
6136 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
6137 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
6138 const unsigned entries = MAX2(cso->count, 1);
6139 if (!(ice->state.vs_needs_sgvs_element ||
6140 ice->state.vs_uses_derived_draw_params ||
6141 ice->state.vs_needs_edge_flag)) {
6142 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
6143 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
6144 } else {
6145 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
6146 const unsigned dyn_count = cso->count +
6147 ice->state.vs_needs_sgvs_element +
6148 ice->state.vs_uses_derived_draw_params;
6149
6150 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
6151 &dynamic_ves, ve) {
6152 ve.DWordLength =
6153 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
6154 }
6155 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
6156 (cso->count - ice->state.vs_needs_edge_flag) *
6157 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
6158 uint32_t *ve_pack_dest =
6159 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
6160 GENX(VERTEX_ELEMENT_STATE_length)];
6161
6162 if (ice->state.vs_needs_sgvs_element) {
6163 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
6164 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
6165 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
6166 ve.Valid = true;
6167 ve.VertexBufferIndex =
6168 util_bitcount64(ice->state.bound_vertex_buffers);
6169 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
6170 ve.Component0Control = base_ctrl;
6171 ve.Component1Control = base_ctrl;
6172 ve.Component2Control = VFCOMP_STORE_0;
6173 ve.Component3Control = VFCOMP_STORE_0;
6174 }
6175 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
6176 }
6177 if (ice->state.vs_uses_derived_draw_params) {
6178 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
6179 ve.Valid = true;
6180 ve.VertexBufferIndex =
6181 util_bitcount64(ice->state.bound_vertex_buffers) +
6182 ice->state.vs_uses_draw_params;
6183 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
6184 ve.Component0Control = VFCOMP_STORE_SRC;
6185 ve.Component1Control = VFCOMP_STORE_SRC;
6186 ve.Component2Control = VFCOMP_STORE_0;
6187 ve.Component3Control = VFCOMP_STORE_0;
6188 }
6189 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
6190 }
6191 if (ice->state.vs_needs_edge_flag) {
6192 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
6193 ve_pack_dest[i] = cso->edgeflag_ve[i];
6194 }
6195
6196 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
6197 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
6198 }
6199
6200 if (!ice->state.vs_needs_edge_flag) {
6201 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
6202 entries * GENX(3DSTATE_VF_INSTANCING_length));
6203 } else {
6204 assert(cso->count > 0);
6205 const unsigned edgeflag_index = cso->count - 1;
6206 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
6207 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
6208 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
6209
6210 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
6211 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
6212 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
6213 vi.VertexElementIndex = edgeflag_index +
6214 ice->state.vs_needs_sgvs_element +
6215 ice->state.vs_uses_derived_draw_params;
6216 }
6217 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
6218 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
6219
6220 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
6221 entries * GENX(3DSTATE_VF_INSTANCING_length));
6222 }
6223 }
6224
6225 if (dirty & IRIS_DIRTY_VF_SGVS) {
6226 const struct brw_vs_prog_data *vs_prog_data = (void *)
6227 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
6228 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
6229
6230 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
6231 if (vs_prog_data->uses_vertexid) {
6232 sgv.VertexIDEnable = true;
6233 sgv.VertexIDComponentNumber = 2;
6234 sgv.VertexIDElementOffset =
6235 cso->count - ice->state.vs_needs_edge_flag;
6236 }
6237
6238 if (vs_prog_data->uses_instanceid) {
6239 sgv.InstanceIDEnable = true;
6240 sgv.InstanceIDComponentNumber = 3;
6241 sgv.InstanceIDElementOffset =
6242 cso->count - ice->state.vs_needs_edge_flag;
6243 }
6244 }
6245 }
6246
6247 if (dirty & IRIS_DIRTY_VF) {
6248 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
6249 if (draw->primitive_restart) {
6250 vf.IndexedDrawCutIndexEnable = true;
6251 vf.CutIndex = draw->restart_index;
6252 }
6253 }
6254 }
6255
6256 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
6257 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
6258 vf.StatisticsEnable = true;
6259 }
6260 }
6261
6262 #if GEN_GEN == 8
6263 if (dirty & IRIS_DIRTY_PMA_FIX) {
6264 bool enable = want_pma_fix(ice);
6265 genX(update_pma_fix)(ice, batch, enable);
6266 }
6267 #endif
6268
6269 if (ice->state.current_hash_scale != 1)
6270 genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
6271
6272 #if GEN_GEN >= 12
6273 genX(invalidate_aux_map_state)(batch);
6274 #endif
6275 }
6276
6277 static void
6278 iris_upload_render_state(struct iris_context *ice,
6279 struct iris_batch *batch,
6280 const struct pipe_draw_info *draw)
6281 {
6282 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
6283
6284 /* Always pin the binder. If we're emitting new binding table pointers,
6285 * we need it. If not, we're probably inheriting old tables via the
6286 * context, and need it anyway. Since true zero-bindings cases are
6287 * practically non-existent, just pin it and avoid last_res tracking.
6288 */
6289 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
6290
6291 if (!batch->contains_draw) {
6292 iris_restore_render_saved_bos(ice, batch, draw);
6293 batch->contains_draw = true;
6294 }
6295
6296 iris_upload_dirty_render_state(ice, batch, draw);
6297
6298 if (draw->index_size > 0) {
6299 unsigned offset;
6300
6301 if (draw->has_user_indices) {
6302 u_upload_data(ice->ctx.stream_uploader, 0,
6303 draw->count * draw->index_size, 4, draw->index.user,
6304 &offset, &ice->state.last_res.index_buffer);
6305 } else {
6306 struct iris_resource *res = (void *) draw->index.resource;
6307 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
6308
6309 pipe_resource_reference(&ice->state.last_res.index_buffer,
6310 draw->index.resource);
6311 offset = 0;
6312 }
6313
6314 struct iris_genx_state *genx = ice->state.genx;
6315 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
6316
6317 uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
6318 iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
6319 ib.IndexFormat = draw->index_size >> 1;
6320 ib.MOCS = iris_mocs(bo, &batch->screen->isl_dev);
6321 ib.BufferSize = bo->size - offset;
6322 ib.BufferStartingAddress = ro_bo(NULL, bo->gtt_offset + offset);
6323 }
6324
6325 if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
6326 memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
6327 iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
6328 iris_use_pinned_bo(batch, bo, false);
6329 }
6330
6331 #if GEN_GEN < 11
6332 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
6333 uint16_t high_bits = bo->gtt_offset >> 32ull;
6334 if (high_bits != ice->state.last_index_bo_high_bits) {
6335 iris_emit_pipe_control_flush(batch,
6336 "workaround: VF cache 32-bit key [IB]",
6337 PIPE_CONTROL_VF_CACHE_INVALIDATE |
6338 PIPE_CONTROL_CS_STALL);
6339 ice->state.last_index_bo_high_bits = high_bits;
6340 }
6341 #endif
6342 }
6343
6344 #define _3DPRIM_END_OFFSET 0x2420
6345 #define _3DPRIM_START_VERTEX 0x2430
6346 #define _3DPRIM_VERTEX_COUNT 0x2434
6347 #define _3DPRIM_INSTANCE_COUNT 0x2438
6348 #define _3DPRIM_START_INSTANCE 0x243C
6349 #define _3DPRIM_BASE_VERTEX 0x2440
6350
6351 if (draw->indirect) {
6352 if (draw->indirect->indirect_draw_count) {
6353 use_predicate = true;
6354
6355 struct iris_bo *draw_count_bo =
6356 iris_resource_bo(draw->indirect->indirect_draw_count);
6357 unsigned draw_count_offset =
6358 draw->indirect->indirect_draw_count_offset;
6359
6360 iris_emit_pipe_control_flush(batch,
6361 "ensure indirect draw buffer is flushed",
6362 PIPE_CONTROL_FLUSH_ENABLE);
6363
6364 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
6365 struct gen_mi_builder b;
6366 gen_mi_builder_init(&b, batch);
6367
6368 /* comparison = draw id < draw count */
6369 struct gen_mi_value comparison =
6370 gen_mi_ult(&b, gen_mi_imm(draw->drawid),
6371 gen_mi_mem32(ro_bo(draw_count_bo,
6372 draw_count_offset)));
6373
6374 /* predicate = comparison & conditional rendering predicate */
6375 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_RESULT),
6376 gen_mi_iand(&b, comparison,
6377 gen_mi_reg32(CS_GPR(15))));
6378 } else {
6379 uint32_t mi_predicate;
6380
6381 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
6382 iris_load_register_imm64(batch, MI_PREDICATE_SRC1, draw->drawid);
6383 /* Upload the current draw count from the draw parameters buffer
6384 * to MI_PREDICATE_SRC0.
6385 */
6386 iris_load_register_mem32(batch, MI_PREDICATE_SRC0,
6387 draw_count_bo, draw_count_offset);
6388 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
6389 iris_load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
6390
6391 if (draw->drawid == 0) {
6392 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
6393 MI_PREDICATE_COMBINEOP_SET |
6394 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
6395 } else {
6396 /* While draw_index < draw_count the predicate's result will be
6397 * (draw_index == draw_count) ^ TRUE = TRUE
6398 * When draw_index == draw_count the result is
6399 * (TRUE) ^ TRUE = FALSE
6400 * After this all results will be:
6401 * (FALSE) ^ FALSE = FALSE
6402 */
6403 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
6404 MI_PREDICATE_COMBINEOP_XOR |
6405 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
6406 }
6407 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
6408 }
6409 }
6410 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
6411 assert(bo);
6412
6413 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6414 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
6415 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
6416 }
6417 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6418 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
6419 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
6420 }
6421 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6422 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
6423 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
6424 }
6425 if (draw->index_size) {
6426 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6427 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
6428 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
6429 }
6430 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6431 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
6432 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
6433 }
6434 } else {
6435 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6436 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
6437 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
6438 }
6439 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
6440 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
6441 lri.DataDWord = 0;
6442 }
6443 }
6444 } else if (draw->count_from_stream_output) {
6445 struct iris_stream_output_target *so =
6446 (void *) draw->count_from_stream_output;
6447
6448 /* XXX: Replace with actual cache tracking */
6449 iris_emit_pipe_control_flush(batch,
6450 "draw count from stream output stall",
6451 PIPE_CONTROL_CS_STALL);
6452
6453 struct gen_mi_builder b;
6454 gen_mi_builder_init(&b, batch);
6455
6456 struct iris_address addr =
6457 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
6458 struct gen_mi_value offset =
6459 gen_mi_iadd_imm(&b, gen_mi_mem32(addr), -so->base.buffer_offset);
6460
6461 gen_mi_store(&b, gen_mi_reg32(_3DPRIM_VERTEX_COUNT),
6462 gen_mi_udiv32_imm(&b, offset, so->stride));
6463
6464 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
6465 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
6466 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
6467 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
6468 }
6469
6470 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
6471 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
6472 prim.PredicateEnable = use_predicate;
6473
6474 if (draw->indirect || draw->count_from_stream_output) {
6475 prim.IndirectParameterEnable = true;
6476 } else {
6477 prim.StartInstanceLocation = draw->start_instance;
6478 prim.InstanceCount = draw->instance_count;
6479 prim.VertexCountPerInstance = draw->count;
6480
6481 prim.StartVertexLocation = draw->start;
6482
6483 if (draw->index_size) {
6484 prim.BaseVertexLocation += draw->index_bias;
6485 } else {
6486 prim.StartVertexLocation += draw->index_bias;
6487 }
6488 }
6489 }
6490 }
6491
6492 static void
6493 iris_upload_compute_state(struct iris_context *ice,
6494 struct iris_batch *batch,
6495 const struct pipe_grid_info *grid)
6496 {
6497 const uint64_t dirty = ice->state.dirty;
6498 struct iris_screen *screen = batch->screen;
6499 const struct gen_device_info *devinfo = &screen->devinfo;
6500 struct iris_binder *binder = &ice->state.binder;
6501 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
6502 struct iris_compiled_shader *shader =
6503 ice->shaders.prog[MESA_SHADER_COMPUTE];
6504 struct brw_stage_prog_data *prog_data = shader->prog_data;
6505 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
6506
6507 const uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
6508 const unsigned threads = DIV_ROUND_UP(group_size, cs_prog_data->simd_size);
6509
6510 /* Always pin the binder. If we're emitting new binding table pointers,
6511 * we need it. If not, we're probably inheriting old tables via the
6512 * context, and need it anyway. Since true zero-bindings cases are
6513 * practically non-existent, just pin it and avoid last_res tracking.
6514 */
6515 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
6516
6517 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->sysvals_need_upload)
6518 upload_sysvals(ice, MESA_SHADER_COMPUTE);
6519
6520 if (dirty & IRIS_DIRTY_BINDINGS_CS)
6521 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
6522
6523 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
6524 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
6525
6526 iris_use_optional_res(batch, shs->sampler_table.res, false);
6527 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
6528
6529 if (ice->state.need_border_colors)
6530 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
6531
6532 #if GEN_GEN >= 12
6533 genX(invalidate_aux_map_state)(batch);
6534 #endif
6535
6536 if (dirty & IRIS_DIRTY_CS) {
6537 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
6538 *
6539 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
6540 * the only bits that are changed are scoreboard related: Scoreboard
6541 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
6542 * these scoreboard related states, a MEDIA_STATE_FLUSH is
6543 * sufficient."
6544 */
6545 iris_emit_pipe_control_flush(batch,
6546 "workaround: stall before MEDIA_VFE_STATE",
6547 PIPE_CONTROL_CS_STALL);
6548
6549 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
6550 if (prog_data->total_scratch) {
6551 struct iris_bo *bo =
6552 iris_get_scratch_space(ice, prog_data->total_scratch,
6553 MESA_SHADER_COMPUTE);
6554 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
6555 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
6556 }
6557
6558 vfe.MaximumNumberofThreads =
6559 devinfo->max_cs_threads * screen->subslice_total - 1;
6560 #if GEN_GEN < 11
6561 vfe.ResetGatewayTimer =
6562 Resettingrelativetimerandlatchingtheglobaltimestamp;
6563 #endif
6564 #if GEN_GEN == 8
6565 vfe.BypassGatewayControl = true;
6566 #endif
6567 vfe.NumberofURBEntries = 2;
6568 vfe.URBEntryAllocationSize = 2;
6569
6570 vfe.CURBEAllocationSize =
6571 ALIGN(cs_prog_data->push.per_thread.regs * threads +
6572 cs_prog_data->push.cross_thread.regs, 2);
6573 }
6574 }
6575
6576 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
6577 if (dirty & IRIS_DIRTY_CS) {
6578 uint32_t curbe_data_offset = 0;
6579 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
6580 cs_prog_data->push.per_thread.dwords == 1 &&
6581 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
6582 const unsigned push_const_size =
6583 brw_cs_push_const_total_size(cs_prog_data, threads);
6584 uint32_t *curbe_data_map =
6585 stream_state(batch, ice->state.dynamic_uploader,
6586 &ice->state.last_res.cs_thread_ids,
6587 ALIGN(push_const_size, 64), 64,
6588 &curbe_data_offset);
6589 assert(curbe_data_map);
6590 memset(curbe_data_map, 0x5a, ALIGN(push_const_size, 64));
6591 iris_fill_cs_push_const_buffer(cs_prog_data, threads, curbe_data_map);
6592
6593 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
6594 curbe.CURBETotalDataLength = ALIGN(push_const_size, 64);
6595 curbe.CURBEDataStartAddress = curbe_data_offset;
6596 }
6597 }
6598
6599 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
6600 IRIS_DIRTY_BINDINGS_CS |
6601 IRIS_DIRTY_CONSTANTS_CS |
6602 IRIS_DIRTY_CS)) {
6603 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
6604
6605 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
6606 idd.SamplerStatePointer = shs->sampler_table.offset;
6607 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
6608 idd.NumberofThreadsinGPGPUThreadGroup = threads;
6609 }
6610
6611 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
6612 desc[i] |= ((uint32_t *) shader->derived_data)[i];
6613
6614 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
6615 load.InterfaceDescriptorTotalLength =
6616 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
6617 load.InterfaceDescriptorDataStartAddress =
6618 emit_state(batch, ice->state.dynamic_uploader,
6619 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
6620 }
6621 }
6622
6623 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
6624 uint32_t right_mask;
6625
6626 if (remainder > 0)
6627 right_mask = ~0u >> (32 - remainder);
6628 else
6629 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
6630
6631 #define GPGPU_DISPATCHDIMX 0x2500
6632 #define GPGPU_DISPATCHDIMY 0x2504
6633 #define GPGPU_DISPATCHDIMZ 0x2508
6634
6635 if (grid->indirect) {
6636 struct iris_state_ref *grid_size = &ice->state.grid_size;
6637 struct iris_bo *bo = iris_resource_bo(grid_size->res);
6638 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6639 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
6640 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
6641 }
6642 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6643 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
6644 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
6645 }
6646 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6647 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
6648 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
6649 }
6650 }
6651
6652 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
6653 ggw.IndirectParameterEnable = grid->indirect != NULL;
6654 ggw.SIMDSize = cs_prog_data->simd_size / 16;
6655 ggw.ThreadDepthCounterMaximum = 0;
6656 ggw.ThreadHeightCounterMaximum = 0;
6657 ggw.ThreadWidthCounterMaximum = threads - 1;
6658 ggw.ThreadGroupIDXDimension = grid->grid[0];
6659 ggw.ThreadGroupIDYDimension = grid->grid[1];
6660 ggw.ThreadGroupIDZDimension = grid->grid[2];
6661 ggw.RightExecutionMask = right_mask;
6662 ggw.BottomExecutionMask = 0xffffffff;
6663 }
6664
6665 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
6666
6667 if (!batch->contains_draw) {
6668 iris_restore_compute_saved_bos(ice, batch, grid);
6669 batch->contains_draw = true;
6670 }
6671 }
6672
6673 /**
6674 * State module teardown.
6675 */
6676 static void
6677 iris_destroy_state(struct iris_context *ice)
6678 {
6679 struct iris_genx_state *genx = ice->state.genx;
6680
6681 pipe_resource_reference(&ice->draw.draw_params.res, NULL);
6682 pipe_resource_reference(&ice->draw.derived_draw_params.res, NULL);
6683
6684 /* Loop over all VBOs, including ones for draw parameters */
6685 for (unsigned i = 0; i < ARRAY_SIZE(genx->vertex_buffers); i++) {
6686 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
6687 }
6688
6689 free(ice->state.genx);
6690
6691 for (int i = 0; i < 4; i++) {
6692 pipe_so_target_reference(&ice->state.so_target[i], NULL);
6693 }
6694
6695 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
6696 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
6697 }
6698 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
6699
6700 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
6701 struct iris_shader_state *shs = &ice->state.shaders[stage];
6702 pipe_resource_reference(&shs->sampler_table.res, NULL);
6703 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
6704 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
6705 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
6706 }
6707 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
6708 pipe_resource_reference(&shs->image[i].base.resource, NULL);
6709 pipe_resource_reference(&shs->image[i].surface_state.ref.res, NULL);
6710 free(shs->image[i].surface_state.cpu);
6711 }
6712 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
6713 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
6714 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
6715 }
6716 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
6717 pipe_sampler_view_reference((struct pipe_sampler_view **)
6718 &shs->textures[i], NULL);
6719 }
6720 }
6721
6722 pipe_resource_reference(&ice->state.grid_size.res, NULL);
6723 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
6724
6725 pipe_resource_reference(&ice->state.null_fb.res, NULL);
6726 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
6727
6728 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
6729 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
6730 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
6731 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
6732 pipe_resource_reference(&ice->state.last_res.blend, NULL);
6733 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
6734 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
6735 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
6736 }
6737
6738 /* ------------------------------------------------------------------- */
6739
6740 static void
6741 iris_rebind_buffer(struct iris_context *ice,
6742 struct iris_resource *res)
6743 {
6744 struct pipe_context *ctx = &ice->ctx;
6745 struct iris_genx_state *genx = ice->state.genx;
6746
6747 assert(res->base.target == PIPE_BUFFER);
6748
6749 /* Buffers can't be framebuffer attachments, nor display related,
6750 * and we don't have upstream Clover support.
6751 */
6752 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
6753 PIPE_BIND_RENDER_TARGET |
6754 PIPE_BIND_BLENDABLE |
6755 PIPE_BIND_DISPLAY_TARGET |
6756 PIPE_BIND_CURSOR |
6757 PIPE_BIND_COMPUTE_RESOURCE |
6758 PIPE_BIND_GLOBAL)));
6759
6760 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
6761 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
6762 while (bound_vbs) {
6763 const int i = u_bit_scan64(&bound_vbs);
6764 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
6765
6766 /* Update the CPU struct */
6767 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
6768 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
6769 uint64_t *addr = (uint64_t *) &state->state[1];
6770 struct iris_bo *bo = iris_resource_bo(state->resource);
6771
6772 if (*addr != bo->gtt_offset + state->offset) {
6773 *addr = bo->gtt_offset + state->offset;
6774 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
6775 }
6776 }
6777 }
6778
6779 /* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
6780 * the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
6781 *
6782 * There is also no need to handle these:
6783 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
6784 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
6785 */
6786
6787 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
6788 /* XXX: be careful about resetting vs appending... */
6789 assert(false);
6790 }
6791
6792 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
6793 struct iris_shader_state *shs = &ice->state.shaders[s];
6794 enum pipe_shader_type p_stage = stage_to_pipe(s);
6795
6796 if (!(res->bind_stages & (1 << s)))
6797 continue;
6798
6799 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
6800 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
6801 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
6802 while (bound_cbufs) {
6803 const int i = u_bit_scan(&bound_cbufs);
6804 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
6805 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
6806
6807 if (res->bo == iris_resource_bo(cbuf->buffer)) {
6808 pipe_resource_reference(&surf_state->res, NULL);
6809 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << s;
6810 }
6811 }
6812 }
6813
6814 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
6815 uint32_t bound_ssbos = shs->bound_ssbos;
6816 while (bound_ssbos) {
6817 const int i = u_bit_scan(&bound_ssbos);
6818 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
6819
6820 if (res->bo == iris_resource_bo(ssbo->buffer)) {
6821 struct pipe_shader_buffer buf = {
6822 .buffer = &res->base,
6823 .buffer_offset = ssbo->buffer_offset,
6824 .buffer_size = ssbo->buffer_size,
6825 };
6826 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
6827 (shs->writable_ssbos >> i) & 1);
6828 }
6829 }
6830 }
6831
6832 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
6833 uint32_t bound_sampler_views = shs->bound_sampler_views;
6834 while (bound_sampler_views) {
6835 const int i = u_bit_scan(&bound_sampler_views);
6836 struct iris_sampler_view *isv = shs->textures[i];
6837 struct iris_bo *bo = isv->res->bo;
6838
6839 if (update_surface_state_addrs(ice->state.surface_uploader,
6840 &isv->surface_state, bo)) {
6841 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
6842 }
6843 }
6844 }
6845
6846 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
6847 uint32_t bound_image_views = shs->bound_image_views;
6848 while (bound_image_views) {
6849 const int i = u_bit_scan(&bound_image_views);
6850 struct iris_image_view *iv = &shs->image[i];
6851 struct iris_bo *bo = iris_resource_bo(iv->base.resource);
6852
6853 if (update_surface_state_addrs(ice->state.surface_uploader,
6854 &iv->surface_state, bo)) {
6855 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
6856 }
6857 }
6858 }
6859 }
6860 }
6861
6862 /* ------------------------------------------------------------------- */
6863
6864 static unsigned
6865 flags_to_post_sync_op(uint32_t flags)
6866 {
6867 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
6868 return WriteImmediateData;
6869
6870 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
6871 return WritePSDepthCount;
6872
6873 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
6874 return WriteTimestamp;
6875
6876 return 0;
6877 }
6878
6879 /**
6880 * Do the given flags have a Post Sync or LRI Post Sync operation?
6881 */
6882 static enum pipe_control_flags
6883 get_post_sync_flags(enum pipe_control_flags flags)
6884 {
6885 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
6886 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6887 PIPE_CONTROL_WRITE_TIMESTAMP |
6888 PIPE_CONTROL_LRI_POST_SYNC_OP;
6889
6890 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
6891 * "LRI Post Sync Operation". So more than one bit set would be illegal.
6892 */
6893 assert(util_bitcount(flags) <= 1);
6894
6895 return flags;
6896 }
6897
6898 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
6899
6900 /**
6901 * Emit a series of PIPE_CONTROL commands, taking into account any
6902 * workarounds necessary to actually accomplish the caller's request.
6903 *
6904 * Unless otherwise noted, spec quotations in this function come from:
6905 *
6906 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
6907 * Restrictions for PIPE_CONTROL.
6908 *
6909 * You should not use this function directly. Use the helpers in
6910 * iris_pipe_control.c instead, which may split the pipe control further.
6911 */
6912 static void
6913 iris_emit_raw_pipe_control(struct iris_batch *batch,
6914 const char *reason,
6915 uint32_t flags,
6916 struct iris_bo *bo,
6917 uint32_t offset,
6918 uint64_t imm)
6919 {
6920 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
6921 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
6922 enum pipe_control_flags non_lri_post_sync_flags =
6923 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
6924
6925 /* Recursive PIPE_CONTROL workarounds --------------------------------
6926 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
6927 *
6928 * We do these first because we want to look at the original operation,
6929 * rather than any workarounds we set.
6930 */
6931 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
6932 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
6933 * lists several workarounds:
6934 *
6935 * "Project: SKL, KBL, BXT
6936 *
6937 * If the VF Cache Invalidation Enable is set to a 1 in a
6938 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
6939 * sets to 0, with the VF Cache Invalidation Enable set to 0
6940 * needs to be sent prior to the PIPE_CONTROL with VF Cache
6941 * Invalidation Enable set to a 1."
6942 */
6943 iris_emit_raw_pipe_control(batch,
6944 "workaround: recursive VF cache invalidate",
6945 0, NULL, 0, 0);
6946 }
6947
6948 /* GEN:BUG:1409226450, Wait for EU to be idle before pipe control which
6949 * invalidates the instruction cache
6950 */
6951 if (GEN_GEN == 12 && (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE)) {
6952 iris_emit_raw_pipe_control(batch,
6953 "workaround: CS stall before instruction "
6954 "cache invalidate",
6955 PIPE_CONTROL_CS_STALL |
6956 PIPE_CONTROL_STALL_AT_SCOREBOARD, bo, offset,
6957 imm);
6958 }
6959
6960 if ((GEN_GEN == 9 || (GEN_GEN == 12 && devinfo->revision == 0 /* A0*/)) &&
6961 IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
6962 /* Project: SKL / Argument: LRI Post Sync Operation [23]
6963 *
6964 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6965 * programmed prior to programming a PIPECONTROL command with "LRI
6966 * Post Sync Operation" in GPGPU mode of operation (i.e when
6967 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
6968 *
6969 * The same text exists a few rows below for Post Sync Op.
6970 *
6971 * On Gen12 this is GEN:BUG:1607156449.
6972 */
6973 iris_emit_raw_pipe_control(batch,
6974 "workaround: CS stall before gpgpu post-sync",
6975 PIPE_CONTROL_CS_STALL, bo, offset, imm);
6976 }
6977
6978 /* "Flush Types" workarounds ---------------------------------------------
6979 * We do these now because they may add post-sync operations or CS stalls.
6980 */
6981
6982 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
6983 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
6984 *
6985 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
6986 * 'Write PS Depth Count' or 'Write Timestamp'."
6987 */
6988 if (!bo) {
6989 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6990 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6991 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6992 bo = batch->screen->workaround_bo;
6993 }
6994 }
6995
6996 if (flags & PIPE_CONTROL_DEPTH_STALL) {
6997 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
6998 *
6999 * "This bit must be DISABLED for operations other than writing
7000 * PS_DEPTH_COUNT."
7001 *
7002 * This seems like nonsense. An Ivybridge workaround requires us to
7003 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
7004 * operation. Gen8+ requires us to emit depth stalls and depth cache
7005 * flushes together. So, it's hard to imagine this means anything other
7006 * than "we originally intended this to be used for PS_DEPTH_COUNT".
7007 *
7008 * We ignore the supposed restriction and do nothing.
7009 */
7010 }
7011
7012 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
7013 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
7014 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
7015 *
7016 * "This bit must be DISABLED for End-of-pipe (Read) fences,
7017 * PS_DEPTH_COUNT or TIMESTAMP queries."
7018 *
7019 * TODO: Implement end-of-pipe checking.
7020 */
7021 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
7022 PIPE_CONTROL_WRITE_TIMESTAMP)));
7023 }
7024
7025 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
7026 /* From the PIPE_CONTROL instruction table, bit 1:
7027 *
7028 * "This bit is ignored if Depth Stall Enable is set.
7029 * Further, the render cache is not flushed even if Write Cache
7030 * Flush Enable bit is set."
7031 *
7032 * We assert that the caller doesn't do this combination, to try and
7033 * prevent mistakes. It shouldn't hurt the GPU, though.
7034 *
7035 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
7036 * and "Render Target Flush" combo is explicitly required for BTI
7037 * update workarounds.
7038 */
7039 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
7040 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
7041 }
7042
7043 /* PIPE_CONTROL page workarounds ------------------------------------- */
7044
7045 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
7046 /* From the PIPE_CONTROL page itself:
7047 *
7048 * "IVB, HSW, BDW
7049 * Restriction: Pipe_control with CS-stall bit set must be issued
7050 * before a pipe-control command that has the State Cache
7051 * Invalidate bit set."
7052 */
7053 flags |= PIPE_CONTROL_CS_STALL;
7054 }
7055
7056 if (flags & PIPE_CONTROL_FLUSH_LLC) {
7057 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
7058 *
7059 * "Project: ALL
7060 * SW must always program Post-Sync Operation to "Write Immediate
7061 * Data" when Flush LLC is set."
7062 *
7063 * For now, we just require the caller to do it.
7064 */
7065 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
7066 }
7067
7068 /* "Post-Sync Operation" workarounds -------------------------------- */
7069
7070 /* Project: All / Argument: Global Snapshot Count Reset [19]
7071 *
7072 * "This bit must not be exercised on any product.
7073 * Requires stall bit ([20] of DW1) set."
7074 *
7075 * We don't use this, so we just assert that it isn't used. The
7076 * PIPE_CONTROL instruction page indicates that they intended this
7077 * as a debug feature and don't think it is useful in production,
7078 * but it may actually be usable, should we ever want to.
7079 */
7080 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
7081
7082 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
7083 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
7084 /* Project: All / Arguments:
7085 *
7086 * - Generic Media State Clear [16]
7087 * - Indirect State Pointers Disable [16]
7088 *
7089 * "Requires stall bit ([20] of DW1) set."
7090 *
7091 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
7092 * State Clear) says:
7093 *
7094 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
7095 * programmed prior to programming a PIPECONTROL command with "Media
7096 * State Clear" set in GPGPU mode of operation"
7097 *
7098 * This is a subset of the earlier rule, so there's nothing to do.
7099 */
7100 flags |= PIPE_CONTROL_CS_STALL;
7101 }
7102
7103 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
7104 /* Project: All / Argument: Store Data Index
7105 *
7106 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
7107 * than '0'."
7108 *
7109 * For now, we just assert that the caller does this. We might want to
7110 * automatically add a write to the workaround BO...
7111 */
7112 assert(non_lri_post_sync_flags != 0);
7113 }
7114
7115 if (flags & PIPE_CONTROL_SYNC_GFDT) {
7116 /* Project: All / Argument: Sync GFDT
7117 *
7118 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
7119 * than '0' or 0x2520[13] must be set."
7120 *
7121 * For now, we just assert that the caller does this.
7122 */
7123 assert(non_lri_post_sync_flags != 0);
7124 }
7125
7126 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
7127 /* Project: IVB+ / Argument: TLB inv
7128 *
7129 * "Requires stall bit ([20] of DW1) set."
7130 *
7131 * Also, from the PIPE_CONTROL instruction table:
7132 *
7133 * "Project: SKL+
7134 * Post Sync Operation or CS stall must be set to ensure a TLB
7135 * invalidation occurs. Otherwise no cycle will occur to the TLB
7136 * cache to invalidate."
7137 *
7138 * This is not a subset of the earlier rule, so there's nothing to do.
7139 */
7140 flags |= PIPE_CONTROL_CS_STALL;
7141 }
7142
7143 if (GEN_GEN >= 12 && ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ||
7144 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))) {
7145 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
7146 * Enable):
7147 *
7148 * Unified Cache (Tile Cache Disabled):
7149 *
7150 * When the Color and Depth (Z) streams are enabled to be cached in
7151 * the DC space of L2, Software must use "Render Target Cache Flush
7152 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
7153 * Flush" for getting the color and depth (Z) write data to be
7154 * globally observable. In this mode of operation it is not required
7155 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
7156 */
7157 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
7158 }
7159
7160 if (GEN_GEN == 9 && devinfo->gt == 4) {
7161 /* TODO: The big Skylake GT4 post sync op workaround */
7162 }
7163
7164 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
7165
7166 if (IS_COMPUTE_PIPELINE(batch)) {
7167 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
7168 /* Project: SKL+ / Argument: Tex Invalidate
7169 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
7170 */
7171 flags |= PIPE_CONTROL_CS_STALL;
7172 }
7173
7174 if (GEN_GEN == 8 && (post_sync_flags ||
7175 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
7176 PIPE_CONTROL_DEPTH_STALL |
7177 PIPE_CONTROL_RENDER_TARGET_FLUSH |
7178 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
7179 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
7180 /* Project: BDW / Arguments:
7181 *
7182 * - LRI Post Sync Operation [23]
7183 * - Post Sync Op [15:14]
7184 * - Notify En [8]
7185 * - Depth Stall [13]
7186 * - Render Target Cache Flush [12]
7187 * - Depth Cache Flush [0]
7188 * - DC Flush Enable [5]
7189 *
7190 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
7191 * Workloads."
7192 */
7193 flags |= PIPE_CONTROL_CS_STALL;
7194
7195 /* Also, from the PIPE_CONTROL instruction table, bit 20:
7196 *
7197 * "Project: BDW
7198 * This bit must be always set when PIPE_CONTROL command is
7199 * programmed by GPGPU and MEDIA workloads, except for the cases
7200 * when only Read Only Cache Invalidation bits are set (State
7201 * Cache Invalidation Enable, Instruction cache Invalidation
7202 * Enable, Texture Cache Invalidation Enable, Constant Cache
7203 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
7204 * need not implemented when FF_DOP_CG is disable via "Fixed
7205 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
7206 *
7207 * It sounds like we could avoid CS stalls in some cases, but we
7208 * don't currently bother. This list isn't exactly the list above,
7209 * either...
7210 */
7211 }
7212 }
7213
7214 /* "Stall" workarounds ----------------------------------------------
7215 * These have to come after the earlier ones because we may have added
7216 * some additional CS stalls above.
7217 */
7218
7219 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
7220 /* Project: PRE-SKL, VLV, CHV
7221 *
7222 * "[All Stepping][All SKUs]:
7223 *
7224 * One of the following must also be set:
7225 *
7226 * - Render Target Cache Flush Enable ([12] of DW1)
7227 * - Depth Cache Flush Enable ([0] of DW1)
7228 * - Stall at Pixel Scoreboard ([1] of DW1)
7229 * - Depth Stall ([13] of DW1)
7230 * - Post-Sync Operation ([13] of DW1)
7231 * - DC Flush Enable ([5] of DW1)"
7232 *
7233 * If we don't already have one of those bits set, we choose to add
7234 * "Stall at Pixel Scoreboard". Some of the other bits require a
7235 * CS stall as a workaround (see above), which would send us into
7236 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
7237 * appears to be safe, so we choose that.
7238 */
7239 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
7240 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
7241 PIPE_CONTROL_WRITE_IMMEDIATE |
7242 PIPE_CONTROL_WRITE_DEPTH_COUNT |
7243 PIPE_CONTROL_WRITE_TIMESTAMP |
7244 PIPE_CONTROL_STALL_AT_SCOREBOARD |
7245 PIPE_CONTROL_DEPTH_STALL |
7246 PIPE_CONTROL_DATA_CACHE_FLUSH;
7247 if (!(flags & wa_bits))
7248 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
7249 }
7250
7251 if (GEN_GEN >= 12 && (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH)) {
7252 /* GEN:BUG:1409600907:
7253 *
7254 * "PIPE_CONTROL with Depth Stall Enable bit must be set
7255 * with any PIPE_CONTROL with Depth Flush Enable bit set.
7256 */
7257 flags |= PIPE_CONTROL_DEPTH_STALL;
7258 }
7259
7260 /* Emit --------------------------------------------------------------- */
7261
7262 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
7263 fprintf(stderr,
7264 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
7265 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
7266 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
7267 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
7268 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
7269 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
7270 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
7271 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
7272 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
7273 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
7274 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
7275 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
7276 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
7277 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
7278 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
7279 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
7280 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
7281 "SnapRes" : "",
7282 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
7283 "ISPDis" : "",
7284 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
7285 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
7286 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
7287 (flags & PIPE_CONTROL_FLUSH_HDC) ? "HDC " : "",
7288 imm, reason);
7289 }
7290
7291 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
7292 #if GEN_GEN >= 12
7293 pc.TileCacheFlushEnable = flags & PIPE_CONTROL_TILE_CACHE_FLUSH;
7294 #endif
7295 #if GEN_GEN >= 11
7296 pc.HDCPipelineFlushEnable = flags & PIPE_CONTROL_FLUSH_HDC;
7297 #endif
7298 pc.LRIPostSyncOperation = NoLRIOperation;
7299 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
7300 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
7301 pc.StoreDataIndex = 0;
7302 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
7303 pc.GlobalSnapshotCountReset =
7304 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
7305 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
7306 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
7307 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
7308 pc.RenderTargetCacheFlushEnable =
7309 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
7310 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
7311 pc.StateCacheInvalidationEnable =
7312 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
7313 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
7314 pc.ConstantCacheInvalidationEnable =
7315 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
7316 pc.PostSyncOperation = flags_to_post_sync_op(flags);
7317 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
7318 pc.InstructionCacheInvalidateEnable =
7319 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
7320 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
7321 pc.IndirectStatePointersDisable =
7322 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
7323 pc.TextureCacheInvalidationEnable =
7324 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
7325 pc.Address = rw_bo(bo, offset);
7326 pc.ImmediateData = imm;
7327 }
7328 }
7329
7330 #if GEN_GEN == 9
7331 /**
7332 * Preemption on Gen9 has to be enabled or disabled in various cases.
7333 *
7334 * See these workarounds for preemption:
7335 * - WaDisableMidObjectPreemptionForGSLineStripAdj
7336 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
7337 * - WaDisableMidObjectPreemptionForLineLoop
7338 * - WA#0798
7339 *
7340 * We don't put this in the vtable because it's only used on Gen9.
7341 */
7342 void
7343 gen9_toggle_preemption(struct iris_context *ice,
7344 struct iris_batch *batch,
7345 const struct pipe_draw_info *draw)
7346 {
7347 struct iris_genx_state *genx = ice->state.genx;
7348 bool object_preemption = true;
7349
7350 /* WaDisableMidObjectPreemptionForGSLineStripAdj
7351 *
7352 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
7353 * and GS is enabled."
7354 */
7355 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
7356 ice->shaders.prog[MESA_SHADER_GEOMETRY])
7357 object_preemption = false;
7358
7359 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
7360 *
7361 * "TriFan miscompare in Execlist Preemption test. Cut index that is
7362 * on a previous context. End the previous, the resume another context
7363 * with a tri-fan or polygon, and the vertex count is corrupted. If we
7364 * prempt again we will cause corruption.
7365 *
7366 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
7367 */
7368 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
7369 object_preemption = false;
7370
7371 /* WaDisableMidObjectPreemptionForLineLoop
7372 *
7373 * "VF Stats Counters Missing a vertex when preemption enabled.
7374 *
7375 * WA: Disable mid-draw preemption when the draw uses a lineloop
7376 * topology."
7377 */
7378 if (draw->mode == PIPE_PRIM_LINE_LOOP)
7379 object_preemption = false;
7380
7381 /* WA#0798
7382 *
7383 * "VF is corrupting GAFS data when preempted on an instance boundary
7384 * and replayed with instancing enabled.
7385 *
7386 * WA: Disable preemption when using instanceing."
7387 */
7388 if (draw->instance_count > 1)
7389 object_preemption = false;
7390
7391 if (genx->object_preemption != object_preemption) {
7392 iris_enable_obj_preemption(batch, object_preemption);
7393 genx->object_preemption = object_preemption;
7394 }
7395 }
7396 #endif
7397
7398 static void
7399 iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
7400 {
7401 struct iris_genx_state *genx = ice->state.genx;
7402
7403 memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
7404 }
7405
7406 static void
7407 iris_emit_mi_report_perf_count(struct iris_batch *batch,
7408 struct iris_bo *bo,
7409 uint32_t offset_in_bytes,
7410 uint32_t report_id)
7411 {
7412 iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
7413 mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes);
7414 mi_rpc.ReportID = report_id;
7415 }
7416 }
7417
7418 /**
7419 * Update the pixel hashing modes that determine the balancing of PS threads
7420 * across subslices and slices.
7421 *
7422 * \param width Width bound of the rendering area (already scaled down if \p
7423 * scale is greater than 1).
7424 * \param height Height bound of the rendering area (already scaled down if \p
7425 * scale is greater than 1).
7426 * \param scale The number of framebuffer samples that could potentially be
7427 * affected by an individual channel of the PS thread. This is
7428 * typically one for single-sampled rendering, but for operations
7429 * like CCS resolves and fast clears a single PS invocation may
7430 * update a huge number of pixels, in which case a finer
7431 * balancing is desirable in order to maximally utilize the
7432 * bandwidth available. UINT_MAX can be used as shorthand for
7433 * "finest hashing mode available".
7434 */
7435 void
7436 genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
7437 unsigned width, unsigned height, unsigned scale)
7438 {
7439 #if GEN_GEN == 9
7440 const struct gen_device_info *devinfo = &batch->screen->devinfo;
7441 const unsigned slice_hashing[] = {
7442 /* Because all Gen9 platforms with more than one slice require
7443 * three-way subslice hashing, a single "normal" 16x16 slice hashing
7444 * block is guaranteed to suffer from substantial imbalance, with one
7445 * subslice receiving twice as much work as the other two in the
7446 * slice.
7447 *
7448 * The performance impact of that would be particularly severe when
7449 * three-way hashing is also in use for slice balancing (which is the
7450 * case for all Gen9 GT4 platforms), because one of the slices
7451 * receives one every three 16x16 blocks in either direction, which
7452 * is roughly the periodicity of the underlying subslice imbalance
7453 * pattern ("roughly" because in reality the hardware's
7454 * implementation of three-way hashing doesn't do exact modulo 3
7455 * arithmetic, which somewhat decreases the magnitude of this effect
7456 * in practice). This leads to a systematic subslice imbalance
7457 * within that slice regardless of the size of the primitive. The
7458 * 32x32 hashing mode guarantees that the subslice imbalance within a
7459 * single slice hashing block is minimal, largely eliminating this
7460 * effect.
7461 */
7462 _32x32,
7463 /* Finest slice hashing mode available. */
7464 NORMAL
7465 };
7466 const unsigned subslice_hashing[] = {
7467 /* 16x16 would provide a slight cache locality benefit especially
7468 * visible in the sampler L1 cache efficiency of low-bandwidth
7469 * non-LLC platforms, but it comes at the cost of greater subslice
7470 * imbalance for primitives of dimensions approximately intermediate
7471 * between 16x4 and 16x16.
7472 */
7473 _16x4,
7474 /* Finest subslice hashing mode available. */
7475 _8x4
7476 };
7477 /* Dimensions of the smallest hashing block of a given hashing mode. If
7478 * the rendering area is smaller than this there can't possibly be any
7479 * benefit from switching to this mode, so we optimize out the
7480 * transition.
7481 */
7482 const unsigned min_size[][2] = {
7483 { 16, 4 },
7484 { 8, 4 }
7485 };
7486 const unsigned idx = scale > 1;
7487
7488 if (width > min_size[idx][0] || height > min_size[idx][1]) {
7489 uint32_t gt_mode;
7490
7491 iris_pack_state(GENX(GT_MODE), &gt_mode, reg) {
7492 reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
7493 reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
7494 reg.SubsliceHashing = subslice_hashing[idx];
7495 reg.SubsliceHashingMask = -1;
7496 };
7497
7498 iris_emit_raw_pipe_control(batch,
7499 "workaround: CS stall before GT_MODE LRI",
7500 PIPE_CONTROL_STALL_AT_SCOREBOARD |
7501 PIPE_CONTROL_CS_STALL,
7502 NULL, 0, 0);
7503
7504 iris_emit_lri(batch, GT_MODE, gt_mode);
7505
7506 ice->state.current_hash_scale = scale;
7507 }
7508 #endif
7509 }
7510
7511 static void
7512 iris_set_frontend_noop(struct pipe_context *ctx, bool enable)
7513 {
7514 struct iris_context *ice = (struct iris_context *) ctx;
7515
7516 ice->state.dirty |= iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_RENDER],
7517 enable,
7518 IRIS_ALL_DIRTY_FOR_RENDER);
7519 ice->state.dirty |= iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_COMPUTE],
7520 enable,
7521 IRIS_ALL_DIRTY_FOR_COMPUTE);
7522 }
7523
7524 void
7525 genX(init_state)(struct iris_context *ice)
7526 {
7527 struct pipe_context *ctx = &ice->ctx;
7528 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
7529
7530 ctx->create_blend_state = iris_create_blend_state;
7531 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
7532 ctx->create_rasterizer_state = iris_create_rasterizer_state;
7533 ctx->create_sampler_state = iris_create_sampler_state;
7534 ctx->create_sampler_view = iris_create_sampler_view;
7535 ctx->create_surface = iris_create_surface;
7536 ctx->create_vertex_elements_state = iris_create_vertex_elements;
7537 ctx->bind_blend_state = iris_bind_blend_state;
7538 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
7539 ctx->bind_sampler_states = iris_bind_sampler_states;
7540 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
7541 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
7542 ctx->delete_blend_state = iris_delete_state;
7543 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
7544 ctx->delete_rasterizer_state = iris_delete_state;
7545 ctx->delete_sampler_state = iris_delete_state;
7546 ctx->delete_vertex_elements_state = iris_delete_state;
7547 ctx->set_blend_color = iris_set_blend_color;
7548 ctx->set_clip_state = iris_set_clip_state;
7549 ctx->set_constant_buffer = iris_set_constant_buffer;
7550 ctx->set_shader_buffers = iris_set_shader_buffers;
7551 ctx->set_shader_images = iris_set_shader_images;
7552 ctx->set_sampler_views = iris_set_sampler_views;
7553 ctx->set_tess_state = iris_set_tess_state;
7554 ctx->set_framebuffer_state = iris_set_framebuffer_state;
7555 ctx->set_polygon_stipple = iris_set_polygon_stipple;
7556 ctx->set_sample_mask = iris_set_sample_mask;
7557 ctx->set_scissor_states = iris_set_scissor_states;
7558 ctx->set_stencil_ref = iris_set_stencil_ref;
7559 ctx->set_vertex_buffers = iris_set_vertex_buffers;
7560 ctx->set_viewport_states = iris_set_viewport_states;
7561 ctx->sampler_view_destroy = iris_sampler_view_destroy;
7562 ctx->surface_destroy = iris_surface_destroy;
7563 ctx->draw_vbo = iris_draw_vbo;
7564 ctx->launch_grid = iris_launch_grid;
7565 ctx->create_stream_output_target = iris_create_stream_output_target;
7566 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
7567 ctx->set_stream_output_targets = iris_set_stream_output_targets;
7568 ctx->set_frontend_noop = iris_set_frontend_noop;
7569
7570 screen->vtbl.destroy_state = iris_destroy_state;
7571 screen->vtbl.init_render_context = iris_init_render_context;
7572 screen->vtbl.init_compute_context = iris_init_compute_context;
7573 screen->vtbl.upload_render_state = iris_upload_render_state;
7574 screen->vtbl.update_surface_base_address = iris_update_surface_base_address;
7575 screen->vtbl.upload_compute_state = iris_upload_compute_state;
7576 screen->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
7577 screen->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
7578 screen->vtbl.rebind_buffer = iris_rebind_buffer;
7579 screen->vtbl.load_register_reg32 = iris_load_register_reg32;
7580 screen->vtbl.load_register_reg64 = iris_load_register_reg64;
7581 screen->vtbl.load_register_imm32 = iris_load_register_imm32;
7582 screen->vtbl.load_register_imm64 = iris_load_register_imm64;
7583 screen->vtbl.load_register_mem32 = iris_load_register_mem32;
7584 screen->vtbl.load_register_mem64 = iris_load_register_mem64;
7585 screen->vtbl.store_register_mem32 = iris_store_register_mem32;
7586 screen->vtbl.store_register_mem64 = iris_store_register_mem64;
7587 screen->vtbl.store_data_imm32 = iris_store_data_imm32;
7588 screen->vtbl.store_data_imm64 = iris_store_data_imm64;
7589 screen->vtbl.copy_mem_mem = iris_copy_mem_mem;
7590 screen->vtbl.derived_program_state_size = iris_derived_program_state_size;
7591 screen->vtbl.store_derived_program_state = iris_store_derived_program_state;
7592 screen->vtbl.create_so_decl_list = iris_create_so_decl_list;
7593 screen->vtbl.populate_vs_key = iris_populate_vs_key;
7594 screen->vtbl.populate_tcs_key = iris_populate_tcs_key;
7595 screen->vtbl.populate_tes_key = iris_populate_tes_key;
7596 screen->vtbl.populate_gs_key = iris_populate_gs_key;
7597 screen->vtbl.populate_fs_key = iris_populate_fs_key;
7598 screen->vtbl.populate_cs_key = iris_populate_cs_key;
7599 screen->vtbl.lost_genx_state = iris_lost_genx_state;
7600
7601 ice->state.dirty = ~0ull;
7602
7603 ice->state.statistics_counters_enabled = true;
7604
7605 ice->state.sample_mask = 0xffff;
7606 ice->state.num_viewports = 1;
7607 ice->state.prim_mode = PIPE_PRIM_MAX;
7608 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
7609 ice->draw.derived_params.drawid = -1;
7610
7611 /* Make a 1x1x1 null surface for unbound textures */
7612 void *null_surf_map =
7613 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
7614 4 * GENX(RENDER_SURFACE_STATE_length), 64);
7615 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
7616 ice->state.unbound_tex.offset +=
7617 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
7618
7619 /* Default all scissor rectangles to be empty regions. */
7620 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
7621 ice->state.scissors[i] = (struct pipe_scissor_state) {
7622 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
7623 };
7624 }
7625 }