2a1e53d964349f3d473ca099b498c7f663ef2aaa
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/format/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "drm-uapi/i915_drm.h"
99 #include "nir.h"
100 #include "intel/compiler/brw_compiler.h"
101 #include "intel/common/gen_aux_map.h"
102 #include "intel/common/gen_l3_config.h"
103 #include "intel/common/gen_sample_positions.h"
104 #include "iris_batch.h"
105 #include "iris_context.h"
106 #include "iris_defines.h"
107 #include "iris_pipe.h"
108 #include "iris_resource.h"
109
110 #include "iris_genx_macros.h"
111 #include "intel/common/gen_guardband.h"
112
113 static uint32_t
114 mocs(const struct iris_bo *bo, const struct isl_device *dev)
115 {
116 return bo && bo->external ? dev->mocs.external : dev->mocs.internal;
117 }
118
119 /**
120 * Statically assert that PIPE_* enums match the hardware packets.
121 * (As long as they match, we don't need to translate them.)
122 */
123 UNUSED static void pipe_asserts()
124 {
125 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
126
127 /* pipe_logicop happens to match the hardware. */
128 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
129 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
130 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
131 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
132 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
133 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
134 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
135 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
136 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
137 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
138 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
139 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
140 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
141 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
142 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
143 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
144
145 /* pipe_blend_func happens to match the hardware. */
146 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
147 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
148 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
149 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
150 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
151 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
152 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
153 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
157 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
158 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
159 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
160 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
161 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
162 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
163 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
164 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
165
166 /* pipe_blend_func happens to match the hardware. */
167 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
168 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
169 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
170 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
171 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
172
173 /* pipe_stencil_op happens to match the hardware. */
174 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
175 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
176 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
177 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
178 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
179 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
180 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
181 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
182
183 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
184 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
185 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
186 #undef PIPE_ASSERT
187 }
188
189 static unsigned
190 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
191 {
192 static const unsigned map[] = {
193 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
194 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
195 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
196 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
197 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
198 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
199 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
200 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
201 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
202 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
203 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
204 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
205 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
206 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
207 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
208 };
209
210 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
211 }
212
213 static unsigned
214 translate_compare_func(enum pipe_compare_func pipe_func)
215 {
216 static const unsigned map[] = {
217 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
218 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
219 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
220 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
221 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
222 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
223 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
224 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
225 };
226 return map[pipe_func];
227 }
228
229 static unsigned
230 translate_shadow_func(enum pipe_compare_func pipe_func)
231 {
232 /* Gallium specifies the result of shadow comparisons as:
233 *
234 * 1 if ref <op> texel,
235 * 0 otherwise.
236 *
237 * The hardware does:
238 *
239 * 0 if texel <op> ref,
240 * 1 otherwise.
241 *
242 * So we need to flip the operator and also negate.
243 */
244 static const unsigned map[] = {
245 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
246 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
247 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
248 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
249 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
250 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
251 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
252 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
253 };
254 return map[pipe_func];
255 }
256
257 static unsigned
258 translate_cull_mode(unsigned pipe_face)
259 {
260 static const unsigned map[4] = {
261 [PIPE_FACE_NONE] = CULLMODE_NONE,
262 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
263 [PIPE_FACE_BACK] = CULLMODE_BACK,
264 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
265 };
266 return map[pipe_face];
267 }
268
269 static unsigned
270 translate_fill_mode(unsigned pipe_polymode)
271 {
272 static const unsigned map[4] = {
273 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
274 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
275 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
276 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
277 };
278 return map[pipe_polymode];
279 }
280
281 static unsigned
282 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
283 {
284 static const unsigned map[] = {
285 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
286 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
287 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
288 };
289 return map[pipe_mip];
290 }
291
292 static uint32_t
293 translate_wrap(unsigned pipe_wrap)
294 {
295 static const unsigned map[] = {
296 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
297 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
298 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
299 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
300 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
301 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
302
303 /* These are unsupported. */
304 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
305 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
306 };
307 return map[pipe_wrap];
308 }
309
310 /**
311 * Allocate space for some indirect state.
312 *
313 * Return a pointer to the map (to fill it out) and a state ref (for
314 * referring to the state in GPU commands).
315 */
316 static void *
317 upload_state(struct u_upload_mgr *uploader,
318 struct iris_state_ref *ref,
319 unsigned size,
320 unsigned alignment)
321 {
322 void *p = NULL;
323 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
324 return p;
325 }
326
327 /**
328 * Stream out temporary/short-lived state.
329 *
330 * This allocates space, pins the BO, and includes the BO address in the
331 * returned offset (which works because all state lives in 32-bit memory
332 * zones).
333 */
334 static uint32_t *
335 stream_state(struct iris_batch *batch,
336 struct u_upload_mgr *uploader,
337 struct pipe_resource **out_res,
338 unsigned size,
339 unsigned alignment,
340 uint32_t *out_offset)
341 {
342 void *ptr = NULL;
343
344 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
345
346 struct iris_bo *bo = iris_resource_bo(*out_res);
347 iris_use_pinned_bo(batch, bo, false);
348
349 *out_offset += iris_bo_offset_from_base_address(bo);
350
351 iris_record_state_size(batch->state_sizes, *out_offset, size);
352
353 return ptr;
354 }
355
356 /**
357 * stream_state() + memcpy.
358 */
359 static uint32_t
360 emit_state(struct iris_batch *batch,
361 struct u_upload_mgr *uploader,
362 struct pipe_resource **out_res,
363 const void *data,
364 unsigned size,
365 unsigned alignment)
366 {
367 unsigned offset = 0;
368 uint32_t *map =
369 stream_state(batch, uploader, out_res, size, alignment, &offset);
370
371 if (map)
372 memcpy(map, data, size);
373
374 return offset;
375 }
376
377 /**
378 * Did field 'x' change between 'old_cso' and 'new_cso'?
379 *
380 * (If so, we may want to set some dirty flags.)
381 */
382 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
383 #define cso_changed_memcmp(x) \
384 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
385
386 static void
387 flush_before_state_base_change(struct iris_batch *batch)
388 {
389 /* Flush before emitting STATE_BASE_ADDRESS.
390 *
391 * This isn't documented anywhere in the PRM. However, it seems to be
392 * necessary prior to changing the surface state base adress. We've
393 * seen issues in Vulkan where we get GPU hangs when using multi-level
394 * command buffers which clear depth, reset state base address, and then
395 * go render stuff.
396 *
397 * Normally, in GL, we would trust the kernel to do sufficient stalls
398 * and flushes prior to executing our batch. However, it doesn't seem
399 * as if the kernel's flushing is always sufficient and we don't want to
400 * rely on it.
401 *
402 * We make this an end-of-pipe sync instead of a normal flush because we
403 * do not know the current status of the GPU. On Haswell at least,
404 * having a fast-clear operation in flight at the same time as a normal
405 * rendering operation can cause hangs. Since the kernel's flushing is
406 * insufficient, we need to ensure that any rendering operations from
407 * other processes are definitely complete before we try to do our own
408 * rendering. It's a bit of a big hammer but it appears to work.
409 */
410 iris_emit_end_of_pipe_sync(batch,
411 "change STATE_BASE_ADDRESS (flushes)",
412 PIPE_CONTROL_RENDER_TARGET_FLUSH |
413 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
414 PIPE_CONTROL_DATA_CACHE_FLUSH);
415 }
416
417 static void
418 flush_after_state_base_change(struct iris_batch *batch)
419 {
420 /* After re-setting the surface state base address, we have to do some
421 * cache flusing so that the sampler engine will pick up the new
422 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
423 * Shared Function > 3D Sampler > State > State Caching (page 96):
424 *
425 * Coherency with system memory in the state cache, like the texture
426 * cache is handled partially by software. It is expected that the
427 * command stream or shader will issue Cache Flush operation or
428 * Cache_Flush sampler message to ensure that the L1 cache remains
429 * coherent with system memory.
430 *
431 * [...]
432 *
433 * Whenever the value of the Dynamic_State_Base_Addr,
434 * Surface_State_Base_Addr are altered, the L1 state cache must be
435 * invalidated to ensure the new surface or sampler state is fetched
436 * from system memory.
437 *
438 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
439 * which, according the PIPE_CONTROL instruction documentation in the
440 * Broadwell PRM:
441 *
442 * Setting this bit is independent of any other bit in this packet.
443 * This bit controls the invalidation of the L1 and L2 state caches
444 * at the top of the pipe i.e. at the parsing time.
445 *
446 * Unfortunately, experimentation seems to indicate that state cache
447 * invalidation through a PIPE_CONTROL does nothing whatsoever in
448 * regards to surface state and binding tables. In stead, it seems that
449 * invalidating the texture cache is what is actually needed.
450 *
451 * XXX: As far as we have been able to determine through
452 * experimentation, shows that flush the texture cache appears to be
453 * sufficient. The theory here is that all of the sampling/rendering
454 * units cache the binding table in the texture cache. However, we have
455 * yet to be able to actually confirm this.
456 */
457 iris_emit_end_of_pipe_sync(batch,
458 "change STATE_BASE_ADDRESS (invalidates)",
459 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
460 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
461 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
462 }
463
464 static void
465 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
466 {
467 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
468 lri.RegisterOffset = reg;
469 lri.DataDWord = val;
470 }
471 }
472 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
473
474 static void
475 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
476 {
477 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
478 lrr.SourceRegisterAddress = src;
479 lrr.DestinationRegisterAddress = dst;
480 }
481 }
482
483 static void
484 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
485 uint32_t src)
486 {
487 _iris_emit_lrr(batch, dst, src);
488 }
489
490 static void
491 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
492 uint32_t src)
493 {
494 _iris_emit_lrr(batch, dst, src);
495 _iris_emit_lrr(batch, dst + 4, src + 4);
496 }
497
498 static void
499 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
500 uint32_t val)
501 {
502 _iris_emit_lri(batch, reg, val);
503 }
504
505 static void
506 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
507 uint64_t val)
508 {
509 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
510 _iris_emit_lri(batch, reg + 4, val >> 32);
511 }
512
513 /**
514 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
515 */
516 static void
517 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
518 struct iris_bo *bo, uint32_t offset)
519 {
520 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
521 lrm.RegisterAddress = reg;
522 lrm.MemoryAddress = ro_bo(bo, offset);
523 }
524 }
525
526 /**
527 * Load a 64-bit value from a buffer into a MMIO register via
528 * two MI_LOAD_REGISTER_MEM commands.
529 */
530 static void
531 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
532 struct iris_bo *bo, uint32_t offset)
533 {
534 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
535 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
536 }
537
538 static void
539 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
540 struct iris_bo *bo, uint32_t offset,
541 bool predicated)
542 {
543 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
544 srm.RegisterAddress = reg;
545 srm.MemoryAddress = rw_bo(bo, offset);
546 srm.PredicateEnable = predicated;
547 }
548 }
549
550 static void
551 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
552 struct iris_bo *bo, uint32_t offset,
553 bool predicated)
554 {
555 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
556 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
557 }
558
559 static void
560 iris_store_data_imm32(struct iris_batch *batch,
561 struct iris_bo *bo, uint32_t offset,
562 uint32_t imm)
563 {
564 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
565 sdi.Address = rw_bo(bo, offset);
566 sdi.ImmediateData = imm;
567 }
568 }
569
570 static void
571 iris_store_data_imm64(struct iris_batch *batch,
572 struct iris_bo *bo, uint32_t offset,
573 uint64_t imm)
574 {
575 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
576 * 2 in genxml but it's actually variable length and we need 5 DWords.
577 */
578 void *map = iris_get_command_space(batch, 4 * 5);
579 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
580 sdi.DWordLength = 5 - 2;
581 sdi.Address = rw_bo(bo, offset);
582 sdi.ImmediateData = imm;
583 }
584 }
585
586 static void
587 iris_copy_mem_mem(struct iris_batch *batch,
588 struct iris_bo *dst_bo, uint32_t dst_offset,
589 struct iris_bo *src_bo, uint32_t src_offset,
590 unsigned bytes)
591 {
592 /* MI_COPY_MEM_MEM operates on DWords. */
593 assert(bytes % 4 == 0);
594 assert(dst_offset % 4 == 0);
595 assert(src_offset % 4 == 0);
596
597 for (unsigned i = 0; i < bytes; i += 4) {
598 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
599 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
600 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
601 }
602 }
603 }
604
605 static void
606 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
607 {
608 #if GEN_GEN >= 8 && GEN_GEN < 10
609 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
610 *
611 * Software must clear the COLOR_CALC_STATE Valid field in
612 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
613 * with Pipeline Select set to GPGPU.
614 *
615 * The internal hardware docs recommend the same workaround for Gen9
616 * hardware too.
617 */
618 if (pipeline == GPGPU)
619 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
620 #endif
621
622
623 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
624 * PIPELINE_SELECT [DevBWR+]":
625 *
626 * "Project: DEVSNB+
627 *
628 * Software must ensure all the write caches are flushed through a
629 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
630 * command to invalidate read only caches prior to programming
631 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
632 */
633 iris_emit_pipe_control_flush(batch,
634 "workaround: PIPELINE_SELECT flushes (1/2)",
635 PIPE_CONTROL_RENDER_TARGET_FLUSH |
636 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
637 PIPE_CONTROL_DATA_CACHE_FLUSH |
638 PIPE_CONTROL_CS_STALL);
639
640 iris_emit_pipe_control_flush(batch,
641 "workaround: PIPELINE_SELECT flushes (2/2)",
642 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
643 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
644 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
645 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
646
647 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
648 #if GEN_GEN >= 9
649 sel.MaskBits = 3;
650 #endif
651 sel.PipelineSelection = pipeline;
652 }
653 }
654
655 UNUSED static void
656 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
657 {
658 #if GEN_GEN == 9
659 /* Project: DevGLK
660 *
661 * "This chicken bit works around a hardware issue with barrier
662 * logic encountered when switching between GPGPU and 3D pipelines.
663 * To workaround the issue, this mode bit should be set after a
664 * pipeline is selected."
665 */
666 uint32_t reg_val;
667 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
668 reg.GLKBarrierMode = value;
669 reg.GLKBarrierModeMask = 1;
670 }
671 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
672 #endif
673 }
674
675 static void
676 init_state_base_address(struct iris_batch *batch)
677 {
678 uint32_t mocs = batch->screen->isl_dev.mocs.internal;
679 flush_before_state_base_change(batch);
680
681 /* We program most base addresses once at context initialization time.
682 * Each base address points at a 4GB memory zone, and never needs to
683 * change. See iris_bufmgr.h for a description of the memory zones.
684 *
685 * The one exception is Surface State Base Address, which needs to be
686 * updated occasionally. See iris_binder.c for the details there.
687 */
688 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
689 sba.GeneralStateMOCS = mocs;
690 sba.StatelessDataPortAccessMOCS = mocs;
691 sba.DynamicStateMOCS = mocs;
692 sba.IndirectObjectMOCS = mocs;
693 sba.InstructionMOCS = mocs;
694 sba.SurfaceStateMOCS = mocs;
695
696 sba.GeneralStateBaseAddressModifyEnable = true;
697 sba.DynamicStateBaseAddressModifyEnable = true;
698 sba.IndirectObjectBaseAddressModifyEnable = true;
699 sba.InstructionBaseAddressModifyEnable = true;
700 sba.GeneralStateBufferSizeModifyEnable = true;
701 sba.DynamicStateBufferSizeModifyEnable = true;
702 #if (GEN_GEN >= 9)
703 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
704 sba.BindlessSurfaceStateMOCS = mocs;
705 #endif
706 sba.IndirectObjectBufferSizeModifyEnable = true;
707 sba.InstructionBuffersizeModifyEnable = true;
708
709 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
710 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
711
712 sba.GeneralStateBufferSize = 0xfffff;
713 sba.IndirectObjectBufferSize = 0xfffff;
714 sba.InstructionBufferSize = 0xfffff;
715 sba.DynamicStateBufferSize = 0xfffff;
716 }
717
718 flush_after_state_base_change(batch);
719 }
720
721 static void
722 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
723 bool has_slm, bool wants_dc_cache)
724 {
725 uint32_t reg_val;
726
727 #if GEN_GEN >= 12
728 #define L3_ALLOCATION_REG GENX(L3ALLOC)
729 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
730 #else
731 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
732 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
733 #endif
734
735 iris_pack_state(L3_ALLOCATION_REG, &reg_val, reg) {
736 #if GEN_GEN < 12
737 reg.SLMEnable = has_slm;
738 #endif
739 #if GEN_GEN == 11
740 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
741 * in L3CNTLREG register. The default setting of the bit is not the
742 * desirable behavior.
743 */
744 reg.ErrorDetectionBehaviorControl = true;
745 reg.UseFullWays = true;
746 #endif
747 reg.URBAllocation = cfg->n[GEN_L3P_URB];
748 reg.ROAllocation = cfg->n[GEN_L3P_RO];
749 reg.DCAllocation = cfg->n[GEN_L3P_DC];
750 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
751 }
752 _iris_emit_lri(batch, L3_ALLOCATION_REG_num, reg_val);
753 }
754
755 static void
756 iris_emit_default_l3_config(struct iris_batch *batch,
757 const struct gen_device_info *devinfo,
758 bool compute)
759 {
760 bool wants_dc_cache = true;
761 bool has_slm = compute;
762 const struct gen_l3_weights w =
763 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
764 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
765 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
766 }
767
768 #if GEN_GEN == 9 || GEN_GEN == 10
769 static void
770 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
771 {
772 uint32_t reg_val;
773
774 /* A fixed function pipe flush is required before modifying this field */
775 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
776 : "disable preemption",
777 PIPE_CONTROL_RENDER_TARGET_FLUSH);
778
779 /* enable object level preemption */
780 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
781 reg.ReplayMode = enable;
782 reg.ReplayModeMask = true;
783 }
784 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
785 }
786 #endif
787
788 #if GEN_GEN == 11
789 static void
790 iris_upload_slice_hashing_state(struct iris_batch *batch)
791 {
792 const struct gen_device_info *devinfo = &batch->screen->devinfo;
793 int subslices_delta =
794 devinfo->ppipe_subslices[0] - devinfo->ppipe_subslices[1];
795 if (subslices_delta == 0)
796 return;
797
798 struct iris_context *ice = NULL;
799 ice = container_of(batch, ice, batches[IRIS_BATCH_RENDER]);
800 assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
801
802 unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
803 uint32_t hash_address;
804 struct pipe_resource *tmp = NULL;
805 uint32_t *map =
806 stream_state(batch, ice->state.dynamic_uploader, &tmp,
807 size, 64, &hash_address);
808 pipe_resource_reference(&tmp, NULL);
809
810 struct GENX(SLICE_HASH_TABLE) table0 = {
811 .Entry = {
812 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
813 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
814 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
815 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
816 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
817 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
818 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
819 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
820 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
821 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
822 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
823 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
824 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
825 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
826 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
827 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 }
828 }
829 };
830
831 struct GENX(SLICE_HASH_TABLE) table1 = {
832 .Entry = {
833 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
834 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
835 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
836 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
837 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
838 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
839 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
840 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
841 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
842 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
843 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
844 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
845 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
846 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
847 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
848 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 }
849 }
850 };
851
852 const struct GENX(SLICE_HASH_TABLE) *table =
853 subslices_delta < 0 ? &table0 : &table1;
854 GENX(SLICE_HASH_TABLE_pack)(NULL, map, table);
855
856 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
857 ptr.SliceHashStatePointerValid = true;
858 ptr.SliceHashTableStatePointer = hash_address;
859 }
860
861 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
862 mode.SliceHashingTableEnable = true;
863 }
864 }
865 #endif
866
867 static void
868 iris_alloc_push_constants(struct iris_batch *batch)
869 {
870 /* For now, we set a static partitioning of the push constant area,
871 * assuming that all stages could be in use.
872 *
873 * TODO: Try lazily allocating the HS/DS/GS sections as needed, and
874 * see if that improves performance by offering more space to
875 * the VS/FS when those aren't in use. Also, try dynamically
876 * enabling/disabling it like i965 does. This would be more
877 * stalls and may not actually help; we don't know yet.
878 */
879 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
880 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
881 alloc._3DCommandSubOpcode = 18 + i;
882 alloc.ConstantBufferOffset = 6 * i;
883 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
884 }
885 }
886 }
887
888 /**
889 * Upload the initial GPU state for a render context.
890 *
891 * This sets some invariant state that needs to be programmed a particular
892 * way, but we never actually change.
893 */
894 static void
895 iris_init_render_context(struct iris_batch *batch)
896 {
897 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
898 uint32_t reg_val;
899
900 emit_pipeline_select(batch, _3D);
901
902 iris_emit_default_l3_config(batch, devinfo, false);
903
904 init_state_base_address(batch);
905
906 #if GEN_GEN >= 9
907 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
908 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
909 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
910 }
911 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
912 #else
913 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
914 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
915 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
916 }
917 iris_emit_lri(batch, INSTPM, reg_val);
918 #endif
919
920 #if GEN_GEN == 9
921 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
922 reg.FloatBlendOptimizationEnable = true;
923 reg.FloatBlendOptimizationEnableMask = true;
924 reg.PartialResolveDisableInVC = true;
925 reg.PartialResolveDisableInVCMask = true;
926 }
927 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
928
929 if (devinfo->is_geminilake)
930 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
931 #endif
932
933 #if GEN_GEN == 11
934 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
935 reg.HeaderlessMessageforPreemptableContexts = 1;
936 reg.HeaderlessMessageforPreemptableContextsMask = 1;
937 }
938 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
939
940 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
941 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
942 reg.EnabledTexelOffsetPrecisionFix = 1;
943 reg.EnabledTexelOffsetPrecisionFixMask = 1;
944 }
945 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
946
947 /* Hardware specification recommends disabling repacking for the
948 * compatibility with decompression mechanism in display controller.
949 */
950 if (devinfo->disable_ccs_repack) {
951 iris_pack_state(GENX(CACHE_MODE_0), &reg_val, reg) {
952 reg.DisableRepackingforCompression = true;
953 reg.DisableRepackingforCompressionMask = true;
954 }
955 iris_emit_lri(batch, CACHE_MODE_0, reg_val);
956 }
957
958 iris_upload_slice_hashing_state(batch);
959 #endif
960
961 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
962 * changing it dynamically. We set it to the maximum size here, and
963 * instead include the render target dimensions in the viewport, so
964 * viewport extents clipping takes care of pruning stray geometry.
965 */
966 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
967 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
968 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
969 }
970
971 /* Set the initial MSAA sample positions. */
972 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
973 GEN_SAMPLE_POS_1X(pat._1xSample);
974 GEN_SAMPLE_POS_2X(pat._2xSample);
975 GEN_SAMPLE_POS_4X(pat._4xSample);
976 GEN_SAMPLE_POS_8X(pat._8xSample);
977 #if GEN_GEN >= 9
978 GEN_SAMPLE_POS_16X(pat._16xSample);
979 #endif
980 }
981
982 /* Use the legacy AA line coverage computation. */
983 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
984
985 /* Disable chromakeying (it's for media) */
986 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
987
988 /* We want regular rendering, not special HiZ operations. */
989 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
990
991 /* No polygon stippling offsets are necessary. */
992 /* TODO: may need to set an offset for origin-UL framebuffers */
993 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
994
995 iris_alloc_push_constants(batch);
996
997 #if GEN_GEN == 10
998 /* Gen11+ is enabled for us by the kernel. */
999 iris_enable_obj_preemption(batch, true);
1000 #endif
1001 }
1002
1003 static void
1004 iris_init_compute_context(struct iris_batch *batch)
1005 {
1006 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
1007
1008 emit_pipeline_select(batch, GPGPU);
1009
1010 iris_emit_default_l3_config(batch, devinfo, true);
1011
1012 init_state_base_address(batch);
1013
1014 #if GEN_GEN == 9
1015 if (devinfo->is_geminilake)
1016 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
1017 #endif
1018 }
1019
1020 struct iris_vertex_buffer_state {
1021 /** The VERTEX_BUFFER_STATE hardware structure. */
1022 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
1023
1024 /** The resource to source vertex data from. */
1025 struct pipe_resource *resource;
1026
1027 int offset;
1028 };
1029
1030 struct iris_depth_buffer_state {
1031 /* Depth/HiZ/Stencil related hardware packets. */
1032 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
1033 GENX(3DSTATE_STENCIL_BUFFER_length) +
1034 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
1035 GENX(3DSTATE_CLEAR_PARAMS_length)];
1036 };
1037
1038 /**
1039 * Generation-specific context state (ice->state.genx->...).
1040 *
1041 * Most state can go in iris_context directly, but these encode hardware
1042 * packets which vary by generation.
1043 */
1044 struct iris_genx_state {
1045 struct iris_vertex_buffer_state vertex_buffers[33];
1046 uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
1047
1048 struct iris_depth_buffer_state depth_buffer;
1049
1050 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
1051
1052 #if GEN_GEN == 8
1053 bool pma_fix_enabled;
1054 #endif
1055
1056 #if GEN_GEN == 9
1057 /* Is object level preemption enabled? */
1058 bool object_preemption;
1059 #endif
1060
1061 struct {
1062 #if GEN_GEN == 8
1063 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
1064 #endif
1065 } shaders[MESA_SHADER_STAGES];
1066 };
1067
1068 /**
1069 * The pipe->set_blend_color() driver hook.
1070 *
1071 * This corresponds to our COLOR_CALC_STATE.
1072 */
1073 static void
1074 iris_set_blend_color(struct pipe_context *ctx,
1075 const struct pipe_blend_color *state)
1076 {
1077 struct iris_context *ice = (struct iris_context *) ctx;
1078
1079 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
1080 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
1081 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1082 }
1083
1084 /**
1085 * Gallium CSO for blend state (see pipe_blend_state).
1086 */
1087 struct iris_blend_state {
1088 /** Partial 3DSTATE_PS_BLEND */
1089 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
1090
1091 /** Partial BLEND_STATE */
1092 uint32_t blend_state[GENX(BLEND_STATE_length) +
1093 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
1094
1095 bool alpha_to_coverage; /* for shader key */
1096
1097 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
1098 uint8_t blend_enables;
1099
1100 /** Bitfield of whether color writes are enabled for RT[i] */
1101 uint8_t color_write_enables;
1102
1103 /** Does RT[0] use dual color blending? */
1104 bool dual_color_blending;
1105 };
1106
1107 static enum pipe_blendfactor
1108 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
1109 {
1110 if (alpha_to_one) {
1111 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
1112 return PIPE_BLENDFACTOR_ONE;
1113
1114 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
1115 return PIPE_BLENDFACTOR_ZERO;
1116 }
1117
1118 return f;
1119 }
1120
1121 /**
1122 * The pipe->create_blend_state() driver hook.
1123 *
1124 * Translates a pipe_blend_state into iris_blend_state.
1125 */
1126 static void *
1127 iris_create_blend_state(struct pipe_context *ctx,
1128 const struct pipe_blend_state *state)
1129 {
1130 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
1131 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
1132
1133 cso->blend_enables = 0;
1134 cso->color_write_enables = 0;
1135 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
1136
1137 cso->alpha_to_coverage = state->alpha_to_coverage;
1138
1139 bool indep_alpha_blend = false;
1140
1141 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
1142 const struct pipe_rt_blend_state *rt =
1143 &state->rt[state->independent_blend_enable ? i : 0];
1144
1145 enum pipe_blendfactor src_rgb =
1146 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
1147 enum pipe_blendfactor src_alpha =
1148 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
1149 enum pipe_blendfactor dst_rgb =
1150 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
1151 enum pipe_blendfactor dst_alpha =
1152 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
1153
1154 if (rt->rgb_func != rt->alpha_func ||
1155 src_rgb != src_alpha || dst_rgb != dst_alpha)
1156 indep_alpha_blend = true;
1157
1158 if (rt->blend_enable)
1159 cso->blend_enables |= 1u << i;
1160
1161 if (rt->colormask)
1162 cso->color_write_enables |= 1u << i;
1163
1164 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
1165 be.LogicOpEnable = state->logicop_enable;
1166 be.LogicOpFunction = state->logicop_func;
1167
1168 be.PreBlendSourceOnlyClampEnable = false;
1169 be.ColorClampRange = COLORCLAMP_RTFORMAT;
1170 be.PreBlendColorClampEnable = true;
1171 be.PostBlendColorClampEnable = true;
1172
1173 be.ColorBufferBlendEnable = rt->blend_enable;
1174
1175 be.ColorBlendFunction = rt->rgb_func;
1176 be.AlphaBlendFunction = rt->alpha_func;
1177 be.SourceBlendFactor = src_rgb;
1178 be.SourceAlphaBlendFactor = src_alpha;
1179 be.DestinationBlendFactor = dst_rgb;
1180 be.DestinationAlphaBlendFactor = dst_alpha;
1181
1182 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
1183 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
1184 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
1185 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
1186 }
1187 blend_entry += GENX(BLEND_STATE_ENTRY_length);
1188 }
1189
1190 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
1191 /* pb.HasWriteableRT is filled in at draw time.
1192 * pb.AlphaTestEnable is filled in at draw time.
1193 *
1194 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
1195 * setting it when dual color blending without an appropriate shader.
1196 */
1197
1198 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
1199 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
1200
1201 pb.SourceBlendFactor =
1202 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1203 pb.SourceAlphaBlendFactor =
1204 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1205 pb.DestinationBlendFactor =
1206 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
1207 pb.DestinationAlphaBlendFactor =
1208 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
1209 }
1210
1211 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1212 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1213 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1214 bs.AlphaToOneEnable = state->alpha_to_one;
1215 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
1216 bs.ColorDitherEnable = state->dither;
1217 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1218 }
1219
1220 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1221
1222 return cso;
1223 }
1224
1225 /**
1226 * The pipe->bind_blend_state() driver hook.
1227 *
1228 * Bind a blending CSO and flag related dirty bits.
1229 */
1230 static void
1231 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1232 {
1233 struct iris_context *ice = (struct iris_context *) ctx;
1234 struct iris_blend_state *cso = state;
1235
1236 ice->state.cso_blend = cso;
1237 ice->state.blend_enables = cso ? cso->blend_enables : 0;
1238
1239 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1240 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1241 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1242 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
1243
1244 if (GEN_GEN == 8)
1245 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
1246 }
1247
1248 /**
1249 * Return true if the FS writes to any color outputs which are not disabled
1250 * via color masking.
1251 */
1252 static bool
1253 has_writeable_rt(const struct iris_blend_state *cso_blend,
1254 const struct shader_info *fs_info)
1255 {
1256 if (!fs_info)
1257 return false;
1258
1259 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1260
1261 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1262 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
1263
1264 return cso_blend->color_write_enables & rt_outputs;
1265 }
1266
1267 /**
1268 * Gallium CSO for depth, stencil, and alpha testing state.
1269 */
1270 struct iris_depth_stencil_alpha_state {
1271 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1272 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1273
1274 #if GEN_GEN >= 12
1275 uint32_t depth_bounds[GENX(3DSTATE_DEPTH_BOUNDS_length)];
1276 #endif
1277
1278 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1279 struct pipe_alpha_state alpha;
1280
1281 /** Outbound to resolve and cache set tracking. */
1282 bool depth_writes_enabled;
1283 bool stencil_writes_enabled;
1284
1285 /** Outbound to Gen8-9 PMA stall equations */
1286 bool depth_test_enabled;
1287 };
1288
1289 /**
1290 * The pipe->create_depth_stencil_alpha_state() driver hook.
1291 *
1292 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1293 * testing state since we need pieces of it in a variety of places.
1294 */
1295 static void *
1296 iris_create_zsa_state(struct pipe_context *ctx,
1297 const struct pipe_depth_stencil_alpha_state *state)
1298 {
1299 struct iris_depth_stencil_alpha_state *cso =
1300 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1301
1302 bool two_sided_stencil = state->stencil[1].enabled;
1303
1304 cso->alpha = state->alpha;
1305 cso->depth_writes_enabled = state->depth.writemask;
1306 cso->depth_test_enabled = state->depth.enabled;
1307 cso->stencil_writes_enabled =
1308 state->stencil[0].writemask != 0 ||
1309 (two_sided_stencil && state->stencil[1].writemask != 0);
1310
1311 /* The state tracker needs to optimize away EQUAL writes for us. */
1312 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1313
1314 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1315 wmds.StencilFailOp = state->stencil[0].fail_op;
1316 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1317 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1318 wmds.StencilTestFunction =
1319 translate_compare_func(state->stencil[0].func);
1320 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1321 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1322 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1323 wmds.BackfaceStencilTestFunction =
1324 translate_compare_func(state->stencil[1].func);
1325 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1326 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1327 wmds.StencilTestEnable = state->stencil[0].enabled;
1328 wmds.StencilBufferWriteEnable =
1329 state->stencil[0].writemask != 0 ||
1330 (two_sided_stencil && state->stencil[1].writemask != 0);
1331 wmds.DepthTestEnable = state->depth.enabled;
1332 wmds.DepthBufferWriteEnable = state->depth.writemask;
1333 wmds.StencilTestMask = state->stencil[0].valuemask;
1334 wmds.StencilWriteMask = state->stencil[0].writemask;
1335 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1336 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1337 /* wmds.[Backface]StencilReferenceValue are merged later */
1338 }
1339
1340 #if GEN_GEN >= 12
1341 iris_pack_command(GENX(3DSTATE_DEPTH_BOUNDS), cso->depth_bounds, depth_bounds) {
1342 depth_bounds.DepthBoundsTestValueModifyDisable = false;
1343 depth_bounds.DepthBoundsTestEnableModifyDisable = false;
1344 depth_bounds.DepthBoundsTestEnable = state->depth.bounds_test;
1345 depth_bounds.DepthBoundsTestMinValue = state->depth.bounds_min;
1346 depth_bounds.DepthBoundsTestMaxValue = state->depth.bounds_max;
1347 }
1348 #endif
1349
1350 return cso;
1351 }
1352
1353 /**
1354 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1355 *
1356 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1357 */
1358 static void
1359 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1360 {
1361 struct iris_context *ice = (struct iris_context *) ctx;
1362 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1363 struct iris_depth_stencil_alpha_state *new_cso = state;
1364
1365 if (new_cso) {
1366 if (cso_changed(alpha.ref_value))
1367 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1368
1369 if (cso_changed(alpha.enabled))
1370 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1371
1372 if (cso_changed(alpha.func))
1373 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1374
1375 if (cso_changed(depth_writes_enabled))
1376 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1377
1378 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1379 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1380
1381 #if GEN_GEN >= 12
1382 if (cso_changed(depth_bounds))
1383 ice->state.dirty |= IRIS_DIRTY_DEPTH_BOUNDS;
1384 #endif
1385 }
1386
1387 ice->state.cso_zsa = new_cso;
1388 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1389 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1390 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1391
1392 if (GEN_GEN == 8)
1393 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
1394 }
1395
1396 #if GEN_GEN == 8
1397 static bool
1398 want_pma_fix(struct iris_context *ice)
1399 {
1400 UNUSED struct iris_screen *screen = (void *) ice->ctx.screen;
1401 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
1402 const struct brw_wm_prog_data *wm_prog_data = (void *)
1403 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
1404 const struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
1405 const struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
1406 const struct iris_blend_state *cso_blend = ice->state.cso_blend;
1407
1408 /* In very specific combinations of state, we can instruct Gen8-9 hardware
1409 * to avoid stalling at the pixel mask array. The state equations are
1410 * documented in these places:
1411 *
1412 * - Gen8 Depth PMA Fix: CACHE_MODE_1::NP_PMA_FIX_ENABLE
1413 * - Gen9 Stencil PMA Fix: CACHE_MODE_0::STC PMA Optimization Enable
1414 *
1415 * Both equations share some common elements:
1416 *
1417 * no_hiz_op =
1418 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
1419 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
1420 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
1421 * 3DSTATE_WM_HZ_OP::StencilBufferClear) &&
1422 *
1423 * killpixels =
1424 * 3DSTATE_WM::ForceKillPix != ForceOff &&
1425 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1426 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1427 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1428 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1429 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1430 *
1431 * (Technically the stencil PMA treats ForceKillPix differently,
1432 * but I think this is a documentation oversight, and we don't
1433 * ever use it in this way, so it doesn't matter).
1434 *
1435 * common_pma_fix =
1436 * 3DSTATE_WM::ForceThreadDispatch != 1 &&
1437 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0 &&
1438 * 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
1439 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
1440 * 3DSTATE_WM::EDSC_Mode != EDSC_PREPS &&
1441 * 3DSTATE_PS_EXTRA::PixelShaderValid &&
1442 * no_hiz_op
1443 *
1444 * These are always true:
1445 *
1446 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0
1447 * 3DSTATE_PS_EXTRA::PixelShaderValid
1448 *
1449 * Also, we never use the normal drawing path for HiZ ops; these are true:
1450 *
1451 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
1452 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
1453 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
1454 * 3DSTATE_WM_HZ_OP::StencilBufferClear)
1455 *
1456 * This happens sometimes:
1457 *
1458 * 3DSTATE_WM::ForceThreadDispatch != 1
1459 *
1460 * However, we choose to ignore it as it either agrees with the signal
1461 * (dispatch was already enabled, so nothing out of the ordinary), or
1462 * there are no framebuffer attachments (so no depth or HiZ anyway,
1463 * meaning the PMA signal will already be disabled).
1464 */
1465
1466 if (!cso_fb->zsbuf)
1467 return false;
1468
1469 struct iris_resource *zres, *sres;
1470 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture, &zres, &sres);
1471
1472 /* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
1473 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
1474 */
1475 if (!zres || !iris_resource_level_has_hiz(zres, cso_fb->zsbuf->u.tex.level))
1476 return false;
1477
1478 /* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS */
1479 if (wm_prog_data->early_fragment_tests)
1480 return false;
1481
1482 /* 3DSTATE_WM::ForceKillPix != ForceOff &&
1483 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1484 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1485 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1486 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1487 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1488 */
1489 bool killpixels = wm_prog_data->uses_kill || wm_prog_data->uses_omask ||
1490 cso_blend->alpha_to_coverage || cso_zsa->alpha.enabled;
1491
1492 /* The Gen8 depth PMA equation becomes:
1493 *
1494 * depth_writes =
1495 * 3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable &&
1496 * 3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE
1497 *
1498 * stencil_writes =
1499 * 3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable &&
1500 * 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE &&
1501 * 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE
1502 *
1503 * Z_PMA_OPT =
1504 * common_pma_fix &&
1505 * 3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable &&
1506 * ((killpixels && (depth_writes || stencil_writes)) ||
1507 * 3DSTATE_PS_EXTRA::PixelShaderComputedDepthMode != PSCDEPTH_OFF)
1508 *
1509 */
1510 if (!cso_zsa->depth_test_enabled)
1511 return false;
1512
1513 return wm_prog_data->computed_depth_mode != PSCDEPTH_OFF ||
1514 (killpixels && (cso_zsa->depth_writes_enabled ||
1515 (sres && cso_zsa->stencil_writes_enabled)));
1516 }
1517 #endif
1518
1519 void
1520 genX(update_pma_fix)(struct iris_context *ice,
1521 struct iris_batch *batch,
1522 bool enable)
1523 {
1524 #if GEN_GEN == 8
1525 struct iris_genx_state *genx = ice->state.genx;
1526
1527 if (genx->pma_fix_enabled == enable)
1528 return;
1529
1530 genx->pma_fix_enabled = enable;
1531
1532 /* According to the Broadwell PIPE_CONTROL documentation, software should
1533 * emit a PIPE_CONTROL with the CS Stall and Depth Cache Flush bits set
1534 * prior to the LRI. If stencil buffer writes are enabled, then a Render * Cache Flush is also necessary.
1535 *
1536 * The Gen9 docs say to use a depth stall rather than a command streamer
1537 * stall. However, the hardware seems to violently disagree. A full
1538 * command streamer stall seems to be needed in both cases.
1539 */
1540 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
1541 PIPE_CONTROL_CS_STALL |
1542 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1543 PIPE_CONTROL_RENDER_TARGET_FLUSH);
1544
1545 uint32_t reg_val;
1546 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
1547 reg.NPPMAFixEnable = enable;
1548 reg.NPEarlyZFailsDisable = enable;
1549 reg.NPPMAFixEnableMask = true;
1550 reg.NPEarlyZFailsDisableMask = true;
1551 }
1552 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
1553
1554 /* After the LRI, a PIPE_CONTROL with both the Depth Stall and Depth Cache
1555 * Flush bits is often necessary. We do it regardless because it's easier.
1556 * The render cache flush is also necessary if stencil writes are enabled.
1557 *
1558 * Again, the Gen9 docs give a different set of flushes but the Broadwell
1559 * flushes seem to work just as well.
1560 */
1561 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
1562 PIPE_CONTROL_DEPTH_STALL |
1563 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
1564 PIPE_CONTROL_RENDER_TARGET_FLUSH);
1565 #endif
1566 }
1567
1568 /**
1569 * Gallium CSO for rasterizer state.
1570 */
1571 struct iris_rasterizer_state {
1572 uint32_t sf[GENX(3DSTATE_SF_length)];
1573 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1574 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1575 uint32_t wm[GENX(3DSTATE_WM_length)];
1576 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1577
1578 uint8_t num_clip_plane_consts;
1579 bool clip_halfz; /* for CC_VIEWPORT */
1580 bool depth_clip_near; /* for CC_VIEWPORT */
1581 bool depth_clip_far; /* for CC_VIEWPORT */
1582 bool flatshade; /* for shader state */
1583 bool flatshade_first; /* for stream output */
1584 bool clamp_fragment_color; /* for shader state */
1585 bool light_twoside; /* for shader state */
1586 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1587 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1588 bool line_stipple_enable;
1589 bool poly_stipple_enable;
1590 bool multisample;
1591 bool force_persample_interp;
1592 bool conservative_rasterization;
1593 bool fill_mode_point_or_line;
1594 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1595 uint16_t sprite_coord_enable;
1596 };
1597
1598 static float
1599 get_line_width(const struct pipe_rasterizer_state *state)
1600 {
1601 float line_width = state->line_width;
1602
1603 /* From the OpenGL 4.4 spec:
1604 *
1605 * "The actual width of non-antialiased lines is determined by rounding
1606 * the supplied width to the nearest integer, then clamping it to the
1607 * implementation-dependent maximum non-antialiased line width."
1608 */
1609 if (!state->multisample && !state->line_smooth)
1610 line_width = roundf(state->line_width);
1611
1612 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1613 /* For 1 pixel line thickness or less, the general anti-aliasing
1614 * algorithm gives up, and a garbage line is generated. Setting a
1615 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1616 * (one-pixel-wide), non-antialiased lines.
1617 *
1618 * Lines rendered with zero Line Width are rasterized using the
1619 * "Grid Intersection Quantization" rules as specified by the
1620 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1621 */
1622 line_width = 0.0f;
1623 }
1624
1625 return line_width;
1626 }
1627
1628 /**
1629 * The pipe->create_rasterizer_state() driver hook.
1630 */
1631 static void *
1632 iris_create_rasterizer_state(struct pipe_context *ctx,
1633 const struct pipe_rasterizer_state *state)
1634 {
1635 struct iris_rasterizer_state *cso =
1636 malloc(sizeof(struct iris_rasterizer_state));
1637
1638 cso->multisample = state->multisample;
1639 cso->force_persample_interp = state->force_persample_interp;
1640 cso->clip_halfz = state->clip_halfz;
1641 cso->depth_clip_near = state->depth_clip_near;
1642 cso->depth_clip_far = state->depth_clip_far;
1643 cso->flatshade = state->flatshade;
1644 cso->flatshade_first = state->flatshade_first;
1645 cso->clamp_fragment_color = state->clamp_fragment_color;
1646 cso->light_twoside = state->light_twoside;
1647 cso->rasterizer_discard = state->rasterizer_discard;
1648 cso->half_pixel_center = state->half_pixel_center;
1649 cso->sprite_coord_mode = state->sprite_coord_mode;
1650 cso->sprite_coord_enable = state->sprite_coord_enable;
1651 cso->line_stipple_enable = state->line_stipple_enable;
1652 cso->poly_stipple_enable = state->poly_stipple_enable;
1653 cso->conservative_rasterization =
1654 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1655
1656 cso->fill_mode_point_or_line =
1657 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1658 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1659 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1660 state->fill_back == PIPE_POLYGON_MODE_POINT;
1661
1662 if (state->clip_plane_enable != 0)
1663 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1664 else
1665 cso->num_clip_plane_consts = 0;
1666
1667 float line_width = get_line_width(state);
1668
1669 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1670 sf.StatisticsEnable = true;
1671 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1672 sf.LineEndCapAntialiasingRegionWidth =
1673 state->line_smooth ? _10pixels : _05pixels;
1674 sf.LastPixelEnable = state->line_last_pixel;
1675 sf.LineWidth = line_width;
1676 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1677 !state->point_quad_rasterization;
1678 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1679 sf.PointWidth = state->point_size;
1680
1681 if (state->flatshade_first) {
1682 sf.TriangleFanProvokingVertexSelect = 1;
1683 } else {
1684 sf.TriangleStripListProvokingVertexSelect = 2;
1685 sf.TriangleFanProvokingVertexSelect = 2;
1686 sf.LineStripListProvokingVertexSelect = 1;
1687 }
1688 }
1689
1690 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1691 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1692 rr.CullMode = translate_cull_mode(state->cull_face);
1693 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1694 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1695 rr.DXMultisampleRasterizationEnable = state->multisample;
1696 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1697 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1698 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1699 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1700 rr.GlobalDepthOffsetScale = state->offset_scale;
1701 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1702 rr.SmoothPointEnable = state->point_smooth;
1703 rr.AntialiasingEnable = state->line_smooth;
1704 rr.ScissorRectangleEnable = state->scissor;
1705 #if GEN_GEN >= 9
1706 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1707 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1708 rr.ConservativeRasterizationEnable =
1709 cso->conservative_rasterization;
1710 #else
1711 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1712 #endif
1713 }
1714
1715 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1716 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1717 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1718 */
1719 cl.EarlyCullEnable = true;
1720 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1721 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1722 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1723 cl.GuardbandClipTestEnable = true;
1724 cl.ClipEnable = true;
1725 cl.MinimumPointWidth = 0.125;
1726 cl.MaximumPointWidth = 255.875;
1727
1728 if (state->flatshade_first) {
1729 cl.TriangleFanProvokingVertexSelect = 1;
1730 } else {
1731 cl.TriangleStripListProvokingVertexSelect = 2;
1732 cl.TriangleFanProvokingVertexSelect = 2;
1733 cl.LineStripListProvokingVertexSelect = 1;
1734 }
1735 }
1736
1737 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1738 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1739 * filled in at draw time from the FS program.
1740 */
1741 wm.LineAntialiasingRegionWidth = _10pixels;
1742 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1743 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1744 wm.LineStippleEnable = state->line_stipple_enable;
1745 wm.PolygonStippleEnable = state->poly_stipple_enable;
1746 }
1747
1748 /* Remap from 0..255 back to 1..256 */
1749 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1750
1751 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1752 if (state->line_stipple_enable) {
1753 line.LineStipplePattern = state->line_stipple_pattern;
1754 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1755 line.LineStippleRepeatCount = line_stipple_factor;
1756 }
1757 }
1758
1759 return cso;
1760 }
1761
1762 /**
1763 * The pipe->bind_rasterizer_state() driver hook.
1764 *
1765 * Bind a rasterizer CSO and flag related dirty bits.
1766 */
1767 static void
1768 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1769 {
1770 struct iris_context *ice = (struct iris_context *) ctx;
1771 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1772 struct iris_rasterizer_state *new_cso = state;
1773
1774 if (new_cso) {
1775 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1776 if (cso_changed_memcmp(line_stipple))
1777 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1778
1779 if (cso_changed(half_pixel_center))
1780 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1781
1782 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1783 ice->state.dirty |= IRIS_DIRTY_WM;
1784
1785 if (cso_changed(rasterizer_discard))
1786 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1787
1788 if (cso_changed(flatshade_first))
1789 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1790
1791 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1792 cso_changed(clip_halfz))
1793 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1794
1795 if (cso_changed(sprite_coord_enable) ||
1796 cso_changed(sprite_coord_mode) ||
1797 cso_changed(light_twoside))
1798 ice->state.dirty |= IRIS_DIRTY_SBE;
1799
1800 if (cso_changed(conservative_rasterization))
1801 ice->state.dirty |= IRIS_DIRTY_FS;
1802 }
1803
1804 ice->state.cso_rast = new_cso;
1805 ice->state.dirty |= IRIS_DIRTY_RASTER;
1806 ice->state.dirty |= IRIS_DIRTY_CLIP;
1807 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1808 }
1809
1810 /**
1811 * Return true if the given wrap mode requires the border color to exist.
1812 *
1813 * (We can skip uploading it if the sampler isn't going to use it.)
1814 */
1815 static bool
1816 wrap_mode_needs_border_color(unsigned wrap_mode)
1817 {
1818 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1819 }
1820
1821 /**
1822 * Gallium CSO for sampler state.
1823 */
1824 struct iris_sampler_state {
1825 union pipe_color_union border_color;
1826 bool needs_border_color;
1827
1828 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1829 };
1830
1831 /**
1832 * The pipe->create_sampler_state() driver hook.
1833 *
1834 * We fill out SAMPLER_STATE (except for the border color pointer), and
1835 * store that on the CPU. It doesn't make sense to upload it to a GPU
1836 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1837 * all bound sampler states to be in contiguous memor.
1838 */
1839 static void *
1840 iris_create_sampler_state(struct pipe_context *ctx,
1841 const struct pipe_sampler_state *state)
1842 {
1843 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1844
1845 if (!cso)
1846 return NULL;
1847
1848 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1849 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1850
1851 unsigned wrap_s = translate_wrap(state->wrap_s);
1852 unsigned wrap_t = translate_wrap(state->wrap_t);
1853 unsigned wrap_r = translate_wrap(state->wrap_r);
1854
1855 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1856
1857 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1858 wrap_mode_needs_border_color(wrap_t) ||
1859 wrap_mode_needs_border_color(wrap_r);
1860
1861 float min_lod = state->min_lod;
1862 unsigned mag_img_filter = state->mag_img_filter;
1863
1864 // XXX: explain this code ported from ilo...I don't get it at all...
1865 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1866 state->min_lod > 0.0f) {
1867 min_lod = 0.0f;
1868 mag_img_filter = state->min_img_filter;
1869 }
1870
1871 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1872 samp.TCXAddressControlMode = wrap_s;
1873 samp.TCYAddressControlMode = wrap_t;
1874 samp.TCZAddressControlMode = wrap_r;
1875 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1876 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1877 samp.MinModeFilter = state->min_img_filter;
1878 samp.MagModeFilter = mag_img_filter;
1879 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1880 samp.MaximumAnisotropy = RATIO21;
1881
1882 if (state->max_anisotropy >= 2) {
1883 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1884 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1885 samp.AnisotropicAlgorithm = EWAApproximation;
1886 }
1887
1888 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1889 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1890
1891 samp.MaximumAnisotropy =
1892 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1893 }
1894
1895 /* Set address rounding bits if not using nearest filtering. */
1896 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1897 samp.UAddressMinFilterRoundingEnable = true;
1898 samp.VAddressMinFilterRoundingEnable = true;
1899 samp.RAddressMinFilterRoundingEnable = true;
1900 }
1901
1902 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1903 samp.UAddressMagFilterRoundingEnable = true;
1904 samp.VAddressMagFilterRoundingEnable = true;
1905 samp.RAddressMagFilterRoundingEnable = true;
1906 }
1907
1908 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1909 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1910
1911 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1912
1913 samp.LODPreClampMode = CLAMP_MODE_OGL;
1914 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1915 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1916 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1917
1918 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1919 }
1920
1921 return cso;
1922 }
1923
1924 /**
1925 * The pipe->bind_sampler_states() driver hook.
1926 */
1927 static void
1928 iris_bind_sampler_states(struct pipe_context *ctx,
1929 enum pipe_shader_type p_stage,
1930 unsigned start, unsigned count,
1931 void **states)
1932 {
1933 struct iris_context *ice = (struct iris_context *) ctx;
1934 gl_shader_stage stage = stage_from_pipe(p_stage);
1935 struct iris_shader_state *shs = &ice->state.shaders[stage];
1936
1937 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1938
1939 bool dirty = false;
1940
1941 for (int i = 0; i < count; i++) {
1942 if (shs->samplers[start + i] != states[i]) {
1943 shs->samplers[start + i] = states[i];
1944 dirty = true;
1945 }
1946 }
1947
1948 if (dirty)
1949 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1950 }
1951
1952 /**
1953 * Upload the sampler states into a contiguous area of GPU memory, for
1954 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1955 *
1956 * Also fill out the border color state pointers.
1957 */
1958 static void
1959 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1960 {
1961 struct iris_shader_state *shs = &ice->state.shaders[stage];
1962 const struct shader_info *info = iris_get_shader_info(ice, stage);
1963
1964 /* We assume the state tracker will call pipe->bind_sampler_states()
1965 * if the program's number of textures changes.
1966 */
1967 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1968
1969 if (!count)
1970 return;
1971
1972 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1973 * in the dynamic state memory zone, so we can point to it via the
1974 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1975 */
1976 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
1977 uint32_t *map =
1978 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
1979 if (unlikely(!map))
1980 return;
1981
1982 struct pipe_resource *res = shs->sampler_table.res;
1983 shs->sampler_table.offset +=
1984 iris_bo_offset_from_base_address(iris_resource_bo(res));
1985
1986 iris_record_state_size(ice->state.sizes, shs->sampler_table.offset, size);
1987
1988 /* Make sure all land in the same BO */
1989 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1990
1991 ice->state.need_border_colors &= ~(1 << stage);
1992
1993 for (int i = 0; i < count; i++) {
1994 struct iris_sampler_state *state = shs->samplers[i];
1995 struct iris_sampler_view *tex = shs->textures[i];
1996
1997 if (!state) {
1998 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1999 } else if (!state->needs_border_color) {
2000 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
2001 } else {
2002 ice->state.need_border_colors |= 1 << stage;
2003
2004 /* We may need to swizzle the border color for format faking.
2005 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
2006 * This means we need to move the border color's A channel into
2007 * the R or G channels so that those read swizzles will move it
2008 * back into A.
2009 */
2010 union pipe_color_union *color = &state->border_color;
2011 union pipe_color_union tmp;
2012 if (tex) {
2013 enum pipe_format internal_format = tex->res->internal_format;
2014
2015 if (util_format_is_alpha(internal_format)) {
2016 unsigned char swz[4] = {
2017 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
2018 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2019 };
2020 util_format_apply_color_swizzle(&tmp, color, swz, true);
2021 color = &tmp;
2022 } else if (util_format_is_luminance_alpha(internal_format) &&
2023 internal_format != PIPE_FORMAT_L8A8_SRGB) {
2024 unsigned char swz[4] = {
2025 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
2026 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2027 };
2028 util_format_apply_color_swizzle(&tmp, color, swz, true);
2029 color = &tmp;
2030 }
2031 }
2032
2033 /* Stream out the border color and merge the pointer. */
2034 uint32_t offset = iris_upload_border_color(ice, color);
2035
2036 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
2037 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
2038 dyns.BorderColorPointer = offset;
2039 }
2040
2041 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
2042 map[j] = state->sampler_state[j] | dynamic[j];
2043 }
2044
2045 map += GENX(SAMPLER_STATE_length);
2046 }
2047 }
2048
2049 static enum isl_channel_select
2050 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
2051 {
2052 switch (swz) {
2053 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
2054 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
2055 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
2056 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
2057 case PIPE_SWIZZLE_1: return SCS_ONE;
2058 case PIPE_SWIZZLE_0: return SCS_ZERO;
2059 default: unreachable("invalid swizzle");
2060 }
2061 }
2062
2063 static void
2064 fill_buffer_surface_state(struct isl_device *isl_dev,
2065 struct iris_resource *res,
2066 void *map,
2067 enum isl_format format,
2068 struct isl_swizzle swizzle,
2069 unsigned offset,
2070 unsigned size)
2071 {
2072 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
2073 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
2074
2075 /* The ARB_texture_buffer_specification says:
2076 *
2077 * "The number of texels in the buffer texture's texel array is given by
2078 *
2079 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
2080 *
2081 * where <buffer_size> is the size of the buffer object, in basic
2082 * machine units and <components> and <base_type> are the element count
2083 * and base data type for elements, as specified in Table X.1. The
2084 * number of texels in the texel array is then clamped to the
2085 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
2086 *
2087 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
2088 * so that when ISL divides by stride to obtain the number of texels, that
2089 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
2090 */
2091 unsigned final_size =
2092 MIN3(size, res->bo->size - res->offset - offset,
2093 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
2094
2095 isl_buffer_fill_state(isl_dev, map,
2096 .address = res->bo->gtt_offset + res->offset + offset,
2097 .size_B = final_size,
2098 .format = format,
2099 .swizzle = swizzle,
2100 .stride_B = cpp,
2101 .mocs = mocs(res->bo, isl_dev));
2102 }
2103
2104 #define SURFACE_STATE_ALIGNMENT 64
2105
2106 /**
2107 * Allocate several contiguous SURFACE_STATE structures, one for each
2108 * supported auxiliary surface mode. This only allocates the CPU-side
2109 * copy, they will need to be uploaded later after they're filled in.
2110 */
2111 static void
2112 alloc_surface_states(struct iris_surface_state *surf_state,
2113 unsigned aux_usages)
2114 {
2115 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
2116
2117 /* If this changes, update this to explicitly align pointers */
2118 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
2119
2120 assert(aux_usages != 0);
2121
2122 /* In case we're re-allocating them... */
2123 free(surf_state->cpu);
2124
2125 surf_state->num_states = util_bitcount(aux_usages);
2126 surf_state->cpu = calloc(surf_state->num_states, surf_size);
2127 surf_state->ref.offset = 0;
2128 pipe_resource_reference(&surf_state->ref.res, NULL);
2129
2130 assert(surf_state->cpu);
2131 }
2132
2133 /**
2134 * Upload the CPU side SURFACE_STATEs into a GPU buffer.
2135 */
2136 static void
2137 upload_surface_states(struct u_upload_mgr *mgr,
2138 struct iris_surface_state *surf_state)
2139 {
2140 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
2141 const unsigned bytes = surf_state->num_states * surf_size;
2142
2143 void *map =
2144 upload_state(mgr, &surf_state->ref, bytes, SURFACE_STATE_ALIGNMENT);
2145
2146 surf_state->ref.offset +=
2147 iris_bo_offset_from_base_address(iris_resource_bo(surf_state->ref.res));
2148
2149 if (map)
2150 memcpy(map, surf_state->cpu, bytes);
2151 }
2152
2153 /**
2154 * Update resource addresses in a set of SURFACE_STATE descriptors,
2155 * and re-upload them if necessary.
2156 */
2157 static bool
2158 update_surface_state_addrs(struct u_upload_mgr *mgr,
2159 struct iris_surface_state *surf_state,
2160 struct iris_bo *bo)
2161 {
2162 if (surf_state->bo_address == bo->gtt_offset)
2163 return false;
2164
2165 STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) % 64 == 0);
2166 STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_bits) == 64);
2167
2168 uint64_t *ss_addr = (uint64_t *) &surf_state->cpu[GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) / 32];
2169
2170 /* First, update the CPU copies. We assume no other fields exist in
2171 * the QWord containing Surface Base Address.
2172 */
2173 for (unsigned i = 0; i < surf_state->num_states; i++) {
2174 *ss_addr = *ss_addr - surf_state->bo_address + bo->gtt_offset;
2175 ss_addr = ((void *) ss_addr) + SURFACE_STATE_ALIGNMENT;
2176 }
2177
2178 /* Next, upload the updated copies to a GPU buffer. */
2179 upload_surface_states(mgr, surf_state);
2180
2181 surf_state->bo_address = bo->gtt_offset;
2182
2183 return true;
2184 }
2185
2186 #if GEN_GEN == 8
2187 /**
2188 * Return an ISL surface for use with non-coherent render target reads.
2189 *
2190 * In a few complex cases, we can't use the SURFACE_STATE for normal render
2191 * target writes. We need to make a separate one for sampling which refers
2192 * to the single slice of the texture being read.
2193 */
2194 static void
2195 get_rt_read_isl_surf(const struct gen_device_info *devinfo,
2196 struct iris_resource *res,
2197 enum pipe_texture_target target,
2198 struct isl_view *view,
2199 uint32_t *offset_to_tile,
2200 uint32_t *tile_x_sa,
2201 uint32_t *tile_y_sa,
2202 struct isl_surf *surf)
2203 {
2204 *surf = res->surf;
2205
2206 const enum isl_dim_layout dim_layout =
2207 iris_get_isl_dim_layout(devinfo, res->surf.tiling, target);
2208
2209 surf->dim = target_to_isl_surf_dim(target);
2210
2211 if (surf->dim_layout == dim_layout)
2212 return;
2213
2214 /* The layout of the specified texture target is not compatible with the
2215 * actual layout of the miptree structure in memory -- You're entering
2216 * dangerous territory, this can only possibly work if you only intended
2217 * to access a single level and slice of the texture, and the hardware
2218 * supports the tile offset feature in order to allow non-tile-aligned
2219 * base offsets, since we'll have to point the hardware to the first
2220 * texel of the level instead of relying on the usual base level/layer
2221 * controls.
2222 */
2223 assert(view->levels == 1 && view->array_len == 1);
2224 assert(*tile_x_sa == 0 && *tile_y_sa == 0);
2225
2226 *offset_to_tile = iris_resource_get_tile_offsets(res, view->base_level,
2227 view->base_array_layer,
2228 tile_x_sa, tile_y_sa);
2229 const unsigned l = view->base_level;
2230
2231 surf->logical_level0_px.width = minify(surf->logical_level0_px.width, l);
2232 surf->logical_level0_px.height = surf->dim <= ISL_SURF_DIM_1D ? 1 :
2233 minify(surf->logical_level0_px.height, l);
2234 surf->logical_level0_px.depth = surf->dim <= ISL_SURF_DIM_2D ? 1 :
2235 minify(surf->logical_level0_px.depth, l);
2236
2237 surf->logical_level0_px.array_len = 1;
2238 surf->levels = 1;
2239 surf->dim_layout = dim_layout;
2240
2241 view->base_level = 0;
2242 view->base_array_layer = 0;
2243 }
2244 #endif
2245
2246 static void
2247 fill_surface_state(struct isl_device *isl_dev,
2248 void *map,
2249 struct iris_resource *res,
2250 struct isl_surf *surf,
2251 struct isl_view *view,
2252 unsigned aux_usage,
2253 uint32_t extra_main_offset,
2254 uint32_t tile_x_sa,
2255 uint32_t tile_y_sa)
2256 {
2257 struct isl_surf_fill_state_info f = {
2258 .surf = surf,
2259 .view = view,
2260 .mocs = mocs(res->bo, isl_dev),
2261 .address = res->bo->gtt_offset + res->offset + extra_main_offset,
2262 .x_offset_sa = tile_x_sa,
2263 .y_offset_sa = tile_y_sa,
2264 };
2265
2266 assert(!iris_resource_unfinished_aux_import(res));
2267
2268 if (aux_usage != ISL_AUX_USAGE_NONE) {
2269 f.aux_surf = &res->aux.surf;
2270 f.aux_usage = aux_usage;
2271 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
2272
2273 struct iris_bo *clear_bo = NULL;
2274 uint64_t clear_offset = 0;
2275 f.clear_color =
2276 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
2277 if (clear_bo) {
2278 f.clear_address = clear_bo->gtt_offset + clear_offset;
2279 f.use_clear_address = isl_dev->info->gen > 9;
2280 }
2281 }
2282
2283 isl_surf_fill_state_s(isl_dev, map, &f);
2284 }
2285
2286 /**
2287 * The pipe->create_sampler_view() driver hook.
2288 */
2289 static struct pipe_sampler_view *
2290 iris_create_sampler_view(struct pipe_context *ctx,
2291 struct pipe_resource *tex,
2292 const struct pipe_sampler_view *tmpl)
2293 {
2294 struct iris_context *ice = (struct iris_context *) ctx;
2295 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2296 const struct gen_device_info *devinfo = &screen->devinfo;
2297 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
2298
2299 if (!isv)
2300 return NULL;
2301
2302 /* initialize base object */
2303 isv->base = *tmpl;
2304 isv->base.context = ctx;
2305 isv->base.texture = NULL;
2306 pipe_reference_init(&isv->base.reference, 1);
2307 pipe_resource_reference(&isv->base.texture, tex);
2308
2309 if (util_format_is_depth_or_stencil(tmpl->format)) {
2310 struct iris_resource *zres, *sres;
2311 const struct util_format_description *desc =
2312 util_format_description(tmpl->format);
2313
2314 iris_get_depth_stencil_resources(tex, &zres, &sres);
2315
2316 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
2317 }
2318
2319 isv->res = (struct iris_resource *) tex;
2320
2321 alloc_surface_states(&isv->surface_state, isv->res->aux.sampler_usages);
2322
2323 isv->surface_state.bo_address = isv->res->bo->gtt_offset;
2324
2325 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
2326
2327 if (isv->base.target == PIPE_TEXTURE_CUBE ||
2328 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
2329 usage |= ISL_SURF_USAGE_CUBE_BIT;
2330
2331 const struct iris_format_info fmt =
2332 iris_format_for_usage(devinfo, tmpl->format, usage);
2333
2334 isv->clear_color = isv->res->aux.clear_color;
2335
2336 isv->view = (struct isl_view) {
2337 .format = fmt.fmt,
2338 .swizzle = (struct isl_swizzle) {
2339 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
2340 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
2341 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
2342 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
2343 },
2344 .usage = usage,
2345 };
2346
2347 void *map = isv->surface_state.cpu;
2348
2349 /* Fill out SURFACE_STATE for this view. */
2350 if (tmpl->target != PIPE_BUFFER) {
2351 isv->view.base_level = tmpl->u.tex.first_level;
2352 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
2353 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
2354 isv->view.base_array_layer = tmpl->u.tex.first_layer;
2355 isv->view.array_len =
2356 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2357
2358 if (iris_resource_unfinished_aux_import(isv->res))
2359 iris_resource_finish_aux_import(&screen->base, isv->res);
2360
2361 unsigned aux_modes = isv->res->aux.sampler_usages;
2362 while (aux_modes) {
2363 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2364
2365 /* If we have a multisampled depth buffer, do not create a sampler
2366 * surface state with HiZ.
2367 */
2368 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->res->surf,
2369 &isv->view, aux_usage, 0, 0, 0);
2370
2371 map += SURFACE_STATE_ALIGNMENT;
2372 }
2373 } else {
2374 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
2375 isv->view.format, isv->view.swizzle,
2376 tmpl->u.buf.offset, tmpl->u.buf.size);
2377 }
2378
2379 upload_surface_states(ice->state.surface_uploader, &isv->surface_state);
2380
2381 return &isv->base;
2382 }
2383
2384 static void
2385 iris_sampler_view_destroy(struct pipe_context *ctx,
2386 struct pipe_sampler_view *state)
2387 {
2388 struct iris_sampler_view *isv = (void *) state;
2389 pipe_resource_reference(&state->texture, NULL);
2390 pipe_resource_reference(&isv->surface_state.ref.res, NULL);
2391 free(isv->surface_state.cpu);
2392 free(isv);
2393 }
2394
2395 /**
2396 * The pipe->create_surface() driver hook.
2397 *
2398 * In Gallium nomenclature, "surfaces" are a view of a resource that
2399 * can be bound as a render target or depth/stencil buffer.
2400 */
2401 static struct pipe_surface *
2402 iris_create_surface(struct pipe_context *ctx,
2403 struct pipe_resource *tex,
2404 const struct pipe_surface *tmpl)
2405 {
2406 struct iris_context *ice = (struct iris_context *) ctx;
2407 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2408 const struct gen_device_info *devinfo = &screen->devinfo;
2409
2410 isl_surf_usage_flags_t usage = 0;
2411 if (tmpl->writable)
2412 usage = ISL_SURF_USAGE_STORAGE_BIT;
2413 else if (util_format_is_depth_or_stencil(tmpl->format))
2414 usage = ISL_SURF_USAGE_DEPTH_BIT;
2415 else
2416 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
2417
2418 const struct iris_format_info fmt =
2419 iris_format_for_usage(devinfo, tmpl->format, usage);
2420
2421 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
2422 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
2423 /* Framebuffer validation will reject this invalid case, but it
2424 * hasn't had the opportunity yet. In the meantime, we need to
2425 * avoid hitting ISL asserts about unsupported formats below.
2426 */
2427 return NULL;
2428 }
2429
2430 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
2431 struct pipe_surface *psurf = &surf->base;
2432 struct iris_resource *res = (struct iris_resource *) tex;
2433
2434 if (!surf)
2435 return NULL;
2436
2437 pipe_reference_init(&psurf->reference, 1);
2438 pipe_resource_reference(&psurf->texture, tex);
2439 psurf->context = ctx;
2440 psurf->format = tmpl->format;
2441 psurf->width = tex->width0;
2442 psurf->height = tex->height0;
2443 psurf->texture = tex;
2444 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
2445 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
2446 psurf->u.tex.level = tmpl->u.tex.level;
2447
2448 uint32_t array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2449
2450 struct isl_view *view = &surf->view;
2451 *view = (struct isl_view) {
2452 .format = fmt.fmt,
2453 .base_level = tmpl->u.tex.level,
2454 .levels = 1,
2455 .base_array_layer = tmpl->u.tex.first_layer,
2456 .array_len = array_len,
2457 .swizzle = ISL_SWIZZLE_IDENTITY,
2458 .usage = usage,
2459 };
2460
2461 #if GEN_GEN == 8
2462 enum pipe_texture_target target = (tex->target == PIPE_TEXTURE_3D &&
2463 array_len == 1) ? PIPE_TEXTURE_2D :
2464 tex->target == PIPE_TEXTURE_1D_ARRAY ?
2465 PIPE_TEXTURE_2D_ARRAY : tex->target;
2466
2467 struct isl_view *read_view = &surf->read_view;
2468 *read_view = (struct isl_view) {
2469 .format = fmt.fmt,
2470 .base_level = tmpl->u.tex.level,
2471 .levels = 1,
2472 .base_array_layer = tmpl->u.tex.first_layer,
2473 .array_len = array_len,
2474 .swizzle = ISL_SWIZZLE_IDENTITY,
2475 .usage = ISL_SURF_USAGE_TEXTURE_BIT,
2476 };
2477 #endif
2478
2479 surf->clear_color = res->aux.clear_color;
2480
2481 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
2482 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
2483 ISL_SURF_USAGE_STENCIL_BIT))
2484 return psurf;
2485
2486
2487 alloc_surface_states(&surf->surface_state, res->aux.possible_usages);
2488 surf->surface_state.bo_address = res->bo->gtt_offset;
2489
2490 #if GEN_GEN == 8
2491 alloc_surface_states(&surf->surface_state_read, res->aux.possible_usages);
2492 surf->surface_state_read.bo_address = res->bo->gtt_offset;
2493 #endif
2494
2495 if (!isl_format_is_compressed(res->surf.format)) {
2496 if (iris_resource_unfinished_aux_import(res))
2497 iris_resource_finish_aux_import(&screen->base, res);
2498
2499 void *map = surf->surface_state.cpu;
2500 UNUSED void *map_read = surf->surface_state_read.cpu;
2501
2502 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
2503 * auxiliary surface mode and return the pipe_surface.
2504 */
2505 unsigned aux_modes = res->aux.possible_usages;
2506 while (aux_modes) {
2507 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2508 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2509 view, aux_usage, 0, 0, 0);
2510 map += SURFACE_STATE_ALIGNMENT;
2511
2512 #if GEN_GEN == 8
2513 struct isl_surf surf;
2514 uint32_t offset_to_tile = 0, tile_x_sa = 0, tile_y_sa = 0;
2515 get_rt_read_isl_surf(devinfo, res, target, read_view,
2516 &offset_to_tile, &tile_x_sa, &tile_y_sa, &surf);
2517 fill_surface_state(&screen->isl_dev, map_read, res, &surf, read_view,
2518 aux_usage, offset_to_tile, tile_x_sa, tile_y_sa);
2519 map_read += SURFACE_STATE_ALIGNMENT;
2520 #endif
2521 }
2522
2523 upload_surface_states(ice->state.surface_uploader, &surf->surface_state);
2524
2525 #if GEN_GEN == 8
2526 upload_surface_states(ice->state.surface_uploader,
2527 &surf->surface_state_read);
2528 #endif
2529
2530 return psurf;
2531 }
2532
2533 /* The resource has a compressed format, which is not renderable, but we
2534 * have a renderable view format. We must be attempting to upload blocks
2535 * of compressed data via an uncompressed view.
2536 *
2537 * In this case, we can assume there are no auxiliary buffers, a single
2538 * miplevel, and that the resource is single-sampled. Gallium may try
2539 * and create an uncompressed view with multiple layers, however.
2540 */
2541 assert(!isl_format_is_compressed(fmt.fmt));
2542 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
2543 assert(res->surf.samples == 1);
2544 assert(view->levels == 1);
2545
2546 struct isl_surf isl_surf;
2547 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
2548
2549 if (view->base_level > 0) {
2550 /* We can't rely on the hardware's miplevel selection with such
2551 * a substantial lie about the format, so we select a single image
2552 * using the Tile X/Y Offset fields. In this case, we can't handle
2553 * multiple array slices.
2554 *
2555 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
2556 * hard-coded to align to exactly the block size of the compressed
2557 * texture. This means that, when reinterpreted as a non-compressed
2558 * texture, the tile offsets may be anything and we can't rely on
2559 * X/Y Offset.
2560 *
2561 * Return NULL to force the state tracker to take fallback paths.
2562 */
2563 if (view->array_len > 1 || GEN_GEN == 8)
2564 return NULL;
2565
2566 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
2567 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
2568 view->base_level,
2569 is_3d ? 0 : view->base_array_layer,
2570 is_3d ? view->base_array_layer : 0,
2571 &isl_surf,
2572 &offset_B, &tile_x_sa, &tile_y_sa);
2573
2574 /* We use address and tile offsets to access a single level/layer
2575 * as a subimage, so reset level/layer so it doesn't offset again.
2576 */
2577 view->base_array_layer = 0;
2578 view->base_level = 0;
2579 } else {
2580 /* Level 0 doesn't require tile offsets, and the hardware can find
2581 * array slices using QPitch even with the format override, so we
2582 * can allow layers in this case. Copy the original ISL surface.
2583 */
2584 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
2585 }
2586
2587 /* Scale down the image dimensions by the block size. */
2588 const struct isl_format_layout *fmtl =
2589 isl_format_get_layout(res->surf.format);
2590 isl_surf.format = fmt.fmt;
2591 isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
2592 isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
2593 tile_x_sa /= fmtl->bw;
2594 tile_y_sa /= fmtl->bh;
2595
2596 psurf->width = isl_surf.logical_level0_px.width;
2597 psurf->height = isl_surf.logical_level0_px.height;
2598
2599 struct isl_surf_fill_state_info f = {
2600 .surf = &isl_surf,
2601 .view = view,
2602 .mocs = mocs(res->bo, &screen->isl_dev),
2603 .address = res->bo->gtt_offset + offset_B,
2604 .x_offset_sa = tile_x_sa,
2605 .y_offset_sa = tile_y_sa,
2606 };
2607
2608 isl_surf_fill_state_s(&screen->isl_dev, surf->surface_state.cpu, &f);
2609
2610 upload_surface_states(ice->state.surface_uploader, &surf->surface_state);
2611
2612 return psurf;
2613 }
2614
2615 #if GEN_GEN < 9
2616 static void
2617 fill_default_image_param(struct brw_image_param *param)
2618 {
2619 memset(param, 0, sizeof(*param));
2620 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
2621 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
2622 * detailed explanation of these parameters.
2623 */
2624 param->swizzling[0] = 0xff;
2625 param->swizzling[1] = 0xff;
2626 }
2627
2628 static void
2629 fill_buffer_image_param(struct brw_image_param *param,
2630 enum pipe_format pfmt,
2631 unsigned size)
2632 {
2633 const unsigned cpp = util_format_get_blocksize(pfmt);
2634
2635 fill_default_image_param(param);
2636 param->size[0] = size / cpp;
2637 param->stride[0] = cpp;
2638 }
2639 #else
2640 #define isl_surf_fill_image_param(x, ...)
2641 #define fill_default_image_param(x, ...)
2642 #define fill_buffer_image_param(x, ...)
2643 #endif
2644
2645 /**
2646 * The pipe->set_shader_images() driver hook.
2647 */
2648 static void
2649 iris_set_shader_images(struct pipe_context *ctx,
2650 enum pipe_shader_type p_stage,
2651 unsigned start_slot, unsigned count,
2652 const struct pipe_image_view *p_images)
2653 {
2654 struct iris_context *ice = (struct iris_context *) ctx;
2655 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2656 const struct gen_device_info *devinfo = &screen->devinfo;
2657 gl_shader_stage stage = stage_from_pipe(p_stage);
2658 struct iris_shader_state *shs = &ice->state.shaders[stage];
2659 #if GEN_GEN == 8
2660 struct iris_genx_state *genx = ice->state.genx;
2661 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2662 #endif
2663
2664 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2665
2666 for (unsigned i = 0; i < count; i++) {
2667 struct iris_image_view *iv = &shs->image[start_slot + i];
2668
2669 if (p_images && p_images[i].resource) {
2670 const struct pipe_image_view *img = &p_images[i];
2671 struct iris_resource *res = (void *) img->resource;
2672
2673 util_copy_image_view(&iv->base, img);
2674
2675 shs->bound_image_views |= 1 << (start_slot + i);
2676
2677 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2678 res->bind_stages |= 1 << stage;
2679
2680 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
2681 enum isl_format isl_fmt =
2682 iris_format_for_usage(devinfo, img->format, usage).fmt;
2683
2684 bool untyped_fallback = false;
2685
2686 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
2687 /* On Gen8, try to use typed surfaces reads (which support a
2688 * limited number of formats), and if not possible, fall back
2689 * to untyped reads.
2690 */
2691 untyped_fallback = GEN_GEN == 8 &&
2692 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
2693
2694 if (untyped_fallback)
2695 isl_fmt = ISL_FORMAT_RAW;
2696 else
2697 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
2698 }
2699
2700 alloc_surface_states(&iv->surface_state, 1 << ISL_AUX_USAGE_NONE);
2701 iv->surface_state.bo_address = res->bo->gtt_offset;
2702
2703 void *map = iv->surface_state.cpu;
2704
2705 if (res->base.target != PIPE_BUFFER) {
2706 struct isl_view view = {
2707 .format = isl_fmt,
2708 .base_level = img->u.tex.level,
2709 .levels = 1,
2710 .base_array_layer = img->u.tex.first_layer,
2711 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2712 .swizzle = ISL_SWIZZLE_IDENTITY,
2713 .usage = usage,
2714 };
2715
2716 if (untyped_fallback) {
2717 fill_buffer_surface_state(&screen->isl_dev, res, map,
2718 isl_fmt, ISL_SWIZZLE_IDENTITY,
2719 0, res->bo->size);
2720 } else {
2721 /* Images don't support compression */
2722 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
2723 while (aux_modes) {
2724 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2725
2726 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2727 &view, usage, 0, 0, 0);
2728
2729 map += SURFACE_STATE_ALIGNMENT;
2730 }
2731 }
2732
2733 isl_surf_fill_image_param(&screen->isl_dev,
2734 &image_params[start_slot + i],
2735 &res->surf, &view);
2736 } else {
2737 util_range_add(&res->base, &res->valid_buffer_range, img->u.buf.offset,
2738 img->u.buf.offset + img->u.buf.size);
2739
2740 fill_buffer_surface_state(&screen->isl_dev, res, map,
2741 isl_fmt, ISL_SWIZZLE_IDENTITY,
2742 img->u.buf.offset, img->u.buf.size);
2743 fill_buffer_image_param(&image_params[start_slot + i],
2744 img->format, img->u.buf.size);
2745 }
2746
2747 upload_surface_states(ice->state.surface_uploader, &iv->surface_state);
2748 } else {
2749 pipe_resource_reference(&iv->base.resource, NULL);
2750 pipe_resource_reference(&iv->surface_state.ref.res, NULL);
2751 fill_default_image_param(&image_params[start_slot + i]);
2752 }
2753 }
2754
2755 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2756 ice->state.dirty |=
2757 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2758 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2759
2760 /* Broadwell also needs brw_image_params re-uploaded */
2761 if (GEN_GEN < 9) {
2762 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2763 shs->sysvals_need_upload = true;
2764 }
2765 }
2766
2767
2768 /**
2769 * The pipe->set_sampler_views() driver hook.
2770 */
2771 static void
2772 iris_set_sampler_views(struct pipe_context *ctx,
2773 enum pipe_shader_type p_stage,
2774 unsigned start, unsigned count,
2775 struct pipe_sampler_view **views)
2776 {
2777 struct iris_context *ice = (struct iris_context *) ctx;
2778 gl_shader_stage stage = stage_from_pipe(p_stage);
2779 struct iris_shader_state *shs = &ice->state.shaders[stage];
2780
2781 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2782
2783 for (unsigned i = 0; i < count; i++) {
2784 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2785 pipe_sampler_view_reference((struct pipe_sampler_view **)
2786 &shs->textures[start + i], pview);
2787 struct iris_sampler_view *view = (void *) pview;
2788 if (view) {
2789 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2790 view->res->bind_stages |= 1 << stage;
2791
2792 shs->bound_sampler_views |= 1 << (start + i);
2793 }
2794 }
2795
2796 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2797 ice->state.dirty |=
2798 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2799 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2800 }
2801
2802 /**
2803 * The pipe->set_tess_state() driver hook.
2804 */
2805 static void
2806 iris_set_tess_state(struct pipe_context *ctx,
2807 const float default_outer_level[4],
2808 const float default_inner_level[2])
2809 {
2810 struct iris_context *ice = (struct iris_context *) ctx;
2811 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2812
2813 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2814 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2815
2816 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2817 shs->sysvals_need_upload = true;
2818 }
2819
2820 static void
2821 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2822 {
2823 struct iris_surface *surf = (void *) p_surf;
2824 pipe_resource_reference(&p_surf->texture, NULL);
2825 pipe_resource_reference(&surf->surface_state.ref.res, NULL);
2826 pipe_resource_reference(&surf->surface_state_read.ref.res, NULL);
2827 free(surf->surface_state.cpu);
2828 free(surf);
2829 }
2830
2831 static void
2832 iris_set_clip_state(struct pipe_context *ctx,
2833 const struct pipe_clip_state *state)
2834 {
2835 struct iris_context *ice = (struct iris_context *) ctx;
2836 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2837 struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
2838 struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
2839
2840 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2841
2842 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS | IRIS_DIRTY_CONSTANTS_GS |
2843 IRIS_DIRTY_CONSTANTS_TES;
2844 shs->sysvals_need_upload = true;
2845 gshs->sysvals_need_upload = true;
2846 tshs->sysvals_need_upload = true;
2847 }
2848
2849 /**
2850 * The pipe->set_polygon_stipple() driver hook.
2851 */
2852 static void
2853 iris_set_polygon_stipple(struct pipe_context *ctx,
2854 const struct pipe_poly_stipple *state)
2855 {
2856 struct iris_context *ice = (struct iris_context *) ctx;
2857 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2858 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2859 }
2860
2861 /**
2862 * The pipe->set_sample_mask() driver hook.
2863 */
2864 static void
2865 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2866 {
2867 struct iris_context *ice = (struct iris_context *) ctx;
2868
2869 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2870 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2871 */
2872 ice->state.sample_mask = sample_mask & 0xffff;
2873 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2874 }
2875
2876 /**
2877 * The pipe->set_scissor_states() driver hook.
2878 *
2879 * This corresponds to our SCISSOR_RECT state structures. It's an
2880 * exact match, so we just store them, and memcpy them out later.
2881 */
2882 static void
2883 iris_set_scissor_states(struct pipe_context *ctx,
2884 unsigned start_slot,
2885 unsigned num_scissors,
2886 const struct pipe_scissor_state *rects)
2887 {
2888 struct iris_context *ice = (struct iris_context *) ctx;
2889
2890 for (unsigned i = 0; i < num_scissors; i++) {
2891 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2892 /* If the scissor was out of bounds and got clamped to 0 width/height
2893 * at the bounds, the subtraction of 1 from maximums could produce a
2894 * negative number and thus not clip anything. Instead, just provide
2895 * a min > max scissor inside the bounds, which produces the expected
2896 * no rendering.
2897 */
2898 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2899 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2900 };
2901 } else {
2902 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2903 .minx = rects[i].minx, .miny = rects[i].miny,
2904 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2905 };
2906 }
2907 }
2908
2909 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2910 }
2911
2912 /**
2913 * The pipe->set_stencil_ref() driver hook.
2914 *
2915 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2916 */
2917 static void
2918 iris_set_stencil_ref(struct pipe_context *ctx,
2919 const struct pipe_stencil_ref *state)
2920 {
2921 struct iris_context *ice = (struct iris_context *) ctx;
2922 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2923 if (GEN_GEN == 8)
2924 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2925 else
2926 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2927 }
2928
2929 static float
2930 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2931 {
2932 return copysignf(state->scale[axis], sign) + state->translate[axis];
2933 }
2934
2935 /**
2936 * The pipe->set_viewport_states() driver hook.
2937 *
2938 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2939 * the guardband yet, as we need the framebuffer dimensions, but we can
2940 * at least fill out the rest.
2941 */
2942 static void
2943 iris_set_viewport_states(struct pipe_context *ctx,
2944 unsigned start_slot,
2945 unsigned count,
2946 const struct pipe_viewport_state *states)
2947 {
2948 struct iris_context *ice = (struct iris_context *) ctx;
2949
2950 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2951
2952 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2953
2954 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2955 !ice->state.cso_rast->depth_clip_far))
2956 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2957 }
2958
2959 /**
2960 * The pipe->set_framebuffer_state() driver hook.
2961 *
2962 * Sets the current draw FBO, including color render targets, depth,
2963 * and stencil buffers.
2964 */
2965 static void
2966 iris_set_framebuffer_state(struct pipe_context *ctx,
2967 const struct pipe_framebuffer_state *state)
2968 {
2969 struct iris_context *ice = (struct iris_context *) ctx;
2970 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2971 struct isl_device *isl_dev = &screen->isl_dev;
2972 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2973 struct iris_resource *zres;
2974 struct iris_resource *stencil_res;
2975
2976 unsigned samples = util_framebuffer_get_num_samples(state);
2977 unsigned layers = util_framebuffer_get_num_layers(state);
2978
2979 if (cso->samples != samples) {
2980 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2981
2982 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
2983 if (GEN_GEN >= 9 && (cso->samples == 16 || samples == 16))
2984 ice->state.dirty |= IRIS_DIRTY_FS;
2985 }
2986
2987 if (cso->nr_cbufs != state->nr_cbufs) {
2988 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2989 }
2990
2991 if ((cso->layers == 0) != (layers == 0)) {
2992 ice->state.dirty |= IRIS_DIRTY_CLIP;
2993 }
2994
2995 if (cso->width != state->width || cso->height != state->height) {
2996 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2997 }
2998
2999 if (cso->zsbuf || state->zsbuf) {
3000 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
3001 }
3002
3003 util_copy_framebuffer_state(cso, state);
3004 cso->samples = samples;
3005 cso->layers = layers;
3006
3007 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
3008
3009 struct isl_view view = {
3010 .base_level = 0,
3011 .levels = 1,
3012 .base_array_layer = 0,
3013 .array_len = 1,
3014 .swizzle = ISL_SWIZZLE_IDENTITY,
3015 };
3016
3017 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
3018
3019 if (cso->zsbuf) {
3020 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
3021 &stencil_res);
3022
3023 view.base_level = cso->zsbuf->u.tex.level;
3024 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
3025 view.array_len =
3026 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
3027
3028 if (zres) {
3029 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
3030
3031 info.depth_surf = &zres->surf;
3032 info.depth_address = zres->bo->gtt_offset + zres->offset;
3033 info.mocs = mocs(zres->bo, isl_dev);
3034
3035 view.format = zres->surf.format;
3036
3037 if (iris_resource_level_has_hiz(zres, view.base_level)) {
3038 info.hiz_usage = zres->aux.usage;
3039 info.hiz_surf = &zres->aux.surf;
3040 info.hiz_address = zres->aux.bo->gtt_offset + zres->aux.offset;
3041 }
3042 }
3043
3044 if (stencil_res) {
3045 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
3046 info.stencil_aux_usage = stencil_res->aux.usage;
3047 info.stencil_surf = &stencil_res->surf;
3048 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
3049 if (!zres) {
3050 view.format = stencil_res->surf.format;
3051 info.mocs = mocs(stencil_res->bo, isl_dev);
3052 }
3053 }
3054 }
3055
3056 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
3057
3058 /* Make a null surface for unbound buffers */
3059 void *null_surf_map =
3060 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
3061 4 * GENX(RENDER_SURFACE_STATE_length), 64);
3062 isl_null_fill_state(&screen->isl_dev, null_surf_map,
3063 isl_extent3d(MAX2(cso->width, 1),
3064 MAX2(cso->height, 1),
3065 cso->layers ? cso->layers : 1));
3066 ice->state.null_fb.offset +=
3067 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
3068
3069 /* Render target change */
3070 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
3071
3072 ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER;
3073
3074 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
3075
3076 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
3077
3078 if (GEN_GEN == 8)
3079 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
3080 }
3081
3082 /**
3083 * The pipe->set_constant_buffer() driver hook.
3084 *
3085 * This uploads any constant data in user buffers, and references
3086 * any UBO resources containing constant data.
3087 */
3088 static void
3089 iris_set_constant_buffer(struct pipe_context *ctx,
3090 enum pipe_shader_type p_stage, unsigned index,
3091 const struct pipe_constant_buffer *input)
3092 {
3093 struct iris_context *ice = (struct iris_context *) ctx;
3094 gl_shader_stage stage = stage_from_pipe(p_stage);
3095 struct iris_shader_state *shs = &ice->state.shaders[stage];
3096 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
3097
3098 /* TODO: Only do this if the buffer changes? */
3099 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
3100
3101 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
3102 shs->bound_cbufs |= 1u << index;
3103
3104 if (input->user_buffer) {
3105 void *map = NULL;
3106 pipe_resource_reference(&cbuf->buffer, NULL);
3107 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
3108 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
3109
3110 if (!cbuf->buffer) {
3111 /* Allocation was unsuccessful - just unbind */
3112 iris_set_constant_buffer(ctx, p_stage, index, NULL);
3113 return;
3114 }
3115
3116 assert(map);
3117 memcpy(map, input->user_buffer, input->buffer_size);
3118 } else if (input->buffer) {
3119 pipe_resource_reference(&cbuf->buffer, input->buffer);
3120
3121 cbuf->buffer_offset = input->buffer_offset;
3122 }
3123
3124 cbuf->buffer_size =
3125 MIN2(input->buffer_size,
3126 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
3127
3128 struct iris_resource *res = (void *) cbuf->buffer;
3129 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
3130 res->bind_stages |= 1 << stage;
3131 } else {
3132 shs->bound_cbufs &= ~(1u << index);
3133 pipe_resource_reference(&cbuf->buffer, NULL);
3134 }
3135
3136 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
3137 }
3138
3139 static void
3140 upload_sysvals(struct iris_context *ice,
3141 gl_shader_stage stage)
3142 {
3143 UNUSED struct iris_genx_state *genx = ice->state.genx;
3144 struct iris_shader_state *shs = &ice->state.shaders[stage];
3145
3146 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3147 if (!shader || shader->num_system_values == 0)
3148 return;
3149
3150 assert(shader->num_cbufs > 0);
3151
3152 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
3153 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
3154 unsigned upload_size = shader->num_system_values * sizeof(uint32_t);
3155 uint32_t *map = NULL;
3156
3157 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
3158 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
3159 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
3160
3161 for (int i = 0; i < shader->num_system_values; i++) {
3162 uint32_t sysval = shader->system_values[i];
3163 uint32_t value = 0;
3164
3165 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
3166 #if GEN_GEN == 8
3167 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
3168 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
3169 struct brw_image_param *param =
3170 &genx->shaders[stage].image_param[img];
3171
3172 assert(offset < sizeof(struct brw_image_param));
3173 value = ((uint32_t *) param)[offset];
3174 #endif
3175 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
3176 value = 0;
3177 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
3178 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
3179 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
3180 value = fui(ice->state.clip_planes.ucp[plane][comp]);
3181 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
3182 if (stage == MESA_SHADER_TESS_CTRL) {
3183 value = ice->state.vertices_per_patch;
3184 } else {
3185 assert(stage == MESA_SHADER_TESS_EVAL);
3186 const struct shader_info *tcs_info =
3187 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
3188 if (tcs_info)
3189 value = tcs_info->tess.tcs_vertices_out;
3190 else
3191 value = ice->state.vertices_per_patch;
3192 }
3193 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
3194 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
3195 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
3196 value = fui(ice->state.default_outer_level[i]);
3197 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
3198 value = fui(ice->state.default_inner_level[0]);
3199 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
3200 value = fui(ice->state.default_inner_level[1]);
3201 } else {
3202 assert(!"unhandled system value");
3203 }
3204
3205 *map++ = value;
3206 }
3207
3208 cbuf->buffer_size = upload_size;
3209 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
3210 &shs->constbuf_surf_state[sysval_cbuf_index], false);
3211
3212 shs->sysvals_need_upload = false;
3213 }
3214
3215 /**
3216 * The pipe->set_shader_buffers() driver hook.
3217 *
3218 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
3219 * SURFACE_STATE here, as the buffer offset may change each time.
3220 */
3221 static void
3222 iris_set_shader_buffers(struct pipe_context *ctx,
3223 enum pipe_shader_type p_stage,
3224 unsigned start_slot, unsigned count,
3225 const struct pipe_shader_buffer *buffers,
3226 unsigned writable_bitmask)
3227 {
3228 struct iris_context *ice = (struct iris_context *) ctx;
3229 gl_shader_stage stage = stage_from_pipe(p_stage);
3230 struct iris_shader_state *shs = &ice->state.shaders[stage];
3231
3232 unsigned modified_bits = u_bit_consecutive(start_slot, count);
3233
3234 shs->bound_ssbos &= ~modified_bits;
3235 shs->writable_ssbos &= ~modified_bits;
3236 shs->writable_ssbos |= writable_bitmask << start_slot;
3237
3238 for (unsigned i = 0; i < count; i++) {
3239 if (buffers && buffers[i].buffer) {
3240 struct iris_resource *res = (void *) buffers[i].buffer;
3241 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
3242 struct iris_state_ref *surf_state =
3243 &shs->ssbo_surf_state[start_slot + i];
3244 pipe_resource_reference(&ssbo->buffer, &res->base);
3245 ssbo->buffer_offset = buffers[i].buffer_offset;
3246 ssbo->buffer_size =
3247 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
3248
3249 shs->bound_ssbos |= 1 << (start_slot + i);
3250
3251 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
3252
3253 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
3254 res->bind_stages |= 1 << stage;
3255
3256 util_range_add(&res->base, &res->valid_buffer_range, ssbo->buffer_offset,
3257 ssbo->buffer_offset + ssbo->buffer_size);
3258 } else {
3259 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
3260 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
3261 NULL);
3262 }
3263 }
3264
3265 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
3266 }
3267
3268 static void
3269 iris_delete_state(struct pipe_context *ctx, void *state)
3270 {
3271 free(state);
3272 }
3273
3274 /**
3275 * The pipe->set_vertex_buffers() driver hook.
3276 *
3277 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
3278 */
3279 static void
3280 iris_set_vertex_buffers(struct pipe_context *ctx,
3281 unsigned start_slot, unsigned count,
3282 const struct pipe_vertex_buffer *buffers)
3283 {
3284 struct iris_context *ice = (struct iris_context *) ctx;
3285 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3286 struct iris_genx_state *genx = ice->state.genx;
3287
3288 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
3289
3290 for (unsigned i = 0; i < count; i++) {
3291 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
3292 struct iris_vertex_buffer_state *state =
3293 &genx->vertex_buffers[start_slot + i];
3294
3295 if (!buffer) {
3296 pipe_resource_reference(&state->resource, NULL);
3297 continue;
3298 }
3299
3300 /* We may see user buffers that are NULL bindings. */
3301 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
3302
3303 pipe_resource_reference(&state->resource, buffer->buffer.resource);
3304 struct iris_resource *res = (void *) state->resource;
3305
3306 state->offset = (int) buffer->buffer_offset;
3307
3308 if (res) {
3309 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
3310 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
3311 }
3312
3313 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
3314 vb.VertexBufferIndex = start_slot + i;
3315 vb.AddressModifyEnable = true;
3316 vb.BufferPitch = buffer->stride;
3317 if (res) {
3318 vb.BufferSize = res->bo->size - (int) buffer->buffer_offset;
3319 vb.BufferStartingAddress =
3320 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
3321 vb.MOCS = mocs(res->bo, &screen->isl_dev);
3322 } else {
3323 vb.NullVertexBuffer = true;
3324 }
3325 }
3326 }
3327
3328 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
3329 }
3330
3331 /**
3332 * Gallium CSO for vertex elements.
3333 */
3334 struct iris_vertex_element_state {
3335 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
3336 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
3337 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
3338 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
3339 unsigned count;
3340 };
3341
3342 /**
3343 * The pipe->create_vertex_elements() driver hook.
3344 *
3345 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
3346 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
3347 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
3348 * needed. In these cases we will need information available at draw time.
3349 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
3350 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
3351 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
3352 */
3353 static void *
3354 iris_create_vertex_elements(struct pipe_context *ctx,
3355 unsigned count,
3356 const struct pipe_vertex_element *state)
3357 {
3358 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3359 const struct gen_device_info *devinfo = &screen->devinfo;
3360 struct iris_vertex_element_state *cso =
3361 malloc(sizeof(struct iris_vertex_element_state));
3362
3363 cso->count = count;
3364
3365 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
3366 ve.DWordLength =
3367 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
3368 }
3369
3370 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
3371 uint32_t *vfi_pack_dest = cso->vf_instancing;
3372
3373 if (count == 0) {
3374 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3375 ve.Valid = true;
3376 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
3377 ve.Component0Control = VFCOMP_STORE_0;
3378 ve.Component1Control = VFCOMP_STORE_0;
3379 ve.Component2Control = VFCOMP_STORE_0;
3380 ve.Component3Control = VFCOMP_STORE_1_FP;
3381 }
3382
3383 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3384 }
3385 }
3386
3387 for (int i = 0; i < count; i++) {
3388 const struct iris_format_info fmt =
3389 iris_format_for_usage(devinfo, state[i].src_format, 0);
3390 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
3391 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
3392
3393 switch (isl_format_get_num_channels(fmt.fmt)) {
3394 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
3395 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
3396 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
3397 case 3:
3398 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
3399 : VFCOMP_STORE_1_FP;
3400 break;
3401 }
3402 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3403 ve.EdgeFlagEnable = false;
3404 ve.VertexBufferIndex = state[i].vertex_buffer_index;
3405 ve.Valid = true;
3406 ve.SourceElementOffset = state[i].src_offset;
3407 ve.SourceElementFormat = fmt.fmt;
3408 ve.Component0Control = comp[0];
3409 ve.Component1Control = comp[1];
3410 ve.Component2Control = comp[2];
3411 ve.Component3Control = comp[3];
3412 }
3413
3414 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3415 vi.VertexElementIndex = i;
3416 vi.InstancingEnable = state[i].instance_divisor > 0;
3417 vi.InstanceDataStepRate = state[i].instance_divisor;
3418 }
3419
3420 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
3421 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
3422 }
3423
3424 /* An alternative version of the last VE and VFI is stored so it
3425 * can be used at draw time in case Vertex Shader uses EdgeFlag
3426 */
3427 if (count) {
3428 const unsigned edgeflag_index = count - 1;
3429 const struct iris_format_info fmt =
3430 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
3431 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
3432 ve.EdgeFlagEnable = true ;
3433 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
3434 ve.Valid = true;
3435 ve.SourceElementOffset = state[edgeflag_index].src_offset;
3436 ve.SourceElementFormat = fmt.fmt;
3437 ve.Component0Control = VFCOMP_STORE_SRC;
3438 ve.Component1Control = VFCOMP_STORE_0;
3439 ve.Component2Control = VFCOMP_STORE_0;
3440 ve.Component3Control = VFCOMP_STORE_0;
3441 }
3442 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
3443 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
3444 * at draw time, as it should change if SGVs are emitted.
3445 */
3446 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
3447 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
3448 }
3449 }
3450
3451 return cso;
3452 }
3453
3454 /**
3455 * The pipe->bind_vertex_elements_state() driver hook.
3456 */
3457 static void
3458 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
3459 {
3460 struct iris_context *ice = (struct iris_context *) ctx;
3461 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
3462 struct iris_vertex_element_state *new_cso = state;
3463
3464 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
3465 * we need to re-emit it to ensure we're overriding the right one.
3466 */
3467 if (new_cso && cso_changed(count))
3468 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
3469
3470 ice->state.cso_vertex_elements = state;
3471 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
3472 }
3473
3474 /**
3475 * The pipe->create_stream_output_target() driver hook.
3476 *
3477 * "Target" here refers to a destination buffer. We translate this into
3478 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
3479 * know which buffer this represents, or whether we ought to zero the
3480 * write-offsets, or append. Those are handled in the set() hook.
3481 */
3482 static struct pipe_stream_output_target *
3483 iris_create_stream_output_target(struct pipe_context *ctx,
3484 struct pipe_resource *p_res,
3485 unsigned buffer_offset,
3486 unsigned buffer_size)
3487 {
3488 struct iris_resource *res = (void *) p_res;
3489 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
3490 if (!cso)
3491 return NULL;
3492
3493 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
3494
3495 pipe_reference_init(&cso->base.reference, 1);
3496 pipe_resource_reference(&cso->base.buffer, p_res);
3497 cso->base.buffer_offset = buffer_offset;
3498 cso->base.buffer_size = buffer_size;
3499 cso->base.context = ctx;
3500
3501 util_range_add(&res->base, &res->valid_buffer_range, buffer_offset,
3502 buffer_offset + buffer_size);
3503
3504 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
3505
3506 return &cso->base;
3507 }
3508
3509 static void
3510 iris_stream_output_target_destroy(struct pipe_context *ctx,
3511 struct pipe_stream_output_target *state)
3512 {
3513 struct iris_stream_output_target *cso = (void *) state;
3514
3515 pipe_resource_reference(&cso->base.buffer, NULL);
3516 pipe_resource_reference(&cso->offset.res, NULL);
3517
3518 free(cso);
3519 }
3520
3521 /**
3522 * The pipe->set_stream_output_targets() driver hook.
3523 *
3524 * At this point, we know which targets are bound to a particular index,
3525 * and also whether we want to append or start over. We can finish the
3526 * 3DSTATE_SO_BUFFER packets we started earlier.
3527 */
3528 static void
3529 iris_set_stream_output_targets(struct pipe_context *ctx,
3530 unsigned num_targets,
3531 struct pipe_stream_output_target **targets,
3532 const unsigned *offsets)
3533 {
3534 struct iris_context *ice = (struct iris_context *) ctx;
3535 struct iris_genx_state *genx = ice->state.genx;
3536 uint32_t *so_buffers = genx->so_buffers;
3537 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3538
3539 const bool active = num_targets > 0;
3540 if (ice->state.streamout_active != active) {
3541 ice->state.streamout_active = active;
3542 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
3543
3544 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
3545 * it's a non-pipelined command. If we're switching streamout on, we
3546 * may have missed emitting it earlier, so do so now. (We're already
3547 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
3548 */
3549 if (active) {
3550 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
3551 } else {
3552 uint32_t flush = 0;
3553 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
3554 struct iris_stream_output_target *tgt =
3555 (void *) ice->state.so_target[i];
3556 if (tgt) {
3557 struct iris_resource *res = (void *) tgt->base.buffer;
3558
3559 flush |= iris_flush_bits_for_history(res);
3560 iris_dirty_for_history(ice, res);
3561 }
3562 }
3563 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
3564 "make streamout results visible", flush);
3565 }
3566 }
3567
3568 for (int i = 0; i < 4; i++) {
3569 pipe_so_target_reference(&ice->state.so_target[i],
3570 i < num_targets ? targets[i] : NULL);
3571 }
3572
3573 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
3574 if (!active)
3575 return;
3576
3577 for (unsigned i = 0; i < 4; i++,
3578 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
3579
3580 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
3581 unsigned offset = offsets[i];
3582
3583 if (!tgt) {
3584 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3585 #if GEN_GEN < 12
3586 sob.SOBufferIndex = i;
3587 #else
3588 sob._3DCommandOpcode = 0;
3589 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
3590 #endif
3591 }
3592 continue;
3593 }
3594
3595 struct iris_resource *res = (void *) tgt->base.buffer;
3596
3597 /* Note that offsets[i] will either be 0, causing us to zero
3598 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
3599 * "continue appending at the existing offset."
3600 */
3601 assert(offset == 0 || offset == 0xFFFFFFFF);
3602
3603 /* We might be called by Begin (offset = 0), Pause, then Resume
3604 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
3605 * will actually be sent to the GPU). In this case, we don't want
3606 * to append - we still want to do our initial zeroing.
3607 */
3608 if (!tgt->zeroed)
3609 offset = 0;
3610
3611 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3612 #if GEN_GEN < 12
3613 sob.SOBufferIndex = i;
3614 #else
3615 sob._3DCommandOpcode = 0;
3616 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
3617 #endif
3618 sob.SurfaceBaseAddress =
3619 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
3620 sob.SOBufferEnable = true;
3621 sob.StreamOffsetWriteEnable = true;
3622 sob.StreamOutputBufferOffsetAddressEnable = true;
3623 sob.MOCS = mocs(res->bo, &screen->isl_dev);
3624
3625 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
3626 sob.StreamOffset = offset;
3627 sob.StreamOutputBufferOffsetAddress =
3628 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
3629 tgt->offset.offset);
3630 }
3631 }
3632
3633 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
3634 }
3635
3636 /**
3637 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
3638 * 3DSTATE_STREAMOUT packets.
3639 *
3640 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
3641 * hardware to record. We can create it entirely based on the shader, with
3642 * no dynamic state dependencies.
3643 *
3644 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
3645 * state-based settings. We capture the shader-related ones here, and merge
3646 * the rest in at draw time.
3647 */
3648 static uint32_t *
3649 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
3650 const struct brw_vue_map *vue_map)
3651 {
3652 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3653 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3654 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3655 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3656 int max_decls = 0;
3657 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3658
3659 memset(so_decl, 0, sizeof(so_decl));
3660
3661 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3662 * command feels strange -- each dword pair contains a SO_DECL per stream.
3663 */
3664 for (unsigned i = 0; i < info->num_outputs; i++) {
3665 const struct pipe_stream_output *output = &info->output[i];
3666 const int buffer = output->output_buffer;
3667 const int varying = output->register_index;
3668 const unsigned stream_id = output->stream;
3669 assert(stream_id < MAX_VERTEX_STREAMS);
3670
3671 buffer_mask[stream_id] |= 1 << buffer;
3672
3673 assert(vue_map->varying_to_slot[varying] >= 0);
3674
3675 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3676 * array. Instead, it simply increments DstOffset for the following
3677 * input by the number of components that should be skipped.
3678 *
3679 * Our hardware is unusual in that it requires us to program SO_DECLs
3680 * for fake "hole" components, rather than simply taking the offset
3681 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3682 * program as many size = 4 holes as we can, then a final hole to
3683 * accommodate the final 1, 2, or 3 remaining.
3684 */
3685 int skip_components = output->dst_offset - next_offset[buffer];
3686
3687 while (skip_components > 0) {
3688 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3689 .HoleFlag = 1,
3690 .OutputBufferSlot = output->output_buffer,
3691 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3692 };
3693 skip_components -= 4;
3694 }
3695
3696 next_offset[buffer] = output->dst_offset + output->num_components;
3697
3698 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3699 .OutputBufferSlot = output->output_buffer,
3700 .RegisterIndex = vue_map->varying_to_slot[varying],
3701 .ComponentMask =
3702 ((1 << output->num_components) - 1) << output->start_component,
3703 };
3704
3705 if (decls[stream_id] > max_decls)
3706 max_decls = decls[stream_id];
3707 }
3708
3709 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3710 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3711 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3712
3713 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3714 int urb_entry_read_offset = 0;
3715 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3716 urb_entry_read_offset;
3717
3718 /* We always read the whole vertex. This could be reduced at some
3719 * point by reading less and offsetting the register index in the
3720 * SO_DECLs.
3721 */
3722 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3723 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3724 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3725 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3726 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3727 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3728 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3729 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3730
3731 /* Set buffer pitches; 0 means unbound. */
3732 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3733 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3734 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3735 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3736 }
3737
3738 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3739 list.DWordLength = 3 + 2 * max_decls - 2;
3740 list.StreamtoBufferSelects0 = buffer_mask[0];
3741 list.StreamtoBufferSelects1 = buffer_mask[1];
3742 list.StreamtoBufferSelects2 = buffer_mask[2];
3743 list.StreamtoBufferSelects3 = buffer_mask[3];
3744 list.NumEntries0 = decls[0];
3745 list.NumEntries1 = decls[1];
3746 list.NumEntries2 = decls[2];
3747 list.NumEntries3 = decls[3];
3748 }
3749
3750 for (int i = 0; i < max_decls; i++) {
3751 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3752 entry.Stream0Decl = so_decl[0][i];
3753 entry.Stream1Decl = so_decl[1][i];
3754 entry.Stream2Decl = so_decl[2][i];
3755 entry.Stream3Decl = so_decl[3][i];
3756 }
3757 }
3758
3759 return map;
3760 }
3761
3762 static void
3763 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3764 const struct brw_vue_map *last_vue_map,
3765 bool two_sided_color,
3766 unsigned *out_offset,
3767 unsigned *out_length)
3768 {
3769 /* The compiler computes the first URB slot without considering COL/BFC
3770 * swizzling (because it doesn't know whether it's enabled), so we need
3771 * to do that here too. This may result in a smaller offset, which
3772 * should be safe.
3773 */
3774 const unsigned first_slot =
3775 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3776
3777 /* This becomes the URB read offset (counted in pairs of slots). */
3778 assert(first_slot % 2 == 0);
3779 *out_offset = first_slot / 2;
3780
3781 /* We need to adjust the inputs read to account for front/back color
3782 * swizzling, as it can make the URB length longer.
3783 */
3784 for (int c = 0; c <= 1; c++) {
3785 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3786 /* If two sided color is enabled, the fragment shader's gl_Color
3787 * (COL0) input comes from either the gl_FrontColor (COL0) or
3788 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3789 */
3790 if (two_sided_color)
3791 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3792
3793 /* If front color isn't written, we opt to give them back color
3794 * instead of an undefined value. Switch from COL to BFC.
3795 */
3796 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3797 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3798 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3799 }
3800 }
3801 }
3802
3803 /* Compute the minimum URB Read Length necessary for the FS inputs.
3804 *
3805 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3806 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3807 *
3808 * "This field should be set to the minimum length required to read the
3809 * maximum source attribute. The maximum source attribute is indicated
3810 * by the maximum value of the enabled Attribute # Source Attribute if
3811 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3812 * enable is not set.
3813 * read_length = ceiling((max_source_attr + 1) / 2)
3814 *
3815 * [errata] Corruption/Hang possible if length programmed larger than
3816 * recommended"
3817 *
3818 * Similar text exists for Ivy Bridge.
3819 *
3820 * We find the last URB slot that's actually read by the FS.
3821 */
3822 unsigned last_read_slot = last_vue_map->num_slots - 1;
3823 while (last_read_slot > first_slot && !(fs_input_slots &
3824 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3825 --last_read_slot;
3826
3827 /* The URB read length is the difference of the two, counted in pairs. */
3828 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3829 }
3830
3831 static void
3832 iris_emit_sbe_swiz(struct iris_batch *batch,
3833 const struct iris_context *ice,
3834 unsigned urb_read_offset,
3835 unsigned sprite_coord_enables)
3836 {
3837 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3838 const struct brw_wm_prog_data *wm_prog_data = (void *)
3839 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3840 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3841 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3842
3843 /* XXX: this should be generated when putting programs in place */
3844
3845 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3846 const int input_index = wm_prog_data->urb_setup[fs_attr];
3847 if (input_index < 0 || input_index >= 16)
3848 continue;
3849
3850 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3851 &attr_overrides[input_index];
3852 int slot = vue_map->varying_to_slot[fs_attr];
3853
3854 /* Viewport and Layer are stored in the VUE header. We need to override
3855 * them to zero if earlier stages didn't write them, as GL requires that
3856 * they read back as zero when not explicitly set.
3857 */
3858 switch (fs_attr) {
3859 case VARYING_SLOT_VIEWPORT:
3860 case VARYING_SLOT_LAYER:
3861 attr->ComponentOverrideX = true;
3862 attr->ComponentOverrideW = true;
3863 attr->ConstantSource = CONST_0000;
3864
3865 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3866 attr->ComponentOverrideY = true;
3867 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3868 attr->ComponentOverrideZ = true;
3869 continue;
3870
3871 case VARYING_SLOT_PRIMITIVE_ID:
3872 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3873 if (slot == -1) {
3874 attr->ComponentOverrideX = true;
3875 attr->ComponentOverrideY = true;
3876 attr->ComponentOverrideZ = true;
3877 attr->ComponentOverrideW = true;
3878 attr->ConstantSource = PRIM_ID;
3879 continue;
3880 }
3881
3882 default:
3883 break;
3884 }
3885
3886 if (sprite_coord_enables & (1 << input_index))
3887 continue;
3888
3889 /* If there was only a back color written but not front, use back
3890 * as the color instead of undefined.
3891 */
3892 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3893 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3894 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3895 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3896
3897 /* Not written by the previous stage - undefined. */
3898 if (slot == -1) {
3899 attr->ComponentOverrideX = true;
3900 attr->ComponentOverrideY = true;
3901 attr->ComponentOverrideZ = true;
3902 attr->ComponentOverrideW = true;
3903 attr->ConstantSource = CONST_0001_FLOAT;
3904 continue;
3905 }
3906
3907 /* Compute the location of the attribute relative to the read offset,
3908 * which is counted in 256-bit increments (two 128-bit VUE slots).
3909 */
3910 const int source_attr = slot - 2 * urb_read_offset;
3911 assert(source_attr >= 0 && source_attr <= 32);
3912 attr->SourceAttribute = source_attr;
3913
3914 /* If we are doing two-sided color, and the VUE slot following this one
3915 * represents a back-facing color, then we need to instruct the SF unit
3916 * to do back-facing swizzling.
3917 */
3918 if (cso_rast->light_twoside &&
3919 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3920 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3921 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3922 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3923 attr->SwizzleSelect = INPUTATTR_FACING;
3924 }
3925
3926 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3927 for (int i = 0; i < 16; i++)
3928 sbes.Attribute[i] = attr_overrides[i];
3929 }
3930 }
3931
3932 static unsigned
3933 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3934 const struct iris_rasterizer_state *cso)
3935 {
3936 unsigned overrides = 0;
3937
3938 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3939 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3940
3941 for (int i = 0; i < 8; i++) {
3942 if ((cso->sprite_coord_enable & (1 << i)) &&
3943 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3944 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3945 }
3946
3947 return overrides;
3948 }
3949
3950 static void
3951 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3952 {
3953 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3954 const struct brw_wm_prog_data *wm_prog_data = (void *)
3955 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3956 const struct shader_info *fs_info =
3957 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3958
3959 unsigned urb_read_offset, urb_read_length;
3960 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3961 ice->shaders.last_vue_map,
3962 cso_rast->light_twoside,
3963 &urb_read_offset, &urb_read_length);
3964
3965 unsigned sprite_coord_overrides =
3966 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3967
3968 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3969 sbe.AttributeSwizzleEnable = true;
3970 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3971 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3972 sbe.VertexURBEntryReadOffset = urb_read_offset;
3973 sbe.VertexURBEntryReadLength = urb_read_length;
3974 sbe.ForceVertexURBEntryReadOffset = true;
3975 sbe.ForceVertexURBEntryReadLength = true;
3976 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3977 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3978 #if GEN_GEN >= 9
3979 for (int i = 0; i < 32; i++) {
3980 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3981 }
3982 #endif
3983 }
3984
3985 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3986 }
3987
3988 /* ------------------------------------------------------------------- */
3989
3990 /**
3991 * Populate VS program key fields based on the current state.
3992 */
3993 static void
3994 iris_populate_vs_key(const struct iris_context *ice,
3995 const struct shader_info *info,
3996 gl_shader_stage last_stage,
3997 struct brw_vs_prog_key *key)
3998 {
3999 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4000
4001 if (info->clip_distance_array_size == 0 &&
4002 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4003 last_stage == MESA_SHADER_VERTEX)
4004 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4005 }
4006
4007 /**
4008 * Populate TCS program key fields based on the current state.
4009 */
4010 static void
4011 iris_populate_tcs_key(const struct iris_context *ice,
4012 struct brw_tcs_prog_key *key)
4013 {
4014 }
4015
4016 /**
4017 * Populate TES program key fields based on the current state.
4018 */
4019 static void
4020 iris_populate_tes_key(const struct iris_context *ice,
4021 const struct shader_info *info,
4022 gl_shader_stage last_stage,
4023 struct brw_tes_prog_key *key)
4024 {
4025 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4026
4027 if (info->clip_distance_array_size == 0 &&
4028 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4029 last_stage == MESA_SHADER_TESS_EVAL)
4030 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4031 }
4032
4033 /**
4034 * Populate GS program key fields based on the current state.
4035 */
4036 static void
4037 iris_populate_gs_key(const struct iris_context *ice,
4038 const struct shader_info *info,
4039 gl_shader_stage last_stage,
4040 struct brw_gs_prog_key *key)
4041 {
4042 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4043
4044 if (info->clip_distance_array_size == 0 &&
4045 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4046 last_stage == MESA_SHADER_GEOMETRY)
4047 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4048 }
4049
4050 /**
4051 * Populate FS program key fields based on the current state.
4052 */
4053 static void
4054 iris_populate_fs_key(const struct iris_context *ice,
4055 const struct shader_info *info,
4056 struct brw_wm_prog_key *key)
4057 {
4058 struct iris_screen *screen = (void *) ice->ctx.screen;
4059 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
4060 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
4061 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
4062 const struct iris_blend_state *blend = ice->state.cso_blend;
4063
4064 key->nr_color_regions = fb->nr_cbufs;
4065
4066 key->clamp_fragment_color = rast->clamp_fragment_color;
4067
4068 key->alpha_to_coverage = blend->alpha_to_coverage;
4069
4070 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
4071
4072 key->flat_shade = rast->flatshade &&
4073 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
4074
4075 key->persample_interp = rast->force_persample_interp;
4076 key->multisample_fbo = rast->multisample && fb->samples > 1;
4077
4078 key->coherent_fb_fetch = GEN_GEN >= 9;
4079
4080 key->force_dual_color_blend =
4081 screen->driconf.dual_color_blend_by_location &&
4082 (blend->blend_enables & 1) && blend->dual_color_blending;
4083
4084 /* TODO: Respect glHint for key->high_quality_derivatives */
4085 }
4086
4087 static void
4088 iris_populate_cs_key(const struct iris_context *ice,
4089 struct brw_cs_prog_key *key)
4090 {
4091 }
4092
4093 static uint64_t
4094 KSP(const struct iris_compiled_shader *shader)
4095 {
4096 struct iris_resource *res = (void *) shader->assembly.res;
4097 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
4098 }
4099
4100 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
4101 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
4102 * this WA on C0 stepping.
4103 *
4104 * TODO: Fill out SamplerCount for prefetching?
4105 */
4106
4107 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
4108 pkt.KernelStartPointer = KSP(shader); \
4109 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
4110 shader->bt.size_bytes / 4; \
4111 pkt.FloatingPointMode = prog_data->use_alt_mode; \
4112 \
4113 pkt.DispatchGRFStartRegisterForURBData = \
4114 prog_data->dispatch_grf_start_reg; \
4115 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
4116 pkt.prefix##URBEntryReadOffset = 0; \
4117 \
4118 pkt.StatisticsEnable = true; \
4119 pkt.Enable = true; \
4120 \
4121 if (prog_data->total_scratch) { \
4122 struct iris_bo *bo = \
4123 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
4124 uint32_t scratch_addr = bo->gtt_offset; \
4125 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
4126 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
4127 }
4128
4129 /**
4130 * Encode most of 3DSTATE_VS based on the compiled shader.
4131 */
4132 static void
4133 iris_store_vs_state(struct iris_context *ice,
4134 const struct gen_device_info *devinfo,
4135 struct iris_compiled_shader *shader)
4136 {
4137 struct brw_stage_prog_data *prog_data = shader->prog_data;
4138 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4139
4140 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
4141 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
4142 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
4143 vs.SIMD8DispatchEnable = true;
4144 vs.UserClipDistanceCullTestEnableBitmask =
4145 vue_prog_data->cull_distance_mask;
4146 }
4147 }
4148
4149 /**
4150 * Encode most of 3DSTATE_HS based on the compiled shader.
4151 */
4152 static void
4153 iris_store_tcs_state(struct iris_context *ice,
4154 const struct gen_device_info *devinfo,
4155 struct iris_compiled_shader *shader)
4156 {
4157 struct brw_stage_prog_data *prog_data = shader->prog_data;
4158 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4159 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
4160
4161 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
4162 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
4163
4164 hs.InstanceCount = tcs_prog_data->instances - 1;
4165 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
4166 hs.IncludeVertexHandles = true;
4167
4168 #if GEN_GEN >= 9
4169 hs.DispatchMode = vue_prog_data->dispatch_mode;
4170 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
4171 #endif
4172 }
4173 }
4174
4175 /**
4176 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
4177 */
4178 static void
4179 iris_store_tes_state(struct iris_context *ice,
4180 const struct gen_device_info *devinfo,
4181 struct iris_compiled_shader *shader)
4182 {
4183 struct brw_stage_prog_data *prog_data = shader->prog_data;
4184 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4185 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
4186
4187 uint32_t *te_state = (void *) shader->derived_data;
4188 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
4189
4190 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
4191 te.Partitioning = tes_prog_data->partitioning;
4192 te.OutputTopology = tes_prog_data->output_topology;
4193 te.TEDomain = tes_prog_data->domain;
4194 te.TEEnable = true;
4195 te.MaximumTessellationFactorOdd = 63.0;
4196 te.MaximumTessellationFactorNotOdd = 64.0;
4197 }
4198
4199 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
4200 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
4201
4202 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
4203 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
4204 ds.ComputeWCoordinateEnable =
4205 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
4206
4207 ds.UserClipDistanceCullTestEnableBitmask =
4208 vue_prog_data->cull_distance_mask;
4209 }
4210
4211 }
4212
4213 /**
4214 * Encode most of 3DSTATE_GS based on the compiled shader.
4215 */
4216 static void
4217 iris_store_gs_state(struct iris_context *ice,
4218 const struct gen_device_info *devinfo,
4219 struct iris_compiled_shader *shader)
4220 {
4221 struct brw_stage_prog_data *prog_data = shader->prog_data;
4222 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
4223 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
4224
4225 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
4226 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
4227
4228 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
4229 gs.OutputTopology = gs_prog_data->output_topology;
4230 gs.ControlDataHeaderSize =
4231 gs_prog_data->control_data_header_size_hwords;
4232 gs.InstanceControl = gs_prog_data->invocations - 1;
4233 gs.DispatchMode = DISPATCH_MODE_SIMD8;
4234 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
4235 gs.ControlDataFormat = gs_prog_data->control_data_format;
4236 gs.ReorderMode = TRAILING;
4237 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
4238 gs.MaximumNumberofThreads =
4239 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
4240 : (devinfo->max_gs_threads - 1);
4241
4242 if (gs_prog_data->static_vertex_count != -1) {
4243 gs.StaticOutput = true;
4244 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
4245 }
4246 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
4247
4248 gs.UserClipDistanceCullTestEnableBitmask =
4249 vue_prog_data->cull_distance_mask;
4250
4251 const int urb_entry_write_offset = 1;
4252 const uint32_t urb_entry_output_length =
4253 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
4254 urb_entry_write_offset;
4255
4256 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
4257 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
4258 }
4259 }
4260
4261 /**
4262 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
4263 */
4264 static void
4265 iris_store_fs_state(struct iris_context *ice,
4266 const struct gen_device_info *devinfo,
4267 struct iris_compiled_shader *shader)
4268 {
4269 struct brw_stage_prog_data *prog_data = shader->prog_data;
4270 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
4271
4272 uint32_t *ps_state = (void *) shader->derived_data;
4273 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
4274
4275 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
4276 ps.VectorMaskEnable = true;
4277 // XXX: WABTPPrefetchDisable, see above, drop at C0
4278 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
4279 shader->bt.size_bytes / 4;
4280 ps.FloatingPointMode = prog_data->use_alt_mode;
4281 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
4282
4283 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
4284
4285 /* From the documentation for this packet:
4286 * "If the PS kernel does not need the Position XY Offsets to
4287 * compute a Position Value, then this field should be programmed
4288 * to POSOFFSET_NONE."
4289 *
4290 * "SW Recommendation: If the PS kernel needs the Position Offsets
4291 * to compute a Position XY value, this field should match Position
4292 * ZW Interpolation Mode to ensure a consistent position.xyzw
4293 * computation."
4294 *
4295 * We only require XY sample offsets. So, this recommendation doesn't
4296 * look useful at the moment. We might need this in future.
4297 */
4298 ps.PositionXYOffsetSelect =
4299 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
4300
4301 if (prog_data->total_scratch) {
4302 struct iris_bo *bo =
4303 iris_get_scratch_space(ice, prog_data->total_scratch,
4304 MESA_SHADER_FRAGMENT);
4305 uint32_t scratch_addr = bo->gtt_offset;
4306 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4307 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
4308 }
4309 }
4310
4311 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
4312 psx.PixelShaderValid = true;
4313 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
4314 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
4315 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
4316 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
4317 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
4318 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
4319 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
4320
4321 #if GEN_GEN >= 9
4322 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
4323 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
4324 #endif
4325 }
4326 }
4327
4328 /**
4329 * Compute the size of the derived data (shader command packets).
4330 *
4331 * This must match the data written by the iris_store_xs_state() functions.
4332 */
4333 static void
4334 iris_store_cs_state(struct iris_context *ice,
4335 const struct gen_device_info *devinfo,
4336 struct iris_compiled_shader *shader)
4337 {
4338 struct brw_stage_prog_data *prog_data = shader->prog_data;
4339 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
4340 void *map = shader->derived_data;
4341
4342 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
4343 desc.KernelStartPointer = KSP(shader);
4344 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
4345 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
4346 desc.SharedLocalMemorySize =
4347 encode_slm_size(GEN_GEN, prog_data->total_shared);
4348 desc.BarrierEnable = cs_prog_data->uses_barrier;
4349 desc.CrossThreadConstantDataReadLength =
4350 cs_prog_data->push.cross_thread.regs;
4351 }
4352 }
4353
4354 static unsigned
4355 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
4356 {
4357 assert(cache_id <= IRIS_CACHE_BLORP);
4358
4359 static const unsigned dwords[] = {
4360 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
4361 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
4362 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
4363 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
4364 [IRIS_CACHE_FS] =
4365 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
4366 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
4367 [IRIS_CACHE_BLORP] = 0,
4368 };
4369
4370 return sizeof(uint32_t) * dwords[cache_id];
4371 }
4372
4373 /**
4374 * Create any state packets corresponding to the given shader stage
4375 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
4376 * This means that we can look up a program in the in-memory cache and
4377 * get most of the state packet without having to reconstruct it.
4378 */
4379 static void
4380 iris_store_derived_program_state(struct iris_context *ice,
4381 enum iris_program_cache_id cache_id,
4382 struct iris_compiled_shader *shader)
4383 {
4384 struct iris_screen *screen = (void *) ice->ctx.screen;
4385 const struct gen_device_info *devinfo = &screen->devinfo;
4386
4387 switch (cache_id) {
4388 case IRIS_CACHE_VS:
4389 iris_store_vs_state(ice, devinfo, shader);
4390 break;
4391 case IRIS_CACHE_TCS:
4392 iris_store_tcs_state(ice, devinfo, shader);
4393 break;
4394 case IRIS_CACHE_TES:
4395 iris_store_tes_state(ice, devinfo, shader);
4396 break;
4397 case IRIS_CACHE_GS:
4398 iris_store_gs_state(ice, devinfo, shader);
4399 break;
4400 case IRIS_CACHE_FS:
4401 iris_store_fs_state(ice, devinfo, shader);
4402 break;
4403 case IRIS_CACHE_CS:
4404 iris_store_cs_state(ice, devinfo, shader);
4405 case IRIS_CACHE_BLORP:
4406 break;
4407 default:
4408 break;
4409 }
4410 }
4411
4412 /* ------------------------------------------------------------------- */
4413
4414 static const uint32_t push_constant_opcodes[] = {
4415 [MESA_SHADER_VERTEX] = 21,
4416 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
4417 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
4418 [MESA_SHADER_GEOMETRY] = 22,
4419 [MESA_SHADER_FRAGMENT] = 23,
4420 [MESA_SHADER_COMPUTE] = 0,
4421 };
4422
4423 static uint32_t
4424 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
4425 {
4426 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
4427
4428 iris_use_pinned_bo(batch, state_bo, false);
4429
4430 return ice->state.unbound_tex.offset;
4431 }
4432
4433 static uint32_t
4434 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
4435 {
4436 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
4437 if (!ice->state.null_fb.res)
4438 return use_null_surface(batch, ice);
4439
4440 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
4441
4442 iris_use_pinned_bo(batch, state_bo, false);
4443
4444 return ice->state.null_fb.offset;
4445 }
4446
4447 static uint32_t
4448 surf_state_offset_for_aux(struct iris_resource *res,
4449 unsigned aux_modes,
4450 enum isl_aux_usage aux_usage)
4451 {
4452 return SURFACE_STATE_ALIGNMENT *
4453 util_bitcount(aux_modes & ((1 << aux_usage) - 1));
4454 }
4455
4456 #if GEN_GEN == 9
4457 static void
4458 surf_state_update_clear_value(struct iris_batch *batch,
4459 struct iris_resource *res,
4460 struct iris_state_ref *state,
4461 unsigned aux_modes,
4462 enum isl_aux_usage aux_usage)
4463 {
4464 struct isl_device *isl_dev = &batch->screen->isl_dev;
4465 struct iris_bo *state_bo = iris_resource_bo(state->res);
4466 uint64_t real_offset = state->offset + IRIS_MEMZONE_BINDER_START;
4467 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
4468 uint32_t clear_offset = offset_into_bo +
4469 isl_dev->ss.clear_value_offset +
4470 surf_state_offset_for_aux(res, aux_modes, aux_usage);
4471 uint32_t *color = res->aux.clear_color.u32;
4472
4473 assert(isl_dev->ss.clear_value_size == 16);
4474
4475 if (aux_usage == ISL_AUX_USAGE_HIZ) {
4476 iris_emit_pipe_control_write(batch, "update fast clear value (Z)",
4477 PIPE_CONTROL_WRITE_IMMEDIATE,
4478 state_bo, clear_offset, color[0]);
4479 } else {
4480 iris_emit_pipe_control_write(batch, "update fast clear color (RG__)",
4481 PIPE_CONTROL_WRITE_IMMEDIATE,
4482 state_bo, clear_offset,
4483 (uint64_t) color[0] |
4484 (uint64_t) color[1] << 32);
4485 iris_emit_pipe_control_write(batch, "update fast clear color (__BA)",
4486 PIPE_CONTROL_WRITE_IMMEDIATE,
4487 state_bo, clear_offset + 8,
4488 (uint64_t) color[2] |
4489 (uint64_t) color[3] << 32);
4490 }
4491
4492 iris_emit_pipe_control_flush(batch,
4493 "update fast clear: state cache invalidate",
4494 PIPE_CONTROL_FLUSH_ENABLE |
4495 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
4496 }
4497 #endif
4498
4499 static void
4500 update_clear_value(struct iris_context *ice,
4501 struct iris_batch *batch,
4502 struct iris_resource *res,
4503 struct iris_surface_state *surf_state,
4504 unsigned all_aux_modes,
4505 struct isl_view *view)
4506 {
4507 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
4508 UNUSED unsigned aux_modes = all_aux_modes;
4509
4510 /* We only need to update the clear color in the surface state for gen8 and
4511 * gen9. Newer gens can read it directly from the clear color state buffer.
4512 */
4513 #if GEN_GEN == 9
4514 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
4515 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
4516
4517 while (aux_modes) {
4518 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4519
4520 surf_state_update_clear_value(batch, res, &surf_state->ref,
4521 all_aux_modes, aux_usage);
4522 }
4523 #elif GEN_GEN == 8
4524 /* TODO: Could update rather than re-filling */
4525 alloc_surface_states(surf_state, all_aux_modes);
4526
4527 void *map = surf_state->cpu;
4528
4529 while (aux_modes) {
4530 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4531 fill_surface_state(isl_dev, map, res, &res->surf, view, aux_usage,
4532 0, 0, 0);
4533 map += SURFACE_STATE_ALIGNMENT;
4534 }
4535
4536 upload_surface_states(ice->state.surface_uploader, surf_state);
4537 #endif
4538 }
4539
4540 /**
4541 * Add a surface to the validation list, as well as the buffer containing
4542 * the corresponding SURFACE_STATE.
4543 *
4544 * Returns the binding table entry (offset to SURFACE_STATE).
4545 */
4546 static uint32_t
4547 use_surface(struct iris_context *ice,
4548 struct iris_batch *batch,
4549 struct pipe_surface *p_surf,
4550 bool writeable,
4551 enum isl_aux_usage aux_usage,
4552 bool is_read_surface)
4553 {
4554 struct iris_surface *surf = (void *) p_surf;
4555 struct iris_resource *res = (void *) p_surf->texture;
4556 uint32_t offset = 0;
4557
4558 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
4559 if (GEN_GEN == 8 && is_read_surface) {
4560 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state_read.ref.res), false);
4561 } else {
4562 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.ref.res), false);
4563 }
4564
4565 if (res->aux.bo) {
4566 iris_use_pinned_bo(batch, res->aux.bo, writeable);
4567 if (res->aux.clear_color_bo)
4568 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false);
4569
4570 if (memcmp(&res->aux.clear_color, &surf->clear_color,
4571 sizeof(surf->clear_color)) != 0) {
4572 update_clear_value(ice, batch, res, &surf->surface_state,
4573 res->aux.possible_usages, &surf->view);
4574 if (GEN_GEN == 8) {
4575 update_clear_value(ice, batch, res, &surf->surface_state_read,
4576 res->aux.possible_usages, &surf->read_view);
4577 }
4578 surf->clear_color = res->aux.clear_color;
4579 }
4580 }
4581
4582 offset = (GEN_GEN == 8 && is_read_surface)
4583 ? surf->surface_state_read.ref.offset
4584 : surf->surface_state.ref.offset;
4585
4586 return offset +
4587 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
4588 }
4589
4590 static uint32_t
4591 use_sampler_view(struct iris_context *ice,
4592 struct iris_batch *batch,
4593 struct iris_sampler_view *isv)
4594 {
4595 // XXX: ASTC hacks
4596 enum isl_aux_usage aux_usage =
4597 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
4598
4599 iris_use_pinned_bo(batch, isv->res->bo, false);
4600 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.ref.res), false);
4601
4602 if (isv->res->aux.bo) {
4603 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
4604 if (isv->res->aux.clear_color_bo)
4605 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, false);
4606 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
4607 sizeof(isv->clear_color)) != 0) {
4608 update_clear_value(ice, batch, isv->res, &isv->surface_state,
4609 isv->res->aux.sampler_usages, &isv->view);
4610 isv->clear_color = isv->res->aux.clear_color;
4611 }
4612 }
4613
4614 return isv->surface_state.ref.offset +
4615 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
4616 aux_usage);
4617 }
4618
4619 static uint32_t
4620 use_ubo_ssbo(struct iris_batch *batch,
4621 struct iris_context *ice,
4622 struct pipe_shader_buffer *buf,
4623 struct iris_state_ref *surf_state,
4624 bool writable)
4625 {
4626 if (!buf->buffer || !surf_state->res)
4627 return use_null_surface(batch, ice);
4628
4629 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable);
4630 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
4631
4632 return surf_state->offset;
4633 }
4634
4635 static uint32_t
4636 use_image(struct iris_batch *batch, struct iris_context *ice,
4637 struct iris_shader_state *shs, int i)
4638 {
4639 struct iris_image_view *iv = &shs->image[i];
4640 struct iris_resource *res = (void *) iv->base.resource;
4641
4642 if (!res)
4643 return use_null_surface(batch, ice);
4644
4645 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
4646
4647 iris_use_pinned_bo(batch, res->bo, write);
4648 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.ref.res), false);
4649
4650 if (res->aux.bo)
4651 iris_use_pinned_bo(batch, res->aux.bo, write);
4652
4653 return iv->surface_state.ref.offset;
4654 }
4655
4656 #define push_bt_entry(addr) \
4657 assert(addr >= binder_addr); \
4658 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
4659 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
4660
4661 #define bt_assert(section) \
4662 if (!pin_only && shader->bt.used_mask[section] != 0) \
4663 assert(shader->bt.offsets[section] == s);
4664
4665 /**
4666 * Populate the binding table for a given shader stage.
4667 *
4668 * This fills out the table of pointers to surfaces required by the shader,
4669 * and also adds those buffers to the validation list so the kernel can make
4670 * resident before running our batch.
4671 */
4672 static void
4673 iris_populate_binding_table(struct iris_context *ice,
4674 struct iris_batch *batch,
4675 gl_shader_stage stage,
4676 bool pin_only)
4677 {
4678 const struct iris_binder *binder = &ice->state.binder;
4679 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
4680 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4681 if (!shader)
4682 return;
4683
4684 struct iris_binding_table *bt = &shader->bt;
4685 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
4686 struct iris_shader_state *shs = &ice->state.shaders[stage];
4687 uint32_t binder_addr = binder->bo->gtt_offset;
4688
4689 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4690 int s = 0;
4691
4692 const struct shader_info *info = iris_get_shader_info(ice, stage);
4693 if (!info) {
4694 /* TCS passthrough doesn't need a binding table. */
4695 assert(stage == MESA_SHADER_TESS_CTRL);
4696 return;
4697 }
4698
4699 if (stage == MESA_SHADER_COMPUTE &&
4700 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4701 /* surface for gl_NumWorkGroups */
4702 struct iris_state_ref *grid_data = &ice->state.grid_size;
4703 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4704 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
4705 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
4706 push_bt_entry(grid_state->offset);
4707 }
4708
4709 if (stage == MESA_SHADER_FRAGMENT) {
4710 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4711 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4712 if (cso_fb->nr_cbufs) {
4713 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4714 uint32_t addr;
4715 if (cso_fb->cbufs[i]) {
4716 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4717 ice->state.draw_aux_usage[i], false);
4718 } else {
4719 addr = use_null_fb_surface(batch, ice);
4720 }
4721 push_bt_entry(addr);
4722 }
4723 } else if (GEN_GEN < 11) {
4724 uint32_t addr = use_null_fb_surface(batch, ice);
4725 push_bt_entry(addr);
4726 }
4727 }
4728
4729 #define foreach_surface_used(index, group) \
4730 bt_assert(group); \
4731 for (int index = 0; index < bt->sizes[group]; index++) \
4732 if (iris_group_index_to_bti(bt, group, index) != \
4733 IRIS_SURFACE_NOT_USED)
4734
4735 foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) {
4736 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4737 uint32_t addr;
4738 if (cso_fb->cbufs[i]) {
4739 addr = use_surface(ice, batch, cso_fb->cbufs[i],
4740 true, ice->state.draw_aux_usage[i], true);
4741 push_bt_entry(addr);
4742 }
4743 }
4744
4745 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4746 struct iris_sampler_view *view = shs->textures[i];
4747 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4748 : use_null_surface(batch, ice);
4749 push_bt_entry(addr);
4750 }
4751
4752 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4753 uint32_t addr = use_image(batch, ice, shs, i);
4754 push_bt_entry(addr);
4755 }
4756
4757 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4758 uint32_t addr;
4759
4760 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4761 if (ish->const_data) {
4762 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false);
4763 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4764 false);
4765 addr = ish->const_data_state.offset;
4766 } else {
4767 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4768 addr = use_null_surface(batch, ice);
4769 }
4770 } else {
4771 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4772 &shs->constbuf_surf_state[i], false);
4773 }
4774
4775 push_bt_entry(addr);
4776 }
4777
4778 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4779 uint32_t addr =
4780 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4781 shs->writable_ssbos & (1u << i));
4782 push_bt_entry(addr);
4783 }
4784
4785 #if 0
4786 /* XXX: YUV surfaces not implemented yet */
4787 bt_assert(plane_start[1], ...);
4788 bt_assert(plane_start[2], ...);
4789 #endif
4790 }
4791
4792 static void
4793 iris_use_optional_res(struct iris_batch *batch,
4794 struct pipe_resource *res,
4795 bool writeable)
4796 {
4797 if (res) {
4798 struct iris_bo *bo = iris_resource_bo(res);
4799 iris_use_pinned_bo(batch, bo, writeable);
4800 }
4801 }
4802
4803 static void
4804 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4805 struct pipe_surface *zsbuf,
4806 struct iris_depth_stencil_alpha_state *cso_zsa)
4807 {
4808 if (!zsbuf)
4809 return;
4810
4811 struct iris_resource *zres, *sres;
4812 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4813
4814 if (zres) {
4815 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled);
4816 if (zres->aux.bo) {
4817 iris_use_pinned_bo(batch, zres->aux.bo,
4818 cso_zsa->depth_writes_enabled);
4819 }
4820 }
4821
4822 if (sres) {
4823 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled);
4824 }
4825 }
4826
4827 /* ------------------------------------------------------------------- */
4828
4829 /**
4830 * Pin any BOs which were installed by a previous batch, and restored
4831 * via the hardware logical context mechanism.
4832 *
4833 * We don't need to re-emit all state every batch - the hardware context
4834 * mechanism will save and restore it for us. This includes pointers to
4835 * various BOs...which won't exist unless we ask the kernel to pin them
4836 * by adding them to the validation list.
4837 *
4838 * We can skip buffers if we've re-emitted those packets, as we're
4839 * overwriting those stale pointers with new ones, and don't actually
4840 * refer to the old BOs.
4841 */
4842 static void
4843 iris_restore_render_saved_bos(struct iris_context *ice,
4844 struct iris_batch *batch,
4845 const struct pipe_draw_info *draw)
4846 {
4847 struct iris_genx_state *genx = ice->state.genx;
4848
4849 const uint64_t clean = ~ice->state.dirty;
4850
4851 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4852 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
4853 }
4854
4855 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4856 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
4857 }
4858
4859 if (clean & IRIS_DIRTY_BLEND_STATE) {
4860 iris_use_optional_res(batch, ice->state.last_res.blend, false);
4861 }
4862
4863 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4864 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
4865 }
4866
4867 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4868 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
4869 }
4870
4871 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4872 for (int i = 0; i < 4; i++) {
4873 struct iris_stream_output_target *tgt =
4874 (void *) ice->state.so_target[i];
4875 if (tgt) {
4876 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4877 true);
4878 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4879 true);
4880 }
4881 }
4882 }
4883
4884 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4885 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4886 continue;
4887
4888 struct iris_shader_state *shs = &ice->state.shaders[stage];
4889 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4890
4891 if (!shader)
4892 continue;
4893
4894 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4895
4896 for (int i = 0; i < 4; i++) {
4897 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4898
4899 if (range->length == 0)
4900 continue;
4901
4902 /* Range block is a binding table index, map back to UBO index. */
4903 unsigned block_index = iris_bti_to_group_index(
4904 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4905 assert(block_index != IRIS_SURFACE_NOT_USED);
4906
4907 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4908 struct iris_resource *res = (void *) cbuf->buffer;
4909
4910 if (res)
4911 iris_use_pinned_bo(batch, res->bo, false);
4912 else
4913 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4914 }
4915 }
4916
4917 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4918 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4919 /* Re-pin any buffers referred to by the binding table. */
4920 iris_populate_binding_table(ice, batch, stage, true);
4921 }
4922 }
4923
4924 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4925 struct iris_shader_state *shs = &ice->state.shaders[stage];
4926 struct pipe_resource *res = shs->sampler_table.res;
4927 if (res)
4928 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4929 }
4930
4931 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4932 if (clean & (IRIS_DIRTY_VS << stage)) {
4933 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4934
4935 if (shader) {
4936 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4937 iris_use_pinned_bo(batch, bo, false);
4938
4939 struct brw_stage_prog_data *prog_data = shader->prog_data;
4940
4941 if (prog_data->total_scratch > 0) {
4942 struct iris_bo *bo =
4943 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4944 iris_use_pinned_bo(batch, bo, true);
4945 }
4946 }
4947 }
4948 }
4949
4950 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
4951 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4952 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4953 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4954 }
4955
4956 iris_use_optional_res(batch, ice->state.last_res.index_buffer, false);
4957
4958 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4959 uint64_t bound = ice->state.bound_vertex_buffers;
4960 while (bound) {
4961 const int i = u_bit_scan64(&bound);
4962 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4963 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4964 }
4965 }
4966 }
4967
4968 static void
4969 iris_restore_compute_saved_bos(struct iris_context *ice,
4970 struct iris_batch *batch,
4971 const struct pipe_grid_info *grid)
4972 {
4973 const uint64_t clean = ~ice->state.dirty;
4974
4975 const int stage = MESA_SHADER_COMPUTE;
4976 struct iris_shader_state *shs = &ice->state.shaders[stage];
4977
4978 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4979 /* Re-pin any buffers referred to by the binding table. */
4980 iris_populate_binding_table(ice, batch, stage, true);
4981 }
4982
4983 struct pipe_resource *sampler_res = shs->sampler_table.res;
4984 if (sampler_res)
4985 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4986
4987 if ((clean & IRIS_DIRTY_SAMPLER_STATES_CS) &&
4988 (clean & IRIS_DIRTY_BINDINGS_CS) &&
4989 (clean & IRIS_DIRTY_CONSTANTS_CS) &&
4990 (clean & IRIS_DIRTY_CS)) {
4991 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false);
4992 }
4993
4994 if (clean & IRIS_DIRTY_CS) {
4995 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4996
4997 if (shader) {
4998 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4999 iris_use_pinned_bo(batch, bo, false);
5000
5001 struct iris_bo *curbe_bo =
5002 iris_resource_bo(ice->state.last_res.cs_thread_ids);
5003 iris_use_pinned_bo(batch, curbe_bo, false);
5004
5005 struct brw_stage_prog_data *prog_data = shader->prog_data;
5006
5007 if (prog_data->total_scratch > 0) {
5008 struct iris_bo *bo =
5009 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
5010 iris_use_pinned_bo(batch, bo, true);
5011 }
5012 }
5013 }
5014 }
5015
5016 /**
5017 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
5018 */
5019 static void
5020 iris_update_surface_base_address(struct iris_batch *batch,
5021 struct iris_binder *binder)
5022 {
5023 if (batch->last_surface_base_address == binder->bo->gtt_offset)
5024 return;
5025
5026 uint32_t mocs = batch->screen->isl_dev.mocs.internal;
5027
5028 flush_before_state_base_change(batch);
5029
5030 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
5031 sba.SurfaceStateBaseAddressModifyEnable = true;
5032 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
5033
5034 /* The hardware appears to pay attention to the MOCS fields even
5035 * if you don't set the "Address Modify Enable" bit for the base.
5036 */
5037 sba.GeneralStateMOCS = mocs;
5038 sba.StatelessDataPortAccessMOCS = mocs;
5039 sba.DynamicStateMOCS = mocs;
5040 sba.IndirectObjectMOCS = mocs;
5041 sba.InstructionMOCS = mocs;
5042 sba.SurfaceStateMOCS = mocs;
5043 #if GEN_GEN >= 9
5044 sba.BindlessSurfaceStateMOCS = mocs;
5045 #endif
5046 }
5047
5048 flush_after_state_base_change(batch);
5049
5050 batch->last_surface_base_address = binder->bo->gtt_offset;
5051 }
5052
5053 static inline void
5054 iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
5055 bool window_space_position, float *zmin, float *zmax)
5056 {
5057 if (window_space_position) {
5058 *zmin = 0.f;
5059 *zmax = 1.f;
5060 return;
5061 }
5062 util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
5063 }
5064
5065 #if GEN_GEN >= 12
5066 void
5067 genX(emit_aux_map_state)(struct iris_batch *batch)
5068 {
5069 struct iris_screen *screen = batch->screen;
5070 void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
5071 if (!aux_map_ctx)
5072 return;
5073 uint32_t aux_map_state_num = gen_aux_map_get_state_num(aux_map_ctx);
5074 if (batch->last_aux_map_state != aux_map_state_num) {
5075 /* If the aux-map state number increased, then we need to rewrite the
5076 * register. Rewriting the register is used to both set the aux-map
5077 * translation table address, and also to invalidate any previously
5078 * cached translations.
5079 */
5080 uint64_t base_addr = gen_aux_map_get_base(aux_map_ctx);
5081 assert(base_addr != 0 && ALIGN(base_addr, 32 * 1024) == base_addr);
5082 iris_load_register_imm64(batch, GENX(GFX_AUX_TABLE_BASE_ADDR_num),
5083 base_addr);
5084 batch->last_aux_map_state = aux_map_state_num;
5085 }
5086 }
5087 #endif
5088
5089 static void
5090 iris_upload_dirty_render_state(struct iris_context *ice,
5091 struct iris_batch *batch,
5092 const struct pipe_draw_info *draw)
5093 {
5094 const uint64_t dirty = ice->state.dirty;
5095
5096 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
5097 return;
5098
5099 struct iris_genx_state *genx = ice->state.genx;
5100 struct iris_binder *binder = &ice->state.binder;
5101 struct brw_wm_prog_data *wm_prog_data = (void *)
5102 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
5103
5104 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
5105 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5106 uint32_t cc_vp_address;
5107
5108 /* XXX: could avoid streaming for depth_clip [0,1] case. */
5109 uint32_t *cc_vp_map =
5110 stream_state(batch, ice->state.dynamic_uploader,
5111 &ice->state.last_res.cc_vp,
5112 4 * ice->state.num_viewports *
5113 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
5114 for (int i = 0; i < ice->state.num_viewports; i++) {
5115 float zmin, zmax;
5116 iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
5117 ice->state.window_space_position,
5118 &zmin, &zmax);
5119 if (cso_rast->depth_clip_near)
5120 zmin = 0.0;
5121 if (cso_rast->depth_clip_far)
5122 zmax = 1.0;
5123
5124 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
5125 ccv.MinimumDepth = zmin;
5126 ccv.MaximumDepth = zmax;
5127 }
5128
5129 cc_vp_map += GENX(CC_VIEWPORT_length);
5130 }
5131
5132 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
5133 ptr.CCViewportPointer = cc_vp_address;
5134 }
5135 }
5136
5137 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
5138 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5139 uint32_t sf_cl_vp_address;
5140 uint32_t *vp_map =
5141 stream_state(batch, ice->state.dynamic_uploader,
5142 &ice->state.last_res.sf_cl_vp,
5143 4 * ice->state.num_viewports *
5144 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
5145
5146 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
5147 const struct pipe_viewport_state *state = &ice->state.viewports[i];
5148 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
5149
5150 float vp_xmin = viewport_extent(state, 0, -1.0f);
5151 float vp_xmax = viewport_extent(state, 0, 1.0f);
5152 float vp_ymin = viewport_extent(state, 1, -1.0f);
5153 float vp_ymax = viewport_extent(state, 1, 1.0f);
5154
5155 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
5156 state->scale[0], state->scale[1],
5157 state->translate[0], state->translate[1],
5158 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
5159
5160 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
5161 vp.ViewportMatrixElementm00 = state->scale[0];
5162 vp.ViewportMatrixElementm11 = state->scale[1];
5163 vp.ViewportMatrixElementm22 = state->scale[2];
5164 vp.ViewportMatrixElementm30 = state->translate[0];
5165 vp.ViewportMatrixElementm31 = state->translate[1];
5166 vp.ViewportMatrixElementm32 = state->translate[2];
5167 vp.XMinClipGuardband = gb_xmin;
5168 vp.XMaxClipGuardband = gb_xmax;
5169 vp.YMinClipGuardband = gb_ymin;
5170 vp.YMaxClipGuardband = gb_ymax;
5171 vp.XMinViewPort = MAX2(vp_xmin, 0);
5172 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
5173 vp.YMinViewPort = MAX2(vp_ymin, 0);
5174 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
5175 }
5176
5177 vp_map += GENX(SF_CLIP_VIEWPORT_length);
5178 }
5179
5180 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
5181 ptr.SFClipViewportPointer = sf_cl_vp_address;
5182 }
5183 }
5184
5185 if (dirty & IRIS_DIRTY_URB) {
5186 unsigned size[4];
5187
5188 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
5189 if (!ice->shaders.prog[i]) {
5190 size[i] = 1;
5191 } else {
5192 struct brw_vue_prog_data *vue_prog_data =
5193 (void *) ice->shaders.prog[i]->prog_data;
5194 size[i] = vue_prog_data->urb_entry_size;
5195 }
5196 assert(size[i] != 0);
5197 }
5198
5199 genX(emit_urb_setup)(ice, batch, size,
5200 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
5201 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
5202 }
5203
5204 if (dirty & IRIS_DIRTY_BLEND_STATE) {
5205 struct iris_blend_state *cso_blend = ice->state.cso_blend;
5206 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5207 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
5208 const int header_dwords = GENX(BLEND_STATE_length);
5209
5210 /* Always write at least one BLEND_STATE - the final RT message will
5211 * reference BLEND_STATE[0] even if there aren't color writes. There
5212 * may still be alpha testing, computed depth, and so on.
5213 */
5214 const int rt_dwords =
5215 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
5216
5217 uint32_t blend_offset;
5218 uint32_t *blend_map =
5219 stream_state(batch, ice->state.dynamic_uploader,
5220 &ice->state.last_res.blend,
5221 4 * (header_dwords + rt_dwords), 64, &blend_offset);
5222
5223 uint32_t blend_state_header;
5224 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
5225 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
5226 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
5227 }
5228
5229 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
5230 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
5231
5232 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
5233 ptr.BlendStatePointer = blend_offset;
5234 ptr.BlendStatePointerValid = true;
5235 }
5236 }
5237
5238 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
5239 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
5240 #if GEN_GEN == 8
5241 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5242 #endif
5243 uint32_t cc_offset;
5244 void *cc_map =
5245 stream_state(batch, ice->state.dynamic_uploader,
5246 &ice->state.last_res.color_calc,
5247 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
5248 64, &cc_offset);
5249 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
5250 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
5251 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
5252 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
5253 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
5254 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
5255 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
5256 #if GEN_GEN == 8
5257 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
5258 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
5259 #endif
5260 }
5261 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
5262 ptr.ColorCalcStatePointer = cc_offset;
5263 ptr.ColorCalcStatePointerValid = true;
5264 }
5265 }
5266
5267 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5268 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
5269 continue;
5270
5271 struct iris_shader_state *shs = &ice->state.shaders[stage];
5272 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5273
5274 if (!shader)
5275 continue;
5276
5277 if (shs->sysvals_need_upload)
5278 upload_sysvals(ice, stage);
5279
5280 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
5281
5282 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
5283 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
5284 if (prog_data) {
5285 /* The Skylake PRM contains the following restriction:
5286 *
5287 * "The driver must ensure The following case does not occur
5288 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
5289 * buffer 3 read length equal to zero committed followed by a
5290 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
5291 * zero committed."
5292 *
5293 * To avoid this, we program the buffers in the highest slots.
5294 * This way, slot 0 is only used if slot 3 is also used.
5295 */
5296 int n = 3;
5297
5298 for (int i = 3; i >= 0; i--) {
5299 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
5300
5301 if (range->length == 0)
5302 continue;
5303
5304 /* Range block is a binding table index, map back to UBO index. */
5305 unsigned block_index = iris_bti_to_group_index(
5306 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
5307 assert(block_index != IRIS_SURFACE_NOT_USED);
5308
5309 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
5310 struct iris_resource *res = (void *) cbuf->buffer;
5311
5312 assert(cbuf->buffer_offset % 32 == 0);
5313
5314 pkt.ConstantBody.ReadLength[n] = range->length;
5315 pkt.ConstantBody.Buffer[n] =
5316 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
5317 : ro_bo(batch->screen->workaround_bo, 0);
5318 n--;
5319 }
5320 }
5321 }
5322 }
5323
5324 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5325 /* Gen9 requires 3DSTATE_BINDING_TABLE_POINTERS_XS to be re-emitted
5326 * in order to commit constants. TODO: Investigate "Disable Gather
5327 * at Set Shader" to go back to legacy mode...
5328 */
5329 if (dirty & ((IRIS_DIRTY_BINDINGS_VS |
5330 (GEN_GEN == 9 ? IRIS_DIRTY_CONSTANTS_VS : 0)) << stage)) {
5331 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
5332 ptr._3DCommandSubOpcode = 38 + stage;
5333 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
5334 }
5335 }
5336 }
5337
5338 if (GEN_GEN >= 11 && (dirty & IRIS_DIRTY_RENDER_BUFFER)) {
5339 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
5340 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
5341
5342 /* The PIPE_CONTROL command description says:
5343 *
5344 * "Whenever a Binding Table Index (BTI) used by a Render Target
5345 * Message points to a different RENDER_SURFACE_STATE, SW must issue a
5346 * Render Target Cache Flush by enabling this bit. When render target
5347 * flush is set due to new association of BTI, PS Scoreboard Stall bit
5348 * must be set in this packet."
5349 */
5350 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
5351 iris_emit_pipe_control_flush(batch, "workaround: RT BTI change [draw]",
5352 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5353 PIPE_CONTROL_STALL_AT_SCOREBOARD);
5354 }
5355
5356 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5357 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
5358 iris_populate_binding_table(ice, batch, stage, false);
5359 }
5360 }
5361
5362 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5363 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
5364 !ice->shaders.prog[stage])
5365 continue;
5366
5367 iris_upload_sampler_states(ice, stage);
5368
5369 struct iris_shader_state *shs = &ice->state.shaders[stage];
5370 struct pipe_resource *res = shs->sampler_table.res;
5371 if (res)
5372 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
5373
5374 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
5375 ptr._3DCommandSubOpcode = 43 + stage;
5376 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
5377 }
5378 }
5379
5380 if (ice->state.need_border_colors)
5381 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5382
5383 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
5384 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
5385 ms.PixelLocation =
5386 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
5387 if (ice->state.framebuffer.samples > 0)
5388 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
5389 }
5390 }
5391
5392 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
5393 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
5394 ms.SampleMask = ice->state.sample_mask;
5395 }
5396 }
5397
5398 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
5399 if (!(dirty & (IRIS_DIRTY_VS << stage)))
5400 continue;
5401
5402 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5403
5404 if (shader) {
5405 struct brw_stage_prog_data *prog_data = shader->prog_data;
5406 struct iris_resource *cache = (void *) shader->assembly.res;
5407 iris_use_pinned_bo(batch, cache->bo, false);
5408
5409 if (prog_data->total_scratch > 0) {
5410 struct iris_bo *bo =
5411 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
5412 iris_use_pinned_bo(batch, bo, true);
5413 }
5414
5415 if (stage == MESA_SHADER_FRAGMENT) {
5416 UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
5417 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5418
5419 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
5420 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
5421 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
5422 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
5423 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
5424
5425 /* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say:
5426 *
5427 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16,
5428 * SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch
5429 * mode."
5430 *
5431 * 16x MSAA only exists on Gen9+, so we can skip this on Gen8.
5432 */
5433 if (GEN_GEN >= 9 && cso_fb->samples == 16 &&
5434 !wm_prog_data->persample_dispatch) {
5435 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
5436 ps._32PixelDispatchEnable = false;
5437 }
5438
5439 ps.DispatchGRFStartRegisterForConstantSetupData0 =
5440 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
5441 ps.DispatchGRFStartRegisterForConstantSetupData1 =
5442 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
5443 ps.DispatchGRFStartRegisterForConstantSetupData2 =
5444 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
5445
5446 ps.KernelStartPointer0 = KSP(shader) +
5447 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
5448 ps.KernelStartPointer1 = KSP(shader) +
5449 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
5450 ps.KernelStartPointer2 = KSP(shader) +
5451 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
5452 }
5453
5454 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
5455 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
5456 #if GEN_GEN >= 9
5457 if (!wm_prog_data->uses_sample_mask)
5458 psx.InputCoverageMaskState = ICMS_NONE;
5459 else if (wm_prog_data->post_depth_coverage)
5460 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
5461 else if (wm_prog_data->inner_coverage &&
5462 cso->conservative_rasterization)
5463 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
5464 else
5465 psx.InputCoverageMaskState = ICMS_NORMAL;
5466 #else
5467 psx.PixelShaderUsesInputCoverageMask =
5468 wm_prog_data->uses_sample_mask;
5469 #endif
5470 }
5471
5472 uint32_t *shader_ps = (uint32_t *) shader->derived_data;
5473 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
5474 iris_emit_merge(batch, shader_ps, ps_state,
5475 GENX(3DSTATE_PS_length));
5476 iris_emit_merge(batch, shader_psx, psx_state,
5477 GENX(3DSTATE_PS_EXTRA_length));
5478 } else {
5479 iris_batch_emit(batch, shader->derived_data,
5480 iris_derived_program_state_size(stage));
5481 }
5482 } else {
5483 if (stage == MESA_SHADER_TESS_EVAL) {
5484 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
5485 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
5486 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
5487 } else if (stage == MESA_SHADER_GEOMETRY) {
5488 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
5489 }
5490 }
5491 }
5492
5493 if (ice->state.streamout_active) {
5494 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
5495 iris_batch_emit(batch, genx->so_buffers,
5496 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
5497 for (int i = 0; i < 4; i++) {
5498 struct iris_stream_output_target *tgt =
5499 (void *) ice->state.so_target[i];
5500 if (tgt) {
5501 tgt->zeroed = true;
5502 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
5503 true);
5504 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
5505 true);
5506 }
5507 }
5508 }
5509
5510 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
5511 uint32_t *decl_list =
5512 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
5513 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
5514 }
5515
5516 if (dirty & IRIS_DIRTY_STREAMOUT) {
5517 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5518
5519 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
5520 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
5521 sol.SOFunctionEnable = true;
5522 sol.SOStatisticsEnable = true;
5523
5524 sol.RenderingDisable = cso_rast->rasterizer_discard &&
5525 !ice->state.prims_generated_query_active;
5526 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
5527 }
5528
5529 assert(ice->state.streamout);
5530
5531 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
5532 GENX(3DSTATE_STREAMOUT_length));
5533 }
5534 } else {
5535 if (dirty & IRIS_DIRTY_STREAMOUT) {
5536 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
5537 }
5538 }
5539
5540 if (dirty & IRIS_DIRTY_CLIP) {
5541 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5542 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5543
5544 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
5545 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
5546 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
5547 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
5548 : ice->state.prim_is_points_or_lines);
5549
5550 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
5551 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
5552 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
5553 if (cso_rast->rasterizer_discard)
5554 cl.ClipMode = CLIPMODE_REJECT_ALL;
5555 else if (ice->state.window_space_position)
5556 cl.ClipMode = CLIPMODE_ACCEPT_ALL;
5557 else
5558 cl.ClipMode = CLIPMODE_NORMAL;
5559
5560 cl.PerspectiveDivideDisable = ice->state.window_space_position;
5561 cl.ViewportXYClipTestEnable = !points_or_lines;
5562
5563 if (wm_prog_data->barycentric_interp_modes &
5564 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
5565 cl.NonPerspectiveBarycentricEnable = true;
5566
5567 cl.ForceZeroRTAIndexEnable = cso_fb->layers <= 1;
5568 cl.MaximumVPIndex = ice->state.num_viewports - 1;
5569 }
5570 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
5571 ARRAY_SIZE(cso_rast->clip));
5572 }
5573
5574 if (dirty & IRIS_DIRTY_RASTER) {
5575 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5576 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
5577
5578 uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
5579 iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
5580 sf.ViewportTransformEnable = !ice->state.window_space_position;
5581 }
5582 iris_emit_merge(batch, cso->sf, dynamic_sf,
5583 ARRAY_SIZE(dynamic_sf));
5584 }
5585
5586 if (dirty & IRIS_DIRTY_WM) {
5587 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5588 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
5589
5590 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
5591 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
5592
5593 wm.BarycentricInterpolationMode =
5594 wm_prog_data->barycentric_interp_modes;
5595
5596 if (wm_prog_data->early_fragment_tests)
5597 wm.EarlyDepthStencilControl = EDSC_PREPS;
5598 else if (wm_prog_data->has_side_effects)
5599 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
5600
5601 /* We could skip this bit if color writes are enabled. */
5602 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
5603 wm.ForceThreadDispatchEnable = ForceON;
5604 }
5605 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
5606 }
5607
5608 if (dirty & IRIS_DIRTY_SBE) {
5609 iris_emit_sbe(batch, ice);
5610 }
5611
5612 if (dirty & IRIS_DIRTY_PS_BLEND) {
5613 struct iris_blend_state *cso_blend = ice->state.cso_blend;
5614 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
5615 const struct shader_info *fs_info =
5616 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
5617
5618 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
5619 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
5620 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
5621 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
5622
5623 /* The dual source blending docs caution against using SRC1 factors
5624 * when the shader doesn't use a dual source render target write.
5625 * Empirically, this can lead to GPU hangs, and the results are
5626 * undefined anyway, so simply disable blending to avoid the hang.
5627 */
5628 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
5629 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
5630 }
5631
5632 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
5633 ARRAY_SIZE(cso_blend->ps_blend));
5634 }
5635
5636 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
5637 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
5638 #if GEN_GEN >= 9
5639 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5640 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
5641 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
5642 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
5643 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
5644 }
5645 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
5646 #else
5647 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
5648 #endif
5649
5650 #if GEN_GEN >= 12
5651 iris_batch_emit(batch, cso->depth_bounds, sizeof(cso->depth_bounds));
5652 #endif
5653 }
5654
5655 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
5656 uint32_t scissor_offset =
5657 emit_state(batch, ice->state.dynamic_uploader,
5658 &ice->state.last_res.scissor,
5659 ice->state.scissors,
5660 sizeof(struct pipe_scissor_state) *
5661 ice->state.num_viewports, 32);
5662
5663 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
5664 ptr.ScissorRectPointer = scissor_offset;
5665 }
5666 }
5667
5668 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
5669 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
5670
5671 /* Do not emit the clear params yets. We need to update the clear value
5672 * first.
5673 */
5674 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
5675 uint32_t cso_z_size = sizeof(cso_z->packets) - clear_length;
5676 iris_batch_emit(batch, cso_z->packets, cso_z_size);
5677 if (GEN_GEN >= 12) {
5678 /* GEN:BUG:1408224581
5679 *
5680 * Workaround: Gen12LP Astep only An additional pipe control with
5681 * post-sync = store dword operation would be required.( w/a is to
5682 * have an additional pipe control after the stencil state whenever
5683 * the surface state bits of this state is changing).
5684 */
5685 iris_emit_pipe_control_write(batch, "WA for stencil state",
5686 PIPE_CONTROL_WRITE_IMMEDIATE,
5687 batch->screen->workaround_bo, 0, 0);
5688 }
5689
5690 union isl_color_value clear_value = { .f32 = { 0, } };
5691
5692 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5693 if (cso_fb->zsbuf) {
5694 struct iris_resource *zres, *sres;
5695 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
5696 &zres, &sres);
5697 if (zres && zres->aux.bo)
5698 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
5699 }
5700
5701 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
5702 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
5703 clear.DepthClearValueValid = true;
5704 clear.DepthClearValue = clear_value.f32[0];
5705 }
5706 iris_batch_emit(batch, clear_params, clear_length);
5707 }
5708
5709 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
5710 /* Listen for buffer changes, and also write enable changes. */
5711 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5712 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
5713 }
5714
5715 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
5716 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
5717 for (int i = 0; i < 32; i++) {
5718 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
5719 }
5720 }
5721 }
5722
5723 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
5724 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5725 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
5726 }
5727
5728 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
5729 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
5730 topo.PrimitiveTopologyType =
5731 translate_prim_type(draw->mode, draw->vertices_per_patch);
5732 }
5733 }
5734
5735 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
5736 int count = util_bitcount64(ice->state.bound_vertex_buffers);
5737 int dynamic_bound = ice->state.bound_vertex_buffers;
5738
5739 if (ice->state.vs_uses_draw_params) {
5740 assert(ice->draw.draw_params.res);
5741
5742 struct iris_vertex_buffer_state *state =
5743 &(ice->state.genx->vertex_buffers[count]);
5744 pipe_resource_reference(&state->resource, ice->draw.draw_params.res);
5745 struct iris_resource *res = (void *) state->resource;
5746
5747 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5748 vb.VertexBufferIndex = count;
5749 vb.AddressModifyEnable = true;
5750 vb.BufferPitch = 0;
5751 vb.BufferSize = res->bo->size - ice->draw.draw_params.offset;
5752 vb.BufferStartingAddress =
5753 ro_bo(NULL, res->bo->gtt_offset +
5754 (int) ice->draw.draw_params.offset);
5755 vb.MOCS = mocs(res->bo, &batch->screen->isl_dev);
5756 }
5757 dynamic_bound |= 1ull << count;
5758 count++;
5759 }
5760
5761 if (ice->state.vs_uses_derived_draw_params) {
5762 struct iris_vertex_buffer_state *state =
5763 &(ice->state.genx->vertex_buffers[count]);
5764 pipe_resource_reference(&state->resource,
5765 ice->draw.derived_draw_params.res);
5766 struct iris_resource *res = (void *) ice->draw.derived_draw_params.res;
5767
5768 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5769 vb.VertexBufferIndex = count;
5770 vb.AddressModifyEnable = true;
5771 vb.BufferPitch = 0;
5772 vb.BufferSize =
5773 res->bo->size - ice->draw.derived_draw_params.offset;
5774 vb.BufferStartingAddress =
5775 ro_bo(NULL, res->bo->gtt_offset +
5776 (int) ice->draw.derived_draw_params.offset);
5777 vb.MOCS = mocs(res->bo, &batch->screen->isl_dev);
5778 }
5779 dynamic_bound |= 1ull << count;
5780 count++;
5781 }
5782
5783 if (count) {
5784 /* The VF cache designers cut corners, and made the cache key's
5785 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
5786 * 32 bits of the address. If you have two vertex buffers which get
5787 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
5788 * you can get collisions (even within a single batch).
5789 *
5790 * So, we need to do a VF cache invalidate if the buffer for a VB
5791 * slot slot changes [48:32] address bits from the previous time.
5792 */
5793 unsigned flush_flags = 0;
5794
5795 uint64_t bound = dynamic_bound;
5796 while (bound) {
5797 const int i = u_bit_scan64(&bound);
5798 uint16_t high_bits = 0;
5799
5800 struct iris_resource *res =
5801 (void *) genx->vertex_buffers[i].resource;
5802 if (res) {
5803 iris_use_pinned_bo(batch, res->bo, false);
5804
5805 high_bits = res->bo->gtt_offset >> 32ull;
5806 if (high_bits != ice->state.last_vbo_high_bits[i]) {
5807 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
5808 PIPE_CONTROL_CS_STALL;
5809 ice->state.last_vbo_high_bits[i] = high_bits;
5810 }
5811 }
5812 }
5813
5814 if (flush_flags) {
5815 iris_emit_pipe_control_flush(batch,
5816 "workaround: VF cache 32-bit key [VB]",
5817 flush_flags);
5818 }
5819
5820 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
5821
5822 uint32_t *map =
5823 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
5824 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
5825 vb.DWordLength = (vb_dwords * count + 1) - 2;
5826 }
5827 map += 1;
5828
5829 bound = dynamic_bound;
5830 while (bound) {
5831 const int i = u_bit_scan64(&bound);
5832 memcpy(map, genx->vertex_buffers[i].state,
5833 sizeof(uint32_t) * vb_dwords);
5834 map += vb_dwords;
5835 }
5836 }
5837 }
5838
5839 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
5840 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5841 const unsigned entries = MAX2(cso->count, 1);
5842 if (!(ice->state.vs_needs_sgvs_element ||
5843 ice->state.vs_uses_derived_draw_params ||
5844 ice->state.vs_needs_edge_flag)) {
5845 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
5846 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
5847 } else {
5848 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
5849 const unsigned dyn_count = cso->count +
5850 ice->state.vs_needs_sgvs_element +
5851 ice->state.vs_uses_derived_draw_params;
5852
5853 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
5854 &dynamic_ves, ve) {
5855 ve.DWordLength =
5856 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
5857 }
5858 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
5859 (cso->count - ice->state.vs_needs_edge_flag) *
5860 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
5861 uint32_t *ve_pack_dest =
5862 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
5863 GENX(VERTEX_ELEMENT_STATE_length)];
5864
5865 if (ice->state.vs_needs_sgvs_element) {
5866 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
5867 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
5868 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5869 ve.Valid = true;
5870 ve.VertexBufferIndex =
5871 util_bitcount64(ice->state.bound_vertex_buffers);
5872 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5873 ve.Component0Control = base_ctrl;
5874 ve.Component1Control = base_ctrl;
5875 ve.Component2Control = VFCOMP_STORE_0;
5876 ve.Component3Control = VFCOMP_STORE_0;
5877 }
5878 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5879 }
5880 if (ice->state.vs_uses_derived_draw_params) {
5881 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5882 ve.Valid = true;
5883 ve.VertexBufferIndex =
5884 util_bitcount64(ice->state.bound_vertex_buffers) +
5885 ice->state.vs_uses_draw_params;
5886 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5887 ve.Component0Control = VFCOMP_STORE_SRC;
5888 ve.Component1Control = VFCOMP_STORE_SRC;
5889 ve.Component2Control = VFCOMP_STORE_0;
5890 ve.Component3Control = VFCOMP_STORE_0;
5891 }
5892 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5893 }
5894 if (ice->state.vs_needs_edge_flag) {
5895 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
5896 ve_pack_dest[i] = cso->edgeflag_ve[i];
5897 }
5898
5899 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
5900 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
5901 }
5902
5903 if (!ice->state.vs_needs_edge_flag) {
5904 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
5905 entries * GENX(3DSTATE_VF_INSTANCING_length));
5906 } else {
5907 assert(cso->count > 0);
5908 const unsigned edgeflag_index = cso->count - 1;
5909 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
5910 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
5911 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
5912
5913 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
5914 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
5915 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
5916 vi.VertexElementIndex = edgeflag_index +
5917 ice->state.vs_needs_sgvs_element +
5918 ice->state.vs_uses_derived_draw_params;
5919 }
5920 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
5921 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
5922
5923 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
5924 entries * GENX(3DSTATE_VF_INSTANCING_length));
5925 }
5926 }
5927
5928 if (dirty & IRIS_DIRTY_VF_SGVS) {
5929 const struct brw_vs_prog_data *vs_prog_data = (void *)
5930 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
5931 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5932
5933 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
5934 if (vs_prog_data->uses_vertexid) {
5935 sgv.VertexIDEnable = true;
5936 sgv.VertexIDComponentNumber = 2;
5937 sgv.VertexIDElementOffset =
5938 cso->count - ice->state.vs_needs_edge_flag;
5939 }
5940
5941 if (vs_prog_data->uses_instanceid) {
5942 sgv.InstanceIDEnable = true;
5943 sgv.InstanceIDComponentNumber = 3;
5944 sgv.InstanceIDElementOffset =
5945 cso->count - ice->state.vs_needs_edge_flag;
5946 }
5947 }
5948 }
5949
5950 if (dirty & IRIS_DIRTY_VF) {
5951 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
5952 if (draw->primitive_restart) {
5953 vf.IndexedDrawCutIndexEnable = true;
5954 vf.CutIndex = draw->restart_index;
5955 }
5956 }
5957 }
5958
5959 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
5960 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
5961 vf.StatisticsEnable = true;
5962 }
5963 }
5964
5965 #if GEN_GEN == 8
5966 if (dirty & IRIS_DIRTY_PMA_FIX) {
5967 bool enable = want_pma_fix(ice);
5968 genX(update_pma_fix)(ice, batch, enable);
5969 }
5970 #endif
5971
5972 if (ice->state.current_hash_scale != 1)
5973 genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
5974
5975 #if GEN_GEN >= 12
5976 genX(emit_aux_map_state)(batch);
5977 #endif
5978 }
5979
5980 static void
5981 iris_upload_render_state(struct iris_context *ice,
5982 struct iris_batch *batch,
5983 const struct pipe_draw_info *draw)
5984 {
5985 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5986
5987 /* Always pin the binder. If we're emitting new binding table pointers,
5988 * we need it. If not, we're probably inheriting old tables via the
5989 * context, and need it anyway. Since true zero-bindings cases are
5990 * practically non-existent, just pin it and avoid last_res tracking.
5991 */
5992 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5993
5994 if (!batch->contains_draw) {
5995 iris_restore_render_saved_bos(ice, batch, draw);
5996 batch->contains_draw = true;
5997 }
5998
5999 iris_upload_dirty_render_state(ice, batch, draw);
6000
6001 if (draw->index_size > 0) {
6002 unsigned offset;
6003
6004 if (draw->has_user_indices) {
6005 u_upload_data(ice->ctx.stream_uploader, 0,
6006 draw->count * draw->index_size, 4, draw->index.user,
6007 &offset, &ice->state.last_res.index_buffer);
6008 } else {
6009 struct iris_resource *res = (void *) draw->index.resource;
6010 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
6011
6012 pipe_resource_reference(&ice->state.last_res.index_buffer,
6013 draw->index.resource);
6014 offset = 0;
6015 }
6016
6017 struct iris_genx_state *genx = ice->state.genx;
6018 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
6019
6020 uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
6021 iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
6022 ib.IndexFormat = draw->index_size >> 1;
6023 ib.MOCS = mocs(bo, &batch->screen->isl_dev);
6024 ib.BufferSize = bo->size - offset;
6025 ib.BufferStartingAddress = ro_bo(NULL, bo->gtt_offset + offset);
6026 }
6027
6028 if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
6029 memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
6030 iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
6031 iris_use_pinned_bo(batch, bo, false);
6032 }
6033
6034 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
6035 uint16_t high_bits = bo->gtt_offset >> 32ull;
6036 if (high_bits != ice->state.last_index_bo_high_bits) {
6037 iris_emit_pipe_control_flush(batch,
6038 "workaround: VF cache 32-bit key [IB]",
6039 PIPE_CONTROL_VF_CACHE_INVALIDATE |
6040 PIPE_CONTROL_CS_STALL);
6041 ice->state.last_index_bo_high_bits = high_bits;
6042 }
6043 }
6044
6045 #define _3DPRIM_END_OFFSET 0x2420
6046 #define _3DPRIM_START_VERTEX 0x2430
6047 #define _3DPRIM_VERTEX_COUNT 0x2434
6048 #define _3DPRIM_INSTANCE_COUNT 0x2438
6049 #define _3DPRIM_START_INSTANCE 0x243C
6050 #define _3DPRIM_BASE_VERTEX 0x2440
6051
6052 if (draw->indirect) {
6053 if (draw->indirect->indirect_draw_count) {
6054 use_predicate = true;
6055
6056 struct iris_bo *draw_count_bo =
6057 iris_resource_bo(draw->indirect->indirect_draw_count);
6058 unsigned draw_count_offset =
6059 draw->indirect->indirect_draw_count_offset;
6060
6061 iris_emit_pipe_control_flush(batch,
6062 "ensure indirect draw buffer is flushed",
6063 PIPE_CONTROL_FLUSH_ENABLE);
6064
6065 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
6066 struct gen_mi_builder b;
6067 gen_mi_builder_init(&b, batch);
6068
6069 /* comparison = draw id < draw count */
6070 struct gen_mi_value comparison =
6071 gen_mi_ult(&b, gen_mi_imm(draw->drawid),
6072 gen_mi_mem32(ro_bo(draw_count_bo,
6073 draw_count_offset)));
6074
6075 /* predicate = comparison & conditional rendering predicate */
6076 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_RESULT),
6077 gen_mi_iand(&b, comparison,
6078 gen_mi_reg32(CS_GPR(15))));
6079 } else {
6080 uint32_t mi_predicate;
6081
6082 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
6083 iris_load_register_imm64(batch, MI_PREDICATE_SRC1, draw->drawid);
6084 /* Upload the current draw count from the draw parameters buffer
6085 * to MI_PREDICATE_SRC0.
6086 */
6087 iris_load_register_mem32(batch, MI_PREDICATE_SRC0,
6088 draw_count_bo, draw_count_offset);
6089 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
6090 iris_load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
6091
6092 if (draw->drawid == 0) {
6093 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
6094 MI_PREDICATE_COMBINEOP_SET |
6095 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
6096 } else {
6097 /* While draw_index < draw_count the predicate's result will be
6098 * (draw_index == draw_count) ^ TRUE = TRUE
6099 * When draw_index == draw_count the result is
6100 * (TRUE) ^ TRUE = FALSE
6101 * After this all results will be:
6102 * (FALSE) ^ FALSE = FALSE
6103 */
6104 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
6105 MI_PREDICATE_COMBINEOP_XOR |
6106 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
6107 }
6108 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
6109 }
6110 }
6111 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
6112 assert(bo);
6113
6114 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6115 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
6116 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
6117 }
6118 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6119 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
6120 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
6121 }
6122 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6123 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
6124 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
6125 }
6126 if (draw->index_size) {
6127 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6128 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
6129 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
6130 }
6131 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6132 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
6133 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
6134 }
6135 } else {
6136 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6137 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
6138 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
6139 }
6140 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
6141 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
6142 lri.DataDWord = 0;
6143 }
6144 }
6145 } else if (draw->count_from_stream_output) {
6146 struct iris_stream_output_target *so =
6147 (void *) draw->count_from_stream_output;
6148
6149 /* XXX: Replace with actual cache tracking */
6150 iris_emit_pipe_control_flush(batch,
6151 "draw count from stream output stall",
6152 PIPE_CONTROL_CS_STALL);
6153
6154 struct gen_mi_builder b;
6155 gen_mi_builder_init(&b, batch);
6156
6157 struct iris_address addr =
6158 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
6159 struct gen_mi_value offset =
6160 gen_mi_iadd_imm(&b, gen_mi_mem32(addr), -so->base.buffer_offset);
6161
6162 gen_mi_store(&b, gen_mi_reg32(_3DPRIM_VERTEX_COUNT),
6163 gen_mi_udiv32_imm(&b, offset, so->stride));
6164
6165 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
6166 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
6167 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
6168 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
6169 }
6170
6171 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
6172 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
6173 prim.PredicateEnable = use_predicate;
6174
6175 if (draw->indirect || draw->count_from_stream_output) {
6176 prim.IndirectParameterEnable = true;
6177 } else {
6178 prim.StartInstanceLocation = draw->start_instance;
6179 prim.InstanceCount = draw->instance_count;
6180 prim.VertexCountPerInstance = draw->count;
6181
6182 prim.StartVertexLocation = draw->start;
6183
6184 if (draw->index_size) {
6185 prim.BaseVertexLocation += draw->index_bias;
6186 } else {
6187 prim.StartVertexLocation += draw->index_bias;
6188 }
6189 }
6190 }
6191 }
6192
6193 static void
6194 iris_upload_compute_state(struct iris_context *ice,
6195 struct iris_batch *batch,
6196 const struct pipe_grid_info *grid)
6197 {
6198 const uint64_t dirty = ice->state.dirty;
6199 struct iris_screen *screen = batch->screen;
6200 const struct gen_device_info *devinfo = &screen->devinfo;
6201 struct iris_binder *binder = &ice->state.binder;
6202 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
6203 struct iris_compiled_shader *shader =
6204 ice->shaders.prog[MESA_SHADER_COMPUTE];
6205 struct brw_stage_prog_data *prog_data = shader->prog_data;
6206 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
6207
6208 /* Always pin the binder. If we're emitting new binding table pointers,
6209 * we need it. If not, we're probably inheriting old tables via the
6210 * context, and need it anyway. Since true zero-bindings cases are
6211 * practically non-existent, just pin it and avoid last_res tracking.
6212 */
6213 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
6214
6215 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->sysvals_need_upload)
6216 upload_sysvals(ice, MESA_SHADER_COMPUTE);
6217
6218 if (dirty & IRIS_DIRTY_BINDINGS_CS)
6219 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
6220
6221 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
6222 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
6223
6224 iris_use_optional_res(batch, shs->sampler_table.res, false);
6225 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
6226
6227 if (ice->state.need_border_colors)
6228 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
6229
6230 #if GEN_GEN >= 12
6231 genX(emit_aux_map_state)(batch);
6232 #endif
6233
6234 if (dirty & IRIS_DIRTY_CS) {
6235 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
6236 *
6237 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
6238 * the only bits that are changed are scoreboard related: Scoreboard
6239 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
6240 * these scoreboard related states, a MEDIA_STATE_FLUSH is
6241 * sufficient."
6242 */
6243 iris_emit_pipe_control_flush(batch,
6244 "workaround: stall before MEDIA_VFE_STATE",
6245 PIPE_CONTROL_CS_STALL);
6246
6247 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
6248 if (prog_data->total_scratch) {
6249 struct iris_bo *bo =
6250 iris_get_scratch_space(ice, prog_data->total_scratch,
6251 MESA_SHADER_COMPUTE);
6252 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
6253 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
6254 }
6255
6256 vfe.MaximumNumberofThreads =
6257 devinfo->max_cs_threads * screen->subslice_total - 1;
6258 #if GEN_GEN < 11
6259 vfe.ResetGatewayTimer =
6260 Resettingrelativetimerandlatchingtheglobaltimestamp;
6261 #endif
6262 #if GEN_GEN == 8
6263 vfe.BypassGatewayControl = true;
6264 #endif
6265 vfe.NumberofURBEntries = 2;
6266 vfe.URBEntryAllocationSize = 2;
6267
6268 vfe.CURBEAllocationSize =
6269 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
6270 cs_prog_data->push.cross_thread.regs, 2);
6271 }
6272 }
6273
6274 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
6275 if (dirty & IRIS_DIRTY_CS) {
6276 uint32_t curbe_data_offset = 0;
6277 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
6278 cs_prog_data->push.per_thread.dwords == 1 &&
6279 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
6280 uint32_t *curbe_data_map =
6281 stream_state(batch, ice->state.dynamic_uploader,
6282 &ice->state.last_res.cs_thread_ids,
6283 ALIGN(cs_prog_data->push.total.size, 64), 64,
6284 &curbe_data_offset);
6285 assert(curbe_data_map);
6286 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
6287 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
6288
6289 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
6290 curbe.CURBETotalDataLength =
6291 ALIGN(cs_prog_data->push.total.size, 64);
6292 curbe.CURBEDataStartAddress = curbe_data_offset;
6293 }
6294 }
6295
6296 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
6297 IRIS_DIRTY_BINDINGS_CS |
6298 IRIS_DIRTY_CONSTANTS_CS |
6299 IRIS_DIRTY_CS)) {
6300 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
6301
6302 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
6303 idd.SamplerStatePointer = shs->sampler_table.offset;
6304 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
6305 }
6306
6307 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
6308 desc[i] |= ((uint32_t *) shader->derived_data)[i];
6309
6310 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
6311 load.InterfaceDescriptorTotalLength =
6312 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
6313 load.InterfaceDescriptorDataStartAddress =
6314 emit_state(batch, ice->state.dynamic_uploader,
6315 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
6316 }
6317 }
6318
6319 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
6320 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
6321 uint32_t right_mask;
6322
6323 if (remainder > 0)
6324 right_mask = ~0u >> (32 - remainder);
6325 else
6326 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
6327
6328 #define GPGPU_DISPATCHDIMX 0x2500
6329 #define GPGPU_DISPATCHDIMY 0x2504
6330 #define GPGPU_DISPATCHDIMZ 0x2508
6331
6332 if (grid->indirect) {
6333 struct iris_state_ref *grid_size = &ice->state.grid_size;
6334 struct iris_bo *bo = iris_resource_bo(grid_size->res);
6335 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6336 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
6337 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
6338 }
6339 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6340 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
6341 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
6342 }
6343 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6344 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
6345 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
6346 }
6347 }
6348
6349 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
6350 ggw.IndirectParameterEnable = grid->indirect != NULL;
6351 ggw.SIMDSize = cs_prog_data->simd_size / 16;
6352 ggw.ThreadDepthCounterMaximum = 0;
6353 ggw.ThreadHeightCounterMaximum = 0;
6354 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
6355 ggw.ThreadGroupIDXDimension = grid->grid[0];
6356 ggw.ThreadGroupIDYDimension = grid->grid[1];
6357 ggw.ThreadGroupIDZDimension = grid->grid[2];
6358 ggw.RightExecutionMask = right_mask;
6359 ggw.BottomExecutionMask = 0xffffffff;
6360 }
6361
6362 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
6363
6364 if (!batch->contains_draw) {
6365 iris_restore_compute_saved_bos(ice, batch, grid);
6366 batch->contains_draw = true;
6367 }
6368 }
6369
6370 /**
6371 * State module teardown.
6372 */
6373 static void
6374 iris_destroy_state(struct iris_context *ice)
6375 {
6376 struct iris_genx_state *genx = ice->state.genx;
6377
6378 pipe_resource_reference(&ice->draw.draw_params.res, NULL);
6379 pipe_resource_reference(&ice->draw.derived_draw_params.res, NULL);
6380
6381 /* Loop over all VBOs, including ones for draw parameters */
6382 for (unsigned i = 0; i < ARRAY_SIZE(genx->vertex_buffers); i++) {
6383 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
6384 }
6385
6386 free(ice->state.genx);
6387
6388 for (int i = 0; i < 4; i++) {
6389 pipe_so_target_reference(&ice->state.so_target[i], NULL);
6390 }
6391
6392 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
6393 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
6394 }
6395 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
6396
6397 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
6398 struct iris_shader_state *shs = &ice->state.shaders[stage];
6399 pipe_resource_reference(&shs->sampler_table.res, NULL);
6400 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
6401 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
6402 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
6403 }
6404 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
6405 pipe_resource_reference(&shs->image[i].base.resource, NULL);
6406 pipe_resource_reference(&shs->image[i].surface_state.ref.res, NULL);
6407 free(shs->image[i].surface_state.cpu);
6408 }
6409 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
6410 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
6411 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
6412 }
6413 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
6414 pipe_sampler_view_reference((struct pipe_sampler_view **)
6415 &shs->textures[i], NULL);
6416 }
6417 }
6418
6419 pipe_resource_reference(&ice->state.grid_size.res, NULL);
6420 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
6421
6422 pipe_resource_reference(&ice->state.null_fb.res, NULL);
6423 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
6424
6425 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
6426 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
6427 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
6428 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
6429 pipe_resource_reference(&ice->state.last_res.blend, NULL);
6430 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
6431 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
6432 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
6433 }
6434
6435 /* ------------------------------------------------------------------- */
6436
6437 static void
6438 iris_rebind_buffer(struct iris_context *ice,
6439 struct iris_resource *res)
6440 {
6441 struct pipe_context *ctx = &ice->ctx;
6442 struct iris_genx_state *genx = ice->state.genx;
6443
6444 assert(res->base.target == PIPE_BUFFER);
6445
6446 /* Buffers can't be framebuffer attachments, nor display related,
6447 * and we don't have upstream Clover support.
6448 */
6449 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
6450 PIPE_BIND_RENDER_TARGET |
6451 PIPE_BIND_BLENDABLE |
6452 PIPE_BIND_DISPLAY_TARGET |
6453 PIPE_BIND_CURSOR |
6454 PIPE_BIND_COMPUTE_RESOURCE |
6455 PIPE_BIND_GLOBAL)));
6456
6457 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
6458 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
6459 while (bound_vbs) {
6460 const int i = u_bit_scan64(&bound_vbs);
6461 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
6462
6463 /* Update the CPU struct */
6464 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
6465 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
6466 uint64_t *addr = (uint64_t *) &state->state[1];
6467 struct iris_bo *bo = iris_resource_bo(state->resource);
6468
6469 if (*addr != bo->gtt_offset + state->offset) {
6470 *addr = bo->gtt_offset + state->offset;
6471 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
6472 }
6473 }
6474 }
6475
6476 /* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
6477 * the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
6478 *
6479 * There is also no need to handle these:
6480 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
6481 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
6482 */
6483
6484 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
6485 /* XXX: be careful about resetting vs appending... */
6486 assert(false);
6487 }
6488
6489 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
6490 struct iris_shader_state *shs = &ice->state.shaders[s];
6491 enum pipe_shader_type p_stage = stage_to_pipe(s);
6492
6493 if (!(res->bind_stages & (1 << s)))
6494 continue;
6495
6496 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
6497 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
6498 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
6499 while (bound_cbufs) {
6500 const int i = u_bit_scan(&bound_cbufs);
6501 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
6502 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
6503
6504 if (res->bo == iris_resource_bo(cbuf->buffer)) {
6505 pipe_resource_reference(&surf_state->res, NULL);
6506 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << s;
6507 }
6508 }
6509 }
6510
6511 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
6512 uint32_t bound_ssbos = shs->bound_ssbos;
6513 while (bound_ssbos) {
6514 const int i = u_bit_scan(&bound_ssbos);
6515 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
6516
6517 if (res->bo == iris_resource_bo(ssbo->buffer)) {
6518 struct pipe_shader_buffer buf = {
6519 .buffer = &res->base,
6520 .buffer_offset = ssbo->buffer_offset,
6521 .buffer_size = ssbo->buffer_size,
6522 };
6523 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
6524 (shs->writable_ssbos >> i) & 1);
6525 }
6526 }
6527 }
6528
6529 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
6530 uint32_t bound_sampler_views = shs->bound_sampler_views;
6531 while (bound_sampler_views) {
6532 const int i = u_bit_scan(&bound_sampler_views);
6533 struct iris_sampler_view *isv = shs->textures[i];
6534 struct iris_bo *bo = isv->res->bo;
6535
6536 if (update_surface_state_addrs(ice->state.surface_uploader,
6537 &isv->surface_state, bo)) {
6538 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
6539 }
6540 }
6541 }
6542
6543 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
6544 uint32_t bound_image_views = shs->bound_image_views;
6545 while (bound_image_views) {
6546 const int i = u_bit_scan(&bound_image_views);
6547 struct iris_image_view *iv = &shs->image[i];
6548 struct iris_bo *bo = iris_resource_bo(iv->base.resource);
6549
6550 if (update_surface_state_addrs(ice->state.surface_uploader,
6551 &iv->surface_state, bo)) {
6552 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
6553 }
6554 }
6555 }
6556 }
6557 }
6558
6559 /* ------------------------------------------------------------------- */
6560
6561 static unsigned
6562 flags_to_post_sync_op(uint32_t flags)
6563 {
6564 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
6565 return WriteImmediateData;
6566
6567 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
6568 return WritePSDepthCount;
6569
6570 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
6571 return WriteTimestamp;
6572
6573 return 0;
6574 }
6575
6576 /**
6577 * Do the given flags have a Post Sync or LRI Post Sync operation?
6578 */
6579 static enum pipe_control_flags
6580 get_post_sync_flags(enum pipe_control_flags flags)
6581 {
6582 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
6583 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6584 PIPE_CONTROL_WRITE_TIMESTAMP |
6585 PIPE_CONTROL_LRI_POST_SYNC_OP;
6586
6587 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
6588 * "LRI Post Sync Operation". So more than one bit set would be illegal.
6589 */
6590 assert(util_bitcount(flags) <= 1);
6591
6592 return flags;
6593 }
6594
6595 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
6596
6597 /**
6598 * Emit a series of PIPE_CONTROL commands, taking into account any
6599 * workarounds necessary to actually accomplish the caller's request.
6600 *
6601 * Unless otherwise noted, spec quotations in this function come from:
6602 *
6603 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
6604 * Restrictions for PIPE_CONTROL.
6605 *
6606 * You should not use this function directly. Use the helpers in
6607 * iris_pipe_control.c instead, which may split the pipe control further.
6608 */
6609 static void
6610 iris_emit_raw_pipe_control(struct iris_batch *batch,
6611 const char *reason,
6612 uint32_t flags,
6613 struct iris_bo *bo,
6614 uint32_t offset,
6615 uint64_t imm)
6616 {
6617 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
6618 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
6619 enum pipe_control_flags non_lri_post_sync_flags =
6620 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
6621
6622 /* Recursive PIPE_CONTROL workarounds --------------------------------
6623 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
6624 *
6625 * We do these first because we want to look at the original operation,
6626 * rather than any workarounds we set.
6627 */
6628 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
6629 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
6630 * lists several workarounds:
6631 *
6632 * "Project: SKL, KBL, BXT
6633 *
6634 * If the VF Cache Invalidation Enable is set to a 1 in a
6635 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
6636 * sets to 0, with the VF Cache Invalidation Enable set to 0
6637 * needs to be sent prior to the PIPE_CONTROL with VF Cache
6638 * Invalidation Enable set to a 1."
6639 */
6640 iris_emit_raw_pipe_control(batch,
6641 "workaround: recursive VF cache invalidate",
6642 0, NULL, 0, 0);
6643 }
6644
6645 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
6646 /* Project: SKL / Argument: LRI Post Sync Operation [23]
6647 *
6648 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6649 * programmed prior to programming a PIPECONTROL command with "LRI
6650 * Post Sync Operation" in GPGPU mode of operation (i.e when
6651 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
6652 *
6653 * The same text exists a few rows below for Post Sync Op.
6654 */
6655 iris_emit_raw_pipe_control(batch,
6656 "workaround: CS stall before gpgpu post-sync",
6657 PIPE_CONTROL_CS_STALL, bo, offset, imm);
6658 }
6659
6660 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
6661 /* Cannonlake:
6662 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
6663 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
6664 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
6665 */
6666 iris_emit_raw_pipe_control(batch,
6667 "workaround: PC flush before RT flush",
6668 PIPE_CONTROL_FLUSH_ENABLE, bo, offset, imm);
6669 }
6670
6671 /* "Flush Types" workarounds ---------------------------------------------
6672 * We do these now because they may add post-sync operations or CS stalls.
6673 */
6674
6675 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
6676 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
6677 *
6678 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
6679 * 'Write PS Depth Count' or 'Write Timestamp'."
6680 */
6681 if (!bo) {
6682 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6683 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6684 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6685 bo = batch->screen->workaround_bo;
6686 }
6687 }
6688
6689 /* #1130 from Gen10 workarounds page:
6690 *
6691 * "Enable Depth Stall on every Post Sync Op if Render target Cache
6692 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
6693 * board stall if Render target cache flush is enabled."
6694 *
6695 * Applicable to CNL B0 and C0 steppings only.
6696 *
6697 * The wording here is unclear, and this workaround doesn't look anything
6698 * like the internal bug report recommendations, but leave it be for now...
6699 */
6700 if (GEN_GEN == 10) {
6701 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
6702 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6703 } else if (flags & non_lri_post_sync_flags) {
6704 flags |= PIPE_CONTROL_DEPTH_STALL;
6705 }
6706 }
6707
6708 if (flags & PIPE_CONTROL_DEPTH_STALL) {
6709 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
6710 *
6711 * "This bit must be DISABLED for operations other than writing
6712 * PS_DEPTH_COUNT."
6713 *
6714 * This seems like nonsense. An Ivybridge workaround requires us to
6715 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
6716 * operation. Gen8+ requires us to emit depth stalls and depth cache
6717 * flushes together. So, it's hard to imagine this means anything other
6718 * than "we originally intended this to be used for PS_DEPTH_COUNT".
6719 *
6720 * We ignore the supposed restriction and do nothing.
6721 */
6722 }
6723
6724 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
6725 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6726 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
6727 *
6728 * "This bit must be DISABLED for End-of-pipe (Read) fences,
6729 * PS_DEPTH_COUNT or TIMESTAMP queries."
6730 *
6731 * TODO: Implement end-of-pipe checking.
6732 */
6733 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
6734 PIPE_CONTROL_WRITE_TIMESTAMP)));
6735 }
6736
6737 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6738 /* From the PIPE_CONTROL instruction table, bit 1:
6739 *
6740 * "This bit is ignored if Depth Stall Enable is set.
6741 * Further, the render cache is not flushed even if Write Cache
6742 * Flush Enable bit is set."
6743 *
6744 * We assert that the caller doesn't do this combination, to try and
6745 * prevent mistakes. It shouldn't hurt the GPU, though.
6746 *
6747 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
6748 * and "Render Target Flush" combo is explicitly required for BTI
6749 * update workarounds.
6750 */
6751 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
6752 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
6753 }
6754
6755 /* PIPE_CONTROL page workarounds ------------------------------------- */
6756
6757 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
6758 /* From the PIPE_CONTROL page itself:
6759 *
6760 * "IVB, HSW, BDW
6761 * Restriction: Pipe_control with CS-stall bit set must be issued
6762 * before a pipe-control command that has the State Cache
6763 * Invalidate bit set."
6764 */
6765 flags |= PIPE_CONTROL_CS_STALL;
6766 }
6767
6768 if (flags & PIPE_CONTROL_FLUSH_LLC) {
6769 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
6770 *
6771 * "Project: ALL
6772 * SW must always program Post-Sync Operation to "Write Immediate
6773 * Data" when Flush LLC is set."
6774 *
6775 * For now, we just require the caller to do it.
6776 */
6777 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
6778 }
6779
6780 /* "Post-Sync Operation" workarounds -------------------------------- */
6781
6782 /* Project: All / Argument: Global Snapshot Count Reset [19]
6783 *
6784 * "This bit must not be exercised on any product.
6785 * Requires stall bit ([20] of DW1) set."
6786 *
6787 * We don't use this, so we just assert that it isn't used. The
6788 * PIPE_CONTROL instruction page indicates that they intended this
6789 * as a debug feature and don't think it is useful in production,
6790 * but it may actually be usable, should we ever want to.
6791 */
6792 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
6793
6794 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
6795 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
6796 /* Project: All / Arguments:
6797 *
6798 * - Generic Media State Clear [16]
6799 * - Indirect State Pointers Disable [16]
6800 *
6801 * "Requires stall bit ([20] of DW1) set."
6802 *
6803 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
6804 * State Clear) says:
6805 *
6806 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6807 * programmed prior to programming a PIPECONTROL command with "Media
6808 * State Clear" set in GPGPU mode of operation"
6809 *
6810 * This is a subset of the earlier rule, so there's nothing to do.
6811 */
6812 flags |= PIPE_CONTROL_CS_STALL;
6813 }
6814
6815 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
6816 /* Project: All / Argument: Store Data Index
6817 *
6818 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6819 * than '0'."
6820 *
6821 * For now, we just assert that the caller does this. We might want to
6822 * automatically add a write to the workaround BO...
6823 */
6824 assert(non_lri_post_sync_flags != 0);
6825 }
6826
6827 if (flags & PIPE_CONTROL_SYNC_GFDT) {
6828 /* Project: All / Argument: Sync GFDT
6829 *
6830 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6831 * than '0' or 0x2520[13] must be set."
6832 *
6833 * For now, we just assert that the caller does this.
6834 */
6835 assert(non_lri_post_sync_flags != 0);
6836 }
6837
6838 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
6839 /* Project: IVB+ / Argument: TLB inv
6840 *
6841 * "Requires stall bit ([20] of DW1) set."
6842 *
6843 * Also, from the PIPE_CONTROL instruction table:
6844 *
6845 * "Project: SKL+
6846 * Post Sync Operation or CS stall must be set to ensure a TLB
6847 * invalidation occurs. Otherwise no cycle will occur to the TLB
6848 * cache to invalidate."
6849 *
6850 * This is not a subset of the earlier rule, so there's nothing to do.
6851 */
6852 flags |= PIPE_CONTROL_CS_STALL;
6853 }
6854
6855 if (GEN_GEN >= 12 && ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ||
6856 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))) {
6857 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
6858 * Enable):
6859 *
6860 * Unified Cache (Tile Cache Disabled):
6861 *
6862 * When the Color and Depth (Z) streams are enabled to be cached in
6863 * the DC space of L2, Software must use "Render Target Cache Flush
6864 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
6865 * Flush" for getting the color and depth (Z) write data to be
6866 * globally observable. In this mode of operation it is not required
6867 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
6868 */
6869 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
6870 }
6871
6872 if (GEN_GEN == 9 && devinfo->gt == 4) {
6873 /* TODO: The big Skylake GT4 post sync op workaround */
6874 }
6875
6876 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
6877
6878 if (IS_COMPUTE_PIPELINE(batch)) {
6879 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
6880 /* Project: SKL+ / Argument: Tex Invalidate
6881 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
6882 */
6883 flags |= PIPE_CONTROL_CS_STALL;
6884 }
6885
6886 if (GEN_GEN == 8 && (post_sync_flags ||
6887 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
6888 PIPE_CONTROL_DEPTH_STALL |
6889 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6890 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6891 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
6892 /* Project: BDW / Arguments:
6893 *
6894 * - LRI Post Sync Operation [23]
6895 * - Post Sync Op [15:14]
6896 * - Notify En [8]
6897 * - Depth Stall [13]
6898 * - Render Target Cache Flush [12]
6899 * - Depth Cache Flush [0]
6900 * - DC Flush Enable [5]
6901 *
6902 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
6903 * Workloads."
6904 */
6905 flags |= PIPE_CONTROL_CS_STALL;
6906
6907 /* Also, from the PIPE_CONTROL instruction table, bit 20:
6908 *
6909 * "Project: BDW
6910 * This bit must be always set when PIPE_CONTROL command is
6911 * programmed by GPGPU and MEDIA workloads, except for the cases
6912 * when only Read Only Cache Invalidation bits are set (State
6913 * Cache Invalidation Enable, Instruction cache Invalidation
6914 * Enable, Texture Cache Invalidation Enable, Constant Cache
6915 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
6916 * need not implemented when FF_DOP_CG is disable via "Fixed
6917 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
6918 *
6919 * It sounds like we could avoid CS stalls in some cases, but we
6920 * don't currently bother. This list isn't exactly the list above,
6921 * either...
6922 */
6923 }
6924 }
6925
6926 /* "Stall" workarounds ----------------------------------------------
6927 * These have to come after the earlier ones because we may have added
6928 * some additional CS stalls above.
6929 */
6930
6931 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
6932 /* Project: PRE-SKL, VLV, CHV
6933 *
6934 * "[All Stepping][All SKUs]:
6935 *
6936 * One of the following must also be set:
6937 *
6938 * - Render Target Cache Flush Enable ([12] of DW1)
6939 * - Depth Cache Flush Enable ([0] of DW1)
6940 * - Stall at Pixel Scoreboard ([1] of DW1)
6941 * - Depth Stall ([13] of DW1)
6942 * - Post-Sync Operation ([13] of DW1)
6943 * - DC Flush Enable ([5] of DW1)"
6944 *
6945 * If we don't already have one of those bits set, we choose to add
6946 * "Stall at Pixel Scoreboard". Some of the other bits require a
6947 * CS stall as a workaround (see above), which would send us into
6948 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
6949 * appears to be safe, so we choose that.
6950 */
6951 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
6952 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6953 PIPE_CONTROL_WRITE_IMMEDIATE |
6954 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6955 PIPE_CONTROL_WRITE_TIMESTAMP |
6956 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6957 PIPE_CONTROL_DEPTH_STALL |
6958 PIPE_CONTROL_DATA_CACHE_FLUSH;
6959 if (!(flags & wa_bits))
6960 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6961 }
6962
6963 /* Emit --------------------------------------------------------------- */
6964
6965 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
6966 fprintf(stderr,
6967 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
6968 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
6969 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
6970 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
6971 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
6972 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
6973 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
6974 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
6975 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
6976 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
6977 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
6978 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
6979 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
6980 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
6981 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
6982 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
6983 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
6984 "SnapRes" : "",
6985 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
6986 "ISPDis" : "",
6987 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
6988 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
6989 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
6990 imm, reason);
6991 }
6992
6993 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
6994 #if GEN_GEN >= 12
6995 pc.TileCacheFlushEnable = flags & PIPE_CONTROL_TILE_CACHE_FLUSH;
6996 #endif
6997 pc.LRIPostSyncOperation = NoLRIOperation;
6998 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
6999 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
7000 pc.StoreDataIndex = 0;
7001 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
7002 pc.GlobalSnapshotCountReset =
7003 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
7004 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
7005 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
7006 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
7007 pc.RenderTargetCacheFlushEnable =
7008 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
7009 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
7010 pc.StateCacheInvalidationEnable =
7011 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
7012 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
7013 pc.ConstantCacheInvalidationEnable =
7014 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
7015 pc.PostSyncOperation = flags_to_post_sync_op(flags);
7016 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
7017 pc.InstructionCacheInvalidateEnable =
7018 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
7019 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
7020 pc.IndirectStatePointersDisable =
7021 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
7022 pc.TextureCacheInvalidationEnable =
7023 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
7024 pc.Address = rw_bo(bo, offset);
7025 pc.ImmediateData = imm;
7026 }
7027 }
7028
7029 void
7030 genX(emit_urb_setup)(struct iris_context *ice,
7031 struct iris_batch *batch,
7032 const unsigned size[4],
7033 bool tess_present, bool gs_present)
7034 {
7035 const struct gen_device_info *devinfo = &batch->screen->devinfo;
7036 const unsigned push_size_kB = 32;
7037 unsigned entries[4];
7038 unsigned start[4];
7039
7040 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
7041
7042 gen_get_urb_config(devinfo, 1024 * push_size_kB,
7043 1024 * ice->shaders.urb_size,
7044 tess_present, gs_present,
7045 size, entries, start);
7046
7047 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
7048 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
7049 urb._3DCommandSubOpcode += i;
7050 urb.VSURBStartingAddress = start[i];
7051 urb.VSURBEntryAllocationSize = size[i] - 1;
7052 urb.VSNumberofURBEntries = entries[i];
7053 }
7054 }
7055 }
7056
7057 #if GEN_GEN == 9
7058 /**
7059 * Preemption on Gen9 has to be enabled or disabled in various cases.
7060 *
7061 * See these workarounds for preemption:
7062 * - WaDisableMidObjectPreemptionForGSLineStripAdj
7063 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
7064 * - WaDisableMidObjectPreemptionForLineLoop
7065 * - WA#0798
7066 *
7067 * We don't put this in the vtable because it's only used on Gen9.
7068 */
7069 void
7070 gen9_toggle_preemption(struct iris_context *ice,
7071 struct iris_batch *batch,
7072 const struct pipe_draw_info *draw)
7073 {
7074 struct iris_genx_state *genx = ice->state.genx;
7075 bool object_preemption = true;
7076
7077 /* WaDisableMidObjectPreemptionForGSLineStripAdj
7078 *
7079 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
7080 * and GS is enabled."
7081 */
7082 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
7083 ice->shaders.prog[MESA_SHADER_GEOMETRY])
7084 object_preemption = false;
7085
7086 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
7087 *
7088 * "TriFan miscompare in Execlist Preemption test. Cut index that is
7089 * on a previous context. End the previous, the resume another context
7090 * with a tri-fan or polygon, and the vertex count is corrupted. If we
7091 * prempt again we will cause corruption.
7092 *
7093 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
7094 */
7095 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
7096 object_preemption = false;
7097
7098 /* WaDisableMidObjectPreemptionForLineLoop
7099 *
7100 * "VF Stats Counters Missing a vertex when preemption enabled.
7101 *
7102 * WA: Disable mid-draw preemption when the draw uses a lineloop
7103 * topology."
7104 */
7105 if (draw->mode == PIPE_PRIM_LINE_LOOP)
7106 object_preemption = false;
7107
7108 /* WA#0798
7109 *
7110 * "VF is corrupting GAFS data when preempted on an instance boundary
7111 * and replayed with instancing enabled.
7112 *
7113 * WA: Disable preemption when using instanceing."
7114 */
7115 if (draw->instance_count > 1)
7116 object_preemption = false;
7117
7118 if (genx->object_preemption != object_preemption) {
7119 iris_enable_obj_preemption(batch, object_preemption);
7120 genx->object_preemption = object_preemption;
7121 }
7122 }
7123 #endif
7124
7125 static void
7126 iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
7127 {
7128 struct iris_genx_state *genx = ice->state.genx;
7129
7130 memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
7131 }
7132
7133 static void
7134 iris_emit_mi_report_perf_count(struct iris_batch *batch,
7135 struct iris_bo *bo,
7136 uint32_t offset_in_bytes,
7137 uint32_t report_id)
7138 {
7139 iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
7140 mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes);
7141 mi_rpc.ReportID = report_id;
7142 }
7143 }
7144
7145 /**
7146 * Update the pixel hashing modes that determine the balancing of PS threads
7147 * across subslices and slices.
7148 *
7149 * \param width Width bound of the rendering area (already scaled down if \p
7150 * scale is greater than 1).
7151 * \param height Height bound of the rendering area (already scaled down if \p
7152 * scale is greater than 1).
7153 * \param scale The number of framebuffer samples that could potentially be
7154 * affected by an individual channel of the PS thread. This is
7155 * typically one for single-sampled rendering, but for operations
7156 * like CCS resolves and fast clears a single PS invocation may
7157 * update a huge number of pixels, in which case a finer
7158 * balancing is desirable in order to maximally utilize the
7159 * bandwidth available. UINT_MAX can be used as shorthand for
7160 * "finest hashing mode available".
7161 */
7162 void
7163 genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
7164 unsigned width, unsigned height, unsigned scale)
7165 {
7166 #if GEN_GEN == 9
7167 const struct gen_device_info *devinfo = &batch->screen->devinfo;
7168 const unsigned slice_hashing[] = {
7169 /* Because all Gen9 platforms with more than one slice require
7170 * three-way subslice hashing, a single "normal" 16x16 slice hashing
7171 * block is guaranteed to suffer from substantial imbalance, with one
7172 * subslice receiving twice as much work as the other two in the
7173 * slice.
7174 *
7175 * The performance impact of that would be particularly severe when
7176 * three-way hashing is also in use for slice balancing (which is the
7177 * case for all Gen9 GT4 platforms), because one of the slices
7178 * receives one every three 16x16 blocks in either direction, which
7179 * is roughly the periodicity of the underlying subslice imbalance
7180 * pattern ("roughly" because in reality the hardware's
7181 * implementation of three-way hashing doesn't do exact modulo 3
7182 * arithmetic, which somewhat decreases the magnitude of this effect
7183 * in practice). This leads to a systematic subslice imbalance
7184 * within that slice regardless of the size of the primitive. The
7185 * 32x32 hashing mode guarantees that the subslice imbalance within a
7186 * single slice hashing block is minimal, largely eliminating this
7187 * effect.
7188 */
7189 _32x32,
7190 /* Finest slice hashing mode available. */
7191 NORMAL
7192 };
7193 const unsigned subslice_hashing[] = {
7194 /* 16x16 would provide a slight cache locality benefit especially
7195 * visible in the sampler L1 cache efficiency of low-bandwidth
7196 * non-LLC platforms, but it comes at the cost of greater subslice
7197 * imbalance for primitives of dimensions approximately intermediate
7198 * between 16x4 and 16x16.
7199 */
7200 _16x4,
7201 /* Finest subslice hashing mode available. */
7202 _8x4
7203 };
7204 /* Dimensions of the smallest hashing block of a given hashing mode. If
7205 * the rendering area is smaller than this there can't possibly be any
7206 * benefit from switching to this mode, so we optimize out the
7207 * transition.
7208 */
7209 const unsigned min_size[][2] = {
7210 { 16, 4 },
7211 { 8, 4 }
7212 };
7213 const unsigned idx = scale > 1;
7214
7215 if (width > min_size[idx][0] || height > min_size[idx][1]) {
7216 uint32_t gt_mode;
7217
7218 iris_pack_state(GENX(GT_MODE), &gt_mode, reg) {
7219 reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
7220 reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
7221 reg.SubsliceHashing = subslice_hashing[idx];
7222 reg.SubsliceHashingMask = -1;
7223 };
7224
7225 iris_emit_raw_pipe_control(batch,
7226 "workaround: CS stall before GT_MODE LRI",
7227 PIPE_CONTROL_STALL_AT_SCOREBOARD |
7228 PIPE_CONTROL_CS_STALL,
7229 NULL, 0, 0);
7230
7231 iris_emit_lri(batch, GT_MODE, gt_mode);
7232
7233 ice->state.current_hash_scale = scale;
7234 }
7235 #endif
7236 }
7237
7238 void
7239 genX(init_state)(struct iris_context *ice)
7240 {
7241 struct pipe_context *ctx = &ice->ctx;
7242 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
7243
7244 ctx->create_blend_state = iris_create_blend_state;
7245 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
7246 ctx->create_rasterizer_state = iris_create_rasterizer_state;
7247 ctx->create_sampler_state = iris_create_sampler_state;
7248 ctx->create_sampler_view = iris_create_sampler_view;
7249 ctx->create_surface = iris_create_surface;
7250 ctx->create_vertex_elements_state = iris_create_vertex_elements;
7251 ctx->bind_blend_state = iris_bind_blend_state;
7252 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
7253 ctx->bind_sampler_states = iris_bind_sampler_states;
7254 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
7255 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
7256 ctx->delete_blend_state = iris_delete_state;
7257 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
7258 ctx->delete_rasterizer_state = iris_delete_state;
7259 ctx->delete_sampler_state = iris_delete_state;
7260 ctx->delete_vertex_elements_state = iris_delete_state;
7261 ctx->set_blend_color = iris_set_blend_color;
7262 ctx->set_clip_state = iris_set_clip_state;
7263 ctx->set_constant_buffer = iris_set_constant_buffer;
7264 ctx->set_shader_buffers = iris_set_shader_buffers;
7265 ctx->set_shader_images = iris_set_shader_images;
7266 ctx->set_sampler_views = iris_set_sampler_views;
7267 ctx->set_tess_state = iris_set_tess_state;
7268 ctx->set_framebuffer_state = iris_set_framebuffer_state;
7269 ctx->set_polygon_stipple = iris_set_polygon_stipple;
7270 ctx->set_sample_mask = iris_set_sample_mask;
7271 ctx->set_scissor_states = iris_set_scissor_states;
7272 ctx->set_stencil_ref = iris_set_stencil_ref;
7273 ctx->set_vertex_buffers = iris_set_vertex_buffers;
7274 ctx->set_viewport_states = iris_set_viewport_states;
7275 ctx->sampler_view_destroy = iris_sampler_view_destroy;
7276 ctx->surface_destroy = iris_surface_destroy;
7277 ctx->draw_vbo = iris_draw_vbo;
7278 ctx->launch_grid = iris_launch_grid;
7279 ctx->create_stream_output_target = iris_create_stream_output_target;
7280 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
7281 ctx->set_stream_output_targets = iris_set_stream_output_targets;
7282
7283 ice->vtbl.destroy_state = iris_destroy_state;
7284 ice->vtbl.init_render_context = iris_init_render_context;
7285 ice->vtbl.init_compute_context = iris_init_compute_context;
7286 ice->vtbl.upload_render_state = iris_upload_render_state;
7287 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
7288 ice->vtbl.upload_compute_state = iris_upload_compute_state;
7289 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
7290 ice->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
7291 ice->vtbl.rebind_buffer = iris_rebind_buffer;
7292 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
7293 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
7294 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
7295 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
7296 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
7297 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
7298 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
7299 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
7300 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
7301 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
7302 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
7303 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
7304 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
7305 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
7306 ice->vtbl.populate_vs_key = iris_populate_vs_key;
7307 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
7308 ice->vtbl.populate_tes_key = iris_populate_tes_key;
7309 ice->vtbl.populate_gs_key = iris_populate_gs_key;
7310 ice->vtbl.populate_fs_key = iris_populate_fs_key;
7311 ice->vtbl.populate_cs_key = iris_populate_cs_key;
7312 ice->vtbl.mocs = mocs;
7313 ice->vtbl.lost_genx_state = iris_lost_genx_state;
7314
7315 ice->state.dirty = ~0ull;
7316
7317 ice->state.statistics_counters_enabled = true;
7318
7319 ice->state.sample_mask = 0xffff;
7320 ice->state.num_viewports = 1;
7321 ice->state.prim_mode = PIPE_PRIM_MAX;
7322 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
7323 ice->draw.derived_params.drawid = -1;
7324
7325 /* Make a 1x1x1 null surface for unbound textures */
7326 void *null_surf_map =
7327 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
7328 4 * GENX(RENDER_SURFACE_STATE_length), 64);
7329 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
7330 ice->state.unbound_tex.offset +=
7331 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
7332
7333 /* Default all scissor rectangles to be empty regions. */
7334 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
7335 ice->state.scissors[i] = (struct pipe_scissor_state) {
7336 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
7337 };
7338 }
7339 }