370dc52df38e1ccd2aa69ed4fbecc36bff2fb846
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "drm-uapi/i915_drm.h"
99 #include "nir.h"
100 #include "intel/compiler/brw_compiler.h"
101 #include "intel/common/gen_l3_config.h"
102 #include "intel/common/gen_sample_positions.h"
103 #include "iris_batch.h"
104 #include "iris_context.h"
105 #include "iris_defines.h"
106 #include "iris_pipe.h"
107 #include "iris_resource.h"
108
109 #include "iris_genx_macros.h"
110 #include "intel/common/gen_guardband.h"
111
112 #if GEN_GEN == 8
113 #define MOCS_PTE 0x18
114 #define MOCS_WB 0x78
115 #else
116 #define MOCS_PTE (1 << 1)
117 #define MOCS_WB (2 << 1)
118 #endif
119
120 static uint32_t
121 mocs(const struct iris_bo *bo)
122 {
123 return bo && bo->external ? MOCS_PTE : MOCS_WB;
124 }
125
126 /**
127 * Statically assert that PIPE_* enums match the hardware packets.
128 * (As long as they match, we don't need to translate them.)
129 */
130 UNUSED static void pipe_asserts()
131 {
132 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
133
134 /* pipe_logicop happens to match the hardware. */
135 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
136 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
137 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
138 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
139 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
140 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
141 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
142 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
143 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
144 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
145 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
146 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
147 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
148 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
149 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
150 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
151
152 /* pipe_blend_func happens to match the hardware. */
153 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
157 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
158 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
159 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
160 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
161 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
162 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
163 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
164 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
165 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
166 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
167 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
168 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
169 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
170 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
171 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
172
173 /* pipe_blend_func happens to match the hardware. */
174 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
175 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
176 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
177 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
178 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
179
180 /* pipe_stencil_op happens to match the hardware. */
181 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
182 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
183 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
184 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
185 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
186 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
187 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
188 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
189
190 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
191 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
192 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
193 #undef PIPE_ASSERT
194 }
195
196 static unsigned
197 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
198 {
199 static const unsigned map[] = {
200 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
201 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
202 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
203 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
204 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
205 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
206 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
207 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
208 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
209 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
210 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
211 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
212 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
213 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
214 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
215 };
216
217 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
218 }
219
220 static unsigned
221 translate_compare_func(enum pipe_compare_func pipe_func)
222 {
223 static const unsigned map[] = {
224 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
225 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
226 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
227 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
228 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
229 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
230 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
231 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
232 };
233 return map[pipe_func];
234 }
235
236 static unsigned
237 translate_shadow_func(enum pipe_compare_func pipe_func)
238 {
239 /* Gallium specifies the result of shadow comparisons as:
240 *
241 * 1 if ref <op> texel,
242 * 0 otherwise.
243 *
244 * The hardware does:
245 *
246 * 0 if texel <op> ref,
247 * 1 otherwise.
248 *
249 * So we need to flip the operator and also negate.
250 */
251 static const unsigned map[] = {
252 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
253 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
254 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
255 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
256 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
257 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
258 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
259 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
260 };
261 return map[pipe_func];
262 }
263
264 static unsigned
265 translate_cull_mode(unsigned pipe_face)
266 {
267 static const unsigned map[4] = {
268 [PIPE_FACE_NONE] = CULLMODE_NONE,
269 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
270 [PIPE_FACE_BACK] = CULLMODE_BACK,
271 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
272 };
273 return map[pipe_face];
274 }
275
276 static unsigned
277 translate_fill_mode(unsigned pipe_polymode)
278 {
279 static const unsigned map[4] = {
280 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
281 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
282 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
283 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
284 };
285 return map[pipe_polymode];
286 }
287
288 static unsigned
289 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
290 {
291 static const unsigned map[] = {
292 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
293 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
294 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
295 };
296 return map[pipe_mip];
297 }
298
299 static uint32_t
300 translate_wrap(unsigned pipe_wrap)
301 {
302 static const unsigned map[] = {
303 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
304 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
305 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
306 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
307 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
308 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
309
310 /* These are unsupported. */
311 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
312 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
313 };
314 return map[pipe_wrap];
315 }
316
317 /**
318 * Allocate space for some indirect state.
319 *
320 * Return a pointer to the map (to fill it out) and a state ref (for
321 * referring to the state in GPU commands).
322 */
323 static void *
324 upload_state(struct u_upload_mgr *uploader,
325 struct iris_state_ref *ref,
326 unsigned size,
327 unsigned alignment)
328 {
329 void *p = NULL;
330 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
331 return p;
332 }
333
334 /**
335 * Stream out temporary/short-lived state.
336 *
337 * This allocates space, pins the BO, and includes the BO address in the
338 * returned offset (which works because all state lives in 32-bit memory
339 * zones).
340 */
341 static uint32_t *
342 stream_state(struct iris_batch *batch,
343 struct u_upload_mgr *uploader,
344 struct pipe_resource **out_res,
345 unsigned size,
346 unsigned alignment,
347 uint32_t *out_offset)
348 {
349 void *ptr = NULL;
350
351 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
352
353 struct iris_bo *bo = iris_resource_bo(*out_res);
354 iris_use_pinned_bo(batch, bo, false);
355
356 *out_offset += iris_bo_offset_from_base_address(bo);
357
358 iris_record_state_size(batch->state_sizes, *out_offset, size);
359
360 return ptr;
361 }
362
363 /**
364 * stream_state() + memcpy.
365 */
366 static uint32_t
367 emit_state(struct iris_batch *batch,
368 struct u_upload_mgr *uploader,
369 struct pipe_resource **out_res,
370 const void *data,
371 unsigned size,
372 unsigned alignment)
373 {
374 unsigned offset = 0;
375 uint32_t *map =
376 stream_state(batch, uploader, out_res, size, alignment, &offset);
377
378 if (map)
379 memcpy(map, data, size);
380
381 return offset;
382 }
383
384 /**
385 * Did field 'x' change between 'old_cso' and 'new_cso'?
386 *
387 * (If so, we may want to set some dirty flags.)
388 */
389 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
390 #define cso_changed_memcmp(x) \
391 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
392
393 static void
394 flush_before_state_base_change(struct iris_batch *batch)
395 {
396 /* Flush before emitting STATE_BASE_ADDRESS.
397 *
398 * This isn't documented anywhere in the PRM. However, it seems to be
399 * necessary prior to changing the surface state base adress. We've
400 * seen issues in Vulkan where we get GPU hangs when using multi-level
401 * command buffers which clear depth, reset state base address, and then
402 * go render stuff.
403 *
404 * Normally, in GL, we would trust the kernel to do sufficient stalls
405 * and flushes prior to executing our batch. However, it doesn't seem
406 * as if the kernel's flushing is always sufficient and we don't want to
407 * rely on it.
408 *
409 * We make this an end-of-pipe sync instead of a normal flush because we
410 * do not know the current status of the GPU. On Haswell at least,
411 * having a fast-clear operation in flight at the same time as a normal
412 * rendering operation can cause hangs. Since the kernel's flushing is
413 * insufficient, we need to ensure that any rendering operations from
414 * other processes are definitely complete before we try to do our own
415 * rendering. It's a bit of a big hammer but it appears to work.
416 */
417 iris_emit_end_of_pipe_sync(batch,
418 "change STATE_BASE_ADDRESS (flushes)",
419 PIPE_CONTROL_RENDER_TARGET_FLUSH |
420 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
421 PIPE_CONTROL_DATA_CACHE_FLUSH);
422 }
423
424 static void
425 flush_after_state_base_change(struct iris_batch *batch)
426 {
427 /* After re-setting the surface state base address, we have to do some
428 * cache flusing so that the sampler engine will pick up the new
429 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
430 * Shared Function > 3D Sampler > State > State Caching (page 96):
431 *
432 * Coherency with system memory in the state cache, like the texture
433 * cache is handled partially by software. It is expected that the
434 * command stream or shader will issue Cache Flush operation or
435 * Cache_Flush sampler message to ensure that the L1 cache remains
436 * coherent with system memory.
437 *
438 * [...]
439 *
440 * Whenever the value of the Dynamic_State_Base_Addr,
441 * Surface_State_Base_Addr are altered, the L1 state cache must be
442 * invalidated to ensure the new surface or sampler state is fetched
443 * from system memory.
444 *
445 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
446 * which, according the PIPE_CONTROL instruction documentation in the
447 * Broadwell PRM:
448 *
449 * Setting this bit is independent of any other bit in this packet.
450 * This bit controls the invalidation of the L1 and L2 state caches
451 * at the top of the pipe i.e. at the parsing time.
452 *
453 * Unfortunately, experimentation seems to indicate that state cache
454 * invalidation through a PIPE_CONTROL does nothing whatsoever in
455 * regards to surface state and binding tables. In stead, it seems that
456 * invalidating the texture cache is what is actually needed.
457 *
458 * XXX: As far as we have been able to determine through
459 * experimentation, shows that flush the texture cache appears to be
460 * sufficient. The theory here is that all of the sampling/rendering
461 * units cache the binding table in the texture cache. However, we have
462 * yet to be able to actually confirm this.
463 */
464 iris_emit_end_of_pipe_sync(batch,
465 "change STATE_BASE_ADDRESS (invalidates)",
466 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
467 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
468 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
469 }
470
471 static void
472 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
473 {
474 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
475 lri.RegisterOffset = reg;
476 lri.DataDWord = val;
477 }
478 }
479 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
480
481 static void
482 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
483 {
484 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
485 lrr.SourceRegisterAddress = src;
486 lrr.DestinationRegisterAddress = dst;
487 }
488 }
489
490 static void
491 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
492 {
493 #if GEN_GEN >= 8 && GEN_GEN < 10
494 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
495 *
496 * Software must clear the COLOR_CALC_STATE Valid field in
497 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
498 * with Pipeline Select set to GPGPU.
499 *
500 * The internal hardware docs recommend the same workaround for Gen9
501 * hardware too.
502 */
503 if (pipeline == GPGPU)
504 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
505 #endif
506
507
508 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
509 * PIPELINE_SELECT [DevBWR+]":
510 *
511 * "Project: DEVSNB+
512 *
513 * Software must ensure all the write caches are flushed through a
514 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
515 * command to invalidate read only caches prior to programming
516 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
517 */
518 iris_emit_pipe_control_flush(batch,
519 "workaround: PIPELINE_SELECT flushes (1/2)",
520 PIPE_CONTROL_RENDER_TARGET_FLUSH |
521 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
522 PIPE_CONTROL_DATA_CACHE_FLUSH |
523 PIPE_CONTROL_CS_STALL);
524
525 iris_emit_pipe_control_flush(batch,
526 "workaround: PIPELINE_SELECT flushes (2/2)",
527 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
528 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
529 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
530 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
531
532 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
533 #if GEN_GEN >= 9
534 sel.MaskBits = 3;
535 #endif
536 sel.PipelineSelection = pipeline;
537 }
538 }
539
540 UNUSED static void
541 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
542 {
543 #if GEN_GEN == 9
544 /* Project: DevGLK
545 *
546 * "This chicken bit works around a hardware issue with barrier
547 * logic encountered when switching between GPGPU and 3D pipelines.
548 * To workaround the issue, this mode bit should be set after a
549 * pipeline is selected."
550 */
551 uint32_t reg_val;
552 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
553 reg.GLKBarrierMode = value;
554 reg.GLKBarrierModeMask = 1;
555 }
556 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
557 #endif
558 }
559
560 static void
561 init_state_base_address(struct iris_batch *batch)
562 {
563 flush_before_state_base_change(batch);
564
565 /* We program most base addresses once at context initialization time.
566 * Each base address points at a 4GB memory zone, and never needs to
567 * change. See iris_bufmgr.h for a description of the memory zones.
568 *
569 * The one exception is Surface State Base Address, which needs to be
570 * updated occasionally. See iris_binder.c for the details there.
571 */
572 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
573 sba.GeneralStateMOCS = MOCS_WB;
574 sba.StatelessDataPortAccessMOCS = MOCS_WB;
575 sba.DynamicStateMOCS = MOCS_WB;
576 sba.IndirectObjectMOCS = MOCS_WB;
577 sba.InstructionMOCS = MOCS_WB;
578 sba.SurfaceStateMOCS = MOCS_WB;
579
580 sba.GeneralStateBaseAddressModifyEnable = true;
581 sba.DynamicStateBaseAddressModifyEnable = true;
582 sba.IndirectObjectBaseAddressModifyEnable = true;
583 sba.InstructionBaseAddressModifyEnable = true;
584 sba.GeneralStateBufferSizeModifyEnable = true;
585 sba.DynamicStateBufferSizeModifyEnable = true;
586 #if (GEN_GEN >= 9)
587 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
588 sba.BindlessSurfaceStateMOCS = MOCS_WB;
589 #endif
590 sba.IndirectObjectBufferSizeModifyEnable = true;
591 sba.InstructionBuffersizeModifyEnable = true;
592
593 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
594 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
595
596 sba.GeneralStateBufferSize = 0xfffff;
597 sba.IndirectObjectBufferSize = 0xfffff;
598 sba.InstructionBufferSize = 0xfffff;
599 sba.DynamicStateBufferSize = 0xfffff;
600 }
601
602 flush_after_state_base_change(batch);
603 }
604
605 static void
606 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
607 bool has_slm, bool wants_dc_cache)
608 {
609 uint32_t reg_val;
610
611 #if GEN_GEN >= 12
612 #define L3_ALLOCATION_REG GENX(L3ALLOC)
613 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
614 #else
615 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
616 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
617 #endif
618
619 iris_pack_state(L3_ALLOCATION_REG, &reg_val, reg) {
620 #if GEN_GEN < 12
621 reg.SLMEnable = has_slm;
622 #endif
623 #if GEN_GEN == 11
624 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
625 * in L3CNTLREG register. The default setting of the bit is not the
626 * desirable behavior.
627 */
628 reg.ErrorDetectionBehaviorControl = true;
629 reg.UseFullWays = true;
630 #endif
631 reg.URBAllocation = cfg->n[GEN_L3P_URB];
632 reg.ROAllocation = cfg->n[GEN_L3P_RO];
633 reg.DCAllocation = cfg->n[GEN_L3P_DC];
634 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
635 }
636 _iris_emit_lri(batch, L3_ALLOCATION_REG_num, reg_val);
637 }
638
639 static void
640 iris_emit_default_l3_config(struct iris_batch *batch,
641 const struct gen_device_info *devinfo,
642 bool compute)
643 {
644 bool wants_dc_cache = true;
645 bool has_slm = compute;
646 const struct gen_l3_weights w =
647 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
648 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
649 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
650 }
651
652 #if GEN_GEN == 9 || GEN_GEN == 10
653 static void
654 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
655 {
656 uint32_t reg_val;
657
658 /* A fixed function pipe flush is required before modifying this field */
659 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
660 : "disable preemption",
661 PIPE_CONTROL_RENDER_TARGET_FLUSH);
662
663 /* enable object level preemption */
664 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
665 reg.ReplayMode = enable;
666 reg.ReplayModeMask = true;
667 }
668 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
669 }
670 #endif
671
672 #if GEN_GEN == 11
673 static void
674 iris_upload_slice_hashing_state(struct iris_batch *batch)
675 {
676 const struct gen_device_info *devinfo = &batch->screen->devinfo;
677 int subslices_delta =
678 devinfo->ppipe_subslices[0] - devinfo->ppipe_subslices[1];
679 if (subslices_delta == 0)
680 return;
681
682 struct iris_context *ice = NULL;
683 ice = container_of(batch, ice, batches[IRIS_BATCH_RENDER]);
684 assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
685
686 unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
687 uint32_t hash_address;
688 struct pipe_resource *tmp = NULL;
689 uint32_t *map =
690 stream_state(batch, ice->state.dynamic_uploader, &tmp,
691 size, 64, &hash_address);
692 pipe_resource_reference(&tmp, NULL);
693
694 struct GENX(SLICE_HASH_TABLE) table0 = {
695 .Entry = {
696 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
697 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
698 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
699 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
700 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
701 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
702 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
703 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
704 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
705 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
706 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
707 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
708 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
709 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
710 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
711 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 }
712 }
713 };
714
715 struct GENX(SLICE_HASH_TABLE) table1 = {
716 .Entry = {
717 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
718 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
719 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
720 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
721 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
722 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
723 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
724 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
725 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
726 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
727 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
728 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
729 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
730 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
731 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
732 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 }
733 }
734 };
735
736 const struct GENX(SLICE_HASH_TABLE) *table =
737 subslices_delta < 0 ? &table0 : &table1;
738 GENX(SLICE_HASH_TABLE_pack)(NULL, map, table);
739
740 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
741 ptr.SliceHashStatePointerValid = true;
742 ptr.SliceHashTableStatePointer = hash_address;
743 }
744
745 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
746 mode.SliceHashingTableEnable = true;
747 }
748 }
749 #endif
750
751 /**
752 * Upload the initial GPU state for a render context.
753 *
754 * This sets some invariant state that needs to be programmed a particular
755 * way, but we never actually change.
756 */
757 static void
758 iris_init_render_context(struct iris_screen *screen,
759 struct iris_batch *batch,
760 struct iris_vtable *vtbl,
761 struct pipe_debug_callback *dbg)
762 {
763 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
764 uint32_t reg_val;
765
766 emit_pipeline_select(batch, _3D);
767
768 iris_emit_default_l3_config(batch, devinfo, false);
769
770 init_state_base_address(batch);
771
772 #if GEN_GEN >= 9
773 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
774 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
775 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
776 }
777 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
778 #else
779 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
780 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
781 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
782 }
783 iris_emit_lri(batch, INSTPM, reg_val);
784 #endif
785
786 #if GEN_GEN == 9
787 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
788 reg.FloatBlendOptimizationEnable = true;
789 reg.FloatBlendOptimizationEnableMask = true;
790 reg.PartialResolveDisableInVC = true;
791 reg.PartialResolveDisableInVCMask = true;
792 }
793 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
794
795 if (devinfo->is_geminilake)
796 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
797 #endif
798
799 #if GEN_GEN == 11
800 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
801 reg.HeaderlessMessageforPreemptableContexts = 1;
802 reg.HeaderlessMessageforPreemptableContextsMask = 1;
803 }
804 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
805
806 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
807 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
808 reg.EnabledTexelOffsetPrecisionFix = 1;
809 reg.EnabledTexelOffsetPrecisionFixMask = 1;
810 }
811 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
812
813 /* Hardware specification recommends disabling repacking for the
814 * compatibility with decompression mechanism in display controller.
815 */
816 if (devinfo->disable_ccs_repack) {
817 iris_pack_state(GENX(CACHE_MODE_0), &reg_val, reg) {
818 reg.DisableRepackingforCompression = true;
819 reg.DisableRepackingforCompressionMask = true;
820 }
821 iris_emit_lri(batch, CACHE_MODE_0, reg_val);
822 }
823
824 iris_upload_slice_hashing_state(batch);
825 #endif
826
827 #if GEN_GEN >= 11
828 /* WA_220160979: Enable Hardware filtering of Semi-Pipelined State in WM */
829 iris_pack_state(GENX(COMMON_SLICE_CHICKEN4), &reg_val, reg) {
830 reg.EnableHardwareFilteringinWM = true;
831 reg.EnableHardwareFilteringinWMMask = true;
832 }
833 iris_emit_lri(batch, COMMON_SLICE_CHICKEN4, reg_val);
834 #endif
835
836 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
837 * changing it dynamically. We set it to the maximum size here, and
838 * instead include the render target dimensions in the viewport, so
839 * viewport extents clipping takes care of pruning stray geometry.
840 */
841 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
842 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
843 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
844 }
845
846 /* Set the initial MSAA sample positions. */
847 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
848 GEN_SAMPLE_POS_1X(pat._1xSample);
849 GEN_SAMPLE_POS_2X(pat._2xSample);
850 GEN_SAMPLE_POS_4X(pat._4xSample);
851 GEN_SAMPLE_POS_8X(pat._8xSample);
852 #if GEN_GEN >= 9
853 GEN_SAMPLE_POS_16X(pat._16xSample);
854 #endif
855 }
856
857 /* Use the legacy AA line coverage computation. */
858 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
859
860 /* Disable chromakeying (it's for media) */
861 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
862
863 /* We want regular rendering, not special HiZ operations. */
864 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
865
866 /* No polygon stippling offsets are necessary. */
867 /* TODO: may need to set an offset for origin-UL framebuffers */
868 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
869
870 /* Set a static partitioning of the push constant area. */
871 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
872 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
873 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
874 alloc._3DCommandSubOpcode = 18 + i;
875 alloc.ConstantBufferOffset = 6 * i;
876 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
877 }
878 }
879
880 #if GEN_GEN == 10
881 /* Gen11+ is enabled for us by the kernel. */
882 iris_enable_obj_preemption(batch, true);
883 #endif
884 }
885
886 static void
887 iris_init_compute_context(struct iris_screen *screen,
888 struct iris_batch *batch,
889 struct iris_vtable *vtbl,
890 struct pipe_debug_callback *dbg)
891 {
892 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
893
894 emit_pipeline_select(batch, GPGPU);
895
896 iris_emit_default_l3_config(batch, devinfo, true);
897
898 init_state_base_address(batch);
899
900 #if GEN_GEN == 9
901 if (devinfo->is_geminilake)
902 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
903 #endif
904 }
905
906 struct iris_vertex_buffer_state {
907 /** The VERTEX_BUFFER_STATE hardware structure. */
908 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
909
910 /** The resource to source vertex data from. */
911 struct pipe_resource *resource;
912 };
913
914 struct iris_depth_buffer_state {
915 /* Depth/HiZ/Stencil related hardware packets. */
916 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
917 GENX(3DSTATE_STENCIL_BUFFER_length) +
918 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
919 GENX(3DSTATE_CLEAR_PARAMS_length)];
920 };
921
922 /**
923 * Generation-specific context state (ice->state.genx->...).
924 *
925 * Most state can go in iris_context directly, but these encode hardware
926 * packets which vary by generation.
927 */
928 struct iris_genx_state {
929 struct iris_vertex_buffer_state vertex_buffers[33];
930 uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
931
932 struct iris_depth_buffer_state depth_buffer;
933
934 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
935
936 #if GEN_GEN == 9
937 /* Is object level preemption enabled? */
938 bool object_preemption;
939 #endif
940
941 struct {
942 #if GEN_GEN == 8
943 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
944 #endif
945 } shaders[MESA_SHADER_STAGES];
946 };
947
948 /**
949 * The pipe->set_blend_color() driver hook.
950 *
951 * This corresponds to our COLOR_CALC_STATE.
952 */
953 static void
954 iris_set_blend_color(struct pipe_context *ctx,
955 const struct pipe_blend_color *state)
956 {
957 struct iris_context *ice = (struct iris_context *) ctx;
958
959 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
960 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
961 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
962 }
963
964 /**
965 * Gallium CSO for blend state (see pipe_blend_state).
966 */
967 struct iris_blend_state {
968 /** Partial 3DSTATE_PS_BLEND */
969 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
970
971 /** Partial BLEND_STATE */
972 uint32_t blend_state[GENX(BLEND_STATE_length) +
973 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
974
975 bool alpha_to_coverage; /* for shader key */
976
977 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
978 uint8_t blend_enables;
979
980 /** Bitfield of whether color writes are enabled for RT[i] */
981 uint8_t color_write_enables;
982
983 /** Does RT[0] use dual color blending? */
984 bool dual_color_blending;
985 };
986
987 static enum pipe_blendfactor
988 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
989 {
990 if (alpha_to_one) {
991 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
992 return PIPE_BLENDFACTOR_ONE;
993
994 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
995 return PIPE_BLENDFACTOR_ZERO;
996 }
997
998 return f;
999 }
1000
1001 /**
1002 * The pipe->create_blend_state() driver hook.
1003 *
1004 * Translates a pipe_blend_state into iris_blend_state.
1005 */
1006 static void *
1007 iris_create_blend_state(struct pipe_context *ctx,
1008 const struct pipe_blend_state *state)
1009 {
1010 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
1011 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
1012
1013 cso->blend_enables = 0;
1014 cso->color_write_enables = 0;
1015 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
1016
1017 cso->alpha_to_coverage = state->alpha_to_coverage;
1018
1019 bool indep_alpha_blend = false;
1020
1021 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
1022 const struct pipe_rt_blend_state *rt =
1023 &state->rt[state->independent_blend_enable ? i : 0];
1024
1025 enum pipe_blendfactor src_rgb =
1026 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
1027 enum pipe_blendfactor src_alpha =
1028 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
1029 enum pipe_blendfactor dst_rgb =
1030 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
1031 enum pipe_blendfactor dst_alpha =
1032 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
1033
1034 if (rt->rgb_func != rt->alpha_func ||
1035 src_rgb != src_alpha || dst_rgb != dst_alpha)
1036 indep_alpha_blend = true;
1037
1038 if (rt->blend_enable)
1039 cso->blend_enables |= 1u << i;
1040
1041 if (rt->colormask)
1042 cso->color_write_enables |= 1u << i;
1043
1044 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
1045 be.LogicOpEnable = state->logicop_enable;
1046 be.LogicOpFunction = state->logicop_func;
1047
1048 be.PreBlendSourceOnlyClampEnable = false;
1049 be.ColorClampRange = COLORCLAMP_RTFORMAT;
1050 be.PreBlendColorClampEnable = true;
1051 be.PostBlendColorClampEnable = true;
1052
1053 be.ColorBufferBlendEnable = rt->blend_enable;
1054
1055 be.ColorBlendFunction = rt->rgb_func;
1056 be.AlphaBlendFunction = rt->alpha_func;
1057 be.SourceBlendFactor = src_rgb;
1058 be.SourceAlphaBlendFactor = src_alpha;
1059 be.DestinationBlendFactor = dst_rgb;
1060 be.DestinationAlphaBlendFactor = dst_alpha;
1061
1062 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
1063 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
1064 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
1065 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
1066 }
1067 blend_entry += GENX(BLEND_STATE_ENTRY_length);
1068 }
1069
1070 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
1071 /* pb.HasWriteableRT is filled in at draw time.
1072 * pb.AlphaTestEnable is filled in at draw time.
1073 *
1074 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
1075 * setting it when dual color blending without an appropriate shader.
1076 */
1077
1078 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
1079 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
1080
1081 pb.SourceBlendFactor =
1082 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1083 pb.SourceAlphaBlendFactor =
1084 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1085 pb.DestinationBlendFactor =
1086 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
1087 pb.DestinationAlphaBlendFactor =
1088 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
1089 }
1090
1091 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1092 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1093 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1094 bs.AlphaToOneEnable = state->alpha_to_one;
1095 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
1096 bs.ColorDitherEnable = state->dither;
1097 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1098 }
1099
1100 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1101
1102 return cso;
1103 }
1104
1105 /**
1106 * The pipe->bind_blend_state() driver hook.
1107 *
1108 * Bind a blending CSO and flag related dirty bits.
1109 */
1110 static void
1111 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1112 {
1113 struct iris_context *ice = (struct iris_context *) ctx;
1114 struct iris_blend_state *cso = state;
1115
1116 ice->state.cso_blend = cso;
1117 ice->state.blend_enables = cso ? cso->blend_enables : 0;
1118
1119 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1120 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1121 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1122 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
1123 }
1124
1125 /**
1126 * Return true if the FS writes to any color outputs which are not disabled
1127 * via color masking.
1128 */
1129 static bool
1130 has_writeable_rt(const struct iris_blend_state *cso_blend,
1131 const struct shader_info *fs_info)
1132 {
1133 if (!fs_info)
1134 return false;
1135
1136 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1137
1138 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1139 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
1140
1141 return cso_blend->color_write_enables & rt_outputs;
1142 }
1143
1144 /**
1145 * Gallium CSO for depth, stencil, and alpha testing state.
1146 */
1147 struct iris_depth_stencil_alpha_state {
1148 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1149 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1150
1151 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1152 struct pipe_alpha_state alpha;
1153
1154 /** Outbound to resolve and cache set tracking. */
1155 bool depth_writes_enabled;
1156 bool stencil_writes_enabled;
1157 };
1158
1159 /**
1160 * The pipe->create_depth_stencil_alpha_state() driver hook.
1161 *
1162 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1163 * testing state since we need pieces of it in a variety of places.
1164 */
1165 static void *
1166 iris_create_zsa_state(struct pipe_context *ctx,
1167 const struct pipe_depth_stencil_alpha_state *state)
1168 {
1169 struct iris_depth_stencil_alpha_state *cso =
1170 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1171
1172 bool two_sided_stencil = state->stencil[1].enabled;
1173
1174 cso->alpha = state->alpha;
1175 cso->depth_writes_enabled = state->depth.writemask;
1176 cso->stencil_writes_enabled =
1177 state->stencil[0].writemask != 0 ||
1178 (two_sided_stencil && state->stencil[1].writemask != 0);
1179
1180 /* The state tracker needs to optimize away EQUAL writes for us. */
1181 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1182
1183 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1184 wmds.StencilFailOp = state->stencil[0].fail_op;
1185 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1186 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1187 wmds.StencilTestFunction =
1188 translate_compare_func(state->stencil[0].func);
1189 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1190 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1191 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1192 wmds.BackfaceStencilTestFunction =
1193 translate_compare_func(state->stencil[1].func);
1194 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1195 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1196 wmds.StencilTestEnable = state->stencil[0].enabled;
1197 wmds.StencilBufferWriteEnable =
1198 state->stencil[0].writemask != 0 ||
1199 (two_sided_stencil && state->stencil[1].writemask != 0);
1200 wmds.DepthTestEnable = state->depth.enabled;
1201 wmds.DepthBufferWriteEnable = state->depth.writemask;
1202 wmds.StencilTestMask = state->stencil[0].valuemask;
1203 wmds.StencilWriteMask = state->stencil[0].writemask;
1204 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1205 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1206 /* wmds.[Backface]StencilReferenceValue are merged later */
1207 }
1208
1209 return cso;
1210 }
1211
1212 /**
1213 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1214 *
1215 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1216 */
1217 static void
1218 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1219 {
1220 struct iris_context *ice = (struct iris_context *) ctx;
1221 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1222 struct iris_depth_stencil_alpha_state *new_cso = state;
1223
1224 if (new_cso) {
1225 if (cso_changed(alpha.ref_value))
1226 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1227
1228 if (cso_changed(alpha.enabled))
1229 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1230
1231 if (cso_changed(alpha.func))
1232 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1233
1234 if (cso_changed(depth_writes_enabled))
1235 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1236
1237 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1238 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1239 }
1240
1241 ice->state.cso_zsa = new_cso;
1242 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1243 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1244 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1245 }
1246
1247 /**
1248 * Gallium CSO for rasterizer state.
1249 */
1250 struct iris_rasterizer_state {
1251 uint32_t sf[GENX(3DSTATE_SF_length)];
1252 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1253 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1254 uint32_t wm[GENX(3DSTATE_WM_length)];
1255 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1256
1257 uint8_t num_clip_plane_consts;
1258 bool clip_halfz; /* for CC_VIEWPORT */
1259 bool depth_clip_near; /* for CC_VIEWPORT */
1260 bool depth_clip_far; /* for CC_VIEWPORT */
1261 bool flatshade; /* for shader state */
1262 bool flatshade_first; /* for stream output */
1263 bool clamp_fragment_color; /* for shader state */
1264 bool light_twoside; /* for shader state */
1265 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1266 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1267 bool line_stipple_enable;
1268 bool poly_stipple_enable;
1269 bool multisample;
1270 bool force_persample_interp;
1271 bool conservative_rasterization;
1272 bool fill_mode_point_or_line;
1273 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1274 uint16_t sprite_coord_enable;
1275 };
1276
1277 static float
1278 get_line_width(const struct pipe_rasterizer_state *state)
1279 {
1280 float line_width = state->line_width;
1281
1282 /* From the OpenGL 4.4 spec:
1283 *
1284 * "The actual width of non-antialiased lines is determined by rounding
1285 * the supplied width to the nearest integer, then clamping it to the
1286 * implementation-dependent maximum non-antialiased line width."
1287 */
1288 if (!state->multisample && !state->line_smooth)
1289 line_width = roundf(state->line_width);
1290
1291 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1292 /* For 1 pixel line thickness or less, the general anti-aliasing
1293 * algorithm gives up, and a garbage line is generated. Setting a
1294 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1295 * (one-pixel-wide), non-antialiased lines.
1296 *
1297 * Lines rendered with zero Line Width are rasterized using the
1298 * "Grid Intersection Quantization" rules as specified by the
1299 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1300 */
1301 line_width = 0.0f;
1302 }
1303
1304 return line_width;
1305 }
1306
1307 /**
1308 * The pipe->create_rasterizer_state() driver hook.
1309 */
1310 static void *
1311 iris_create_rasterizer_state(struct pipe_context *ctx,
1312 const struct pipe_rasterizer_state *state)
1313 {
1314 struct iris_rasterizer_state *cso =
1315 malloc(sizeof(struct iris_rasterizer_state));
1316
1317 cso->multisample = state->multisample;
1318 cso->force_persample_interp = state->force_persample_interp;
1319 cso->clip_halfz = state->clip_halfz;
1320 cso->depth_clip_near = state->depth_clip_near;
1321 cso->depth_clip_far = state->depth_clip_far;
1322 cso->flatshade = state->flatshade;
1323 cso->flatshade_first = state->flatshade_first;
1324 cso->clamp_fragment_color = state->clamp_fragment_color;
1325 cso->light_twoside = state->light_twoside;
1326 cso->rasterizer_discard = state->rasterizer_discard;
1327 cso->half_pixel_center = state->half_pixel_center;
1328 cso->sprite_coord_mode = state->sprite_coord_mode;
1329 cso->sprite_coord_enable = state->sprite_coord_enable;
1330 cso->line_stipple_enable = state->line_stipple_enable;
1331 cso->poly_stipple_enable = state->poly_stipple_enable;
1332 cso->conservative_rasterization =
1333 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1334
1335 cso->fill_mode_point_or_line =
1336 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1337 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1338 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1339 state->fill_back == PIPE_POLYGON_MODE_POINT;
1340
1341 if (state->clip_plane_enable != 0)
1342 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1343 else
1344 cso->num_clip_plane_consts = 0;
1345
1346 float line_width = get_line_width(state);
1347
1348 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1349 sf.StatisticsEnable = true;
1350 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1351 sf.LineEndCapAntialiasingRegionWidth =
1352 state->line_smooth ? _10pixels : _05pixels;
1353 sf.LastPixelEnable = state->line_last_pixel;
1354 sf.LineWidth = line_width;
1355 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1356 !state->point_quad_rasterization;
1357 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1358 sf.PointWidth = state->point_size;
1359
1360 if (state->flatshade_first) {
1361 sf.TriangleFanProvokingVertexSelect = 1;
1362 } else {
1363 sf.TriangleStripListProvokingVertexSelect = 2;
1364 sf.TriangleFanProvokingVertexSelect = 2;
1365 sf.LineStripListProvokingVertexSelect = 1;
1366 }
1367 }
1368
1369 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1370 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1371 rr.CullMode = translate_cull_mode(state->cull_face);
1372 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1373 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1374 rr.DXMultisampleRasterizationEnable = state->multisample;
1375 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1376 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1377 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1378 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1379 rr.GlobalDepthOffsetScale = state->offset_scale;
1380 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1381 rr.SmoothPointEnable = state->point_smooth;
1382 rr.AntialiasingEnable = state->line_smooth;
1383 rr.ScissorRectangleEnable = state->scissor;
1384 #if GEN_GEN >= 9
1385 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1386 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1387 rr.ConservativeRasterizationEnable =
1388 cso->conservative_rasterization;
1389 #else
1390 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1391 #endif
1392 }
1393
1394 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1395 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1396 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1397 */
1398 cl.EarlyCullEnable = true;
1399 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1400 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1401 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1402 cl.GuardbandClipTestEnable = true;
1403 cl.ClipEnable = true;
1404 cl.MinimumPointWidth = 0.125;
1405 cl.MaximumPointWidth = 255.875;
1406
1407 if (state->flatshade_first) {
1408 cl.TriangleFanProvokingVertexSelect = 1;
1409 } else {
1410 cl.TriangleStripListProvokingVertexSelect = 2;
1411 cl.TriangleFanProvokingVertexSelect = 2;
1412 cl.LineStripListProvokingVertexSelect = 1;
1413 }
1414 }
1415
1416 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1417 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1418 * filled in at draw time from the FS program.
1419 */
1420 wm.LineAntialiasingRegionWidth = _10pixels;
1421 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1422 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1423 wm.LineStippleEnable = state->line_stipple_enable;
1424 wm.PolygonStippleEnable = state->poly_stipple_enable;
1425 }
1426
1427 /* Remap from 0..255 back to 1..256 */
1428 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1429
1430 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1431 if (state->line_stipple_enable) {
1432 line.LineStipplePattern = state->line_stipple_pattern;
1433 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1434 line.LineStippleRepeatCount = line_stipple_factor;
1435 }
1436 }
1437
1438 return cso;
1439 }
1440
1441 /**
1442 * The pipe->bind_rasterizer_state() driver hook.
1443 *
1444 * Bind a rasterizer CSO and flag related dirty bits.
1445 */
1446 static void
1447 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1448 {
1449 struct iris_context *ice = (struct iris_context *) ctx;
1450 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1451 struct iris_rasterizer_state *new_cso = state;
1452
1453 if (new_cso) {
1454 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1455 if (cso_changed_memcmp(line_stipple))
1456 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1457
1458 if (cso_changed(half_pixel_center))
1459 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1460
1461 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1462 ice->state.dirty |= IRIS_DIRTY_WM;
1463
1464 if (cso_changed(rasterizer_discard))
1465 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1466
1467 if (cso_changed(flatshade_first))
1468 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1469
1470 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1471 cso_changed(clip_halfz))
1472 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1473
1474 if (cso_changed(sprite_coord_enable) ||
1475 cso_changed(sprite_coord_mode) ||
1476 cso_changed(light_twoside))
1477 ice->state.dirty |= IRIS_DIRTY_SBE;
1478
1479 if (cso_changed(conservative_rasterization))
1480 ice->state.dirty |= IRIS_DIRTY_FS;
1481 }
1482
1483 ice->state.cso_rast = new_cso;
1484 ice->state.dirty |= IRIS_DIRTY_RASTER;
1485 ice->state.dirty |= IRIS_DIRTY_CLIP;
1486 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1487 }
1488
1489 /**
1490 * Return true if the given wrap mode requires the border color to exist.
1491 *
1492 * (We can skip uploading it if the sampler isn't going to use it.)
1493 */
1494 static bool
1495 wrap_mode_needs_border_color(unsigned wrap_mode)
1496 {
1497 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1498 }
1499
1500 /**
1501 * Gallium CSO for sampler state.
1502 */
1503 struct iris_sampler_state {
1504 union pipe_color_union border_color;
1505 bool needs_border_color;
1506
1507 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1508 };
1509
1510 /**
1511 * The pipe->create_sampler_state() driver hook.
1512 *
1513 * We fill out SAMPLER_STATE (except for the border color pointer), and
1514 * store that on the CPU. It doesn't make sense to upload it to a GPU
1515 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1516 * all bound sampler states to be in contiguous memor.
1517 */
1518 static void *
1519 iris_create_sampler_state(struct pipe_context *ctx,
1520 const struct pipe_sampler_state *state)
1521 {
1522 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1523
1524 if (!cso)
1525 return NULL;
1526
1527 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1528 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1529
1530 unsigned wrap_s = translate_wrap(state->wrap_s);
1531 unsigned wrap_t = translate_wrap(state->wrap_t);
1532 unsigned wrap_r = translate_wrap(state->wrap_r);
1533
1534 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1535
1536 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1537 wrap_mode_needs_border_color(wrap_t) ||
1538 wrap_mode_needs_border_color(wrap_r);
1539
1540 float min_lod = state->min_lod;
1541 unsigned mag_img_filter = state->mag_img_filter;
1542
1543 // XXX: explain this code ported from ilo...I don't get it at all...
1544 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1545 state->min_lod > 0.0f) {
1546 min_lod = 0.0f;
1547 mag_img_filter = state->min_img_filter;
1548 }
1549
1550 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1551 samp.TCXAddressControlMode = wrap_s;
1552 samp.TCYAddressControlMode = wrap_t;
1553 samp.TCZAddressControlMode = wrap_r;
1554 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1555 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1556 samp.MinModeFilter = state->min_img_filter;
1557 samp.MagModeFilter = mag_img_filter;
1558 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1559 samp.MaximumAnisotropy = RATIO21;
1560
1561 if (state->max_anisotropy >= 2) {
1562 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1563 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1564 samp.AnisotropicAlgorithm = EWAApproximation;
1565 }
1566
1567 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1568 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1569
1570 samp.MaximumAnisotropy =
1571 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1572 }
1573
1574 /* Set address rounding bits if not using nearest filtering. */
1575 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1576 samp.UAddressMinFilterRoundingEnable = true;
1577 samp.VAddressMinFilterRoundingEnable = true;
1578 samp.RAddressMinFilterRoundingEnable = true;
1579 }
1580
1581 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1582 samp.UAddressMagFilterRoundingEnable = true;
1583 samp.VAddressMagFilterRoundingEnable = true;
1584 samp.RAddressMagFilterRoundingEnable = true;
1585 }
1586
1587 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1588 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1589
1590 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1591
1592 samp.LODPreClampMode = CLAMP_MODE_OGL;
1593 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1594 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1595 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1596
1597 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1598 }
1599
1600 return cso;
1601 }
1602
1603 /**
1604 * The pipe->bind_sampler_states() driver hook.
1605 */
1606 static void
1607 iris_bind_sampler_states(struct pipe_context *ctx,
1608 enum pipe_shader_type p_stage,
1609 unsigned start, unsigned count,
1610 void **states)
1611 {
1612 struct iris_context *ice = (struct iris_context *) ctx;
1613 gl_shader_stage stage = stage_from_pipe(p_stage);
1614 struct iris_shader_state *shs = &ice->state.shaders[stage];
1615
1616 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1617
1618 bool dirty = false;
1619
1620 for (int i = 0; i < count; i++) {
1621 if (shs->samplers[start + i] != states[i]) {
1622 shs->samplers[start + i] = states[i];
1623 dirty = true;
1624 }
1625 }
1626
1627 if (dirty)
1628 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1629 }
1630
1631 /**
1632 * Upload the sampler states into a contiguous area of GPU memory, for
1633 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1634 *
1635 * Also fill out the border color state pointers.
1636 */
1637 static void
1638 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1639 {
1640 struct iris_shader_state *shs = &ice->state.shaders[stage];
1641 const struct shader_info *info = iris_get_shader_info(ice, stage);
1642
1643 /* We assume the state tracker will call pipe->bind_sampler_states()
1644 * if the program's number of textures changes.
1645 */
1646 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1647
1648 if (!count)
1649 return;
1650
1651 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1652 * in the dynamic state memory zone, so we can point to it via the
1653 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1654 */
1655 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
1656 uint32_t *map =
1657 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
1658 if (unlikely(!map))
1659 return;
1660
1661 struct pipe_resource *res = shs->sampler_table.res;
1662 shs->sampler_table.offset +=
1663 iris_bo_offset_from_base_address(iris_resource_bo(res));
1664
1665 iris_record_state_size(ice->state.sizes, shs->sampler_table.offset, size);
1666
1667 /* Make sure all land in the same BO */
1668 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1669
1670 ice->state.need_border_colors &= ~(1 << stage);
1671
1672 for (int i = 0; i < count; i++) {
1673 struct iris_sampler_state *state = shs->samplers[i];
1674 struct iris_sampler_view *tex = shs->textures[i];
1675
1676 if (!state) {
1677 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1678 } else if (!state->needs_border_color) {
1679 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1680 } else {
1681 ice->state.need_border_colors |= 1 << stage;
1682
1683 /* We may need to swizzle the border color for format faking.
1684 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
1685 * This means we need to move the border color's A channel into
1686 * the R or G channels so that those read swizzles will move it
1687 * back into A.
1688 */
1689 union pipe_color_union *color = &state->border_color;
1690 union pipe_color_union tmp;
1691 if (tex) {
1692 enum pipe_format internal_format = tex->res->internal_format;
1693
1694 if (util_format_is_alpha(internal_format)) {
1695 unsigned char swz[4] = {
1696 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
1697 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1698 };
1699 util_format_apply_color_swizzle(&tmp, color, swz, true);
1700 color = &tmp;
1701 } else if (util_format_is_luminance_alpha(internal_format) &&
1702 internal_format != PIPE_FORMAT_L8A8_SRGB) {
1703 unsigned char swz[4] = {
1704 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
1705 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1706 };
1707 util_format_apply_color_swizzle(&tmp, color, swz, true);
1708 color = &tmp;
1709 }
1710 }
1711
1712 /* Stream out the border color and merge the pointer. */
1713 uint32_t offset = iris_upload_border_color(ice, color);
1714
1715 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1716 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1717 dyns.BorderColorPointer = offset;
1718 }
1719
1720 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1721 map[j] = state->sampler_state[j] | dynamic[j];
1722 }
1723
1724 map += GENX(SAMPLER_STATE_length);
1725 }
1726 }
1727
1728 static enum isl_channel_select
1729 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1730 {
1731 switch (swz) {
1732 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1733 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1734 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1735 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1736 case PIPE_SWIZZLE_1: return SCS_ONE;
1737 case PIPE_SWIZZLE_0: return SCS_ZERO;
1738 default: unreachable("invalid swizzle");
1739 }
1740 }
1741
1742 static void
1743 fill_buffer_surface_state(struct isl_device *isl_dev,
1744 struct iris_resource *res,
1745 void *map,
1746 enum isl_format format,
1747 struct isl_swizzle swizzle,
1748 unsigned offset,
1749 unsigned size)
1750 {
1751 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1752 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1753
1754 /* The ARB_texture_buffer_specification says:
1755 *
1756 * "The number of texels in the buffer texture's texel array is given by
1757 *
1758 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1759 *
1760 * where <buffer_size> is the size of the buffer object, in basic
1761 * machine units and <components> and <base_type> are the element count
1762 * and base data type for elements, as specified in Table X.1. The
1763 * number of texels in the texel array is then clamped to the
1764 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1765 *
1766 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1767 * so that when ISL divides by stride to obtain the number of texels, that
1768 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1769 */
1770 unsigned final_size =
1771 MIN3(size, res->bo->size - res->offset - offset,
1772 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1773
1774 isl_buffer_fill_state(isl_dev, map,
1775 .address = res->bo->gtt_offset + res->offset + offset,
1776 .size_B = final_size,
1777 .format = format,
1778 .swizzle = swizzle,
1779 .stride_B = cpp,
1780 .mocs = mocs(res->bo));
1781 }
1782
1783 #define SURFACE_STATE_ALIGNMENT 64
1784
1785 /**
1786 * Allocate several contiguous SURFACE_STATE structures, one for each
1787 * supported auxiliary surface mode.
1788 */
1789 static void *
1790 alloc_surface_states(struct u_upload_mgr *mgr,
1791 struct iris_state_ref *ref,
1792 unsigned aux_usages)
1793 {
1794 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1795
1796 /* If this changes, update this to explicitly align pointers */
1797 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1798
1799 assert(aux_usages != 0);
1800
1801 void *map =
1802 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1803 SURFACE_STATE_ALIGNMENT);
1804
1805 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1806
1807 return map;
1808 }
1809
1810 #if GEN_GEN == 8
1811 /**
1812 * Return an ISL surface for use with non-coherent render target reads.
1813 *
1814 * In a few complex cases, we can't use the SURFACE_STATE for normal render
1815 * target writes. We need to make a separate one for sampling which refers
1816 * to the single slice of the texture being read.
1817 */
1818 static void
1819 get_rt_read_isl_surf(const struct gen_device_info *devinfo,
1820 struct iris_resource *res,
1821 enum pipe_texture_target target,
1822 struct isl_view *view,
1823 uint32_t *tile_x_sa,
1824 uint32_t *tile_y_sa,
1825 struct isl_surf *surf)
1826 {
1827
1828 *surf = res->surf;
1829
1830 const enum isl_dim_layout dim_layout =
1831 iris_get_isl_dim_layout(devinfo, res->surf.tiling, target);
1832
1833 surf->dim = target_to_isl_surf_dim(target);
1834
1835 if (surf->dim_layout == dim_layout)
1836 return;
1837
1838 /* The layout of the specified texture target is not compatible with the
1839 * actual layout of the miptree structure in memory -- You're entering
1840 * dangerous territory, this can only possibly work if you only intended
1841 * to access a single level and slice of the texture, and the hardware
1842 * supports the tile offset feature in order to allow non-tile-aligned
1843 * base offsets, since we'll have to point the hardware to the first
1844 * texel of the level instead of relying on the usual base level/layer
1845 * controls.
1846 */
1847 assert(view->levels == 1 && view->array_len == 1);
1848 assert(*tile_x_sa == 0 && *tile_y_sa == 0);
1849
1850 res->offset += iris_resource_get_tile_offsets(res, view->base_level,
1851 view->base_array_layer,
1852 tile_x_sa, tile_y_sa);
1853 const unsigned l = view->base_level;
1854
1855 surf->logical_level0_px.width = minify(surf->logical_level0_px.width, l);
1856 surf->logical_level0_px.height = surf->dim <= ISL_SURF_DIM_1D ? 1 :
1857 minify(surf->logical_level0_px.height, l);
1858 surf->logical_level0_px.depth = surf->dim <= ISL_SURF_DIM_2D ? 1 :
1859 minify(surf->logical_level0_px.depth, l);
1860
1861 surf->logical_level0_px.array_len = 1;
1862 surf->levels = 1;
1863 surf->dim_layout = dim_layout;
1864
1865 view->base_level = 0;
1866 view->base_array_layer = 0;
1867 }
1868 #endif
1869
1870 static void
1871 fill_surface_state(struct isl_device *isl_dev,
1872 void *map,
1873 struct iris_resource *res,
1874 struct isl_surf *surf,
1875 struct isl_view *view,
1876 unsigned aux_usage,
1877 uint32_t tile_x_sa,
1878 uint32_t tile_y_sa)
1879 {
1880 struct isl_surf_fill_state_info f = {
1881 .surf = surf,
1882 .view = view,
1883 .mocs = mocs(res->bo),
1884 .address = res->bo->gtt_offset + res->offset,
1885 .x_offset_sa = tile_x_sa,
1886 .y_offset_sa = tile_y_sa,
1887 };
1888
1889 assert(!iris_resource_unfinished_aux_import(res));
1890
1891 if (aux_usage != ISL_AUX_USAGE_NONE) {
1892 f.aux_surf = &res->aux.surf;
1893 f.aux_usage = aux_usage;
1894 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1895
1896 struct iris_bo *clear_bo = NULL;
1897 uint64_t clear_offset = 0;
1898 f.clear_color =
1899 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
1900 if (clear_bo) {
1901 f.clear_address = clear_bo->gtt_offset + clear_offset;
1902 f.use_clear_address = isl_dev->info->gen > 9;
1903 }
1904 }
1905
1906 isl_surf_fill_state_s(isl_dev, map, &f);
1907 }
1908
1909 /**
1910 * The pipe->create_sampler_view() driver hook.
1911 */
1912 static struct pipe_sampler_view *
1913 iris_create_sampler_view(struct pipe_context *ctx,
1914 struct pipe_resource *tex,
1915 const struct pipe_sampler_view *tmpl)
1916 {
1917 struct iris_context *ice = (struct iris_context *) ctx;
1918 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1919 const struct gen_device_info *devinfo = &screen->devinfo;
1920 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1921
1922 if (!isv)
1923 return NULL;
1924
1925 /* initialize base object */
1926 isv->base = *tmpl;
1927 isv->base.context = ctx;
1928 isv->base.texture = NULL;
1929 pipe_reference_init(&isv->base.reference, 1);
1930 pipe_resource_reference(&isv->base.texture, tex);
1931
1932 if (util_format_is_depth_or_stencil(tmpl->format)) {
1933 struct iris_resource *zres, *sres;
1934 const struct util_format_description *desc =
1935 util_format_description(tmpl->format);
1936
1937 iris_get_depth_stencil_resources(tex, &zres, &sres);
1938
1939 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1940 }
1941
1942 isv->res = (struct iris_resource *) tex;
1943
1944 void *map = alloc_surface_states(ice->state.surface_uploader,
1945 &isv->surface_state,
1946 isv->res->aux.sampler_usages);
1947 if (!unlikely(map))
1948 return NULL;
1949
1950 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1951
1952 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1953 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1954 usage |= ISL_SURF_USAGE_CUBE_BIT;
1955
1956 const struct iris_format_info fmt =
1957 iris_format_for_usage(devinfo, tmpl->format, usage);
1958
1959 isv->clear_color = isv->res->aux.clear_color;
1960
1961 isv->view = (struct isl_view) {
1962 .format = fmt.fmt,
1963 .swizzle = (struct isl_swizzle) {
1964 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1965 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1966 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1967 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1968 },
1969 .usage = usage,
1970 };
1971
1972 /* Fill out SURFACE_STATE for this view. */
1973 if (tmpl->target != PIPE_BUFFER) {
1974 isv->view.base_level = tmpl->u.tex.first_level;
1975 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1976 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1977 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1978 isv->view.array_len =
1979 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1980
1981 if (iris_resource_unfinished_aux_import(isv->res))
1982 iris_resource_finish_aux_import(&screen->base, isv->res);
1983
1984 unsigned aux_modes = isv->res->aux.sampler_usages;
1985 while (aux_modes) {
1986 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1987
1988 /* If we have a multisampled depth buffer, do not create a sampler
1989 * surface state with HiZ.
1990 */
1991 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->res->surf,
1992 &isv->view, aux_usage, 0, 0);
1993
1994 map += SURFACE_STATE_ALIGNMENT;
1995 }
1996 } else {
1997 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
1998 isv->view.format, isv->view.swizzle,
1999 tmpl->u.buf.offset, tmpl->u.buf.size);
2000 }
2001
2002 return &isv->base;
2003 }
2004
2005 static void
2006 iris_sampler_view_destroy(struct pipe_context *ctx,
2007 struct pipe_sampler_view *state)
2008 {
2009 struct iris_sampler_view *isv = (void *) state;
2010 pipe_resource_reference(&state->texture, NULL);
2011 pipe_resource_reference(&isv->surface_state.res, NULL);
2012 free(isv);
2013 }
2014
2015 /**
2016 * The pipe->create_surface() driver hook.
2017 *
2018 * In Gallium nomenclature, "surfaces" are a view of a resource that
2019 * can be bound as a render target or depth/stencil buffer.
2020 */
2021 static struct pipe_surface *
2022 iris_create_surface(struct pipe_context *ctx,
2023 struct pipe_resource *tex,
2024 const struct pipe_surface *tmpl)
2025 {
2026 struct iris_context *ice = (struct iris_context *) ctx;
2027 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2028 const struct gen_device_info *devinfo = &screen->devinfo;
2029
2030 isl_surf_usage_flags_t usage = 0;
2031 if (tmpl->writable)
2032 usage = ISL_SURF_USAGE_STORAGE_BIT;
2033 else if (util_format_is_depth_or_stencil(tmpl->format))
2034 usage = ISL_SURF_USAGE_DEPTH_BIT;
2035 else
2036 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
2037
2038 const struct iris_format_info fmt =
2039 iris_format_for_usage(devinfo, tmpl->format, usage);
2040
2041 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
2042 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
2043 /* Framebuffer validation will reject this invalid case, but it
2044 * hasn't had the opportunity yet. In the meantime, we need to
2045 * avoid hitting ISL asserts about unsupported formats below.
2046 */
2047 return NULL;
2048 }
2049
2050 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
2051 struct pipe_surface *psurf = &surf->base;
2052 struct iris_resource *res = (struct iris_resource *) tex;
2053
2054 if (!surf)
2055 return NULL;
2056
2057 pipe_reference_init(&psurf->reference, 1);
2058 pipe_resource_reference(&psurf->texture, tex);
2059 psurf->context = ctx;
2060 psurf->format = tmpl->format;
2061 psurf->width = tex->width0;
2062 psurf->height = tex->height0;
2063 psurf->texture = tex;
2064 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
2065 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
2066 psurf->u.tex.level = tmpl->u.tex.level;
2067
2068 uint32_t array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2069
2070 struct isl_view *view = &surf->view;
2071 *view = (struct isl_view) {
2072 .format = fmt.fmt,
2073 .base_level = tmpl->u.tex.level,
2074 .levels = 1,
2075 .base_array_layer = tmpl->u.tex.first_layer,
2076 .array_len = array_len,
2077 .swizzle = ISL_SWIZZLE_IDENTITY,
2078 .usage = usage,
2079 };
2080
2081 #if GEN_GEN == 8
2082 enum pipe_texture_target target = (tex->target == PIPE_TEXTURE_3D &&
2083 array_len == 1) ? PIPE_TEXTURE_2D :
2084 tex->target == PIPE_TEXTURE_1D_ARRAY ?
2085 PIPE_TEXTURE_2D_ARRAY : tex->target;
2086
2087 struct isl_view *read_view = &surf->read_view;
2088 *read_view = (struct isl_view) {
2089 .format = fmt.fmt,
2090 .base_level = tmpl->u.tex.level,
2091 .levels = 1,
2092 .base_array_layer = tmpl->u.tex.first_layer,
2093 .array_len = array_len,
2094 .swizzle = ISL_SWIZZLE_IDENTITY,
2095 .usage = ISL_SURF_USAGE_TEXTURE_BIT,
2096 };
2097 #endif
2098
2099 surf->clear_color = res->aux.clear_color;
2100
2101 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
2102 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
2103 ISL_SURF_USAGE_STENCIL_BIT))
2104 return psurf;
2105
2106
2107 void *map = alloc_surface_states(ice->state.surface_uploader,
2108 &surf->surface_state,
2109 res->aux.possible_usages);
2110 if (!unlikely(map)) {
2111 pipe_resource_reference(&surf->surface_state.res, NULL);
2112 return NULL;
2113 }
2114
2115 #if GEN_GEN == 8
2116 void *map_read = alloc_surface_states(ice->state.surface_uploader,
2117 &surf->surface_state_read,
2118 res->aux.possible_usages);
2119 if (!unlikely(map_read)) {
2120 pipe_resource_reference(&surf->surface_state_read.res, NULL);
2121 return NULL;
2122 }
2123 #endif
2124
2125 if (!isl_format_is_compressed(res->surf.format)) {
2126 if (iris_resource_unfinished_aux_import(res))
2127 iris_resource_finish_aux_import(&screen->base, res);
2128
2129 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
2130 * auxiliary surface mode and return the pipe_surface.
2131 */
2132 unsigned aux_modes = res->aux.possible_usages;
2133 while (aux_modes) {
2134 #if GEN_GEN == 8
2135 uint32_t offset = res->offset;
2136 #endif
2137 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2138 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2139 view, aux_usage, 0, 0);
2140 map += SURFACE_STATE_ALIGNMENT;
2141
2142 #if GEN_GEN == 8
2143 struct isl_surf surf;
2144 uint32_t tile_x_sa = 0, tile_y_sa = 0;
2145 get_rt_read_isl_surf(devinfo, res, target, read_view,
2146 &tile_x_sa, &tile_y_sa, &surf);
2147 fill_surface_state(&screen->isl_dev, map_read, res, &surf, read_view,
2148 aux_usage, tile_x_sa, tile_y_sa);
2149 /* Restore offset because we change offset in case of handling
2150 * non_coherent fb fetch
2151 */
2152 res->offset = offset;
2153 map_read += SURFACE_STATE_ALIGNMENT;
2154 #endif
2155 }
2156
2157 return psurf;
2158 }
2159
2160 /* The resource has a compressed format, which is not renderable, but we
2161 * have a renderable view format. We must be attempting to upload blocks
2162 * of compressed data via an uncompressed view.
2163 *
2164 * In this case, we can assume there are no auxiliary buffers, a single
2165 * miplevel, and that the resource is single-sampled. Gallium may try
2166 * and create an uncompressed view with multiple layers, however.
2167 */
2168 assert(!isl_format_is_compressed(fmt.fmt));
2169 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
2170 assert(res->surf.samples == 1);
2171 assert(view->levels == 1);
2172
2173 struct isl_surf isl_surf;
2174 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
2175
2176 if (view->base_level > 0) {
2177 /* We can't rely on the hardware's miplevel selection with such
2178 * a substantial lie about the format, so we select a single image
2179 * using the Tile X/Y Offset fields. In this case, we can't handle
2180 * multiple array slices.
2181 *
2182 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
2183 * hard-coded to align to exactly the block size of the compressed
2184 * texture. This means that, when reinterpreted as a non-compressed
2185 * texture, the tile offsets may be anything and we can't rely on
2186 * X/Y Offset.
2187 *
2188 * Return NULL to force the state tracker to take fallback paths.
2189 */
2190 if (view->array_len > 1 || GEN_GEN == 8)
2191 return NULL;
2192
2193 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
2194 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
2195 view->base_level,
2196 is_3d ? 0 : view->base_array_layer,
2197 is_3d ? view->base_array_layer : 0,
2198 &isl_surf,
2199 &offset_B, &tile_x_sa, &tile_y_sa);
2200
2201 /* We use address and tile offsets to access a single level/layer
2202 * as a subimage, so reset level/layer so it doesn't offset again.
2203 */
2204 view->base_array_layer = 0;
2205 view->base_level = 0;
2206 } else {
2207 /* Level 0 doesn't require tile offsets, and the hardware can find
2208 * array slices using QPitch even with the format override, so we
2209 * can allow layers in this case. Copy the original ISL surface.
2210 */
2211 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
2212 }
2213
2214 /* Scale down the image dimensions by the block size. */
2215 const struct isl_format_layout *fmtl =
2216 isl_format_get_layout(res->surf.format);
2217 isl_surf.format = fmt.fmt;
2218 isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
2219 isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
2220 tile_x_sa /= fmtl->bw;
2221 tile_y_sa /= fmtl->bh;
2222
2223 psurf->width = isl_surf.logical_level0_px.width;
2224 psurf->height = isl_surf.logical_level0_px.height;
2225
2226 struct isl_surf_fill_state_info f = {
2227 .surf = &isl_surf,
2228 .view = view,
2229 .mocs = mocs(res->bo),
2230 .address = res->bo->gtt_offset + offset_B,
2231 .x_offset_sa = tile_x_sa,
2232 .y_offset_sa = tile_y_sa,
2233 };
2234
2235 isl_surf_fill_state_s(&screen->isl_dev, map, &f);
2236 return psurf;
2237 }
2238
2239 #if GEN_GEN < 9
2240 static void
2241 fill_default_image_param(struct brw_image_param *param)
2242 {
2243 memset(param, 0, sizeof(*param));
2244 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
2245 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
2246 * detailed explanation of these parameters.
2247 */
2248 param->swizzling[0] = 0xff;
2249 param->swizzling[1] = 0xff;
2250 }
2251
2252 static void
2253 fill_buffer_image_param(struct brw_image_param *param,
2254 enum pipe_format pfmt,
2255 unsigned size)
2256 {
2257 const unsigned cpp = util_format_get_blocksize(pfmt);
2258
2259 fill_default_image_param(param);
2260 param->size[0] = size / cpp;
2261 param->stride[0] = cpp;
2262 }
2263 #else
2264 #define isl_surf_fill_image_param(x, ...)
2265 #define fill_default_image_param(x, ...)
2266 #define fill_buffer_image_param(x, ...)
2267 #endif
2268
2269 /**
2270 * The pipe->set_shader_images() driver hook.
2271 */
2272 static void
2273 iris_set_shader_images(struct pipe_context *ctx,
2274 enum pipe_shader_type p_stage,
2275 unsigned start_slot, unsigned count,
2276 const struct pipe_image_view *p_images)
2277 {
2278 struct iris_context *ice = (struct iris_context *) ctx;
2279 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2280 const struct gen_device_info *devinfo = &screen->devinfo;
2281 gl_shader_stage stage = stage_from_pipe(p_stage);
2282 struct iris_shader_state *shs = &ice->state.shaders[stage];
2283 #if GEN_GEN == 8
2284 struct iris_genx_state *genx = ice->state.genx;
2285 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2286 #endif
2287
2288 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2289
2290 for (unsigned i = 0; i < count; i++) {
2291 struct iris_image_view *iv = &shs->image[start_slot + i];
2292
2293 if (p_images && p_images[i].resource) {
2294 const struct pipe_image_view *img = &p_images[i];
2295 struct iris_resource *res = (void *) img->resource;
2296
2297 void *map =
2298 alloc_surface_states(ice->state.surface_uploader,
2299 &iv->surface_state, 1 << ISL_AUX_USAGE_NONE);
2300 if (!unlikely(map))
2301 return;
2302
2303 util_copy_image_view(&iv->base, img);
2304
2305 shs->bound_image_views |= 1 << (start_slot + i);
2306
2307 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2308 res->bind_stages |= 1 << stage;
2309
2310 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
2311 enum isl_format isl_fmt =
2312 iris_format_for_usage(devinfo, img->format, usage).fmt;
2313
2314 bool untyped_fallback = false;
2315
2316 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
2317 /* On Gen8, try to use typed surfaces reads (which support a
2318 * limited number of formats), and if not possible, fall back
2319 * to untyped reads.
2320 */
2321 untyped_fallback = GEN_GEN == 8 &&
2322 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
2323
2324 if (untyped_fallback)
2325 isl_fmt = ISL_FORMAT_RAW;
2326 else
2327 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
2328 }
2329
2330 if (res->base.target != PIPE_BUFFER) {
2331 struct isl_view view = {
2332 .format = isl_fmt,
2333 .base_level = img->u.tex.level,
2334 .levels = 1,
2335 .base_array_layer = img->u.tex.first_layer,
2336 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2337 .swizzle = ISL_SWIZZLE_IDENTITY,
2338 .usage = usage,
2339 };
2340
2341 if (untyped_fallback) {
2342 fill_buffer_surface_state(&screen->isl_dev, res, map,
2343 isl_fmt, ISL_SWIZZLE_IDENTITY,
2344 0, res->bo->size);
2345 } else {
2346 /* Images don't support compression */
2347 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
2348 while (aux_modes) {
2349 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2350
2351 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2352 &view, usage, 0, 0);
2353
2354 map += SURFACE_STATE_ALIGNMENT;
2355 }
2356 }
2357
2358 isl_surf_fill_image_param(&screen->isl_dev,
2359 &image_params[start_slot + i],
2360 &res->surf, &view);
2361 } else {
2362 util_range_add(&res->valid_buffer_range, img->u.buf.offset,
2363 img->u.buf.offset + img->u.buf.size);
2364
2365 fill_buffer_surface_state(&screen->isl_dev, res, map,
2366 isl_fmt, ISL_SWIZZLE_IDENTITY,
2367 img->u.buf.offset, img->u.buf.size);
2368 fill_buffer_image_param(&image_params[start_slot + i],
2369 img->format, img->u.buf.size);
2370 }
2371 } else {
2372 pipe_resource_reference(&iv->base.resource, NULL);
2373 pipe_resource_reference(&iv->surface_state.res, NULL);
2374 fill_default_image_param(&image_params[start_slot + i]);
2375 }
2376 }
2377
2378 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2379 ice->state.dirty |=
2380 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2381 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2382
2383 /* Broadwell also needs brw_image_params re-uploaded */
2384 if (GEN_GEN < 9) {
2385 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2386 shs->sysvals_need_upload = true;
2387 }
2388 }
2389
2390
2391 /**
2392 * The pipe->set_sampler_views() driver hook.
2393 */
2394 static void
2395 iris_set_sampler_views(struct pipe_context *ctx,
2396 enum pipe_shader_type p_stage,
2397 unsigned start, unsigned count,
2398 struct pipe_sampler_view **views)
2399 {
2400 struct iris_context *ice = (struct iris_context *) ctx;
2401 gl_shader_stage stage = stage_from_pipe(p_stage);
2402 struct iris_shader_state *shs = &ice->state.shaders[stage];
2403
2404 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2405
2406 for (unsigned i = 0; i < count; i++) {
2407 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2408 pipe_sampler_view_reference((struct pipe_sampler_view **)
2409 &shs->textures[start + i], pview);
2410 struct iris_sampler_view *view = (void *) pview;
2411 if (view) {
2412 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2413 view->res->bind_stages |= 1 << stage;
2414
2415 shs->bound_sampler_views |= 1 << (start + i);
2416 }
2417 }
2418
2419 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2420 ice->state.dirty |=
2421 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2422 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2423 }
2424
2425 /**
2426 * The pipe->set_tess_state() driver hook.
2427 */
2428 static void
2429 iris_set_tess_state(struct pipe_context *ctx,
2430 const float default_outer_level[4],
2431 const float default_inner_level[2])
2432 {
2433 struct iris_context *ice = (struct iris_context *) ctx;
2434 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2435
2436 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2437 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2438
2439 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2440 shs->sysvals_need_upload = true;
2441 }
2442
2443 static void
2444 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2445 {
2446 struct iris_surface *surf = (void *) p_surf;
2447 pipe_resource_reference(&p_surf->texture, NULL);
2448 pipe_resource_reference(&surf->surface_state.res, NULL);
2449 pipe_resource_reference(&surf->surface_state_read.res, NULL);
2450 free(surf);
2451 }
2452
2453 static void
2454 iris_set_clip_state(struct pipe_context *ctx,
2455 const struct pipe_clip_state *state)
2456 {
2457 struct iris_context *ice = (struct iris_context *) ctx;
2458 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2459 struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
2460 struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
2461
2462 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2463
2464 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS | IRIS_DIRTY_CONSTANTS_GS |
2465 IRIS_DIRTY_CONSTANTS_TES;
2466 shs->sysvals_need_upload = true;
2467 gshs->sysvals_need_upload = true;
2468 tshs->sysvals_need_upload = true;
2469 }
2470
2471 /**
2472 * The pipe->set_polygon_stipple() driver hook.
2473 */
2474 static void
2475 iris_set_polygon_stipple(struct pipe_context *ctx,
2476 const struct pipe_poly_stipple *state)
2477 {
2478 struct iris_context *ice = (struct iris_context *) ctx;
2479 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2480 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2481 }
2482
2483 /**
2484 * The pipe->set_sample_mask() driver hook.
2485 */
2486 static void
2487 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2488 {
2489 struct iris_context *ice = (struct iris_context *) ctx;
2490
2491 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2492 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2493 */
2494 ice->state.sample_mask = sample_mask & 0xffff;
2495 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2496 }
2497
2498 /**
2499 * The pipe->set_scissor_states() driver hook.
2500 *
2501 * This corresponds to our SCISSOR_RECT state structures. It's an
2502 * exact match, so we just store them, and memcpy them out later.
2503 */
2504 static void
2505 iris_set_scissor_states(struct pipe_context *ctx,
2506 unsigned start_slot,
2507 unsigned num_scissors,
2508 const struct pipe_scissor_state *rects)
2509 {
2510 struct iris_context *ice = (struct iris_context *) ctx;
2511
2512 for (unsigned i = 0; i < num_scissors; i++) {
2513 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2514 /* If the scissor was out of bounds and got clamped to 0 width/height
2515 * at the bounds, the subtraction of 1 from maximums could produce a
2516 * negative number and thus not clip anything. Instead, just provide
2517 * a min > max scissor inside the bounds, which produces the expected
2518 * no rendering.
2519 */
2520 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2521 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2522 };
2523 } else {
2524 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2525 .minx = rects[i].minx, .miny = rects[i].miny,
2526 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2527 };
2528 }
2529 }
2530
2531 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2532 }
2533
2534 /**
2535 * The pipe->set_stencil_ref() driver hook.
2536 *
2537 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2538 */
2539 static void
2540 iris_set_stencil_ref(struct pipe_context *ctx,
2541 const struct pipe_stencil_ref *state)
2542 {
2543 struct iris_context *ice = (struct iris_context *) ctx;
2544 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2545 if (GEN_GEN == 8)
2546 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2547 else
2548 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2549 }
2550
2551 static float
2552 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2553 {
2554 return copysignf(state->scale[axis], sign) + state->translate[axis];
2555 }
2556
2557 /**
2558 * The pipe->set_viewport_states() driver hook.
2559 *
2560 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2561 * the guardband yet, as we need the framebuffer dimensions, but we can
2562 * at least fill out the rest.
2563 */
2564 static void
2565 iris_set_viewport_states(struct pipe_context *ctx,
2566 unsigned start_slot,
2567 unsigned count,
2568 const struct pipe_viewport_state *states)
2569 {
2570 struct iris_context *ice = (struct iris_context *) ctx;
2571
2572 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2573
2574 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2575
2576 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2577 !ice->state.cso_rast->depth_clip_far))
2578 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2579 }
2580
2581 /**
2582 * The pipe->set_framebuffer_state() driver hook.
2583 *
2584 * Sets the current draw FBO, including color render targets, depth,
2585 * and stencil buffers.
2586 */
2587 static void
2588 iris_set_framebuffer_state(struct pipe_context *ctx,
2589 const struct pipe_framebuffer_state *state)
2590 {
2591 struct iris_context *ice = (struct iris_context *) ctx;
2592 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2593 struct isl_device *isl_dev = &screen->isl_dev;
2594 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2595 struct iris_resource *zres;
2596 struct iris_resource *stencil_res;
2597
2598 unsigned samples = util_framebuffer_get_num_samples(state);
2599 unsigned layers = util_framebuffer_get_num_layers(state);
2600
2601 if (cso->samples != samples) {
2602 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2603
2604 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
2605 if (GEN_GEN >= 9 && (cso->samples == 16 || samples == 16))
2606 ice->state.dirty |= IRIS_DIRTY_FS;
2607 }
2608
2609 if (cso->nr_cbufs != state->nr_cbufs) {
2610 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2611 }
2612
2613 if ((cso->layers == 0) != (layers == 0)) {
2614 ice->state.dirty |= IRIS_DIRTY_CLIP;
2615 }
2616
2617 if (cso->width != state->width || cso->height != state->height) {
2618 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2619 }
2620
2621 if (cso->zsbuf || state->zsbuf) {
2622 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2623 }
2624
2625 util_copy_framebuffer_state(cso, state);
2626 cso->samples = samples;
2627 cso->layers = layers;
2628
2629 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2630
2631 struct isl_view view = {
2632 .base_level = 0,
2633 .levels = 1,
2634 .base_array_layer = 0,
2635 .array_len = 1,
2636 .swizzle = ISL_SWIZZLE_IDENTITY,
2637 };
2638
2639 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2640
2641 if (cso->zsbuf) {
2642 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2643 &stencil_res);
2644
2645 view.base_level = cso->zsbuf->u.tex.level;
2646 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2647 view.array_len =
2648 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2649
2650 if (zres) {
2651 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2652
2653 info.depth_surf = &zres->surf;
2654 info.depth_address = zres->bo->gtt_offset + zres->offset;
2655 info.mocs = mocs(zres->bo);
2656
2657 view.format = zres->surf.format;
2658
2659 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2660 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2661 info.hiz_surf = &zres->aux.surf;
2662 info.hiz_address = zres->aux.bo->gtt_offset + zres->aux.offset;
2663 }
2664 }
2665
2666 if (stencil_res) {
2667 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2668 info.stencil_surf = &stencil_res->surf;
2669 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
2670 if (!zres) {
2671 view.format = stencil_res->surf.format;
2672 info.mocs = mocs(stencil_res->bo);
2673 }
2674 }
2675 }
2676
2677 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2678
2679 /* Make a null surface for unbound buffers */
2680 void *null_surf_map =
2681 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2682 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2683 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2684 isl_extent3d(MAX2(cso->width, 1),
2685 MAX2(cso->height, 1),
2686 cso->layers ? cso->layers : 1));
2687 ice->state.null_fb.offset +=
2688 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2689
2690 /* Render target change */
2691 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2692
2693 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2694
2695 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2696
2697 #if GEN_GEN == 11
2698 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2699 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2700
2701 /* The PIPE_CONTROL command description says:
2702 *
2703 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2704 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2705 * Target Cache Flush by enabling this bit. When render target flush
2706 * is set due to new association of BTI, PS Scoreboard Stall bit must
2707 * be set in this packet."
2708 */
2709 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2710 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2711 "workaround: RT BTI change [draw]",
2712 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2713 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2714 #endif
2715 }
2716
2717 /**
2718 * The pipe->set_constant_buffer() driver hook.
2719 *
2720 * This uploads any constant data in user buffers, and references
2721 * any UBO resources containing constant data.
2722 */
2723 static void
2724 iris_set_constant_buffer(struct pipe_context *ctx,
2725 enum pipe_shader_type p_stage, unsigned index,
2726 const struct pipe_constant_buffer *input)
2727 {
2728 struct iris_context *ice = (struct iris_context *) ctx;
2729 gl_shader_stage stage = stage_from_pipe(p_stage);
2730 struct iris_shader_state *shs = &ice->state.shaders[stage];
2731 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
2732
2733 /* TODO: Only do this if the buffer changes? */
2734 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
2735
2736 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
2737 shs->bound_cbufs |= 1u << index;
2738
2739 if (input->user_buffer) {
2740 void *map = NULL;
2741 pipe_resource_reference(&cbuf->buffer, NULL);
2742 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
2743 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2744
2745 if (!cbuf->buffer) {
2746 /* Allocation was unsuccessful - just unbind */
2747 iris_set_constant_buffer(ctx, p_stage, index, NULL);
2748 return;
2749 }
2750
2751 assert(map);
2752 memcpy(map, input->user_buffer, input->buffer_size);
2753 } else if (input->buffer) {
2754 pipe_resource_reference(&cbuf->buffer, input->buffer);
2755
2756 cbuf->buffer_offset = input->buffer_offset;
2757 }
2758
2759 cbuf->buffer_size =
2760 MIN2(input->buffer_size,
2761 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
2762
2763 struct iris_resource *res = (void *) cbuf->buffer;
2764 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2765 res->bind_stages |= 1 << stage;
2766 } else {
2767 shs->bound_cbufs &= ~(1u << index);
2768 pipe_resource_reference(&cbuf->buffer, NULL);
2769 }
2770
2771 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2772 }
2773
2774 static void
2775 upload_sysvals(struct iris_context *ice,
2776 gl_shader_stage stage)
2777 {
2778 UNUSED struct iris_genx_state *genx = ice->state.genx;
2779 struct iris_shader_state *shs = &ice->state.shaders[stage];
2780
2781 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2782 if (!shader || shader->num_system_values == 0)
2783 return;
2784
2785 assert(shader->num_cbufs > 0);
2786
2787 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
2788 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
2789 unsigned upload_size = shader->num_system_values * sizeof(uint32_t);
2790 uint32_t *map = NULL;
2791
2792 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
2793 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
2794 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2795
2796 for (int i = 0; i < shader->num_system_values; i++) {
2797 uint32_t sysval = shader->system_values[i];
2798 uint32_t value = 0;
2799
2800 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2801 #if GEN_GEN == 8
2802 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2803 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2804 struct brw_image_param *param =
2805 &genx->shaders[stage].image_param[img];
2806
2807 assert(offset < sizeof(struct brw_image_param));
2808 value = ((uint32_t *) param)[offset];
2809 #endif
2810 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2811 value = 0;
2812 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2813 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2814 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2815 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2816 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2817 if (stage == MESA_SHADER_TESS_CTRL) {
2818 value = ice->state.vertices_per_patch;
2819 } else {
2820 assert(stage == MESA_SHADER_TESS_EVAL);
2821 const struct shader_info *tcs_info =
2822 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2823 if (tcs_info)
2824 value = tcs_info->tess.tcs_vertices_out;
2825 else
2826 value = ice->state.vertices_per_patch;
2827 }
2828 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
2829 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
2830 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
2831 value = fui(ice->state.default_outer_level[i]);
2832 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
2833 value = fui(ice->state.default_inner_level[0]);
2834 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
2835 value = fui(ice->state.default_inner_level[1]);
2836 } else {
2837 assert(!"unhandled system value");
2838 }
2839
2840 *map++ = value;
2841 }
2842
2843 cbuf->buffer_size = upload_size;
2844 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2845 &shs->constbuf_surf_state[sysval_cbuf_index], false);
2846
2847 shs->sysvals_need_upload = false;
2848 }
2849
2850 /**
2851 * The pipe->set_shader_buffers() driver hook.
2852 *
2853 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2854 * SURFACE_STATE here, as the buffer offset may change each time.
2855 */
2856 static void
2857 iris_set_shader_buffers(struct pipe_context *ctx,
2858 enum pipe_shader_type p_stage,
2859 unsigned start_slot, unsigned count,
2860 const struct pipe_shader_buffer *buffers,
2861 unsigned writable_bitmask)
2862 {
2863 struct iris_context *ice = (struct iris_context *) ctx;
2864 gl_shader_stage stage = stage_from_pipe(p_stage);
2865 struct iris_shader_state *shs = &ice->state.shaders[stage];
2866
2867 unsigned modified_bits = u_bit_consecutive(start_slot, count);
2868
2869 shs->bound_ssbos &= ~modified_bits;
2870 shs->writable_ssbos &= ~modified_bits;
2871 shs->writable_ssbos |= writable_bitmask << start_slot;
2872
2873 for (unsigned i = 0; i < count; i++) {
2874 if (buffers && buffers[i].buffer) {
2875 struct iris_resource *res = (void *) buffers[i].buffer;
2876 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
2877 struct iris_state_ref *surf_state =
2878 &shs->ssbo_surf_state[start_slot + i];
2879 pipe_resource_reference(&ssbo->buffer, &res->base);
2880 ssbo->buffer_offset = buffers[i].buffer_offset;
2881 ssbo->buffer_size =
2882 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
2883
2884 shs->bound_ssbos |= 1 << (start_slot + i);
2885
2886 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
2887
2888 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2889 res->bind_stages |= 1 << stage;
2890
2891 util_range_add(&res->valid_buffer_range, ssbo->buffer_offset,
2892 ssbo->buffer_offset + ssbo->buffer_size);
2893 } else {
2894 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
2895 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
2896 NULL);
2897 }
2898 }
2899
2900 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2901 }
2902
2903 static void
2904 iris_delete_state(struct pipe_context *ctx, void *state)
2905 {
2906 free(state);
2907 }
2908
2909 /**
2910 * The pipe->set_vertex_buffers() driver hook.
2911 *
2912 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2913 */
2914 static void
2915 iris_set_vertex_buffers(struct pipe_context *ctx,
2916 unsigned start_slot, unsigned count,
2917 const struct pipe_vertex_buffer *buffers)
2918 {
2919 struct iris_context *ice = (struct iris_context *) ctx;
2920 struct iris_genx_state *genx = ice->state.genx;
2921
2922 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2923
2924 for (unsigned i = 0; i < count; i++) {
2925 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2926 struct iris_vertex_buffer_state *state =
2927 &genx->vertex_buffers[start_slot + i];
2928
2929 if (!buffer) {
2930 pipe_resource_reference(&state->resource, NULL);
2931 continue;
2932 }
2933
2934 /* We may see user buffers that are NULL bindings. */
2935 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
2936
2937 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2938 struct iris_resource *res = (void *) state->resource;
2939
2940 if (res) {
2941 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2942 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2943 }
2944
2945 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2946 vb.VertexBufferIndex = start_slot + i;
2947 vb.AddressModifyEnable = true;
2948 vb.BufferPitch = buffer->stride;
2949 if (res) {
2950 vb.BufferSize = res->bo->size - (int) buffer->buffer_offset;
2951 vb.BufferStartingAddress =
2952 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2953 vb.MOCS = mocs(res->bo);
2954 } else {
2955 vb.NullVertexBuffer = true;
2956 }
2957 }
2958 }
2959
2960 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2961 }
2962
2963 /**
2964 * Gallium CSO for vertex elements.
2965 */
2966 struct iris_vertex_element_state {
2967 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2968 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2969 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2970 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2971 unsigned count;
2972 };
2973
2974 /**
2975 * The pipe->create_vertex_elements() driver hook.
2976 *
2977 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2978 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2979 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2980 * needed. In these cases we will need information available at draw time.
2981 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2982 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2983 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2984 */
2985 static void *
2986 iris_create_vertex_elements(struct pipe_context *ctx,
2987 unsigned count,
2988 const struct pipe_vertex_element *state)
2989 {
2990 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2991 const struct gen_device_info *devinfo = &screen->devinfo;
2992 struct iris_vertex_element_state *cso =
2993 malloc(sizeof(struct iris_vertex_element_state));
2994
2995 cso->count = count;
2996
2997 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2998 ve.DWordLength =
2999 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
3000 }
3001
3002 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
3003 uint32_t *vfi_pack_dest = cso->vf_instancing;
3004
3005 if (count == 0) {
3006 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3007 ve.Valid = true;
3008 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
3009 ve.Component0Control = VFCOMP_STORE_0;
3010 ve.Component1Control = VFCOMP_STORE_0;
3011 ve.Component2Control = VFCOMP_STORE_0;
3012 ve.Component3Control = VFCOMP_STORE_1_FP;
3013 }
3014
3015 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3016 }
3017 }
3018
3019 for (int i = 0; i < count; i++) {
3020 const struct iris_format_info fmt =
3021 iris_format_for_usage(devinfo, state[i].src_format, 0);
3022 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
3023 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
3024
3025 switch (isl_format_get_num_channels(fmt.fmt)) {
3026 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
3027 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
3028 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
3029 case 3:
3030 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
3031 : VFCOMP_STORE_1_FP;
3032 break;
3033 }
3034 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3035 ve.EdgeFlagEnable = false;
3036 ve.VertexBufferIndex = state[i].vertex_buffer_index;
3037 ve.Valid = true;
3038 ve.SourceElementOffset = state[i].src_offset;
3039 ve.SourceElementFormat = fmt.fmt;
3040 ve.Component0Control = comp[0];
3041 ve.Component1Control = comp[1];
3042 ve.Component2Control = comp[2];
3043 ve.Component3Control = comp[3];
3044 }
3045
3046 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3047 vi.VertexElementIndex = i;
3048 vi.InstancingEnable = state[i].instance_divisor > 0;
3049 vi.InstanceDataStepRate = state[i].instance_divisor;
3050 }
3051
3052 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
3053 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
3054 }
3055
3056 /* An alternative version of the last VE and VFI is stored so it
3057 * can be used at draw time in case Vertex Shader uses EdgeFlag
3058 */
3059 if (count) {
3060 const unsigned edgeflag_index = count - 1;
3061 const struct iris_format_info fmt =
3062 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
3063 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
3064 ve.EdgeFlagEnable = true ;
3065 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
3066 ve.Valid = true;
3067 ve.SourceElementOffset = state[edgeflag_index].src_offset;
3068 ve.SourceElementFormat = fmt.fmt;
3069 ve.Component0Control = VFCOMP_STORE_SRC;
3070 ve.Component1Control = VFCOMP_STORE_0;
3071 ve.Component2Control = VFCOMP_STORE_0;
3072 ve.Component3Control = VFCOMP_STORE_0;
3073 }
3074 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
3075 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
3076 * at draw time, as it should change if SGVs are emitted.
3077 */
3078 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
3079 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
3080 }
3081 }
3082
3083 return cso;
3084 }
3085
3086 /**
3087 * The pipe->bind_vertex_elements_state() driver hook.
3088 */
3089 static void
3090 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
3091 {
3092 struct iris_context *ice = (struct iris_context *) ctx;
3093 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
3094 struct iris_vertex_element_state *new_cso = state;
3095
3096 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
3097 * we need to re-emit it to ensure we're overriding the right one.
3098 */
3099 if (new_cso && cso_changed(count))
3100 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
3101
3102 ice->state.cso_vertex_elements = state;
3103 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
3104 }
3105
3106 /**
3107 * The pipe->create_stream_output_target() driver hook.
3108 *
3109 * "Target" here refers to a destination buffer. We translate this into
3110 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
3111 * know which buffer this represents, or whether we ought to zero the
3112 * write-offsets, or append. Those are handled in the set() hook.
3113 */
3114 static struct pipe_stream_output_target *
3115 iris_create_stream_output_target(struct pipe_context *ctx,
3116 struct pipe_resource *p_res,
3117 unsigned buffer_offset,
3118 unsigned buffer_size)
3119 {
3120 struct iris_resource *res = (void *) p_res;
3121 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
3122 if (!cso)
3123 return NULL;
3124
3125 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
3126
3127 pipe_reference_init(&cso->base.reference, 1);
3128 pipe_resource_reference(&cso->base.buffer, p_res);
3129 cso->base.buffer_offset = buffer_offset;
3130 cso->base.buffer_size = buffer_size;
3131 cso->base.context = ctx;
3132
3133 util_range_add(&res->valid_buffer_range, buffer_offset,
3134 buffer_offset + buffer_size);
3135
3136 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
3137
3138 return &cso->base;
3139 }
3140
3141 static void
3142 iris_stream_output_target_destroy(struct pipe_context *ctx,
3143 struct pipe_stream_output_target *state)
3144 {
3145 struct iris_stream_output_target *cso = (void *) state;
3146
3147 pipe_resource_reference(&cso->base.buffer, NULL);
3148 pipe_resource_reference(&cso->offset.res, NULL);
3149
3150 free(cso);
3151 }
3152
3153 /**
3154 * The pipe->set_stream_output_targets() driver hook.
3155 *
3156 * At this point, we know which targets are bound to a particular index,
3157 * and also whether we want to append or start over. We can finish the
3158 * 3DSTATE_SO_BUFFER packets we started earlier.
3159 */
3160 static void
3161 iris_set_stream_output_targets(struct pipe_context *ctx,
3162 unsigned num_targets,
3163 struct pipe_stream_output_target **targets,
3164 const unsigned *offsets)
3165 {
3166 struct iris_context *ice = (struct iris_context *) ctx;
3167 struct iris_genx_state *genx = ice->state.genx;
3168 uint32_t *so_buffers = genx->so_buffers;
3169
3170 const bool active = num_targets > 0;
3171 if (ice->state.streamout_active != active) {
3172 ice->state.streamout_active = active;
3173 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
3174
3175 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
3176 * it's a non-pipelined command. If we're switching streamout on, we
3177 * may have missed emitting it earlier, so do so now. (We're already
3178 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
3179 */
3180 if (active) {
3181 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
3182 } else {
3183 uint32_t flush = 0;
3184 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
3185 struct iris_stream_output_target *tgt =
3186 (void *) ice->state.so_target[i];
3187 if (tgt) {
3188 struct iris_resource *res = (void *) tgt->base.buffer;
3189
3190 flush |= iris_flush_bits_for_history(res);
3191 iris_dirty_for_history(ice, res);
3192 }
3193 }
3194 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
3195 "make streamout results visible", flush);
3196 }
3197 }
3198
3199 for (int i = 0; i < 4; i++) {
3200 pipe_so_target_reference(&ice->state.so_target[i],
3201 i < num_targets ? targets[i] : NULL);
3202 }
3203
3204 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
3205 if (!active)
3206 return;
3207
3208 for (unsigned i = 0; i < 4; i++,
3209 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
3210
3211 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
3212 unsigned offset = offsets[i];
3213
3214 if (!tgt) {
3215 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
3216 sob.SOBufferIndex = i;
3217 continue;
3218 }
3219
3220 struct iris_resource *res = (void *) tgt->base.buffer;
3221
3222 /* Note that offsets[i] will either be 0, causing us to zero
3223 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
3224 * "continue appending at the existing offset."
3225 */
3226 assert(offset == 0 || offset == 0xFFFFFFFF);
3227
3228 /* We might be called by Begin (offset = 0), Pause, then Resume
3229 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
3230 * will actually be sent to the GPU). In this case, we don't want
3231 * to append - we still want to do our initial zeroing.
3232 */
3233 if (!tgt->zeroed)
3234 offset = 0;
3235
3236 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3237 sob.SurfaceBaseAddress =
3238 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
3239 sob.SOBufferEnable = true;
3240 sob.StreamOffsetWriteEnable = true;
3241 sob.StreamOutputBufferOffsetAddressEnable = true;
3242 sob.MOCS = mocs(res->bo);
3243
3244 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
3245
3246 sob.SOBufferIndex = i;
3247 sob.StreamOffset = offset;
3248 sob.StreamOutputBufferOffsetAddress =
3249 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
3250 tgt->offset.offset);
3251 }
3252 }
3253
3254 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
3255 }
3256
3257 /**
3258 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
3259 * 3DSTATE_STREAMOUT packets.
3260 *
3261 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
3262 * hardware to record. We can create it entirely based on the shader, with
3263 * no dynamic state dependencies.
3264 *
3265 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
3266 * state-based settings. We capture the shader-related ones here, and merge
3267 * the rest in at draw time.
3268 */
3269 static uint32_t *
3270 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
3271 const struct brw_vue_map *vue_map)
3272 {
3273 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3274 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3275 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3276 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3277 int max_decls = 0;
3278 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3279
3280 memset(so_decl, 0, sizeof(so_decl));
3281
3282 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3283 * command feels strange -- each dword pair contains a SO_DECL per stream.
3284 */
3285 for (unsigned i = 0; i < info->num_outputs; i++) {
3286 const struct pipe_stream_output *output = &info->output[i];
3287 const int buffer = output->output_buffer;
3288 const int varying = output->register_index;
3289 const unsigned stream_id = output->stream;
3290 assert(stream_id < MAX_VERTEX_STREAMS);
3291
3292 buffer_mask[stream_id] |= 1 << buffer;
3293
3294 assert(vue_map->varying_to_slot[varying] >= 0);
3295
3296 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3297 * array. Instead, it simply increments DstOffset for the following
3298 * input by the number of components that should be skipped.
3299 *
3300 * Our hardware is unusual in that it requires us to program SO_DECLs
3301 * for fake "hole" components, rather than simply taking the offset
3302 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3303 * program as many size = 4 holes as we can, then a final hole to
3304 * accommodate the final 1, 2, or 3 remaining.
3305 */
3306 int skip_components = output->dst_offset - next_offset[buffer];
3307
3308 while (skip_components > 0) {
3309 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3310 .HoleFlag = 1,
3311 .OutputBufferSlot = output->output_buffer,
3312 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3313 };
3314 skip_components -= 4;
3315 }
3316
3317 next_offset[buffer] = output->dst_offset + output->num_components;
3318
3319 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3320 .OutputBufferSlot = output->output_buffer,
3321 .RegisterIndex = vue_map->varying_to_slot[varying],
3322 .ComponentMask =
3323 ((1 << output->num_components) - 1) << output->start_component,
3324 };
3325
3326 if (decls[stream_id] > max_decls)
3327 max_decls = decls[stream_id];
3328 }
3329
3330 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3331 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3332 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3333
3334 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3335 int urb_entry_read_offset = 0;
3336 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3337 urb_entry_read_offset;
3338
3339 /* We always read the whole vertex. This could be reduced at some
3340 * point by reading less and offsetting the register index in the
3341 * SO_DECLs.
3342 */
3343 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3344 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3345 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3346 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3347 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3348 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3349 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3350 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3351
3352 /* Set buffer pitches; 0 means unbound. */
3353 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3354 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3355 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3356 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3357 }
3358
3359 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3360 list.DWordLength = 3 + 2 * max_decls - 2;
3361 list.StreamtoBufferSelects0 = buffer_mask[0];
3362 list.StreamtoBufferSelects1 = buffer_mask[1];
3363 list.StreamtoBufferSelects2 = buffer_mask[2];
3364 list.StreamtoBufferSelects3 = buffer_mask[3];
3365 list.NumEntries0 = decls[0];
3366 list.NumEntries1 = decls[1];
3367 list.NumEntries2 = decls[2];
3368 list.NumEntries3 = decls[3];
3369 }
3370
3371 for (int i = 0; i < max_decls; i++) {
3372 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3373 entry.Stream0Decl = so_decl[0][i];
3374 entry.Stream1Decl = so_decl[1][i];
3375 entry.Stream2Decl = so_decl[2][i];
3376 entry.Stream3Decl = so_decl[3][i];
3377 }
3378 }
3379
3380 return map;
3381 }
3382
3383 static void
3384 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3385 const struct brw_vue_map *last_vue_map,
3386 bool two_sided_color,
3387 unsigned *out_offset,
3388 unsigned *out_length)
3389 {
3390 /* The compiler computes the first URB slot without considering COL/BFC
3391 * swizzling (because it doesn't know whether it's enabled), so we need
3392 * to do that here too. This may result in a smaller offset, which
3393 * should be safe.
3394 */
3395 const unsigned first_slot =
3396 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3397
3398 /* This becomes the URB read offset (counted in pairs of slots). */
3399 assert(first_slot % 2 == 0);
3400 *out_offset = first_slot / 2;
3401
3402 /* We need to adjust the inputs read to account for front/back color
3403 * swizzling, as it can make the URB length longer.
3404 */
3405 for (int c = 0; c <= 1; c++) {
3406 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3407 /* If two sided color is enabled, the fragment shader's gl_Color
3408 * (COL0) input comes from either the gl_FrontColor (COL0) or
3409 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3410 */
3411 if (two_sided_color)
3412 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3413
3414 /* If front color isn't written, we opt to give them back color
3415 * instead of an undefined value. Switch from COL to BFC.
3416 */
3417 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3418 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3419 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3420 }
3421 }
3422 }
3423
3424 /* Compute the minimum URB Read Length necessary for the FS inputs.
3425 *
3426 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3427 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3428 *
3429 * "This field should be set to the minimum length required to read the
3430 * maximum source attribute. The maximum source attribute is indicated
3431 * by the maximum value of the enabled Attribute # Source Attribute if
3432 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3433 * enable is not set.
3434 * read_length = ceiling((max_source_attr + 1) / 2)
3435 *
3436 * [errata] Corruption/Hang possible if length programmed larger than
3437 * recommended"
3438 *
3439 * Similar text exists for Ivy Bridge.
3440 *
3441 * We find the last URB slot that's actually read by the FS.
3442 */
3443 unsigned last_read_slot = last_vue_map->num_slots - 1;
3444 while (last_read_slot > first_slot && !(fs_input_slots &
3445 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3446 --last_read_slot;
3447
3448 /* The URB read length is the difference of the two, counted in pairs. */
3449 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3450 }
3451
3452 static void
3453 iris_emit_sbe_swiz(struct iris_batch *batch,
3454 const struct iris_context *ice,
3455 unsigned urb_read_offset,
3456 unsigned sprite_coord_enables)
3457 {
3458 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3459 const struct brw_wm_prog_data *wm_prog_data = (void *)
3460 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3461 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3462 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3463
3464 /* XXX: this should be generated when putting programs in place */
3465
3466 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3467 const int input_index = wm_prog_data->urb_setup[fs_attr];
3468 if (input_index < 0 || input_index >= 16)
3469 continue;
3470
3471 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3472 &attr_overrides[input_index];
3473 int slot = vue_map->varying_to_slot[fs_attr];
3474
3475 /* Viewport and Layer are stored in the VUE header. We need to override
3476 * them to zero if earlier stages didn't write them, as GL requires that
3477 * they read back as zero when not explicitly set.
3478 */
3479 switch (fs_attr) {
3480 case VARYING_SLOT_VIEWPORT:
3481 case VARYING_SLOT_LAYER:
3482 attr->ComponentOverrideX = true;
3483 attr->ComponentOverrideW = true;
3484 attr->ConstantSource = CONST_0000;
3485
3486 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3487 attr->ComponentOverrideY = true;
3488 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3489 attr->ComponentOverrideZ = true;
3490 continue;
3491
3492 case VARYING_SLOT_PRIMITIVE_ID:
3493 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3494 if (slot == -1) {
3495 attr->ComponentOverrideX = true;
3496 attr->ComponentOverrideY = true;
3497 attr->ComponentOverrideZ = true;
3498 attr->ComponentOverrideW = true;
3499 attr->ConstantSource = PRIM_ID;
3500 continue;
3501 }
3502
3503 default:
3504 break;
3505 }
3506
3507 if (sprite_coord_enables & (1 << input_index))
3508 continue;
3509
3510 /* If there was only a back color written but not front, use back
3511 * as the color instead of undefined.
3512 */
3513 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3514 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3515 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3516 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3517
3518 /* Not written by the previous stage - undefined. */
3519 if (slot == -1) {
3520 attr->ComponentOverrideX = true;
3521 attr->ComponentOverrideY = true;
3522 attr->ComponentOverrideZ = true;
3523 attr->ComponentOverrideW = true;
3524 attr->ConstantSource = CONST_0001_FLOAT;
3525 continue;
3526 }
3527
3528 /* Compute the location of the attribute relative to the read offset,
3529 * which is counted in 256-bit increments (two 128-bit VUE slots).
3530 */
3531 const int source_attr = slot - 2 * urb_read_offset;
3532 assert(source_attr >= 0 && source_attr <= 32);
3533 attr->SourceAttribute = source_attr;
3534
3535 /* If we are doing two-sided color, and the VUE slot following this one
3536 * represents a back-facing color, then we need to instruct the SF unit
3537 * to do back-facing swizzling.
3538 */
3539 if (cso_rast->light_twoside &&
3540 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3541 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3542 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3543 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3544 attr->SwizzleSelect = INPUTATTR_FACING;
3545 }
3546
3547 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3548 for (int i = 0; i < 16; i++)
3549 sbes.Attribute[i] = attr_overrides[i];
3550 }
3551 }
3552
3553 static unsigned
3554 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3555 const struct iris_rasterizer_state *cso)
3556 {
3557 unsigned overrides = 0;
3558
3559 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3560 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3561
3562 for (int i = 0; i < 8; i++) {
3563 if ((cso->sprite_coord_enable & (1 << i)) &&
3564 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3565 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3566 }
3567
3568 return overrides;
3569 }
3570
3571 static void
3572 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3573 {
3574 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3575 const struct brw_wm_prog_data *wm_prog_data = (void *)
3576 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3577 const struct shader_info *fs_info =
3578 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3579
3580 unsigned urb_read_offset, urb_read_length;
3581 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3582 ice->shaders.last_vue_map,
3583 cso_rast->light_twoside,
3584 &urb_read_offset, &urb_read_length);
3585
3586 unsigned sprite_coord_overrides =
3587 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3588
3589 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3590 sbe.AttributeSwizzleEnable = true;
3591 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3592 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3593 sbe.VertexURBEntryReadOffset = urb_read_offset;
3594 sbe.VertexURBEntryReadLength = urb_read_length;
3595 sbe.ForceVertexURBEntryReadOffset = true;
3596 sbe.ForceVertexURBEntryReadLength = true;
3597 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3598 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3599 #if GEN_GEN >= 9
3600 for (int i = 0; i < 32; i++) {
3601 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3602 }
3603 #endif
3604 }
3605
3606 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3607 }
3608
3609 /* ------------------------------------------------------------------- */
3610
3611 /**
3612 * Populate VS program key fields based on the current state.
3613 */
3614 static void
3615 iris_populate_vs_key(const struct iris_context *ice,
3616 const struct shader_info *info,
3617 gl_shader_stage last_stage,
3618 struct brw_vs_prog_key *key)
3619 {
3620 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3621
3622 if (info->clip_distance_array_size == 0 &&
3623 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3624 last_stage == MESA_SHADER_VERTEX)
3625 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3626 }
3627
3628 /**
3629 * Populate TCS program key fields based on the current state.
3630 */
3631 static void
3632 iris_populate_tcs_key(const struct iris_context *ice,
3633 struct brw_tcs_prog_key *key)
3634 {
3635 }
3636
3637 /**
3638 * Populate TES program key fields based on the current state.
3639 */
3640 static void
3641 iris_populate_tes_key(const struct iris_context *ice,
3642 const struct shader_info *info,
3643 gl_shader_stage last_stage,
3644 struct brw_tes_prog_key *key)
3645 {
3646 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3647
3648 if (info->clip_distance_array_size == 0 &&
3649 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3650 last_stage == MESA_SHADER_TESS_EVAL)
3651 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3652 }
3653
3654 /**
3655 * Populate GS program key fields based on the current state.
3656 */
3657 static void
3658 iris_populate_gs_key(const struct iris_context *ice,
3659 const struct shader_info *info,
3660 gl_shader_stage last_stage,
3661 struct brw_gs_prog_key *key)
3662 {
3663 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3664
3665 if (info->clip_distance_array_size == 0 &&
3666 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3667 last_stage == MESA_SHADER_GEOMETRY)
3668 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3669 }
3670
3671 /**
3672 * Populate FS program key fields based on the current state.
3673 */
3674 static void
3675 iris_populate_fs_key(const struct iris_context *ice,
3676 const struct shader_info *info,
3677 struct brw_wm_prog_key *key)
3678 {
3679 struct iris_screen *screen = (void *) ice->ctx.screen;
3680 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3681 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3682 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3683 const struct iris_blend_state *blend = ice->state.cso_blend;
3684
3685 key->nr_color_regions = fb->nr_cbufs;
3686
3687 key->clamp_fragment_color = rast->clamp_fragment_color;
3688
3689 key->alpha_to_coverage = blend->alpha_to_coverage;
3690
3691 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
3692
3693 key->flat_shade = rast->flatshade &&
3694 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
3695
3696 key->persample_interp = rast->force_persample_interp;
3697 key->multisample_fbo = rast->multisample && fb->samples > 1;
3698
3699 key->coherent_fb_fetch = GEN_GEN >= 9;
3700
3701 key->force_dual_color_blend =
3702 screen->driconf.dual_color_blend_by_location &&
3703 (blend->blend_enables & 1) && blend->dual_color_blending;
3704
3705 /* TODO: Respect glHint for key->high_quality_derivatives */
3706 }
3707
3708 static void
3709 iris_populate_cs_key(const struct iris_context *ice,
3710 struct brw_cs_prog_key *key)
3711 {
3712 }
3713
3714 static uint64_t
3715 KSP(const struct iris_compiled_shader *shader)
3716 {
3717 struct iris_resource *res = (void *) shader->assembly.res;
3718 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3719 }
3720
3721 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3722 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3723 * this WA on C0 stepping.
3724 *
3725 * TODO: Fill out SamplerCount for prefetching?
3726 */
3727
3728 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3729 pkt.KernelStartPointer = KSP(shader); \
3730 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3731 shader->bt.size_bytes / 4; \
3732 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3733 \
3734 pkt.DispatchGRFStartRegisterForURBData = \
3735 prog_data->dispatch_grf_start_reg; \
3736 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3737 pkt.prefix##URBEntryReadOffset = 0; \
3738 \
3739 pkt.StatisticsEnable = true; \
3740 pkt.Enable = true; \
3741 \
3742 if (prog_data->total_scratch) { \
3743 struct iris_bo *bo = \
3744 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3745 uint32_t scratch_addr = bo->gtt_offset; \
3746 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3747 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3748 }
3749
3750 /**
3751 * Encode most of 3DSTATE_VS based on the compiled shader.
3752 */
3753 static void
3754 iris_store_vs_state(struct iris_context *ice,
3755 const struct gen_device_info *devinfo,
3756 struct iris_compiled_shader *shader)
3757 {
3758 struct brw_stage_prog_data *prog_data = shader->prog_data;
3759 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3760
3761 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3762 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3763 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3764 vs.SIMD8DispatchEnable = true;
3765 vs.UserClipDistanceCullTestEnableBitmask =
3766 vue_prog_data->cull_distance_mask;
3767 }
3768 }
3769
3770 /**
3771 * Encode most of 3DSTATE_HS based on the compiled shader.
3772 */
3773 static void
3774 iris_store_tcs_state(struct iris_context *ice,
3775 const struct gen_device_info *devinfo,
3776 struct iris_compiled_shader *shader)
3777 {
3778 struct brw_stage_prog_data *prog_data = shader->prog_data;
3779 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3780 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3781
3782 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3783 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3784
3785 hs.InstanceCount = tcs_prog_data->instances - 1;
3786 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3787 hs.IncludeVertexHandles = true;
3788
3789 #if GEN_GEN >= 9
3790 hs.DispatchMode = vue_prog_data->dispatch_mode;
3791 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
3792 #endif
3793 }
3794 }
3795
3796 /**
3797 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3798 */
3799 static void
3800 iris_store_tes_state(struct iris_context *ice,
3801 const struct gen_device_info *devinfo,
3802 struct iris_compiled_shader *shader)
3803 {
3804 struct brw_stage_prog_data *prog_data = shader->prog_data;
3805 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3806 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3807
3808 uint32_t *te_state = (void *) shader->derived_data;
3809 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3810
3811 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3812 te.Partitioning = tes_prog_data->partitioning;
3813 te.OutputTopology = tes_prog_data->output_topology;
3814 te.TEDomain = tes_prog_data->domain;
3815 te.TEEnable = true;
3816 te.MaximumTessellationFactorOdd = 63.0;
3817 te.MaximumTessellationFactorNotOdd = 64.0;
3818 }
3819
3820 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3821 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3822
3823 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3824 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3825 ds.ComputeWCoordinateEnable =
3826 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3827
3828 ds.UserClipDistanceCullTestEnableBitmask =
3829 vue_prog_data->cull_distance_mask;
3830 }
3831
3832 }
3833
3834 /**
3835 * Encode most of 3DSTATE_GS based on the compiled shader.
3836 */
3837 static void
3838 iris_store_gs_state(struct iris_context *ice,
3839 const struct gen_device_info *devinfo,
3840 struct iris_compiled_shader *shader)
3841 {
3842 struct brw_stage_prog_data *prog_data = shader->prog_data;
3843 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3844 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3845
3846 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3847 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3848
3849 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3850 gs.OutputTopology = gs_prog_data->output_topology;
3851 gs.ControlDataHeaderSize =
3852 gs_prog_data->control_data_header_size_hwords;
3853 gs.InstanceControl = gs_prog_data->invocations - 1;
3854 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3855 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3856 gs.ControlDataFormat = gs_prog_data->control_data_format;
3857 gs.ReorderMode = TRAILING;
3858 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3859 gs.MaximumNumberofThreads =
3860 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3861 : (devinfo->max_gs_threads - 1);
3862
3863 if (gs_prog_data->static_vertex_count != -1) {
3864 gs.StaticOutput = true;
3865 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3866 }
3867 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3868
3869 gs.UserClipDistanceCullTestEnableBitmask =
3870 vue_prog_data->cull_distance_mask;
3871
3872 const int urb_entry_write_offset = 1;
3873 const uint32_t urb_entry_output_length =
3874 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3875 urb_entry_write_offset;
3876
3877 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3878 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3879 }
3880 }
3881
3882 /**
3883 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3884 */
3885 static void
3886 iris_store_fs_state(struct iris_context *ice,
3887 const struct gen_device_info *devinfo,
3888 struct iris_compiled_shader *shader)
3889 {
3890 struct brw_stage_prog_data *prog_data = shader->prog_data;
3891 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3892
3893 uint32_t *ps_state = (void *) shader->derived_data;
3894 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3895
3896 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3897 ps.VectorMaskEnable = true;
3898 // XXX: WABTPPrefetchDisable, see above, drop at C0
3899 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3900 shader->bt.size_bytes / 4;
3901 ps.FloatingPointMode = prog_data->use_alt_mode;
3902 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3903
3904 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3905
3906 /* From the documentation for this packet:
3907 * "If the PS kernel does not need the Position XY Offsets to
3908 * compute a Position Value, then this field should be programmed
3909 * to POSOFFSET_NONE."
3910 *
3911 * "SW Recommendation: If the PS kernel needs the Position Offsets
3912 * to compute a Position XY value, this field should match Position
3913 * ZW Interpolation Mode to ensure a consistent position.xyzw
3914 * computation."
3915 *
3916 * We only require XY sample offsets. So, this recommendation doesn't
3917 * look useful at the moment. We might need this in future.
3918 */
3919 ps.PositionXYOffsetSelect =
3920 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3921
3922 if (prog_data->total_scratch) {
3923 struct iris_bo *bo =
3924 iris_get_scratch_space(ice, prog_data->total_scratch,
3925 MESA_SHADER_FRAGMENT);
3926 uint32_t scratch_addr = bo->gtt_offset;
3927 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3928 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3929 }
3930 }
3931
3932 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3933 psx.PixelShaderValid = true;
3934 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3935 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3936 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3937 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3938 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3939 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3940 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3941
3942 #if GEN_GEN >= 9
3943 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3944 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3945 #endif
3946 }
3947 }
3948
3949 /**
3950 * Compute the size of the derived data (shader command packets).
3951 *
3952 * This must match the data written by the iris_store_xs_state() functions.
3953 */
3954 static void
3955 iris_store_cs_state(struct iris_context *ice,
3956 const struct gen_device_info *devinfo,
3957 struct iris_compiled_shader *shader)
3958 {
3959 struct brw_stage_prog_data *prog_data = shader->prog_data;
3960 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3961 void *map = shader->derived_data;
3962
3963 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3964 desc.KernelStartPointer = KSP(shader);
3965 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3966 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3967 desc.SharedLocalMemorySize =
3968 encode_slm_size(GEN_GEN, prog_data->total_shared);
3969 desc.BarrierEnable = cs_prog_data->uses_barrier;
3970 desc.CrossThreadConstantDataReadLength =
3971 cs_prog_data->push.cross_thread.regs;
3972 }
3973 }
3974
3975 static unsigned
3976 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3977 {
3978 assert(cache_id <= IRIS_CACHE_BLORP);
3979
3980 static const unsigned dwords[] = {
3981 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3982 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3983 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3984 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3985 [IRIS_CACHE_FS] =
3986 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3987 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3988 [IRIS_CACHE_BLORP] = 0,
3989 };
3990
3991 return sizeof(uint32_t) * dwords[cache_id];
3992 }
3993
3994 /**
3995 * Create any state packets corresponding to the given shader stage
3996 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3997 * This means that we can look up a program in the in-memory cache and
3998 * get most of the state packet without having to reconstruct it.
3999 */
4000 static void
4001 iris_store_derived_program_state(struct iris_context *ice,
4002 enum iris_program_cache_id cache_id,
4003 struct iris_compiled_shader *shader)
4004 {
4005 struct iris_screen *screen = (void *) ice->ctx.screen;
4006 const struct gen_device_info *devinfo = &screen->devinfo;
4007
4008 switch (cache_id) {
4009 case IRIS_CACHE_VS:
4010 iris_store_vs_state(ice, devinfo, shader);
4011 break;
4012 case IRIS_CACHE_TCS:
4013 iris_store_tcs_state(ice, devinfo, shader);
4014 break;
4015 case IRIS_CACHE_TES:
4016 iris_store_tes_state(ice, devinfo, shader);
4017 break;
4018 case IRIS_CACHE_GS:
4019 iris_store_gs_state(ice, devinfo, shader);
4020 break;
4021 case IRIS_CACHE_FS:
4022 iris_store_fs_state(ice, devinfo, shader);
4023 break;
4024 case IRIS_CACHE_CS:
4025 iris_store_cs_state(ice, devinfo, shader);
4026 case IRIS_CACHE_BLORP:
4027 break;
4028 default:
4029 break;
4030 }
4031 }
4032
4033 /* ------------------------------------------------------------------- */
4034
4035 static const uint32_t push_constant_opcodes[] = {
4036 [MESA_SHADER_VERTEX] = 21,
4037 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
4038 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
4039 [MESA_SHADER_GEOMETRY] = 22,
4040 [MESA_SHADER_FRAGMENT] = 23,
4041 [MESA_SHADER_COMPUTE] = 0,
4042 };
4043
4044 static uint32_t
4045 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
4046 {
4047 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
4048
4049 iris_use_pinned_bo(batch, state_bo, false);
4050
4051 return ice->state.unbound_tex.offset;
4052 }
4053
4054 static uint32_t
4055 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
4056 {
4057 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
4058 if (!ice->state.null_fb.res)
4059 return use_null_surface(batch, ice);
4060
4061 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
4062
4063 iris_use_pinned_bo(batch, state_bo, false);
4064
4065 return ice->state.null_fb.offset;
4066 }
4067
4068 static uint32_t
4069 surf_state_offset_for_aux(struct iris_resource *res,
4070 unsigned aux_modes,
4071 enum isl_aux_usage aux_usage)
4072 {
4073 return SURFACE_STATE_ALIGNMENT *
4074 util_bitcount(aux_modes & ((1 << aux_usage) - 1));
4075 }
4076
4077 #if GEN_GEN == 9
4078 static void
4079 surf_state_update_clear_value(struct iris_batch *batch,
4080 struct iris_resource *res,
4081 struct iris_state_ref *state,
4082 unsigned aux_modes,
4083 enum isl_aux_usage aux_usage)
4084 {
4085 struct isl_device *isl_dev = &batch->screen->isl_dev;
4086 struct iris_bo *state_bo = iris_resource_bo(state->res);
4087 uint64_t real_offset = state->offset + IRIS_MEMZONE_BINDER_START;
4088 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
4089 uint32_t clear_offset = offset_into_bo +
4090 isl_dev->ss.clear_value_offset +
4091 surf_state_offset_for_aux(res, aux_modes, aux_usage);
4092 uint32_t *color = res->aux.clear_color.u32;
4093
4094 assert(isl_dev->ss.clear_value_size == 16);
4095
4096 if (aux_usage == ISL_AUX_USAGE_HIZ) {
4097 iris_emit_pipe_control_write(batch, "update fast clear value (Z)",
4098 PIPE_CONTROL_WRITE_IMMEDIATE,
4099 state_bo, clear_offset, color[0]);
4100 } else {
4101 iris_emit_pipe_control_write(batch, "update fast clear color (RG__)",
4102 PIPE_CONTROL_WRITE_IMMEDIATE,
4103 state_bo, clear_offset,
4104 (uint64_t) color[0] |
4105 (uint64_t) color[1] << 32);
4106 iris_emit_pipe_control_write(batch, "update fast clear color (__BA)",
4107 PIPE_CONTROL_WRITE_IMMEDIATE,
4108 state_bo, clear_offset + 8,
4109 (uint64_t) color[2] |
4110 (uint64_t) color[3] << 32);
4111 }
4112
4113 iris_emit_pipe_control_flush(batch,
4114 "update fast clear: state cache invalidate",
4115 PIPE_CONTROL_FLUSH_ENABLE |
4116 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
4117 }
4118 #endif
4119
4120 static void
4121 update_clear_value(struct iris_context *ice,
4122 struct iris_batch *batch,
4123 struct iris_resource *res,
4124 struct iris_state_ref *state,
4125 unsigned all_aux_modes,
4126 struct isl_view *view)
4127 {
4128 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
4129 UNUSED unsigned aux_modes = all_aux_modes;
4130
4131 /* We only need to update the clear color in the surface state for gen8 and
4132 * gen9. Newer gens can read it directly from the clear color state buffer.
4133 */
4134 #if GEN_GEN == 9
4135 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
4136 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
4137
4138 while (aux_modes) {
4139 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4140
4141 surf_state_update_clear_value(batch, res, state, all_aux_modes,
4142 aux_usage);
4143 }
4144 #elif GEN_GEN == 8
4145 pipe_resource_reference(&state->res, NULL);
4146
4147 void *map = alloc_surface_states(ice->state.surface_uploader,
4148 state, all_aux_modes);
4149 while (aux_modes) {
4150 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4151 fill_surface_state(isl_dev, map, res, &res->surf, view, aux_usage, 0, 0);
4152 map += SURFACE_STATE_ALIGNMENT;
4153 }
4154 #endif
4155 }
4156
4157 /**
4158 * Add a surface to the validation list, as well as the buffer containing
4159 * the corresponding SURFACE_STATE.
4160 *
4161 * Returns the binding table entry (offset to SURFACE_STATE).
4162 */
4163 static uint32_t
4164 use_surface(struct iris_context *ice,
4165 struct iris_batch *batch,
4166 struct pipe_surface *p_surf,
4167 bool writeable,
4168 enum isl_aux_usage aux_usage,
4169 bool is_read_surface)
4170 {
4171 struct iris_surface *surf = (void *) p_surf;
4172 struct iris_resource *res = (void *) p_surf->texture;
4173 uint32_t offset = 0;
4174
4175 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
4176 if (GEN_GEN == 8 && is_read_surface) {
4177 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state_read.res), false);
4178 } else {
4179 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
4180 }
4181
4182 if (res->aux.bo) {
4183 iris_use_pinned_bo(batch, res->aux.bo, writeable);
4184 if (res->aux.clear_color_bo)
4185 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false);
4186
4187 if (memcmp(&res->aux.clear_color, &surf->clear_color,
4188 sizeof(surf->clear_color)) != 0) {
4189 update_clear_value(ice, batch, res, &surf->surface_state,
4190 res->aux.possible_usages, &surf->view);
4191 if (GEN_GEN == 8) {
4192 update_clear_value(ice, batch, res, &surf->surface_state_read,
4193 res->aux.possible_usages, &surf->read_view);
4194 }
4195 surf->clear_color = res->aux.clear_color;
4196 }
4197 }
4198
4199 offset = (GEN_GEN == 8 && is_read_surface) ? surf->surface_state_read.offset
4200 : surf->surface_state.offset;
4201
4202 return offset +
4203 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
4204 }
4205
4206 static uint32_t
4207 use_sampler_view(struct iris_context *ice,
4208 struct iris_batch *batch,
4209 struct iris_sampler_view *isv)
4210 {
4211 // XXX: ASTC hacks
4212 enum isl_aux_usage aux_usage =
4213 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
4214
4215 iris_use_pinned_bo(batch, isv->res->bo, false);
4216 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
4217
4218 if (isv->res->aux.bo) {
4219 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
4220 if (isv->res->aux.clear_color_bo)
4221 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, false);
4222 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
4223 sizeof(isv->clear_color)) != 0) {
4224 update_clear_value(ice, batch, isv->res, &isv->surface_state,
4225 isv->res->aux.sampler_usages, &isv->view);
4226 isv->clear_color = isv->res->aux.clear_color;
4227 }
4228 }
4229
4230 return isv->surface_state.offset +
4231 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
4232 aux_usage);
4233 }
4234
4235 static uint32_t
4236 use_ubo_ssbo(struct iris_batch *batch,
4237 struct iris_context *ice,
4238 struct pipe_shader_buffer *buf,
4239 struct iris_state_ref *surf_state,
4240 bool writable)
4241 {
4242 if (!buf->buffer || !surf_state->res)
4243 return use_null_surface(batch, ice);
4244
4245 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable);
4246 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
4247
4248 return surf_state->offset;
4249 }
4250
4251 static uint32_t
4252 use_image(struct iris_batch *batch, struct iris_context *ice,
4253 struct iris_shader_state *shs, int i)
4254 {
4255 struct iris_image_view *iv = &shs->image[i];
4256 struct iris_resource *res = (void *) iv->base.resource;
4257
4258 if (!res)
4259 return use_null_surface(batch, ice);
4260
4261 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
4262
4263 iris_use_pinned_bo(batch, res->bo, write);
4264 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.res), false);
4265
4266 if (res->aux.bo)
4267 iris_use_pinned_bo(batch, res->aux.bo, write);
4268
4269 return iv->surface_state.offset;
4270 }
4271
4272 #define push_bt_entry(addr) \
4273 assert(addr >= binder_addr); \
4274 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
4275 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
4276
4277 #define bt_assert(section) \
4278 if (!pin_only && shader->bt.used_mask[section] != 0) \
4279 assert(shader->bt.offsets[section] == s);
4280
4281 /**
4282 * Populate the binding table for a given shader stage.
4283 *
4284 * This fills out the table of pointers to surfaces required by the shader,
4285 * and also adds those buffers to the validation list so the kernel can make
4286 * resident before running our batch.
4287 */
4288 static void
4289 iris_populate_binding_table(struct iris_context *ice,
4290 struct iris_batch *batch,
4291 gl_shader_stage stage,
4292 bool pin_only)
4293 {
4294 const struct iris_binder *binder = &ice->state.binder;
4295 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
4296 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4297 if (!shader)
4298 return;
4299
4300 struct iris_binding_table *bt = &shader->bt;
4301 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
4302 struct iris_shader_state *shs = &ice->state.shaders[stage];
4303 uint32_t binder_addr = binder->bo->gtt_offset;
4304
4305 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4306 int s = 0;
4307
4308 const struct shader_info *info = iris_get_shader_info(ice, stage);
4309 if (!info) {
4310 /* TCS passthrough doesn't need a binding table. */
4311 assert(stage == MESA_SHADER_TESS_CTRL);
4312 return;
4313 }
4314
4315 if (stage == MESA_SHADER_COMPUTE &&
4316 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4317 /* surface for gl_NumWorkGroups */
4318 struct iris_state_ref *grid_data = &ice->state.grid_size;
4319 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4320 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
4321 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
4322 push_bt_entry(grid_state->offset);
4323 }
4324
4325 if (stage == MESA_SHADER_FRAGMENT) {
4326 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4327 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4328 if (cso_fb->nr_cbufs) {
4329 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4330 uint32_t addr;
4331 if (cso_fb->cbufs[i]) {
4332 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4333 ice->state.draw_aux_usage[i], false);
4334 } else {
4335 addr = use_null_fb_surface(batch, ice);
4336 }
4337 push_bt_entry(addr);
4338 }
4339 } else if (GEN_GEN < 11) {
4340 uint32_t addr = use_null_fb_surface(batch, ice);
4341 push_bt_entry(addr);
4342 }
4343 }
4344
4345 #define foreach_surface_used(index, group) \
4346 bt_assert(group); \
4347 for (int index = 0; index < bt->sizes[group]; index++) \
4348 if (iris_group_index_to_bti(bt, group, index) != \
4349 IRIS_SURFACE_NOT_USED)
4350
4351 foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) {
4352 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4353 uint32_t addr;
4354 if (cso_fb->cbufs[i]) {
4355 addr = use_surface(ice, batch, cso_fb->cbufs[i],
4356 true, ice->state.draw_aux_usage[i], true);
4357 push_bt_entry(addr);
4358 }
4359 }
4360
4361 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4362 struct iris_sampler_view *view = shs->textures[i];
4363 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4364 : use_null_surface(batch, ice);
4365 push_bt_entry(addr);
4366 }
4367
4368 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4369 uint32_t addr = use_image(batch, ice, shs, i);
4370 push_bt_entry(addr);
4371 }
4372
4373 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4374 uint32_t addr;
4375
4376 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4377 if (ish->const_data) {
4378 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false);
4379 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4380 false);
4381 addr = ish->const_data_state.offset;
4382 } else {
4383 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4384 addr = use_null_surface(batch, ice);
4385 }
4386 } else {
4387 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4388 &shs->constbuf_surf_state[i], false);
4389 }
4390
4391 push_bt_entry(addr);
4392 }
4393
4394 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4395 uint32_t addr =
4396 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4397 shs->writable_ssbos & (1u << i));
4398 push_bt_entry(addr);
4399 }
4400
4401 #if 0
4402 /* XXX: YUV surfaces not implemented yet */
4403 bt_assert(plane_start[1], ...);
4404 bt_assert(plane_start[2], ...);
4405 #endif
4406 }
4407
4408 static void
4409 iris_use_optional_res(struct iris_batch *batch,
4410 struct pipe_resource *res,
4411 bool writeable)
4412 {
4413 if (res) {
4414 struct iris_bo *bo = iris_resource_bo(res);
4415 iris_use_pinned_bo(batch, bo, writeable);
4416 }
4417 }
4418
4419 static void
4420 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4421 struct pipe_surface *zsbuf,
4422 struct iris_depth_stencil_alpha_state *cso_zsa)
4423 {
4424 if (!zsbuf)
4425 return;
4426
4427 struct iris_resource *zres, *sres;
4428 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4429
4430 if (zres) {
4431 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled);
4432 if (zres->aux.bo) {
4433 iris_use_pinned_bo(batch, zres->aux.bo,
4434 cso_zsa->depth_writes_enabled);
4435 }
4436 }
4437
4438 if (sres) {
4439 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled);
4440 }
4441 }
4442
4443 /* ------------------------------------------------------------------- */
4444
4445 /**
4446 * Pin any BOs which were installed by a previous batch, and restored
4447 * via the hardware logical context mechanism.
4448 *
4449 * We don't need to re-emit all state every batch - the hardware context
4450 * mechanism will save and restore it for us. This includes pointers to
4451 * various BOs...which won't exist unless we ask the kernel to pin them
4452 * by adding them to the validation list.
4453 *
4454 * We can skip buffers if we've re-emitted those packets, as we're
4455 * overwriting those stale pointers with new ones, and don't actually
4456 * refer to the old BOs.
4457 */
4458 static void
4459 iris_restore_render_saved_bos(struct iris_context *ice,
4460 struct iris_batch *batch,
4461 const struct pipe_draw_info *draw)
4462 {
4463 struct iris_genx_state *genx = ice->state.genx;
4464
4465 const uint64_t clean = ~ice->state.dirty;
4466
4467 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4468 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
4469 }
4470
4471 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4472 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
4473 }
4474
4475 if (clean & IRIS_DIRTY_BLEND_STATE) {
4476 iris_use_optional_res(batch, ice->state.last_res.blend, false);
4477 }
4478
4479 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4480 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
4481 }
4482
4483 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4484 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
4485 }
4486
4487 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4488 for (int i = 0; i < 4; i++) {
4489 struct iris_stream_output_target *tgt =
4490 (void *) ice->state.so_target[i];
4491 if (tgt) {
4492 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4493 true);
4494 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4495 true);
4496 }
4497 }
4498 }
4499
4500 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4501 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4502 continue;
4503
4504 struct iris_shader_state *shs = &ice->state.shaders[stage];
4505 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4506
4507 if (!shader)
4508 continue;
4509
4510 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4511
4512 for (int i = 0; i < 4; i++) {
4513 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4514
4515 if (range->length == 0)
4516 continue;
4517
4518 /* Range block is a binding table index, map back to UBO index. */
4519 unsigned block_index = iris_bti_to_group_index(
4520 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4521 assert(block_index != IRIS_SURFACE_NOT_USED);
4522
4523 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4524 struct iris_resource *res = (void *) cbuf->buffer;
4525
4526 if (res)
4527 iris_use_pinned_bo(batch, res->bo, false);
4528 else
4529 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4530 }
4531 }
4532
4533 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4534 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4535 /* Re-pin any buffers referred to by the binding table. */
4536 iris_populate_binding_table(ice, batch, stage, true);
4537 }
4538 }
4539
4540 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4541 struct iris_shader_state *shs = &ice->state.shaders[stage];
4542 struct pipe_resource *res = shs->sampler_table.res;
4543 if (res)
4544 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4545 }
4546
4547 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4548 if (clean & (IRIS_DIRTY_VS << stage)) {
4549 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4550
4551 if (shader) {
4552 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4553 iris_use_pinned_bo(batch, bo, false);
4554
4555 struct brw_stage_prog_data *prog_data = shader->prog_data;
4556
4557 if (prog_data->total_scratch > 0) {
4558 struct iris_bo *bo =
4559 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4560 iris_use_pinned_bo(batch, bo, true);
4561 }
4562 }
4563 }
4564 }
4565
4566 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
4567 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4568 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4569 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4570 }
4571
4572 iris_use_optional_res(batch, ice->state.last_res.index_buffer, false);
4573
4574 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4575 uint64_t bound = ice->state.bound_vertex_buffers;
4576 while (bound) {
4577 const int i = u_bit_scan64(&bound);
4578 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4579 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4580 }
4581 }
4582 }
4583
4584 static void
4585 iris_restore_compute_saved_bos(struct iris_context *ice,
4586 struct iris_batch *batch,
4587 const struct pipe_grid_info *grid)
4588 {
4589 const uint64_t clean = ~ice->state.dirty;
4590
4591 const int stage = MESA_SHADER_COMPUTE;
4592 struct iris_shader_state *shs = &ice->state.shaders[stage];
4593
4594 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4595 /* Re-pin any buffers referred to by the binding table. */
4596 iris_populate_binding_table(ice, batch, stage, true);
4597 }
4598
4599 struct pipe_resource *sampler_res = shs->sampler_table.res;
4600 if (sampler_res)
4601 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4602
4603 if ((clean & IRIS_DIRTY_SAMPLER_STATES_CS) &&
4604 (clean & IRIS_DIRTY_BINDINGS_CS) &&
4605 (clean & IRIS_DIRTY_CONSTANTS_CS) &&
4606 (clean & IRIS_DIRTY_CS)) {
4607 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false);
4608 }
4609
4610 if (clean & IRIS_DIRTY_CS) {
4611 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4612
4613 if (shader) {
4614 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4615 iris_use_pinned_bo(batch, bo, false);
4616
4617 struct iris_bo *curbe_bo =
4618 iris_resource_bo(ice->state.last_res.cs_thread_ids);
4619 iris_use_pinned_bo(batch, curbe_bo, false);
4620
4621 struct brw_stage_prog_data *prog_data = shader->prog_data;
4622
4623 if (prog_data->total_scratch > 0) {
4624 struct iris_bo *bo =
4625 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4626 iris_use_pinned_bo(batch, bo, true);
4627 }
4628 }
4629 }
4630 }
4631
4632 /**
4633 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4634 */
4635 static void
4636 iris_update_surface_base_address(struct iris_batch *batch,
4637 struct iris_binder *binder)
4638 {
4639 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4640 return;
4641
4642 flush_before_state_base_change(batch);
4643
4644 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4645 sba.SurfaceStateBaseAddressModifyEnable = true;
4646 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4647
4648 /* The hardware appears to pay attention to the MOCS fields even
4649 * if you don't set the "Address Modify Enable" bit for the base.
4650 */
4651 sba.GeneralStateMOCS = MOCS_WB;
4652 sba.StatelessDataPortAccessMOCS = MOCS_WB;
4653 sba.DynamicStateMOCS = MOCS_WB;
4654 sba.IndirectObjectMOCS = MOCS_WB;
4655 sba.InstructionMOCS = MOCS_WB;
4656 sba.SurfaceStateMOCS = MOCS_WB;
4657 #if GEN_GEN >= 9
4658 sba.BindlessSurfaceStateMOCS = MOCS_WB;
4659 #endif
4660 }
4661
4662 flush_after_state_base_change(batch);
4663
4664 batch->last_surface_base_address = binder->bo->gtt_offset;
4665 }
4666
4667 static inline void
4668 iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
4669 bool window_space_position, float *zmin, float *zmax)
4670 {
4671 if (window_space_position) {
4672 *zmin = 0.f;
4673 *zmax = 1.f;
4674 return;
4675 }
4676 util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
4677 }
4678
4679 static void
4680 iris_upload_dirty_render_state(struct iris_context *ice,
4681 struct iris_batch *batch,
4682 const struct pipe_draw_info *draw)
4683 {
4684 const uint64_t dirty = ice->state.dirty;
4685
4686 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4687 return;
4688
4689 struct iris_genx_state *genx = ice->state.genx;
4690 struct iris_binder *binder = &ice->state.binder;
4691 struct brw_wm_prog_data *wm_prog_data = (void *)
4692 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4693
4694 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4695 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4696 uint32_t cc_vp_address;
4697
4698 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4699 uint32_t *cc_vp_map =
4700 stream_state(batch, ice->state.dynamic_uploader,
4701 &ice->state.last_res.cc_vp,
4702 4 * ice->state.num_viewports *
4703 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4704 for (int i = 0; i < ice->state.num_viewports; i++) {
4705 float zmin, zmax;
4706 iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
4707 ice->state.window_space_position,
4708 &zmin, &zmax);
4709 if (cso_rast->depth_clip_near)
4710 zmin = 0.0;
4711 if (cso_rast->depth_clip_far)
4712 zmax = 1.0;
4713
4714 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4715 ccv.MinimumDepth = zmin;
4716 ccv.MaximumDepth = zmax;
4717 }
4718
4719 cc_vp_map += GENX(CC_VIEWPORT_length);
4720 }
4721
4722 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4723 ptr.CCViewportPointer = cc_vp_address;
4724 }
4725 }
4726
4727 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4728 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4729 uint32_t sf_cl_vp_address;
4730 uint32_t *vp_map =
4731 stream_state(batch, ice->state.dynamic_uploader,
4732 &ice->state.last_res.sf_cl_vp,
4733 4 * ice->state.num_viewports *
4734 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4735
4736 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4737 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4738 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4739
4740 float vp_xmin = viewport_extent(state, 0, -1.0f);
4741 float vp_xmax = viewport_extent(state, 0, 1.0f);
4742 float vp_ymin = viewport_extent(state, 1, -1.0f);
4743 float vp_ymax = viewport_extent(state, 1, 1.0f);
4744
4745 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
4746 state->scale[0], state->scale[1],
4747 state->translate[0], state->translate[1],
4748 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4749
4750 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4751 vp.ViewportMatrixElementm00 = state->scale[0];
4752 vp.ViewportMatrixElementm11 = state->scale[1];
4753 vp.ViewportMatrixElementm22 = state->scale[2];
4754 vp.ViewportMatrixElementm30 = state->translate[0];
4755 vp.ViewportMatrixElementm31 = state->translate[1];
4756 vp.ViewportMatrixElementm32 = state->translate[2];
4757 vp.XMinClipGuardband = gb_xmin;
4758 vp.XMaxClipGuardband = gb_xmax;
4759 vp.YMinClipGuardband = gb_ymin;
4760 vp.YMaxClipGuardband = gb_ymax;
4761 vp.XMinViewPort = MAX2(vp_xmin, 0);
4762 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4763 vp.YMinViewPort = MAX2(vp_ymin, 0);
4764 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4765 }
4766
4767 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4768 }
4769
4770 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4771 ptr.SFClipViewportPointer = sf_cl_vp_address;
4772 }
4773 }
4774
4775 if (dirty & IRIS_DIRTY_URB) {
4776 unsigned size[4];
4777
4778 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
4779 if (!ice->shaders.prog[i]) {
4780 size[i] = 1;
4781 } else {
4782 struct brw_vue_prog_data *vue_prog_data =
4783 (void *) ice->shaders.prog[i]->prog_data;
4784 size[i] = vue_prog_data->urb_entry_size;
4785 }
4786 assert(size[i] != 0);
4787 }
4788
4789 genX(emit_urb_setup)(ice, batch, size,
4790 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
4791 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
4792 }
4793
4794 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4795 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4796 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4797 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4798 const int header_dwords = GENX(BLEND_STATE_length);
4799
4800 /* Always write at least one BLEND_STATE - the final RT message will
4801 * reference BLEND_STATE[0] even if there aren't color writes. There
4802 * may still be alpha testing, computed depth, and so on.
4803 */
4804 const int rt_dwords =
4805 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4806
4807 uint32_t blend_offset;
4808 uint32_t *blend_map =
4809 stream_state(batch, ice->state.dynamic_uploader,
4810 &ice->state.last_res.blend,
4811 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4812
4813 uint32_t blend_state_header;
4814 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4815 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4816 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4817 }
4818
4819 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4820 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4821
4822 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4823 ptr.BlendStatePointer = blend_offset;
4824 ptr.BlendStatePointerValid = true;
4825 }
4826 }
4827
4828 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4829 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4830 #if GEN_GEN == 8
4831 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4832 #endif
4833 uint32_t cc_offset;
4834 void *cc_map =
4835 stream_state(batch, ice->state.dynamic_uploader,
4836 &ice->state.last_res.color_calc,
4837 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4838 64, &cc_offset);
4839 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4840 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4841 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4842 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4843 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4844 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4845 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4846 #if GEN_GEN == 8
4847 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4848 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4849 #endif
4850 }
4851 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4852 ptr.ColorCalcStatePointer = cc_offset;
4853 ptr.ColorCalcStatePointerValid = true;
4854 }
4855 }
4856
4857 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4858 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4859 continue;
4860
4861 struct iris_shader_state *shs = &ice->state.shaders[stage];
4862 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4863
4864 if (!shader)
4865 continue;
4866
4867 if (shs->sysvals_need_upload)
4868 upload_sysvals(ice, stage);
4869
4870 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4871
4872 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4873 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4874 if (prog_data) {
4875 /* The Skylake PRM contains the following restriction:
4876 *
4877 * "The driver must ensure The following case does not occur
4878 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4879 * buffer 3 read length equal to zero committed followed by a
4880 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4881 * zero committed."
4882 *
4883 * To avoid this, we program the buffers in the highest slots.
4884 * This way, slot 0 is only used if slot 3 is also used.
4885 */
4886 int n = 3;
4887
4888 for (int i = 3; i >= 0; i--) {
4889 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4890
4891 if (range->length == 0)
4892 continue;
4893
4894 /* Range block is a binding table index, map back to UBO index. */
4895 unsigned block_index = iris_bti_to_group_index(
4896 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4897 assert(block_index != IRIS_SURFACE_NOT_USED);
4898
4899 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4900 struct iris_resource *res = (void *) cbuf->buffer;
4901
4902 assert(cbuf->buffer_offset % 32 == 0);
4903
4904 pkt.ConstantBody.ReadLength[n] = range->length;
4905 pkt.ConstantBody.Buffer[n] =
4906 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
4907 : ro_bo(batch->screen->workaround_bo, 0);
4908 n--;
4909 }
4910 }
4911 }
4912 }
4913
4914 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4915 /* Gen9 requires 3DSTATE_BINDING_TABLE_POINTERS_XS to be re-emitted
4916 * in order to commit constants. TODO: Investigate "Disable Gather
4917 * at Set Shader" to go back to legacy mode...
4918 */
4919 if (dirty & ((IRIS_DIRTY_BINDINGS_VS |
4920 (GEN_GEN == 9 ? IRIS_DIRTY_CONSTANTS_VS : 0)) << stage)) {
4921 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4922 ptr._3DCommandSubOpcode = 38 + stage;
4923 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4924 }
4925 }
4926 }
4927
4928 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4929 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4930 iris_populate_binding_table(ice, batch, stage, false);
4931 }
4932 }
4933
4934 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4935 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4936 !ice->shaders.prog[stage])
4937 continue;
4938
4939 iris_upload_sampler_states(ice, stage);
4940
4941 struct iris_shader_state *shs = &ice->state.shaders[stage];
4942 struct pipe_resource *res = shs->sampler_table.res;
4943 if (res)
4944 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4945
4946 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4947 ptr._3DCommandSubOpcode = 43 + stage;
4948 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4949 }
4950 }
4951
4952 if (ice->state.need_border_colors)
4953 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4954
4955 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4956 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4957 ms.PixelLocation =
4958 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4959 if (ice->state.framebuffer.samples > 0)
4960 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4961 }
4962 }
4963
4964 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4965 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4966 ms.SampleMask = ice->state.sample_mask;
4967 }
4968 }
4969
4970 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4971 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4972 continue;
4973
4974 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4975
4976 if (shader) {
4977 struct brw_stage_prog_data *prog_data = shader->prog_data;
4978 struct iris_resource *cache = (void *) shader->assembly.res;
4979 iris_use_pinned_bo(batch, cache->bo, false);
4980
4981 if (prog_data->total_scratch > 0) {
4982 struct iris_bo *bo =
4983 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4984 iris_use_pinned_bo(batch, bo, true);
4985 }
4986
4987 if (stage == MESA_SHADER_FRAGMENT) {
4988 UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
4989 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4990
4991 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
4992 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
4993 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
4994 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
4995 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
4996
4997 /* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say:
4998 *
4999 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16,
5000 * SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch
5001 * mode."
5002 *
5003 * 16x MSAA only exists on Gen9+, so we can skip this on Gen8.
5004 */
5005 if (GEN_GEN >= 9 && cso_fb->samples == 16 &&
5006 !wm_prog_data->persample_dispatch) {
5007 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
5008 ps._32PixelDispatchEnable = false;
5009 }
5010
5011 ps.DispatchGRFStartRegisterForConstantSetupData0 =
5012 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
5013 ps.DispatchGRFStartRegisterForConstantSetupData1 =
5014 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
5015 ps.DispatchGRFStartRegisterForConstantSetupData2 =
5016 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
5017
5018 ps.KernelStartPointer0 = KSP(shader) +
5019 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
5020 ps.KernelStartPointer1 = KSP(shader) +
5021 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
5022 ps.KernelStartPointer2 = KSP(shader) +
5023 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
5024 }
5025
5026 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
5027 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
5028 #if GEN_GEN >= 9
5029 if (!wm_prog_data->uses_sample_mask)
5030 psx.InputCoverageMaskState = ICMS_NONE;
5031 else if (wm_prog_data->post_depth_coverage)
5032 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
5033 else if (wm_prog_data->inner_coverage &&
5034 cso->conservative_rasterization)
5035 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
5036 else
5037 psx.InputCoverageMaskState = ICMS_NORMAL;
5038 #else
5039 psx.PixelShaderUsesInputCoverageMask =
5040 wm_prog_data->uses_sample_mask;
5041 #endif
5042 }
5043
5044 uint32_t *shader_ps = (uint32_t *) shader->derived_data;
5045 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
5046 iris_emit_merge(batch, shader_ps, ps_state,
5047 GENX(3DSTATE_PS_length));
5048 iris_emit_merge(batch, shader_psx, psx_state,
5049 GENX(3DSTATE_PS_EXTRA_length));
5050 } else {
5051 iris_batch_emit(batch, shader->derived_data,
5052 iris_derived_program_state_size(stage));
5053 }
5054 } else {
5055 if (stage == MESA_SHADER_TESS_EVAL) {
5056 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
5057 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
5058 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
5059 } else if (stage == MESA_SHADER_GEOMETRY) {
5060 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
5061 }
5062 }
5063 }
5064
5065 if (ice->state.streamout_active) {
5066 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
5067 iris_batch_emit(batch, genx->so_buffers,
5068 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
5069 for (int i = 0; i < 4; i++) {
5070 struct iris_stream_output_target *tgt =
5071 (void *) ice->state.so_target[i];
5072 if (tgt) {
5073 tgt->zeroed = true;
5074 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
5075 true);
5076 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
5077 true);
5078 }
5079 }
5080 }
5081
5082 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
5083 uint32_t *decl_list =
5084 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
5085 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
5086 }
5087
5088 if (dirty & IRIS_DIRTY_STREAMOUT) {
5089 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5090
5091 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
5092 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
5093 sol.SOFunctionEnable = true;
5094 sol.SOStatisticsEnable = true;
5095
5096 sol.RenderingDisable = cso_rast->rasterizer_discard &&
5097 !ice->state.prims_generated_query_active;
5098 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
5099 }
5100
5101 assert(ice->state.streamout);
5102
5103 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
5104 GENX(3DSTATE_STREAMOUT_length));
5105 }
5106 } else {
5107 if (dirty & IRIS_DIRTY_STREAMOUT) {
5108 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
5109 }
5110 }
5111
5112 if (dirty & IRIS_DIRTY_CLIP) {
5113 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5114 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5115
5116 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
5117 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
5118 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
5119 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
5120 : ice->state.prim_is_points_or_lines);
5121
5122 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
5123 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
5124 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
5125 if (cso_rast->rasterizer_discard)
5126 cl.ClipMode = CLIPMODE_REJECT_ALL;
5127 else if (ice->state.window_space_position)
5128 cl.ClipMode = CLIPMODE_ACCEPT_ALL;
5129 else
5130 cl.ClipMode = CLIPMODE_NORMAL;
5131
5132 cl.PerspectiveDivideDisable = ice->state.window_space_position;
5133 cl.ViewportXYClipTestEnable = !points_or_lines;
5134
5135 if (wm_prog_data->barycentric_interp_modes &
5136 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
5137 cl.NonPerspectiveBarycentricEnable = true;
5138
5139 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
5140 cl.MaximumVPIndex = ice->state.num_viewports - 1;
5141 }
5142 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
5143 ARRAY_SIZE(cso_rast->clip));
5144 }
5145
5146 if (dirty & IRIS_DIRTY_RASTER) {
5147 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5148 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
5149
5150 uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
5151 iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
5152 sf.ViewportTransformEnable = !ice->state.window_space_position;
5153 }
5154 iris_emit_merge(batch, cso->sf, dynamic_sf,
5155 ARRAY_SIZE(dynamic_sf));
5156 }
5157
5158 if (dirty & IRIS_DIRTY_WM) {
5159 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5160 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
5161
5162 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
5163 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
5164
5165 wm.BarycentricInterpolationMode =
5166 wm_prog_data->barycentric_interp_modes;
5167
5168 if (wm_prog_data->early_fragment_tests)
5169 wm.EarlyDepthStencilControl = EDSC_PREPS;
5170 else if (wm_prog_data->has_side_effects)
5171 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
5172
5173 /* We could skip this bit if color writes are enabled. */
5174 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
5175 wm.ForceThreadDispatchEnable = ForceON;
5176 }
5177 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
5178 }
5179
5180 if (dirty & IRIS_DIRTY_SBE) {
5181 iris_emit_sbe(batch, ice);
5182 }
5183
5184 if (dirty & IRIS_DIRTY_PS_BLEND) {
5185 struct iris_blend_state *cso_blend = ice->state.cso_blend;
5186 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
5187 const struct shader_info *fs_info =
5188 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
5189
5190 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
5191 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
5192 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
5193 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
5194
5195 /* The dual source blending docs caution against using SRC1 factors
5196 * when the shader doesn't use a dual source render target write.
5197 * Empirically, this can lead to GPU hangs, and the results are
5198 * undefined anyway, so simply disable blending to avoid the hang.
5199 */
5200 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
5201 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
5202 }
5203
5204 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
5205 ARRAY_SIZE(cso_blend->ps_blend));
5206 }
5207
5208 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
5209 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
5210 #if GEN_GEN >= 9
5211 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5212 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
5213 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
5214 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
5215 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
5216 }
5217 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
5218 #else
5219 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
5220 #endif
5221 }
5222
5223 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
5224 uint32_t scissor_offset =
5225 emit_state(batch, ice->state.dynamic_uploader,
5226 &ice->state.last_res.scissor,
5227 ice->state.scissors,
5228 sizeof(struct pipe_scissor_state) *
5229 ice->state.num_viewports, 32);
5230
5231 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
5232 ptr.ScissorRectPointer = scissor_offset;
5233 }
5234 }
5235
5236 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
5237 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
5238
5239 /* Do not emit the clear params yets. We need to update the clear value
5240 * first.
5241 */
5242 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
5243 uint32_t cso_z_size = sizeof(cso_z->packets) - clear_length;
5244 iris_batch_emit(batch, cso_z->packets, cso_z_size);
5245
5246 union isl_color_value clear_value = { .f32 = { 0, } };
5247
5248 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5249 if (cso_fb->zsbuf) {
5250 struct iris_resource *zres, *sres;
5251 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
5252 &zres, &sres);
5253 if (zres && zres->aux.bo)
5254 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
5255 }
5256
5257 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
5258 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
5259 clear.DepthClearValueValid = true;
5260 clear.DepthClearValue = clear_value.f32[0];
5261 }
5262 iris_batch_emit(batch, clear_params, clear_length);
5263 }
5264
5265 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
5266 /* Listen for buffer changes, and also write enable changes. */
5267 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5268 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
5269 }
5270
5271 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
5272 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
5273 for (int i = 0; i < 32; i++) {
5274 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
5275 }
5276 }
5277 }
5278
5279 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
5280 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5281 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
5282 }
5283
5284 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
5285 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
5286 topo.PrimitiveTopologyType =
5287 translate_prim_type(draw->mode, draw->vertices_per_patch);
5288 }
5289 }
5290
5291 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
5292 int count = util_bitcount64(ice->state.bound_vertex_buffers);
5293 int dynamic_bound = ice->state.bound_vertex_buffers;
5294
5295 if (ice->state.vs_uses_draw_params) {
5296 assert(ice->draw.draw_params.res);
5297
5298 struct iris_vertex_buffer_state *state =
5299 &(ice->state.genx->vertex_buffers[count]);
5300 pipe_resource_reference(&state->resource, ice->draw.draw_params.res);
5301 struct iris_resource *res = (void *) state->resource;
5302
5303 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5304 vb.VertexBufferIndex = count;
5305 vb.AddressModifyEnable = true;
5306 vb.BufferPitch = 0;
5307 vb.BufferSize = res->bo->size - ice->draw.draw_params.offset;
5308 vb.BufferStartingAddress =
5309 ro_bo(NULL, res->bo->gtt_offset +
5310 (int) ice->draw.draw_params.offset);
5311 vb.MOCS = mocs(res->bo);
5312 }
5313 dynamic_bound |= 1ull << count;
5314 count++;
5315 }
5316
5317 if (ice->state.vs_uses_derived_draw_params) {
5318 struct iris_vertex_buffer_state *state =
5319 &(ice->state.genx->vertex_buffers[count]);
5320 pipe_resource_reference(&state->resource,
5321 ice->draw.derived_draw_params.res);
5322 struct iris_resource *res = (void *) ice->draw.derived_draw_params.res;
5323
5324 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5325 vb.VertexBufferIndex = count;
5326 vb.AddressModifyEnable = true;
5327 vb.BufferPitch = 0;
5328 vb.BufferSize =
5329 res->bo->size - ice->draw.derived_draw_params.offset;
5330 vb.BufferStartingAddress =
5331 ro_bo(NULL, res->bo->gtt_offset +
5332 (int) ice->draw.derived_draw_params.offset);
5333 vb.MOCS = mocs(res->bo);
5334 }
5335 dynamic_bound |= 1ull << count;
5336 count++;
5337 }
5338
5339 if (count) {
5340 /* The VF cache designers cut corners, and made the cache key's
5341 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
5342 * 32 bits of the address. If you have two vertex buffers which get
5343 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
5344 * you can get collisions (even within a single batch).
5345 *
5346 * So, we need to do a VF cache invalidate if the buffer for a VB
5347 * slot slot changes [48:32] address bits from the previous time.
5348 */
5349 unsigned flush_flags = 0;
5350
5351 uint64_t bound = dynamic_bound;
5352 while (bound) {
5353 const int i = u_bit_scan64(&bound);
5354 uint16_t high_bits = 0;
5355
5356 struct iris_resource *res =
5357 (void *) genx->vertex_buffers[i].resource;
5358 if (res) {
5359 iris_use_pinned_bo(batch, res->bo, false);
5360
5361 high_bits = res->bo->gtt_offset >> 32ull;
5362 if (high_bits != ice->state.last_vbo_high_bits[i]) {
5363 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
5364 PIPE_CONTROL_CS_STALL;
5365 ice->state.last_vbo_high_bits[i] = high_bits;
5366 }
5367 }
5368 }
5369
5370 if (flush_flags) {
5371 iris_emit_pipe_control_flush(batch,
5372 "workaround: VF cache 32-bit key [VB]",
5373 flush_flags);
5374 }
5375
5376 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
5377
5378 uint32_t *map =
5379 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
5380 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
5381 vb.DWordLength = (vb_dwords * count + 1) - 2;
5382 }
5383 map += 1;
5384
5385 bound = dynamic_bound;
5386 while (bound) {
5387 const int i = u_bit_scan64(&bound);
5388 memcpy(map, genx->vertex_buffers[i].state,
5389 sizeof(uint32_t) * vb_dwords);
5390 map += vb_dwords;
5391 }
5392 }
5393 }
5394
5395 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
5396 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5397 const unsigned entries = MAX2(cso->count, 1);
5398 if (!(ice->state.vs_needs_sgvs_element ||
5399 ice->state.vs_uses_derived_draw_params ||
5400 ice->state.vs_needs_edge_flag)) {
5401 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
5402 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
5403 } else {
5404 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
5405 const unsigned dyn_count = cso->count +
5406 ice->state.vs_needs_sgvs_element +
5407 ice->state.vs_uses_derived_draw_params;
5408
5409 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
5410 &dynamic_ves, ve) {
5411 ve.DWordLength =
5412 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
5413 }
5414 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
5415 (cso->count - ice->state.vs_needs_edge_flag) *
5416 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
5417 uint32_t *ve_pack_dest =
5418 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
5419 GENX(VERTEX_ELEMENT_STATE_length)];
5420
5421 if (ice->state.vs_needs_sgvs_element) {
5422 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
5423 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
5424 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5425 ve.Valid = true;
5426 ve.VertexBufferIndex =
5427 util_bitcount64(ice->state.bound_vertex_buffers);
5428 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5429 ve.Component0Control = base_ctrl;
5430 ve.Component1Control = base_ctrl;
5431 ve.Component2Control = VFCOMP_STORE_0;
5432 ve.Component3Control = VFCOMP_STORE_0;
5433 }
5434 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5435 }
5436 if (ice->state.vs_uses_derived_draw_params) {
5437 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5438 ve.Valid = true;
5439 ve.VertexBufferIndex =
5440 util_bitcount64(ice->state.bound_vertex_buffers) +
5441 ice->state.vs_uses_draw_params;
5442 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5443 ve.Component0Control = VFCOMP_STORE_SRC;
5444 ve.Component1Control = VFCOMP_STORE_SRC;
5445 ve.Component2Control = VFCOMP_STORE_0;
5446 ve.Component3Control = VFCOMP_STORE_0;
5447 }
5448 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5449 }
5450 if (ice->state.vs_needs_edge_flag) {
5451 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
5452 ve_pack_dest[i] = cso->edgeflag_ve[i];
5453 }
5454
5455 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
5456 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
5457 }
5458
5459 if (!ice->state.vs_needs_edge_flag) {
5460 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
5461 entries * GENX(3DSTATE_VF_INSTANCING_length));
5462 } else {
5463 assert(cso->count > 0);
5464 const unsigned edgeflag_index = cso->count - 1;
5465 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
5466 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
5467 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
5468
5469 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
5470 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
5471 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
5472 vi.VertexElementIndex = edgeflag_index +
5473 ice->state.vs_needs_sgvs_element +
5474 ice->state.vs_uses_derived_draw_params;
5475 }
5476 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
5477 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
5478
5479 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
5480 entries * GENX(3DSTATE_VF_INSTANCING_length));
5481 }
5482 }
5483
5484 if (dirty & IRIS_DIRTY_VF_SGVS) {
5485 const struct brw_vs_prog_data *vs_prog_data = (void *)
5486 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
5487 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5488
5489 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
5490 if (vs_prog_data->uses_vertexid) {
5491 sgv.VertexIDEnable = true;
5492 sgv.VertexIDComponentNumber = 2;
5493 sgv.VertexIDElementOffset =
5494 cso->count - ice->state.vs_needs_edge_flag;
5495 }
5496
5497 if (vs_prog_data->uses_instanceid) {
5498 sgv.InstanceIDEnable = true;
5499 sgv.InstanceIDComponentNumber = 3;
5500 sgv.InstanceIDElementOffset =
5501 cso->count - ice->state.vs_needs_edge_flag;
5502 }
5503 }
5504 }
5505
5506 if (dirty & IRIS_DIRTY_VF) {
5507 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
5508 if (draw->primitive_restart) {
5509 vf.IndexedDrawCutIndexEnable = true;
5510 vf.CutIndex = draw->restart_index;
5511 }
5512 }
5513 }
5514
5515 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
5516 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
5517 vf.StatisticsEnable = true;
5518 }
5519 }
5520
5521 if (ice->state.current_hash_scale != 1)
5522 genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
5523
5524 /* TODO: Gen8 PMA fix */
5525 }
5526
5527 static void
5528 iris_upload_render_state(struct iris_context *ice,
5529 struct iris_batch *batch,
5530 const struct pipe_draw_info *draw)
5531 {
5532 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5533
5534 /* Always pin the binder. If we're emitting new binding table pointers,
5535 * we need it. If not, we're probably inheriting old tables via the
5536 * context, and need it anyway. Since true zero-bindings cases are
5537 * practically non-existent, just pin it and avoid last_res tracking.
5538 */
5539 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5540
5541 if (!batch->contains_draw) {
5542 iris_restore_render_saved_bos(ice, batch, draw);
5543 batch->contains_draw = true;
5544 }
5545
5546 iris_upload_dirty_render_state(ice, batch, draw);
5547
5548 if (draw->index_size > 0) {
5549 unsigned offset;
5550
5551 if (draw->has_user_indices) {
5552 u_upload_data(ice->ctx.stream_uploader, 0,
5553 draw->count * draw->index_size, 4, draw->index.user,
5554 &offset, &ice->state.last_res.index_buffer);
5555 } else {
5556 struct iris_resource *res = (void *) draw->index.resource;
5557 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
5558
5559 pipe_resource_reference(&ice->state.last_res.index_buffer,
5560 draw->index.resource);
5561 offset = 0;
5562 }
5563
5564 struct iris_genx_state *genx = ice->state.genx;
5565 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
5566
5567 uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
5568 iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
5569 ib.IndexFormat = draw->index_size >> 1;
5570 ib.MOCS = mocs(bo);
5571 ib.BufferSize = bo->size - offset;
5572 ib.BufferStartingAddress = ro_bo(NULL, bo->gtt_offset + offset);
5573 }
5574
5575 if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
5576 memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
5577 iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
5578 iris_use_pinned_bo(batch, bo, false);
5579 }
5580
5581 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
5582 uint16_t high_bits = bo->gtt_offset >> 32ull;
5583 if (high_bits != ice->state.last_index_bo_high_bits) {
5584 iris_emit_pipe_control_flush(batch,
5585 "workaround: VF cache 32-bit key [IB]",
5586 PIPE_CONTROL_VF_CACHE_INVALIDATE |
5587 PIPE_CONTROL_CS_STALL);
5588 ice->state.last_index_bo_high_bits = high_bits;
5589 }
5590 }
5591
5592 #define _3DPRIM_END_OFFSET 0x2420
5593 #define _3DPRIM_START_VERTEX 0x2430
5594 #define _3DPRIM_VERTEX_COUNT 0x2434
5595 #define _3DPRIM_INSTANCE_COUNT 0x2438
5596 #define _3DPRIM_START_INSTANCE 0x243C
5597 #define _3DPRIM_BASE_VERTEX 0x2440
5598
5599 if (draw->indirect) {
5600 if (draw->indirect->indirect_draw_count) {
5601 use_predicate = true;
5602
5603 struct iris_bo *draw_count_bo =
5604 iris_resource_bo(draw->indirect->indirect_draw_count);
5605 unsigned draw_count_offset =
5606 draw->indirect->indirect_draw_count_offset;
5607
5608 iris_emit_pipe_control_flush(batch,
5609 "ensure indirect draw buffer is flushed",
5610 PIPE_CONTROL_FLUSH_ENABLE);
5611
5612 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
5613 struct gen_mi_builder b;
5614 gen_mi_builder_init(&b, batch);
5615
5616 /* comparison = draw id < draw count */
5617 struct gen_mi_value comparison =
5618 gen_mi_ult(&b, gen_mi_imm(draw->drawid),
5619 gen_mi_mem32(ro_bo(draw_count_bo,
5620 draw_count_offset)));
5621
5622 /* predicate = comparison & conditional rendering predicate */
5623 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_RESULT),
5624 gen_mi_iand(&b, comparison,
5625 gen_mi_reg32(CS_GPR(15))));
5626 } else {
5627 uint32_t mi_predicate;
5628
5629 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
5630 ice->vtbl.load_register_imm64(batch, MI_PREDICATE_SRC1,
5631 draw->drawid);
5632 /* Upload the current draw count from the draw parameters buffer
5633 * to MI_PREDICATE_SRC0.
5634 */
5635 ice->vtbl.load_register_mem32(batch, MI_PREDICATE_SRC0,
5636 draw_count_bo, draw_count_offset);
5637 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
5638 ice->vtbl.load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
5639
5640 if (draw->drawid == 0) {
5641 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
5642 MI_PREDICATE_COMBINEOP_SET |
5643 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5644 } else {
5645 /* While draw_index < draw_count the predicate's result will be
5646 * (draw_index == draw_count) ^ TRUE = TRUE
5647 * When draw_index == draw_count the result is
5648 * (TRUE) ^ TRUE = FALSE
5649 * After this all results will be:
5650 * (FALSE) ^ FALSE = FALSE
5651 */
5652 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
5653 MI_PREDICATE_COMBINEOP_XOR |
5654 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5655 }
5656 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
5657 }
5658 }
5659 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
5660 assert(bo);
5661
5662 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5663 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
5664 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
5665 }
5666 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5667 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
5668 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
5669 }
5670 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5671 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
5672 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
5673 }
5674 if (draw->index_size) {
5675 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5676 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5677 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5678 }
5679 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5680 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5681 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5682 }
5683 } else {
5684 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5685 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5686 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5687 }
5688 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5689 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5690 lri.DataDWord = 0;
5691 }
5692 }
5693 } else if (draw->count_from_stream_output) {
5694 struct iris_stream_output_target *so =
5695 (void *) draw->count_from_stream_output;
5696
5697 /* XXX: Replace with actual cache tracking */
5698 iris_emit_pipe_control_flush(batch,
5699 "draw count from stream output stall",
5700 PIPE_CONTROL_CS_STALL);
5701
5702 struct gen_mi_builder b;
5703 gen_mi_builder_init(&b, batch);
5704
5705 struct iris_address addr =
5706 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5707 struct gen_mi_value offset =
5708 gen_mi_iadd_imm(&b, gen_mi_mem32(addr), -so->base.buffer_offset);
5709
5710 gen_mi_store(&b, gen_mi_reg32(_3DPRIM_VERTEX_COUNT),
5711 gen_mi_udiv32_imm(&b, offset, so->stride));
5712
5713 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5714 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5715 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5716 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5717 }
5718
5719 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5720 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5721 prim.PredicateEnable = use_predicate;
5722
5723 if (draw->indirect || draw->count_from_stream_output) {
5724 prim.IndirectParameterEnable = true;
5725 } else {
5726 prim.StartInstanceLocation = draw->start_instance;
5727 prim.InstanceCount = draw->instance_count;
5728 prim.VertexCountPerInstance = draw->count;
5729
5730 prim.StartVertexLocation = draw->start;
5731
5732 if (draw->index_size) {
5733 prim.BaseVertexLocation += draw->index_bias;
5734 } else {
5735 prim.StartVertexLocation += draw->index_bias;
5736 }
5737 }
5738 }
5739 }
5740
5741 static void
5742 iris_upload_compute_state(struct iris_context *ice,
5743 struct iris_batch *batch,
5744 const struct pipe_grid_info *grid)
5745 {
5746 const uint64_t dirty = ice->state.dirty;
5747 struct iris_screen *screen = batch->screen;
5748 const struct gen_device_info *devinfo = &screen->devinfo;
5749 struct iris_binder *binder = &ice->state.binder;
5750 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5751 struct iris_compiled_shader *shader =
5752 ice->shaders.prog[MESA_SHADER_COMPUTE];
5753 struct brw_stage_prog_data *prog_data = shader->prog_data;
5754 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5755
5756 /* Always pin the binder. If we're emitting new binding table pointers,
5757 * we need it. If not, we're probably inheriting old tables via the
5758 * context, and need it anyway. Since true zero-bindings cases are
5759 * practically non-existent, just pin it and avoid last_res tracking.
5760 */
5761 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5762
5763 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->sysvals_need_upload)
5764 upload_sysvals(ice, MESA_SHADER_COMPUTE);
5765
5766 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5767 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5768
5769 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
5770 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
5771
5772 iris_use_optional_res(batch, shs->sampler_table.res, false);
5773 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5774
5775 if (ice->state.need_border_colors)
5776 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5777
5778 if (dirty & IRIS_DIRTY_CS) {
5779 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5780 *
5781 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5782 * the only bits that are changed are scoreboard related: Scoreboard
5783 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5784 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5785 * sufficient."
5786 */
5787 iris_emit_pipe_control_flush(batch,
5788 "workaround: stall before MEDIA_VFE_STATE",
5789 PIPE_CONTROL_CS_STALL);
5790
5791 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5792 if (prog_data->total_scratch) {
5793 struct iris_bo *bo =
5794 iris_get_scratch_space(ice, prog_data->total_scratch,
5795 MESA_SHADER_COMPUTE);
5796 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5797 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5798 }
5799
5800 vfe.MaximumNumberofThreads =
5801 devinfo->max_cs_threads * screen->subslice_total - 1;
5802 #if GEN_GEN < 11
5803 vfe.ResetGatewayTimer =
5804 Resettingrelativetimerandlatchingtheglobaltimestamp;
5805 #endif
5806 #if GEN_GEN == 8
5807 vfe.BypassGatewayControl = true;
5808 #endif
5809 vfe.NumberofURBEntries = 2;
5810 vfe.URBEntryAllocationSize = 2;
5811
5812 vfe.CURBEAllocationSize =
5813 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5814 cs_prog_data->push.cross_thread.regs, 2);
5815 }
5816 }
5817
5818 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5819 if (dirty & IRIS_DIRTY_CS) {
5820 uint32_t curbe_data_offset = 0;
5821 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5822 cs_prog_data->push.per_thread.dwords == 1 &&
5823 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5824 uint32_t *curbe_data_map =
5825 stream_state(batch, ice->state.dynamic_uploader,
5826 &ice->state.last_res.cs_thread_ids,
5827 ALIGN(cs_prog_data->push.total.size, 64), 64,
5828 &curbe_data_offset);
5829 assert(curbe_data_map);
5830 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5831 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5832
5833 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5834 curbe.CURBETotalDataLength =
5835 ALIGN(cs_prog_data->push.total.size, 64);
5836 curbe.CURBEDataStartAddress = curbe_data_offset;
5837 }
5838 }
5839
5840 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5841 IRIS_DIRTY_BINDINGS_CS |
5842 IRIS_DIRTY_CONSTANTS_CS |
5843 IRIS_DIRTY_CS)) {
5844 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5845
5846 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5847 idd.SamplerStatePointer = shs->sampler_table.offset;
5848 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5849 }
5850
5851 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5852 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5853
5854 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5855 load.InterfaceDescriptorTotalLength =
5856 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5857 load.InterfaceDescriptorDataStartAddress =
5858 emit_state(batch, ice->state.dynamic_uploader,
5859 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
5860 }
5861 }
5862
5863 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5864 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5865 uint32_t right_mask;
5866
5867 if (remainder > 0)
5868 right_mask = ~0u >> (32 - remainder);
5869 else
5870 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5871
5872 #define GPGPU_DISPATCHDIMX 0x2500
5873 #define GPGPU_DISPATCHDIMY 0x2504
5874 #define GPGPU_DISPATCHDIMZ 0x2508
5875
5876 if (grid->indirect) {
5877 struct iris_state_ref *grid_size = &ice->state.grid_size;
5878 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5879 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5880 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5881 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5882 }
5883 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5884 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5885 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5886 }
5887 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5888 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5889 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5890 }
5891 }
5892
5893 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5894 ggw.IndirectParameterEnable = grid->indirect != NULL;
5895 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5896 ggw.ThreadDepthCounterMaximum = 0;
5897 ggw.ThreadHeightCounterMaximum = 0;
5898 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5899 ggw.ThreadGroupIDXDimension = grid->grid[0];
5900 ggw.ThreadGroupIDYDimension = grid->grid[1];
5901 ggw.ThreadGroupIDZDimension = grid->grid[2];
5902 ggw.RightExecutionMask = right_mask;
5903 ggw.BottomExecutionMask = 0xffffffff;
5904 }
5905
5906 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5907
5908 if (!batch->contains_draw) {
5909 iris_restore_compute_saved_bos(ice, batch, grid);
5910 batch->contains_draw = true;
5911 }
5912 }
5913
5914 /**
5915 * State module teardown.
5916 */
5917 static void
5918 iris_destroy_state(struct iris_context *ice)
5919 {
5920 struct iris_genx_state *genx = ice->state.genx;
5921
5922 pipe_resource_reference(&ice->draw.draw_params.res, NULL);
5923 pipe_resource_reference(&ice->draw.derived_draw_params.res, NULL);
5924
5925 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5926 while (bound_vbs) {
5927 const int i = u_bit_scan64(&bound_vbs);
5928 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5929 }
5930 free(ice->state.genx);
5931
5932 for (int i = 0; i < 4; i++) {
5933 pipe_so_target_reference(&ice->state.so_target[i], NULL);
5934 }
5935
5936 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5937 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5938 }
5939 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5940
5941 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5942 struct iris_shader_state *shs = &ice->state.shaders[stage];
5943 pipe_resource_reference(&shs->sampler_table.res, NULL);
5944 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5945 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
5946 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
5947 }
5948 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5949 pipe_resource_reference(&shs->image[i].base.resource, NULL);
5950 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5951 }
5952 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5953 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
5954 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
5955 }
5956 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5957 pipe_sampler_view_reference((struct pipe_sampler_view **)
5958 &shs->textures[i], NULL);
5959 }
5960 }
5961
5962 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5963 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5964
5965 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5966 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5967
5968 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5969 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5970 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5971 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5972 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5973 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5974 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
5975 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
5976 }
5977
5978 /* ------------------------------------------------------------------- */
5979
5980 static void
5981 iris_rebind_buffer(struct iris_context *ice,
5982 struct iris_resource *res,
5983 uint64_t old_address)
5984 {
5985 struct pipe_context *ctx = &ice->ctx;
5986 struct iris_screen *screen = (void *) ctx->screen;
5987 struct iris_genx_state *genx = ice->state.genx;
5988
5989 assert(res->base.target == PIPE_BUFFER);
5990
5991 /* Buffers can't be framebuffer attachments, nor display related,
5992 * and we don't have upstream Clover support.
5993 */
5994 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
5995 PIPE_BIND_RENDER_TARGET |
5996 PIPE_BIND_BLENDABLE |
5997 PIPE_BIND_DISPLAY_TARGET |
5998 PIPE_BIND_CURSOR |
5999 PIPE_BIND_COMPUTE_RESOURCE |
6000 PIPE_BIND_GLOBAL)));
6001
6002 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
6003 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
6004 while (bound_vbs) {
6005 const int i = u_bit_scan64(&bound_vbs);
6006 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
6007
6008 /* Update the CPU struct */
6009 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
6010 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
6011 uint64_t *addr = (uint64_t *) &state->state[1];
6012
6013 if (*addr == old_address) {
6014 *addr = res->bo->gtt_offset;
6015 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
6016 }
6017 }
6018 }
6019
6020 /* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
6021 * the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
6022 *
6023 * There is also no need to handle these:
6024 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
6025 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
6026 */
6027
6028 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
6029 /* XXX: be careful about resetting vs appending... */
6030 assert(false);
6031 }
6032
6033 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
6034 struct iris_shader_state *shs = &ice->state.shaders[s];
6035 enum pipe_shader_type p_stage = stage_to_pipe(s);
6036
6037 if (!(res->bind_stages & (1 << s)))
6038 continue;
6039
6040 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
6041 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
6042 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
6043 while (bound_cbufs) {
6044 const int i = u_bit_scan(&bound_cbufs);
6045 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
6046 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
6047
6048 if (res->bo == iris_resource_bo(cbuf->buffer)) {
6049 pipe_resource_reference(&surf_state->res, NULL);
6050 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << s;
6051 }
6052 }
6053 }
6054
6055 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
6056 uint32_t bound_ssbos = shs->bound_ssbos;
6057 while (bound_ssbos) {
6058 const int i = u_bit_scan(&bound_ssbos);
6059 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
6060
6061 if (res->bo == iris_resource_bo(ssbo->buffer)) {
6062 struct pipe_shader_buffer buf = {
6063 .buffer = &res->base,
6064 .buffer_offset = ssbo->buffer_offset,
6065 .buffer_size = ssbo->buffer_size,
6066 };
6067 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
6068 (shs->writable_ssbos >> i) & 1);
6069 }
6070 }
6071 }
6072
6073 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
6074 uint32_t bound_sampler_views = shs->bound_sampler_views;
6075 while (bound_sampler_views) {
6076 const int i = u_bit_scan(&bound_sampler_views);
6077 struct iris_sampler_view *isv = shs->textures[i];
6078
6079 if (res->bo == iris_resource_bo(isv->base.texture)) {
6080 void *map = alloc_surface_states(ice->state.surface_uploader,
6081 &isv->surface_state,
6082 isv->res->aux.sampler_usages);
6083 assert(map);
6084 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
6085 isv->view.format, isv->view.swizzle,
6086 isv->base.u.buf.offset,
6087 isv->base.u.buf.size);
6088 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
6089 }
6090 }
6091 }
6092
6093 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
6094 uint32_t bound_image_views = shs->bound_image_views;
6095 while (bound_image_views) {
6096 const int i = u_bit_scan(&bound_image_views);
6097 struct iris_image_view *iv = &shs->image[i];
6098
6099 if (res->bo == iris_resource_bo(iv->base.resource)) {
6100 iris_set_shader_images(ctx, p_stage, i, 1, &iv->base);
6101 }
6102 }
6103 }
6104 }
6105 }
6106
6107 /* ------------------------------------------------------------------- */
6108
6109 static void
6110 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
6111 uint32_t src)
6112 {
6113 _iris_emit_lrr(batch, dst, src);
6114 }
6115
6116 static void
6117 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
6118 uint32_t src)
6119 {
6120 _iris_emit_lrr(batch, dst, src);
6121 _iris_emit_lrr(batch, dst + 4, src + 4);
6122 }
6123
6124 static void
6125 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
6126 uint32_t val)
6127 {
6128 _iris_emit_lri(batch, reg, val);
6129 }
6130
6131 static void
6132 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
6133 uint64_t val)
6134 {
6135 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
6136 _iris_emit_lri(batch, reg + 4, val >> 32);
6137 }
6138
6139 /**
6140 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
6141 */
6142 static void
6143 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
6144 struct iris_bo *bo, uint32_t offset)
6145 {
6146 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6147 lrm.RegisterAddress = reg;
6148 lrm.MemoryAddress = ro_bo(bo, offset);
6149 }
6150 }
6151
6152 /**
6153 * Load a 64-bit value from a buffer into a MMIO register via
6154 * two MI_LOAD_REGISTER_MEM commands.
6155 */
6156 static void
6157 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
6158 struct iris_bo *bo, uint32_t offset)
6159 {
6160 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
6161 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
6162 }
6163
6164 static void
6165 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
6166 struct iris_bo *bo, uint32_t offset,
6167 bool predicated)
6168 {
6169 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
6170 srm.RegisterAddress = reg;
6171 srm.MemoryAddress = rw_bo(bo, offset);
6172 srm.PredicateEnable = predicated;
6173 }
6174 }
6175
6176 static void
6177 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
6178 struct iris_bo *bo, uint32_t offset,
6179 bool predicated)
6180 {
6181 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
6182 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
6183 }
6184
6185 static void
6186 iris_store_data_imm32(struct iris_batch *batch,
6187 struct iris_bo *bo, uint32_t offset,
6188 uint32_t imm)
6189 {
6190 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
6191 sdi.Address = rw_bo(bo, offset);
6192 sdi.ImmediateData = imm;
6193 }
6194 }
6195
6196 static void
6197 iris_store_data_imm64(struct iris_batch *batch,
6198 struct iris_bo *bo, uint32_t offset,
6199 uint64_t imm)
6200 {
6201 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
6202 * 2 in genxml but it's actually variable length and we need 5 DWords.
6203 */
6204 void *map = iris_get_command_space(batch, 4 * 5);
6205 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
6206 sdi.DWordLength = 5 - 2;
6207 sdi.Address = rw_bo(bo, offset);
6208 sdi.ImmediateData = imm;
6209 }
6210 }
6211
6212 static void
6213 iris_copy_mem_mem(struct iris_batch *batch,
6214 struct iris_bo *dst_bo, uint32_t dst_offset,
6215 struct iris_bo *src_bo, uint32_t src_offset,
6216 unsigned bytes)
6217 {
6218 /* MI_COPY_MEM_MEM operates on DWords. */
6219 assert(bytes % 4 == 0);
6220 assert(dst_offset % 4 == 0);
6221 assert(src_offset % 4 == 0);
6222
6223 for (unsigned i = 0; i < bytes; i += 4) {
6224 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
6225 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
6226 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
6227 }
6228 }
6229 }
6230
6231 /* ------------------------------------------------------------------- */
6232
6233 static unsigned
6234 flags_to_post_sync_op(uint32_t flags)
6235 {
6236 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
6237 return WriteImmediateData;
6238
6239 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
6240 return WritePSDepthCount;
6241
6242 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
6243 return WriteTimestamp;
6244
6245 return 0;
6246 }
6247
6248 /**
6249 * Do the given flags have a Post Sync or LRI Post Sync operation?
6250 */
6251 static enum pipe_control_flags
6252 get_post_sync_flags(enum pipe_control_flags flags)
6253 {
6254 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
6255 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6256 PIPE_CONTROL_WRITE_TIMESTAMP |
6257 PIPE_CONTROL_LRI_POST_SYNC_OP;
6258
6259 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
6260 * "LRI Post Sync Operation". So more than one bit set would be illegal.
6261 */
6262 assert(util_bitcount(flags) <= 1);
6263
6264 return flags;
6265 }
6266
6267 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
6268
6269 /**
6270 * Emit a series of PIPE_CONTROL commands, taking into account any
6271 * workarounds necessary to actually accomplish the caller's request.
6272 *
6273 * Unless otherwise noted, spec quotations in this function come from:
6274 *
6275 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
6276 * Restrictions for PIPE_CONTROL.
6277 *
6278 * You should not use this function directly. Use the helpers in
6279 * iris_pipe_control.c instead, which may split the pipe control further.
6280 */
6281 static void
6282 iris_emit_raw_pipe_control(struct iris_batch *batch,
6283 const char *reason,
6284 uint32_t flags,
6285 struct iris_bo *bo,
6286 uint32_t offset,
6287 uint64_t imm)
6288 {
6289 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
6290 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
6291 enum pipe_control_flags non_lri_post_sync_flags =
6292 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
6293
6294 /* Recursive PIPE_CONTROL workarounds --------------------------------
6295 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
6296 *
6297 * We do these first because we want to look at the original operation,
6298 * rather than any workarounds we set.
6299 */
6300 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
6301 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
6302 * lists several workarounds:
6303 *
6304 * "Project: SKL, KBL, BXT
6305 *
6306 * If the VF Cache Invalidation Enable is set to a 1 in a
6307 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
6308 * sets to 0, with the VF Cache Invalidation Enable set to 0
6309 * needs to be sent prior to the PIPE_CONTROL with VF Cache
6310 * Invalidation Enable set to a 1."
6311 */
6312 iris_emit_raw_pipe_control(batch,
6313 "workaround: recursive VF cache invalidate",
6314 0, NULL, 0, 0);
6315 }
6316
6317 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
6318 /* Project: SKL / Argument: LRI Post Sync Operation [23]
6319 *
6320 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6321 * programmed prior to programming a PIPECONTROL command with "LRI
6322 * Post Sync Operation" in GPGPU mode of operation (i.e when
6323 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
6324 *
6325 * The same text exists a few rows below for Post Sync Op.
6326 */
6327 iris_emit_raw_pipe_control(batch,
6328 "workaround: CS stall before gpgpu post-sync",
6329 PIPE_CONTROL_CS_STALL, bo, offset, imm);
6330 }
6331
6332 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
6333 /* Cannonlake:
6334 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
6335 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
6336 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
6337 */
6338 iris_emit_raw_pipe_control(batch,
6339 "workaround: PC flush before RT flush",
6340 PIPE_CONTROL_FLUSH_ENABLE, bo, offset, imm);
6341 }
6342
6343 /* "Flush Types" workarounds ---------------------------------------------
6344 * We do these now because they may add post-sync operations or CS stalls.
6345 */
6346
6347 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
6348 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
6349 *
6350 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
6351 * 'Write PS Depth Count' or 'Write Timestamp'."
6352 */
6353 if (!bo) {
6354 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6355 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6356 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6357 bo = batch->screen->workaround_bo;
6358 }
6359 }
6360
6361 /* #1130 from Gen10 workarounds page:
6362 *
6363 * "Enable Depth Stall on every Post Sync Op if Render target Cache
6364 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
6365 * board stall if Render target cache flush is enabled."
6366 *
6367 * Applicable to CNL B0 and C0 steppings only.
6368 *
6369 * The wording here is unclear, and this workaround doesn't look anything
6370 * like the internal bug report recommendations, but leave it be for now...
6371 */
6372 if (GEN_GEN == 10) {
6373 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
6374 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6375 } else if (flags & non_lri_post_sync_flags) {
6376 flags |= PIPE_CONTROL_DEPTH_STALL;
6377 }
6378 }
6379
6380 if (flags & PIPE_CONTROL_DEPTH_STALL) {
6381 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
6382 *
6383 * "This bit must be DISABLED for operations other than writing
6384 * PS_DEPTH_COUNT."
6385 *
6386 * This seems like nonsense. An Ivybridge workaround requires us to
6387 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
6388 * operation. Gen8+ requires us to emit depth stalls and depth cache
6389 * flushes together. So, it's hard to imagine this means anything other
6390 * than "we originally intended this to be used for PS_DEPTH_COUNT".
6391 *
6392 * We ignore the supposed restriction and do nothing.
6393 */
6394 }
6395
6396 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
6397 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6398 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
6399 *
6400 * "This bit must be DISABLED for End-of-pipe (Read) fences,
6401 * PS_DEPTH_COUNT or TIMESTAMP queries."
6402 *
6403 * TODO: Implement end-of-pipe checking.
6404 */
6405 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
6406 PIPE_CONTROL_WRITE_TIMESTAMP)));
6407 }
6408
6409 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6410 /* From the PIPE_CONTROL instruction table, bit 1:
6411 *
6412 * "This bit is ignored if Depth Stall Enable is set.
6413 * Further, the render cache is not flushed even if Write Cache
6414 * Flush Enable bit is set."
6415 *
6416 * We assert that the caller doesn't do this combination, to try and
6417 * prevent mistakes. It shouldn't hurt the GPU, though.
6418 *
6419 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
6420 * and "Render Target Flush" combo is explicitly required for BTI
6421 * update workarounds.
6422 */
6423 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
6424 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
6425 }
6426
6427 /* PIPE_CONTROL page workarounds ------------------------------------- */
6428
6429 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
6430 /* From the PIPE_CONTROL page itself:
6431 *
6432 * "IVB, HSW, BDW
6433 * Restriction: Pipe_control with CS-stall bit set must be issued
6434 * before a pipe-control command that has the State Cache
6435 * Invalidate bit set."
6436 */
6437 flags |= PIPE_CONTROL_CS_STALL;
6438 }
6439
6440 if (flags & PIPE_CONTROL_FLUSH_LLC) {
6441 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
6442 *
6443 * "Project: ALL
6444 * SW must always program Post-Sync Operation to "Write Immediate
6445 * Data" when Flush LLC is set."
6446 *
6447 * For now, we just require the caller to do it.
6448 */
6449 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
6450 }
6451
6452 /* "Post-Sync Operation" workarounds -------------------------------- */
6453
6454 /* Project: All / Argument: Global Snapshot Count Reset [19]
6455 *
6456 * "This bit must not be exercised on any product.
6457 * Requires stall bit ([20] of DW1) set."
6458 *
6459 * We don't use this, so we just assert that it isn't used. The
6460 * PIPE_CONTROL instruction page indicates that they intended this
6461 * as a debug feature and don't think it is useful in production,
6462 * but it may actually be usable, should we ever want to.
6463 */
6464 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
6465
6466 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
6467 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
6468 /* Project: All / Arguments:
6469 *
6470 * - Generic Media State Clear [16]
6471 * - Indirect State Pointers Disable [16]
6472 *
6473 * "Requires stall bit ([20] of DW1) set."
6474 *
6475 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
6476 * State Clear) says:
6477 *
6478 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6479 * programmed prior to programming a PIPECONTROL command with "Media
6480 * State Clear" set in GPGPU mode of operation"
6481 *
6482 * This is a subset of the earlier rule, so there's nothing to do.
6483 */
6484 flags |= PIPE_CONTROL_CS_STALL;
6485 }
6486
6487 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
6488 /* Project: All / Argument: Store Data Index
6489 *
6490 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6491 * than '0'."
6492 *
6493 * For now, we just assert that the caller does this. We might want to
6494 * automatically add a write to the workaround BO...
6495 */
6496 assert(non_lri_post_sync_flags != 0);
6497 }
6498
6499 if (flags & PIPE_CONTROL_SYNC_GFDT) {
6500 /* Project: All / Argument: Sync GFDT
6501 *
6502 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6503 * than '0' or 0x2520[13] must be set."
6504 *
6505 * For now, we just assert that the caller does this.
6506 */
6507 assert(non_lri_post_sync_flags != 0);
6508 }
6509
6510 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
6511 /* Project: IVB+ / Argument: TLB inv
6512 *
6513 * "Requires stall bit ([20] of DW1) set."
6514 *
6515 * Also, from the PIPE_CONTROL instruction table:
6516 *
6517 * "Project: SKL+
6518 * Post Sync Operation or CS stall must be set to ensure a TLB
6519 * invalidation occurs. Otherwise no cycle will occur to the TLB
6520 * cache to invalidate."
6521 *
6522 * This is not a subset of the earlier rule, so there's nothing to do.
6523 */
6524 flags |= PIPE_CONTROL_CS_STALL;
6525 }
6526
6527 if (GEN_GEN == 9 && devinfo->gt == 4) {
6528 /* TODO: The big Skylake GT4 post sync op workaround */
6529 }
6530
6531 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
6532
6533 if (IS_COMPUTE_PIPELINE(batch)) {
6534 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
6535 /* Project: SKL+ / Argument: Tex Invalidate
6536 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
6537 */
6538 flags |= PIPE_CONTROL_CS_STALL;
6539 }
6540
6541 if (GEN_GEN == 8 && (post_sync_flags ||
6542 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
6543 PIPE_CONTROL_DEPTH_STALL |
6544 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6545 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6546 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
6547 /* Project: BDW / Arguments:
6548 *
6549 * - LRI Post Sync Operation [23]
6550 * - Post Sync Op [15:14]
6551 * - Notify En [8]
6552 * - Depth Stall [13]
6553 * - Render Target Cache Flush [12]
6554 * - Depth Cache Flush [0]
6555 * - DC Flush Enable [5]
6556 *
6557 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
6558 * Workloads."
6559 */
6560 flags |= PIPE_CONTROL_CS_STALL;
6561
6562 /* Also, from the PIPE_CONTROL instruction table, bit 20:
6563 *
6564 * "Project: BDW
6565 * This bit must be always set when PIPE_CONTROL command is
6566 * programmed by GPGPU and MEDIA workloads, except for the cases
6567 * when only Read Only Cache Invalidation bits are set (State
6568 * Cache Invalidation Enable, Instruction cache Invalidation
6569 * Enable, Texture Cache Invalidation Enable, Constant Cache
6570 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
6571 * need not implemented when FF_DOP_CG is disable via "Fixed
6572 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
6573 *
6574 * It sounds like we could avoid CS stalls in some cases, but we
6575 * don't currently bother. This list isn't exactly the list above,
6576 * either...
6577 */
6578 }
6579 }
6580
6581 /* "Stall" workarounds ----------------------------------------------
6582 * These have to come after the earlier ones because we may have added
6583 * some additional CS stalls above.
6584 */
6585
6586 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
6587 /* Project: PRE-SKL, VLV, CHV
6588 *
6589 * "[All Stepping][All SKUs]:
6590 *
6591 * One of the following must also be set:
6592 *
6593 * - Render Target Cache Flush Enable ([12] of DW1)
6594 * - Depth Cache Flush Enable ([0] of DW1)
6595 * - Stall at Pixel Scoreboard ([1] of DW1)
6596 * - Depth Stall ([13] of DW1)
6597 * - Post-Sync Operation ([13] of DW1)
6598 * - DC Flush Enable ([5] of DW1)"
6599 *
6600 * If we don't already have one of those bits set, we choose to add
6601 * "Stall at Pixel Scoreboard". Some of the other bits require a
6602 * CS stall as a workaround (see above), which would send us into
6603 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
6604 * appears to be safe, so we choose that.
6605 */
6606 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
6607 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6608 PIPE_CONTROL_WRITE_IMMEDIATE |
6609 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6610 PIPE_CONTROL_WRITE_TIMESTAMP |
6611 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6612 PIPE_CONTROL_DEPTH_STALL |
6613 PIPE_CONTROL_DATA_CACHE_FLUSH;
6614 if (!(flags & wa_bits))
6615 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6616 }
6617
6618 /* Emit --------------------------------------------------------------- */
6619
6620 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
6621 fprintf(stderr,
6622 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
6623 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
6624 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
6625 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
6626 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
6627 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
6628 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
6629 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
6630 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
6631 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
6632 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
6633 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
6634 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
6635 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
6636 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
6637 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
6638 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
6639 "SnapRes" : "",
6640 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
6641 "ISPDis" : "",
6642 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
6643 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
6644 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
6645 imm, reason);
6646 }
6647
6648 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
6649 pc.LRIPostSyncOperation = NoLRIOperation;
6650 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
6651 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
6652 pc.StoreDataIndex = 0;
6653 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
6654 pc.GlobalSnapshotCountReset =
6655 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
6656 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
6657 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
6658 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
6659 pc.RenderTargetCacheFlushEnable =
6660 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
6661 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6662 pc.StateCacheInvalidationEnable =
6663 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
6664 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
6665 pc.ConstantCacheInvalidationEnable =
6666 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
6667 pc.PostSyncOperation = flags_to_post_sync_op(flags);
6668 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
6669 pc.InstructionCacheInvalidateEnable =
6670 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
6671 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
6672 pc.IndirectStatePointersDisable =
6673 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
6674 pc.TextureCacheInvalidationEnable =
6675 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
6676 pc.Address = rw_bo(bo, offset);
6677 pc.ImmediateData = imm;
6678 }
6679 }
6680
6681 void
6682 genX(emit_urb_setup)(struct iris_context *ice,
6683 struct iris_batch *batch,
6684 const unsigned size[4],
6685 bool tess_present, bool gs_present)
6686 {
6687 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6688 const unsigned push_size_kB = 32;
6689 unsigned entries[4];
6690 unsigned start[4];
6691
6692 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
6693
6694 gen_get_urb_config(devinfo, 1024 * push_size_kB,
6695 1024 * ice->shaders.urb_size,
6696 tess_present, gs_present,
6697 size, entries, start);
6698
6699 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
6700 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
6701 urb._3DCommandSubOpcode += i;
6702 urb.VSURBStartingAddress = start[i];
6703 urb.VSURBEntryAllocationSize = size[i] - 1;
6704 urb.VSNumberofURBEntries = entries[i];
6705 }
6706 }
6707 }
6708
6709 #if GEN_GEN == 9
6710 /**
6711 * Preemption on Gen9 has to be enabled or disabled in various cases.
6712 *
6713 * See these workarounds for preemption:
6714 * - WaDisableMidObjectPreemptionForGSLineStripAdj
6715 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
6716 * - WaDisableMidObjectPreemptionForLineLoop
6717 * - WA#0798
6718 *
6719 * We don't put this in the vtable because it's only used on Gen9.
6720 */
6721 void
6722 gen9_toggle_preemption(struct iris_context *ice,
6723 struct iris_batch *batch,
6724 const struct pipe_draw_info *draw)
6725 {
6726 struct iris_genx_state *genx = ice->state.genx;
6727 bool object_preemption = true;
6728
6729 /* WaDisableMidObjectPreemptionForGSLineStripAdj
6730 *
6731 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
6732 * and GS is enabled."
6733 */
6734 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
6735 ice->shaders.prog[MESA_SHADER_GEOMETRY])
6736 object_preemption = false;
6737
6738 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
6739 *
6740 * "TriFan miscompare in Execlist Preemption test. Cut index that is
6741 * on a previous context. End the previous, the resume another context
6742 * with a tri-fan or polygon, and the vertex count is corrupted. If we
6743 * prempt again we will cause corruption.
6744 *
6745 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
6746 */
6747 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
6748 object_preemption = false;
6749
6750 /* WaDisableMidObjectPreemptionForLineLoop
6751 *
6752 * "VF Stats Counters Missing a vertex when preemption enabled.
6753 *
6754 * WA: Disable mid-draw preemption when the draw uses a lineloop
6755 * topology."
6756 */
6757 if (draw->mode == PIPE_PRIM_LINE_LOOP)
6758 object_preemption = false;
6759
6760 /* WA#0798
6761 *
6762 * "VF is corrupting GAFS data when preempted on an instance boundary
6763 * and replayed with instancing enabled.
6764 *
6765 * WA: Disable preemption when using instanceing."
6766 */
6767 if (draw->instance_count > 1)
6768 object_preemption = false;
6769
6770 if (genx->object_preemption != object_preemption) {
6771 iris_enable_obj_preemption(batch, object_preemption);
6772 genx->object_preemption = object_preemption;
6773 }
6774 }
6775 #endif
6776
6777 static void
6778 iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
6779 {
6780 struct iris_genx_state *genx = ice->state.genx;
6781
6782 memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
6783 }
6784
6785 static void
6786 iris_emit_mi_report_perf_count(struct iris_batch *batch,
6787 struct iris_bo *bo,
6788 uint32_t offset_in_bytes,
6789 uint32_t report_id)
6790 {
6791 iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
6792 mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes);
6793 mi_rpc.ReportID = report_id;
6794 }
6795 }
6796
6797 /**
6798 * Update the pixel hashing modes that determine the balancing of PS threads
6799 * across subslices and slices.
6800 *
6801 * \param width Width bound of the rendering area (already scaled down if \p
6802 * scale is greater than 1).
6803 * \param height Height bound of the rendering area (already scaled down if \p
6804 * scale is greater than 1).
6805 * \param scale The number of framebuffer samples that could potentially be
6806 * affected by an individual channel of the PS thread. This is
6807 * typically one for single-sampled rendering, but for operations
6808 * like CCS resolves and fast clears a single PS invocation may
6809 * update a huge number of pixels, in which case a finer
6810 * balancing is desirable in order to maximally utilize the
6811 * bandwidth available. UINT_MAX can be used as shorthand for
6812 * "finest hashing mode available".
6813 */
6814 void
6815 genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
6816 unsigned width, unsigned height, unsigned scale)
6817 {
6818 #if GEN_GEN == 9
6819 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6820 const unsigned slice_hashing[] = {
6821 /* Because all Gen9 platforms with more than one slice require
6822 * three-way subslice hashing, a single "normal" 16x16 slice hashing
6823 * block is guaranteed to suffer from substantial imbalance, with one
6824 * subslice receiving twice as much work as the other two in the
6825 * slice.
6826 *
6827 * The performance impact of that would be particularly severe when
6828 * three-way hashing is also in use for slice balancing (which is the
6829 * case for all Gen9 GT4 platforms), because one of the slices
6830 * receives one every three 16x16 blocks in either direction, which
6831 * is roughly the periodicity of the underlying subslice imbalance
6832 * pattern ("roughly" because in reality the hardware's
6833 * implementation of three-way hashing doesn't do exact modulo 3
6834 * arithmetic, which somewhat decreases the magnitude of this effect
6835 * in practice). This leads to a systematic subslice imbalance
6836 * within that slice regardless of the size of the primitive. The
6837 * 32x32 hashing mode guarantees that the subslice imbalance within a
6838 * single slice hashing block is minimal, largely eliminating this
6839 * effect.
6840 */
6841 _32x32,
6842 /* Finest slice hashing mode available. */
6843 NORMAL
6844 };
6845 const unsigned subslice_hashing[] = {
6846 /* 16x16 would provide a slight cache locality benefit especially
6847 * visible in the sampler L1 cache efficiency of low-bandwidth
6848 * non-LLC platforms, but it comes at the cost of greater subslice
6849 * imbalance for primitives of dimensions approximately intermediate
6850 * between 16x4 and 16x16.
6851 */
6852 _16x4,
6853 /* Finest subslice hashing mode available. */
6854 _8x4
6855 };
6856 /* Dimensions of the smallest hashing block of a given hashing mode. If
6857 * the rendering area is smaller than this there can't possibly be any
6858 * benefit from switching to this mode, so we optimize out the
6859 * transition.
6860 */
6861 const unsigned min_size[][2] = {
6862 { 16, 4 },
6863 { 8, 4 }
6864 };
6865 const unsigned idx = scale > 1;
6866
6867 if (width > min_size[idx][0] || height > min_size[idx][1]) {
6868 uint32_t gt_mode;
6869
6870 iris_pack_state(GENX(GT_MODE), &gt_mode, reg) {
6871 reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
6872 reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
6873 reg.SubsliceHashing = subslice_hashing[idx];
6874 reg.SubsliceHashingMask = -1;
6875 };
6876
6877 iris_emit_raw_pipe_control(batch,
6878 "workaround: CS stall before GT_MODE LRI",
6879 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6880 PIPE_CONTROL_CS_STALL,
6881 NULL, 0, 0);
6882
6883 iris_emit_lri(batch, GT_MODE, gt_mode);
6884
6885 ice->state.current_hash_scale = scale;
6886 }
6887 #endif
6888 }
6889
6890 void
6891 genX(init_state)(struct iris_context *ice)
6892 {
6893 struct pipe_context *ctx = &ice->ctx;
6894 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
6895
6896 ctx->create_blend_state = iris_create_blend_state;
6897 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
6898 ctx->create_rasterizer_state = iris_create_rasterizer_state;
6899 ctx->create_sampler_state = iris_create_sampler_state;
6900 ctx->create_sampler_view = iris_create_sampler_view;
6901 ctx->create_surface = iris_create_surface;
6902 ctx->create_vertex_elements_state = iris_create_vertex_elements;
6903 ctx->bind_blend_state = iris_bind_blend_state;
6904 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
6905 ctx->bind_sampler_states = iris_bind_sampler_states;
6906 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
6907 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
6908 ctx->delete_blend_state = iris_delete_state;
6909 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
6910 ctx->delete_rasterizer_state = iris_delete_state;
6911 ctx->delete_sampler_state = iris_delete_state;
6912 ctx->delete_vertex_elements_state = iris_delete_state;
6913 ctx->set_blend_color = iris_set_blend_color;
6914 ctx->set_clip_state = iris_set_clip_state;
6915 ctx->set_constant_buffer = iris_set_constant_buffer;
6916 ctx->set_shader_buffers = iris_set_shader_buffers;
6917 ctx->set_shader_images = iris_set_shader_images;
6918 ctx->set_sampler_views = iris_set_sampler_views;
6919 ctx->set_tess_state = iris_set_tess_state;
6920 ctx->set_framebuffer_state = iris_set_framebuffer_state;
6921 ctx->set_polygon_stipple = iris_set_polygon_stipple;
6922 ctx->set_sample_mask = iris_set_sample_mask;
6923 ctx->set_scissor_states = iris_set_scissor_states;
6924 ctx->set_stencil_ref = iris_set_stencil_ref;
6925 ctx->set_vertex_buffers = iris_set_vertex_buffers;
6926 ctx->set_viewport_states = iris_set_viewport_states;
6927 ctx->sampler_view_destroy = iris_sampler_view_destroy;
6928 ctx->surface_destroy = iris_surface_destroy;
6929 ctx->draw_vbo = iris_draw_vbo;
6930 ctx->launch_grid = iris_launch_grid;
6931 ctx->create_stream_output_target = iris_create_stream_output_target;
6932 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
6933 ctx->set_stream_output_targets = iris_set_stream_output_targets;
6934
6935 ice->vtbl.destroy_state = iris_destroy_state;
6936 ice->vtbl.init_render_context = iris_init_render_context;
6937 ice->vtbl.init_compute_context = iris_init_compute_context;
6938 ice->vtbl.upload_render_state = iris_upload_render_state;
6939 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
6940 ice->vtbl.upload_compute_state = iris_upload_compute_state;
6941 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
6942 ice->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
6943 ice->vtbl.rebind_buffer = iris_rebind_buffer;
6944 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
6945 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
6946 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
6947 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
6948 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
6949 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
6950 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
6951 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
6952 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
6953 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
6954 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
6955 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
6956 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
6957 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
6958 ice->vtbl.populate_vs_key = iris_populate_vs_key;
6959 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
6960 ice->vtbl.populate_tes_key = iris_populate_tes_key;
6961 ice->vtbl.populate_gs_key = iris_populate_gs_key;
6962 ice->vtbl.populate_fs_key = iris_populate_fs_key;
6963 ice->vtbl.populate_cs_key = iris_populate_cs_key;
6964 ice->vtbl.mocs = mocs;
6965 ice->vtbl.lost_genx_state = iris_lost_genx_state;
6966
6967 ice->state.dirty = ~0ull;
6968
6969 ice->state.statistics_counters_enabled = true;
6970
6971 ice->state.sample_mask = 0xffff;
6972 ice->state.num_viewports = 1;
6973 ice->state.prim_mode = PIPE_PRIM_MAX;
6974 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
6975 ice->draw.derived_params.drawid = -1;
6976
6977 /* Make a 1x1x1 null surface for unbound textures */
6978 void *null_surf_map =
6979 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
6980 4 * GENX(RENDER_SURFACE_STATE_length), 64);
6981 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
6982 ice->state.unbound_tex.offset +=
6983 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
6984
6985 /* Default all scissor rectangles to be empty regions. */
6986 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
6987 ice->state.scissors[i] = (struct pipe_scissor_state) {
6988 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
6989 };
6990 }
6991 }