427419acfb916572d1f3e8ea79d68ef5dd9c87e2
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "drm-uapi/i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_defines.h"
105 #include "iris_pipe.h"
106 #include "iris_resource.h"
107
108 #define __gen_address_type struct iris_address
109 #define __gen_user_data struct iris_batch
110
111 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
112
113 static uint64_t
114 __gen_combine_address(struct iris_batch *batch, void *location,
115 struct iris_address addr, uint32_t delta)
116 {
117 uint64_t result = addr.offset + delta;
118
119 if (addr.bo) {
120 iris_use_pinned_bo(batch, addr.bo, addr.write);
121 /* Assume this is a general address, not relative to a base. */
122 result += addr.bo->gtt_offset;
123 }
124
125 return result;
126 }
127
128 #define __genxml_cmd_length(cmd) cmd ## _length
129 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
130 #define __genxml_cmd_header(cmd) cmd ## _header
131 #define __genxml_cmd_pack(cmd) cmd ## _pack
132
133 #define _iris_pack_command(batch, cmd, dst, name) \
134 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
135 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
136 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
137 _dst = NULL; \
138 }))
139
140 #define iris_pack_command(cmd, dst, name) \
141 _iris_pack_command(NULL, cmd, dst, name)
142
143 #define iris_pack_state(cmd, dst, name) \
144 for (struct cmd name = {}, \
145 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
146 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
147 _dst = NULL)
148
149 #define iris_emit_cmd(batch, cmd, name) \
150 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
151
152 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
153 do { \
154 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
155 for (uint32_t i = 0; i < num_dwords; i++) \
156 dw[i] = (dwords0)[i] | (dwords1)[i]; \
157 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
158 } while (0)
159
160 #include "genxml/genX_pack.h"
161 #include "genxml/gen_macros.h"
162 #include "genxml/genX_bits.h"
163
164 #if GEN_GEN == 8
165 #define MOCS_PTE 0x18
166 #define MOCS_WB 0x78
167 #else
168 #define MOCS_PTE (1 << 1)
169 #define MOCS_WB (2 << 1)
170 #endif
171
172 static uint32_t
173 mocs(const struct iris_bo *bo)
174 {
175 return bo && bo->external ? MOCS_PTE : MOCS_WB;
176 }
177
178 /**
179 * Statically assert that PIPE_* enums match the hardware packets.
180 * (As long as they match, we don't need to translate them.)
181 */
182 UNUSED static void pipe_asserts()
183 {
184 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
185
186 /* pipe_logicop happens to match the hardware. */
187 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
188 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
189 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
190 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
191 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
192 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
193 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
194 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
195 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
196 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
197 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
198 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
199 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
200 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
201 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
202 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
203
204 /* pipe_blend_func happens to match the hardware. */
205 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
212 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
213 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
214 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
215 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
216 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
217 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
218 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
219 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
220 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
221 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
222 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
223 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
224
225 /* pipe_blend_func happens to match the hardware. */
226 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
227 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
228 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
229 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
230 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
231
232 /* pipe_stencil_op happens to match the hardware. */
233 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
234 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
235 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
236 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
237 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
238 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
239 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
240 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
241
242 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
243 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
244 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
245 #undef PIPE_ASSERT
246 }
247
248 static unsigned
249 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
250 {
251 static const unsigned map[] = {
252 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
253 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
254 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
255 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
256 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
257 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
258 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
259 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
260 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
261 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
262 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
263 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
264 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
265 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
266 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
267 };
268
269 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
270 }
271
272 static unsigned
273 translate_compare_func(enum pipe_compare_func pipe_func)
274 {
275 static const unsigned map[] = {
276 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
277 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
278 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
279 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
280 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
281 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
282 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
283 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
284 };
285 return map[pipe_func];
286 }
287
288 static unsigned
289 translate_shadow_func(enum pipe_compare_func pipe_func)
290 {
291 /* Gallium specifies the result of shadow comparisons as:
292 *
293 * 1 if ref <op> texel,
294 * 0 otherwise.
295 *
296 * The hardware does:
297 *
298 * 0 if texel <op> ref,
299 * 1 otherwise.
300 *
301 * So we need to flip the operator and also negate.
302 */
303 static const unsigned map[] = {
304 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
305 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
306 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
307 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
308 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
309 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
310 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
311 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
312 };
313 return map[pipe_func];
314 }
315
316 static unsigned
317 translate_cull_mode(unsigned pipe_face)
318 {
319 static const unsigned map[4] = {
320 [PIPE_FACE_NONE] = CULLMODE_NONE,
321 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
322 [PIPE_FACE_BACK] = CULLMODE_BACK,
323 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
324 };
325 return map[pipe_face];
326 }
327
328 static unsigned
329 translate_fill_mode(unsigned pipe_polymode)
330 {
331 static const unsigned map[4] = {
332 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
333 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
334 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
335 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
336 };
337 return map[pipe_polymode];
338 }
339
340 static unsigned
341 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
342 {
343 static const unsigned map[] = {
344 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
345 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
346 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
347 };
348 return map[pipe_mip];
349 }
350
351 static uint32_t
352 translate_wrap(unsigned pipe_wrap)
353 {
354 static const unsigned map[] = {
355 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
356 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
357 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
358 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
359 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
360 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
361
362 /* These are unsupported. */
363 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
364 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
365 };
366 return map[pipe_wrap];
367 }
368
369 static struct iris_address
370 ro_bo(struct iris_bo *bo, uint64_t offset)
371 {
372 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
373 * validation list at CSO creation time, instead of draw time.
374 */
375 return (struct iris_address) { .bo = bo, .offset = offset };
376 }
377
378 static struct iris_address
379 rw_bo(struct iris_bo *bo, uint64_t offset)
380 {
381 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
382 * validation list at CSO creation time, instead of draw time.
383 */
384 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
385 }
386
387 /**
388 * Allocate space for some indirect state.
389 *
390 * Return a pointer to the map (to fill it out) and a state ref (for
391 * referring to the state in GPU commands).
392 */
393 static void *
394 upload_state(struct u_upload_mgr *uploader,
395 struct iris_state_ref *ref,
396 unsigned size,
397 unsigned alignment)
398 {
399 void *p = NULL;
400 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
401 return p;
402 }
403
404 /**
405 * Stream out temporary/short-lived state.
406 *
407 * This allocates space, pins the BO, and includes the BO address in the
408 * returned offset (which works because all state lives in 32-bit memory
409 * zones).
410 */
411 static uint32_t *
412 stream_state(struct iris_batch *batch,
413 struct u_upload_mgr *uploader,
414 struct pipe_resource **out_res,
415 unsigned size,
416 unsigned alignment,
417 uint32_t *out_offset)
418 {
419 void *ptr = NULL;
420
421 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
422
423 struct iris_bo *bo = iris_resource_bo(*out_res);
424 iris_use_pinned_bo(batch, bo, false);
425
426 *out_offset += iris_bo_offset_from_base_address(bo);
427
428 return ptr;
429 }
430
431 /**
432 * stream_state() + memcpy.
433 */
434 static uint32_t
435 emit_state(struct iris_batch *batch,
436 struct u_upload_mgr *uploader,
437 struct pipe_resource **out_res,
438 const void *data,
439 unsigned size,
440 unsigned alignment)
441 {
442 unsigned offset = 0;
443 uint32_t *map =
444 stream_state(batch, uploader, out_res, size, alignment, &offset);
445
446 if (map)
447 memcpy(map, data, size);
448
449 return offset;
450 }
451
452 /**
453 * Did field 'x' change between 'old_cso' and 'new_cso'?
454 *
455 * (If so, we may want to set some dirty flags.)
456 */
457 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
458 #define cso_changed_memcmp(x) \
459 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
460
461 static void
462 flush_for_state_base_change(struct iris_batch *batch)
463 {
464 /* Flush before emitting STATE_BASE_ADDRESS.
465 *
466 * This isn't documented anywhere in the PRM. However, it seems to be
467 * necessary prior to changing the surface state base adress. We've
468 * seen issues in Vulkan where we get GPU hangs when using multi-level
469 * command buffers which clear depth, reset state base address, and then
470 * go render stuff.
471 *
472 * Normally, in GL, we would trust the kernel to do sufficient stalls
473 * and flushes prior to executing our batch. However, it doesn't seem
474 * as if the kernel's flushing is always sufficient and we don't want to
475 * rely on it.
476 *
477 * We make this an end-of-pipe sync instead of a normal flush because we
478 * do not know the current status of the GPU. On Haswell at least,
479 * having a fast-clear operation in flight at the same time as a normal
480 * rendering operation can cause hangs. Since the kernel's flushing is
481 * insufficient, we need to ensure that any rendering operations from
482 * other processes are definitely complete before we try to do our own
483 * rendering. It's a bit of a big hammer but it appears to work.
484 */
485 iris_emit_end_of_pipe_sync(batch,
486 PIPE_CONTROL_RENDER_TARGET_FLUSH |
487 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
488 PIPE_CONTROL_DATA_CACHE_FLUSH);
489 }
490
491 static void
492 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
493 {
494 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
495 lri.RegisterOffset = reg;
496 lri.DataDWord = val;
497 }
498 }
499 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
500
501 static void
502 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
503 {
504 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
505 lrr.SourceRegisterAddress = src;
506 lrr.DestinationRegisterAddress = dst;
507 }
508 }
509
510 static void
511 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
512 {
513 #if GEN_GEN >= 8 && GEN_GEN < 10
514 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
515 *
516 * Software must clear the COLOR_CALC_STATE Valid field in
517 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
518 * with Pipeline Select set to GPGPU.
519 *
520 * The internal hardware docs recommend the same workaround for Gen9
521 * hardware too.
522 */
523 if (pipeline == GPGPU)
524 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
525 #endif
526
527
528 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
529 * PIPELINE_SELECT [DevBWR+]":
530 *
531 * "Project: DEVSNB+
532 *
533 * Software must ensure all the write caches are flushed through a
534 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
535 * command to invalidate read only caches prior to programming
536 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
537 */
538 iris_emit_pipe_control_flush(batch,
539 PIPE_CONTROL_RENDER_TARGET_FLUSH |
540 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
541 PIPE_CONTROL_DATA_CACHE_FLUSH |
542 PIPE_CONTROL_CS_STALL);
543
544 iris_emit_pipe_control_flush(batch,
545 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
546 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
547 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
548 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
549
550 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
551 #if GEN_GEN >= 9
552 sel.MaskBits = 3;
553 #endif
554 sel.PipelineSelection = pipeline;
555 }
556 }
557
558 UNUSED static void
559 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
560 {
561 #if GEN_GEN == 9
562 /* Project: DevGLK
563 *
564 * "This chicken bit works around a hardware issue with barrier
565 * logic encountered when switching between GPGPU and 3D pipelines.
566 * To workaround the issue, this mode bit should be set after a
567 * pipeline is selected."
568 */
569 uint32_t reg_val;
570 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
571 reg.GLKBarrierMode = value;
572 reg.GLKBarrierModeMask = 1;
573 }
574 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
575 #endif
576 }
577
578 static void
579 init_state_base_address(struct iris_batch *batch)
580 {
581 flush_for_state_base_change(batch);
582
583 /* We program most base addresses once at context initialization time.
584 * Each base address points at a 4GB memory zone, and never needs to
585 * change. See iris_bufmgr.h for a description of the memory zones.
586 *
587 * The one exception is Surface State Base Address, which needs to be
588 * updated occasionally. See iris_binder.c for the details there.
589 */
590 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
591 sba.GeneralStateMOCS = MOCS_WB;
592 sba.StatelessDataPortAccessMOCS = MOCS_WB;
593 sba.DynamicStateMOCS = MOCS_WB;
594 sba.IndirectObjectMOCS = MOCS_WB;
595 sba.InstructionMOCS = MOCS_WB;
596
597 sba.GeneralStateBaseAddressModifyEnable = true;
598 sba.DynamicStateBaseAddressModifyEnable = true;
599 sba.IndirectObjectBaseAddressModifyEnable = true;
600 sba.InstructionBaseAddressModifyEnable = true;
601 sba.GeneralStateBufferSizeModifyEnable = true;
602 sba.DynamicStateBufferSizeModifyEnable = true;
603 #if (GEN_GEN >= 9)
604 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
605 sba.BindlessSurfaceStateMOCS = MOCS_WB;
606 #endif
607 sba.IndirectObjectBufferSizeModifyEnable = true;
608 sba.InstructionBuffersizeModifyEnable = true;
609
610 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
611 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
612
613 sba.GeneralStateBufferSize = 0xfffff;
614 sba.IndirectObjectBufferSize = 0xfffff;
615 sba.InstructionBufferSize = 0xfffff;
616 sba.DynamicStateBufferSize = 0xfffff;
617 }
618 }
619
620 static void
621 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
622 bool has_slm, bool wants_dc_cache)
623 {
624 uint32_t reg_val;
625 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
626 reg.SLMEnable = has_slm;
627 #if GEN_GEN == 11
628 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
629 * in L3CNTLREG register. The default setting of the bit is not the
630 * desirable behavior.
631 */
632 reg.ErrorDetectionBehaviorControl = true;
633 #endif
634 reg.URBAllocation = cfg->n[GEN_L3P_URB];
635 reg.ROAllocation = cfg->n[GEN_L3P_RO];
636 reg.DCAllocation = cfg->n[GEN_L3P_DC];
637 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
638 }
639 iris_emit_lri(batch, L3CNTLREG, reg_val);
640 }
641
642 static void
643 iris_emit_default_l3_config(struct iris_batch *batch,
644 const struct gen_device_info *devinfo,
645 bool compute)
646 {
647 bool wants_dc_cache = true;
648 bool has_slm = compute;
649 const struct gen_l3_weights w =
650 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
651 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
652 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
653 }
654
655 /**
656 * Upload the initial GPU state for a render context.
657 *
658 * This sets some invariant state that needs to be programmed a particular
659 * way, but we never actually change.
660 */
661 static void
662 iris_init_render_context(struct iris_screen *screen,
663 struct iris_batch *batch,
664 struct iris_vtable *vtbl,
665 struct pipe_debug_callback *dbg)
666 {
667 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
668 uint32_t reg_val;
669
670 emit_pipeline_select(batch, _3D);
671
672 iris_emit_default_l3_config(batch, devinfo, false);
673
674 init_state_base_address(batch);
675
676 #if GEN_GEN >= 9
677 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
678 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
679 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
680 }
681 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
682 #else
683 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
684 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
685 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
686 }
687 iris_emit_lri(batch, INSTPM, reg_val);
688 #endif
689
690 #if GEN_GEN == 9
691 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
692 reg.FloatBlendOptimizationEnable = true;
693 reg.FloatBlendOptimizationEnableMask = true;
694 reg.PartialResolveDisableInVC = true;
695 reg.PartialResolveDisableInVCMask = true;
696 }
697 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
698
699 if (devinfo->is_geminilake)
700 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
701 #endif
702
703 #if GEN_GEN == 11
704 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
705 reg.HeaderlessMessageforPreemptableContexts = 1;
706 reg.HeaderlessMessageforPreemptableContextsMask = 1;
707 }
708 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
709
710 // XXX: 3D_MODE?
711 #endif
712
713 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
714 * changing it dynamically. We set it to the maximum size here, and
715 * instead include the render target dimensions in the viewport, so
716 * viewport extents clipping takes care of pruning stray geometry.
717 */
718 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
719 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
720 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
721 }
722
723 /* Set the initial MSAA sample positions. */
724 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
725 GEN_SAMPLE_POS_1X(pat._1xSample);
726 GEN_SAMPLE_POS_2X(pat._2xSample);
727 GEN_SAMPLE_POS_4X(pat._4xSample);
728 GEN_SAMPLE_POS_8X(pat._8xSample);
729 #if GEN_GEN >= 9
730 GEN_SAMPLE_POS_16X(pat._16xSample);
731 #endif
732 }
733
734 /* Use the legacy AA line coverage computation. */
735 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
736
737 /* Disable chromakeying (it's for media) */
738 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
739
740 /* We want regular rendering, not special HiZ operations. */
741 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
742
743 /* No polygon stippling offsets are necessary. */
744 /* TODO: may need to set an offset for origin-UL framebuffers */
745 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
746
747 /* Set a static partitioning of the push constant area. */
748 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
749 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
750 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
751 alloc._3DCommandSubOpcode = 18 + i;
752 alloc.ConstantBufferOffset = 6 * i;
753 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
754 }
755 }
756 }
757
758 static void
759 iris_init_compute_context(struct iris_screen *screen,
760 struct iris_batch *batch,
761 struct iris_vtable *vtbl,
762 struct pipe_debug_callback *dbg)
763 {
764 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
765
766 emit_pipeline_select(batch, GPGPU);
767
768 iris_emit_default_l3_config(batch, devinfo, true);
769
770 init_state_base_address(batch);
771
772 #if GEN_GEN == 9
773 if (devinfo->is_geminilake)
774 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
775 #endif
776 }
777
778 struct iris_vertex_buffer_state {
779 /** The VERTEX_BUFFER_STATE hardware structure. */
780 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
781
782 /** The resource to source vertex data from. */
783 struct pipe_resource *resource;
784 };
785
786 struct iris_depth_buffer_state {
787 /* Depth/HiZ/Stencil related hardware packets. */
788 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
789 GENX(3DSTATE_STENCIL_BUFFER_length) +
790 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
791 GENX(3DSTATE_CLEAR_PARAMS_length)];
792 };
793
794 /**
795 * Generation-specific context state (ice->state.genx->...).
796 *
797 * Most state can go in iris_context directly, but these encode hardware
798 * packets which vary by generation.
799 */
800 struct iris_genx_state {
801 struct iris_vertex_buffer_state vertex_buffers[33];
802
803 struct iris_depth_buffer_state depth_buffer;
804
805 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
806 };
807
808 /**
809 * The pipe->set_blend_color() driver hook.
810 *
811 * This corresponds to our COLOR_CALC_STATE.
812 */
813 static void
814 iris_set_blend_color(struct pipe_context *ctx,
815 const struct pipe_blend_color *state)
816 {
817 struct iris_context *ice = (struct iris_context *) ctx;
818
819 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
820 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
821 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
822 }
823
824 /**
825 * Gallium CSO for blend state (see pipe_blend_state).
826 */
827 struct iris_blend_state {
828 /** Partial 3DSTATE_PS_BLEND */
829 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
830
831 /** Partial BLEND_STATE */
832 uint32_t blend_state[GENX(BLEND_STATE_length) +
833 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
834
835 bool alpha_to_coverage; /* for shader key */
836
837 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
838 uint8_t blend_enables;
839
840 /** Bitfield of whether color writes are enabled for RT[i] */
841 uint8_t color_write_enables;
842 };
843
844 static enum pipe_blendfactor
845 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
846 {
847 if (alpha_to_one) {
848 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
849 return PIPE_BLENDFACTOR_ONE;
850
851 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
852 return PIPE_BLENDFACTOR_ZERO;
853 }
854
855 return f;
856 }
857
858 /**
859 * The pipe->create_blend_state() driver hook.
860 *
861 * Translates a pipe_blend_state into iris_blend_state.
862 */
863 static void *
864 iris_create_blend_state(struct pipe_context *ctx,
865 const struct pipe_blend_state *state)
866 {
867 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
868 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
869
870 cso->blend_enables = 0;
871 cso->color_write_enables = 0;
872 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
873
874 cso->alpha_to_coverage = state->alpha_to_coverage;
875
876 bool indep_alpha_blend = false;
877
878 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
879 const struct pipe_rt_blend_state *rt =
880 &state->rt[state->independent_blend_enable ? i : 0];
881
882 enum pipe_blendfactor src_rgb =
883 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
884 enum pipe_blendfactor src_alpha =
885 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
886 enum pipe_blendfactor dst_rgb =
887 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
888 enum pipe_blendfactor dst_alpha =
889 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
890
891 if (rt->rgb_func != rt->alpha_func ||
892 src_rgb != src_alpha || dst_rgb != dst_alpha)
893 indep_alpha_blend = true;
894
895 if (rt->blend_enable)
896 cso->blend_enables |= 1u << i;
897
898 if (rt->colormask)
899 cso->color_write_enables |= 1u << i;
900
901 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
902 be.LogicOpEnable = state->logicop_enable;
903 be.LogicOpFunction = state->logicop_func;
904
905 be.PreBlendSourceOnlyClampEnable = false;
906 be.ColorClampRange = COLORCLAMP_RTFORMAT;
907 be.PreBlendColorClampEnable = true;
908 be.PostBlendColorClampEnable = true;
909
910 be.ColorBufferBlendEnable = rt->blend_enable;
911
912 be.ColorBlendFunction = rt->rgb_func;
913 be.AlphaBlendFunction = rt->alpha_func;
914 be.SourceBlendFactor = src_rgb;
915 be.SourceAlphaBlendFactor = src_alpha;
916 be.DestinationBlendFactor = dst_rgb;
917 be.DestinationAlphaBlendFactor = dst_alpha;
918
919 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
920 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
921 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
922 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
923 }
924 blend_entry += GENX(BLEND_STATE_ENTRY_length);
925 }
926
927 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
928 /* pb.HasWriteableRT is filled in at draw time. */
929 /* pb.AlphaTestEnable is filled in at draw time. */
930 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
931 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
932
933 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
934
935 pb.SourceBlendFactor =
936 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
937 pb.SourceAlphaBlendFactor =
938 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
939 pb.DestinationBlendFactor =
940 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
941 pb.DestinationAlphaBlendFactor =
942 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
943 }
944
945 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
946 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
947 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
948 bs.AlphaToOneEnable = state->alpha_to_one;
949 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
950 bs.ColorDitherEnable = state->dither;
951 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
952 }
953
954
955 return cso;
956 }
957
958 /**
959 * The pipe->bind_blend_state() driver hook.
960 *
961 * Bind a blending CSO and flag related dirty bits.
962 */
963 static void
964 iris_bind_blend_state(struct pipe_context *ctx, void *state)
965 {
966 struct iris_context *ice = (struct iris_context *) ctx;
967 struct iris_blend_state *cso = state;
968
969 ice->state.cso_blend = cso;
970 ice->state.blend_enables = cso ? cso->blend_enables : 0;
971
972 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
973 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
974 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
975 }
976
977 /**
978 * Return true if the FS writes to any color outputs which are not disabled
979 * via color masking.
980 */
981 static bool
982 has_writeable_rt(const struct iris_blend_state *cso_blend,
983 const struct shader_info *fs_info)
984 {
985 if (!fs_info)
986 return false;
987
988 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
989
990 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
991 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
992
993 return cso_blend->color_write_enables & rt_outputs;
994 }
995
996 /**
997 * Gallium CSO for depth, stencil, and alpha testing state.
998 */
999 struct iris_depth_stencil_alpha_state {
1000 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1001 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1002
1003 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1004 struct pipe_alpha_state alpha;
1005
1006 /** Outbound to resolve and cache set tracking. */
1007 bool depth_writes_enabled;
1008 bool stencil_writes_enabled;
1009 };
1010
1011 /**
1012 * The pipe->create_depth_stencil_alpha_state() driver hook.
1013 *
1014 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1015 * testing state since we need pieces of it in a variety of places.
1016 */
1017 static void *
1018 iris_create_zsa_state(struct pipe_context *ctx,
1019 const struct pipe_depth_stencil_alpha_state *state)
1020 {
1021 struct iris_depth_stencil_alpha_state *cso =
1022 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1023
1024 bool two_sided_stencil = state->stencil[1].enabled;
1025
1026 cso->alpha = state->alpha;
1027 cso->depth_writes_enabled = state->depth.writemask;
1028 cso->stencil_writes_enabled =
1029 state->stencil[0].writemask != 0 ||
1030 (two_sided_stencil && state->stencil[1].writemask != 0);
1031
1032 /* The state tracker needs to optimize away EQUAL writes for us. */
1033 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1034
1035 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1036 wmds.StencilFailOp = state->stencil[0].fail_op;
1037 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1038 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1039 wmds.StencilTestFunction =
1040 translate_compare_func(state->stencil[0].func);
1041 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1042 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1043 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1044 wmds.BackfaceStencilTestFunction =
1045 translate_compare_func(state->stencil[1].func);
1046 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1047 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1048 wmds.StencilTestEnable = state->stencil[0].enabled;
1049 wmds.StencilBufferWriteEnable =
1050 state->stencil[0].writemask != 0 ||
1051 (two_sided_stencil && state->stencil[1].writemask != 0);
1052 wmds.DepthTestEnable = state->depth.enabled;
1053 wmds.DepthBufferWriteEnable = state->depth.writemask;
1054 wmds.StencilTestMask = state->stencil[0].valuemask;
1055 wmds.StencilWriteMask = state->stencil[0].writemask;
1056 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1057 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1058 /* wmds.[Backface]StencilReferenceValue are merged later */
1059 }
1060
1061 return cso;
1062 }
1063
1064 /**
1065 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1066 *
1067 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1068 */
1069 static void
1070 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1071 {
1072 struct iris_context *ice = (struct iris_context *) ctx;
1073 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1074 struct iris_depth_stencil_alpha_state *new_cso = state;
1075
1076 if (new_cso) {
1077 if (cso_changed(alpha.ref_value))
1078 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1079
1080 if (cso_changed(alpha.enabled))
1081 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1082
1083 if (cso_changed(alpha.func))
1084 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1085
1086 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1087 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1088 }
1089
1090 ice->state.cso_zsa = new_cso;
1091 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1092 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1093 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1094 }
1095
1096 /**
1097 * Gallium CSO for rasterizer state.
1098 */
1099 struct iris_rasterizer_state {
1100 uint32_t sf[GENX(3DSTATE_SF_length)];
1101 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1102 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1103 uint32_t wm[GENX(3DSTATE_WM_length)];
1104 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1105
1106 uint8_t num_clip_plane_consts;
1107 bool clip_halfz; /* for CC_VIEWPORT */
1108 bool depth_clip_near; /* for CC_VIEWPORT */
1109 bool depth_clip_far; /* for CC_VIEWPORT */
1110 bool flatshade; /* for shader state */
1111 bool flatshade_first; /* for stream output */
1112 bool clamp_fragment_color; /* for shader state */
1113 bool light_twoside; /* for shader state */
1114 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1115 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1116 bool line_stipple_enable;
1117 bool poly_stipple_enable;
1118 bool multisample;
1119 bool force_persample_interp;
1120 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1121 uint16_t sprite_coord_enable;
1122 };
1123
1124 static float
1125 get_line_width(const struct pipe_rasterizer_state *state)
1126 {
1127 float line_width = state->line_width;
1128
1129 /* From the OpenGL 4.4 spec:
1130 *
1131 * "The actual width of non-antialiased lines is determined by rounding
1132 * the supplied width to the nearest integer, then clamping it to the
1133 * implementation-dependent maximum non-antialiased line width."
1134 */
1135 if (!state->multisample && !state->line_smooth)
1136 line_width = roundf(state->line_width);
1137
1138 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1139 /* For 1 pixel line thickness or less, the general anti-aliasing
1140 * algorithm gives up, and a garbage line is generated. Setting a
1141 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1142 * (one-pixel-wide), non-antialiased lines.
1143 *
1144 * Lines rendered with zero Line Width are rasterized using the
1145 * "Grid Intersection Quantization" rules as specified by the
1146 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1147 */
1148 line_width = 0.0f;
1149 }
1150
1151 return line_width;
1152 }
1153
1154 /**
1155 * The pipe->create_rasterizer_state() driver hook.
1156 */
1157 static void *
1158 iris_create_rasterizer_state(struct pipe_context *ctx,
1159 const struct pipe_rasterizer_state *state)
1160 {
1161 struct iris_rasterizer_state *cso =
1162 malloc(sizeof(struct iris_rasterizer_state));
1163
1164 cso->multisample = state->multisample;
1165 cso->force_persample_interp = state->force_persample_interp;
1166 cso->clip_halfz = state->clip_halfz;
1167 cso->depth_clip_near = state->depth_clip_near;
1168 cso->depth_clip_far = state->depth_clip_far;
1169 cso->flatshade = state->flatshade;
1170 cso->flatshade_first = state->flatshade_first;
1171 cso->clamp_fragment_color = state->clamp_fragment_color;
1172 cso->light_twoside = state->light_twoside;
1173 cso->rasterizer_discard = state->rasterizer_discard;
1174 cso->half_pixel_center = state->half_pixel_center;
1175 cso->sprite_coord_mode = state->sprite_coord_mode;
1176 cso->sprite_coord_enable = state->sprite_coord_enable;
1177 cso->line_stipple_enable = state->line_stipple_enable;
1178 cso->poly_stipple_enable = state->poly_stipple_enable;
1179
1180 if (state->clip_plane_enable != 0)
1181 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1182 else
1183 cso->num_clip_plane_consts = 0;
1184
1185 float line_width = get_line_width(state);
1186
1187 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1188 sf.StatisticsEnable = true;
1189 sf.ViewportTransformEnable = true;
1190 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1191 sf.LineEndCapAntialiasingRegionWidth =
1192 state->line_smooth ? _10pixels : _05pixels;
1193 sf.LastPixelEnable = state->line_last_pixel;
1194 sf.LineWidth = line_width;
1195 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1196 !state->point_quad_rasterization;
1197 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1198 sf.PointWidth = state->point_size;
1199
1200 if (state->flatshade_first) {
1201 sf.TriangleFanProvokingVertexSelect = 1;
1202 } else {
1203 sf.TriangleStripListProvokingVertexSelect = 2;
1204 sf.TriangleFanProvokingVertexSelect = 2;
1205 sf.LineStripListProvokingVertexSelect = 1;
1206 }
1207 }
1208
1209 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1210 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1211 rr.CullMode = translate_cull_mode(state->cull_face);
1212 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1213 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1214 rr.DXMultisampleRasterizationEnable = state->multisample;
1215 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1216 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1217 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1218 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1219 rr.GlobalDepthOffsetScale = state->offset_scale;
1220 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1221 rr.SmoothPointEnable = state->point_smooth;
1222 rr.AntialiasingEnable = state->line_smooth;
1223 rr.ScissorRectangleEnable = state->scissor;
1224 #if GEN_GEN >= 9
1225 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1226 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1227 #else
1228 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1229 #endif
1230 /* TODO: ConservativeRasterizationEnable */
1231 }
1232
1233 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1234 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1235 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1236 */
1237 cl.EarlyCullEnable = true;
1238 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1239 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1240 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1241 cl.GuardbandClipTestEnable = true;
1242 cl.ClipEnable = true;
1243 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1244 cl.MinimumPointWidth = 0.125;
1245 cl.MaximumPointWidth = 255.875;
1246
1247 if (state->flatshade_first) {
1248 cl.TriangleFanProvokingVertexSelect = 1;
1249 } else {
1250 cl.TriangleStripListProvokingVertexSelect = 2;
1251 cl.TriangleFanProvokingVertexSelect = 2;
1252 cl.LineStripListProvokingVertexSelect = 1;
1253 }
1254 }
1255
1256 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1257 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1258 * filled in at draw time from the FS program.
1259 */
1260 wm.LineAntialiasingRegionWidth = _10pixels;
1261 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1262 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1263 wm.LineStippleEnable = state->line_stipple_enable;
1264 wm.PolygonStippleEnable = state->poly_stipple_enable;
1265 }
1266
1267 /* Remap from 0..255 back to 1..256 */
1268 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1269
1270 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1271 line.LineStipplePattern = state->line_stipple_pattern;
1272 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1273 line.LineStippleRepeatCount = line_stipple_factor;
1274 }
1275
1276 return cso;
1277 }
1278
1279 /**
1280 * The pipe->bind_rasterizer_state() driver hook.
1281 *
1282 * Bind a rasterizer CSO and flag related dirty bits.
1283 */
1284 static void
1285 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1286 {
1287 struct iris_context *ice = (struct iris_context *) ctx;
1288 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1289 struct iris_rasterizer_state *new_cso = state;
1290
1291 if (new_cso) {
1292 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1293 if (cso_changed_memcmp(line_stipple))
1294 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1295
1296 if (cso_changed(half_pixel_center))
1297 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1298
1299 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1300 ice->state.dirty |= IRIS_DIRTY_WM;
1301
1302 if (cso_changed(rasterizer_discard))
1303 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1304
1305 if (cso_changed(flatshade_first))
1306 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1307
1308 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1309 cso_changed(clip_halfz))
1310 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1311
1312 if (cso_changed(sprite_coord_enable) ||
1313 cso_changed(sprite_coord_mode) ||
1314 cso_changed(light_twoside))
1315 ice->state.dirty |= IRIS_DIRTY_SBE;
1316 }
1317
1318 ice->state.cso_rast = new_cso;
1319 ice->state.dirty |= IRIS_DIRTY_RASTER;
1320 ice->state.dirty |= IRIS_DIRTY_CLIP;
1321 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1322 }
1323
1324 /**
1325 * Return true if the given wrap mode requires the border color to exist.
1326 *
1327 * (We can skip uploading it if the sampler isn't going to use it.)
1328 */
1329 static bool
1330 wrap_mode_needs_border_color(unsigned wrap_mode)
1331 {
1332 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1333 }
1334
1335 /**
1336 * Gallium CSO for sampler state.
1337 */
1338 struct iris_sampler_state {
1339 union pipe_color_union border_color;
1340 bool needs_border_color;
1341
1342 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1343 };
1344
1345 /**
1346 * The pipe->create_sampler_state() driver hook.
1347 *
1348 * We fill out SAMPLER_STATE (except for the border color pointer), and
1349 * store that on the CPU. It doesn't make sense to upload it to a GPU
1350 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1351 * all bound sampler states to be in contiguous memor.
1352 */
1353 static void *
1354 iris_create_sampler_state(struct pipe_context *ctx,
1355 const struct pipe_sampler_state *state)
1356 {
1357 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1358
1359 if (!cso)
1360 return NULL;
1361
1362 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1363 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1364
1365 unsigned wrap_s = translate_wrap(state->wrap_s);
1366 unsigned wrap_t = translate_wrap(state->wrap_t);
1367 unsigned wrap_r = translate_wrap(state->wrap_r);
1368
1369 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1370
1371 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1372 wrap_mode_needs_border_color(wrap_t) ||
1373 wrap_mode_needs_border_color(wrap_r);
1374
1375 float min_lod = state->min_lod;
1376 unsigned mag_img_filter = state->mag_img_filter;
1377
1378 // XXX: explain this code ported from ilo...I don't get it at all...
1379 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1380 state->min_lod > 0.0f) {
1381 min_lod = 0.0f;
1382 mag_img_filter = state->min_img_filter;
1383 }
1384
1385 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1386 samp.TCXAddressControlMode = wrap_s;
1387 samp.TCYAddressControlMode = wrap_t;
1388 samp.TCZAddressControlMode = wrap_r;
1389 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1390 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1391 samp.MinModeFilter = state->min_img_filter;
1392 samp.MagModeFilter = mag_img_filter;
1393 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1394 samp.MaximumAnisotropy = RATIO21;
1395
1396 if (state->max_anisotropy >= 2) {
1397 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1398 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1399 samp.AnisotropicAlgorithm = EWAApproximation;
1400 }
1401
1402 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1403 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1404
1405 samp.MaximumAnisotropy =
1406 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1407 }
1408
1409 /* Set address rounding bits if not using nearest filtering. */
1410 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1411 samp.UAddressMinFilterRoundingEnable = true;
1412 samp.VAddressMinFilterRoundingEnable = true;
1413 samp.RAddressMinFilterRoundingEnable = true;
1414 }
1415
1416 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1417 samp.UAddressMagFilterRoundingEnable = true;
1418 samp.VAddressMagFilterRoundingEnable = true;
1419 samp.RAddressMagFilterRoundingEnable = true;
1420 }
1421
1422 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1423 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1424
1425 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1426
1427 samp.LODPreClampMode = CLAMP_MODE_OGL;
1428 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1429 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1430 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1431
1432 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1433 }
1434
1435 return cso;
1436 }
1437
1438 /**
1439 * The pipe->bind_sampler_states() driver hook.
1440 */
1441 static void
1442 iris_bind_sampler_states(struct pipe_context *ctx,
1443 enum pipe_shader_type p_stage,
1444 unsigned start, unsigned count,
1445 void **states)
1446 {
1447 struct iris_context *ice = (struct iris_context *) ctx;
1448 gl_shader_stage stage = stage_from_pipe(p_stage);
1449 struct iris_shader_state *shs = &ice->state.shaders[stage];
1450
1451 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1452
1453 for (int i = 0; i < count; i++) {
1454 shs->samplers[start + i] = states[i];
1455 }
1456
1457 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1458 }
1459
1460 /**
1461 * Upload the sampler states into a contiguous area of GPU memory, for
1462 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1463 *
1464 * Also fill out the border color state pointers.
1465 */
1466 static void
1467 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1468 {
1469 struct iris_shader_state *shs = &ice->state.shaders[stage];
1470 const struct shader_info *info = iris_get_shader_info(ice, stage);
1471
1472 /* We assume the state tracker will call pipe->bind_sampler_states()
1473 * if the program's number of textures changes.
1474 */
1475 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1476
1477 if (!count)
1478 return;
1479
1480 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1481 * in the dynamic state memory zone, so we can point to it via the
1482 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1483 */
1484 uint32_t *map =
1485 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1486 count * 4 * GENX(SAMPLER_STATE_length), 32);
1487 if (unlikely(!map))
1488 return;
1489
1490 struct pipe_resource *res = shs->sampler_table.res;
1491 shs->sampler_table.offset +=
1492 iris_bo_offset_from_base_address(iris_resource_bo(res));
1493
1494 /* Make sure all land in the same BO */
1495 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1496
1497 ice->state.need_border_colors &= ~(1 << stage);
1498
1499 for (int i = 0; i < count; i++) {
1500 struct iris_sampler_state *state = shs->samplers[i];
1501 struct iris_sampler_view *tex = shs->textures[i];
1502
1503 if (!state) {
1504 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1505 } else if (!state->needs_border_color) {
1506 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1507 } else {
1508 ice->state.need_border_colors |= 1 << stage;
1509
1510 /* We may need to swizzle the border color for format faking.
1511 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
1512 * This means we need to move the border color's A channel into
1513 * the R or G channels so that those read swizzles will move it
1514 * back into A.
1515 */
1516 union pipe_color_union *color = &state->border_color;
1517 if (tex) {
1518 union pipe_color_union tmp;
1519 enum pipe_format internal_format = tex->res->internal_format;
1520
1521 if (util_format_is_alpha(internal_format)) {
1522 unsigned char swz[4] = {
1523 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
1524 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1525 };
1526 util_format_apply_color_swizzle(&tmp, color, swz, true);
1527 color = &tmp;
1528 } else if (util_format_is_luminance_alpha(internal_format) &&
1529 internal_format != PIPE_FORMAT_L8A8_SRGB) {
1530 unsigned char swz[4] = {
1531 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
1532 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1533 };
1534 util_format_apply_color_swizzle(&tmp, color, swz, true);
1535 color = &tmp;
1536 }
1537 }
1538
1539 /* Stream out the border color and merge the pointer. */
1540 uint32_t offset = iris_upload_border_color(ice, color);
1541
1542 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1543 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1544 dyns.BorderColorPointer = offset;
1545 }
1546
1547 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1548 map[j] = state->sampler_state[j] | dynamic[j];
1549 }
1550
1551 map += GENX(SAMPLER_STATE_length);
1552 }
1553 }
1554
1555 static enum isl_channel_select
1556 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1557 {
1558 switch (swz) {
1559 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1560 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1561 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1562 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1563 case PIPE_SWIZZLE_1: return SCS_ONE;
1564 case PIPE_SWIZZLE_0: return SCS_ZERO;
1565 default: unreachable("invalid swizzle");
1566 }
1567 }
1568
1569 static void
1570 fill_buffer_surface_state(struct isl_device *isl_dev,
1571 struct iris_bo *bo,
1572 void *map,
1573 enum isl_format format,
1574 struct isl_swizzle swizzle,
1575 unsigned offset,
1576 unsigned size)
1577 {
1578 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1579 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1580
1581 /* The ARB_texture_buffer_specification says:
1582 *
1583 * "The number of texels in the buffer texture's texel array is given by
1584 *
1585 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1586 *
1587 * where <buffer_size> is the size of the buffer object, in basic
1588 * machine units and <components> and <base_type> are the element count
1589 * and base data type for elements, as specified in Table X.1. The
1590 * number of texels in the texel array is then clamped to the
1591 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1592 *
1593 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1594 * so that when ISL divides by stride to obtain the number of texels, that
1595 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1596 */
1597 unsigned final_size =
1598 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1599
1600 isl_buffer_fill_state(isl_dev, map,
1601 .address = bo->gtt_offset + offset,
1602 .size_B = final_size,
1603 .format = format,
1604 .swizzle = swizzle,
1605 .stride_B = cpp,
1606 .mocs = mocs(bo));
1607 }
1608
1609 #define SURFACE_STATE_ALIGNMENT 64
1610
1611 /**
1612 * Allocate several contiguous SURFACE_STATE structures, one for each
1613 * supported auxiliary surface mode.
1614 */
1615 static void *
1616 alloc_surface_states(struct u_upload_mgr *mgr,
1617 struct iris_state_ref *ref,
1618 unsigned aux_usages)
1619 {
1620 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1621
1622 /* If this changes, update this to explicitly align pointers */
1623 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1624
1625 assert(aux_usages != 0);
1626
1627 void *map =
1628 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1629 SURFACE_STATE_ALIGNMENT);
1630
1631 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1632
1633 return map;
1634 }
1635
1636 static void
1637 fill_surface_state(struct isl_device *isl_dev,
1638 void *map,
1639 struct iris_resource *res,
1640 struct isl_view *view,
1641 unsigned aux_usage)
1642 {
1643 struct isl_surf_fill_state_info f = {
1644 .surf = &res->surf,
1645 .view = view,
1646 .mocs = mocs(res->bo),
1647 .address = res->bo->gtt_offset,
1648 };
1649
1650 if (aux_usage != ISL_AUX_USAGE_NONE) {
1651 f.aux_surf = &res->aux.surf;
1652 f.aux_usage = aux_usage;
1653 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1654 // XXX: clear color
1655 }
1656
1657 isl_surf_fill_state_s(isl_dev, map, &f);
1658 }
1659
1660 /**
1661 * The pipe->create_sampler_view() driver hook.
1662 */
1663 static struct pipe_sampler_view *
1664 iris_create_sampler_view(struct pipe_context *ctx,
1665 struct pipe_resource *tex,
1666 const struct pipe_sampler_view *tmpl)
1667 {
1668 struct iris_context *ice = (struct iris_context *) ctx;
1669 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1670 const struct gen_device_info *devinfo = &screen->devinfo;
1671 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1672
1673 if (!isv)
1674 return NULL;
1675
1676 /* initialize base object */
1677 isv->base = *tmpl;
1678 isv->base.context = ctx;
1679 isv->base.texture = NULL;
1680 pipe_reference_init(&isv->base.reference, 1);
1681 pipe_resource_reference(&isv->base.texture, tex);
1682
1683 if (util_format_is_depth_or_stencil(tmpl->format)) {
1684 struct iris_resource *zres, *sres;
1685 const struct util_format_description *desc =
1686 util_format_description(tmpl->format);
1687
1688 iris_get_depth_stencil_resources(tex, &zres, &sres);
1689
1690 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1691 }
1692
1693 isv->res = (struct iris_resource *) tex;
1694
1695 void *map = alloc_surface_states(ice->state.surface_uploader,
1696 &isv->surface_state,
1697 isv->res->aux.possible_usages);
1698 if (!unlikely(map))
1699 return NULL;
1700
1701 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1702
1703 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1704 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1705 usage |= ISL_SURF_USAGE_CUBE_BIT;
1706
1707 const struct iris_format_info fmt =
1708 iris_format_for_usage(devinfo, tmpl->format, usage);
1709
1710 isv->view = (struct isl_view) {
1711 .format = fmt.fmt,
1712 .swizzle = (struct isl_swizzle) {
1713 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1714 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1715 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1716 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1717 },
1718 .usage = usage,
1719 };
1720
1721 /* Fill out SURFACE_STATE for this view. */
1722 if (tmpl->target != PIPE_BUFFER) {
1723 isv->view.base_level = tmpl->u.tex.first_level;
1724 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1725 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1726 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1727 isv->view.array_len =
1728 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1729
1730 unsigned aux_modes = isv->res->aux.possible_usages;
1731 while (aux_modes) {
1732 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1733
1734 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view,
1735 aux_usage);
1736
1737 map += SURFACE_STATE_ALIGNMENT;
1738 }
1739 } else {
1740 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1741 isv->view.format, isv->view.swizzle,
1742 tmpl->u.buf.offset, tmpl->u.buf.size);
1743 }
1744
1745 return &isv->base;
1746 }
1747
1748 static void
1749 iris_sampler_view_destroy(struct pipe_context *ctx,
1750 struct pipe_sampler_view *state)
1751 {
1752 struct iris_sampler_view *isv = (void *) state;
1753 pipe_resource_reference(&state->texture, NULL);
1754 pipe_resource_reference(&isv->surface_state.res, NULL);
1755 free(isv);
1756 }
1757
1758 /**
1759 * The pipe->create_surface() driver hook.
1760 *
1761 * In Gallium nomenclature, "surfaces" are a view of a resource that
1762 * can be bound as a render target or depth/stencil buffer.
1763 */
1764 static struct pipe_surface *
1765 iris_create_surface(struct pipe_context *ctx,
1766 struct pipe_resource *tex,
1767 const struct pipe_surface *tmpl)
1768 {
1769 struct iris_context *ice = (struct iris_context *) ctx;
1770 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1771 const struct gen_device_info *devinfo = &screen->devinfo;
1772 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1773 struct pipe_surface *psurf = &surf->base;
1774 struct iris_resource *res = (struct iris_resource *) tex;
1775
1776 if (!surf)
1777 return NULL;
1778
1779 pipe_reference_init(&psurf->reference, 1);
1780 pipe_resource_reference(&psurf->texture, tex);
1781 psurf->context = ctx;
1782 psurf->format = tmpl->format;
1783 psurf->width = tex->width0;
1784 psurf->height = tex->height0;
1785 psurf->texture = tex;
1786 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1787 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1788 psurf->u.tex.level = tmpl->u.tex.level;
1789
1790 isl_surf_usage_flags_t usage = 0;
1791 if (tmpl->writable)
1792 usage = ISL_SURF_USAGE_STORAGE_BIT;
1793 else if (util_format_is_depth_or_stencil(tmpl->format))
1794 usage = ISL_SURF_USAGE_DEPTH_BIT;
1795 else
1796 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1797
1798 const struct iris_format_info fmt =
1799 iris_format_for_usage(devinfo, psurf->format, usage);
1800
1801 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1802 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1803 /* Framebuffer validation will reject this invalid case, but it
1804 * hasn't had the opportunity yet. In the meantime, we need to
1805 * avoid hitting ISL asserts about unsupported formats below.
1806 */
1807 free(surf);
1808 return NULL;
1809 }
1810
1811 surf->view = (struct isl_view) {
1812 .format = fmt.fmt,
1813 .base_level = tmpl->u.tex.level,
1814 .levels = 1,
1815 .base_array_layer = tmpl->u.tex.first_layer,
1816 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1817 .swizzle = ISL_SWIZZLE_IDENTITY,
1818 .usage = usage,
1819 };
1820
1821 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1822 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1823 ISL_SURF_USAGE_STENCIL_BIT))
1824 return psurf;
1825
1826
1827 void *map = alloc_surface_states(ice->state.surface_uploader,
1828 &surf->surface_state,
1829 res->aux.possible_usages);
1830 if (!unlikely(map))
1831 return NULL;
1832
1833 unsigned aux_modes = res->aux.possible_usages;
1834 while (aux_modes) {
1835 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1836
1837 fill_surface_state(&screen->isl_dev, map, res, &surf->view, aux_usage);
1838
1839 map += SURFACE_STATE_ALIGNMENT;
1840 }
1841
1842 return psurf;
1843 }
1844
1845 #if GEN_GEN < 9
1846 static void
1847 fill_default_image_param(struct brw_image_param *param)
1848 {
1849 memset(param, 0, sizeof(*param));
1850 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
1851 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
1852 * detailed explanation of these parameters.
1853 */
1854 param->swizzling[0] = 0xff;
1855 param->swizzling[1] = 0xff;
1856 }
1857
1858 static void
1859 fill_buffer_image_param(struct brw_image_param *param,
1860 enum pipe_format pfmt,
1861 unsigned size)
1862 {
1863 const unsigned cpp = util_format_get_blocksize(pfmt);
1864
1865 fill_default_image_param(param);
1866 param->size[0] = size / cpp;
1867 param->stride[0] = cpp;
1868 }
1869 #else
1870 #define isl_surf_fill_image_param(x, ...)
1871 #define fill_default_image_param(x, ...)
1872 #define fill_buffer_image_param(x, ...)
1873 #endif
1874
1875 /**
1876 * The pipe->set_shader_images() driver hook.
1877 */
1878 static void
1879 iris_set_shader_images(struct pipe_context *ctx,
1880 enum pipe_shader_type p_stage,
1881 unsigned start_slot, unsigned count,
1882 const struct pipe_image_view *p_images)
1883 {
1884 struct iris_context *ice = (struct iris_context *) ctx;
1885 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1886 const struct gen_device_info *devinfo = &screen->devinfo;
1887 gl_shader_stage stage = stage_from_pipe(p_stage);
1888 struct iris_shader_state *shs = &ice->state.shaders[stage];
1889
1890 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
1891
1892 for (unsigned i = 0; i < count; i++) {
1893 if (p_images && p_images[i].resource) {
1894 const struct pipe_image_view *img = &p_images[i];
1895 struct iris_resource *res = (void *) img->resource;
1896 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1897
1898 shs->bound_image_views |= 1 << (start_slot + i);
1899
1900 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1901
1902 // XXX: these are not retained forever, use a separate uploader?
1903 void *map =
1904 alloc_surface_states(ice->state.surface_uploader,
1905 &shs->image[start_slot + i].surface_state,
1906 1 << ISL_AUX_USAGE_NONE);
1907 if (!unlikely(map)) {
1908 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1909 return;
1910 }
1911
1912 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1913 enum isl_format isl_fmt =
1914 iris_format_for_usage(devinfo, img->format, usage).fmt;
1915
1916 bool untyped_fallback = false;
1917
1918 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
1919 /* On Gen8, try to use typed surfaces reads (which support a
1920 * limited number of formats), and if not possible, fall back
1921 * to untyped reads.
1922 */
1923 untyped_fallback = GEN_GEN == 8 &&
1924 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
1925
1926 if (untyped_fallback)
1927 isl_fmt = ISL_FORMAT_RAW;
1928 else
1929 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
1930 }
1931
1932 shs->image[start_slot + i].access = img->shader_access;
1933
1934 if (res->base.target != PIPE_BUFFER) {
1935 struct isl_view view = {
1936 .format = isl_fmt,
1937 .base_level = img->u.tex.level,
1938 .levels = 1,
1939 .base_array_layer = img->u.tex.first_layer,
1940 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1941 .swizzle = ISL_SWIZZLE_IDENTITY,
1942 .usage = usage,
1943 };
1944
1945 if (untyped_fallback) {
1946 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1947 isl_fmt, ISL_SWIZZLE_IDENTITY,
1948 0, res->bo->size);
1949 } else {
1950 /* Images don't support compression */
1951 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
1952 while (aux_modes) {
1953 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
1954
1955 fill_surface_state(&screen->isl_dev, map, res, &view, usage);
1956
1957 map += SURFACE_STATE_ALIGNMENT;
1958 }
1959 }
1960
1961 isl_surf_fill_image_param(&screen->isl_dev,
1962 &shs->image[start_slot + i].param,
1963 &res->surf, &view);
1964 } else {
1965 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1966 isl_fmt, ISL_SWIZZLE_IDENTITY,
1967 img->u.buf.offset, img->u.buf.size);
1968 fill_buffer_image_param(&shs->image[start_slot + i].param,
1969 img->format, img->u.buf.size);
1970 }
1971 } else {
1972 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1973 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1974 NULL);
1975 fill_default_image_param(&shs->image[start_slot + i].param);
1976 }
1977 }
1978
1979 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1980
1981 /* Broadwell also needs brw_image_params re-uploaded */
1982 if (GEN_GEN < 9) {
1983 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
1984 shs->cbuf0_needs_upload = true;
1985 }
1986 }
1987
1988
1989 /**
1990 * The pipe->set_sampler_views() driver hook.
1991 */
1992 static void
1993 iris_set_sampler_views(struct pipe_context *ctx,
1994 enum pipe_shader_type p_stage,
1995 unsigned start, unsigned count,
1996 struct pipe_sampler_view **views)
1997 {
1998 struct iris_context *ice = (struct iris_context *) ctx;
1999 gl_shader_stage stage = stage_from_pipe(p_stage);
2000 struct iris_shader_state *shs = &ice->state.shaders[stage];
2001
2002 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2003
2004 for (unsigned i = 0; i < count; i++) {
2005 pipe_sampler_view_reference((struct pipe_sampler_view **)
2006 &shs->textures[start + i], views[i]);
2007 struct iris_sampler_view *view = (void *) views[i];
2008 if (view) {
2009 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2010 shs->bound_sampler_views |= 1 << (start + i);
2011 }
2012 }
2013
2014 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2015 }
2016
2017 /**
2018 * The pipe->set_tess_state() driver hook.
2019 */
2020 static void
2021 iris_set_tess_state(struct pipe_context *ctx,
2022 const float default_outer_level[4],
2023 const float default_inner_level[2])
2024 {
2025 struct iris_context *ice = (struct iris_context *) ctx;
2026 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2027
2028 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2029 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2030
2031 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2032 shs->cbuf0_needs_upload = true;
2033 }
2034
2035 static void
2036 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2037 {
2038 struct iris_surface *surf = (void *) p_surf;
2039 pipe_resource_reference(&p_surf->texture, NULL);
2040 pipe_resource_reference(&surf->surface_state.res, NULL);
2041 free(surf);
2042 }
2043
2044 static void
2045 iris_set_clip_state(struct pipe_context *ctx,
2046 const struct pipe_clip_state *state)
2047 {
2048 struct iris_context *ice = (struct iris_context *) ctx;
2049 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2050
2051 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2052
2053 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
2054 shs->cbuf0_needs_upload = true;
2055 }
2056
2057 /**
2058 * The pipe->set_polygon_stipple() driver hook.
2059 */
2060 static void
2061 iris_set_polygon_stipple(struct pipe_context *ctx,
2062 const struct pipe_poly_stipple *state)
2063 {
2064 struct iris_context *ice = (struct iris_context *) ctx;
2065 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2066 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2067 }
2068
2069 /**
2070 * The pipe->set_sample_mask() driver hook.
2071 */
2072 static void
2073 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2074 {
2075 struct iris_context *ice = (struct iris_context *) ctx;
2076
2077 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2078 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2079 */
2080 ice->state.sample_mask = sample_mask & 0xffff;
2081 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2082 }
2083
2084 /**
2085 * The pipe->set_scissor_states() driver hook.
2086 *
2087 * This corresponds to our SCISSOR_RECT state structures. It's an
2088 * exact match, so we just store them, and memcpy them out later.
2089 */
2090 static void
2091 iris_set_scissor_states(struct pipe_context *ctx,
2092 unsigned start_slot,
2093 unsigned num_scissors,
2094 const struct pipe_scissor_state *rects)
2095 {
2096 struct iris_context *ice = (struct iris_context *) ctx;
2097
2098 for (unsigned i = 0; i < num_scissors; i++) {
2099 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2100 /* If the scissor was out of bounds and got clamped to 0 width/height
2101 * at the bounds, the subtraction of 1 from maximums could produce a
2102 * negative number and thus not clip anything. Instead, just provide
2103 * a min > max scissor inside the bounds, which produces the expected
2104 * no rendering.
2105 */
2106 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2107 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2108 };
2109 } else {
2110 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2111 .minx = rects[i].minx, .miny = rects[i].miny,
2112 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2113 };
2114 }
2115 }
2116
2117 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2118 }
2119
2120 /**
2121 * The pipe->set_stencil_ref() driver hook.
2122 *
2123 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2124 */
2125 static void
2126 iris_set_stencil_ref(struct pipe_context *ctx,
2127 const struct pipe_stencil_ref *state)
2128 {
2129 struct iris_context *ice = (struct iris_context *) ctx;
2130 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2131 if (GEN_GEN == 8)
2132 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2133 else
2134 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2135 }
2136
2137 static float
2138 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2139 {
2140 return copysignf(state->scale[axis], sign) + state->translate[axis];
2141 }
2142
2143 static void
2144 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2145 float m00, float m11, float m30, float m31,
2146 float *xmin, float *xmax,
2147 float *ymin, float *ymax)
2148 {
2149 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2150 * Strips and Fans documentation:
2151 *
2152 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2153 * fixed-point "guardband" range supported by the rasterization hardware"
2154 *
2155 * and
2156 *
2157 * "In almost all circumstances, if an object’s vertices are actually
2158 * modified by this clamping (i.e., had X or Y coordinates outside of
2159 * the guardband extent the rendered object will not match the intended
2160 * result. Therefore software should take steps to ensure that this does
2161 * not happen - e.g., by clipping objects such that they do not exceed
2162 * these limits after the Drawing Rectangle is applied."
2163 *
2164 * I believe the fundamental restriction is that the rasterizer (in
2165 * the SF/WM stages) have a limit on the number of pixels that can be
2166 * rasterized. We need to ensure any coordinates beyond the rasterizer
2167 * limit are handled by the clipper. So effectively that limit becomes
2168 * the clipper's guardband size.
2169 *
2170 * It goes on to say:
2171 *
2172 * "In addition, in order to be correctly rendered, objects must have a
2173 * screenspace bounding box not exceeding 8K in the X or Y direction.
2174 * This additional restriction must also be comprehended by software,
2175 * i.e., enforced by use of clipping."
2176 *
2177 * This makes no sense. Gen7+ hardware supports 16K render targets,
2178 * and you definitely need to be able to draw polygons that fill the
2179 * surface. Our assumption is that the rasterizer was limited to 8K
2180 * on Sandybridge, which only supports 8K surfaces, and it was actually
2181 * increased to 16K on Ivybridge and later.
2182 *
2183 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2184 */
2185 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2186
2187 if (m00 != 0 && m11 != 0) {
2188 /* First, we compute the screen-space render area */
2189 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2190 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2191 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2192 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2193
2194 /* We want the guardband to be centered on that */
2195 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2196 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2197 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2198 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2199
2200 /* Now we need it in native device coordinates */
2201 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2202 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2203 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2204 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2205
2206 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2207 * flipped upside-down. X should be fine though.
2208 */
2209 assert(ndc_gb_xmin <= ndc_gb_xmax);
2210 *xmin = ndc_gb_xmin;
2211 *xmax = ndc_gb_xmax;
2212 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2213 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2214 } else {
2215 /* The viewport scales to 0, so nothing will be rendered. */
2216 *xmin = 0.0f;
2217 *xmax = 0.0f;
2218 *ymin = 0.0f;
2219 *ymax = 0.0f;
2220 }
2221 }
2222
2223 /**
2224 * The pipe->set_viewport_states() driver hook.
2225 *
2226 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2227 * the guardband yet, as we need the framebuffer dimensions, but we can
2228 * at least fill out the rest.
2229 */
2230 static void
2231 iris_set_viewport_states(struct pipe_context *ctx,
2232 unsigned start_slot,
2233 unsigned count,
2234 const struct pipe_viewport_state *states)
2235 {
2236 struct iris_context *ice = (struct iris_context *) ctx;
2237
2238 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2239
2240 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2241
2242 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2243 !ice->state.cso_rast->depth_clip_far))
2244 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2245 }
2246
2247 /**
2248 * The pipe->set_framebuffer_state() driver hook.
2249 *
2250 * Sets the current draw FBO, including color render targets, depth,
2251 * and stencil buffers.
2252 */
2253 static void
2254 iris_set_framebuffer_state(struct pipe_context *ctx,
2255 const struct pipe_framebuffer_state *state)
2256 {
2257 struct iris_context *ice = (struct iris_context *) ctx;
2258 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2259 struct isl_device *isl_dev = &screen->isl_dev;
2260 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2261 struct iris_resource *zres;
2262 struct iris_resource *stencil_res;
2263
2264 unsigned samples = util_framebuffer_get_num_samples(state);
2265 unsigned layers = util_framebuffer_get_num_layers(state);
2266
2267 if (cso->samples != samples) {
2268 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2269 }
2270
2271 if (cso->nr_cbufs != state->nr_cbufs) {
2272 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2273 }
2274
2275 if ((cso->layers == 0) != (layers == 0)) {
2276 ice->state.dirty |= IRIS_DIRTY_CLIP;
2277 }
2278
2279 if (cso->width != state->width || cso->height != state->height) {
2280 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2281 }
2282
2283 util_copy_framebuffer_state(cso, state);
2284 cso->samples = samples;
2285 cso->layers = layers;
2286
2287 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2288
2289 struct isl_view view = {
2290 .base_level = 0,
2291 .levels = 1,
2292 .base_array_layer = 0,
2293 .array_len = 1,
2294 .swizzle = ISL_SWIZZLE_IDENTITY,
2295 };
2296
2297 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2298
2299 if (cso->zsbuf) {
2300 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2301 &stencil_res);
2302
2303 view.base_level = cso->zsbuf->u.tex.level;
2304 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2305 view.array_len =
2306 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2307
2308 if (zres) {
2309 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2310
2311 info.depth_surf = &zres->surf;
2312 info.depth_address = zres->bo->gtt_offset;
2313 info.mocs = mocs(zres->bo);
2314
2315 view.format = zres->surf.format;
2316
2317 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2318 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2319 info.hiz_surf = &zres->aux.surf;
2320 info.hiz_address = zres->aux.bo->gtt_offset;
2321 }
2322 }
2323
2324 if (stencil_res) {
2325 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2326 info.stencil_surf = &stencil_res->surf;
2327 info.stencil_address = stencil_res->bo->gtt_offset;
2328 if (!zres) {
2329 view.format = stencil_res->surf.format;
2330 info.mocs = mocs(stencil_res->bo);
2331 }
2332 }
2333 }
2334
2335 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2336
2337 /* Make a null surface for unbound buffers */
2338 void *null_surf_map =
2339 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2340 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2341 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2342 isl_extent3d(MAX2(cso->width, 1),
2343 MAX2(cso->height, 1),
2344 cso->layers ? cso->layers : 1));
2345 ice->state.null_fb.offset +=
2346 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2347
2348 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2349
2350 /* Render target change */
2351 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2352
2353 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2354
2355 #if GEN_GEN == 11
2356 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2357 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2358
2359 /* The PIPE_CONTROL command description says:
2360 *
2361 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2362 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2363 * Target Cache Flush by enabling this bit. When render target flush
2364 * is set due to new association of BTI, PS Scoreboard Stall bit must
2365 * be set in this packet."
2366 */
2367 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2368 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2369 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2370 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2371 #endif
2372 }
2373
2374 static void
2375 upload_ubo_surf_state(struct iris_context *ice,
2376 struct iris_const_buffer *cbuf,
2377 unsigned buffer_size)
2378 {
2379 struct pipe_context *ctx = &ice->ctx;
2380 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2381
2382 // XXX: these are not retained forever, use a separate uploader?
2383 void *map =
2384 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2385 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2386 if (!unlikely(map)) {
2387 pipe_resource_reference(&cbuf->data.res, NULL);
2388 return;
2389 }
2390
2391 struct iris_resource *res = (void *) cbuf->data.res;
2392 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2393 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2394
2395 isl_buffer_fill_state(&screen->isl_dev, map,
2396 .address = res->bo->gtt_offset + cbuf->data.offset,
2397 .size_B = MIN2(buffer_size,
2398 res->bo->size - cbuf->data.offset),
2399 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2400 .swizzle = ISL_SWIZZLE_IDENTITY,
2401 .stride_B = 1,
2402 .mocs = mocs(res->bo))
2403 }
2404
2405 /**
2406 * The pipe->set_constant_buffer() driver hook.
2407 *
2408 * This uploads any constant data in user buffers, and references
2409 * any UBO resources containing constant data.
2410 */
2411 static void
2412 iris_set_constant_buffer(struct pipe_context *ctx,
2413 enum pipe_shader_type p_stage, unsigned index,
2414 const struct pipe_constant_buffer *input)
2415 {
2416 struct iris_context *ice = (struct iris_context *) ctx;
2417 gl_shader_stage stage = stage_from_pipe(p_stage);
2418 struct iris_shader_state *shs = &ice->state.shaders[stage];
2419 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2420
2421 if (input && input->buffer) {
2422 assert(index > 0);
2423
2424 pipe_resource_reference(&cbuf->data.res, input->buffer);
2425 cbuf->data.offset = input->buffer_offset;
2426
2427 struct iris_resource *res = (void *) cbuf->data.res;
2428 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2429
2430 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2431 } else {
2432 pipe_resource_reference(&cbuf->data.res, NULL);
2433 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2434 }
2435
2436 if (index == 0) {
2437 if (input)
2438 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2439 else
2440 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2441
2442 shs->cbuf0_needs_upload = true;
2443 }
2444
2445 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2446 // XXX: maybe not necessary all the time...?
2447 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2448 // XXX: pull model we may need actual new bindings...
2449 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2450 }
2451
2452 static void
2453 upload_uniforms(struct iris_context *ice,
2454 gl_shader_stage stage)
2455 {
2456 struct iris_shader_state *shs = &ice->state.shaders[stage];
2457 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2458 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2459
2460 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2461 shs->cbuf0.buffer_size;
2462
2463 if (upload_size == 0)
2464 return;
2465
2466 uint32_t *map =
2467 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2468
2469 for (int i = 0; i < shader->num_system_values; i++) {
2470 uint32_t sysval = shader->system_values[i];
2471 uint32_t value = 0;
2472
2473 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2474 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2475 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2476 struct brw_image_param *param = &shs->image[img].param;
2477
2478 assert(offset < sizeof(struct brw_image_param));
2479 value = ((uint32_t *) param)[offset];
2480 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2481 value = 0;
2482 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2483 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2484 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2485 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2486 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2487 if (stage == MESA_SHADER_TESS_CTRL) {
2488 value = ice->state.vertices_per_patch;
2489 } else {
2490 assert(stage == MESA_SHADER_TESS_EVAL);
2491 const struct shader_info *tcs_info =
2492 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2493 assert(tcs_info);
2494
2495 value = tcs_info->tess.tcs_vertices_out;
2496 }
2497 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
2498 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
2499 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
2500 value = fui(ice->state.default_outer_level[i]);
2501 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
2502 value = fui(ice->state.default_inner_level[0]);
2503 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
2504 value = fui(ice->state.default_inner_level[1]);
2505 } else {
2506 assert(!"unhandled system value");
2507 }
2508
2509 *map++ = value;
2510 }
2511
2512 if (shs->cbuf0.user_buffer) {
2513 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2514 }
2515
2516 upload_ubo_surf_state(ice, cbuf, upload_size);
2517 }
2518
2519 /**
2520 * The pipe->set_shader_buffers() driver hook.
2521 *
2522 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2523 * SURFACE_STATE here, as the buffer offset may change each time.
2524 */
2525 static void
2526 iris_set_shader_buffers(struct pipe_context *ctx,
2527 enum pipe_shader_type p_stage,
2528 unsigned start_slot, unsigned count,
2529 const struct pipe_shader_buffer *buffers)
2530 {
2531 struct iris_context *ice = (struct iris_context *) ctx;
2532 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2533 gl_shader_stage stage = stage_from_pipe(p_stage);
2534 struct iris_shader_state *shs = &ice->state.shaders[stage];
2535
2536 for (unsigned i = 0; i < count; i++) {
2537 if (buffers && buffers[i].buffer) {
2538 const struct pipe_shader_buffer *buffer = &buffers[i];
2539 struct iris_resource *res = (void *) buffer->buffer;
2540 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2541
2542 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2543
2544 // XXX: these are not retained forever, use a separate uploader?
2545 void *map =
2546 upload_state(ice->state.surface_uploader,
2547 &shs->ssbo_surface_state[start_slot + i],
2548 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2549 if (!unlikely(map)) {
2550 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2551 return;
2552 }
2553
2554 struct iris_bo *surf_state_bo =
2555 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2556 shs->ssbo_surface_state[start_slot + i].offset +=
2557 iris_bo_offset_from_base_address(surf_state_bo);
2558
2559 isl_buffer_fill_state(&screen->isl_dev, map,
2560 .address =
2561 res->bo->gtt_offset + buffer->buffer_offset,
2562 .size_B =
2563 MIN2(buffer->buffer_size,
2564 res->bo->size - buffer->buffer_offset),
2565 .format = ISL_FORMAT_RAW,
2566 .swizzle = ISL_SWIZZLE_IDENTITY,
2567 .stride_B = 1,
2568 .mocs = mocs(res->bo));
2569 } else {
2570 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2571 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2572 NULL);
2573 }
2574 }
2575
2576 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2577 }
2578
2579 static void
2580 iris_delete_state(struct pipe_context *ctx, void *state)
2581 {
2582 free(state);
2583 }
2584
2585 /**
2586 * The pipe->set_vertex_buffers() driver hook.
2587 *
2588 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2589 */
2590 static void
2591 iris_set_vertex_buffers(struct pipe_context *ctx,
2592 unsigned start_slot, unsigned count,
2593 const struct pipe_vertex_buffer *buffers)
2594 {
2595 struct iris_context *ice = (struct iris_context *) ctx;
2596 struct iris_genx_state *genx = ice->state.genx;
2597
2598 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2599
2600 for (unsigned i = 0; i < count; i++) {
2601 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2602 struct iris_vertex_buffer_state *state =
2603 &genx->vertex_buffers[start_slot + i];
2604
2605 if (!buffer) {
2606 pipe_resource_reference(&state->resource, NULL);
2607 continue;
2608 }
2609
2610 assert(!buffer->is_user_buffer);
2611
2612 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2613 struct iris_resource *res = (void *) state->resource;
2614
2615 if (res) {
2616 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2617 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2618 }
2619
2620 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2621 vb.VertexBufferIndex = start_slot + i;
2622 vb.AddressModifyEnable = true;
2623 vb.BufferPitch = buffer->stride;
2624 if (res) {
2625 vb.BufferSize = res->bo->size;
2626 vb.BufferStartingAddress =
2627 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2628 vb.MOCS = mocs(res->bo);
2629 } else {
2630 vb.NullVertexBuffer = true;
2631 }
2632 }
2633 }
2634
2635 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2636 }
2637
2638 /**
2639 * Gallium CSO for vertex elements.
2640 */
2641 struct iris_vertex_element_state {
2642 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2643 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2644 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2645 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2646 unsigned count;
2647 };
2648
2649 /**
2650 * The pipe->create_vertex_elements() driver hook.
2651 *
2652 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2653 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2654 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2655 * needed. In these cases we will need information available at draw time.
2656 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2657 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2658 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2659 */
2660 static void *
2661 iris_create_vertex_elements(struct pipe_context *ctx,
2662 unsigned count,
2663 const struct pipe_vertex_element *state)
2664 {
2665 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2666 const struct gen_device_info *devinfo = &screen->devinfo;
2667 struct iris_vertex_element_state *cso =
2668 malloc(sizeof(struct iris_vertex_element_state));
2669
2670 cso->count = count;
2671
2672 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2673 ve.DWordLength =
2674 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2675 }
2676
2677 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2678 uint32_t *vfi_pack_dest = cso->vf_instancing;
2679
2680 if (count == 0) {
2681 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2682 ve.Valid = true;
2683 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2684 ve.Component0Control = VFCOMP_STORE_0;
2685 ve.Component1Control = VFCOMP_STORE_0;
2686 ve.Component2Control = VFCOMP_STORE_0;
2687 ve.Component3Control = VFCOMP_STORE_1_FP;
2688 }
2689
2690 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2691 }
2692 }
2693
2694 for (int i = 0; i < count; i++) {
2695 const struct iris_format_info fmt =
2696 iris_format_for_usage(devinfo, state[i].src_format, 0);
2697 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2698 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2699
2700 switch (isl_format_get_num_channels(fmt.fmt)) {
2701 case 0: comp[0] = VFCOMP_STORE_0;
2702 case 1: comp[1] = VFCOMP_STORE_0;
2703 case 2: comp[2] = VFCOMP_STORE_0;
2704 case 3:
2705 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2706 : VFCOMP_STORE_1_FP;
2707 break;
2708 }
2709 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2710 ve.EdgeFlagEnable = false;
2711 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2712 ve.Valid = true;
2713 ve.SourceElementOffset = state[i].src_offset;
2714 ve.SourceElementFormat = fmt.fmt;
2715 ve.Component0Control = comp[0];
2716 ve.Component1Control = comp[1];
2717 ve.Component2Control = comp[2];
2718 ve.Component3Control = comp[3];
2719 }
2720
2721 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2722 vi.VertexElementIndex = i;
2723 vi.InstancingEnable = state[i].instance_divisor > 0;
2724 vi.InstanceDataStepRate = state[i].instance_divisor;
2725 }
2726
2727 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2728 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2729 }
2730
2731 /* An alternative version of the last VE and VFI is stored so it
2732 * can be used at draw time in case Vertex Shader uses EdgeFlag
2733 */
2734 if (count) {
2735 const unsigned edgeflag_index = count - 1;
2736 const struct iris_format_info fmt =
2737 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
2738 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
2739 ve.EdgeFlagEnable = true ;
2740 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
2741 ve.Valid = true;
2742 ve.SourceElementOffset = state[edgeflag_index].src_offset;
2743 ve.SourceElementFormat = fmt.fmt;
2744 ve.Component0Control = VFCOMP_STORE_SRC;
2745 ve.Component1Control = VFCOMP_STORE_0;
2746 ve.Component2Control = VFCOMP_STORE_0;
2747 ve.Component3Control = VFCOMP_STORE_0;
2748 }
2749 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
2750 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
2751 * at draw time, as it should change if SGVs are emitted.
2752 */
2753 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
2754 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
2755 }
2756 }
2757
2758 return cso;
2759 }
2760
2761 /**
2762 * The pipe->bind_vertex_elements_state() driver hook.
2763 */
2764 static void
2765 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2766 {
2767 struct iris_context *ice = (struct iris_context *) ctx;
2768 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2769 struct iris_vertex_element_state *new_cso = state;
2770
2771 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2772 * we need to re-emit it to ensure we're overriding the right one.
2773 */
2774 if (new_cso && cso_changed(count))
2775 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2776
2777 ice->state.cso_vertex_elements = state;
2778 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2779 }
2780
2781 /**
2782 * The pipe->create_stream_output_target() driver hook.
2783 *
2784 * "Target" here refers to a destination buffer. We translate this into
2785 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2786 * know which buffer this represents, or whether we ought to zero the
2787 * write-offsets, or append. Those are handled in the set() hook.
2788 */
2789 static struct pipe_stream_output_target *
2790 iris_create_stream_output_target(struct pipe_context *ctx,
2791 struct pipe_resource *p_res,
2792 unsigned buffer_offset,
2793 unsigned buffer_size)
2794 {
2795 struct iris_resource *res = (void *) p_res;
2796 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2797 if (!cso)
2798 return NULL;
2799
2800 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2801
2802 pipe_reference_init(&cso->base.reference, 1);
2803 pipe_resource_reference(&cso->base.buffer, p_res);
2804 cso->base.buffer_offset = buffer_offset;
2805 cso->base.buffer_size = buffer_size;
2806 cso->base.context = ctx;
2807
2808 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2809
2810 return &cso->base;
2811 }
2812
2813 static void
2814 iris_stream_output_target_destroy(struct pipe_context *ctx,
2815 struct pipe_stream_output_target *state)
2816 {
2817 struct iris_stream_output_target *cso = (void *) state;
2818
2819 pipe_resource_reference(&cso->base.buffer, NULL);
2820 pipe_resource_reference(&cso->offset.res, NULL);
2821
2822 free(cso);
2823 }
2824
2825 /**
2826 * The pipe->set_stream_output_targets() driver hook.
2827 *
2828 * At this point, we know which targets are bound to a particular index,
2829 * and also whether we want to append or start over. We can finish the
2830 * 3DSTATE_SO_BUFFER packets we started earlier.
2831 */
2832 static void
2833 iris_set_stream_output_targets(struct pipe_context *ctx,
2834 unsigned num_targets,
2835 struct pipe_stream_output_target **targets,
2836 const unsigned *offsets)
2837 {
2838 struct iris_context *ice = (struct iris_context *) ctx;
2839 struct iris_genx_state *genx = ice->state.genx;
2840 uint32_t *so_buffers = genx->so_buffers;
2841
2842 const bool active = num_targets > 0;
2843 if (ice->state.streamout_active != active) {
2844 ice->state.streamout_active = active;
2845 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2846
2847 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2848 * it's a non-pipelined command. If we're switching streamout on, we
2849 * may have missed emitting it earlier, so do so now. (We're already
2850 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2851 */
2852 if (active)
2853 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2854 }
2855
2856 for (int i = 0; i < 4; i++) {
2857 pipe_so_target_reference(&ice->state.so_target[i],
2858 i < num_targets ? targets[i] : NULL);
2859 }
2860
2861 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2862 if (!active)
2863 return;
2864
2865 for (unsigned i = 0; i < 4; i++,
2866 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2867
2868 if (i >= num_targets || !targets[i]) {
2869 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2870 sob.SOBufferIndex = i;
2871 continue;
2872 }
2873
2874 struct iris_stream_output_target *tgt = (void *) targets[i];
2875 struct iris_resource *res = (void *) tgt->base.buffer;
2876
2877 /* Note that offsets[i] will either be 0, causing us to zero
2878 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2879 * "continue appending at the existing offset."
2880 */
2881 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2882
2883 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2884 sob.SurfaceBaseAddress =
2885 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2886 sob.SOBufferEnable = true;
2887 sob.StreamOffsetWriteEnable = true;
2888 sob.StreamOutputBufferOffsetAddressEnable = true;
2889 sob.MOCS = mocs(res->bo);
2890
2891 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2892
2893 sob.SOBufferIndex = i;
2894 sob.StreamOffset = offsets[i];
2895 sob.StreamOutputBufferOffsetAddress =
2896 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2897 tgt->offset.offset);
2898 }
2899 }
2900
2901 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2902 }
2903
2904 /**
2905 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2906 * 3DSTATE_STREAMOUT packets.
2907 *
2908 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2909 * hardware to record. We can create it entirely based on the shader, with
2910 * no dynamic state dependencies.
2911 *
2912 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2913 * state-based settings. We capture the shader-related ones here, and merge
2914 * the rest in at draw time.
2915 */
2916 static uint32_t *
2917 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2918 const struct brw_vue_map *vue_map)
2919 {
2920 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2921 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2922 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2923 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2924 int max_decls = 0;
2925 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2926
2927 memset(so_decl, 0, sizeof(so_decl));
2928
2929 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2930 * command feels strange -- each dword pair contains a SO_DECL per stream.
2931 */
2932 for (unsigned i = 0; i < info->num_outputs; i++) {
2933 const struct pipe_stream_output *output = &info->output[i];
2934 const int buffer = output->output_buffer;
2935 const int varying = output->register_index;
2936 const unsigned stream_id = output->stream;
2937 assert(stream_id < MAX_VERTEX_STREAMS);
2938
2939 buffer_mask[stream_id] |= 1 << buffer;
2940
2941 assert(vue_map->varying_to_slot[varying] >= 0);
2942
2943 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2944 * array. Instead, it simply increments DstOffset for the following
2945 * input by the number of components that should be skipped.
2946 *
2947 * Our hardware is unusual in that it requires us to program SO_DECLs
2948 * for fake "hole" components, rather than simply taking the offset
2949 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2950 * program as many size = 4 holes as we can, then a final hole to
2951 * accommodate the final 1, 2, or 3 remaining.
2952 */
2953 int skip_components = output->dst_offset - next_offset[buffer];
2954
2955 while (skip_components > 0) {
2956 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2957 .HoleFlag = 1,
2958 .OutputBufferSlot = output->output_buffer,
2959 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2960 };
2961 skip_components -= 4;
2962 }
2963
2964 next_offset[buffer] = output->dst_offset + output->num_components;
2965
2966 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2967 .OutputBufferSlot = output->output_buffer,
2968 .RegisterIndex = vue_map->varying_to_slot[varying],
2969 .ComponentMask =
2970 ((1 << output->num_components) - 1) << output->start_component,
2971 };
2972
2973 if (decls[stream_id] > max_decls)
2974 max_decls = decls[stream_id];
2975 }
2976
2977 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2978 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2979 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2980
2981 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2982 int urb_entry_read_offset = 0;
2983 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2984 urb_entry_read_offset;
2985
2986 /* We always read the whole vertex. This could be reduced at some
2987 * point by reading less and offsetting the register index in the
2988 * SO_DECLs.
2989 */
2990 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2991 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2992 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2993 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2994 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2995 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2996 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2997 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2998
2999 /* Set buffer pitches; 0 means unbound. */
3000 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3001 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3002 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3003 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3004 }
3005
3006 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3007 list.DWordLength = 3 + 2 * max_decls - 2;
3008 list.StreamtoBufferSelects0 = buffer_mask[0];
3009 list.StreamtoBufferSelects1 = buffer_mask[1];
3010 list.StreamtoBufferSelects2 = buffer_mask[2];
3011 list.StreamtoBufferSelects3 = buffer_mask[3];
3012 list.NumEntries0 = decls[0];
3013 list.NumEntries1 = decls[1];
3014 list.NumEntries2 = decls[2];
3015 list.NumEntries3 = decls[3];
3016 }
3017
3018 for (int i = 0; i < max_decls; i++) {
3019 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3020 entry.Stream0Decl = so_decl[0][i];
3021 entry.Stream1Decl = so_decl[1][i];
3022 entry.Stream2Decl = so_decl[2][i];
3023 entry.Stream3Decl = so_decl[3][i];
3024 }
3025 }
3026
3027 return map;
3028 }
3029
3030 static void
3031 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3032 const struct brw_vue_map *last_vue_map,
3033 bool two_sided_color,
3034 unsigned *out_offset,
3035 unsigned *out_length)
3036 {
3037 /* The compiler computes the first URB slot without considering COL/BFC
3038 * swizzling (because it doesn't know whether it's enabled), so we need
3039 * to do that here too. This may result in a smaller offset, which
3040 * should be safe.
3041 */
3042 const unsigned first_slot =
3043 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3044
3045 /* This becomes the URB read offset (counted in pairs of slots). */
3046 assert(first_slot % 2 == 0);
3047 *out_offset = first_slot / 2;
3048
3049 /* We need to adjust the inputs read to account for front/back color
3050 * swizzling, as it can make the URB length longer.
3051 */
3052 for (int c = 0; c <= 1; c++) {
3053 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3054 /* If two sided color is enabled, the fragment shader's gl_Color
3055 * (COL0) input comes from either the gl_FrontColor (COL0) or
3056 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3057 */
3058 if (two_sided_color)
3059 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3060
3061 /* If front color isn't written, we opt to give them back color
3062 * instead of an undefined value. Switch from COL to BFC.
3063 */
3064 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3065 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3066 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3067 }
3068 }
3069 }
3070
3071 /* Compute the minimum URB Read Length necessary for the FS inputs.
3072 *
3073 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3074 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3075 *
3076 * "This field should be set to the minimum length required to read the
3077 * maximum source attribute. The maximum source attribute is indicated
3078 * by the maximum value of the enabled Attribute # Source Attribute if
3079 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3080 * enable is not set.
3081 * read_length = ceiling((max_source_attr + 1) / 2)
3082 *
3083 * [errata] Corruption/Hang possible if length programmed larger than
3084 * recommended"
3085 *
3086 * Similar text exists for Ivy Bridge.
3087 *
3088 * We find the last URB slot that's actually read by the FS.
3089 */
3090 unsigned last_read_slot = last_vue_map->num_slots - 1;
3091 while (last_read_slot > first_slot && !(fs_input_slots &
3092 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3093 --last_read_slot;
3094
3095 /* The URB read length is the difference of the two, counted in pairs. */
3096 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3097 }
3098
3099 static void
3100 iris_emit_sbe_swiz(struct iris_batch *batch,
3101 const struct iris_context *ice,
3102 unsigned urb_read_offset,
3103 unsigned sprite_coord_enables)
3104 {
3105 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3106 const struct brw_wm_prog_data *wm_prog_data = (void *)
3107 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3108 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3109 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3110
3111 /* XXX: this should be generated when putting programs in place */
3112
3113 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3114 const int input_index = wm_prog_data->urb_setup[fs_attr];
3115 if (input_index < 0 || input_index >= 16)
3116 continue;
3117
3118 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3119 &attr_overrides[input_index];
3120 int slot = vue_map->varying_to_slot[fs_attr];
3121
3122 /* Viewport and Layer are stored in the VUE header. We need to override
3123 * them to zero if earlier stages didn't write them, as GL requires that
3124 * they read back as zero when not explicitly set.
3125 */
3126 switch (fs_attr) {
3127 case VARYING_SLOT_VIEWPORT:
3128 case VARYING_SLOT_LAYER:
3129 attr->ComponentOverrideX = true;
3130 attr->ComponentOverrideW = true;
3131 attr->ConstantSource = CONST_0000;
3132
3133 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3134 attr->ComponentOverrideY = true;
3135 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3136 attr->ComponentOverrideZ = true;
3137 continue;
3138
3139 case VARYING_SLOT_PRIMITIVE_ID:
3140 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3141 if (slot == -1) {
3142 attr->ComponentOverrideX = true;
3143 attr->ComponentOverrideY = true;
3144 attr->ComponentOverrideZ = true;
3145 attr->ComponentOverrideW = true;
3146 attr->ConstantSource = PRIM_ID;
3147 continue;
3148 }
3149
3150 default:
3151 break;
3152 }
3153
3154 if (sprite_coord_enables & (1 << input_index))
3155 continue;
3156
3157 /* If there was only a back color written but not front, use back
3158 * as the color instead of undefined.
3159 */
3160 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3161 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3162 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3163 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3164
3165 /* Not written by the previous stage - undefined. */
3166 if (slot == -1) {
3167 attr->ComponentOverrideX = true;
3168 attr->ComponentOverrideY = true;
3169 attr->ComponentOverrideZ = true;
3170 attr->ComponentOverrideW = true;
3171 attr->ConstantSource = CONST_0001_FLOAT;
3172 continue;
3173 }
3174
3175 /* Compute the location of the attribute relative to the read offset,
3176 * which is counted in 256-bit increments (two 128-bit VUE slots).
3177 */
3178 const int source_attr = slot - 2 * urb_read_offset;
3179 assert(source_attr >= 0 && source_attr <= 32);
3180 attr->SourceAttribute = source_attr;
3181
3182 /* If we are doing two-sided color, and the VUE slot following this one
3183 * represents a back-facing color, then we need to instruct the SF unit
3184 * to do back-facing swizzling.
3185 */
3186 if (cso_rast->light_twoside &&
3187 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3188 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3189 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3190 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3191 attr->SwizzleSelect = INPUTATTR_FACING;
3192 }
3193
3194 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3195 for (int i = 0; i < 16; i++)
3196 sbes.Attribute[i] = attr_overrides[i];
3197 }
3198 }
3199
3200 static unsigned
3201 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3202 const struct iris_rasterizer_state *cso)
3203 {
3204 unsigned overrides = 0;
3205
3206 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3207 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3208
3209 for (int i = 0; i < 8; i++) {
3210 if ((cso->sprite_coord_enable & (1 << i)) &&
3211 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3212 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3213 }
3214
3215 return overrides;
3216 }
3217
3218 static void
3219 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3220 {
3221 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3222 const struct brw_wm_prog_data *wm_prog_data = (void *)
3223 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3224 const struct shader_info *fs_info =
3225 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3226
3227 unsigned urb_read_offset, urb_read_length;
3228 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3229 ice->shaders.last_vue_map,
3230 cso_rast->light_twoside,
3231 &urb_read_offset, &urb_read_length);
3232
3233 unsigned sprite_coord_overrides =
3234 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3235
3236 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3237 sbe.AttributeSwizzleEnable = true;
3238 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3239 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3240 sbe.VertexURBEntryReadOffset = urb_read_offset;
3241 sbe.VertexURBEntryReadLength = urb_read_length;
3242 sbe.ForceVertexURBEntryReadOffset = true;
3243 sbe.ForceVertexURBEntryReadLength = true;
3244 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3245 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3246 #if GEN_GEN >= 9
3247 for (int i = 0; i < 32; i++) {
3248 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3249 }
3250 #endif
3251 }
3252
3253 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3254 }
3255
3256 /* ------------------------------------------------------------------- */
3257
3258 /**
3259 * Populate VS program key fields based on the current state.
3260 */
3261 static void
3262 iris_populate_vs_key(const struct iris_context *ice,
3263 const struct shader_info *info,
3264 struct brw_vs_prog_key *key)
3265 {
3266 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3267
3268 if (info->clip_distance_array_size == 0 &&
3269 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3270 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3271 }
3272
3273 /**
3274 * Populate TCS program key fields based on the current state.
3275 */
3276 static void
3277 iris_populate_tcs_key(const struct iris_context *ice,
3278 struct brw_tcs_prog_key *key)
3279 {
3280 }
3281
3282 /**
3283 * Populate TES program key fields based on the current state.
3284 */
3285 static void
3286 iris_populate_tes_key(const struct iris_context *ice,
3287 struct brw_tes_prog_key *key)
3288 {
3289 }
3290
3291 /**
3292 * Populate GS program key fields based on the current state.
3293 */
3294 static void
3295 iris_populate_gs_key(const struct iris_context *ice,
3296 struct brw_gs_prog_key *key)
3297 {
3298 }
3299
3300 /**
3301 * Populate FS program key fields based on the current state.
3302 */
3303 static void
3304 iris_populate_fs_key(const struct iris_context *ice,
3305 struct brw_wm_prog_key *key)
3306 {
3307 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3308 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3309 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3310 const struct iris_blend_state *blend = ice->state.cso_blend;
3311
3312 key->nr_color_regions = fb->nr_cbufs;
3313
3314 key->clamp_fragment_color = rast->clamp_fragment_color;
3315
3316 key->replicate_alpha = fb->nr_cbufs > 1 &&
3317 (zsa->alpha.enabled || blend->alpha_to_coverage);
3318
3319 /* XXX: only bother if COL0/1 are read */
3320 key->flat_shade = rast->flatshade;
3321
3322 key->persample_interp = rast->force_persample_interp;
3323 key->multisample_fbo = rast->multisample && fb->samples > 1;
3324
3325 key->coherent_fb_fetch = true;
3326
3327 /* TODO: support key->force_dual_color_blend for Unigine */
3328 /* TODO: Respect glHint for key->high_quality_derivatives */
3329 }
3330
3331 static void
3332 iris_populate_cs_key(const struct iris_context *ice,
3333 struct brw_cs_prog_key *key)
3334 {
3335 }
3336
3337 static uint64_t
3338 KSP(const struct iris_compiled_shader *shader)
3339 {
3340 struct iris_resource *res = (void *) shader->assembly.res;
3341 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3342 }
3343
3344 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3345 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3346 * this WA on C0 stepping.
3347 *
3348 * TODO: Fill out SamplerCount for prefetching?
3349 */
3350
3351 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3352 pkt.KernelStartPointer = KSP(shader); \
3353 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3354 prog_data->binding_table.size_bytes / 4; \
3355 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3356 \
3357 pkt.DispatchGRFStartRegisterForURBData = \
3358 prog_data->dispatch_grf_start_reg; \
3359 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3360 pkt.prefix##URBEntryReadOffset = 0; \
3361 \
3362 pkt.StatisticsEnable = true; \
3363 pkt.Enable = true; \
3364 \
3365 if (prog_data->total_scratch) { \
3366 struct iris_bo *bo = \
3367 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3368 uint32_t scratch_addr = bo->gtt_offset; \
3369 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3370 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3371 }
3372
3373 /**
3374 * Encode most of 3DSTATE_VS based on the compiled shader.
3375 */
3376 static void
3377 iris_store_vs_state(struct iris_context *ice,
3378 const struct gen_device_info *devinfo,
3379 struct iris_compiled_shader *shader)
3380 {
3381 struct brw_stage_prog_data *prog_data = shader->prog_data;
3382 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3383
3384 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3385 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3386 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3387 vs.SIMD8DispatchEnable = true;
3388 vs.UserClipDistanceCullTestEnableBitmask =
3389 vue_prog_data->cull_distance_mask;
3390 }
3391 }
3392
3393 /**
3394 * Encode most of 3DSTATE_HS based on the compiled shader.
3395 */
3396 static void
3397 iris_store_tcs_state(struct iris_context *ice,
3398 const struct gen_device_info *devinfo,
3399 struct iris_compiled_shader *shader)
3400 {
3401 struct brw_stage_prog_data *prog_data = shader->prog_data;
3402 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3403 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3404
3405 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3406 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3407
3408 hs.InstanceCount = tcs_prog_data->instances - 1;
3409 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3410 hs.IncludeVertexHandles = true;
3411 }
3412 }
3413
3414 /**
3415 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3416 */
3417 static void
3418 iris_store_tes_state(struct iris_context *ice,
3419 const struct gen_device_info *devinfo,
3420 struct iris_compiled_shader *shader)
3421 {
3422 struct brw_stage_prog_data *prog_data = shader->prog_data;
3423 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3424 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3425
3426 uint32_t *te_state = (void *) shader->derived_data;
3427 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3428
3429 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3430 te.Partitioning = tes_prog_data->partitioning;
3431 te.OutputTopology = tes_prog_data->output_topology;
3432 te.TEDomain = tes_prog_data->domain;
3433 te.TEEnable = true;
3434 te.MaximumTessellationFactorOdd = 63.0;
3435 te.MaximumTessellationFactorNotOdd = 64.0;
3436 }
3437
3438 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3439 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3440
3441 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3442 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3443 ds.ComputeWCoordinateEnable =
3444 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3445
3446 ds.UserClipDistanceCullTestEnableBitmask =
3447 vue_prog_data->cull_distance_mask;
3448 }
3449
3450 }
3451
3452 /**
3453 * Encode most of 3DSTATE_GS based on the compiled shader.
3454 */
3455 static void
3456 iris_store_gs_state(struct iris_context *ice,
3457 const struct gen_device_info *devinfo,
3458 struct iris_compiled_shader *shader)
3459 {
3460 struct brw_stage_prog_data *prog_data = shader->prog_data;
3461 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3462 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3463
3464 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3465 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3466
3467 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3468 gs.OutputTopology = gs_prog_data->output_topology;
3469 gs.ControlDataHeaderSize =
3470 gs_prog_data->control_data_header_size_hwords;
3471 gs.InstanceControl = gs_prog_data->invocations - 1;
3472 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3473 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3474 gs.ControlDataFormat = gs_prog_data->control_data_format;
3475 gs.ReorderMode = TRAILING;
3476 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3477 gs.MaximumNumberofThreads =
3478 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3479 : (devinfo->max_gs_threads - 1);
3480
3481 if (gs_prog_data->static_vertex_count != -1) {
3482 gs.StaticOutput = true;
3483 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3484 }
3485 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3486
3487 gs.UserClipDistanceCullTestEnableBitmask =
3488 vue_prog_data->cull_distance_mask;
3489
3490 const int urb_entry_write_offset = 1;
3491 const uint32_t urb_entry_output_length =
3492 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3493 urb_entry_write_offset;
3494
3495 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3496 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3497 }
3498 }
3499
3500 /**
3501 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3502 */
3503 static void
3504 iris_store_fs_state(struct iris_context *ice,
3505 const struct gen_device_info *devinfo,
3506 struct iris_compiled_shader *shader)
3507 {
3508 struct brw_stage_prog_data *prog_data = shader->prog_data;
3509 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3510
3511 uint32_t *ps_state = (void *) shader->derived_data;
3512 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3513
3514 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3515 ps.VectorMaskEnable = true;
3516 // XXX: WABTPPrefetchDisable, see above, drop at C0
3517 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3518 prog_data->binding_table.size_bytes / 4;
3519 ps.FloatingPointMode = prog_data->use_alt_mode;
3520 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3521
3522 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3523
3524 /* From the documentation for this packet:
3525 * "If the PS kernel does not need the Position XY Offsets to
3526 * compute a Position Value, then this field should be programmed
3527 * to POSOFFSET_NONE."
3528 *
3529 * "SW Recommendation: If the PS kernel needs the Position Offsets
3530 * to compute a Position XY value, this field should match Position
3531 * ZW Interpolation Mode to ensure a consistent position.xyzw
3532 * computation."
3533 *
3534 * We only require XY sample offsets. So, this recommendation doesn't
3535 * look useful at the moment. We might need this in future.
3536 */
3537 ps.PositionXYOffsetSelect =
3538 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3539 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3540 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3541 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3542
3543 // XXX: Disable SIMD32 with 16x MSAA
3544
3545 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3546 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3547 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3548 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3549 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3550 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3551
3552 ps.KernelStartPointer0 =
3553 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3554 ps.KernelStartPointer1 =
3555 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3556 ps.KernelStartPointer2 =
3557 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3558
3559 if (prog_data->total_scratch) {
3560 struct iris_bo *bo =
3561 iris_get_scratch_space(ice, prog_data->total_scratch,
3562 MESA_SHADER_FRAGMENT);
3563 uint32_t scratch_addr = bo->gtt_offset;
3564 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3565 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3566 }
3567 }
3568
3569 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3570 psx.PixelShaderValid = true;
3571 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3572 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3573 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3574 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3575 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3576 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3577 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3578
3579 #if GEN_GEN >= 9
3580 if (wm_prog_data->uses_sample_mask) {
3581 /* TODO: conservative rasterization */
3582 if (wm_prog_data->post_depth_coverage)
3583 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3584 else
3585 psx.InputCoverageMaskState = ICMS_NORMAL;
3586 }
3587
3588 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3589 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3590 #else
3591 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3592 #endif
3593 // XXX: UAV bit
3594 }
3595 }
3596
3597 /**
3598 * Compute the size of the derived data (shader command packets).
3599 *
3600 * This must match the data written by the iris_store_xs_state() functions.
3601 */
3602 static void
3603 iris_store_cs_state(struct iris_context *ice,
3604 const struct gen_device_info *devinfo,
3605 struct iris_compiled_shader *shader)
3606 {
3607 struct brw_stage_prog_data *prog_data = shader->prog_data;
3608 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3609 void *map = shader->derived_data;
3610
3611 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3612 desc.KernelStartPointer = KSP(shader);
3613 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3614 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3615 desc.SharedLocalMemorySize =
3616 encode_slm_size(GEN_GEN, prog_data->total_shared);
3617 desc.BarrierEnable = cs_prog_data->uses_barrier;
3618 desc.CrossThreadConstantDataReadLength =
3619 cs_prog_data->push.cross_thread.regs;
3620 }
3621 }
3622
3623 static unsigned
3624 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3625 {
3626 assert(cache_id <= IRIS_CACHE_BLORP);
3627
3628 static const unsigned dwords[] = {
3629 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3630 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3631 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3632 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3633 [IRIS_CACHE_FS] =
3634 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3635 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3636 [IRIS_CACHE_BLORP] = 0,
3637 };
3638
3639 return sizeof(uint32_t) * dwords[cache_id];
3640 }
3641
3642 /**
3643 * Create any state packets corresponding to the given shader stage
3644 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3645 * This means that we can look up a program in the in-memory cache and
3646 * get most of the state packet without having to reconstruct it.
3647 */
3648 static void
3649 iris_store_derived_program_state(struct iris_context *ice,
3650 enum iris_program_cache_id cache_id,
3651 struct iris_compiled_shader *shader)
3652 {
3653 struct iris_screen *screen = (void *) ice->ctx.screen;
3654 const struct gen_device_info *devinfo = &screen->devinfo;
3655
3656 switch (cache_id) {
3657 case IRIS_CACHE_VS:
3658 iris_store_vs_state(ice, devinfo, shader);
3659 break;
3660 case IRIS_CACHE_TCS:
3661 iris_store_tcs_state(ice, devinfo, shader);
3662 break;
3663 case IRIS_CACHE_TES:
3664 iris_store_tes_state(ice, devinfo, shader);
3665 break;
3666 case IRIS_CACHE_GS:
3667 iris_store_gs_state(ice, devinfo, shader);
3668 break;
3669 case IRIS_CACHE_FS:
3670 iris_store_fs_state(ice, devinfo, shader);
3671 break;
3672 case IRIS_CACHE_CS:
3673 iris_store_cs_state(ice, devinfo, shader);
3674 case IRIS_CACHE_BLORP:
3675 break;
3676 default:
3677 break;
3678 }
3679 }
3680
3681 /* ------------------------------------------------------------------- */
3682
3683 static const uint32_t push_constant_opcodes[] = {
3684 [MESA_SHADER_VERTEX] = 21,
3685 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3686 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3687 [MESA_SHADER_GEOMETRY] = 22,
3688 [MESA_SHADER_FRAGMENT] = 23,
3689 [MESA_SHADER_COMPUTE] = 0,
3690 };
3691
3692 static uint32_t
3693 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3694 {
3695 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3696
3697 iris_use_pinned_bo(batch, state_bo, false);
3698
3699 return ice->state.unbound_tex.offset;
3700 }
3701
3702 static uint32_t
3703 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3704 {
3705 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3706 if (!ice->state.null_fb.res)
3707 return use_null_surface(batch, ice);
3708
3709 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3710
3711 iris_use_pinned_bo(batch, state_bo, false);
3712
3713 return ice->state.null_fb.offset;
3714 }
3715
3716 static uint32_t
3717 surf_state_offset_for_aux(struct iris_resource *res,
3718 enum isl_aux_usage aux_usage)
3719 {
3720 return SURFACE_STATE_ALIGNMENT *
3721 util_bitcount(res->aux.possible_usages & ((1 << aux_usage) - 1));
3722 }
3723
3724 /**
3725 * Add a surface to the validation list, as well as the buffer containing
3726 * the corresponding SURFACE_STATE.
3727 *
3728 * Returns the binding table entry (offset to SURFACE_STATE).
3729 */
3730 static uint32_t
3731 use_surface(struct iris_batch *batch,
3732 struct pipe_surface *p_surf,
3733 bool writeable,
3734 enum isl_aux_usage aux_usage)
3735 {
3736 struct iris_surface *surf = (void *) p_surf;
3737 struct iris_resource *res = (void *) p_surf->texture;
3738
3739 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3740 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3741
3742 if (res->aux.bo)
3743 iris_use_pinned_bo(batch, res->aux.bo, writeable);
3744
3745 return surf->surface_state.offset +
3746 surf_state_offset_for_aux(res, aux_usage);
3747 }
3748
3749 static uint32_t
3750 use_sampler_view(struct iris_context *ice,
3751 struct iris_batch *batch,
3752 struct iris_sampler_view *isv)
3753 {
3754 // XXX: ASTC hacks
3755 enum isl_aux_usage aux_usage =
3756 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
3757
3758 iris_use_pinned_bo(batch, isv->res->bo, false);
3759 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3760
3761 if (isv->res->aux.bo)
3762 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
3763
3764 return isv->surface_state.offset +
3765 surf_state_offset_for_aux(isv->res, aux_usage);
3766 }
3767
3768 static uint32_t
3769 use_const_buffer(struct iris_batch *batch,
3770 struct iris_context *ice,
3771 struct iris_const_buffer *cbuf)
3772 {
3773 if (!cbuf->surface_state.res)
3774 return use_null_surface(batch, ice);
3775
3776 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3777 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3778
3779 return cbuf->surface_state.offset;
3780 }
3781
3782 static uint32_t
3783 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3784 struct iris_shader_state *shs, int i)
3785 {
3786 if (!shs->ssbo[i])
3787 return use_null_surface(batch, ice);
3788
3789 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3790
3791 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3792 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3793
3794 return surf_state->offset;
3795 }
3796
3797 static uint32_t
3798 use_image(struct iris_batch *batch, struct iris_context *ice,
3799 struct iris_shader_state *shs, int i)
3800 {
3801 if (!shs->image[i].res)
3802 return use_null_surface(batch, ice);
3803
3804 struct iris_resource *res = (void *) shs->image[i].res;
3805 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3806 bool write = shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE;
3807
3808 iris_use_pinned_bo(batch, res->bo, write);
3809 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3810
3811 if (res->aux.bo)
3812 iris_use_pinned_bo(batch, res->aux.bo, write);
3813
3814 return surf_state->offset;
3815 }
3816
3817 #define push_bt_entry(addr) \
3818 assert(addr >= binder_addr); \
3819 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3820 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3821
3822 #define bt_assert(section, exists) \
3823 if (!pin_only) assert(prog_data->binding_table.section == \
3824 (exists) ? s : 0xd0d0d0d0)
3825
3826 /**
3827 * Populate the binding table for a given shader stage.
3828 *
3829 * This fills out the table of pointers to surfaces required by the shader,
3830 * and also adds those buffers to the validation list so the kernel can make
3831 * resident before running our batch.
3832 */
3833 static void
3834 iris_populate_binding_table(struct iris_context *ice,
3835 struct iris_batch *batch,
3836 gl_shader_stage stage,
3837 bool pin_only)
3838 {
3839 const struct iris_binder *binder = &ice->state.binder;
3840 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3841 if (!shader)
3842 return;
3843
3844 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3845 struct iris_shader_state *shs = &ice->state.shaders[stage];
3846 uint32_t binder_addr = binder->bo->gtt_offset;
3847
3848 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3849 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3850 int s = 0;
3851
3852 const struct shader_info *info = iris_get_shader_info(ice, stage);
3853 if (!info) {
3854 /* TCS passthrough doesn't need a binding table. */
3855 assert(stage == MESA_SHADER_TESS_CTRL);
3856 return;
3857 }
3858
3859 if (stage == MESA_SHADER_COMPUTE) {
3860 /* surface for gl_NumWorkGroups */
3861 struct iris_state_ref *grid_data = &ice->state.grid_size;
3862 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3863 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3864 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3865 push_bt_entry(grid_state->offset);
3866 }
3867
3868 if (stage == MESA_SHADER_FRAGMENT) {
3869 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3870 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3871 if (cso_fb->nr_cbufs) {
3872 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3873 uint32_t addr;
3874 if (cso_fb->cbufs[i]) {
3875 addr = use_surface(batch, cso_fb->cbufs[i], true,
3876 ice->state.draw_aux_usage[i]);
3877 } else {
3878 addr = use_null_fb_surface(batch, ice);
3879 }
3880 push_bt_entry(addr);
3881 }
3882 } else {
3883 uint32_t addr = use_null_fb_surface(batch, ice);
3884 push_bt_entry(addr);
3885 }
3886 }
3887
3888 unsigned num_textures = util_last_bit(info->textures_used);
3889
3890 bt_assert(texture_start, num_textures > 0);
3891
3892 for (int i = 0; i < num_textures; i++) {
3893 struct iris_sampler_view *view = shs->textures[i];
3894 uint32_t addr = view ? use_sampler_view(ice, batch, view)
3895 : use_null_surface(batch, ice);
3896 push_bt_entry(addr);
3897 }
3898
3899 bt_assert(image_start, info->num_images > 0);
3900
3901 for (int i = 0; i < info->num_images; i++) {
3902 uint32_t addr = use_image(batch, ice, shs, i);
3903 push_bt_entry(addr);
3904 }
3905
3906 bt_assert(ubo_start, shader->num_cbufs > 0);
3907
3908 for (int i = 0; i < shader->num_cbufs; i++) {
3909 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3910 push_bt_entry(addr);
3911 }
3912
3913 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
3914
3915 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3916 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3917 * in st_atom_storagebuf.c so it'll compact them into one range, with
3918 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3919 */
3920 if (info->num_abos + info->num_ssbos > 0) {
3921 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3922 uint32_t addr = use_ssbo(batch, ice, shs, i);
3923 push_bt_entry(addr);
3924 }
3925 }
3926
3927 #if 0
3928 /* XXX: YUV surfaces not implemented yet */
3929 bt_assert(plane_start[1], ...);
3930 bt_assert(plane_start[2], ...);
3931 #endif
3932 }
3933
3934 static void
3935 iris_use_optional_res(struct iris_batch *batch,
3936 struct pipe_resource *res,
3937 bool writeable)
3938 {
3939 if (res) {
3940 struct iris_bo *bo = iris_resource_bo(res);
3941 iris_use_pinned_bo(batch, bo, writeable);
3942 }
3943 }
3944
3945 /* ------------------------------------------------------------------- */
3946
3947 /**
3948 * Pin any BOs which were installed by a previous batch, and restored
3949 * via the hardware logical context mechanism.
3950 *
3951 * We don't need to re-emit all state every batch - the hardware context
3952 * mechanism will save and restore it for us. This includes pointers to
3953 * various BOs...which won't exist unless we ask the kernel to pin them
3954 * by adding them to the validation list.
3955 *
3956 * We can skip buffers if we've re-emitted those packets, as we're
3957 * overwriting those stale pointers with new ones, and don't actually
3958 * refer to the old BOs.
3959 */
3960 static void
3961 iris_restore_render_saved_bos(struct iris_context *ice,
3962 struct iris_batch *batch,
3963 const struct pipe_draw_info *draw)
3964 {
3965 struct iris_genx_state *genx = ice->state.genx;
3966
3967 const uint64_t clean = ~ice->state.dirty;
3968
3969 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3970 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3971 }
3972
3973 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3974 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3975 }
3976
3977 if (clean & IRIS_DIRTY_BLEND_STATE) {
3978 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3979 }
3980
3981 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3982 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3983 }
3984
3985 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3986 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3987 }
3988
3989 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
3990 for (int i = 0; i < 4; i++) {
3991 struct iris_stream_output_target *tgt =
3992 (void *) ice->state.so_target[i];
3993 if (tgt) {
3994 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
3995 true);
3996 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
3997 true);
3998 }
3999 }
4000 }
4001
4002 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4003 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4004 continue;
4005
4006 struct iris_shader_state *shs = &ice->state.shaders[stage];
4007 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4008
4009 if (!shader)
4010 continue;
4011
4012 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4013
4014 for (int i = 0; i < 4; i++) {
4015 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4016
4017 if (range->length == 0)
4018 continue;
4019
4020 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4021 struct iris_resource *res = (void *) cbuf->data.res;
4022
4023 if (res)
4024 iris_use_pinned_bo(batch, res->bo, false);
4025 else
4026 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4027 }
4028 }
4029
4030 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4031 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4032 /* Re-pin any buffers referred to by the binding table. */
4033 iris_populate_binding_table(ice, batch, stage, true);
4034 }
4035 }
4036
4037 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4038 struct iris_shader_state *shs = &ice->state.shaders[stage];
4039 struct pipe_resource *res = shs->sampler_table.res;
4040 if (res)
4041 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4042 }
4043
4044 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4045 if (clean & (IRIS_DIRTY_VS << stage)) {
4046 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4047
4048 if (shader) {
4049 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4050 iris_use_pinned_bo(batch, bo, false);
4051
4052 struct brw_stage_prog_data *prog_data = shader->prog_data;
4053
4054 if (prog_data->total_scratch > 0) {
4055 struct iris_bo *bo =
4056 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4057 iris_use_pinned_bo(batch, bo, true);
4058 }
4059 }
4060 }
4061 }
4062
4063 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
4064 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4065
4066 if (cso_fb->zsbuf) {
4067 struct iris_resource *zres, *sres;
4068 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4069 &zres, &sres);
4070 if (zres) {
4071 iris_cache_flush_for_depth(batch, zres->bo);
4072
4073 iris_use_pinned_bo(batch, zres->bo,
4074 ice->state.depth_writes_enabled);
4075 if (zres->aux.bo) {
4076 iris_use_pinned_bo(batch, zres->aux.bo,
4077 ice->state.depth_writes_enabled);
4078 }
4079 }
4080
4081 if (sres) {
4082 iris_cache_flush_for_depth(batch, sres->bo);
4083
4084 iris_use_pinned_bo(batch, sres->bo,
4085 ice->state.stencil_writes_enabled);
4086 }
4087 }
4088 }
4089
4090 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
4091 /* This draw didn't emit a new index buffer, so we are inheriting the
4092 * older index buffer. This draw didn't need it, but future ones may.
4093 */
4094 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4095 iris_use_pinned_bo(batch, bo, false);
4096 }
4097
4098 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4099 uint64_t bound = ice->state.bound_vertex_buffers;
4100 while (bound) {
4101 const int i = u_bit_scan64(&bound);
4102 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4103 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4104 }
4105 }
4106 }
4107
4108 static void
4109 iris_restore_compute_saved_bos(struct iris_context *ice,
4110 struct iris_batch *batch,
4111 const struct pipe_grid_info *grid)
4112 {
4113 const uint64_t clean = ~ice->state.dirty;
4114
4115 const int stage = MESA_SHADER_COMPUTE;
4116 struct iris_shader_state *shs = &ice->state.shaders[stage];
4117
4118 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
4119 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4120
4121 if (shader) {
4122 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4123 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
4124
4125 if (range->length > 0) {
4126 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4127 struct iris_resource *res = (void *) cbuf->data.res;
4128
4129 if (res)
4130 iris_use_pinned_bo(batch, res->bo, false);
4131 else
4132 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4133 }
4134 }
4135 }
4136
4137 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4138 /* Re-pin any buffers referred to by the binding table. */
4139 iris_populate_binding_table(ice, batch, stage, true);
4140 }
4141
4142 struct pipe_resource *sampler_res = shs->sampler_table.res;
4143 if (sampler_res)
4144 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4145
4146 if (clean & IRIS_DIRTY_CS) {
4147 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4148
4149 if (shader) {
4150 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4151 iris_use_pinned_bo(batch, bo, false);
4152
4153 struct brw_stage_prog_data *prog_data = shader->prog_data;
4154
4155 if (prog_data->total_scratch > 0) {
4156 struct iris_bo *bo =
4157 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4158 iris_use_pinned_bo(batch, bo, true);
4159 }
4160 }
4161 }
4162 }
4163
4164 /**
4165 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4166 */
4167 static void
4168 iris_update_surface_base_address(struct iris_batch *batch,
4169 struct iris_binder *binder)
4170 {
4171 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4172 return;
4173
4174 flush_for_state_base_change(batch);
4175
4176 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4177 sba.SurfaceStateMOCS = MOCS_WB;
4178 sba.SurfaceStateBaseAddressModifyEnable = true;
4179 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4180 }
4181
4182 batch->last_surface_base_address = binder->bo->gtt_offset;
4183 }
4184
4185 static void
4186 iris_upload_dirty_render_state(struct iris_context *ice,
4187 struct iris_batch *batch,
4188 const struct pipe_draw_info *draw)
4189 {
4190 const uint64_t dirty = ice->state.dirty;
4191
4192 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4193 return;
4194
4195 struct iris_genx_state *genx = ice->state.genx;
4196 struct iris_binder *binder = &ice->state.binder;
4197 struct brw_wm_prog_data *wm_prog_data = (void *)
4198 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4199
4200 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4201 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4202 uint32_t cc_vp_address;
4203
4204 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4205 uint32_t *cc_vp_map =
4206 stream_state(batch, ice->state.dynamic_uploader,
4207 &ice->state.last_res.cc_vp,
4208 4 * ice->state.num_viewports *
4209 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4210 for (int i = 0; i < ice->state.num_viewports; i++) {
4211 float zmin, zmax;
4212 util_viewport_zmin_zmax(&ice->state.viewports[i],
4213 cso_rast->clip_halfz, &zmin, &zmax);
4214 if (cso_rast->depth_clip_near)
4215 zmin = 0.0;
4216 if (cso_rast->depth_clip_far)
4217 zmax = 1.0;
4218
4219 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4220 ccv.MinimumDepth = zmin;
4221 ccv.MaximumDepth = zmax;
4222 }
4223
4224 cc_vp_map += GENX(CC_VIEWPORT_length);
4225 }
4226
4227 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4228 ptr.CCViewportPointer = cc_vp_address;
4229 }
4230 }
4231
4232 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4233 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4234 uint32_t sf_cl_vp_address;
4235 uint32_t *vp_map =
4236 stream_state(batch, ice->state.dynamic_uploader,
4237 &ice->state.last_res.sf_cl_vp,
4238 4 * ice->state.num_viewports *
4239 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4240
4241 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4242 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4243 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4244
4245 float vp_xmin = viewport_extent(state, 0, -1.0f);
4246 float vp_xmax = viewport_extent(state, 0, 1.0f);
4247 float vp_ymin = viewport_extent(state, 1, -1.0f);
4248 float vp_ymax = viewport_extent(state, 1, 1.0f);
4249
4250 calculate_guardband_size(cso_fb->width, cso_fb->height,
4251 state->scale[0], state->scale[1],
4252 state->translate[0], state->translate[1],
4253 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4254
4255 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4256 vp.ViewportMatrixElementm00 = state->scale[0];
4257 vp.ViewportMatrixElementm11 = state->scale[1];
4258 vp.ViewportMatrixElementm22 = state->scale[2];
4259 vp.ViewportMatrixElementm30 = state->translate[0];
4260 vp.ViewportMatrixElementm31 = state->translate[1];
4261 vp.ViewportMatrixElementm32 = state->translate[2];
4262 vp.XMinClipGuardband = gb_xmin;
4263 vp.XMaxClipGuardband = gb_xmax;
4264 vp.YMinClipGuardband = gb_ymin;
4265 vp.YMaxClipGuardband = gb_ymax;
4266 vp.XMinViewPort = MAX2(vp_xmin, 0);
4267 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4268 vp.YMinViewPort = MAX2(vp_ymin, 0);
4269 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4270 }
4271
4272 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4273 }
4274
4275 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4276 ptr.SFClipViewportPointer = sf_cl_vp_address;
4277 }
4278 }
4279
4280 if (dirty & IRIS_DIRTY_URB) {
4281 unsigned size[4];
4282
4283 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
4284 if (!ice->shaders.prog[i]) {
4285 size[i] = 1;
4286 } else {
4287 struct brw_vue_prog_data *vue_prog_data =
4288 (void *) ice->shaders.prog[i]->prog_data;
4289 size[i] = vue_prog_data->urb_entry_size;
4290 }
4291 assert(size[i] != 0);
4292 }
4293
4294 genX(emit_urb_setup)(ice, batch, size,
4295 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
4296 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
4297 }
4298
4299 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4300 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4301 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4302 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4303 const int header_dwords = GENX(BLEND_STATE_length);
4304
4305 /* Always write at least one BLEND_STATE - the final RT message will
4306 * reference BLEND_STATE[0] even if there aren't color writes. There
4307 * may still be alpha testing, computed depth, and so on.
4308 */
4309 const int rt_dwords =
4310 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4311
4312 uint32_t blend_offset;
4313 uint32_t *blend_map =
4314 stream_state(batch, ice->state.dynamic_uploader,
4315 &ice->state.last_res.blend,
4316 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4317
4318 uint32_t blend_state_header;
4319 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4320 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4321 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4322 }
4323
4324 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4325 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4326
4327 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4328 ptr.BlendStatePointer = blend_offset;
4329 ptr.BlendStatePointerValid = true;
4330 }
4331 }
4332
4333 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4334 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4335 #if GEN_GEN == 8
4336 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4337 #endif
4338 uint32_t cc_offset;
4339 void *cc_map =
4340 stream_state(batch, ice->state.dynamic_uploader,
4341 &ice->state.last_res.color_calc,
4342 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4343 64, &cc_offset);
4344 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4345 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4346 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4347 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4348 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4349 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4350 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4351 #if GEN_GEN == 8
4352 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4353 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4354 #endif
4355 }
4356 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4357 ptr.ColorCalcStatePointer = cc_offset;
4358 ptr.ColorCalcStatePointerValid = true;
4359 }
4360 }
4361
4362 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4363 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4364 continue;
4365
4366 struct iris_shader_state *shs = &ice->state.shaders[stage];
4367 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4368
4369 if (!shader)
4370 continue;
4371
4372 if (shs->cbuf0_needs_upload)
4373 upload_uniforms(ice, stage);
4374
4375 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4376
4377 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4378 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4379 if (prog_data) {
4380 /* The Skylake PRM contains the following restriction:
4381 *
4382 * "The driver must ensure The following case does not occur
4383 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4384 * buffer 3 read length equal to zero committed followed by a
4385 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4386 * zero committed."
4387 *
4388 * To avoid this, we program the buffers in the highest slots.
4389 * This way, slot 0 is only used if slot 3 is also used.
4390 */
4391 int n = 3;
4392
4393 for (int i = 3; i >= 0; i--) {
4394 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4395
4396 if (range->length == 0)
4397 continue;
4398
4399 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4400 struct iris_resource *res = (void *) cbuf->data.res;
4401
4402 assert(cbuf->data.offset % 32 == 0);
4403
4404 pkt.ConstantBody.ReadLength[n] = range->length;
4405 pkt.ConstantBody.Buffer[n] =
4406 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4407 : ro_bo(batch->screen->workaround_bo, 0);
4408 n--;
4409 }
4410 }
4411 }
4412 }
4413
4414 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4415 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4416 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4417 ptr._3DCommandSubOpcode = 38 + stage;
4418 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4419 }
4420 }
4421 }
4422
4423 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4424 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4425 iris_populate_binding_table(ice, batch, stage, false);
4426 }
4427 }
4428
4429 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4430 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4431 !ice->shaders.prog[stage])
4432 continue;
4433
4434 iris_upload_sampler_states(ice, stage);
4435
4436 struct iris_shader_state *shs = &ice->state.shaders[stage];
4437 struct pipe_resource *res = shs->sampler_table.res;
4438 if (res)
4439 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4440
4441 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4442 ptr._3DCommandSubOpcode = 43 + stage;
4443 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4444 }
4445 }
4446
4447 if (ice->state.need_border_colors)
4448 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4449
4450 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4451 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4452 ms.PixelLocation =
4453 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4454 if (ice->state.framebuffer.samples > 0)
4455 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4456 }
4457 }
4458
4459 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4460 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4461 ms.SampleMask = ice->state.sample_mask;
4462 }
4463 }
4464
4465 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4466 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4467 continue;
4468
4469 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4470
4471 if (shader) {
4472 struct iris_resource *cache = (void *) shader->assembly.res;
4473 iris_use_pinned_bo(batch, cache->bo, false);
4474 iris_batch_emit(batch, shader->derived_data,
4475 iris_derived_program_state_size(stage));
4476 } else {
4477 if (stage == MESA_SHADER_TESS_EVAL) {
4478 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4479 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4480 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4481 } else if (stage == MESA_SHADER_GEOMETRY) {
4482 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4483 }
4484 }
4485 }
4486
4487 if (ice->state.streamout_active) {
4488 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4489 iris_batch_emit(batch, genx->so_buffers,
4490 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4491 for (int i = 0; i < 4; i++) {
4492 struct iris_stream_output_target *tgt =
4493 (void *) ice->state.so_target[i];
4494 if (tgt) {
4495 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4496 true);
4497 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4498 true);
4499 }
4500 }
4501 }
4502
4503 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4504 uint32_t *decl_list =
4505 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4506 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4507 }
4508
4509 if (dirty & IRIS_DIRTY_STREAMOUT) {
4510 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4511
4512 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4513 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4514 sol.SOFunctionEnable = true;
4515 sol.SOStatisticsEnable = true;
4516
4517 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4518 !ice->state.prims_generated_query_active;
4519 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4520 }
4521
4522 assert(ice->state.streamout);
4523
4524 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4525 GENX(3DSTATE_STREAMOUT_length));
4526 }
4527 } else {
4528 if (dirty & IRIS_DIRTY_STREAMOUT) {
4529 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4530 }
4531 }
4532
4533 if (dirty & IRIS_DIRTY_CLIP) {
4534 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4535 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4536
4537 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4538 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4539 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4540 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4541 : CLIPMODE_NORMAL;
4542 if (wm_prog_data->barycentric_interp_modes &
4543 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4544 cl.NonPerspectiveBarycentricEnable = true;
4545
4546 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4547 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4548 }
4549 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4550 ARRAY_SIZE(cso_rast->clip));
4551 }
4552
4553 if (dirty & IRIS_DIRTY_RASTER) {
4554 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4555 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4556 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4557
4558 }
4559
4560 if (dirty & IRIS_DIRTY_WM) {
4561 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4562 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4563
4564 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4565 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4566
4567 wm.BarycentricInterpolationMode =
4568 wm_prog_data->barycentric_interp_modes;
4569
4570 if (wm_prog_data->early_fragment_tests)
4571 wm.EarlyDepthStencilControl = EDSC_PREPS;
4572 else if (wm_prog_data->has_side_effects)
4573 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4574
4575 /* We could skip this bit if color writes are enabled. */
4576 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
4577 wm.ForceThreadDispatchEnable = ForceON;
4578 }
4579 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4580 }
4581
4582 if (dirty & IRIS_DIRTY_SBE) {
4583 iris_emit_sbe(batch, ice);
4584 }
4585
4586 if (dirty & IRIS_DIRTY_PS_BLEND) {
4587 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4588 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4589 const struct shader_info *fs_info =
4590 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4591
4592 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4593 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4594 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
4595 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4596 }
4597
4598 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4599 ARRAY_SIZE(cso_blend->ps_blend));
4600 }
4601
4602 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4603 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4604 #if GEN_GEN >= 9
4605 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4606 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4607 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4608 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4609 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4610 }
4611 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4612 #else
4613 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4614 #endif
4615 }
4616
4617 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4618 uint32_t scissor_offset =
4619 emit_state(batch, ice->state.dynamic_uploader,
4620 &ice->state.last_res.scissor,
4621 ice->state.scissors,
4622 sizeof(struct pipe_scissor_state) *
4623 ice->state.num_viewports, 32);
4624
4625 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4626 ptr.ScissorRectPointer = scissor_offset;
4627 }
4628 }
4629
4630 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4631 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4632 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4633
4634 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4635
4636 if (cso_fb->zsbuf) {
4637 struct iris_resource *zres, *sres;
4638 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4639 &zres, &sres);
4640 if (zres) {
4641 iris_use_pinned_bo(batch, zres->bo,
4642 ice->state.depth_writes_enabled);
4643 if (zres->aux.bo) {
4644 iris_use_pinned_bo(batch, zres->aux.bo,
4645 ice->state.depth_writes_enabled);
4646 }
4647 }
4648
4649 if (sres) {
4650 iris_use_pinned_bo(batch, sres->bo,
4651 ice->state.stencil_writes_enabled);
4652 }
4653 }
4654 }
4655
4656 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4657 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4658 for (int i = 0; i < 32; i++) {
4659 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4660 }
4661 }
4662 }
4663
4664 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4665 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4666 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4667 }
4668
4669 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4670 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4671 topo.PrimitiveTopologyType =
4672 translate_prim_type(draw->mode, draw->vertices_per_patch);
4673 }
4674 }
4675
4676 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4677 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4678 int dynamic_bound = ice->state.bound_vertex_buffers;
4679
4680 if (ice->state.vs_uses_draw_params) {
4681 if (ice->draw.draw_params_offset == 0) {
4682 u_upload_data(ice->state.dynamic_uploader, 0, sizeof(ice->draw.params),
4683 4, &ice->draw.params, &ice->draw.draw_params_offset,
4684 &ice->draw.draw_params_res);
4685 }
4686 assert(ice->draw.draw_params_res);
4687
4688 struct iris_vertex_buffer_state *state =
4689 &(ice->state.genx->vertex_buffers[count]);
4690 pipe_resource_reference(&state->resource, ice->draw.draw_params_res);
4691 struct iris_resource *res = (void *) state->resource;
4692
4693 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4694 vb.VertexBufferIndex = count;
4695 vb.AddressModifyEnable = true;
4696 vb.BufferPitch = 0;
4697 vb.BufferSize = res->bo->size - ice->draw.draw_params_offset;
4698 vb.BufferStartingAddress =
4699 ro_bo(NULL, res->bo->gtt_offset +
4700 (int) ice->draw.draw_params_offset);
4701 vb.MOCS = mocs(res->bo);
4702 }
4703 dynamic_bound |= 1ull << count;
4704 count++;
4705 }
4706
4707 if (ice->state.vs_uses_derived_draw_params) {
4708 u_upload_data(ice->state.dynamic_uploader, 0,
4709 sizeof(ice->draw.derived_params), 4,
4710 &ice->draw.derived_params,
4711 &ice->draw.derived_draw_params_offset,
4712 &ice->draw.derived_draw_params_res);
4713
4714 struct iris_vertex_buffer_state *state =
4715 &(ice->state.genx->vertex_buffers[count]);
4716 pipe_resource_reference(&state->resource,
4717 ice->draw.derived_draw_params_res);
4718 struct iris_resource *res = (void *) ice->draw.derived_draw_params_res;
4719
4720 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4721 vb.VertexBufferIndex = count;
4722 vb.AddressModifyEnable = true;
4723 vb.BufferPitch = 0;
4724 vb.BufferSize =
4725 res->bo->size - ice->draw.derived_draw_params_offset;
4726 vb.BufferStartingAddress =
4727 ro_bo(NULL, res->bo->gtt_offset +
4728 (int) ice->draw.derived_draw_params_offset);
4729 vb.MOCS = mocs(res->bo);
4730 }
4731 dynamic_bound |= 1ull << count;
4732 count++;
4733 }
4734
4735 if (count) {
4736 /* The VF cache designers cut corners, and made the cache key's
4737 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4738 * 32 bits of the address. If you have two vertex buffers which get
4739 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4740 * you can get collisions (even within a single batch).
4741 *
4742 * So, we need to do a VF cache invalidate if the buffer for a VB
4743 * slot slot changes [48:32] address bits from the previous time.
4744 */
4745 unsigned flush_flags = 0;
4746
4747 uint64_t bound = dynamic_bound;
4748 while (bound) {
4749 const int i = u_bit_scan64(&bound);
4750 uint16_t high_bits = 0;
4751
4752 struct iris_resource *res =
4753 (void *) genx->vertex_buffers[i].resource;
4754 if (res) {
4755 iris_use_pinned_bo(batch, res->bo, false);
4756
4757 high_bits = res->bo->gtt_offset >> 32ull;
4758 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4759 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
4760 PIPE_CONTROL_CS_STALL;
4761 ice->state.last_vbo_high_bits[i] = high_bits;
4762 }
4763
4764 /* If the buffer was written to by streamout, we may need
4765 * to stall so those writes land and become visible to the
4766 * vertex fetcher.
4767 *
4768 * TODO: This may stall more than necessary.
4769 */
4770 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
4771 flush_flags |= PIPE_CONTROL_CS_STALL;
4772 }
4773 }
4774
4775 if (flush_flags)
4776 iris_emit_pipe_control_flush(batch, flush_flags);
4777
4778 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4779
4780 uint32_t *map =
4781 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
4782 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
4783 vb.DWordLength = (vb_dwords * count + 1) - 2;
4784 }
4785 map += 1;
4786
4787 bound = dynamic_bound;
4788 while (bound) {
4789 const int i = u_bit_scan64(&bound);
4790 memcpy(map, genx->vertex_buffers[i].state,
4791 sizeof(uint32_t) * vb_dwords);
4792 map += vb_dwords;
4793 }
4794 }
4795 }
4796
4797 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4798 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4799 const unsigned entries = MAX2(cso->count, 1);
4800 if (!(ice->state.vs_needs_sgvs_element ||
4801 ice->state.vs_uses_derived_draw_params ||
4802 ice->state.vs_needs_edge_flag)) {
4803 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4804 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4805 } else {
4806 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
4807 const unsigned dyn_count = cso->count +
4808 ice->state.vs_needs_sgvs_element +
4809 ice->state.vs_uses_derived_draw_params;
4810
4811 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
4812 &dynamic_ves, ve) {
4813 ve.DWordLength =
4814 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
4815 }
4816 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
4817 (cso->count - ice->state.vs_needs_edge_flag) *
4818 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
4819 uint32_t *ve_pack_dest =
4820 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
4821 GENX(VERTEX_ELEMENT_STATE_length)];
4822
4823 if (ice->state.vs_needs_sgvs_element) {
4824 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
4825 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
4826 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
4827 ve.Valid = true;
4828 ve.VertexBufferIndex =
4829 util_bitcount64(ice->state.bound_vertex_buffers);
4830 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
4831 ve.Component0Control = base_ctrl;
4832 ve.Component1Control = base_ctrl;
4833 ve.Component2Control = VFCOMP_STORE_0;
4834 ve.Component3Control = VFCOMP_STORE_0;
4835 }
4836 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
4837 }
4838 if (ice->state.vs_uses_derived_draw_params) {
4839 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
4840 ve.Valid = true;
4841 ve.VertexBufferIndex =
4842 util_bitcount64(ice->state.bound_vertex_buffers) +
4843 ice->state.vs_uses_draw_params;
4844 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
4845 ve.Component0Control = VFCOMP_STORE_SRC;
4846 ve.Component1Control = VFCOMP_STORE_SRC;
4847 ve.Component2Control = VFCOMP_STORE_0;
4848 ve.Component3Control = VFCOMP_STORE_0;
4849 }
4850 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
4851 }
4852 if (ice->state.vs_needs_edge_flag) {
4853 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
4854 ve_pack_dest[i] = cso->edgeflag_ve[i];
4855 }
4856
4857 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
4858 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
4859 }
4860
4861 if (!ice->state.vs_needs_edge_flag) {
4862 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4863 entries * GENX(3DSTATE_VF_INSTANCING_length));
4864 } else {
4865 assert(cso->count > 0);
4866 const unsigned edgeflag_index = cso->count - 1;
4867 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
4868 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
4869 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
4870
4871 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
4872 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
4873 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
4874 vi.VertexElementIndex = edgeflag_index +
4875 ice->state.vs_needs_sgvs_element +
4876 ice->state.vs_uses_derived_draw_params;
4877 }
4878 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
4879 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
4880
4881 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
4882 entries * GENX(3DSTATE_VF_INSTANCING_length));
4883 }
4884 }
4885
4886 if (dirty & IRIS_DIRTY_VF_SGVS) {
4887 const struct brw_vs_prog_data *vs_prog_data = (void *)
4888 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4889 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4890
4891 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4892 if (vs_prog_data->uses_vertexid) {
4893 sgv.VertexIDEnable = true;
4894 sgv.VertexIDComponentNumber = 2;
4895 sgv.VertexIDElementOffset =
4896 cso->count - ice->state.vs_needs_edge_flag;
4897 }
4898
4899 if (vs_prog_data->uses_instanceid) {
4900 sgv.InstanceIDEnable = true;
4901 sgv.InstanceIDComponentNumber = 3;
4902 sgv.InstanceIDElementOffset =
4903 cso->count - ice->state.vs_needs_edge_flag;
4904 }
4905 }
4906 }
4907
4908 if (dirty & IRIS_DIRTY_VF) {
4909 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4910 if (draw->primitive_restart) {
4911 vf.IndexedDrawCutIndexEnable = true;
4912 vf.CutIndex = draw->restart_index;
4913 }
4914 }
4915 }
4916
4917 /* TODO: Gen8 PMA fix */
4918 }
4919
4920 static void
4921 iris_upload_render_state(struct iris_context *ice,
4922 struct iris_batch *batch,
4923 const struct pipe_draw_info *draw)
4924 {
4925 /* Always pin the binder. If we're emitting new binding table pointers,
4926 * we need it. If not, we're probably inheriting old tables via the
4927 * context, and need it anyway. Since true zero-bindings cases are
4928 * practically non-existent, just pin it and avoid last_res tracking.
4929 */
4930 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4931
4932 if (!batch->contains_draw) {
4933 iris_restore_render_saved_bos(ice, batch, draw);
4934 batch->contains_draw = true;
4935 }
4936
4937 iris_upload_dirty_render_state(ice, batch, draw);
4938
4939 if (draw->index_size > 0) {
4940 unsigned offset;
4941
4942 if (draw->has_user_indices) {
4943 u_upload_data(ice->ctx.stream_uploader, 0,
4944 draw->count * draw->index_size, 4, draw->index.user,
4945 &offset, &ice->state.last_res.index_buffer);
4946 } else {
4947 struct iris_resource *res = (void *) draw->index.resource;
4948 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
4949
4950 pipe_resource_reference(&ice->state.last_res.index_buffer,
4951 draw->index.resource);
4952 offset = 0;
4953 }
4954
4955 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4956
4957 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4958 ib.IndexFormat = draw->index_size >> 1;
4959 ib.MOCS = mocs(bo);
4960 ib.BufferSize = bo->size;
4961 ib.BufferStartingAddress = ro_bo(bo, offset);
4962 }
4963
4964 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
4965 uint16_t high_bits = bo->gtt_offset >> 32ull;
4966 if (high_bits != ice->state.last_index_bo_high_bits) {
4967 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE |
4968 PIPE_CONTROL_CS_STALL);
4969 ice->state.last_index_bo_high_bits = high_bits;
4970 }
4971 }
4972
4973 #define _3DPRIM_END_OFFSET 0x2420
4974 #define _3DPRIM_START_VERTEX 0x2430
4975 #define _3DPRIM_VERTEX_COUNT 0x2434
4976 #define _3DPRIM_INSTANCE_COUNT 0x2438
4977 #define _3DPRIM_START_INSTANCE 0x243C
4978 #define _3DPRIM_BASE_VERTEX 0x2440
4979
4980 if (draw->indirect) {
4981 /* We don't support this MultidrawIndirect. */
4982 assert(!draw->indirect->indirect_draw_count);
4983
4984 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4985 assert(bo);
4986
4987 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4988 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
4989 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
4990 }
4991 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4992 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
4993 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
4994 }
4995 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4996 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
4997 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
4998 }
4999 if (draw->index_size) {
5000 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5001 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5002 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5003 }
5004 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5005 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5006 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5007 }
5008 } else {
5009 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5010 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5011 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5012 }
5013 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5014 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5015 lri.DataDWord = 0;
5016 }
5017 }
5018 } else if (draw->count_from_stream_output) {
5019 struct iris_stream_output_target *so =
5020 (void *) draw->count_from_stream_output;
5021
5022 /* XXX: Replace with actual cache tracking */
5023 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
5024
5025 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5026 lrm.RegisterAddress = CS_GPR(0);
5027 lrm.MemoryAddress =
5028 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5029 }
5030 iris_math_div32_gpr0(ice, batch, so->stride);
5031 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
5032
5033 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5034 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5035 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5036 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5037 }
5038
5039 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5040 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5041 prim.PredicateEnable =
5042 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5043
5044 if (draw->indirect || draw->count_from_stream_output) {
5045 prim.IndirectParameterEnable = true;
5046 } else {
5047 prim.StartInstanceLocation = draw->start_instance;
5048 prim.InstanceCount = draw->instance_count;
5049 prim.VertexCountPerInstance = draw->count;
5050
5051 // XXX: this is probably bonkers.
5052 prim.StartVertexLocation = draw->start;
5053
5054 if (draw->index_size) {
5055 prim.BaseVertexLocation += draw->index_bias;
5056 } else {
5057 prim.StartVertexLocation += draw->index_bias;
5058 }
5059
5060 //prim.BaseVertexLocation = ...;
5061 }
5062 }
5063 }
5064
5065 static void
5066 iris_upload_compute_state(struct iris_context *ice,
5067 struct iris_batch *batch,
5068 const struct pipe_grid_info *grid)
5069 {
5070 const uint64_t dirty = ice->state.dirty;
5071 struct iris_screen *screen = batch->screen;
5072 const struct gen_device_info *devinfo = &screen->devinfo;
5073 struct iris_binder *binder = &ice->state.binder;
5074 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5075 struct iris_compiled_shader *shader =
5076 ice->shaders.prog[MESA_SHADER_COMPUTE];
5077 struct brw_stage_prog_data *prog_data = shader->prog_data;
5078 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5079
5080 /* Always pin the binder. If we're emitting new binding table pointers,
5081 * we need it. If not, we're probably inheriting old tables via the
5082 * context, and need it anyway. Since true zero-bindings cases are
5083 * practically non-existent, just pin it and avoid last_res tracking.
5084 */
5085 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5086
5087 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
5088 upload_uniforms(ice, MESA_SHADER_COMPUTE);
5089
5090 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5091 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5092
5093 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
5094 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
5095
5096 iris_use_optional_res(batch, shs->sampler_table.res, false);
5097 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5098
5099 if (ice->state.need_border_colors)
5100 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5101
5102 if (dirty & IRIS_DIRTY_CS) {
5103 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5104 *
5105 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5106 * the only bits that are changed are scoreboard related: Scoreboard
5107 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5108 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5109 * sufficient."
5110 */
5111 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
5112
5113 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5114 if (prog_data->total_scratch) {
5115 struct iris_bo *bo =
5116 iris_get_scratch_space(ice, prog_data->total_scratch,
5117 MESA_SHADER_COMPUTE);
5118 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5119 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5120 }
5121
5122 vfe.MaximumNumberofThreads =
5123 devinfo->max_cs_threads * screen->subslice_total - 1;
5124 #if GEN_GEN < 11
5125 vfe.ResetGatewayTimer =
5126 Resettingrelativetimerandlatchingtheglobaltimestamp;
5127 #endif
5128 #if GEN_GEN == 8
5129 vfe.BypassGatewayControl = true;
5130 #endif
5131 vfe.NumberofURBEntries = 2;
5132 vfe.URBEntryAllocationSize = 2;
5133
5134 vfe.CURBEAllocationSize =
5135 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5136 cs_prog_data->push.cross_thread.regs, 2);
5137 }
5138 }
5139
5140 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5141 uint32_t curbe_data_offset = 0;
5142 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5143 cs_prog_data->push.per_thread.dwords == 1 &&
5144 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5145 struct pipe_resource *curbe_data_res = NULL;
5146 uint32_t *curbe_data_map =
5147 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
5148 ALIGN(cs_prog_data->push.total.size, 64), 64,
5149 &curbe_data_offset);
5150 assert(curbe_data_map);
5151 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5152 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5153
5154 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
5155 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5156 curbe.CURBETotalDataLength =
5157 ALIGN(cs_prog_data->push.total.size, 64);
5158 curbe.CURBEDataStartAddress = curbe_data_offset;
5159 }
5160 }
5161
5162 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5163 IRIS_DIRTY_BINDINGS_CS |
5164 IRIS_DIRTY_CONSTANTS_CS |
5165 IRIS_DIRTY_CS)) {
5166 struct pipe_resource *desc_res = NULL;
5167 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5168
5169 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5170 idd.SamplerStatePointer = shs->sampler_table.offset;
5171 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5172 }
5173
5174 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5175 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5176
5177 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5178 load.InterfaceDescriptorTotalLength =
5179 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5180 load.InterfaceDescriptorDataStartAddress =
5181 emit_state(batch, ice->state.dynamic_uploader,
5182 &desc_res, desc, sizeof(desc), 32);
5183 }
5184
5185 pipe_resource_reference(&desc_res, NULL);
5186 }
5187
5188 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5189 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5190 uint32_t right_mask;
5191
5192 if (remainder > 0)
5193 right_mask = ~0u >> (32 - remainder);
5194 else
5195 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5196
5197 #define GPGPU_DISPATCHDIMX 0x2500
5198 #define GPGPU_DISPATCHDIMY 0x2504
5199 #define GPGPU_DISPATCHDIMZ 0x2508
5200
5201 if (grid->indirect) {
5202 struct iris_state_ref *grid_size = &ice->state.grid_size;
5203 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5204 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5205 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5206 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5207 }
5208 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5209 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5210 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5211 }
5212 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5213 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5214 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5215 }
5216 }
5217
5218 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5219 ggw.IndirectParameterEnable = grid->indirect != NULL;
5220 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5221 ggw.ThreadDepthCounterMaximum = 0;
5222 ggw.ThreadHeightCounterMaximum = 0;
5223 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5224 ggw.ThreadGroupIDXDimension = grid->grid[0];
5225 ggw.ThreadGroupIDYDimension = grid->grid[1];
5226 ggw.ThreadGroupIDZDimension = grid->grid[2];
5227 ggw.RightExecutionMask = right_mask;
5228 ggw.BottomExecutionMask = 0xffffffff;
5229 }
5230
5231 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5232
5233 if (!batch->contains_draw) {
5234 iris_restore_compute_saved_bos(ice, batch, grid);
5235 batch->contains_draw = true;
5236 }
5237 }
5238
5239 /**
5240 * State module teardown.
5241 */
5242 static void
5243 iris_destroy_state(struct iris_context *ice)
5244 {
5245 struct iris_genx_state *genx = ice->state.genx;
5246
5247 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5248 while (bound_vbs) {
5249 const int i = u_bit_scan64(&bound_vbs);
5250 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5251 }
5252 free(ice->state.genx);
5253
5254 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5255 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5256 }
5257 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5258
5259 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5260 struct iris_shader_state *shs = &ice->state.shaders[stage];
5261 pipe_resource_reference(&shs->sampler_table.res, NULL);
5262 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5263 pipe_resource_reference(&shs->constbuf[i].data.res, NULL);
5264 pipe_resource_reference(&shs->constbuf[i].surface_state.res, NULL);
5265 }
5266 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5267 pipe_resource_reference(&shs->image[i].res, NULL);
5268 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5269 }
5270 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5271 pipe_resource_reference(&shs->ssbo[i], NULL);
5272 pipe_resource_reference(&shs->ssbo_surface_state[i].res, NULL);
5273 }
5274 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5275 pipe_sampler_view_reference((struct pipe_sampler_view **)
5276 &shs->textures[i], NULL);
5277 }
5278 }
5279
5280 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5281 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5282
5283 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5284 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5285
5286 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5287 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5288 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5289 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5290 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5291 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5292 }
5293
5294 /* ------------------------------------------------------------------- */
5295
5296 static void
5297 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
5298 uint32_t src)
5299 {
5300 _iris_emit_lrr(batch, dst, src);
5301 }
5302
5303 static void
5304 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
5305 uint32_t src)
5306 {
5307 _iris_emit_lrr(batch, dst, src);
5308 _iris_emit_lrr(batch, dst + 4, src + 4);
5309 }
5310
5311 static void
5312 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5313 uint32_t val)
5314 {
5315 _iris_emit_lri(batch, reg, val);
5316 }
5317
5318 static void
5319 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5320 uint64_t val)
5321 {
5322 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5323 _iris_emit_lri(batch, reg + 4, val >> 32);
5324 }
5325
5326 /**
5327 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5328 */
5329 static void
5330 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5331 struct iris_bo *bo, uint32_t offset)
5332 {
5333 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5334 lrm.RegisterAddress = reg;
5335 lrm.MemoryAddress = ro_bo(bo, offset);
5336 }
5337 }
5338
5339 /**
5340 * Load a 64-bit value from a buffer into a MMIO register via
5341 * two MI_LOAD_REGISTER_MEM commands.
5342 */
5343 static void
5344 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5345 struct iris_bo *bo, uint32_t offset)
5346 {
5347 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5348 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5349 }
5350
5351 static void
5352 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5353 struct iris_bo *bo, uint32_t offset,
5354 bool predicated)
5355 {
5356 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5357 srm.RegisterAddress = reg;
5358 srm.MemoryAddress = rw_bo(bo, offset);
5359 srm.PredicateEnable = predicated;
5360 }
5361 }
5362
5363 static void
5364 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5365 struct iris_bo *bo, uint32_t offset,
5366 bool predicated)
5367 {
5368 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5369 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5370 }
5371
5372 static void
5373 iris_store_data_imm32(struct iris_batch *batch,
5374 struct iris_bo *bo, uint32_t offset,
5375 uint32_t imm)
5376 {
5377 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5378 sdi.Address = rw_bo(bo, offset);
5379 sdi.ImmediateData = imm;
5380 }
5381 }
5382
5383 static void
5384 iris_store_data_imm64(struct iris_batch *batch,
5385 struct iris_bo *bo, uint32_t offset,
5386 uint64_t imm)
5387 {
5388 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5389 * 2 in genxml but it's actually variable length and we need 5 DWords.
5390 */
5391 void *map = iris_get_command_space(batch, 4 * 5);
5392 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5393 sdi.DWordLength = 5 - 2;
5394 sdi.Address = rw_bo(bo, offset);
5395 sdi.ImmediateData = imm;
5396 }
5397 }
5398
5399 static void
5400 iris_copy_mem_mem(struct iris_batch *batch,
5401 struct iris_bo *dst_bo, uint32_t dst_offset,
5402 struct iris_bo *src_bo, uint32_t src_offset,
5403 unsigned bytes)
5404 {
5405 /* MI_COPY_MEM_MEM operates on DWords. */
5406 assert(bytes % 4 == 0);
5407 assert(dst_offset % 4 == 0);
5408 assert(src_offset % 4 == 0);
5409
5410 for (unsigned i = 0; i < bytes; i += 4) {
5411 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5412 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5413 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5414 }
5415 }
5416 }
5417
5418 /* ------------------------------------------------------------------- */
5419
5420 static unsigned
5421 flags_to_post_sync_op(uint32_t flags)
5422 {
5423 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5424 return WriteImmediateData;
5425
5426 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5427 return WritePSDepthCount;
5428
5429 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5430 return WriteTimestamp;
5431
5432 return 0;
5433 }
5434
5435 /**
5436 * Do the given flags have a Post Sync or LRI Post Sync operation?
5437 */
5438 static enum pipe_control_flags
5439 get_post_sync_flags(enum pipe_control_flags flags)
5440 {
5441 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5442 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5443 PIPE_CONTROL_WRITE_TIMESTAMP |
5444 PIPE_CONTROL_LRI_POST_SYNC_OP;
5445
5446 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5447 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5448 */
5449 assert(util_bitcount(flags) <= 1);
5450
5451 return flags;
5452 }
5453
5454 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5455
5456 /**
5457 * Emit a series of PIPE_CONTROL commands, taking into account any
5458 * workarounds necessary to actually accomplish the caller's request.
5459 *
5460 * Unless otherwise noted, spec quotations in this function come from:
5461 *
5462 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5463 * Restrictions for PIPE_CONTROL.
5464 *
5465 * You should not use this function directly. Use the helpers in
5466 * iris_pipe_control.c instead, which may split the pipe control further.
5467 */
5468 static void
5469 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
5470 struct iris_bo *bo, uint32_t offset, uint64_t imm)
5471 {
5472 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5473 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5474 enum pipe_control_flags non_lri_post_sync_flags =
5475 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5476
5477 /* Recursive PIPE_CONTROL workarounds --------------------------------
5478 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5479 *
5480 * We do these first because we want to look at the original operation,
5481 * rather than any workarounds we set.
5482 */
5483 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5484 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5485 * lists several workarounds:
5486 *
5487 * "Project: SKL, KBL, BXT
5488 *
5489 * If the VF Cache Invalidation Enable is set to a 1 in a
5490 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5491 * sets to 0, with the VF Cache Invalidation Enable set to 0
5492 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5493 * Invalidation Enable set to a 1."
5494 */
5495 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
5496 }
5497
5498 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5499 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5500 *
5501 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5502 * programmed prior to programming a PIPECONTROL command with "LRI
5503 * Post Sync Operation" in GPGPU mode of operation (i.e when
5504 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5505 *
5506 * The same text exists a few rows below for Post Sync Op.
5507 */
5508 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
5509 }
5510
5511 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5512 /* Cannonlake:
5513 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5514 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5515 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5516 */
5517 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
5518 offset, imm);
5519 }
5520
5521 /* "Flush Types" workarounds ---------------------------------------------
5522 * We do these now because they may add post-sync operations or CS stalls.
5523 */
5524
5525 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5526 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5527 *
5528 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5529 * 'Write PS Depth Count' or 'Write Timestamp'."
5530 */
5531 if (!bo) {
5532 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5533 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5534 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5535 bo = batch->screen->workaround_bo;
5536 }
5537 }
5538
5539 /* #1130 from Gen10 workarounds page:
5540 *
5541 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5542 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5543 * board stall if Render target cache flush is enabled."
5544 *
5545 * Applicable to CNL B0 and C0 steppings only.
5546 *
5547 * The wording here is unclear, and this workaround doesn't look anything
5548 * like the internal bug report recommendations, but leave it be for now...
5549 */
5550 if (GEN_GEN == 10) {
5551 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5552 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5553 } else if (flags & non_lri_post_sync_flags) {
5554 flags |= PIPE_CONTROL_DEPTH_STALL;
5555 }
5556 }
5557
5558 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5559 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5560 *
5561 * "This bit must be DISABLED for operations other than writing
5562 * PS_DEPTH_COUNT."
5563 *
5564 * This seems like nonsense. An Ivybridge workaround requires us to
5565 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5566 * operation. Gen8+ requires us to emit depth stalls and depth cache
5567 * flushes together. So, it's hard to imagine this means anything other
5568 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5569 *
5570 * We ignore the supposed restriction and do nothing.
5571 */
5572 }
5573
5574 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5575 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5576 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5577 *
5578 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5579 * PS_DEPTH_COUNT or TIMESTAMP queries."
5580 *
5581 * TODO: Implement end-of-pipe checking.
5582 */
5583 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5584 PIPE_CONTROL_WRITE_TIMESTAMP)));
5585 }
5586
5587 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5588 /* From the PIPE_CONTROL instruction table, bit 1:
5589 *
5590 * "This bit is ignored if Depth Stall Enable is set.
5591 * Further, the render cache is not flushed even if Write Cache
5592 * Flush Enable bit is set."
5593 *
5594 * We assert that the caller doesn't do this combination, to try and
5595 * prevent mistakes. It shouldn't hurt the GPU, though.
5596 *
5597 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5598 * and "Render Target Flush" combo is explicitly required for BTI
5599 * update workarounds.
5600 */
5601 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5602 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5603 }
5604
5605 /* PIPE_CONTROL page workarounds ------------------------------------- */
5606
5607 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5608 /* From the PIPE_CONTROL page itself:
5609 *
5610 * "IVB, HSW, BDW
5611 * Restriction: Pipe_control with CS-stall bit set must be issued
5612 * before a pipe-control command that has the State Cache
5613 * Invalidate bit set."
5614 */
5615 flags |= PIPE_CONTROL_CS_STALL;
5616 }
5617
5618 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5619 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5620 *
5621 * "Project: ALL
5622 * SW must always program Post-Sync Operation to "Write Immediate
5623 * Data" when Flush LLC is set."
5624 *
5625 * For now, we just require the caller to do it.
5626 */
5627 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5628 }
5629
5630 /* "Post-Sync Operation" workarounds -------------------------------- */
5631
5632 /* Project: All / Argument: Global Snapshot Count Reset [19]
5633 *
5634 * "This bit must not be exercised on any product.
5635 * Requires stall bit ([20] of DW1) set."
5636 *
5637 * We don't use this, so we just assert that it isn't used. The
5638 * PIPE_CONTROL instruction page indicates that they intended this
5639 * as a debug feature and don't think it is useful in production,
5640 * but it may actually be usable, should we ever want to.
5641 */
5642 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5643
5644 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5645 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5646 /* Project: All / Arguments:
5647 *
5648 * - Generic Media State Clear [16]
5649 * - Indirect State Pointers Disable [16]
5650 *
5651 * "Requires stall bit ([20] of DW1) set."
5652 *
5653 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5654 * State Clear) says:
5655 *
5656 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5657 * programmed prior to programming a PIPECONTROL command with "Media
5658 * State Clear" set in GPGPU mode of operation"
5659 *
5660 * This is a subset of the earlier rule, so there's nothing to do.
5661 */
5662 flags |= PIPE_CONTROL_CS_STALL;
5663 }
5664
5665 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5666 /* Project: All / Argument: Store Data Index
5667 *
5668 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5669 * than '0'."
5670 *
5671 * For now, we just assert that the caller does this. We might want to
5672 * automatically add a write to the workaround BO...
5673 */
5674 assert(non_lri_post_sync_flags != 0);
5675 }
5676
5677 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5678 /* Project: All / Argument: Sync GFDT
5679 *
5680 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5681 * than '0' or 0x2520[13] must be set."
5682 *
5683 * For now, we just assert that the caller does this.
5684 */
5685 assert(non_lri_post_sync_flags != 0);
5686 }
5687
5688 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5689 /* Project: IVB+ / Argument: TLB inv
5690 *
5691 * "Requires stall bit ([20] of DW1) set."
5692 *
5693 * Also, from the PIPE_CONTROL instruction table:
5694 *
5695 * "Project: SKL+
5696 * Post Sync Operation or CS stall must be set to ensure a TLB
5697 * invalidation occurs. Otherwise no cycle will occur to the TLB
5698 * cache to invalidate."
5699 *
5700 * This is not a subset of the earlier rule, so there's nothing to do.
5701 */
5702 flags |= PIPE_CONTROL_CS_STALL;
5703 }
5704
5705 if (GEN_GEN == 9 && devinfo->gt == 4) {
5706 /* TODO: The big Skylake GT4 post sync op workaround */
5707 }
5708
5709 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5710
5711 if (IS_COMPUTE_PIPELINE(batch)) {
5712 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5713 /* Project: SKL+ / Argument: Tex Invalidate
5714 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5715 */
5716 flags |= PIPE_CONTROL_CS_STALL;
5717 }
5718
5719 if (GEN_GEN == 8 && (post_sync_flags ||
5720 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5721 PIPE_CONTROL_DEPTH_STALL |
5722 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5723 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5724 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5725 /* Project: BDW / Arguments:
5726 *
5727 * - LRI Post Sync Operation [23]
5728 * - Post Sync Op [15:14]
5729 * - Notify En [8]
5730 * - Depth Stall [13]
5731 * - Render Target Cache Flush [12]
5732 * - Depth Cache Flush [0]
5733 * - DC Flush Enable [5]
5734 *
5735 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5736 * Workloads."
5737 */
5738 flags |= PIPE_CONTROL_CS_STALL;
5739
5740 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5741 *
5742 * "Project: BDW
5743 * This bit must be always set when PIPE_CONTROL command is
5744 * programmed by GPGPU and MEDIA workloads, except for the cases
5745 * when only Read Only Cache Invalidation bits are set (State
5746 * Cache Invalidation Enable, Instruction cache Invalidation
5747 * Enable, Texture Cache Invalidation Enable, Constant Cache
5748 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5749 * need not implemented when FF_DOP_CG is disable via "Fixed
5750 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5751 *
5752 * It sounds like we could avoid CS stalls in some cases, but we
5753 * don't currently bother. This list isn't exactly the list above,
5754 * either...
5755 */
5756 }
5757 }
5758
5759 /* "Stall" workarounds ----------------------------------------------
5760 * These have to come after the earlier ones because we may have added
5761 * some additional CS stalls above.
5762 */
5763
5764 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5765 /* Project: PRE-SKL, VLV, CHV
5766 *
5767 * "[All Stepping][All SKUs]:
5768 *
5769 * One of the following must also be set:
5770 *
5771 * - Render Target Cache Flush Enable ([12] of DW1)
5772 * - Depth Cache Flush Enable ([0] of DW1)
5773 * - Stall at Pixel Scoreboard ([1] of DW1)
5774 * - Depth Stall ([13] of DW1)
5775 * - Post-Sync Operation ([13] of DW1)
5776 * - DC Flush Enable ([5] of DW1)"
5777 *
5778 * If we don't already have one of those bits set, we choose to add
5779 * "Stall at Pixel Scoreboard". Some of the other bits require a
5780 * CS stall as a workaround (see above), which would send us into
5781 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5782 * appears to be safe, so we choose that.
5783 */
5784 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5785 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5786 PIPE_CONTROL_WRITE_IMMEDIATE |
5787 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5788 PIPE_CONTROL_WRITE_TIMESTAMP |
5789 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5790 PIPE_CONTROL_DEPTH_STALL |
5791 PIPE_CONTROL_DATA_CACHE_FLUSH;
5792 if (!(flags & wa_bits))
5793 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5794 }
5795
5796 /* Emit --------------------------------------------------------------- */
5797
5798 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5799 pc.LRIPostSyncOperation = NoLRIOperation;
5800 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5801 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5802 pc.StoreDataIndex = 0;
5803 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5804 pc.GlobalSnapshotCountReset =
5805 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5806 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5807 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5808 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5809 pc.RenderTargetCacheFlushEnable =
5810 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5811 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5812 pc.StateCacheInvalidationEnable =
5813 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5814 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5815 pc.ConstantCacheInvalidationEnable =
5816 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5817 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5818 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5819 pc.InstructionCacheInvalidateEnable =
5820 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5821 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5822 pc.IndirectStatePointersDisable =
5823 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5824 pc.TextureCacheInvalidationEnable =
5825 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5826 pc.Address = rw_bo(bo, offset);
5827 pc.ImmediateData = imm;
5828 }
5829 }
5830
5831 void
5832 genX(emit_urb_setup)(struct iris_context *ice,
5833 struct iris_batch *batch,
5834 const unsigned size[4],
5835 bool tess_present, bool gs_present)
5836 {
5837 const struct gen_device_info *devinfo = &batch->screen->devinfo;
5838 const unsigned push_size_kB = 32;
5839 unsigned entries[4];
5840 unsigned start[4];
5841
5842 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
5843
5844 gen_get_urb_config(devinfo, 1024 * push_size_kB,
5845 1024 * ice->shaders.urb_size,
5846 tess_present, gs_present,
5847 size, entries, start);
5848
5849 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
5850 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
5851 urb._3DCommandSubOpcode += i;
5852 urb.VSURBStartingAddress = start[i];
5853 urb.VSURBEntryAllocationSize = size[i] - 1;
5854 urb.VSNumberofURBEntries = entries[i];
5855 }
5856 }
5857 }
5858
5859 void
5860 genX(init_state)(struct iris_context *ice)
5861 {
5862 struct pipe_context *ctx = &ice->ctx;
5863 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5864
5865 ctx->create_blend_state = iris_create_blend_state;
5866 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5867 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5868 ctx->create_sampler_state = iris_create_sampler_state;
5869 ctx->create_sampler_view = iris_create_sampler_view;
5870 ctx->create_surface = iris_create_surface;
5871 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5872 ctx->bind_blend_state = iris_bind_blend_state;
5873 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5874 ctx->bind_sampler_states = iris_bind_sampler_states;
5875 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5876 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5877 ctx->delete_blend_state = iris_delete_state;
5878 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5879 ctx->delete_rasterizer_state = iris_delete_state;
5880 ctx->delete_sampler_state = iris_delete_state;
5881 ctx->delete_vertex_elements_state = iris_delete_state;
5882 ctx->set_blend_color = iris_set_blend_color;
5883 ctx->set_clip_state = iris_set_clip_state;
5884 ctx->set_constant_buffer = iris_set_constant_buffer;
5885 ctx->set_shader_buffers = iris_set_shader_buffers;
5886 ctx->set_shader_images = iris_set_shader_images;
5887 ctx->set_sampler_views = iris_set_sampler_views;
5888 ctx->set_tess_state = iris_set_tess_state;
5889 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5890 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5891 ctx->set_sample_mask = iris_set_sample_mask;
5892 ctx->set_scissor_states = iris_set_scissor_states;
5893 ctx->set_stencil_ref = iris_set_stencil_ref;
5894 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5895 ctx->set_viewport_states = iris_set_viewport_states;
5896 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5897 ctx->surface_destroy = iris_surface_destroy;
5898 ctx->draw_vbo = iris_draw_vbo;
5899 ctx->launch_grid = iris_launch_grid;
5900 ctx->create_stream_output_target = iris_create_stream_output_target;
5901 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5902 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5903
5904 ice->vtbl.destroy_state = iris_destroy_state;
5905 ice->vtbl.init_render_context = iris_init_render_context;
5906 ice->vtbl.init_compute_context = iris_init_compute_context;
5907 ice->vtbl.upload_render_state = iris_upload_render_state;
5908 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5909 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5910 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5911 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
5912 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
5913 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5914 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5915 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5916 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5917 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5918 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5919 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5920 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5921 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5922 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5923 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5924 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5925 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5926 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5927 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5928 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5929 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5930 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5931 ice->vtbl.mocs = mocs;
5932
5933 ice->state.dirty = ~0ull;
5934
5935 ice->state.statistics_counters_enabled = true;
5936
5937 ice->state.sample_mask = 0xffff;
5938 ice->state.num_viewports = 1;
5939 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5940
5941 /* Make a 1x1x1 null surface for unbound textures */
5942 void *null_surf_map =
5943 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5944 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5945 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5946 ice->state.unbound_tex.offset +=
5947 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5948
5949 /* Default all scissor rectangles to be empty regions. */
5950 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5951 ice->state.scissors[i] = (struct pipe_scissor_state) {
5952 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5953 };
5954 }
5955 }