iris/gen9: Optimize slice and subslice load balancing behavior.
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "drm-uapi/i915_drm.h"
99 #include "nir.h"
100 #include "intel/compiler/brw_compiler.h"
101 #include "intel/common/gen_l3_config.h"
102 #include "intel/common/gen_sample_positions.h"
103 #include "iris_batch.h"
104 #include "iris_context.h"
105 #include "iris_defines.h"
106 #include "iris_pipe.h"
107 #include "iris_resource.h"
108
109 #include "iris_genx_macros.h"
110 #include "intel/common/gen_guardband.h"
111
112 #if GEN_GEN == 8
113 #define MOCS_PTE 0x18
114 #define MOCS_WB 0x78
115 #else
116 #define MOCS_PTE (1 << 1)
117 #define MOCS_WB (2 << 1)
118 #endif
119
120 static uint32_t
121 mocs(const struct iris_bo *bo)
122 {
123 return bo && bo->external ? MOCS_PTE : MOCS_WB;
124 }
125
126 /**
127 * Statically assert that PIPE_* enums match the hardware packets.
128 * (As long as they match, we don't need to translate them.)
129 */
130 UNUSED static void pipe_asserts()
131 {
132 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
133
134 /* pipe_logicop happens to match the hardware. */
135 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
136 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
137 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
138 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
139 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
140 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
141 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
142 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
143 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
144 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
145 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
146 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
147 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
148 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
149 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
150 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
151
152 /* pipe_blend_func happens to match the hardware. */
153 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
157 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
158 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
159 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
160 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
161 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
162 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
163 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
164 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
165 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
166 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
167 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
168 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
169 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
170 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
171 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
172
173 /* pipe_blend_func happens to match the hardware. */
174 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
175 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
176 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
177 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
178 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
179
180 /* pipe_stencil_op happens to match the hardware. */
181 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
182 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
183 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
184 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
185 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
186 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
187 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
188 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
189
190 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
191 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
192 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
193 #undef PIPE_ASSERT
194 }
195
196 static unsigned
197 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
198 {
199 static const unsigned map[] = {
200 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
201 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
202 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
203 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
204 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
205 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
206 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
207 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
208 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
209 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
210 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
211 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
212 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
213 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
214 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
215 };
216
217 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
218 }
219
220 static unsigned
221 translate_compare_func(enum pipe_compare_func pipe_func)
222 {
223 static const unsigned map[] = {
224 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
225 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
226 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
227 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
228 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
229 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
230 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
231 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
232 };
233 return map[pipe_func];
234 }
235
236 static unsigned
237 translate_shadow_func(enum pipe_compare_func pipe_func)
238 {
239 /* Gallium specifies the result of shadow comparisons as:
240 *
241 * 1 if ref <op> texel,
242 * 0 otherwise.
243 *
244 * The hardware does:
245 *
246 * 0 if texel <op> ref,
247 * 1 otherwise.
248 *
249 * So we need to flip the operator and also negate.
250 */
251 static const unsigned map[] = {
252 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
253 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
254 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
255 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
256 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
257 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
258 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
259 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
260 };
261 return map[pipe_func];
262 }
263
264 static unsigned
265 translate_cull_mode(unsigned pipe_face)
266 {
267 static const unsigned map[4] = {
268 [PIPE_FACE_NONE] = CULLMODE_NONE,
269 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
270 [PIPE_FACE_BACK] = CULLMODE_BACK,
271 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
272 };
273 return map[pipe_face];
274 }
275
276 static unsigned
277 translate_fill_mode(unsigned pipe_polymode)
278 {
279 static const unsigned map[4] = {
280 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
281 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
282 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
283 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
284 };
285 return map[pipe_polymode];
286 }
287
288 static unsigned
289 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
290 {
291 static const unsigned map[] = {
292 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
293 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
294 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
295 };
296 return map[pipe_mip];
297 }
298
299 static uint32_t
300 translate_wrap(unsigned pipe_wrap)
301 {
302 static const unsigned map[] = {
303 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
304 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
305 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
306 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
307 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
308 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
309
310 /* These are unsupported. */
311 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
312 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
313 };
314 return map[pipe_wrap];
315 }
316
317 /**
318 * Allocate space for some indirect state.
319 *
320 * Return a pointer to the map (to fill it out) and a state ref (for
321 * referring to the state in GPU commands).
322 */
323 static void *
324 upload_state(struct u_upload_mgr *uploader,
325 struct iris_state_ref *ref,
326 unsigned size,
327 unsigned alignment)
328 {
329 void *p = NULL;
330 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
331 return p;
332 }
333
334 /**
335 * Stream out temporary/short-lived state.
336 *
337 * This allocates space, pins the BO, and includes the BO address in the
338 * returned offset (which works because all state lives in 32-bit memory
339 * zones).
340 */
341 static uint32_t *
342 stream_state(struct iris_batch *batch,
343 struct u_upload_mgr *uploader,
344 struct pipe_resource **out_res,
345 unsigned size,
346 unsigned alignment,
347 uint32_t *out_offset)
348 {
349 void *ptr = NULL;
350
351 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
352
353 struct iris_bo *bo = iris_resource_bo(*out_res);
354 iris_use_pinned_bo(batch, bo, false);
355
356 *out_offset += iris_bo_offset_from_base_address(bo);
357
358 iris_record_state_size(batch->state_sizes, *out_offset, size);
359
360 return ptr;
361 }
362
363 /**
364 * stream_state() + memcpy.
365 */
366 static uint32_t
367 emit_state(struct iris_batch *batch,
368 struct u_upload_mgr *uploader,
369 struct pipe_resource **out_res,
370 const void *data,
371 unsigned size,
372 unsigned alignment)
373 {
374 unsigned offset = 0;
375 uint32_t *map =
376 stream_state(batch, uploader, out_res, size, alignment, &offset);
377
378 if (map)
379 memcpy(map, data, size);
380
381 return offset;
382 }
383
384 /**
385 * Did field 'x' change between 'old_cso' and 'new_cso'?
386 *
387 * (If so, we may want to set some dirty flags.)
388 */
389 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
390 #define cso_changed_memcmp(x) \
391 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
392
393 static void
394 flush_for_state_base_change(struct iris_batch *batch)
395 {
396 /* Flush before emitting STATE_BASE_ADDRESS.
397 *
398 * This isn't documented anywhere in the PRM. However, it seems to be
399 * necessary prior to changing the surface state base adress. We've
400 * seen issues in Vulkan where we get GPU hangs when using multi-level
401 * command buffers which clear depth, reset state base address, and then
402 * go render stuff.
403 *
404 * Normally, in GL, we would trust the kernel to do sufficient stalls
405 * and flushes prior to executing our batch. However, it doesn't seem
406 * as if the kernel's flushing is always sufficient and we don't want to
407 * rely on it.
408 *
409 * We make this an end-of-pipe sync instead of a normal flush because we
410 * do not know the current status of the GPU. On Haswell at least,
411 * having a fast-clear operation in flight at the same time as a normal
412 * rendering operation can cause hangs. Since the kernel's flushing is
413 * insufficient, we need to ensure that any rendering operations from
414 * other processes are definitely complete before we try to do our own
415 * rendering. It's a bit of a big hammer but it appears to work.
416 */
417 iris_emit_end_of_pipe_sync(batch,
418 "change STATE_BASE_ADDRESS",
419 PIPE_CONTROL_RENDER_TARGET_FLUSH |
420 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
421 PIPE_CONTROL_DATA_CACHE_FLUSH);
422 }
423
424 static void
425 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
426 {
427 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
428 lri.RegisterOffset = reg;
429 lri.DataDWord = val;
430 }
431 }
432 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
433
434 static void
435 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
436 {
437 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
438 lrr.SourceRegisterAddress = src;
439 lrr.DestinationRegisterAddress = dst;
440 }
441 }
442
443 static void
444 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
445 {
446 #if GEN_GEN >= 8 && GEN_GEN < 10
447 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
448 *
449 * Software must clear the COLOR_CALC_STATE Valid field in
450 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
451 * with Pipeline Select set to GPGPU.
452 *
453 * The internal hardware docs recommend the same workaround for Gen9
454 * hardware too.
455 */
456 if (pipeline == GPGPU)
457 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
458 #endif
459
460
461 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
462 * PIPELINE_SELECT [DevBWR+]":
463 *
464 * "Project: DEVSNB+
465 *
466 * Software must ensure all the write caches are flushed through a
467 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
468 * command to invalidate read only caches prior to programming
469 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
470 */
471 iris_emit_pipe_control_flush(batch,
472 "workaround: PIPELINE_SELECT flushes (1/2)",
473 PIPE_CONTROL_RENDER_TARGET_FLUSH |
474 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
475 PIPE_CONTROL_DATA_CACHE_FLUSH |
476 PIPE_CONTROL_CS_STALL);
477
478 iris_emit_pipe_control_flush(batch,
479 "workaround: PIPELINE_SELECT flushes (2/2)",
480 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
481 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
482 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
483 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
484
485 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
486 #if GEN_GEN >= 9
487 sel.MaskBits = 3;
488 #endif
489 sel.PipelineSelection = pipeline;
490 }
491 }
492
493 UNUSED static void
494 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
495 {
496 #if GEN_GEN == 9
497 /* Project: DevGLK
498 *
499 * "This chicken bit works around a hardware issue with barrier
500 * logic encountered when switching between GPGPU and 3D pipelines.
501 * To workaround the issue, this mode bit should be set after a
502 * pipeline is selected."
503 */
504 uint32_t reg_val;
505 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
506 reg.GLKBarrierMode = value;
507 reg.GLKBarrierModeMask = 1;
508 }
509 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
510 #endif
511 }
512
513 static void
514 init_state_base_address(struct iris_batch *batch)
515 {
516 flush_for_state_base_change(batch);
517
518 /* We program most base addresses once at context initialization time.
519 * Each base address points at a 4GB memory zone, and never needs to
520 * change. See iris_bufmgr.h for a description of the memory zones.
521 *
522 * The one exception is Surface State Base Address, which needs to be
523 * updated occasionally. See iris_binder.c for the details there.
524 */
525 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
526 sba.GeneralStateMOCS = MOCS_WB;
527 sba.StatelessDataPortAccessMOCS = MOCS_WB;
528 sba.DynamicStateMOCS = MOCS_WB;
529 sba.IndirectObjectMOCS = MOCS_WB;
530 sba.InstructionMOCS = MOCS_WB;
531
532 sba.GeneralStateBaseAddressModifyEnable = true;
533 sba.DynamicStateBaseAddressModifyEnable = true;
534 sba.IndirectObjectBaseAddressModifyEnable = true;
535 sba.InstructionBaseAddressModifyEnable = true;
536 sba.GeneralStateBufferSizeModifyEnable = true;
537 sba.DynamicStateBufferSizeModifyEnable = true;
538 #if (GEN_GEN >= 9)
539 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
540 sba.BindlessSurfaceStateMOCS = MOCS_WB;
541 #endif
542 sba.IndirectObjectBufferSizeModifyEnable = true;
543 sba.InstructionBuffersizeModifyEnable = true;
544
545 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
546 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
547
548 sba.GeneralStateBufferSize = 0xfffff;
549 sba.IndirectObjectBufferSize = 0xfffff;
550 sba.InstructionBufferSize = 0xfffff;
551 sba.DynamicStateBufferSize = 0xfffff;
552 }
553 }
554
555 static void
556 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
557 bool has_slm, bool wants_dc_cache)
558 {
559 uint32_t reg_val;
560 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
561 reg.SLMEnable = has_slm;
562 #if GEN_GEN == 11
563 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
564 * in L3CNTLREG register. The default setting of the bit is not the
565 * desirable behavior.
566 */
567 reg.ErrorDetectionBehaviorControl = true;
568 reg.UseFullWays = true;
569 #endif
570 reg.URBAllocation = cfg->n[GEN_L3P_URB];
571 reg.ROAllocation = cfg->n[GEN_L3P_RO];
572 reg.DCAllocation = cfg->n[GEN_L3P_DC];
573 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
574 }
575 iris_emit_lri(batch, L3CNTLREG, reg_val);
576 }
577
578 static void
579 iris_emit_default_l3_config(struct iris_batch *batch,
580 const struct gen_device_info *devinfo,
581 bool compute)
582 {
583 bool wants_dc_cache = true;
584 bool has_slm = compute;
585 const struct gen_l3_weights w =
586 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
587 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
588 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
589 }
590
591 #if GEN_GEN == 9 || GEN_GEN == 10
592 static void
593 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
594 {
595 uint32_t reg_val;
596
597 /* A fixed function pipe flush is required before modifying this field */
598 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
599 : "disable preemption",
600 PIPE_CONTROL_RENDER_TARGET_FLUSH);
601
602 /* enable object level preemption */
603 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
604 reg.ReplayMode = enable;
605 reg.ReplayModeMask = true;
606 }
607 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
608 }
609 #endif
610
611 /**
612 * Upload the initial GPU state for a render context.
613 *
614 * This sets some invariant state that needs to be programmed a particular
615 * way, but we never actually change.
616 */
617 static void
618 iris_init_render_context(struct iris_screen *screen,
619 struct iris_batch *batch,
620 struct iris_vtable *vtbl,
621 struct pipe_debug_callback *dbg)
622 {
623 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
624 uint32_t reg_val;
625
626 emit_pipeline_select(batch, _3D);
627
628 iris_emit_default_l3_config(batch, devinfo, false);
629
630 init_state_base_address(batch);
631
632 #if GEN_GEN >= 9
633 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
634 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
635 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
636 }
637 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
638 #else
639 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
640 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
641 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
642 }
643 iris_emit_lri(batch, INSTPM, reg_val);
644 #endif
645
646 #if GEN_GEN == 9
647 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
648 reg.FloatBlendOptimizationEnable = true;
649 reg.FloatBlendOptimizationEnableMask = true;
650 reg.PartialResolveDisableInVC = true;
651 reg.PartialResolveDisableInVCMask = true;
652 }
653 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
654
655 if (devinfo->is_geminilake)
656 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
657 #endif
658
659 #if GEN_GEN == 11
660 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
661 reg.HeaderlessMessageforPreemptableContexts = 1;
662 reg.HeaderlessMessageforPreemptableContextsMask = 1;
663 }
664 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
665
666 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
667 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
668 reg.EnabledTexelOffsetPrecisionFix = 1;
669 reg.EnabledTexelOffsetPrecisionFixMask = 1;
670 }
671 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
672
673 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
674 reg.StateCacheRedirectToCSSectionEnable = true;
675 reg.StateCacheRedirectToCSSectionEnableMask = true;
676 }
677 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
678
679 /* Hardware specification recommends disabling repacking for the
680 * compatibility with decompression mechanism in display controller.
681 */
682 if (devinfo->disable_ccs_repack) {
683 iris_pack_state(GENX(CACHE_MODE_0), &reg_val, reg) {
684 reg.DisableRepackingforCompression = true;
685 reg.DisableRepackingforCompressionMask = true;
686 }
687 iris_emit_lri(batch, CACHE_MODE_0, reg_val);
688 }
689
690 // XXX: 3D_MODE?
691 #endif
692
693 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
694 * changing it dynamically. We set it to the maximum size here, and
695 * instead include the render target dimensions in the viewport, so
696 * viewport extents clipping takes care of pruning stray geometry.
697 */
698 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
699 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
700 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
701 }
702
703 /* Set the initial MSAA sample positions. */
704 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
705 GEN_SAMPLE_POS_1X(pat._1xSample);
706 GEN_SAMPLE_POS_2X(pat._2xSample);
707 GEN_SAMPLE_POS_4X(pat._4xSample);
708 GEN_SAMPLE_POS_8X(pat._8xSample);
709 #if GEN_GEN >= 9
710 GEN_SAMPLE_POS_16X(pat._16xSample);
711 #endif
712 }
713
714 /* Use the legacy AA line coverage computation. */
715 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
716
717 /* Disable chromakeying (it's for media) */
718 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
719
720 /* We want regular rendering, not special HiZ operations. */
721 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
722
723 /* No polygon stippling offsets are necessary. */
724 /* TODO: may need to set an offset for origin-UL framebuffers */
725 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
726
727 /* Set a static partitioning of the push constant area. */
728 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
729 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
730 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
731 alloc._3DCommandSubOpcode = 18 + i;
732 alloc.ConstantBufferOffset = 6 * i;
733 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
734 }
735 }
736
737 #if GEN_GEN == 10
738 /* Gen11+ is enabled for us by the kernel. */
739 iris_enable_obj_preemption(batch, true);
740 #endif
741 }
742
743 static void
744 iris_init_compute_context(struct iris_screen *screen,
745 struct iris_batch *batch,
746 struct iris_vtable *vtbl,
747 struct pipe_debug_callback *dbg)
748 {
749 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
750
751 emit_pipeline_select(batch, GPGPU);
752
753 iris_emit_default_l3_config(batch, devinfo, true);
754
755 init_state_base_address(batch);
756
757 #if GEN_GEN == 9
758 if (devinfo->is_geminilake)
759 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
760 #endif
761 }
762
763 struct iris_vertex_buffer_state {
764 /** The VERTEX_BUFFER_STATE hardware structure. */
765 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
766
767 /** The resource to source vertex data from. */
768 struct pipe_resource *resource;
769 };
770
771 struct iris_depth_buffer_state {
772 /* Depth/HiZ/Stencil related hardware packets. */
773 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
774 GENX(3DSTATE_STENCIL_BUFFER_length) +
775 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
776 GENX(3DSTATE_CLEAR_PARAMS_length)];
777 };
778
779 /**
780 * Generation-specific context state (ice->state.genx->...).
781 *
782 * Most state can go in iris_context directly, but these encode hardware
783 * packets which vary by generation.
784 */
785 struct iris_genx_state {
786 struct iris_vertex_buffer_state vertex_buffers[33];
787 uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
788
789 struct iris_depth_buffer_state depth_buffer;
790
791 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
792
793 #if GEN_GEN == 9
794 /* Is object level preemption enabled? */
795 bool object_preemption;
796 #endif
797
798 struct {
799 #if GEN_GEN == 8
800 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
801 #endif
802 } shaders[MESA_SHADER_STAGES];
803 };
804
805 /**
806 * The pipe->set_blend_color() driver hook.
807 *
808 * This corresponds to our COLOR_CALC_STATE.
809 */
810 static void
811 iris_set_blend_color(struct pipe_context *ctx,
812 const struct pipe_blend_color *state)
813 {
814 struct iris_context *ice = (struct iris_context *) ctx;
815
816 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
817 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
818 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
819 }
820
821 /**
822 * Gallium CSO for blend state (see pipe_blend_state).
823 */
824 struct iris_blend_state {
825 /** Partial 3DSTATE_PS_BLEND */
826 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
827
828 /** Partial BLEND_STATE */
829 uint32_t blend_state[GENX(BLEND_STATE_length) +
830 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
831
832 bool alpha_to_coverage; /* for shader key */
833
834 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
835 uint8_t blend_enables;
836
837 /** Bitfield of whether color writes are enabled for RT[i] */
838 uint8_t color_write_enables;
839
840 /** Does RT[0] use dual color blending? */
841 bool dual_color_blending;
842 };
843
844 static enum pipe_blendfactor
845 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
846 {
847 if (alpha_to_one) {
848 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
849 return PIPE_BLENDFACTOR_ONE;
850
851 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
852 return PIPE_BLENDFACTOR_ZERO;
853 }
854
855 return f;
856 }
857
858 /**
859 * The pipe->create_blend_state() driver hook.
860 *
861 * Translates a pipe_blend_state into iris_blend_state.
862 */
863 static void *
864 iris_create_blend_state(struct pipe_context *ctx,
865 const struct pipe_blend_state *state)
866 {
867 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
868 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
869
870 cso->blend_enables = 0;
871 cso->color_write_enables = 0;
872 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
873
874 cso->alpha_to_coverage = state->alpha_to_coverage;
875
876 bool indep_alpha_blend = false;
877
878 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
879 const struct pipe_rt_blend_state *rt =
880 &state->rt[state->independent_blend_enable ? i : 0];
881
882 enum pipe_blendfactor src_rgb =
883 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
884 enum pipe_blendfactor src_alpha =
885 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
886 enum pipe_blendfactor dst_rgb =
887 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
888 enum pipe_blendfactor dst_alpha =
889 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
890
891 if (rt->rgb_func != rt->alpha_func ||
892 src_rgb != src_alpha || dst_rgb != dst_alpha)
893 indep_alpha_blend = true;
894
895 if (rt->blend_enable)
896 cso->blend_enables |= 1u << i;
897
898 if (rt->colormask)
899 cso->color_write_enables |= 1u << i;
900
901 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
902 be.LogicOpEnable = state->logicop_enable;
903 be.LogicOpFunction = state->logicop_func;
904
905 be.PreBlendSourceOnlyClampEnable = false;
906 be.ColorClampRange = COLORCLAMP_RTFORMAT;
907 be.PreBlendColorClampEnable = true;
908 be.PostBlendColorClampEnable = true;
909
910 be.ColorBufferBlendEnable = rt->blend_enable;
911
912 be.ColorBlendFunction = rt->rgb_func;
913 be.AlphaBlendFunction = rt->alpha_func;
914 be.SourceBlendFactor = src_rgb;
915 be.SourceAlphaBlendFactor = src_alpha;
916 be.DestinationBlendFactor = dst_rgb;
917 be.DestinationAlphaBlendFactor = dst_alpha;
918
919 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
920 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
921 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
922 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
923 }
924 blend_entry += GENX(BLEND_STATE_ENTRY_length);
925 }
926
927 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
928 /* pb.HasWriteableRT is filled in at draw time.
929 * pb.AlphaTestEnable is filled in at draw time.
930 *
931 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
932 * setting it when dual color blending without an appropriate shader.
933 */
934
935 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
936 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
937
938 pb.SourceBlendFactor =
939 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
940 pb.SourceAlphaBlendFactor =
941 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
942 pb.DestinationBlendFactor =
943 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
944 pb.DestinationAlphaBlendFactor =
945 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
946 }
947
948 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
949 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
950 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
951 bs.AlphaToOneEnable = state->alpha_to_one;
952 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
953 bs.ColorDitherEnable = state->dither;
954 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
955 }
956
957 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
958
959 return cso;
960 }
961
962 /**
963 * The pipe->bind_blend_state() driver hook.
964 *
965 * Bind a blending CSO and flag related dirty bits.
966 */
967 static void
968 iris_bind_blend_state(struct pipe_context *ctx, void *state)
969 {
970 struct iris_context *ice = (struct iris_context *) ctx;
971 struct iris_blend_state *cso = state;
972
973 ice->state.cso_blend = cso;
974 ice->state.blend_enables = cso ? cso->blend_enables : 0;
975
976 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
977 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
978 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
979 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
980 }
981
982 /**
983 * Return true if the FS writes to any color outputs which are not disabled
984 * via color masking.
985 */
986 static bool
987 has_writeable_rt(const struct iris_blend_state *cso_blend,
988 const struct shader_info *fs_info)
989 {
990 if (!fs_info)
991 return false;
992
993 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
994
995 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
996 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
997
998 return cso_blend->color_write_enables & rt_outputs;
999 }
1000
1001 /**
1002 * Gallium CSO for depth, stencil, and alpha testing state.
1003 */
1004 struct iris_depth_stencil_alpha_state {
1005 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1006 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1007
1008 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1009 struct pipe_alpha_state alpha;
1010
1011 /** Outbound to resolve and cache set tracking. */
1012 bool depth_writes_enabled;
1013 bool stencil_writes_enabled;
1014 };
1015
1016 /**
1017 * The pipe->create_depth_stencil_alpha_state() driver hook.
1018 *
1019 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1020 * testing state since we need pieces of it in a variety of places.
1021 */
1022 static void *
1023 iris_create_zsa_state(struct pipe_context *ctx,
1024 const struct pipe_depth_stencil_alpha_state *state)
1025 {
1026 struct iris_depth_stencil_alpha_state *cso =
1027 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1028
1029 bool two_sided_stencil = state->stencil[1].enabled;
1030
1031 cso->alpha = state->alpha;
1032 cso->depth_writes_enabled = state->depth.writemask;
1033 cso->stencil_writes_enabled =
1034 state->stencil[0].writemask != 0 ||
1035 (two_sided_stencil && state->stencil[1].writemask != 0);
1036
1037 /* The state tracker needs to optimize away EQUAL writes for us. */
1038 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1039
1040 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1041 wmds.StencilFailOp = state->stencil[0].fail_op;
1042 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1043 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1044 wmds.StencilTestFunction =
1045 translate_compare_func(state->stencil[0].func);
1046 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1047 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1048 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1049 wmds.BackfaceStencilTestFunction =
1050 translate_compare_func(state->stencil[1].func);
1051 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1052 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1053 wmds.StencilTestEnable = state->stencil[0].enabled;
1054 wmds.StencilBufferWriteEnable =
1055 state->stencil[0].writemask != 0 ||
1056 (two_sided_stencil && state->stencil[1].writemask != 0);
1057 wmds.DepthTestEnable = state->depth.enabled;
1058 wmds.DepthBufferWriteEnable = state->depth.writemask;
1059 wmds.StencilTestMask = state->stencil[0].valuemask;
1060 wmds.StencilWriteMask = state->stencil[0].writemask;
1061 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1062 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1063 /* wmds.[Backface]StencilReferenceValue are merged later */
1064 }
1065
1066 return cso;
1067 }
1068
1069 /**
1070 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1071 *
1072 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1073 */
1074 static void
1075 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1076 {
1077 struct iris_context *ice = (struct iris_context *) ctx;
1078 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1079 struct iris_depth_stencil_alpha_state *new_cso = state;
1080
1081 if (new_cso) {
1082 if (cso_changed(alpha.ref_value))
1083 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1084
1085 if (cso_changed(alpha.enabled))
1086 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1087
1088 if (cso_changed(alpha.func))
1089 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1090
1091 if (cso_changed(depth_writes_enabled))
1092 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1093
1094 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1095 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1096 }
1097
1098 ice->state.cso_zsa = new_cso;
1099 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1100 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1101 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1102 }
1103
1104 /**
1105 * Gallium CSO for rasterizer state.
1106 */
1107 struct iris_rasterizer_state {
1108 uint32_t sf[GENX(3DSTATE_SF_length)];
1109 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1110 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1111 uint32_t wm[GENX(3DSTATE_WM_length)];
1112 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1113
1114 uint8_t num_clip_plane_consts;
1115 bool clip_halfz; /* for CC_VIEWPORT */
1116 bool depth_clip_near; /* for CC_VIEWPORT */
1117 bool depth_clip_far; /* for CC_VIEWPORT */
1118 bool flatshade; /* for shader state */
1119 bool flatshade_first; /* for stream output */
1120 bool clamp_fragment_color; /* for shader state */
1121 bool light_twoside; /* for shader state */
1122 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1123 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1124 bool line_stipple_enable;
1125 bool poly_stipple_enable;
1126 bool multisample;
1127 bool force_persample_interp;
1128 bool conservative_rasterization;
1129 bool fill_mode_point_or_line;
1130 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1131 uint16_t sprite_coord_enable;
1132 };
1133
1134 static float
1135 get_line_width(const struct pipe_rasterizer_state *state)
1136 {
1137 float line_width = state->line_width;
1138
1139 /* From the OpenGL 4.4 spec:
1140 *
1141 * "The actual width of non-antialiased lines is determined by rounding
1142 * the supplied width to the nearest integer, then clamping it to the
1143 * implementation-dependent maximum non-antialiased line width."
1144 */
1145 if (!state->multisample && !state->line_smooth)
1146 line_width = roundf(state->line_width);
1147
1148 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1149 /* For 1 pixel line thickness or less, the general anti-aliasing
1150 * algorithm gives up, and a garbage line is generated. Setting a
1151 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1152 * (one-pixel-wide), non-antialiased lines.
1153 *
1154 * Lines rendered with zero Line Width are rasterized using the
1155 * "Grid Intersection Quantization" rules as specified by the
1156 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1157 */
1158 line_width = 0.0f;
1159 }
1160
1161 return line_width;
1162 }
1163
1164 /**
1165 * The pipe->create_rasterizer_state() driver hook.
1166 */
1167 static void *
1168 iris_create_rasterizer_state(struct pipe_context *ctx,
1169 const struct pipe_rasterizer_state *state)
1170 {
1171 struct iris_rasterizer_state *cso =
1172 malloc(sizeof(struct iris_rasterizer_state));
1173
1174 cso->multisample = state->multisample;
1175 cso->force_persample_interp = state->force_persample_interp;
1176 cso->clip_halfz = state->clip_halfz;
1177 cso->depth_clip_near = state->depth_clip_near;
1178 cso->depth_clip_far = state->depth_clip_far;
1179 cso->flatshade = state->flatshade;
1180 cso->flatshade_first = state->flatshade_first;
1181 cso->clamp_fragment_color = state->clamp_fragment_color;
1182 cso->light_twoside = state->light_twoside;
1183 cso->rasterizer_discard = state->rasterizer_discard;
1184 cso->half_pixel_center = state->half_pixel_center;
1185 cso->sprite_coord_mode = state->sprite_coord_mode;
1186 cso->sprite_coord_enable = state->sprite_coord_enable;
1187 cso->line_stipple_enable = state->line_stipple_enable;
1188 cso->poly_stipple_enable = state->poly_stipple_enable;
1189 cso->conservative_rasterization =
1190 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1191
1192 cso->fill_mode_point_or_line =
1193 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1194 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1195 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1196 state->fill_back == PIPE_POLYGON_MODE_POINT;
1197
1198 if (state->clip_plane_enable != 0)
1199 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1200 else
1201 cso->num_clip_plane_consts = 0;
1202
1203 float line_width = get_line_width(state);
1204
1205 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1206 sf.StatisticsEnable = true;
1207 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1208 sf.LineEndCapAntialiasingRegionWidth =
1209 state->line_smooth ? _10pixels : _05pixels;
1210 sf.LastPixelEnable = state->line_last_pixel;
1211 sf.LineWidth = line_width;
1212 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1213 !state->point_quad_rasterization;
1214 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1215 sf.PointWidth = state->point_size;
1216
1217 if (state->flatshade_first) {
1218 sf.TriangleFanProvokingVertexSelect = 1;
1219 } else {
1220 sf.TriangleStripListProvokingVertexSelect = 2;
1221 sf.TriangleFanProvokingVertexSelect = 2;
1222 sf.LineStripListProvokingVertexSelect = 1;
1223 }
1224 }
1225
1226 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1227 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1228 rr.CullMode = translate_cull_mode(state->cull_face);
1229 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1230 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1231 rr.DXMultisampleRasterizationEnable = state->multisample;
1232 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1233 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1234 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1235 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1236 rr.GlobalDepthOffsetScale = state->offset_scale;
1237 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1238 rr.SmoothPointEnable = state->point_smooth;
1239 rr.AntialiasingEnable = state->line_smooth;
1240 rr.ScissorRectangleEnable = state->scissor;
1241 #if GEN_GEN >= 9
1242 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1243 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1244 rr.ConservativeRasterizationEnable =
1245 cso->conservative_rasterization;
1246 #else
1247 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1248 #endif
1249 }
1250
1251 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1252 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1253 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1254 */
1255 cl.EarlyCullEnable = true;
1256 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1257 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1258 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1259 cl.GuardbandClipTestEnable = true;
1260 cl.ClipEnable = true;
1261 cl.MinimumPointWidth = 0.125;
1262 cl.MaximumPointWidth = 255.875;
1263
1264 if (state->flatshade_first) {
1265 cl.TriangleFanProvokingVertexSelect = 1;
1266 } else {
1267 cl.TriangleStripListProvokingVertexSelect = 2;
1268 cl.TriangleFanProvokingVertexSelect = 2;
1269 cl.LineStripListProvokingVertexSelect = 1;
1270 }
1271 }
1272
1273 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1274 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1275 * filled in at draw time from the FS program.
1276 */
1277 wm.LineAntialiasingRegionWidth = _10pixels;
1278 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1279 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1280 wm.LineStippleEnable = state->line_stipple_enable;
1281 wm.PolygonStippleEnable = state->poly_stipple_enable;
1282 }
1283
1284 /* Remap from 0..255 back to 1..256 */
1285 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1286
1287 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1288 line.LineStipplePattern = state->line_stipple_pattern;
1289 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1290 line.LineStippleRepeatCount = line_stipple_factor;
1291 }
1292
1293 return cso;
1294 }
1295
1296 /**
1297 * The pipe->bind_rasterizer_state() driver hook.
1298 *
1299 * Bind a rasterizer CSO and flag related dirty bits.
1300 */
1301 static void
1302 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1303 {
1304 struct iris_context *ice = (struct iris_context *) ctx;
1305 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1306 struct iris_rasterizer_state *new_cso = state;
1307
1308 if (new_cso) {
1309 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1310 if (cso_changed_memcmp(line_stipple))
1311 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1312
1313 if (cso_changed(half_pixel_center))
1314 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1315
1316 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1317 ice->state.dirty |= IRIS_DIRTY_WM;
1318
1319 if (cso_changed(rasterizer_discard))
1320 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1321
1322 if (cso_changed(flatshade_first))
1323 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1324
1325 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1326 cso_changed(clip_halfz))
1327 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1328
1329 if (cso_changed(sprite_coord_enable) ||
1330 cso_changed(sprite_coord_mode) ||
1331 cso_changed(light_twoside))
1332 ice->state.dirty |= IRIS_DIRTY_SBE;
1333
1334 if (cso_changed(conservative_rasterization))
1335 ice->state.dirty |= IRIS_DIRTY_FS;
1336 }
1337
1338 ice->state.cso_rast = new_cso;
1339 ice->state.dirty |= IRIS_DIRTY_RASTER;
1340 ice->state.dirty |= IRIS_DIRTY_CLIP;
1341 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1342 }
1343
1344 /**
1345 * Return true if the given wrap mode requires the border color to exist.
1346 *
1347 * (We can skip uploading it if the sampler isn't going to use it.)
1348 */
1349 static bool
1350 wrap_mode_needs_border_color(unsigned wrap_mode)
1351 {
1352 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1353 }
1354
1355 /**
1356 * Gallium CSO for sampler state.
1357 */
1358 struct iris_sampler_state {
1359 union pipe_color_union border_color;
1360 bool needs_border_color;
1361
1362 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1363 };
1364
1365 /**
1366 * The pipe->create_sampler_state() driver hook.
1367 *
1368 * We fill out SAMPLER_STATE (except for the border color pointer), and
1369 * store that on the CPU. It doesn't make sense to upload it to a GPU
1370 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1371 * all bound sampler states to be in contiguous memor.
1372 */
1373 static void *
1374 iris_create_sampler_state(struct pipe_context *ctx,
1375 const struct pipe_sampler_state *state)
1376 {
1377 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1378
1379 if (!cso)
1380 return NULL;
1381
1382 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1383 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1384
1385 unsigned wrap_s = translate_wrap(state->wrap_s);
1386 unsigned wrap_t = translate_wrap(state->wrap_t);
1387 unsigned wrap_r = translate_wrap(state->wrap_r);
1388
1389 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1390
1391 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1392 wrap_mode_needs_border_color(wrap_t) ||
1393 wrap_mode_needs_border_color(wrap_r);
1394
1395 float min_lod = state->min_lod;
1396 unsigned mag_img_filter = state->mag_img_filter;
1397
1398 // XXX: explain this code ported from ilo...I don't get it at all...
1399 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1400 state->min_lod > 0.0f) {
1401 min_lod = 0.0f;
1402 mag_img_filter = state->min_img_filter;
1403 }
1404
1405 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1406 samp.TCXAddressControlMode = wrap_s;
1407 samp.TCYAddressControlMode = wrap_t;
1408 samp.TCZAddressControlMode = wrap_r;
1409 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1410 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1411 samp.MinModeFilter = state->min_img_filter;
1412 samp.MagModeFilter = mag_img_filter;
1413 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1414 samp.MaximumAnisotropy = RATIO21;
1415
1416 if (state->max_anisotropy >= 2) {
1417 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1418 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1419 samp.AnisotropicAlgorithm = EWAApproximation;
1420 }
1421
1422 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1423 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1424
1425 samp.MaximumAnisotropy =
1426 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1427 }
1428
1429 /* Set address rounding bits if not using nearest filtering. */
1430 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1431 samp.UAddressMinFilterRoundingEnable = true;
1432 samp.VAddressMinFilterRoundingEnable = true;
1433 samp.RAddressMinFilterRoundingEnable = true;
1434 }
1435
1436 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1437 samp.UAddressMagFilterRoundingEnable = true;
1438 samp.VAddressMagFilterRoundingEnable = true;
1439 samp.RAddressMagFilterRoundingEnable = true;
1440 }
1441
1442 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1443 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1444
1445 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1446
1447 samp.LODPreClampMode = CLAMP_MODE_OGL;
1448 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1449 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1450 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1451
1452 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1453 }
1454
1455 return cso;
1456 }
1457
1458 /**
1459 * The pipe->bind_sampler_states() driver hook.
1460 */
1461 static void
1462 iris_bind_sampler_states(struct pipe_context *ctx,
1463 enum pipe_shader_type p_stage,
1464 unsigned start, unsigned count,
1465 void **states)
1466 {
1467 struct iris_context *ice = (struct iris_context *) ctx;
1468 gl_shader_stage stage = stage_from_pipe(p_stage);
1469 struct iris_shader_state *shs = &ice->state.shaders[stage];
1470
1471 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1472
1473 for (int i = 0; i < count; i++) {
1474 shs->samplers[start + i] = states[i];
1475 }
1476
1477 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1478 }
1479
1480 /**
1481 * Upload the sampler states into a contiguous area of GPU memory, for
1482 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1483 *
1484 * Also fill out the border color state pointers.
1485 */
1486 static void
1487 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1488 {
1489 struct iris_shader_state *shs = &ice->state.shaders[stage];
1490 const struct shader_info *info = iris_get_shader_info(ice, stage);
1491
1492 /* We assume the state tracker will call pipe->bind_sampler_states()
1493 * if the program's number of textures changes.
1494 */
1495 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1496
1497 if (!count)
1498 return;
1499
1500 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1501 * in the dynamic state memory zone, so we can point to it via the
1502 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1503 */
1504 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
1505 uint32_t *map =
1506 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
1507 if (unlikely(!map))
1508 return;
1509
1510 struct pipe_resource *res = shs->sampler_table.res;
1511 shs->sampler_table.offset +=
1512 iris_bo_offset_from_base_address(iris_resource_bo(res));
1513
1514 iris_record_state_size(ice->state.sizes, shs->sampler_table.offset, size);
1515
1516 /* Make sure all land in the same BO */
1517 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1518
1519 ice->state.need_border_colors &= ~(1 << stage);
1520
1521 for (int i = 0; i < count; i++) {
1522 struct iris_sampler_state *state = shs->samplers[i];
1523 struct iris_sampler_view *tex = shs->textures[i];
1524
1525 if (!state) {
1526 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1527 } else if (!state->needs_border_color) {
1528 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1529 } else {
1530 ice->state.need_border_colors |= 1 << stage;
1531
1532 /* We may need to swizzle the border color for format faking.
1533 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
1534 * This means we need to move the border color's A channel into
1535 * the R or G channels so that those read swizzles will move it
1536 * back into A.
1537 */
1538 union pipe_color_union *color = &state->border_color;
1539 union pipe_color_union tmp;
1540 if (tex) {
1541 enum pipe_format internal_format = tex->res->internal_format;
1542
1543 if (util_format_is_alpha(internal_format)) {
1544 unsigned char swz[4] = {
1545 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
1546 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1547 };
1548 util_format_apply_color_swizzle(&tmp, color, swz, true);
1549 color = &tmp;
1550 } else if (util_format_is_luminance_alpha(internal_format) &&
1551 internal_format != PIPE_FORMAT_L8A8_SRGB) {
1552 unsigned char swz[4] = {
1553 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
1554 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1555 };
1556 util_format_apply_color_swizzle(&tmp, color, swz, true);
1557 color = &tmp;
1558 }
1559 }
1560
1561 /* Stream out the border color and merge the pointer. */
1562 uint32_t offset = iris_upload_border_color(ice, color);
1563
1564 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1565 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1566 dyns.BorderColorPointer = offset;
1567 }
1568
1569 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1570 map[j] = state->sampler_state[j] | dynamic[j];
1571 }
1572
1573 map += GENX(SAMPLER_STATE_length);
1574 }
1575 }
1576
1577 static enum isl_channel_select
1578 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1579 {
1580 switch (swz) {
1581 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1582 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1583 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1584 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1585 case PIPE_SWIZZLE_1: return SCS_ONE;
1586 case PIPE_SWIZZLE_0: return SCS_ZERO;
1587 default: unreachable("invalid swizzle");
1588 }
1589 }
1590
1591 static void
1592 fill_buffer_surface_state(struct isl_device *isl_dev,
1593 struct iris_resource *res,
1594 void *map,
1595 enum isl_format format,
1596 struct isl_swizzle swizzle,
1597 unsigned offset,
1598 unsigned size)
1599 {
1600 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1601 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1602
1603 /* The ARB_texture_buffer_specification says:
1604 *
1605 * "The number of texels in the buffer texture's texel array is given by
1606 *
1607 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1608 *
1609 * where <buffer_size> is the size of the buffer object, in basic
1610 * machine units and <components> and <base_type> are the element count
1611 * and base data type for elements, as specified in Table X.1. The
1612 * number of texels in the texel array is then clamped to the
1613 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1614 *
1615 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1616 * so that when ISL divides by stride to obtain the number of texels, that
1617 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1618 */
1619 unsigned final_size =
1620 MIN3(size, res->bo->size - res->offset - offset,
1621 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1622
1623 isl_buffer_fill_state(isl_dev, map,
1624 .address = res->bo->gtt_offset + res->offset + offset,
1625 .size_B = final_size,
1626 .format = format,
1627 .swizzle = swizzle,
1628 .stride_B = cpp,
1629 .mocs = mocs(res->bo));
1630 }
1631
1632 #define SURFACE_STATE_ALIGNMENT 64
1633
1634 /**
1635 * Allocate several contiguous SURFACE_STATE structures, one for each
1636 * supported auxiliary surface mode.
1637 */
1638 static void *
1639 alloc_surface_states(struct u_upload_mgr *mgr,
1640 struct iris_state_ref *ref,
1641 unsigned aux_usages)
1642 {
1643 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1644
1645 /* If this changes, update this to explicitly align pointers */
1646 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1647
1648 assert(aux_usages != 0);
1649
1650 void *map =
1651 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1652 SURFACE_STATE_ALIGNMENT);
1653
1654 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1655
1656 return map;
1657 }
1658
1659 static void
1660 fill_surface_state(struct isl_device *isl_dev,
1661 void *map,
1662 struct iris_resource *res,
1663 struct isl_view *view,
1664 unsigned aux_usage)
1665 {
1666 struct isl_surf_fill_state_info f = {
1667 .surf = &res->surf,
1668 .view = view,
1669 .mocs = mocs(res->bo),
1670 .address = res->bo->gtt_offset + res->offset,
1671 };
1672
1673 if (aux_usage != ISL_AUX_USAGE_NONE) {
1674 f.aux_surf = &res->aux.surf;
1675 f.aux_usage = aux_usage;
1676 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1677
1678 struct iris_bo *clear_bo = NULL;
1679 uint64_t clear_offset = 0;
1680 f.clear_color =
1681 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
1682 if (clear_bo) {
1683 f.clear_address = clear_bo->gtt_offset + clear_offset;
1684 f.use_clear_address = isl_dev->info->gen > 9;
1685 }
1686 }
1687
1688 isl_surf_fill_state_s(isl_dev, map, &f);
1689 }
1690
1691 /**
1692 * The pipe->create_sampler_view() driver hook.
1693 */
1694 static struct pipe_sampler_view *
1695 iris_create_sampler_view(struct pipe_context *ctx,
1696 struct pipe_resource *tex,
1697 const struct pipe_sampler_view *tmpl)
1698 {
1699 struct iris_context *ice = (struct iris_context *) ctx;
1700 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1701 const struct gen_device_info *devinfo = &screen->devinfo;
1702 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1703
1704 if (!isv)
1705 return NULL;
1706
1707 /* initialize base object */
1708 isv->base = *tmpl;
1709 isv->base.context = ctx;
1710 isv->base.texture = NULL;
1711 pipe_reference_init(&isv->base.reference, 1);
1712 pipe_resource_reference(&isv->base.texture, tex);
1713
1714 if (util_format_is_depth_or_stencil(tmpl->format)) {
1715 struct iris_resource *zres, *sres;
1716 const struct util_format_description *desc =
1717 util_format_description(tmpl->format);
1718
1719 iris_get_depth_stencil_resources(tex, &zres, &sres);
1720
1721 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1722 }
1723
1724 isv->res = (struct iris_resource *) tex;
1725
1726 void *map = alloc_surface_states(ice->state.surface_uploader,
1727 &isv->surface_state,
1728 isv->res->aux.sampler_usages);
1729 if (!unlikely(map))
1730 return NULL;
1731
1732 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1733
1734 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1735 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1736 usage |= ISL_SURF_USAGE_CUBE_BIT;
1737
1738 const struct iris_format_info fmt =
1739 iris_format_for_usage(devinfo, tmpl->format, usage);
1740
1741 isv->clear_color = isv->res->aux.clear_color;
1742
1743 isv->view = (struct isl_view) {
1744 .format = fmt.fmt,
1745 .swizzle = (struct isl_swizzle) {
1746 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1747 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1748 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1749 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1750 },
1751 .usage = usage,
1752 };
1753
1754 /* Fill out SURFACE_STATE for this view. */
1755 if (tmpl->target != PIPE_BUFFER) {
1756 isv->view.base_level = tmpl->u.tex.first_level;
1757 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1758 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1759 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1760 isv->view.array_len =
1761 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1762
1763 unsigned aux_modes = isv->res->aux.sampler_usages;
1764 while (aux_modes) {
1765 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1766
1767 /* If we have a multisampled depth buffer, do not create a sampler
1768 * surface state with HiZ.
1769 */
1770 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view,
1771 aux_usage);
1772
1773 map += SURFACE_STATE_ALIGNMENT;
1774 }
1775 } else {
1776 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
1777 isv->view.format, isv->view.swizzle,
1778 tmpl->u.buf.offset, tmpl->u.buf.size);
1779 }
1780
1781 return &isv->base;
1782 }
1783
1784 static void
1785 iris_sampler_view_destroy(struct pipe_context *ctx,
1786 struct pipe_sampler_view *state)
1787 {
1788 struct iris_sampler_view *isv = (void *) state;
1789 pipe_resource_reference(&state->texture, NULL);
1790 pipe_resource_reference(&isv->surface_state.res, NULL);
1791 free(isv);
1792 }
1793
1794 /**
1795 * The pipe->create_surface() driver hook.
1796 *
1797 * In Gallium nomenclature, "surfaces" are a view of a resource that
1798 * can be bound as a render target or depth/stencil buffer.
1799 */
1800 static struct pipe_surface *
1801 iris_create_surface(struct pipe_context *ctx,
1802 struct pipe_resource *tex,
1803 const struct pipe_surface *tmpl)
1804 {
1805 struct iris_context *ice = (struct iris_context *) ctx;
1806 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1807 const struct gen_device_info *devinfo = &screen->devinfo;
1808
1809 isl_surf_usage_flags_t usage = 0;
1810 if (tmpl->writable)
1811 usage = ISL_SURF_USAGE_STORAGE_BIT;
1812 else if (util_format_is_depth_or_stencil(tmpl->format))
1813 usage = ISL_SURF_USAGE_DEPTH_BIT;
1814 else
1815 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1816
1817 const struct iris_format_info fmt =
1818 iris_format_for_usage(devinfo, tmpl->format, usage);
1819
1820 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1821 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1822 /* Framebuffer validation will reject this invalid case, but it
1823 * hasn't had the opportunity yet. In the meantime, we need to
1824 * avoid hitting ISL asserts about unsupported formats below.
1825 */
1826 return NULL;
1827 }
1828
1829 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1830 struct pipe_surface *psurf = &surf->base;
1831 struct iris_resource *res = (struct iris_resource *) tex;
1832
1833 if (!surf)
1834 return NULL;
1835
1836 pipe_reference_init(&psurf->reference, 1);
1837 pipe_resource_reference(&psurf->texture, tex);
1838 psurf->context = ctx;
1839 psurf->format = tmpl->format;
1840 psurf->width = tex->width0;
1841 psurf->height = tex->height0;
1842 psurf->texture = tex;
1843 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1844 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1845 psurf->u.tex.level = tmpl->u.tex.level;
1846
1847 struct isl_view *view = &surf->view;
1848 *view = (struct isl_view) {
1849 .format = fmt.fmt,
1850 .base_level = tmpl->u.tex.level,
1851 .levels = 1,
1852 .base_array_layer = tmpl->u.tex.first_layer,
1853 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1854 .swizzle = ISL_SWIZZLE_IDENTITY,
1855 .usage = usage,
1856 };
1857
1858 surf->clear_color = res->aux.clear_color;
1859
1860 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1861 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1862 ISL_SURF_USAGE_STENCIL_BIT))
1863 return psurf;
1864
1865
1866 void *map = alloc_surface_states(ice->state.surface_uploader,
1867 &surf->surface_state,
1868 res->aux.possible_usages);
1869 if (!unlikely(map))
1870 return NULL;
1871
1872 if (!isl_format_is_compressed(res->surf.format)) {
1873 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
1874 * auxiliary surface mode and return the pipe_surface.
1875 */
1876 unsigned aux_modes = res->aux.possible_usages;
1877 while (aux_modes) {
1878 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1879
1880 fill_surface_state(&screen->isl_dev, map, res, view, aux_usage);
1881
1882 map += SURFACE_STATE_ALIGNMENT;
1883 }
1884
1885 return psurf;
1886 }
1887
1888 /* The resource has a compressed format, which is not renderable, but we
1889 * have a renderable view format. We must be attempting to upload blocks
1890 * of compressed data via an uncompressed view.
1891 *
1892 * In this case, we can assume there are no auxiliary buffers, a single
1893 * miplevel, and that the resource is single-sampled. Gallium may try
1894 * and create an uncompressed view with multiple layers, however.
1895 */
1896 assert(!isl_format_is_compressed(fmt.fmt));
1897 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
1898 assert(res->surf.samples == 1);
1899 assert(view->levels == 1);
1900
1901 struct isl_surf isl_surf;
1902 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
1903
1904 if (view->base_level > 0) {
1905 /* We can't rely on the hardware's miplevel selection with such
1906 * a substantial lie about the format, so we select a single image
1907 * using the Tile X/Y Offset fields. In this case, we can't handle
1908 * multiple array slices.
1909 *
1910 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
1911 * hard-coded to align to exactly the block size of the compressed
1912 * texture. This means that, when reinterpreted as a non-compressed
1913 * texture, the tile offsets may be anything and we can't rely on
1914 * X/Y Offset.
1915 *
1916 * Return NULL to force the state tracker to take fallback paths.
1917 */
1918 if (view->array_len > 1 || GEN_GEN == 8)
1919 return NULL;
1920
1921 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
1922 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
1923 view->base_level,
1924 is_3d ? 0 : view->base_array_layer,
1925 is_3d ? view->base_array_layer : 0,
1926 &isl_surf,
1927 &offset_B, &tile_x_sa, &tile_y_sa);
1928
1929 /* We use address and tile offsets to access a single level/layer
1930 * as a subimage, so reset level/layer so it doesn't offset again.
1931 */
1932 view->base_array_layer = 0;
1933 view->base_level = 0;
1934 } else {
1935 /* Level 0 doesn't require tile offsets, and the hardware can find
1936 * array slices using QPitch even with the format override, so we
1937 * can allow layers in this case. Copy the original ISL surface.
1938 */
1939 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
1940 }
1941
1942 /* Scale down the image dimensions by the block size. */
1943 const struct isl_format_layout *fmtl =
1944 isl_format_get_layout(res->surf.format);
1945 isl_surf.format = fmt.fmt;
1946 isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
1947 isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
1948 tile_x_sa /= fmtl->bw;
1949 tile_y_sa /= fmtl->bh;
1950
1951 psurf->width = isl_surf.logical_level0_px.width;
1952 psurf->height = isl_surf.logical_level0_px.height;
1953
1954 struct isl_surf_fill_state_info f = {
1955 .surf = &isl_surf,
1956 .view = view,
1957 .mocs = mocs(res->bo),
1958 .address = res->bo->gtt_offset + offset_B,
1959 .x_offset_sa = tile_x_sa,
1960 .y_offset_sa = tile_y_sa,
1961 };
1962
1963 isl_surf_fill_state_s(&screen->isl_dev, map, &f);
1964 return psurf;
1965 }
1966
1967 #if GEN_GEN < 9
1968 static void
1969 fill_default_image_param(struct brw_image_param *param)
1970 {
1971 memset(param, 0, sizeof(*param));
1972 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
1973 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
1974 * detailed explanation of these parameters.
1975 */
1976 param->swizzling[0] = 0xff;
1977 param->swizzling[1] = 0xff;
1978 }
1979
1980 static void
1981 fill_buffer_image_param(struct brw_image_param *param,
1982 enum pipe_format pfmt,
1983 unsigned size)
1984 {
1985 const unsigned cpp = util_format_get_blocksize(pfmt);
1986
1987 fill_default_image_param(param);
1988 param->size[0] = size / cpp;
1989 param->stride[0] = cpp;
1990 }
1991 #else
1992 #define isl_surf_fill_image_param(x, ...)
1993 #define fill_default_image_param(x, ...)
1994 #define fill_buffer_image_param(x, ...)
1995 #endif
1996
1997 /**
1998 * The pipe->set_shader_images() driver hook.
1999 */
2000 static void
2001 iris_set_shader_images(struct pipe_context *ctx,
2002 enum pipe_shader_type p_stage,
2003 unsigned start_slot, unsigned count,
2004 const struct pipe_image_view *p_images)
2005 {
2006 struct iris_context *ice = (struct iris_context *) ctx;
2007 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2008 const struct gen_device_info *devinfo = &screen->devinfo;
2009 gl_shader_stage stage = stage_from_pipe(p_stage);
2010 struct iris_shader_state *shs = &ice->state.shaders[stage];
2011 #if GEN_GEN == 8
2012 struct iris_genx_state *genx = ice->state.genx;
2013 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2014 #endif
2015
2016 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2017
2018 for (unsigned i = 0; i < count; i++) {
2019 struct iris_image_view *iv = &shs->image[start_slot + i];
2020
2021 if (p_images && p_images[i].resource) {
2022 const struct pipe_image_view *img = &p_images[i];
2023 struct iris_resource *res = (void *) img->resource;
2024
2025 void *map =
2026 alloc_surface_states(ice->state.surface_uploader,
2027 &iv->surface_state, 1 << ISL_AUX_USAGE_NONE);
2028 if (!unlikely(map))
2029 return;
2030
2031 util_copy_image_view(&iv->base, img);
2032
2033 shs->bound_image_views |= 1 << (start_slot + i);
2034
2035 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2036
2037 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
2038 enum isl_format isl_fmt =
2039 iris_format_for_usage(devinfo, img->format, usage).fmt;
2040
2041 bool untyped_fallback = false;
2042
2043 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
2044 /* On Gen8, try to use typed surfaces reads (which support a
2045 * limited number of formats), and if not possible, fall back
2046 * to untyped reads.
2047 */
2048 untyped_fallback = GEN_GEN == 8 &&
2049 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
2050
2051 if (untyped_fallback)
2052 isl_fmt = ISL_FORMAT_RAW;
2053 else
2054 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
2055 }
2056
2057 if (res->base.target != PIPE_BUFFER) {
2058 struct isl_view view = {
2059 .format = isl_fmt,
2060 .base_level = img->u.tex.level,
2061 .levels = 1,
2062 .base_array_layer = img->u.tex.first_layer,
2063 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2064 .swizzle = ISL_SWIZZLE_IDENTITY,
2065 .usage = usage,
2066 };
2067
2068 if (untyped_fallback) {
2069 fill_buffer_surface_state(&screen->isl_dev, res, map,
2070 isl_fmt, ISL_SWIZZLE_IDENTITY,
2071 0, res->bo->size);
2072 } else {
2073 /* Images don't support compression */
2074 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
2075 while (aux_modes) {
2076 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2077
2078 fill_surface_state(&screen->isl_dev, map, res, &view, usage);
2079
2080 map += SURFACE_STATE_ALIGNMENT;
2081 }
2082 }
2083
2084 isl_surf_fill_image_param(&screen->isl_dev,
2085 &image_params[start_slot + i],
2086 &res->surf, &view);
2087 } else {
2088 util_range_add(&res->valid_buffer_range, img->u.buf.offset,
2089 img->u.buf.offset + img->u.buf.size);
2090
2091 fill_buffer_surface_state(&screen->isl_dev, res, map,
2092 isl_fmt, ISL_SWIZZLE_IDENTITY,
2093 img->u.buf.offset, img->u.buf.size);
2094 fill_buffer_image_param(&image_params[start_slot + i],
2095 img->format, img->u.buf.size);
2096 }
2097 } else {
2098 pipe_resource_reference(&iv->base.resource, NULL);
2099 pipe_resource_reference(&iv->surface_state.res, NULL);
2100 fill_default_image_param(&image_params[start_slot + i]);
2101 }
2102 }
2103
2104 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2105 ice->state.dirty |=
2106 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2107 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2108
2109 /* Broadwell also needs brw_image_params re-uploaded */
2110 if (GEN_GEN < 9) {
2111 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2112 shs->sysvals_need_upload = true;
2113 }
2114 }
2115
2116
2117 /**
2118 * The pipe->set_sampler_views() driver hook.
2119 */
2120 static void
2121 iris_set_sampler_views(struct pipe_context *ctx,
2122 enum pipe_shader_type p_stage,
2123 unsigned start, unsigned count,
2124 struct pipe_sampler_view **views)
2125 {
2126 struct iris_context *ice = (struct iris_context *) ctx;
2127 gl_shader_stage stage = stage_from_pipe(p_stage);
2128 struct iris_shader_state *shs = &ice->state.shaders[stage];
2129
2130 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2131
2132 for (unsigned i = 0; i < count; i++) {
2133 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2134 pipe_sampler_view_reference((struct pipe_sampler_view **)
2135 &shs->textures[start + i], pview);
2136 struct iris_sampler_view *view = (void *) pview;
2137 if (view) {
2138 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2139 shs->bound_sampler_views |= 1 << (start + i);
2140 }
2141 }
2142
2143 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2144 ice->state.dirty |=
2145 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2146 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2147 }
2148
2149 /**
2150 * The pipe->set_tess_state() driver hook.
2151 */
2152 static void
2153 iris_set_tess_state(struct pipe_context *ctx,
2154 const float default_outer_level[4],
2155 const float default_inner_level[2])
2156 {
2157 struct iris_context *ice = (struct iris_context *) ctx;
2158 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2159
2160 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2161 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2162
2163 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2164 shs->sysvals_need_upload = true;
2165 }
2166
2167 static void
2168 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2169 {
2170 struct iris_surface *surf = (void *) p_surf;
2171 pipe_resource_reference(&p_surf->texture, NULL);
2172 pipe_resource_reference(&surf->surface_state.res, NULL);
2173 free(surf);
2174 }
2175
2176 static void
2177 iris_set_clip_state(struct pipe_context *ctx,
2178 const struct pipe_clip_state *state)
2179 {
2180 struct iris_context *ice = (struct iris_context *) ctx;
2181 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2182 struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
2183 struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
2184
2185 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2186
2187 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS | IRIS_DIRTY_CONSTANTS_GS |
2188 IRIS_DIRTY_CONSTANTS_TES;
2189 shs->sysvals_need_upload = true;
2190 gshs->sysvals_need_upload = true;
2191 tshs->sysvals_need_upload = true;
2192 }
2193
2194 /**
2195 * The pipe->set_polygon_stipple() driver hook.
2196 */
2197 static void
2198 iris_set_polygon_stipple(struct pipe_context *ctx,
2199 const struct pipe_poly_stipple *state)
2200 {
2201 struct iris_context *ice = (struct iris_context *) ctx;
2202 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2203 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2204 }
2205
2206 /**
2207 * The pipe->set_sample_mask() driver hook.
2208 */
2209 static void
2210 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2211 {
2212 struct iris_context *ice = (struct iris_context *) ctx;
2213
2214 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2215 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2216 */
2217 ice->state.sample_mask = sample_mask & 0xffff;
2218 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2219 }
2220
2221 /**
2222 * The pipe->set_scissor_states() driver hook.
2223 *
2224 * This corresponds to our SCISSOR_RECT state structures. It's an
2225 * exact match, so we just store them, and memcpy them out later.
2226 */
2227 static void
2228 iris_set_scissor_states(struct pipe_context *ctx,
2229 unsigned start_slot,
2230 unsigned num_scissors,
2231 const struct pipe_scissor_state *rects)
2232 {
2233 struct iris_context *ice = (struct iris_context *) ctx;
2234
2235 for (unsigned i = 0; i < num_scissors; i++) {
2236 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2237 /* If the scissor was out of bounds and got clamped to 0 width/height
2238 * at the bounds, the subtraction of 1 from maximums could produce a
2239 * negative number and thus not clip anything. Instead, just provide
2240 * a min > max scissor inside the bounds, which produces the expected
2241 * no rendering.
2242 */
2243 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2244 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2245 };
2246 } else {
2247 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2248 .minx = rects[i].minx, .miny = rects[i].miny,
2249 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2250 };
2251 }
2252 }
2253
2254 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2255 }
2256
2257 /**
2258 * The pipe->set_stencil_ref() driver hook.
2259 *
2260 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2261 */
2262 static void
2263 iris_set_stencil_ref(struct pipe_context *ctx,
2264 const struct pipe_stencil_ref *state)
2265 {
2266 struct iris_context *ice = (struct iris_context *) ctx;
2267 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2268 if (GEN_GEN == 8)
2269 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2270 else
2271 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2272 }
2273
2274 static float
2275 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2276 {
2277 return copysignf(state->scale[axis], sign) + state->translate[axis];
2278 }
2279
2280 /**
2281 * The pipe->set_viewport_states() driver hook.
2282 *
2283 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2284 * the guardband yet, as we need the framebuffer dimensions, but we can
2285 * at least fill out the rest.
2286 */
2287 static void
2288 iris_set_viewport_states(struct pipe_context *ctx,
2289 unsigned start_slot,
2290 unsigned count,
2291 const struct pipe_viewport_state *states)
2292 {
2293 struct iris_context *ice = (struct iris_context *) ctx;
2294
2295 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2296
2297 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2298
2299 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2300 !ice->state.cso_rast->depth_clip_far))
2301 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2302 }
2303
2304 /**
2305 * The pipe->set_framebuffer_state() driver hook.
2306 *
2307 * Sets the current draw FBO, including color render targets, depth,
2308 * and stencil buffers.
2309 */
2310 static void
2311 iris_set_framebuffer_state(struct pipe_context *ctx,
2312 const struct pipe_framebuffer_state *state)
2313 {
2314 struct iris_context *ice = (struct iris_context *) ctx;
2315 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2316 struct isl_device *isl_dev = &screen->isl_dev;
2317 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2318 struct iris_resource *zres;
2319 struct iris_resource *stencil_res;
2320
2321 unsigned samples = util_framebuffer_get_num_samples(state);
2322 unsigned layers = util_framebuffer_get_num_layers(state);
2323
2324 if (cso->samples != samples) {
2325 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2326
2327 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
2328 if (GEN_GEN >= 9 && (cso->samples == 16 || samples == 16))
2329 ice->state.dirty |= IRIS_DIRTY_FS;
2330 }
2331
2332 if (cso->nr_cbufs != state->nr_cbufs) {
2333 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2334 }
2335
2336 if ((cso->layers == 0) != (layers == 0)) {
2337 ice->state.dirty |= IRIS_DIRTY_CLIP;
2338 }
2339
2340 if (cso->width != state->width || cso->height != state->height) {
2341 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2342 }
2343
2344 if (cso->zsbuf || state->zsbuf) {
2345 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2346 }
2347
2348 util_copy_framebuffer_state(cso, state);
2349 cso->samples = samples;
2350 cso->layers = layers;
2351
2352 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2353
2354 struct isl_view view = {
2355 .base_level = 0,
2356 .levels = 1,
2357 .base_array_layer = 0,
2358 .array_len = 1,
2359 .swizzle = ISL_SWIZZLE_IDENTITY,
2360 };
2361
2362 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2363
2364 if (cso->zsbuf) {
2365 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2366 &stencil_res);
2367
2368 view.base_level = cso->zsbuf->u.tex.level;
2369 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2370 view.array_len =
2371 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2372
2373 if (zres) {
2374 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2375
2376 info.depth_surf = &zres->surf;
2377 info.depth_address = zres->bo->gtt_offset + zres->offset;
2378 info.mocs = mocs(zres->bo);
2379
2380 view.format = zres->surf.format;
2381
2382 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2383 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2384 info.hiz_surf = &zres->aux.surf;
2385 info.hiz_address = zres->aux.bo->gtt_offset;
2386 }
2387 }
2388
2389 if (stencil_res) {
2390 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2391 info.stencil_surf = &stencil_res->surf;
2392 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
2393 if (!zres) {
2394 view.format = stencil_res->surf.format;
2395 info.mocs = mocs(stencil_res->bo);
2396 }
2397 }
2398 }
2399
2400 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2401
2402 /* Make a null surface for unbound buffers */
2403 void *null_surf_map =
2404 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2405 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2406 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2407 isl_extent3d(MAX2(cso->width, 1),
2408 MAX2(cso->height, 1),
2409 cso->layers ? cso->layers : 1));
2410 ice->state.null_fb.offset +=
2411 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2412
2413 /* Render target change */
2414 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2415
2416 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2417
2418 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2419
2420 #if GEN_GEN == 11
2421 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2422 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2423
2424 /* The PIPE_CONTROL command description says:
2425 *
2426 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2427 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2428 * Target Cache Flush by enabling this bit. When render target flush
2429 * is set due to new association of BTI, PS Scoreboard Stall bit must
2430 * be set in this packet."
2431 */
2432 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2433 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2434 "workaround: RT BTI change [draw]",
2435 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2436 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2437 #endif
2438 }
2439
2440 /**
2441 * The pipe->set_constant_buffer() driver hook.
2442 *
2443 * This uploads any constant data in user buffers, and references
2444 * any UBO resources containing constant data.
2445 */
2446 static void
2447 iris_set_constant_buffer(struct pipe_context *ctx,
2448 enum pipe_shader_type p_stage, unsigned index,
2449 const struct pipe_constant_buffer *input)
2450 {
2451 struct iris_context *ice = (struct iris_context *) ctx;
2452 gl_shader_stage stage = stage_from_pipe(p_stage);
2453 struct iris_shader_state *shs = &ice->state.shaders[stage];
2454 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
2455
2456 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
2457 shs->bound_cbufs |= 1u << index;
2458
2459 if (input->user_buffer) {
2460 void *map = NULL;
2461 pipe_resource_reference(&cbuf->buffer, NULL);
2462 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
2463 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2464
2465 if (!cbuf->buffer) {
2466 /* Allocation was unsuccessful - just unbind */
2467 iris_set_constant_buffer(ctx, p_stage, index, NULL);
2468 return;
2469 }
2470
2471 assert(map);
2472 memcpy(map, input->user_buffer, input->buffer_size);
2473 } else if (input->buffer) {
2474 pipe_resource_reference(&cbuf->buffer, input->buffer);
2475
2476 cbuf->buffer_offset = input->buffer_offset;
2477 cbuf->buffer_size =
2478 MIN2(input->buffer_size,
2479 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
2480 }
2481
2482 struct iris_resource *res = (void *) cbuf->buffer;
2483 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2484
2485 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2486 &shs->constbuf_surf_state[index],
2487 false);
2488 } else {
2489 shs->bound_cbufs &= ~(1u << index);
2490 pipe_resource_reference(&cbuf->buffer, NULL);
2491 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
2492 }
2493
2494 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2495 // XXX: maybe not necessary all the time...?
2496 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2497 // XXX: pull model we may need actual new bindings...
2498 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2499 }
2500
2501 static void
2502 upload_sysvals(struct iris_context *ice,
2503 gl_shader_stage stage)
2504 {
2505 UNUSED struct iris_genx_state *genx = ice->state.genx;
2506 struct iris_shader_state *shs = &ice->state.shaders[stage];
2507
2508 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2509 if (!shader || shader->num_system_values == 0)
2510 return;
2511
2512 assert(shader->num_cbufs > 0);
2513
2514 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
2515 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
2516 unsigned upload_size = shader->num_system_values * sizeof(uint32_t);
2517 uint32_t *map = NULL;
2518
2519 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
2520 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
2521 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2522
2523 for (int i = 0; i < shader->num_system_values; i++) {
2524 uint32_t sysval = shader->system_values[i];
2525 uint32_t value = 0;
2526
2527 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2528 #if GEN_GEN == 8
2529 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2530 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2531 struct brw_image_param *param =
2532 &genx->shaders[stage].image_param[img];
2533
2534 assert(offset < sizeof(struct brw_image_param));
2535 value = ((uint32_t *) param)[offset];
2536 #endif
2537 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2538 value = 0;
2539 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2540 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2541 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2542 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2543 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2544 if (stage == MESA_SHADER_TESS_CTRL) {
2545 value = ice->state.vertices_per_patch;
2546 } else {
2547 assert(stage == MESA_SHADER_TESS_EVAL);
2548 const struct shader_info *tcs_info =
2549 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2550 if (tcs_info)
2551 value = tcs_info->tess.tcs_vertices_out;
2552 else
2553 value = ice->state.vertices_per_patch;
2554 }
2555 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
2556 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
2557 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
2558 value = fui(ice->state.default_outer_level[i]);
2559 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
2560 value = fui(ice->state.default_inner_level[0]);
2561 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
2562 value = fui(ice->state.default_inner_level[1]);
2563 } else {
2564 assert(!"unhandled system value");
2565 }
2566
2567 *map++ = value;
2568 }
2569
2570 cbuf->buffer_size = upload_size;
2571 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2572 &shs->constbuf_surf_state[sysval_cbuf_index], false);
2573
2574 shs->sysvals_need_upload = false;
2575 }
2576
2577 /**
2578 * The pipe->set_shader_buffers() driver hook.
2579 *
2580 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2581 * SURFACE_STATE here, as the buffer offset may change each time.
2582 */
2583 static void
2584 iris_set_shader_buffers(struct pipe_context *ctx,
2585 enum pipe_shader_type p_stage,
2586 unsigned start_slot, unsigned count,
2587 const struct pipe_shader_buffer *buffers,
2588 unsigned writable_bitmask)
2589 {
2590 struct iris_context *ice = (struct iris_context *) ctx;
2591 gl_shader_stage stage = stage_from_pipe(p_stage);
2592 struct iris_shader_state *shs = &ice->state.shaders[stage];
2593
2594 unsigned modified_bits = u_bit_consecutive(start_slot, count);
2595
2596 shs->bound_ssbos &= ~modified_bits;
2597 shs->writable_ssbos &= ~modified_bits;
2598 shs->writable_ssbos |= writable_bitmask << start_slot;
2599
2600 for (unsigned i = 0; i < count; i++) {
2601 if (buffers && buffers[i].buffer) {
2602 struct iris_resource *res = (void *) buffers[i].buffer;
2603 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
2604 struct iris_state_ref *surf_state =
2605 &shs->ssbo_surf_state[start_slot + i];
2606 pipe_resource_reference(&ssbo->buffer, &res->base);
2607 ssbo->buffer_offset = buffers[i].buffer_offset;
2608 ssbo->buffer_size =
2609 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
2610
2611 shs->bound_ssbos |= 1 << (start_slot + i);
2612
2613 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
2614
2615 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2616
2617 util_range_add(&res->valid_buffer_range, ssbo->buffer_offset,
2618 ssbo->buffer_offset + ssbo->buffer_size);
2619 } else {
2620 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
2621 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
2622 NULL);
2623 }
2624 }
2625
2626 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2627 }
2628
2629 static void
2630 iris_delete_state(struct pipe_context *ctx, void *state)
2631 {
2632 free(state);
2633 }
2634
2635 /**
2636 * The pipe->set_vertex_buffers() driver hook.
2637 *
2638 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2639 */
2640 static void
2641 iris_set_vertex_buffers(struct pipe_context *ctx,
2642 unsigned start_slot, unsigned count,
2643 const struct pipe_vertex_buffer *buffers)
2644 {
2645 struct iris_context *ice = (struct iris_context *) ctx;
2646 struct iris_genx_state *genx = ice->state.genx;
2647
2648 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2649
2650 for (unsigned i = 0; i < count; i++) {
2651 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2652 struct iris_vertex_buffer_state *state =
2653 &genx->vertex_buffers[start_slot + i];
2654
2655 if (!buffer) {
2656 pipe_resource_reference(&state->resource, NULL);
2657 continue;
2658 }
2659
2660 /* We may see user buffers that are NULL bindings. */
2661 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
2662
2663 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2664 struct iris_resource *res = (void *) state->resource;
2665
2666 if (res) {
2667 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2668 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2669 }
2670
2671 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2672 vb.VertexBufferIndex = start_slot + i;
2673 vb.AddressModifyEnable = true;
2674 vb.BufferPitch = buffer->stride;
2675 if (res) {
2676 vb.BufferSize = res->bo->size - (int) buffer->buffer_offset;
2677 vb.BufferStartingAddress =
2678 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2679 vb.MOCS = mocs(res->bo);
2680 } else {
2681 vb.NullVertexBuffer = true;
2682 }
2683 }
2684 }
2685
2686 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2687 }
2688
2689 /**
2690 * Gallium CSO for vertex elements.
2691 */
2692 struct iris_vertex_element_state {
2693 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2694 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2695 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2696 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2697 unsigned count;
2698 };
2699
2700 /**
2701 * The pipe->create_vertex_elements() driver hook.
2702 *
2703 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2704 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2705 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2706 * needed. In these cases we will need information available at draw time.
2707 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2708 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2709 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2710 */
2711 static void *
2712 iris_create_vertex_elements(struct pipe_context *ctx,
2713 unsigned count,
2714 const struct pipe_vertex_element *state)
2715 {
2716 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2717 const struct gen_device_info *devinfo = &screen->devinfo;
2718 struct iris_vertex_element_state *cso =
2719 malloc(sizeof(struct iris_vertex_element_state));
2720
2721 cso->count = count;
2722
2723 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2724 ve.DWordLength =
2725 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2726 }
2727
2728 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2729 uint32_t *vfi_pack_dest = cso->vf_instancing;
2730
2731 if (count == 0) {
2732 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2733 ve.Valid = true;
2734 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2735 ve.Component0Control = VFCOMP_STORE_0;
2736 ve.Component1Control = VFCOMP_STORE_0;
2737 ve.Component2Control = VFCOMP_STORE_0;
2738 ve.Component3Control = VFCOMP_STORE_1_FP;
2739 }
2740
2741 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2742 }
2743 }
2744
2745 for (int i = 0; i < count; i++) {
2746 const struct iris_format_info fmt =
2747 iris_format_for_usage(devinfo, state[i].src_format, 0);
2748 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2749 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2750
2751 switch (isl_format_get_num_channels(fmt.fmt)) {
2752 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
2753 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
2754 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
2755 case 3:
2756 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2757 : VFCOMP_STORE_1_FP;
2758 break;
2759 }
2760 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2761 ve.EdgeFlagEnable = false;
2762 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2763 ve.Valid = true;
2764 ve.SourceElementOffset = state[i].src_offset;
2765 ve.SourceElementFormat = fmt.fmt;
2766 ve.Component0Control = comp[0];
2767 ve.Component1Control = comp[1];
2768 ve.Component2Control = comp[2];
2769 ve.Component3Control = comp[3];
2770 }
2771
2772 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2773 vi.VertexElementIndex = i;
2774 vi.InstancingEnable = state[i].instance_divisor > 0;
2775 vi.InstanceDataStepRate = state[i].instance_divisor;
2776 }
2777
2778 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2779 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2780 }
2781
2782 /* An alternative version of the last VE and VFI is stored so it
2783 * can be used at draw time in case Vertex Shader uses EdgeFlag
2784 */
2785 if (count) {
2786 const unsigned edgeflag_index = count - 1;
2787 const struct iris_format_info fmt =
2788 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
2789 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
2790 ve.EdgeFlagEnable = true ;
2791 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
2792 ve.Valid = true;
2793 ve.SourceElementOffset = state[edgeflag_index].src_offset;
2794 ve.SourceElementFormat = fmt.fmt;
2795 ve.Component0Control = VFCOMP_STORE_SRC;
2796 ve.Component1Control = VFCOMP_STORE_0;
2797 ve.Component2Control = VFCOMP_STORE_0;
2798 ve.Component3Control = VFCOMP_STORE_0;
2799 }
2800 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
2801 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
2802 * at draw time, as it should change if SGVs are emitted.
2803 */
2804 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
2805 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
2806 }
2807 }
2808
2809 return cso;
2810 }
2811
2812 /**
2813 * The pipe->bind_vertex_elements_state() driver hook.
2814 */
2815 static void
2816 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2817 {
2818 struct iris_context *ice = (struct iris_context *) ctx;
2819 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2820 struct iris_vertex_element_state *new_cso = state;
2821
2822 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2823 * we need to re-emit it to ensure we're overriding the right one.
2824 */
2825 if (new_cso && cso_changed(count))
2826 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2827
2828 ice->state.cso_vertex_elements = state;
2829 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2830 }
2831
2832 /**
2833 * The pipe->create_stream_output_target() driver hook.
2834 *
2835 * "Target" here refers to a destination buffer. We translate this into
2836 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2837 * know which buffer this represents, or whether we ought to zero the
2838 * write-offsets, or append. Those are handled in the set() hook.
2839 */
2840 static struct pipe_stream_output_target *
2841 iris_create_stream_output_target(struct pipe_context *ctx,
2842 struct pipe_resource *p_res,
2843 unsigned buffer_offset,
2844 unsigned buffer_size)
2845 {
2846 struct iris_resource *res = (void *) p_res;
2847 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2848 if (!cso)
2849 return NULL;
2850
2851 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2852
2853 pipe_reference_init(&cso->base.reference, 1);
2854 pipe_resource_reference(&cso->base.buffer, p_res);
2855 cso->base.buffer_offset = buffer_offset;
2856 cso->base.buffer_size = buffer_size;
2857 cso->base.context = ctx;
2858
2859 util_range_add(&res->valid_buffer_range, buffer_offset,
2860 buffer_offset + buffer_size);
2861
2862 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2863
2864 return &cso->base;
2865 }
2866
2867 static void
2868 iris_stream_output_target_destroy(struct pipe_context *ctx,
2869 struct pipe_stream_output_target *state)
2870 {
2871 struct iris_stream_output_target *cso = (void *) state;
2872
2873 pipe_resource_reference(&cso->base.buffer, NULL);
2874 pipe_resource_reference(&cso->offset.res, NULL);
2875
2876 free(cso);
2877 }
2878
2879 /**
2880 * The pipe->set_stream_output_targets() driver hook.
2881 *
2882 * At this point, we know which targets are bound to a particular index,
2883 * and also whether we want to append or start over. We can finish the
2884 * 3DSTATE_SO_BUFFER packets we started earlier.
2885 */
2886 static void
2887 iris_set_stream_output_targets(struct pipe_context *ctx,
2888 unsigned num_targets,
2889 struct pipe_stream_output_target **targets,
2890 const unsigned *offsets)
2891 {
2892 struct iris_context *ice = (struct iris_context *) ctx;
2893 struct iris_genx_state *genx = ice->state.genx;
2894 uint32_t *so_buffers = genx->so_buffers;
2895
2896 const bool active = num_targets > 0;
2897 if (ice->state.streamout_active != active) {
2898 ice->state.streamout_active = active;
2899 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2900
2901 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2902 * it's a non-pipelined command. If we're switching streamout on, we
2903 * may have missed emitting it earlier, so do so now. (We're already
2904 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2905 */
2906 if (active) {
2907 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2908 } else {
2909 uint32_t flush = 0;
2910 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
2911 struct iris_stream_output_target *tgt =
2912 (void *) ice->state.so_target[i];
2913 if (tgt) {
2914 struct iris_resource *res = (void *) tgt->base.buffer;
2915
2916 flush |= iris_flush_bits_for_history(res);
2917 iris_dirty_for_history(ice, res);
2918 }
2919 }
2920 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2921 "make streamout results visible", flush);
2922 }
2923 }
2924
2925 for (int i = 0; i < 4; i++) {
2926 pipe_so_target_reference(&ice->state.so_target[i],
2927 i < num_targets ? targets[i] : NULL);
2928 }
2929
2930 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2931 if (!active)
2932 return;
2933
2934 for (unsigned i = 0; i < 4; i++,
2935 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2936
2937 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
2938 unsigned offset = offsets[i];
2939
2940 if (!tgt) {
2941 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2942 sob.SOBufferIndex = i;
2943 continue;
2944 }
2945
2946 struct iris_resource *res = (void *) tgt->base.buffer;
2947
2948 /* Note that offsets[i] will either be 0, causing us to zero
2949 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2950 * "continue appending at the existing offset."
2951 */
2952 assert(offset == 0 || offset == 0xFFFFFFFF);
2953
2954 /* We might be called by Begin (offset = 0), Pause, then Resume
2955 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
2956 * will actually be sent to the GPU). In this case, we don't want
2957 * to append - we still want to do our initial zeroing.
2958 */
2959 if (!tgt->zeroed)
2960 offset = 0;
2961
2962 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2963 sob.SurfaceBaseAddress =
2964 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2965 sob.SOBufferEnable = true;
2966 sob.StreamOffsetWriteEnable = true;
2967 sob.StreamOutputBufferOffsetAddressEnable = true;
2968 sob.MOCS = mocs(res->bo);
2969
2970 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2971
2972 sob.SOBufferIndex = i;
2973 sob.StreamOffset = offset;
2974 sob.StreamOutputBufferOffsetAddress =
2975 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2976 tgt->offset.offset);
2977 }
2978 }
2979
2980 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2981 }
2982
2983 /**
2984 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2985 * 3DSTATE_STREAMOUT packets.
2986 *
2987 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2988 * hardware to record. We can create it entirely based on the shader, with
2989 * no dynamic state dependencies.
2990 *
2991 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2992 * state-based settings. We capture the shader-related ones here, and merge
2993 * the rest in at draw time.
2994 */
2995 static uint32_t *
2996 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2997 const struct brw_vue_map *vue_map)
2998 {
2999 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3000 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3001 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3002 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3003 int max_decls = 0;
3004 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3005
3006 memset(so_decl, 0, sizeof(so_decl));
3007
3008 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3009 * command feels strange -- each dword pair contains a SO_DECL per stream.
3010 */
3011 for (unsigned i = 0; i < info->num_outputs; i++) {
3012 const struct pipe_stream_output *output = &info->output[i];
3013 const int buffer = output->output_buffer;
3014 const int varying = output->register_index;
3015 const unsigned stream_id = output->stream;
3016 assert(stream_id < MAX_VERTEX_STREAMS);
3017
3018 buffer_mask[stream_id] |= 1 << buffer;
3019
3020 assert(vue_map->varying_to_slot[varying] >= 0);
3021
3022 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3023 * array. Instead, it simply increments DstOffset for the following
3024 * input by the number of components that should be skipped.
3025 *
3026 * Our hardware is unusual in that it requires us to program SO_DECLs
3027 * for fake "hole" components, rather than simply taking the offset
3028 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3029 * program as many size = 4 holes as we can, then a final hole to
3030 * accommodate the final 1, 2, or 3 remaining.
3031 */
3032 int skip_components = output->dst_offset - next_offset[buffer];
3033
3034 while (skip_components > 0) {
3035 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3036 .HoleFlag = 1,
3037 .OutputBufferSlot = output->output_buffer,
3038 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3039 };
3040 skip_components -= 4;
3041 }
3042
3043 next_offset[buffer] = output->dst_offset + output->num_components;
3044
3045 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3046 .OutputBufferSlot = output->output_buffer,
3047 .RegisterIndex = vue_map->varying_to_slot[varying],
3048 .ComponentMask =
3049 ((1 << output->num_components) - 1) << output->start_component,
3050 };
3051
3052 if (decls[stream_id] > max_decls)
3053 max_decls = decls[stream_id];
3054 }
3055
3056 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3057 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3058 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3059
3060 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3061 int urb_entry_read_offset = 0;
3062 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3063 urb_entry_read_offset;
3064
3065 /* We always read the whole vertex. This could be reduced at some
3066 * point by reading less and offsetting the register index in the
3067 * SO_DECLs.
3068 */
3069 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3070 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3071 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3072 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3073 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3074 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3075 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3076 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3077
3078 /* Set buffer pitches; 0 means unbound. */
3079 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3080 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3081 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3082 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3083 }
3084
3085 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3086 list.DWordLength = 3 + 2 * max_decls - 2;
3087 list.StreamtoBufferSelects0 = buffer_mask[0];
3088 list.StreamtoBufferSelects1 = buffer_mask[1];
3089 list.StreamtoBufferSelects2 = buffer_mask[2];
3090 list.StreamtoBufferSelects3 = buffer_mask[3];
3091 list.NumEntries0 = decls[0];
3092 list.NumEntries1 = decls[1];
3093 list.NumEntries2 = decls[2];
3094 list.NumEntries3 = decls[3];
3095 }
3096
3097 for (int i = 0; i < max_decls; i++) {
3098 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3099 entry.Stream0Decl = so_decl[0][i];
3100 entry.Stream1Decl = so_decl[1][i];
3101 entry.Stream2Decl = so_decl[2][i];
3102 entry.Stream3Decl = so_decl[3][i];
3103 }
3104 }
3105
3106 return map;
3107 }
3108
3109 static void
3110 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3111 const struct brw_vue_map *last_vue_map,
3112 bool two_sided_color,
3113 unsigned *out_offset,
3114 unsigned *out_length)
3115 {
3116 /* The compiler computes the first URB slot without considering COL/BFC
3117 * swizzling (because it doesn't know whether it's enabled), so we need
3118 * to do that here too. This may result in a smaller offset, which
3119 * should be safe.
3120 */
3121 const unsigned first_slot =
3122 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3123
3124 /* This becomes the URB read offset (counted in pairs of slots). */
3125 assert(first_slot % 2 == 0);
3126 *out_offset = first_slot / 2;
3127
3128 /* We need to adjust the inputs read to account for front/back color
3129 * swizzling, as it can make the URB length longer.
3130 */
3131 for (int c = 0; c <= 1; c++) {
3132 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3133 /* If two sided color is enabled, the fragment shader's gl_Color
3134 * (COL0) input comes from either the gl_FrontColor (COL0) or
3135 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3136 */
3137 if (two_sided_color)
3138 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3139
3140 /* If front color isn't written, we opt to give them back color
3141 * instead of an undefined value. Switch from COL to BFC.
3142 */
3143 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3144 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3145 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3146 }
3147 }
3148 }
3149
3150 /* Compute the minimum URB Read Length necessary for the FS inputs.
3151 *
3152 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3153 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3154 *
3155 * "This field should be set to the minimum length required to read the
3156 * maximum source attribute. The maximum source attribute is indicated
3157 * by the maximum value of the enabled Attribute # Source Attribute if
3158 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3159 * enable is not set.
3160 * read_length = ceiling((max_source_attr + 1) / 2)
3161 *
3162 * [errata] Corruption/Hang possible if length programmed larger than
3163 * recommended"
3164 *
3165 * Similar text exists for Ivy Bridge.
3166 *
3167 * We find the last URB slot that's actually read by the FS.
3168 */
3169 unsigned last_read_slot = last_vue_map->num_slots - 1;
3170 while (last_read_slot > first_slot && !(fs_input_slots &
3171 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3172 --last_read_slot;
3173
3174 /* The URB read length is the difference of the two, counted in pairs. */
3175 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3176 }
3177
3178 static void
3179 iris_emit_sbe_swiz(struct iris_batch *batch,
3180 const struct iris_context *ice,
3181 unsigned urb_read_offset,
3182 unsigned sprite_coord_enables)
3183 {
3184 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3185 const struct brw_wm_prog_data *wm_prog_data = (void *)
3186 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3187 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3188 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3189
3190 /* XXX: this should be generated when putting programs in place */
3191
3192 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3193 const int input_index = wm_prog_data->urb_setup[fs_attr];
3194 if (input_index < 0 || input_index >= 16)
3195 continue;
3196
3197 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3198 &attr_overrides[input_index];
3199 int slot = vue_map->varying_to_slot[fs_attr];
3200
3201 /* Viewport and Layer are stored in the VUE header. We need to override
3202 * them to zero if earlier stages didn't write them, as GL requires that
3203 * they read back as zero when not explicitly set.
3204 */
3205 switch (fs_attr) {
3206 case VARYING_SLOT_VIEWPORT:
3207 case VARYING_SLOT_LAYER:
3208 attr->ComponentOverrideX = true;
3209 attr->ComponentOverrideW = true;
3210 attr->ConstantSource = CONST_0000;
3211
3212 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3213 attr->ComponentOverrideY = true;
3214 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3215 attr->ComponentOverrideZ = true;
3216 continue;
3217
3218 case VARYING_SLOT_PRIMITIVE_ID:
3219 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3220 if (slot == -1) {
3221 attr->ComponentOverrideX = true;
3222 attr->ComponentOverrideY = true;
3223 attr->ComponentOverrideZ = true;
3224 attr->ComponentOverrideW = true;
3225 attr->ConstantSource = PRIM_ID;
3226 continue;
3227 }
3228
3229 default:
3230 break;
3231 }
3232
3233 if (sprite_coord_enables & (1 << input_index))
3234 continue;
3235
3236 /* If there was only a back color written but not front, use back
3237 * as the color instead of undefined.
3238 */
3239 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3240 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3241 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3242 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3243
3244 /* Not written by the previous stage - undefined. */
3245 if (slot == -1) {
3246 attr->ComponentOverrideX = true;
3247 attr->ComponentOverrideY = true;
3248 attr->ComponentOverrideZ = true;
3249 attr->ComponentOverrideW = true;
3250 attr->ConstantSource = CONST_0001_FLOAT;
3251 continue;
3252 }
3253
3254 /* Compute the location of the attribute relative to the read offset,
3255 * which is counted in 256-bit increments (two 128-bit VUE slots).
3256 */
3257 const int source_attr = slot - 2 * urb_read_offset;
3258 assert(source_attr >= 0 && source_attr <= 32);
3259 attr->SourceAttribute = source_attr;
3260
3261 /* If we are doing two-sided color, and the VUE slot following this one
3262 * represents a back-facing color, then we need to instruct the SF unit
3263 * to do back-facing swizzling.
3264 */
3265 if (cso_rast->light_twoside &&
3266 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3267 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3268 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3269 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3270 attr->SwizzleSelect = INPUTATTR_FACING;
3271 }
3272
3273 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3274 for (int i = 0; i < 16; i++)
3275 sbes.Attribute[i] = attr_overrides[i];
3276 }
3277 }
3278
3279 static unsigned
3280 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3281 const struct iris_rasterizer_state *cso)
3282 {
3283 unsigned overrides = 0;
3284
3285 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3286 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3287
3288 for (int i = 0; i < 8; i++) {
3289 if ((cso->sprite_coord_enable & (1 << i)) &&
3290 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3291 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3292 }
3293
3294 return overrides;
3295 }
3296
3297 static void
3298 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3299 {
3300 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3301 const struct brw_wm_prog_data *wm_prog_data = (void *)
3302 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3303 const struct shader_info *fs_info =
3304 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3305
3306 unsigned urb_read_offset, urb_read_length;
3307 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3308 ice->shaders.last_vue_map,
3309 cso_rast->light_twoside,
3310 &urb_read_offset, &urb_read_length);
3311
3312 unsigned sprite_coord_overrides =
3313 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3314
3315 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3316 sbe.AttributeSwizzleEnable = true;
3317 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3318 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3319 sbe.VertexURBEntryReadOffset = urb_read_offset;
3320 sbe.VertexURBEntryReadLength = urb_read_length;
3321 sbe.ForceVertexURBEntryReadOffset = true;
3322 sbe.ForceVertexURBEntryReadLength = true;
3323 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3324 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3325 #if GEN_GEN >= 9
3326 for (int i = 0; i < 32; i++) {
3327 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3328 }
3329 #endif
3330 }
3331
3332 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3333 }
3334
3335 /* ------------------------------------------------------------------- */
3336
3337 /**
3338 * Populate VS program key fields based on the current state.
3339 */
3340 static void
3341 iris_populate_vs_key(const struct iris_context *ice,
3342 const struct shader_info *info,
3343 gl_shader_stage last_stage,
3344 struct brw_vs_prog_key *key)
3345 {
3346 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3347
3348 if (info->clip_distance_array_size == 0 &&
3349 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3350 last_stage == MESA_SHADER_VERTEX)
3351 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3352 }
3353
3354 /**
3355 * Populate TCS program key fields based on the current state.
3356 */
3357 static void
3358 iris_populate_tcs_key(const struct iris_context *ice,
3359 struct brw_tcs_prog_key *key)
3360 {
3361 }
3362
3363 /**
3364 * Populate TES program key fields based on the current state.
3365 */
3366 static void
3367 iris_populate_tes_key(const struct iris_context *ice,
3368 const struct shader_info *info,
3369 gl_shader_stage last_stage,
3370 struct brw_tes_prog_key *key)
3371 {
3372 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3373
3374 if (info->clip_distance_array_size == 0 &&
3375 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3376 last_stage == MESA_SHADER_TESS_EVAL)
3377 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3378 }
3379
3380 /**
3381 * Populate GS program key fields based on the current state.
3382 */
3383 static void
3384 iris_populate_gs_key(const struct iris_context *ice,
3385 const struct shader_info *info,
3386 gl_shader_stage last_stage,
3387 struct brw_gs_prog_key *key)
3388 {
3389 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3390
3391 if (info->clip_distance_array_size == 0 &&
3392 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3393 last_stage == MESA_SHADER_GEOMETRY)
3394 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3395 }
3396
3397 /**
3398 * Populate FS program key fields based on the current state.
3399 */
3400 static void
3401 iris_populate_fs_key(const struct iris_context *ice,
3402 const struct shader_info *info,
3403 struct brw_wm_prog_key *key)
3404 {
3405 struct iris_screen *screen = (void *) ice->ctx.screen;
3406 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3407 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3408 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3409 const struct iris_blend_state *blend = ice->state.cso_blend;
3410
3411 key->nr_color_regions = fb->nr_cbufs;
3412
3413 key->clamp_fragment_color = rast->clamp_fragment_color;
3414
3415 key->alpha_to_coverage = blend->alpha_to_coverage;
3416
3417 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
3418
3419 key->flat_shade = rast->flatshade &&
3420 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
3421
3422 key->persample_interp = rast->force_persample_interp;
3423 key->multisample_fbo = rast->multisample && fb->samples > 1;
3424
3425 key->coherent_fb_fetch = true;
3426
3427 key->force_dual_color_blend =
3428 screen->driconf.dual_color_blend_by_location &&
3429 (blend->blend_enables & 1) && blend->dual_color_blending;
3430
3431 /* TODO: Respect glHint for key->high_quality_derivatives */
3432 }
3433
3434 static void
3435 iris_populate_cs_key(const struct iris_context *ice,
3436 struct brw_cs_prog_key *key)
3437 {
3438 }
3439
3440 static uint64_t
3441 KSP(const struct iris_compiled_shader *shader)
3442 {
3443 struct iris_resource *res = (void *) shader->assembly.res;
3444 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3445 }
3446
3447 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3448 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3449 * this WA on C0 stepping.
3450 *
3451 * TODO: Fill out SamplerCount for prefetching?
3452 */
3453
3454 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3455 pkt.KernelStartPointer = KSP(shader); \
3456 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3457 shader->bt.size_bytes / 4; \
3458 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3459 \
3460 pkt.DispatchGRFStartRegisterForURBData = \
3461 prog_data->dispatch_grf_start_reg; \
3462 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3463 pkt.prefix##URBEntryReadOffset = 0; \
3464 \
3465 pkt.StatisticsEnable = true; \
3466 pkt.Enable = true; \
3467 \
3468 if (prog_data->total_scratch) { \
3469 struct iris_bo *bo = \
3470 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3471 uint32_t scratch_addr = bo->gtt_offset; \
3472 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3473 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3474 }
3475
3476 /**
3477 * Encode most of 3DSTATE_VS based on the compiled shader.
3478 */
3479 static void
3480 iris_store_vs_state(struct iris_context *ice,
3481 const struct gen_device_info *devinfo,
3482 struct iris_compiled_shader *shader)
3483 {
3484 struct brw_stage_prog_data *prog_data = shader->prog_data;
3485 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3486
3487 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3488 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3489 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3490 vs.SIMD8DispatchEnable = true;
3491 vs.UserClipDistanceCullTestEnableBitmask =
3492 vue_prog_data->cull_distance_mask;
3493 }
3494 }
3495
3496 /**
3497 * Encode most of 3DSTATE_HS based on the compiled shader.
3498 */
3499 static void
3500 iris_store_tcs_state(struct iris_context *ice,
3501 const struct gen_device_info *devinfo,
3502 struct iris_compiled_shader *shader)
3503 {
3504 struct brw_stage_prog_data *prog_data = shader->prog_data;
3505 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3506 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3507
3508 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3509 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3510
3511 hs.InstanceCount = tcs_prog_data->instances - 1;
3512 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3513 hs.IncludeVertexHandles = true;
3514
3515 #if GEN_GEN >= 9
3516 hs.DispatchMode = vue_prog_data->dispatch_mode;
3517 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
3518 #endif
3519 }
3520 }
3521
3522 /**
3523 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3524 */
3525 static void
3526 iris_store_tes_state(struct iris_context *ice,
3527 const struct gen_device_info *devinfo,
3528 struct iris_compiled_shader *shader)
3529 {
3530 struct brw_stage_prog_data *prog_data = shader->prog_data;
3531 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3532 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3533
3534 uint32_t *te_state = (void *) shader->derived_data;
3535 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3536
3537 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3538 te.Partitioning = tes_prog_data->partitioning;
3539 te.OutputTopology = tes_prog_data->output_topology;
3540 te.TEDomain = tes_prog_data->domain;
3541 te.TEEnable = true;
3542 te.MaximumTessellationFactorOdd = 63.0;
3543 te.MaximumTessellationFactorNotOdd = 64.0;
3544 }
3545
3546 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3547 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3548
3549 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3550 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3551 ds.ComputeWCoordinateEnable =
3552 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3553
3554 ds.UserClipDistanceCullTestEnableBitmask =
3555 vue_prog_data->cull_distance_mask;
3556 }
3557
3558 }
3559
3560 /**
3561 * Encode most of 3DSTATE_GS based on the compiled shader.
3562 */
3563 static void
3564 iris_store_gs_state(struct iris_context *ice,
3565 const struct gen_device_info *devinfo,
3566 struct iris_compiled_shader *shader)
3567 {
3568 struct brw_stage_prog_data *prog_data = shader->prog_data;
3569 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3570 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3571
3572 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3573 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3574
3575 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3576 gs.OutputTopology = gs_prog_data->output_topology;
3577 gs.ControlDataHeaderSize =
3578 gs_prog_data->control_data_header_size_hwords;
3579 gs.InstanceControl = gs_prog_data->invocations - 1;
3580 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3581 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3582 gs.ControlDataFormat = gs_prog_data->control_data_format;
3583 gs.ReorderMode = TRAILING;
3584 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3585 gs.MaximumNumberofThreads =
3586 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3587 : (devinfo->max_gs_threads - 1);
3588
3589 if (gs_prog_data->static_vertex_count != -1) {
3590 gs.StaticOutput = true;
3591 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3592 }
3593 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3594
3595 gs.UserClipDistanceCullTestEnableBitmask =
3596 vue_prog_data->cull_distance_mask;
3597
3598 const int urb_entry_write_offset = 1;
3599 const uint32_t urb_entry_output_length =
3600 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3601 urb_entry_write_offset;
3602
3603 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3604 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3605 }
3606 }
3607
3608 /**
3609 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3610 */
3611 static void
3612 iris_store_fs_state(struct iris_context *ice,
3613 const struct gen_device_info *devinfo,
3614 struct iris_compiled_shader *shader)
3615 {
3616 struct brw_stage_prog_data *prog_data = shader->prog_data;
3617 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3618
3619 uint32_t *ps_state = (void *) shader->derived_data;
3620 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3621
3622 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3623 ps.VectorMaskEnable = true;
3624 // XXX: WABTPPrefetchDisable, see above, drop at C0
3625 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3626 shader->bt.size_bytes / 4;
3627 ps.FloatingPointMode = prog_data->use_alt_mode;
3628 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3629
3630 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3631
3632 /* From the documentation for this packet:
3633 * "If the PS kernel does not need the Position XY Offsets to
3634 * compute a Position Value, then this field should be programmed
3635 * to POSOFFSET_NONE."
3636 *
3637 * "SW Recommendation: If the PS kernel needs the Position Offsets
3638 * to compute a Position XY value, this field should match Position
3639 * ZW Interpolation Mode to ensure a consistent position.xyzw
3640 * computation."
3641 *
3642 * We only require XY sample offsets. So, this recommendation doesn't
3643 * look useful at the moment. We might need this in future.
3644 */
3645 ps.PositionXYOffsetSelect =
3646 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3647
3648 if (prog_data->total_scratch) {
3649 struct iris_bo *bo =
3650 iris_get_scratch_space(ice, prog_data->total_scratch,
3651 MESA_SHADER_FRAGMENT);
3652 uint32_t scratch_addr = bo->gtt_offset;
3653 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3654 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3655 }
3656 }
3657
3658 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3659 psx.PixelShaderValid = true;
3660 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3661 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3662 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3663 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3664 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3665 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3666 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3667
3668 #if GEN_GEN >= 9
3669 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3670 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3671 #endif
3672 }
3673 }
3674
3675 /**
3676 * Compute the size of the derived data (shader command packets).
3677 *
3678 * This must match the data written by the iris_store_xs_state() functions.
3679 */
3680 static void
3681 iris_store_cs_state(struct iris_context *ice,
3682 const struct gen_device_info *devinfo,
3683 struct iris_compiled_shader *shader)
3684 {
3685 struct brw_stage_prog_data *prog_data = shader->prog_data;
3686 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3687 void *map = shader->derived_data;
3688
3689 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3690 desc.KernelStartPointer = KSP(shader);
3691 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3692 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3693 desc.SharedLocalMemorySize =
3694 encode_slm_size(GEN_GEN, prog_data->total_shared);
3695 desc.BarrierEnable = cs_prog_data->uses_barrier;
3696 desc.CrossThreadConstantDataReadLength =
3697 cs_prog_data->push.cross_thread.regs;
3698 }
3699 }
3700
3701 static unsigned
3702 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3703 {
3704 assert(cache_id <= IRIS_CACHE_BLORP);
3705
3706 static const unsigned dwords[] = {
3707 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3708 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3709 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3710 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3711 [IRIS_CACHE_FS] =
3712 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3713 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3714 [IRIS_CACHE_BLORP] = 0,
3715 };
3716
3717 return sizeof(uint32_t) * dwords[cache_id];
3718 }
3719
3720 /**
3721 * Create any state packets corresponding to the given shader stage
3722 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3723 * This means that we can look up a program in the in-memory cache and
3724 * get most of the state packet without having to reconstruct it.
3725 */
3726 static void
3727 iris_store_derived_program_state(struct iris_context *ice,
3728 enum iris_program_cache_id cache_id,
3729 struct iris_compiled_shader *shader)
3730 {
3731 struct iris_screen *screen = (void *) ice->ctx.screen;
3732 const struct gen_device_info *devinfo = &screen->devinfo;
3733
3734 switch (cache_id) {
3735 case IRIS_CACHE_VS:
3736 iris_store_vs_state(ice, devinfo, shader);
3737 break;
3738 case IRIS_CACHE_TCS:
3739 iris_store_tcs_state(ice, devinfo, shader);
3740 break;
3741 case IRIS_CACHE_TES:
3742 iris_store_tes_state(ice, devinfo, shader);
3743 break;
3744 case IRIS_CACHE_GS:
3745 iris_store_gs_state(ice, devinfo, shader);
3746 break;
3747 case IRIS_CACHE_FS:
3748 iris_store_fs_state(ice, devinfo, shader);
3749 break;
3750 case IRIS_CACHE_CS:
3751 iris_store_cs_state(ice, devinfo, shader);
3752 case IRIS_CACHE_BLORP:
3753 break;
3754 default:
3755 break;
3756 }
3757 }
3758
3759 /* ------------------------------------------------------------------- */
3760
3761 static const uint32_t push_constant_opcodes[] = {
3762 [MESA_SHADER_VERTEX] = 21,
3763 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3764 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3765 [MESA_SHADER_GEOMETRY] = 22,
3766 [MESA_SHADER_FRAGMENT] = 23,
3767 [MESA_SHADER_COMPUTE] = 0,
3768 };
3769
3770 static uint32_t
3771 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3772 {
3773 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3774
3775 iris_use_pinned_bo(batch, state_bo, false);
3776
3777 return ice->state.unbound_tex.offset;
3778 }
3779
3780 static uint32_t
3781 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3782 {
3783 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3784 if (!ice->state.null_fb.res)
3785 return use_null_surface(batch, ice);
3786
3787 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3788
3789 iris_use_pinned_bo(batch, state_bo, false);
3790
3791 return ice->state.null_fb.offset;
3792 }
3793
3794 static uint32_t
3795 surf_state_offset_for_aux(struct iris_resource *res,
3796 unsigned aux_modes,
3797 enum isl_aux_usage aux_usage)
3798 {
3799 return SURFACE_STATE_ALIGNMENT *
3800 util_bitcount(res->aux.possible_usages & ((1 << aux_usage) - 1));
3801 }
3802
3803 static void
3804 surf_state_update_clear_value(struct iris_batch *batch,
3805 struct iris_resource *res,
3806 struct iris_state_ref *state,
3807 unsigned aux_modes,
3808 enum isl_aux_usage aux_usage)
3809 {
3810 struct isl_device *isl_dev = &batch->screen->isl_dev;
3811 struct iris_bo *state_bo = iris_resource_bo(state->res);
3812 uint64_t real_offset = state->offset +
3813 IRIS_MEMZONE_BINDER_START;
3814 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
3815 uint32_t clear_offset = offset_into_bo +
3816 isl_dev->ss.clear_value_offset +
3817 surf_state_offset_for_aux(res, aux_modes, aux_usage);
3818
3819 batch->vtbl->copy_mem_mem(batch, state_bo, clear_offset,
3820 res->aux.clear_color_bo,
3821 res->aux.clear_color_offset,
3822 isl_dev->ss.clear_value_size);
3823 }
3824
3825 static void
3826 update_clear_value(struct iris_context *ice,
3827 struct iris_batch *batch,
3828 struct iris_resource *res,
3829 struct iris_state_ref *state,
3830 unsigned aux_modes,
3831 struct isl_view *view)
3832 {
3833 struct iris_screen *screen = batch->screen;
3834 const struct gen_device_info *devinfo = &screen->devinfo;
3835
3836 /* We only need to update the clear color in the surface state for gen8 and
3837 * gen9. Newer gens can read it directly from the clear color state buffer.
3838 */
3839 if (devinfo->gen > 9)
3840 return;
3841
3842 if (devinfo->gen == 9) {
3843 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
3844 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
3845
3846 while (aux_modes) {
3847 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3848
3849 surf_state_update_clear_value(batch, res, state, aux_modes,
3850 aux_usage);
3851 }
3852 } else if (devinfo->gen == 8) {
3853 pipe_resource_reference(&state->res, NULL);
3854 void *map = alloc_surface_states(ice->state.surface_uploader,
3855 state, res->aux.possible_usages);
3856 while (aux_modes) {
3857 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3858 fill_surface_state(&screen->isl_dev, map, res, view, aux_usage);
3859 map += SURFACE_STATE_ALIGNMENT;
3860 }
3861 }
3862 }
3863
3864 /**
3865 * Add a surface to the validation list, as well as the buffer containing
3866 * the corresponding SURFACE_STATE.
3867 *
3868 * Returns the binding table entry (offset to SURFACE_STATE).
3869 */
3870 static uint32_t
3871 use_surface(struct iris_context *ice,
3872 struct iris_batch *batch,
3873 struct pipe_surface *p_surf,
3874 bool writeable,
3875 enum isl_aux_usage aux_usage)
3876 {
3877 struct iris_surface *surf = (void *) p_surf;
3878 struct iris_resource *res = (void *) p_surf->texture;
3879
3880 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3881 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3882
3883 if (res->aux.bo) {
3884 iris_use_pinned_bo(batch, res->aux.bo, writeable);
3885 if (res->aux.clear_color_bo)
3886 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false);
3887
3888 if (memcmp(&res->aux.clear_color, &surf->clear_color,
3889 sizeof(surf->clear_color)) != 0) {
3890 update_clear_value(ice, batch, res, &surf->surface_state,
3891 res->aux.possible_usages, &surf->view);
3892 surf->clear_color = res->aux.clear_color;
3893 }
3894 }
3895
3896 return surf->surface_state.offset +
3897 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
3898 }
3899
3900 static uint32_t
3901 use_sampler_view(struct iris_context *ice,
3902 struct iris_batch *batch,
3903 struct iris_sampler_view *isv)
3904 {
3905 // XXX: ASTC hacks
3906 enum isl_aux_usage aux_usage =
3907 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
3908
3909 iris_use_pinned_bo(batch, isv->res->bo, false);
3910 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3911
3912 if (isv->res->aux.bo) {
3913 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
3914 if (isv->res->aux.clear_color_bo)
3915 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, false);
3916 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
3917 sizeof(isv->clear_color)) != 0) {
3918 update_clear_value(ice, batch, isv->res, &isv->surface_state,
3919 isv->res->aux.sampler_usages, &isv->view);
3920 isv->clear_color = isv->res->aux.clear_color;
3921 }
3922 }
3923
3924 return isv->surface_state.offset +
3925 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
3926 aux_usage);
3927 }
3928
3929 static uint32_t
3930 use_ubo_ssbo(struct iris_batch *batch,
3931 struct iris_context *ice,
3932 struct pipe_shader_buffer *buf,
3933 struct iris_state_ref *surf_state,
3934 bool writable)
3935 {
3936 if (!buf->buffer)
3937 return use_null_surface(batch, ice);
3938
3939 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable);
3940 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3941
3942 return surf_state->offset;
3943 }
3944
3945 static uint32_t
3946 use_image(struct iris_batch *batch, struct iris_context *ice,
3947 struct iris_shader_state *shs, int i)
3948 {
3949 struct iris_image_view *iv = &shs->image[i];
3950 struct iris_resource *res = (void *) iv->base.resource;
3951
3952 if (!res)
3953 return use_null_surface(batch, ice);
3954
3955 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
3956
3957 iris_use_pinned_bo(batch, res->bo, write);
3958 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.res), false);
3959
3960 if (res->aux.bo)
3961 iris_use_pinned_bo(batch, res->aux.bo, write);
3962
3963 return iv->surface_state.offset;
3964 }
3965
3966 #define push_bt_entry(addr) \
3967 assert(addr >= binder_addr); \
3968 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
3969 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3970
3971 #define bt_assert(section) \
3972 if (!pin_only && shader->bt.used_mask[section] != 0) \
3973 assert(shader->bt.offsets[section] == s);
3974
3975 /**
3976 * Populate the binding table for a given shader stage.
3977 *
3978 * This fills out the table of pointers to surfaces required by the shader,
3979 * and also adds those buffers to the validation list so the kernel can make
3980 * resident before running our batch.
3981 */
3982 static void
3983 iris_populate_binding_table(struct iris_context *ice,
3984 struct iris_batch *batch,
3985 gl_shader_stage stage,
3986 bool pin_only)
3987 {
3988 const struct iris_binder *binder = &ice->state.binder;
3989 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
3990 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3991 if (!shader)
3992 return;
3993
3994 struct iris_binding_table *bt = &shader->bt;
3995 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3996 struct iris_shader_state *shs = &ice->state.shaders[stage];
3997 uint32_t binder_addr = binder->bo->gtt_offset;
3998
3999 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4000 int s = 0;
4001
4002 const struct shader_info *info = iris_get_shader_info(ice, stage);
4003 if (!info) {
4004 /* TCS passthrough doesn't need a binding table. */
4005 assert(stage == MESA_SHADER_TESS_CTRL);
4006 return;
4007 }
4008
4009 if (stage == MESA_SHADER_COMPUTE &&
4010 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4011 /* surface for gl_NumWorkGroups */
4012 struct iris_state_ref *grid_data = &ice->state.grid_size;
4013 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4014 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
4015 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
4016 push_bt_entry(grid_state->offset);
4017 }
4018
4019 if (stage == MESA_SHADER_FRAGMENT) {
4020 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4021 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4022 if (cso_fb->nr_cbufs) {
4023 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4024 uint32_t addr;
4025 if (cso_fb->cbufs[i]) {
4026 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4027 ice->state.draw_aux_usage[i]);
4028 } else {
4029 addr = use_null_fb_surface(batch, ice);
4030 }
4031 push_bt_entry(addr);
4032 }
4033 } else {
4034 uint32_t addr = use_null_fb_surface(batch, ice);
4035 push_bt_entry(addr);
4036 }
4037 }
4038
4039 #define foreach_surface_used(index, group) \
4040 bt_assert(group); \
4041 for (int index = 0; index < bt->sizes[group]; index++) \
4042 if (iris_group_index_to_bti(bt, group, index) != \
4043 IRIS_SURFACE_NOT_USED)
4044
4045 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4046 struct iris_sampler_view *view = shs->textures[i];
4047 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4048 : use_null_surface(batch, ice);
4049 push_bt_entry(addr);
4050 }
4051
4052 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4053 uint32_t addr = use_image(batch, ice, shs, i);
4054 push_bt_entry(addr);
4055 }
4056
4057 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4058 uint32_t addr;
4059
4060 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4061 if (ish->const_data) {
4062 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false);
4063 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4064 false);
4065 addr = ish->const_data_state.offset;
4066 } else {
4067 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4068 addr = use_null_surface(batch, ice);
4069 }
4070 } else {
4071 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4072 &shs->constbuf_surf_state[i], false);
4073 }
4074
4075 push_bt_entry(addr);
4076 }
4077
4078 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4079 uint32_t addr =
4080 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4081 shs->writable_ssbos & (1u << i));
4082 push_bt_entry(addr);
4083 }
4084
4085 #if 0
4086 /* XXX: YUV surfaces not implemented yet */
4087 bt_assert(plane_start[1], ...);
4088 bt_assert(plane_start[2], ...);
4089 #endif
4090 }
4091
4092 static void
4093 iris_use_optional_res(struct iris_batch *batch,
4094 struct pipe_resource *res,
4095 bool writeable)
4096 {
4097 if (res) {
4098 struct iris_bo *bo = iris_resource_bo(res);
4099 iris_use_pinned_bo(batch, bo, writeable);
4100 }
4101 }
4102
4103 static void
4104 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4105 struct pipe_surface *zsbuf,
4106 struct iris_depth_stencil_alpha_state *cso_zsa)
4107 {
4108 if (!zsbuf)
4109 return;
4110
4111 struct iris_resource *zres, *sres;
4112 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4113
4114 if (zres) {
4115 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled);
4116 if (zres->aux.bo) {
4117 iris_use_pinned_bo(batch, zres->aux.bo,
4118 cso_zsa->depth_writes_enabled);
4119 }
4120 }
4121
4122 if (sres) {
4123 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled);
4124 }
4125 }
4126
4127 /* ------------------------------------------------------------------- */
4128
4129 /**
4130 * Pin any BOs which were installed by a previous batch, and restored
4131 * via the hardware logical context mechanism.
4132 *
4133 * We don't need to re-emit all state every batch - the hardware context
4134 * mechanism will save and restore it for us. This includes pointers to
4135 * various BOs...which won't exist unless we ask the kernel to pin them
4136 * by adding them to the validation list.
4137 *
4138 * We can skip buffers if we've re-emitted those packets, as we're
4139 * overwriting those stale pointers with new ones, and don't actually
4140 * refer to the old BOs.
4141 */
4142 static void
4143 iris_restore_render_saved_bos(struct iris_context *ice,
4144 struct iris_batch *batch,
4145 const struct pipe_draw_info *draw)
4146 {
4147 struct iris_genx_state *genx = ice->state.genx;
4148
4149 const uint64_t clean = ~ice->state.dirty;
4150
4151 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4152 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
4153 }
4154
4155 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4156 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
4157 }
4158
4159 if (clean & IRIS_DIRTY_BLEND_STATE) {
4160 iris_use_optional_res(batch, ice->state.last_res.blend, false);
4161 }
4162
4163 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4164 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
4165 }
4166
4167 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4168 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
4169 }
4170
4171 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4172 for (int i = 0; i < 4; i++) {
4173 struct iris_stream_output_target *tgt =
4174 (void *) ice->state.so_target[i];
4175 if (tgt) {
4176 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4177 true);
4178 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4179 true);
4180 }
4181 }
4182 }
4183
4184 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4185 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4186 continue;
4187
4188 struct iris_shader_state *shs = &ice->state.shaders[stage];
4189 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4190
4191 if (!shader)
4192 continue;
4193
4194 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4195
4196 for (int i = 0; i < 4; i++) {
4197 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4198
4199 if (range->length == 0)
4200 continue;
4201
4202 /* Range block is a binding table index, map back to UBO index. */
4203 unsigned block_index = iris_bti_to_group_index(
4204 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4205 assert(block_index != IRIS_SURFACE_NOT_USED);
4206
4207 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4208 struct iris_resource *res = (void *) cbuf->buffer;
4209
4210 if (res)
4211 iris_use_pinned_bo(batch, res->bo, false);
4212 else
4213 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4214 }
4215 }
4216
4217 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4218 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4219 /* Re-pin any buffers referred to by the binding table. */
4220 iris_populate_binding_table(ice, batch, stage, true);
4221 }
4222 }
4223
4224 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4225 struct iris_shader_state *shs = &ice->state.shaders[stage];
4226 struct pipe_resource *res = shs->sampler_table.res;
4227 if (res)
4228 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4229 }
4230
4231 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4232 if (clean & (IRIS_DIRTY_VS << stage)) {
4233 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4234
4235 if (shader) {
4236 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4237 iris_use_pinned_bo(batch, bo, false);
4238
4239 struct brw_stage_prog_data *prog_data = shader->prog_data;
4240
4241 if (prog_data->total_scratch > 0) {
4242 struct iris_bo *bo =
4243 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4244 iris_use_pinned_bo(batch, bo, true);
4245 }
4246 }
4247 }
4248 }
4249
4250 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
4251 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4252 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4253 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4254 }
4255
4256 iris_use_optional_res(batch, ice->state.last_res.index_buffer, false);
4257
4258 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4259 uint64_t bound = ice->state.bound_vertex_buffers;
4260 while (bound) {
4261 const int i = u_bit_scan64(&bound);
4262 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4263 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4264 }
4265 }
4266 }
4267
4268 static void
4269 iris_restore_compute_saved_bos(struct iris_context *ice,
4270 struct iris_batch *batch,
4271 const struct pipe_grid_info *grid)
4272 {
4273 const uint64_t clean = ~ice->state.dirty;
4274
4275 const int stage = MESA_SHADER_COMPUTE;
4276 struct iris_shader_state *shs = &ice->state.shaders[stage];
4277
4278 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4279 /* Re-pin any buffers referred to by the binding table. */
4280 iris_populate_binding_table(ice, batch, stage, true);
4281 }
4282
4283 struct pipe_resource *sampler_res = shs->sampler_table.res;
4284 if (sampler_res)
4285 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4286
4287 if ((clean & IRIS_DIRTY_SAMPLER_STATES_CS) &&
4288 (clean & IRIS_DIRTY_BINDINGS_CS) &&
4289 (clean & IRIS_DIRTY_CONSTANTS_CS) &&
4290 (clean & IRIS_DIRTY_CS)) {
4291 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false);
4292 }
4293
4294 if (clean & IRIS_DIRTY_CS) {
4295 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4296
4297 if (shader) {
4298 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4299 iris_use_pinned_bo(batch, bo, false);
4300
4301 struct iris_bo *curbe_bo =
4302 iris_resource_bo(ice->state.last_res.cs_thread_ids);
4303 iris_use_pinned_bo(batch, curbe_bo, false);
4304
4305 struct brw_stage_prog_data *prog_data = shader->prog_data;
4306
4307 if (prog_data->total_scratch > 0) {
4308 struct iris_bo *bo =
4309 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4310 iris_use_pinned_bo(batch, bo, true);
4311 }
4312 }
4313 }
4314 }
4315
4316 /**
4317 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4318 */
4319 static void
4320 iris_update_surface_base_address(struct iris_batch *batch,
4321 struct iris_binder *binder)
4322 {
4323 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4324 return;
4325
4326 flush_for_state_base_change(batch);
4327
4328 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4329 sba.SurfaceStateMOCS = MOCS_WB;
4330 sba.SurfaceStateBaseAddressModifyEnable = true;
4331 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4332 }
4333
4334 batch->last_surface_base_address = binder->bo->gtt_offset;
4335 }
4336
4337 static inline void
4338 iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
4339 bool window_space_position, float *zmin, float *zmax)
4340 {
4341 if (window_space_position) {
4342 *zmin = 0.f;
4343 *zmax = 1.f;
4344 return;
4345 }
4346 util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
4347 }
4348
4349 static void
4350 iris_upload_dirty_render_state(struct iris_context *ice,
4351 struct iris_batch *batch,
4352 const struct pipe_draw_info *draw)
4353 {
4354 const uint64_t dirty = ice->state.dirty;
4355
4356 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4357 return;
4358
4359 struct iris_genx_state *genx = ice->state.genx;
4360 struct iris_binder *binder = &ice->state.binder;
4361 struct brw_wm_prog_data *wm_prog_data = (void *)
4362 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4363
4364 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4365 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4366 uint32_t cc_vp_address;
4367
4368 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4369 uint32_t *cc_vp_map =
4370 stream_state(batch, ice->state.dynamic_uploader,
4371 &ice->state.last_res.cc_vp,
4372 4 * ice->state.num_viewports *
4373 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4374 for (int i = 0; i < ice->state.num_viewports; i++) {
4375 float zmin, zmax;
4376 iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
4377 ice->state.window_space_position,
4378 &zmin, &zmax);
4379 if (cso_rast->depth_clip_near)
4380 zmin = 0.0;
4381 if (cso_rast->depth_clip_far)
4382 zmax = 1.0;
4383
4384 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4385 ccv.MinimumDepth = zmin;
4386 ccv.MaximumDepth = zmax;
4387 }
4388
4389 cc_vp_map += GENX(CC_VIEWPORT_length);
4390 }
4391
4392 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4393 ptr.CCViewportPointer = cc_vp_address;
4394 }
4395 }
4396
4397 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4398 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4399 uint32_t sf_cl_vp_address;
4400 uint32_t *vp_map =
4401 stream_state(batch, ice->state.dynamic_uploader,
4402 &ice->state.last_res.sf_cl_vp,
4403 4 * ice->state.num_viewports *
4404 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4405
4406 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4407 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4408 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4409
4410 float vp_xmin = viewport_extent(state, 0, -1.0f);
4411 float vp_xmax = viewport_extent(state, 0, 1.0f);
4412 float vp_ymin = viewport_extent(state, 1, -1.0f);
4413 float vp_ymax = viewport_extent(state, 1, 1.0f);
4414
4415 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
4416 state->scale[0], state->scale[1],
4417 state->translate[0], state->translate[1],
4418 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4419
4420 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4421 vp.ViewportMatrixElementm00 = state->scale[0];
4422 vp.ViewportMatrixElementm11 = state->scale[1];
4423 vp.ViewportMatrixElementm22 = state->scale[2];
4424 vp.ViewportMatrixElementm30 = state->translate[0];
4425 vp.ViewportMatrixElementm31 = state->translate[1];
4426 vp.ViewportMatrixElementm32 = state->translate[2];
4427 vp.XMinClipGuardband = gb_xmin;
4428 vp.XMaxClipGuardband = gb_xmax;
4429 vp.YMinClipGuardband = gb_ymin;
4430 vp.YMaxClipGuardband = gb_ymax;
4431 vp.XMinViewPort = MAX2(vp_xmin, 0);
4432 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4433 vp.YMinViewPort = MAX2(vp_ymin, 0);
4434 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4435 }
4436
4437 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4438 }
4439
4440 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4441 ptr.SFClipViewportPointer = sf_cl_vp_address;
4442 }
4443 }
4444
4445 if (dirty & IRIS_DIRTY_URB) {
4446 unsigned size[4];
4447
4448 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
4449 if (!ice->shaders.prog[i]) {
4450 size[i] = 1;
4451 } else {
4452 struct brw_vue_prog_data *vue_prog_data =
4453 (void *) ice->shaders.prog[i]->prog_data;
4454 size[i] = vue_prog_data->urb_entry_size;
4455 }
4456 assert(size[i] != 0);
4457 }
4458
4459 genX(emit_urb_setup)(ice, batch, size,
4460 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
4461 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
4462 }
4463
4464 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4465 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4466 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4467 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4468 const int header_dwords = GENX(BLEND_STATE_length);
4469
4470 /* Always write at least one BLEND_STATE - the final RT message will
4471 * reference BLEND_STATE[0] even if there aren't color writes. There
4472 * may still be alpha testing, computed depth, and so on.
4473 */
4474 const int rt_dwords =
4475 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4476
4477 uint32_t blend_offset;
4478 uint32_t *blend_map =
4479 stream_state(batch, ice->state.dynamic_uploader,
4480 &ice->state.last_res.blend,
4481 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4482
4483 uint32_t blend_state_header;
4484 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4485 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4486 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4487 }
4488
4489 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4490 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4491
4492 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4493 ptr.BlendStatePointer = blend_offset;
4494 ptr.BlendStatePointerValid = true;
4495 }
4496 }
4497
4498 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4499 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4500 #if GEN_GEN == 8
4501 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4502 #endif
4503 uint32_t cc_offset;
4504 void *cc_map =
4505 stream_state(batch, ice->state.dynamic_uploader,
4506 &ice->state.last_res.color_calc,
4507 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4508 64, &cc_offset);
4509 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4510 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4511 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4512 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4513 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4514 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4515 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4516 #if GEN_GEN == 8
4517 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4518 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4519 #endif
4520 }
4521 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4522 ptr.ColorCalcStatePointer = cc_offset;
4523 ptr.ColorCalcStatePointerValid = true;
4524 }
4525 }
4526
4527 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4528 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4529 continue;
4530
4531 struct iris_shader_state *shs = &ice->state.shaders[stage];
4532 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4533
4534 if (!shader)
4535 continue;
4536
4537 if (shs->sysvals_need_upload)
4538 upload_sysvals(ice, stage);
4539
4540 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4541
4542 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4543 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4544 if (prog_data) {
4545 /* The Skylake PRM contains the following restriction:
4546 *
4547 * "The driver must ensure The following case does not occur
4548 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4549 * buffer 3 read length equal to zero committed followed by a
4550 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4551 * zero committed."
4552 *
4553 * To avoid this, we program the buffers in the highest slots.
4554 * This way, slot 0 is only used if slot 3 is also used.
4555 */
4556 int n = 3;
4557
4558 for (int i = 3; i >= 0; i--) {
4559 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4560
4561 if (range->length == 0)
4562 continue;
4563
4564 /* Range block is a binding table index, map back to UBO index. */
4565 unsigned block_index = iris_bti_to_group_index(
4566 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4567 assert(block_index != IRIS_SURFACE_NOT_USED);
4568
4569 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4570 struct iris_resource *res = (void *) cbuf->buffer;
4571
4572 assert(cbuf->buffer_offset % 32 == 0);
4573
4574 pkt.ConstantBody.ReadLength[n] = range->length;
4575 pkt.ConstantBody.Buffer[n] =
4576 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
4577 : ro_bo(batch->screen->workaround_bo, 0);
4578 n--;
4579 }
4580 }
4581 }
4582 }
4583
4584 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4585 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4586 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4587 ptr._3DCommandSubOpcode = 38 + stage;
4588 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4589 }
4590 }
4591 }
4592
4593 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4594 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4595 iris_populate_binding_table(ice, batch, stage, false);
4596 }
4597 }
4598
4599 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4600 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4601 !ice->shaders.prog[stage])
4602 continue;
4603
4604 iris_upload_sampler_states(ice, stage);
4605
4606 struct iris_shader_state *shs = &ice->state.shaders[stage];
4607 struct pipe_resource *res = shs->sampler_table.res;
4608 if (res)
4609 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4610
4611 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4612 ptr._3DCommandSubOpcode = 43 + stage;
4613 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4614 }
4615 }
4616
4617 if (ice->state.need_border_colors)
4618 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4619
4620 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4621 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4622 ms.PixelLocation =
4623 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4624 if (ice->state.framebuffer.samples > 0)
4625 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4626 }
4627 }
4628
4629 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4630 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4631 ms.SampleMask = ice->state.sample_mask;
4632 }
4633 }
4634
4635 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4636 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4637 continue;
4638
4639 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4640
4641 if (shader) {
4642 struct brw_stage_prog_data *prog_data = shader->prog_data;
4643 struct iris_resource *cache = (void *) shader->assembly.res;
4644 iris_use_pinned_bo(batch, cache->bo, false);
4645
4646 if (prog_data->total_scratch > 0) {
4647 struct iris_bo *bo =
4648 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4649 iris_use_pinned_bo(batch, bo, true);
4650 }
4651
4652 if (stage == MESA_SHADER_FRAGMENT) {
4653 UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
4654 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4655
4656 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
4657 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
4658 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
4659 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
4660 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
4661
4662 /* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say:
4663 *
4664 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16,
4665 * SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch
4666 * mode."
4667 *
4668 * 16x MSAA only exists on Gen9+, so we can skip this on Gen8.
4669 */
4670 if (GEN_GEN >= 9 && cso_fb->samples == 16 &&
4671 !wm_prog_data->persample_dispatch) {
4672 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
4673 ps._32PixelDispatchEnable = false;
4674 }
4675
4676 ps.DispatchGRFStartRegisterForConstantSetupData0 =
4677 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
4678 ps.DispatchGRFStartRegisterForConstantSetupData1 =
4679 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
4680 ps.DispatchGRFStartRegisterForConstantSetupData2 =
4681 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
4682
4683 ps.KernelStartPointer0 = KSP(shader) +
4684 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
4685 ps.KernelStartPointer1 = KSP(shader) +
4686 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
4687 ps.KernelStartPointer2 = KSP(shader) +
4688 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
4689 }
4690
4691 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
4692 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
4693 #if GEN_GEN >= 9
4694 if (wm_prog_data->post_depth_coverage)
4695 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4696 else if (wm_prog_data->inner_coverage &&
4697 cso->conservative_rasterization)
4698 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4699 else
4700 psx.InputCoverageMaskState = ICMS_NORMAL;
4701 #else
4702 psx.PixelShaderUsesInputCoverageMask =
4703 wm_prog_data->uses_sample_mask;
4704 #endif
4705 }
4706
4707 uint32_t *shader_ps = (uint32_t *) shader->derived_data;
4708 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
4709 iris_emit_merge(batch, shader_ps, ps_state,
4710 GENX(3DSTATE_PS_length));
4711 iris_emit_merge(batch, shader_psx, psx_state,
4712 GENX(3DSTATE_PS_EXTRA_length));
4713 } else {
4714 iris_batch_emit(batch, shader->derived_data,
4715 iris_derived_program_state_size(stage));
4716 }
4717 } else {
4718 if (stage == MESA_SHADER_TESS_EVAL) {
4719 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4720 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4721 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4722 } else if (stage == MESA_SHADER_GEOMETRY) {
4723 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4724 }
4725 }
4726 }
4727
4728 if (ice->state.streamout_active) {
4729 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4730 iris_batch_emit(batch, genx->so_buffers,
4731 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4732 for (int i = 0; i < 4; i++) {
4733 struct iris_stream_output_target *tgt =
4734 (void *) ice->state.so_target[i];
4735 if (tgt) {
4736 tgt->zeroed = true;
4737 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4738 true);
4739 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4740 true);
4741 }
4742 }
4743 }
4744
4745 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4746 uint32_t *decl_list =
4747 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4748 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4749 }
4750
4751 if (dirty & IRIS_DIRTY_STREAMOUT) {
4752 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4753
4754 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4755 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4756 sol.SOFunctionEnable = true;
4757 sol.SOStatisticsEnable = true;
4758
4759 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4760 !ice->state.prims_generated_query_active;
4761 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4762 }
4763
4764 assert(ice->state.streamout);
4765
4766 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4767 GENX(3DSTATE_STREAMOUT_length));
4768 }
4769 } else {
4770 if (dirty & IRIS_DIRTY_STREAMOUT) {
4771 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4772 }
4773 }
4774
4775 if (dirty & IRIS_DIRTY_CLIP) {
4776 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4777 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4778
4779 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
4780 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4781 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
4782 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
4783 : ice->state.prim_is_points_or_lines);
4784
4785 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4786 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4787 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4788 if (cso_rast->rasterizer_discard)
4789 cl.ClipMode = CLIPMODE_REJECT_ALL;
4790 else if (ice->state.window_space_position)
4791 cl.ClipMode = CLIPMODE_ACCEPT_ALL;
4792 else
4793 cl.ClipMode = CLIPMODE_NORMAL;
4794
4795 cl.PerspectiveDivideDisable = ice->state.window_space_position;
4796 cl.ViewportXYClipTestEnable = !points_or_lines;
4797
4798 if (wm_prog_data->barycentric_interp_modes &
4799 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4800 cl.NonPerspectiveBarycentricEnable = true;
4801
4802 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4803 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4804 }
4805 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4806 ARRAY_SIZE(cso_rast->clip));
4807 }
4808
4809 if (dirty & IRIS_DIRTY_RASTER) {
4810 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4811 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4812
4813 uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
4814 iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
4815 sf.ViewportTransformEnable = !ice->state.window_space_position;
4816 }
4817 iris_emit_merge(batch, cso->sf, dynamic_sf,
4818 ARRAY_SIZE(dynamic_sf));
4819 }
4820
4821 if (dirty & IRIS_DIRTY_WM) {
4822 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4823 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4824
4825 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4826 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4827
4828 wm.BarycentricInterpolationMode =
4829 wm_prog_data->barycentric_interp_modes;
4830
4831 if (wm_prog_data->early_fragment_tests)
4832 wm.EarlyDepthStencilControl = EDSC_PREPS;
4833 else if (wm_prog_data->has_side_effects)
4834 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4835
4836 /* We could skip this bit if color writes are enabled. */
4837 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
4838 wm.ForceThreadDispatchEnable = ForceON;
4839 }
4840 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4841 }
4842
4843 if (dirty & IRIS_DIRTY_SBE) {
4844 iris_emit_sbe(batch, ice);
4845 }
4846
4847 if (dirty & IRIS_DIRTY_PS_BLEND) {
4848 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4849 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4850 const struct shader_info *fs_info =
4851 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4852
4853 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4854 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4855 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
4856 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4857
4858 /* The dual source blending docs caution against using SRC1 factors
4859 * when the shader doesn't use a dual source render target write.
4860 * Empirically, this can lead to GPU hangs, and the results are
4861 * undefined anyway, so simply disable blending to avoid the hang.
4862 */
4863 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
4864 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
4865 }
4866
4867 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4868 ARRAY_SIZE(cso_blend->ps_blend));
4869 }
4870
4871 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4872 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4873 #if GEN_GEN >= 9
4874 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4875 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4876 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4877 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4878 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4879 }
4880 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4881 #else
4882 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4883 #endif
4884 }
4885
4886 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4887 uint32_t scissor_offset =
4888 emit_state(batch, ice->state.dynamic_uploader,
4889 &ice->state.last_res.scissor,
4890 ice->state.scissors,
4891 sizeof(struct pipe_scissor_state) *
4892 ice->state.num_viewports, 32);
4893
4894 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4895 ptr.ScissorRectPointer = scissor_offset;
4896 }
4897 }
4898
4899 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4900 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4901
4902 /* Do not emit the clear params yets. We need to update the clear value
4903 * first.
4904 */
4905 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
4906 uint32_t cso_z_size = sizeof(cso_z->packets) - clear_length;
4907 iris_batch_emit(batch, cso_z->packets, cso_z_size);
4908
4909 union isl_color_value clear_value = { .f32 = { 0, } };
4910
4911 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4912 if (cso_fb->zsbuf) {
4913 struct iris_resource *zres, *sres;
4914 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4915 &zres, &sres);
4916 if (zres && zres->aux.bo)
4917 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
4918 }
4919
4920 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
4921 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
4922 clear.DepthClearValueValid = true;
4923 clear.DepthClearValue = clear_value.f32[0];
4924 }
4925 iris_batch_emit(batch, clear_params, clear_length);
4926 }
4927
4928 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4929 /* Listen for buffer changes, and also write enable changes. */
4930 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4931 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4932 }
4933
4934 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4935 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4936 for (int i = 0; i < 32; i++) {
4937 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4938 }
4939 }
4940 }
4941
4942 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4943 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4944 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4945 }
4946
4947 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4948 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4949 topo.PrimitiveTopologyType =
4950 translate_prim_type(draw->mode, draw->vertices_per_patch);
4951 }
4952 }
4953
4954 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4955 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4956 int dynamic_bound = ice->state.bound_vertex_buffers;
4957
4958 if (ice->state.vs_uses_draw_params) {
4959 if (ice->draw.draw_params_offset == 0) {
4960 u_upload_data(ice->ctx.stream_uploader, 0, sizeof(ice->draw.params),
4961 4, &ice->draw.params, &ice->draw.draw_params_offset,
4962 &ice->draw.draw_params_res);
4963 }
4964 assert(ice->draw.draw_params_res);
4965
4966 struct iris_vertex_buffer_state *state =
4967 &(ice->state.genx->vertex_buffers[count]);
4968 pipe_resource_reference(&state->resource, ice->draw.draw_params_res);
4969 struct iris_resource *res = (void *) state->resource;
4970
4971 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4972 vb.VertexBufferIndex = count;
4973 vb.AddressModifyEnable = true;
4974 vb.BufferPitch = 0;
4975 vb.BufferSize = res->bo->size - ice->draw.draw_params_offset;
4976 vb.BufferStartingAddress =
4977 ro_bo(NULL, res->bo->gtt_offset +
4978 (int) ice->draw.draw_params_offset);
4979 vb.MOCS = mocs(res->bo);
4980 }
4981 dynamic_bound |= 1ull << count;
4982 count++;
4983 }
4984
4985 if (ice->state.vs_uses_derived_draw_params) {
4986 u_upload_data(ice->ctx.stream_uploader, 0,
4987 sizeof(ice->draw.derived_params), 4,
4988 &ice->draw.derived_params,
4989 &ice->draw.derived_draw_params_offset,
4990 &ice->draw.derived_draw_params_res);
4991
4992 struct iris_vertex_buffer_state *state =
4993 &(ice->state.genx->vertex_buffers[count]);
4994 pipe_resource_reference(&state->resource,
4995 ice->draw.derived_draw_params_res);
4996 struct iris_resource *res = (void *) ice->draw.derived_draw_params_res;
4997
4998 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4999 vb.VertexBufferIndex = count;
5000 vb.AddressModifyEnable = true;
5001 vb.BufferPitch = 0;
5002 vb.BufferSize =
5003 res->bo->size - ice->draw.derived_draw_params_offset;
5004 vb.BufferStartingAddress =
5005 ro_bo(NULL, res->bo->gtt_offset +
5006 (int) ice->draw.derived_draw_params_offset);
5007 vb.MOCS = mocs(res->bo);
5008 }
5009 dynamic_bound |= 1ull << count;
5010 count++;
5011 }
5012
5013 if (count) {
5014 /* The VF cache designers cut corners, and made the cache key's
5015 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
5016 * 32 bits of the address. If you have two vertex buffers which get
5017 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
5018 * you can get collisions (even within a single batch).
5019 *
5020 * So, we need to do a VF cache invalidate if the buffer for a VB
5021 * slot slot changes [48:32] address bits from the previous time.
5022 */
5023 unsigned flush_flags = 0;
5024
5025 uint64_t bound = dynamic_bound;
5026 while (bound) {
5027 const int i = u_bit_scan64(&bound);
5028 uint16_t high_bits = 0;
5029
5030 struct iris_resource *res =
5031 (void *) genx->vertex_buffers[i].resource;
5032 if (res) {
5033 iris_use_pinned_bo(batch, res->bo, false);
5034
5035 high_bits = res->bo->gtt_offset >> 32ull;
5036 if (high_bits != ice->state.last_vbo_high_bits[i]) {
5037 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
5038 PIPE_CONTROL_CS_STALL;
5039 ice->state.last_vbo_high_bits[i] = high_bits;
5040 }
5041 }
5042 }
5043
5044 if (flush_flags) {
5045 iris_emit_pipe_control_flush(batch,
5046 "workaround: VF cache 32-bit key [VB]",
5047 flush_flags);
5048 }
5049
5050 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
5051
5052 uint32_t *map =
5053 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
5054 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
5055 vb.DWordLength = (vb_dwords * count + 1) - 2;
5056 }
5057 map += 1;
5058
5059 bound = dynamic_bound;
5060 while (bound) {
5061 const int i = u_bit_scan64(&bound);
5062 memcpy(map, genx->vertex_buffers[i].state,
5063 sizeof(uint32_t) * vb_dwords);
5064 map += vb_dwords;
5065 }
5066 }
5067 }
5068
5069 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
5070 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5071 const unsigned entries = MAX2(cso->count, 1);
5072 if (!(ice->state.vs_needs_sgvs_element ||
5073 ice->state.vs_uses_derived_draw_params ||
5074 ice->state.vs_needs_edge_flag)) {
5075 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
5076 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
5077 } else {
5078 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
5079 const unsigned dyn_count = cso->count +
5080 ice->state.vs_needs_sgvs_element +
5081 ice->state.vs_uses_derived_draw_params;
5082
5083 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
5084 &dynamic_ves, ve) {
5085 ve.DWordLength =
5086 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
5087 }
5088 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
5089 (cso->count - ice->state.vs_needs_edge_flag) *
5090 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
5091 uint32_t *ve_pack_dest =
5092 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
5093 GENX(VERTEX_ELEMENT_STATE_length)];
5094
5095 if (ice->state.vs_needs_sgvs_element) {
5096 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
5097 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
5098 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5099 ve.Valid = true;
5100 ve.VertexBufferIndex =
5101 util_bitcount64(ice->state.bound_vertex_buffers);
5102 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5103 ve.Component0Control = base_ctrl;
5104 ve.Component1Control = base_ctrl;
5105 ve.Component2Control = VFCOMP_STORE_0;
5106 ve.Component3Control = VFCOMP_STORE_0;
5107 }
5108 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5109 }
5110 if (ice->state.vs_uses_derived_draw_params) {
5111 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5112 ve.Valid = true;
5113 ve.VertexBufferIndex =
5114 util_bitcount64(ice->state.bound_vertex_buffers) +
5115 ice->state.vs_uses_draw_params;
5116 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5117 ve.Component0Control = VFCOMP_STORE_SRC;
5118 ve.Component1Control = VFCOMP_STORE_SRC;
5119 ve.Component2Control = VFCOMP_STORE_0;
5120 ve.Component3Control = VFCOMP_STORE_0;
5121 }
5122 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5123 }
5124 if (ice->state.vs_needs_edge_flag) {
5125 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
5126 ve_pack_dest[i] = cso->edgeflag_ve[i];
5127 }
5128
5129 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
5130 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
5131 }
5132
5133 if (!ice->state.vs_needs_edge_flag) {
5134 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
5135 entries * GENX(3DSTATE_VF_INSTANCING_length));
5136 } else {
5137 assert(cso->count > 0);
5138 const unsigned edgeflag_index = cso->count - 1;
5139 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
5140 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
5141 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
5142
5143 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
5144 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
5145 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
5146 vi.VertexElementIndex = edgeflag_index +
5147 ice->state.vs_needs_sgvs_element +
5148 ice->state.vs_uses_derived_draw_params;
5149 }
5150 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
5151 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
5152
5153 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
5154 entries * GENX(3DSTATE_VF_INSTANCING_length));
5155 }
5156 }
5157
5158 if (dirty & IRIS_DIRTY_VF_SGVS) {
5159 const struct brw_vs_prog_data *vs_prog_data = (void *)
5160 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
5161 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5162
5163 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
5164 if (vs_prog_data->uses_vertexid) {
5165 sgv.VertexIDEnable = true;
5166 sgv.VertexIDComponentNumber = 2;
5167 sgv.VertexIDElementOffset =
5168 cso->count - ice->state.vs_needs_edge_flag;
5169 }
5170
5171 if (vs_prog_data->uses_instanceid) {
5172 sgv.InstanceIDEnable = true;
5173 sgv.InstanceIDComponentNumber = 3;
5174 sgv.InstanceIDElementOffset =
5175 cso->count - ice->state.vs_needs_edge_flag;
5176 }
5177 }
5178 }
5179
5180 if (dirty & IRIS_DIRTY_VF) {
5181 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
5182 if (draw->primitive_restart) {
5183 vf.IndexedDrawCutIndexEnable = true;
5184 vf.CutIndex = draw->restart_index;
5185 }
5186 }
5187 }
5188
5189 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
5190 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
5191 vf.StatisticsEnable = true;
5192 }
5193 }
5194
5195 if (ice->state.current_hash_scale != 1)
5196 genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
5197
5198 /* TODO: Gen8 PMA fix */
5199 }
5200
5201 static void
5202 iris_upload_render_state(struct iris_context *ice,
5203 struct iris_batch *batch,
5204 const struct pipe_draw_info *draw)
5205 {
5206 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5207
5208 /* Always pin the binder. If we're emitting new binding table pointers,
5209 * we need it. If not, we're probably inheriting old tables via the
5210 * context, and need it anyway. Since true zero-bindings cases are
5211 * practically non-existent, just pin it and avoid last_res tracking.
5212 */
5213 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5214
5215 if (!batch->contains_draw) {
5216 iris_restore_render_saved_bos(ice, batch, draw);
5217 batch->contains_draw = true;
5218 }
5219
5220 iris_upload_dirty_render_state(ice, batch, draw);
5221
5222 if (draw->index_size > 0) {
5223 unsigned offset;
5224
5225 if (draw->has_user_indices) {
5226 u_upload_data(ice->ctx.stream_uploader, 0,
5227 draw->count * draw->index_size, 4, draw->index.user,
5228 &offset, &ice->state.last_res.index_buffer);
5229 } else {
5230 struct iris_resource *res = (void *) draw->index.resource;
5231 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
5232
5233 pipe_resource_reference(&ice->state.last_res.index_buffer,
5234 draw->index.resource);
5235 offset = 0;
5236 }
5237
5238 struct iris_genx_state *genx = ice->state.genx;
5239 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
5240
5241 uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
5242 iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
5243 ib.IndexFormat = draw->index_size >> 1;
5244 ib.MOCS = mocs(bo);
5245 ib.BufferSize = bo->size - offset;
5246 ib.BufferStartingAddress = ro_bo(NULL, bo->gtt_offset + offset);
5247 }
5248
5249 if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
5250 memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
5251 iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
5252 iris_use_pinned_bo(batch, bo, false);
5253 }
5254
5255 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
5256 uint16_t high_bits = bo->gtt_offset >> 32ull;
5257 if (high_bits != ice->state.last_index_bo_high_bits) {
5258 iris_emit_pipe_control_flush(batch,
5259 "workaround: VF cache 32-bit key [IB]",
5260 PIPE_CONTROL_VF_CACHE_INVALIDATE |
5261 PIPE_CONTROL_CS_STALL);
5262 ice->state.last_index_bo_high_bits = high_bits;
5263 }
5264 }
5265
5266 #define _3DPRIM_END_OFFSET 0x2420
5267 #define _3DPRIM_START_VERTEX 0x2430
5268 #define _3DPRIM_VERTEX_COUNT 0x2434
5269 #define _3DPRIM_INSTANCE_COUNT 0x2438
5270 #define _3DPRIM_START_INSTANCE 0x243C
5271 #define _3DPRIM_BASE_VERTEX 0x2440
5272
5273 if (draw->indirect) {
5274 if (draw->indirect->indirect_draw_count) {
5275 use_predicate = true;
5276
5277 struct iris_bo *draw_count_bo =
5278 iris_resource_bo(draw->indirect->indirect_draw_count);
5279 unsigned draw_count_offset =
5280 draw->indirect->indirect_draw_count_offset;
5281
5282 iris_emit_pipe_control_flush(batch,
5283 "ensure indirect draw buffer is flushed",
5284 PIPE_CONTROL_FLUSH_ENABLE);
5285
5286 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
5287 struct gen_mi_builder b;
5288 gen_mi_builder_init(&b, batch);
5289
5290 /* comparison = draw id < draw count */
5291 struct gen_mi_value comparison =
5292 gen_mi_ult(&b, gen_mi_imm(draw->drawid),
5293 gen_mi_mem32(ro_bo(draw_count_bo,
5294 draw_count_offset)));
5295
5296 /* predicate = comparison & conditional rendering predicate */
5297 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_RESULT),
5298 gen_mi_iand(&b, comparison,
5299 gen_mi_reg32(CS_GPR(15))));
5300 } else {
5301 uint32_t mi_predicate;
5302
5303 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
5304 ice->vtbl.load_register_imm64(batch, MI_PREDICATE_SRC1,
5305 draw->drawid);
5306 /* Upload the current draw count from the draw parameters buffer
5307 * to MI_PREDICATE_SRC0.
5308 */
5309 ice->vtbl.load_register_mem32(batch, MI_PREDICATE_SRC0,
5310 draw_count_bo, draw_count_offset);
5311 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
5312 ice->vtbl.load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
5313
5314 if (draw->drawid == 0) {
5315 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
5316 MI_PREDICATE_COMBINEOP_SET |
5317 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5318 } else {
5319 /* While draw_index < draw_count the predicate's result will be
5320 * (draw_index == draw_count) ^ TRUE = TRUE
5321 * When draw_index == draw_count the result is
5322 * (TRUE) ^ TRUE = FALSE
5323 * After this all results will be:
5324 * (FALSE) ^ FALSE = FALSE
5325 */
5326 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
5327 MI_PREDICATE_COMBINEOP_XOR |
5328 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5329 }
5330 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
5331 }
5332 }
5333 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
5334 assert(bo);
5335
5336 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5337 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
5338 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
5339 }
5340 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5341 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
5342 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
5343 }
5344 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5345 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
5346 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
5347 }
5348 if (draw->index_size) {
5349 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5350 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5351 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5352 }
5353 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5354 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5355 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5356 }
5357 } else {
5358 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5359 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5360 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5361 }
5362 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5363 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5364 lri.DataDWord = 0;
5365 }
5366 }
5367 } else if (draw->count_from_stream_output) {
5368 struct iris_stream_output_target *so =
5369 (void *) draw->count_from_stream_output;
5370
5371 /* XXX: Replace with actual cache tracking */
5372 iris_emit_pipe_control_flush(batch,
5373 "draw count from stream output stall",
5374 PIPE_CONTROL_CS_STALL);
5375
5376 struct gen_mi_builder b;
5377 gen_mi_builder_init(&b, batch);
5378
5379 struct iris_address addr =
5380 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5381 struct gen_mi_value offset =
5382 gen_mi_iadd_imm(&b, gen_mi_mem32(addr), -so->base.buffer_offset);
5383
5384 gen_mi_store(&b, gen_mi_reg32(_3DPRIM_VERTEX_COUNT),
5385 gen_mi_udiv32_imm(&b, offset, so->stride));
5386
5387 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5388 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5389 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5390 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5391 }
5392
5393 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5394 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5395 prim.PredicateEnable = use_predicate;
5396
5397 if (draw->indirect || draw->count_from_stream_output) {
5398 prim.IndirectParameterEnable = true;
5399 } else {
5400 prim.StartInstanceLocation = draw->start_instance;
5401 prim.InstanceCount = draw->instance_count;
5402 prim.VertexCountPerInstance = draw->count;
5403
5404 prim.StartVertexLocation = draw->start;
5405
5406 if (draw->index_size) {
5407 prim.BaseVertexLocation += draw->index_bias;
5408 } else {
5409 prim.StartVertexLocation += draw->index_bias;
5410 }
5411 }
5412 }
5413 }
5414
5415 static void
5416 iris_upload_compute_state(struct iris_context *ice,
5417 struct iris_batch *batch,
5418 const struct pipe_grid_info *grid)
5419 {
5420 const uint64_t dirty = ice->state.dirty;
5421 struct iris_screen *screen = batch->screen;
5422 const struct gen_device_info *devinfo = &screen->devinfo;
5423 struct iris_binder *binder = &ice->state.binder;
5424 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5425 struct iris_compiled_shader *shader =
5426 ice->shaders.prog[MESA_SHADER_COMPUTE];
5427 struct brw_stage_prog_data *prog_data = shader->prog_data;
5428 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5429
5430 /* Always pin the binder. If we're emitting new binding table pointers,
5431 * we need it. If not, we're probably inheriting old tables via the
5432 * context, and need it anyway. Since true zero-bindings cases are
5433 * practically non-existent, just pin it and avoid last_res tracking.
5434 */
5435 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5436
5437 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->sysvals_need_upload)
5438 upload_sysvals(ice, MESA_SHADER_COMPUTE);
5439
5440 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5441 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5442
5443 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
5444 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
5445
5446 iris_use_optional_res(batch, shs->sampler_table.res, false);
5447 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5448
5449 if (ice->state.need_border_colors)
5450 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5451
5452 if (dirty & IRIS_DIRTY_CS) {
5453 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5454 *
5455 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5456 * the only bits that are changed are scoreboard related: Scoreboard
5457 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5458 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5459 * sufficient."
5460 */
5461 iris_emit_pipe_control_flush(batch,
5462 "workaround: stall before MEDIA_VFE_STATE",
5463 PIPE_CONTROL_CS_STALL);
5464
5465 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5466 if (prog_data->total_scratch) {
5467 struct iris_bo *bo =
5468 iris_get_scratch_space(ice, prog_data->total_scratch,
5469 MESA_SHADER_COMPUTE);
5470 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5471 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5472 }
5473
5474 vfe.MaximumNumberofThreads =
5475 devinfo->max_cs_threads * screen->subslice_total - 1;
5476 #if GEN_GEN < 11
5477 vfe.ResetGatewayTimer =
5478 Resettingrelativetimerandlatchingtheglobaltimestamp;
5479 #endif
5480 #if GEN_GEN == 8
5481 vfe.BypassGatewayControl = true;
5482 #endif
5483 vfe.NumberofURBEntries = 2;
5484 vfe.URBEntryAllocationSize = 2;
5485
5486 vfe.CURBEAllocationSize =
5487 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5488 cs_prog_data->push.cross_thread.regs, 2);
5489 }
5490 }
5491
5492 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5493 if (dirty & IRIS_DIRTY_CS) {
5494 uint32_t curbe_data_offset = 0;
5495 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5496 cs_prog_data->push.per_thread.dwords == 1 &&
5497 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5498 uint32_t *curbe_data_map =
5499 stream_state(batch, ice->state.dynamic_uploader,
5500 &ice->state.last_res.cs_thread_ids,
5501 ALIGN(cs_prog_data->push.total.size, 64), 64,
5502 &curbe_data_offset);
5503 assert(curbe_data_map);
5504 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5505 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5506
5507 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5508 curbe.CURBETotalDataLength =
5509 ALIGN(cs_prog_data->push.total.size, 64);
5510 curbe.CURBEDataStartAddress = curbe_data_offset;
5511 }
5512 }
5513
5514 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5515 IRIS_DIRTY_BINDINGS_CS |
5516 IRIS_DIRTY_CONSTANTS_CS |
5517 IRIS_DIRTY_CS)) {
5518 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5519
5520 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5521 idd.SamplerStatePointer = shs->sampler_table.offset;
5522 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5523 }
5524
5525 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5526 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5527
5528 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5529 load.InterfaceDescriptorTotalLength =
5530 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5531 load.InterfaceDescriptorDataStartAddress =
5532 emit_state(batch, ice->state.dynamic_uploader,
5533 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
5534 }
5535 }
5536
5537 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5538 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5539 uint32_t right_mask;
5540
5541 if (remainder > 0)
5542 right_mask = ~0u >> (32 - remainder);
5543 else
5544 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5545
5546 #define GPGPU_DISPATCHDIMX 0x2500
5547 #define GPGPU_DISPATCHDIMY 0x2504
5548 #define GPGPU_DISPATCHDIMZ 0x2508
5549
5550 if (grid->indirect) {
5551 struct iris_state_ref *grid_size = &ice->state.grid_size;
5552 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5553 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5554 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5555 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5556 }
5557 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5558 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5559 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5560 }
5561 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5562 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5563 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5564 }
5565 }
5566
5567 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5568 ggw.IndirectParameterEnable = grid->indirect != NULL;
5569 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5570 ggw.ThreadDepthCounterMaximum = 0;
5571 ggw.ThreadHeightCounterMaximum = 0;
5572 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5573 ggw.ThreadGroupIDXDimension = grid->grid[0];
5574 ggw.ThreadGroupIDYDimension = grid->grid[1];
5575 ggw.ThreadGroupIDZDimension = grid->grid[2];
5576 ggw.RightExecutionMask = right_mask;
5577 ggw.BottomExecutionMask = 0xffffffff;
5578 }
5579
5580 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5581
5582 if (!batch->contains_draw) {
5583 iris_restore_compute_saved_bos(ice, batch, grid);
5584 batch->contains_draw = true;
5585 }
5586 }
5587
5588 /**
5589 * State module teardown.
5590 */
5591 static void
5592 iris_destroy_state(struct iris_context *ice)
5593 {
5594 struct iris_genx_state *genx = ice->state.genx;
5595
5596 pipe_resource_reference(&ice->draw.draw_params_res, NULL);
5597 pipe_resource_reference(&ice->draw.derived_draw_params_res, NULL);
5598
5599 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5600 while (bound_vbs) {
5601 const int i = u_bit_scan64(&bound_vbs);
5602 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5603 }
5604 free(ice->state.genx);
5605
5606 for (int i = 0; i < 4; i++) {
5607 pipe_so_target_reference(&ice->state.so_target[i], NULL);
5608 }
5609
5610 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5611 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5612 }
5613 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5614
5615 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5616 struct iris_shader_state *shs = &ice->state.shaders[stage];
5617 pipe_resource_reference(&shs->sampler_table.res, NULL);
5618 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5619 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
5620 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
5621 }
5622 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5623 pipe_resource_reference(&shs->image[i].base.resource, NULL);
5624 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5625 }
5626 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5627 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
5628 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
5629 }
5630 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5631 pipe_sampler_view_reference((struct pipe_sampler_view **)
5632 &shs->textures[i], NULL);
5633 }
5634 }
5635
5636 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5637 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5638
5639 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5640 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5641
5642 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5643 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5644 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5645 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5646 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5647 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5648 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
5649 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
5650 }
5651
5652 /* ------------------------------------------------------------------- */
5653
5654 static void
5655 iris_rebind_buffer(struct iris_context *ice,
5656 struct iris_resource *res,
5657 uint64_t old_address)
5658 {
5659 struct pipe_context *ctx = &ice->ctx;
5660 struct iris_screen *screen = (void *) ctx->screen;
5661 struct iris_genx_state *genx = ice->state.genx;
5662
5663 assert(res->base.target == PIPE_BUFFER);
5664
5665 /* Buffers can't be framebuffer attachments, nor display related,
5666 * and we don't have upstream Clover support.
5667 */
5668 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
5669 PIPE_BIND_RENDER_TARGET |
5670 PIPE_BIND_BLENDABLE |
5671 PIPE_BIND_DISPLAY_TARGET |
5672 PIPE_BIND_CURSOR |
5673 PIPE_BIND_COMPUTE_RESOURCE |
5674 PIPE_BIND_GLOBAL)));
5675
5676 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
5677 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5678 while (bound_vbs) {
5679 const int i = u_bit_scan64(&bound_vbs);
5680 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
5681
5682 /* Update the CPU struct */
5683 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
5684 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
5685 uint64_t *addr = (uint64_t *) &state->state[1];
5686
5687 if (*addr == old_address) {
5688 *addr = res->bo->gtt_offset;
5689 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
5690 }
5691 }
5692 }
5693
5694 /* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
5695 * the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
5696 *
5697 * There is also no need to handle these:
5698 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
5699 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
5700 */
5701
5702 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
5703 /* XXX: be careful about resetting vs appending... */
5704 assert(false);
5705 }
5706
5707 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
5708 struct iris_shader_state *shs = &ice->state.shaders[s];
5709 enum pipe_shader_type p_stage = stage_to_pipe(s);
5710
5711 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
5712 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
5713 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
5714 while (bound_cbufs) {
5715 const int i = u_bit_scan(&bound_cbufs);
5716 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
5717 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
5718
5719 if (res->bo == iris_resource_bo(cbuf->buffer)) {
5720 iris_upload_ubo_ssbo_surf_state(ice, cbuf, surf_state, false);
5721 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << s;
5722 }
5723 }
5724 }
5725
5726 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
5727 uint32_t bound_ssbos = shs->bound_ssbos;
5728 while (bound_ssbos) {
5729 const int i = u_bit_scan(&bound_ssbos);
5730 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
5731
5732 if (res->bo == iris_resource_bo(ssbo->buffer)) {
5733 struct pipe_shader_buffer buf = {
5734 .buffer = &res->base,
5735 .buffer_offset = ssbo->buffer_offset,
5736 .buffer_size = ssbo->buffer_size,
5737 };
5738 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
5739 (shs->writable_ssbos >> i) & 1);
5740 }
5741 }
5742 }
5743
5744 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
5745 uint32_t bound_sampler_views = shs->bound_sampler_views;
5746 while (bound_sampler_views) {
5747 const int i = u_bit_scan(&bound_sampler_views);
5748 struct iris_sampler_view *isv = shs->textures[i];
5749
5750 if (res->bo == iris_resource_bo(isv->base.texture)) {
5751 void *map = alloc_surface_states(ice->state.surface_uploader,
5752 &isv->surface_state,
5753 isv->res->aux.sampler_usages);
5754 assert(map);
5755 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
5756 isv->view.format, isv->view.swizzle,
5757 isv->base.u.buf.offset,
5758 isv->base.u.buf.size);
5759 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
5760 }
5761 }
5762 }
5763
5764 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
5765 uint32_t bound_image_views = shs->bound_image_views;
5766 while (bound_image_views) {
5767 const int i = u_bit_scan(&bound_image_views);
5768 struct iris_image_view *iv = &shs->image[i];
5769
5770 if (res->bo == iris_resource_bo(iv->base.resource)) {
5771 iris_set_shader_images(ctx, p_stage, i, 1, &iv->base);
5772 }
5773 }
5774 }
5775 }
5776 }
5777
5778 /* ------------------------------------------------------------------- */
5779
5780 static void
5781 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
5782 uint32_t src)
5783 {
5784 _iris_emit_lrr(batch, dst, src);
5785 }
5786
5787 static void
5788 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
5789 uint32_t src)
5790 {
5791 _iris_emit_lrr(batch, dst, src);
5792 _iris_emit_lrr(batch, dst + 4, src + 4);
5793 }
5794
5795 static void
5796 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5797 uint32_t val)
5798 {
5799 _iris_emit_lri(batch, reg, val);
5800 }
5801
5802 static void
5803 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5804 uint64_t val)
5805 {
5806 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5807 _iris_emit_lri(batch, reg + 4, val >> 32);
5808 }
5809
5810 /**
5811 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5812 */
5813 static void
5814 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5815 struct iris_bo *bo, uint32_t offset)
5816 {
5817 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5818 lrm.RegisterAddress = reg;
5819 lrm.MemoryAddress = ro_bo(bo, offset);
5820 }
5821 }
5822
5823 /**
5824 * Load a 64-bit value from a buffer into a MMIO register via
5825 * two MI_LOAD_REGISTER_MEM commands.
5826 */
5827 static void
5828 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5829 struct iris_bo *bo, uint32_t offset)
5830 {
5831 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5832 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5833 }
5834
5835 static void
5836 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5837 struct iris_bo *bo, uint32_t offset,
5838 bool predicated)
5839 {
5840 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5841 srm.RegisterAddress = reg;
5842 srm.MemoryAddress = rw_bo(bo, offset);
5843 srm.PredicateEnable = predicated;
5844 }
5845 }
5846
5847 static void
5848 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5849 struct iris_bo *bo, uint32_t offset,
5850 bool predicated)
5851 {
5852 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5853 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5854 }
5855
5856 static void
5857 iris_store_data_imm32(struct iris_batch *batch,
5858 struct iris_bo *bo, uint32_t offset,
5859 uint32_t imm)
5860 {
5861 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5862 sdi.Address = rw_bo(bo, offset);
5863 sdi.ImmediateData = imm;
5864 }
5865 }
5866
5867 static void
5868 iris_store_data_imm64(struct iris_batch *batch,
5869 struct iris_bo *bo, uint32_t offset,
5870 uint64_t imm)
5871 {
5872 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5873 * 2 in genxml but it's actually variable length and we need 5 DWords.
5874 */
5875 void *map = iris_get_command_space(batch, 4 * 5);
5876 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5877 sdi.DWordLength = 5 - 2;
5878 sdi.Address = rw_bo(bo, offset);
5879 sdi.ImmediateData = imm;
5880 }
5881 }
5882
5883 static void
5884 iris_copy_mem_mem(struct iris_batch *batch,
5885 struct iris_bo *dst_bo, uint32_t dst_offset,
5886 struct iris_bo *src_bo, uint32_t src_offset,
5887 unsigned bytes)
5888 {
5889 /* MI_COPY_MEM_MEM operates on DWords. */
5890 assert(bytes % 4 == 0);
5891 assert(dst_offset % 4 == 0);
5892 assert(src_offset % 4 == 0);
5893
5894 for (unsigned i = 0; i < bytes; i += 4) {
5895 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5896 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5897 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5898 }
5899 }
5900 }
5901
5902 /* ------------------------------------------------------------------- */
5903
5904 static unsigned
5905 flags_to_post_sync_op(uint32_t flags)
5906 {
5907 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5908 return WriteImmediateData;
5909
5910 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5911 return WritePSDepthCount;
5912
5913 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5914 return WriteTimestamp;
5915
5916 return 0;
5917 }
5918
5919 /**
5920 * Do the given flags have a Post Sync or LRI Post Sync operation?
5921 */
5922 static enum pipe_control_flags
5923 get_post_sync_flags(enum pipe_control_flags flags)
5924 {
5925 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5926 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5927 PIPE_CONTROL_WRITE_TIMESTAMP |
5928 PIPE_CONTROL_LRI_POST_SYNC_OP;
5929
5930 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5931 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5932 */
5933 assert(util_bitcount(flags) <= 1);
5934
5935 return flags;
5936 }
5937
5938 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5939
5940 /**
5941 * Emit a series of PIPE_CONTROL commands, taking into account any
5942 * workarounds necessary to actually accomplish the caller's request.
5943 *
5944 * Unless otherwise noted, spec quotations in this function come from:
5945 *
5946 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5947 * Restrictions for PIPE_CONTROL.
5948 *
5949 * You should not use this function directly. Use the helpers in
5950 * iris_pipe_control.c instead, which may split the pipe control further.
5951 */
5952 static void
5953 iris_emit_raw_pipe_control(struct iris_batch *batch,
5954 const char *reason,
5955 uint32_t flags,
5956 struct iris_bo *bo,
5957 uint32_t offset,
5958 uint64_t imm)
5959 {
5960 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5961 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5962 enum pipe_control_flags non_lri_post_sync_flags =
5963 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5964
5965 /* Recursive PIPE_CONTROL workarounds --------------------------------
5966 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5967 *
5968 * We do these first because we want to look at the original operation,
5969 * rather than any workarounds we set.
5970 */
5971 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5972 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5973 * lists several workarounds:
5974 *
5975 * "Project: SKL, KBL, BXT
5976 *
5977 * If the VF Cache Invalidation Enable is set to a 1 in a
5978 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5979 * sets to 0, with the VF Cache Invalidation Enable set to 0
5980 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5981 * Invalidation Enable set to a 1."
5982 */
5983 iris_emit_raw_pipe_control(batch,
5984 "workaround: recursive VF cache invalidate",
5985 0, NULL, 0, 0);
5986 }
5987
5988 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5989 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5990 *
5991 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5992 * programmed prior to programming a PIPECONTROL command with "LRI
5993 * Post Sync Operation" in GPGPU mode of operation (i.e when
5994 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5995 *
5996 * The same text exists a few rows below for Post Sync Op.
5997 */
5998 iris_emit_raw_pipe_control(batch,
5999 "workaround: CS stall before gpgpu post-sync",
6000 PIPE_CONTROL_CS_STALL, bo, offset, imm);
6001 }
6002
6003 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
6004 /* Cannonlake:
6005 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
6006 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
6007 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
6008 */
6009 iris_emit_raw_pipe_control(batch,
6010 "workaround: PC flush before RT flush",
6011 PIPE_CONTROL_FLUSH_ENABLE, bo, offset, imm);
6012 }
6013
6014 /* "Flush Types" workarounds ---------------------------------------------
6015 * We do these now because they may add post-sync operations or CS stalls.
6016 */
6017
6018 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
6019 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
6020 *
6021 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
6022 * 'Write PS Depth Count' or 'Write Timestamp'."
6023 */
6024 if (!bo) {
6025 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6026 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6027 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6028 bo = batch->screen->workaround_bo;
6029 }
6030 }
6031
6032 /* #1130 from Gen10 workarounds page:
6033 *
6034 * "Enable Depth Stall on every Post Sync Op if Render target Cache
6035 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
6036 * board stall if Render target cache flush is enabled."
6037 *
6038 * Applicable to CNL B0 and C0 steppings only.
6039 *
6040 * The wording here is unclear, and this workaround doesn't look anything
6041 * like the internal bug report recommendations, but leave it be for now...
6042 */
6043 if (GEN_GEN == 10) {
6044 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
6045 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6046 } else if (flags & non_lri_post_sync_flags) {
6047 flags |= PIPE_CONTROL_DEPTH_STALL;
6048 }
6049 }
6050
6051 if (flags & PIPE_CONTROL_DEPTH_STALL) {
6052 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
6053 *
6054 * "This bit must be DISABLED for operations other than writing
6055 * PS_DEPTH_COUNT."
6056 *
6057 * This seems like nonsense. An Ivybridge workaround requires us to
6058 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
6059 * operation. Gen8+ requires us to emit depth stalls and depth cache
6060 * flushes together. So, it's hard to imagine this means anything other
6061 * than "we originally intended this to be used for PS_DEPTH_COUNT".
6062 *
6063 * We ignore the supposed restriction and do nothing.
6064 */
6065 }
6066
6067 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
6068 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6069 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
6070 *
6071 * "This bit must be DISABLED for End-of-pipe (Read) fences,
6072 * PS_DEPTH_COUNT or TIMESTAMP queries."
6073 *
6074 * TODO: Implement end-of-pipe checking.
6075 */
6076 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
6077 PIPE_CONTROL_WRITE_TIMESTAMP)));
6078 }
6079
6080 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6081 /* From the PIPE_CONTROL instruction table, bit 1:
6082 *
6083 * "This bit is ignored if Depth Stall Enable is set.
6084 * Further, the render cache is not flushed even if Write Cache
6085 * Flush Enable bit is set."
6086 *
6087 * We assert that the caller doesn't do this combination, to try and
6088 * prevent mistakes. It shouldn't hurt the GPU, though.
6089 *
6090 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
6091 * and "Render Target Flush" combo is explicitly required for BTI
6092 * update workarounds.
6093 */
6094 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
6095 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
6096 }
6097
6098 /* PIPE_CONTROL page workarounds ------------------------------------- */
6099
6100 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
6101 /* From the PIPE_CONTROL page itself:
6102 *
6103 * "IVB, HSW, BDW
6104 * Restriction: Pipe_control with CS-stall bit set must be issued
6105 * before a pipe-control command that has the State Cache
6106 * Invalidate bit set."
6107 */
6108 flags |= PIPE_CONTROL_CS_STALL;
6109 }
6110
6111 if (flags & PIPE_CONTROL_FLUSH_LLC) {
6112 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
6113 *
6114 * "Project: ALL
6115 * SW must always program Post-Sync Operation to "Write Immediate
6116 * Data" when Flush LLC is set."
6117 *
6118 * For now, we just require the caller to do it.
6119 */
6120 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
6121 }
6122
6123 /* "Post-Sync Operation" workarounds -------------------------------- */
6124
6125 /* Project: All / Argument: Global Snapshot Count Reset [19]
6126 *
6127 * "This bit must not be exercised on any product.
6128 * Requires stall bit ([20] of DW1) set."
6129 *
6130 * We don't use this, so we just assert that it isn't used. The
6131 * PIPE_CONTROL instruction page indicates that they intended this
6132 * as a debug feature and don't think it is useful in production,
6133 * but it may actually be usable, should we ever want to.
6134 */
6135 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
6136
6137 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
6138 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
6139 /* Project: All / Arguments:
6140 *
6141 * - Generic Media State Clear [16]
6142 * - Indirect State Pointers Disable [16]
6143 *
6144 * "Requires stall bit ([20] of DW1) set."
6145 *
6146 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
6147 * State Clear) says:
6148 *
6149 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6150 * programmed prior to programming a PIPECONTROL command with "Media
6151 * State Clear" set in GPGPU mode of operation"
6152 *
6153 * This is a subset of the earlier rule, so there's nothing to do.
6154 */
6155 flags |= PIPE_CONTROL_CS_STALL;
6156 }
6157
6158 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
6159 /* Project: All / Argument: Store Data Index
6160 *
6161 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6162 * than '0'."
6163 *
6164 * For now, we just assert that the caller does this. We might want to
6165 * automatically add a write to the workaround BO...
6166 */
6167 assert(non_lri_post_sync_flags != 0);
6168 }
6169
6170 if (flags & PIPE_CONTROL_SYNC_GFDT) {
6171 /* Project: All / Argument: Sync GFDT
6172 *
6173 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6174 * than '0' or 0x2520[13] must be set."
6175 *
6176 * For now, we just assert that the caller does this.
6177 */
6178 assert(non_lri_post_sync_flags != 0);
6179 }
6180
6181 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
6182 /* Project: IVB+ / Argument: TLB inv
6183 *
6184 * "Requires stall bit ([20] of DW1) set."
6185 *
6186 * Also, from the PIPE_CONTROL instruction table:
6187 *
6188 * "Project: SKL+
6189 * Post Sync Operation or CS stall must be set to ensure a TLB
6190 * invalidation occurs. Otherwise no cycle will occur to the TLB
6191 * cache to invalidate."
6192 *
6193 * This is not a subset of the earlier rule, so there's nothing to do.
6194 */
6195 flags |= PIPE_CONTROL_CS_STALL;
6196 }
6197
6198 if (GEN_GEN == 9 && devinfo->gt == 4) {
6199 /* TODO: The big Skylake GT4 post sync op workaround */
6200 }
6201
6202 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
6203
6204 if (IS_COMPUTE_PIPELINE(batch)) {
6205 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
6206 /* Project: SKL+ / Argument: Tex Invalidate
6207 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
6208 */
6209 flags |= PIPE_CONTROL_CS_STALL;
6210 }
6211
6212 if (GEN_GEN == 8 && (post_sync_flags ||
6213 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
6214 PIPE_CONTROL_DEPTH_STALL |
6215 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6216 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6217 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
6218 /* Project: BDW / Arguments:
6219 *
6220 * - LRI Post Sync Operation [23]
6221 * - Post Sync Op [15:14]
6222 * - Notify En [8]
6223 * - Depth Stall [13]
6224 * - Render Target Cache Flush [12]
6225 * - Depth Cache Flush [0]
6226 * - DC Flush Enable [5]
6227 *
6228 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
6229 * Workloads."
6230 */
6231 flags |= PIPE_CONTROL_CS_STALL;
6232
6233 /* Also, from the PIPE_CONTROL instruction table, bit 20:
6234 *
6235 * "Project: BDW
6236 * This bit must be always set when PIPE_CONTROL command is
6237 * programmed by GPGPU and MEDIA workloads, except for the cases
6238 * when only Read Only Cache Invalidation bits are set (State
6239 * Cache Invalidation Enable, Instruction cache Invalidation
6240 * Enable, Texture Cache Invalidation Enable, Constant Cache
6241 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
6242 * need not implemented when FF_DOP_CG is disable via "Fixed
6243 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
6244 *
6245 * It sounds like we could avoid CS stalls in some cases, but we
6246 * don't currently bother. This list isn't exactly the list above,
6247 * either...
6248 */
6249 }
6250 }
6251
6252 /* "Stall" workarounds ----------------------------------------------
6253 * These have to come after the earlier ones because we may have added
6254 * some additional CS stalls above.
6255 */
6256
6257 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
6258 /* Project: PRE-SKL, VLV, CHV
6259 *
6260 * "[All Stepping][All SKUs]:
6261 *
6262 * One of the following must also be set:
6263 *
6264 * - Render Target Cache Flush Enable ([12] of DW1)
6265 * - Depth Cache Flush Enable ([0] of DW1)
6266 * - Stall at Pixel Scoreboard ([1] of DW1)
6267 * - Depth Stall ([13] of DW1)
6268 * - Post-Sync Operation ([13] of DW1)
6269 * - DC Flush Enable ([5] of DW1)"
6270 *
6271 * If we don't already have one of those bits set, we choose to add
6272 * "Stall at Pixel Scoreboard". Some of the other bits require a
6273 * CS stall as a workaround (see above), which would send us into
6274 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
6275 * appears to be safe, so we choose that.
6276 */
6277 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
6278 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6279 PIPE_CONTROL_WRITE_IMMEDIATE |
6280 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6281 PIPE_CONTROL_WRITE_TIMESTAMP |
6282 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6283 PIPE_CONTROL_DEPTH_STALL |
6284 PIPE_CONTROL_DATA_CACHE_FLUSH;
6285 if (!(flags & wa_bits))
6286 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6287 }
6288
6289 /* Emit --------------------------------------------------------------- */
6290
6291 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
6292 fprintf(stderr,
6293 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
6294 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
6295 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
6296 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
6297 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
6298 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
6299 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
6300 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
6301 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
6302 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
6303 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
6304 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
6305 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
6306 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
6307 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
6308 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
6309 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
6310 "SnapRes" : "",
6311 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
6312 "ISPDis" : "",
6313 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
6314 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
6315 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
6316 imm, reason);
6317 }
6318
6319 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
6320 pc.LRIPostSyncOperation = NoLRIOperation;
6321 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
6322 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
6323 pc.StoreDataIndex = 0;
6324 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
6325 pc.GlobalSnapshotCountReset =
6326 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
6327 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
6328 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
6329 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
6330 pc.RenderTargetCacheFlushEnable =
6331 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
6332 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6333 pc.StateCacheInvalidationEnable =
6334 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
6335 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
6336 pc.ConstantCacheInvalidationEnable =
6337 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
6338 pc.PostSyncOperation = flags_to_post_sync_op(flags);
6339 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
6340 pc.InstructionCacheInvalidateEnable =
6341 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
6342 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
6343 pc.IndirectStatePointersDisable =
6344 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
6345 pc.TextureCacheInvalidationEnable =
6346 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
6347 pc.Address = rw_bo(bo, offset);
6348 pc.ImmediateData = imm;
6349 }
6350 }
6351
6352 void
6353 genX(emit_urb_setup)(struct iris_context *ice,
6354 struct iris_batch *batch,
6355 const unsigned size[4],
6356 bool tess_present, bool gs_present)
6357 {
6358 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6359 const unsigned push_size_kB = 32;
6360 unsigned entries[4];
6361 unsigned start[4];
6362
6363 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
6364
6365 gen_get_urb_config(devinfo, 1024 * push_size_kB,
6366 1024 * ice->shaders.urb_size,
6367 tess_present, gs_present,
6368 size, entries, start);
6369
6370 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
6371 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
6372 urb._3DCommandSubOpcode += i;
6373 urb.VSURBStartingAddress = start[i];
6374 urb.VSURBEntryAllocationSize = size[i] - 1;
6375 urb.VSNumberofURBEntries = entries[i];
6376 }
6377 }
6378 }
6379
6380 #if GEN_GEN == 9
6381 /**
6382 * Preemption on Gen9 has to be enabled or disabled in various cases.
6383 *
6384 * See these workarounds for preemption:
6385 * - WaDisableMidObjectPreemptionForGSLineStripAdj
6386 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
6387 * - WaDisableMidObjectPreemptionForLineLoop
6388 * - WA#0798
6389 *
6390 * We don't put this in the vtable because it's only used on Gen9.
6391 */
6392 void
6393 gen9_toggle_preemption(struct iris_context *ice,
6394 struct iris_batch *batch,
6395 const struct pipe_draw_info *draw)
6396 {
6397 struct iris_genx_state *genx = ice->state.genx;
6398 bool object_preemption = true;
6399
6400 /* WaDisableMidObjectPreemptionForGSLineStripAdj
6401 *
6402 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
6403 * and GS is enabled."
6404 */
6405 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
6406 ice->shaders.prog[MESA_SHADER_GEOMETRY])
6407 object_preemption = false;
6408
6409 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
6410 *
6411 * "TriFan miscompare in Execlist Preemption test. Cut index that is
6412 * on a previous context. End the previous, the resume another context
6413 * with a tri-fan or polygon, and the vertex count is corrupted. If we
6414 * prempt again we will cause corruption.
6415 *
6416 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
6417 */
6418 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
6419 object_preemption = false;
6420
6421 /* WaDisableMidObjectPreemptionForLineLoop
6422 *
6423 * "VF Stats Counters Missing a vertex when preemption enabled.
6424 *
6425 * WA: Disable mid-draw preemption when the draw uses a lineloop
6426 * topology."
6427 */
6428 if (draw->mode == PIPE_PRIM_LINE_LOOP)
6429 object_preemption = false;
6430
6431 /* WA#0798
6432 *
6433 * "VF is corrupting GAFS data when preempted on an instance boundary
6434 * and replayed with instancing enabled.
6435 *
6436 * WA: Disable preemption when using instanceing."
6437 */
6438 if (draw->instance_count > 1)
6439 object_preemption = false;
6440
6441 if (genx->object_preemption != object_preemption) {
6442 iris_enable_obj_preemption(batch, object_preemption);
6443 genx->object_preemption = object_preemption;
6444 }
6445 }
6446 #endif
6447
6448 static void
6449 iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
6450 {
6451 struct iris_genx_state *genx = ice->state.genx;
6452
6453 memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
6454 }
6455
6456 static void
6457 iris_emit_mi_report_perf_count(struct iris_batch *batch,
6458 struct iris_bo *bo,
6459 uint32_t offset_in_bytes,
6460 uint32_t report_id)
6461 {
6462 iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
6463 mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes);
6464 mi_rpc.ReportID = report_id;
6465 }
6466 }
6467
6468 /**
6469 * Update the pixel hashing modes that determine the balancing of PS threads
6470 * across subslices and slices.
6471 *
6472 * \param width Width bound of the rendering area (already scaled down if \p
6473 * scale is greater than 1).
6474 * \param height Height bound of the rendering area (already scaled down if \p
6475 * scale is greater than 1).
6476 * \param scale The number of framebuffer samples that could potentially be
6477 * affected by an individual channel of the PS thread. This is
6478 * typically one for single-sampled rendering, but for operations
6479 * like CCS resolves and fast clears a single PS invocation may
6480 * update a huge number of pixels, in which case a finer
6481 * balancing is desirable in order to maximally utilize the
6482 * bandwidth available. UINT_MAX can be used as shorthand for
6483 * "finest hashing mode available".
6484 */
6485 void
6486 genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
6487 unsigned width, unsigned height, unsigned scale)
6488 {
6489 #if GEN_GEN == 9
6490 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6491 const unsigned slice_hashing[] = {
6492 /* Because all Gen9 platforms with more than one slice require
6493 * three-way subslice hashing, a single "normal" 16x16 slice hashing
6494 * block is guaranteed to suffer from substantial imbalance, with one
6495 * subslice receiving twice as much work as the other two in the
6496 * slice.
6497 *
6498 * The performance impact of that would be particularly severe when
6499 * three-way hashing is also in use for slice balancing (which is the
6500 * case for all Gen9 GT4 platforms), because one of the slices
6501 * receives one every three 16x16 blocks in either direction, which
6502 * is roughly the periodicity of the underlying subslice imbalance
6503 * pattern ("roughly" because in reality the hardware's
6504 * implementation of three-way hashing doesn't do exact modulo 3
6505 * arithmetic, which somewhat decreases the magnitude of this effect
6506 * in practice). This leads to a systematic subslice imbalance
6507 * within that slice regardless of the size of the primitive. The
6508 * 32x32 hashing mode guarantees that the subslice imbalance within a
6509 * single slice hashing block is minimal, largely eliminating this
6510 * effect.
6511 */
6512 _32x32,
6513 /* Finest slice hashing mode available. */
6514 NORMAL
6515 };
6516 const unsigned subslice_hashing[] = {
6517 /* 16x16 would provide a slight cache locality benefit especially
6518 * visible in the sampler L1 cache efficiency of low-bandwidth
6519 * non-LLC platforms, but it comes at the cost of greater subslice
6520 * imbalance for primitives of dimensions approximately intermediate
6521 * between 16x4 and 16x16.
6522 */
6523 _16x4,
6524 /* Finest subslice hashing mode available. */
6525 _8x4
6526 };
6527 /* Dimensions of the smallest hashing block of a given hashing mode. If
6528 * the rendering area is smaller than this there can't possibly be any
6529 * benefit from switching to this mode, so we optimize out the
6530 * transition.
6531 */
6532 const unsigned min_size[][2] = {
6533 { 16, 4 },
6534 { 8, 4 }
6535 };
6536 const unsigned idx = scale > 1;
6537
6538 if (width > min_size[idx][0] || height > min_size[idx][1]) {
6539 uint32_t gt_mode;
6540
6541 iris_pack_state(GENX(GT_MODE), &gt_mode, reg) {
6542 reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
6543 reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
6544 reg.SubsliceHashing = subslice_hashing[idx];
6545 reg.SubsliceHashingMask = -1;
6546 };
6547
6548 iris_emit_raw_pipe_control(batch,
6549 "workaround: CS stall before GT_MODE LRI",
6550 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6551 PIPE_CONTROL_CS_STALL,
6552 NULL, 0, 0);
6553
6554 iris_emit_lri(batch, GT_MODE, gt_mode);
6555
6556 ice->state.current_hash_scale = scale;
6557 }
6558 #endif
6559 }
6560
6561 void
6562 genX(init_state)(struct iris_context *ice)
6563 {
6564 struct pipe_context *ctx = &ice->ctx;
6565 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
6566
6567 ctx->create_blend_state = iris_create_blend_state;
6568 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
6569 ctx->create_rasterizer_state = iris_create_rasterizer_state;
6570 ctx->create_sampler_state = iris_create_sampler_state;
6571 ctx->create_sampler_view = iris_create_sampler_view;
6572 ctx->create_surface = iris_create_surface;
6573 ctx->create_vertex_elements_state = iris_create_vertex_elements;
6574 ctx->bind_blend_state = iris_bind_blend_state;
6575 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
6576 ctx->bind_sampler_states = iris_bind_sampler_states;
6577 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
6578 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
6579 ctx->delete_blend_state = iris_delete_state;
6580 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
6581 ctx->delete_rasterizer_state = iris_delete_state;
6582 ctx->delete_sampler_state = iris_delete_state;
6583 ctx->delete_vertex_elements_state = iris_delete_state;
6584 ctx->set_blend_color = iris_set_blend_color;
6585 ctx->set_clip_state = iris_set_clip_state;
6586 ctx->set_constant_buffer = iris_set_constant_buffer;
6587 ctx->set_shader_buffers = iris_set_shader_buffers;
6588 ctx->set_shader_images = iris_set_shader_images;
6589 ctx->set_sampler_views = iris_set_sampler_views;
6590 ctx->set_tess_state = iris_set_tess_state;
6591 ctx->set_framebuffer_state = iris_set_framebuffer_state;
6592 ctx->set_polygon_stipple = iris_set_polygon_stipple;
6593 ctx->set_sample_mask = iris_set_sample_mask;
6594 ctx->set_scissor_states = iris_set_scissor_states;
6595 ctx->set_stencil_ref = iris_set_stencil_ref;
6596 ctx->set_vertex_buffers = iris_set_vertex_buffers;
6597 ctx->set_viewport_states = iris_set_viewport_states;
6598 ctx->sampler_view_destroy = iris_sampler_view_destroy;
6599 ctx->surface_destroy = iris_surface_destroy;
6600 ctx->draw_vbo = iris_draw_vbo;
6601 ctx->launch_grid = iris_launch_grid;
6602 ctx->create_stream_output_target = iris_create_stream_output_target;
6603 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
6604 ctx->set_stream_output_targets = iris_set_stream_output_targets;
6605
6606 ice->vtbl.destroy_state = iris_destroy_state;
6607 ice->vtbl.init_render_context = iris_init_render_context;
6608 ice->vtbl.init_compute_context = iris_init_compute_context;
6609 ice->vtbl.upload_render_state = iris_upload_render_state;
6610 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
6611 ice->vtbl.upload_compute_state = iris_upload_compute_state;
6612 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
6613 ice->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
6614 ice->vtbl.rebind_buffer = iris_rebind_buffer;
6615 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
6616 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
6617 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
6618 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
6619 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
6620 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
6621 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
6622 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
6623 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
6624 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
6625 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
6626 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
6627 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
6628 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
6629 ice->vtbl.populate_vs_key = iris_populate_vs_key;
6630 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
6631 ice->vtbl.populate_tes_key = iris_populate_tes_key;
6632 ice->vtbl.populate_gs_key = iris_populate_gs_key;
6633 ice->vtbl.populate_fs_key = iris_populate_fs_key;
6634 ice->vtbl.populate_cs_key = iris_populate_cs_key;
6635 ice->vtbl.mocs = mocs;
6636 ice->vtbl.lost_genx_state = iris_lost_genx_state;
6637
6638 ice->state.dirty = ~0ull;
6639
6640 ice->state.statistics_counters_enabled = true;
6641
6642 ice->state.sample_mask = 0xffff;
6643 ice->state.num_viewports = 1;
6644 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
6645
6646 /* Make a 1x1x1 null surface for unbound textures */
6647 void *null_surf_map =
6648 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
6649 4 * GENX(RENDER_SURFACE_STATE_length), 64);
6650 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
6651 ice->state.unbound_tex.offset +=
6652 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
6653
6654 /* Default all scissor rectangles to be empty regions. */
6655 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
6656 ice->state.scissors[i] = (struct pipe_scissor_state) {
6657 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
6658 };
6659 }
6660 }