iris: Initial import of resolve code
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_defines.h"
105 #include "iris_pipe.h"
106 #include "iris_resource.h"
107
108 #define __gen_address_type struct iris_address
109 #define __gen_user_data struct iris_batch
110
111 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
112
113 static uint64_t
114 __gen_combine_address(struct iris_batch *batch, void *location,
115 struct iris_address addr, uint32_t delta)
116 {
117 uint64_t result = addr.offset + delta;
118
119 if (addr.bo) {
120 iris_use_pinned_bo(batch, addr.bo, addr.write);
121 /* Assume this is a general address, not relative to a base. */
122 result += addr.bo->gtt_offset;
123 }
124
125 return result;
126 }
127
128 #define __genxml_cmd_length(cmd) cmd ## _length
129 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
130 #define __genxml_cmd_header(cmd) cmd ## _header
131 #define __genxml_cmd_pack(cmd) cmd ## _pack
132
133 #define _iris_pack_command(batch, cmd, dst, name) \
134 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
135 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
136 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
137 _dst = NULL; \
138 }))
139
140 #define iris_pack_command(cmd, dst, name) \
141 _iris_pack_command(NULL, cmd, dst, name)
142
143 #define iris_pack_state(cmd, dst, name) \
144 for (struct cmd name = {}, \
145 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
146 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
147 _dst = NULL)
148
149 #define iris_emit_cmd(batch, cmd, name) \
150 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
151
152 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
153 do { \
154 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
155 for (uint32_t i = 0; i < num_dwords; i++) \
156 dw[i] = (dwords0)[i] | (dwords1)[i]; \
157 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
158 } while (0)
159
160 #include "genxml/genX_pack.h"
161 #include "genxml/gen_macros.h"
162 #include "genxml/genX_bits.h"
163
164 #if GEN_GEN == 8
165 #define MOCS_PTE 0x18
166 #define MOCS_WB 0x78
167 #else
168 #define MOCS_PTE (1 << 1)
169 #define MOCS_WB (2 << 1)
170 #endif
171
172 static uint32_t
173 mocs(struct iris_bo *bo)
174 {
175 return bo && bo->external ? MOCS_PTE : MOCS_WB;
176 }
177
178 /**
179 * Statically assert that PIPE_* enums match the hardware packets.
180 * (As long as they match, we don't need to translate them.)
181 */
182 UNUSED static void pipe_asserts()
183 {
184 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
185
186 /* pipe_logicop happens to match the hardware. */
187 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
188 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
189 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
190 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
191 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
192 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
193 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
194 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
195 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
196 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
197 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
198 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
199 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
200 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
201 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
202 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
203
204 /* pipe_blend_func happens to match the hardware. */
205 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
212 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
213 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
214 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
215 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
216 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
217 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
218 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
219 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
220 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
221 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
222 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
223 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
224
225 /* pipe_blend_func happens to match the hardware. */
226 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
227 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
228 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
229 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
230 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
231
232 /* pipe_stencil_op happens to match the hardware. */
233 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
234 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
235 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
236 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
237 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
238 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
239 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
240 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
241
242 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
243 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
244 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
245 #undef PIPE_ASSERT
246 }
247
248 static unsigned
249 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
250 {
251 static const unsigned map[] = {
252 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
253 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
254 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
255 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
256 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
257 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
258 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
259 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
260 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
261 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
262 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
263 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
264 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
265 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
266 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
267 };
268
269 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
270 }
271
272 static unsigned
273 translate_compare_func(enum pipe_compare_func pipe_func)
274 {
275 static const unsigned map[] = {
276 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
277 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
278 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
279 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
280 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
281 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
282 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
283 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
284 };
285 return map[pipe_func];
286 }
287
288 static unsigned
289 translate_shadow_func(enum pipe_compare_func pipe_func)
290 {
291 /* Gallium specifies the result of shadow comparisons as:
292 *
293 * 1 if ref <op> texel,
294 * 0 otherwise.
295 *
296 * The hardware does:
297 *
298 * 0 if texel <op> ref,
299 * 1 otherwise.
300 *
301 * So we need to flip the operator and also negate.
302 */
303 static const unsigned map[] = {
304 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
305 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
306 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
307 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
308 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
309 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
310 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
311 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
312 };
313 return map[pipe_func];
314 }
315
316 static unsigned
317 translate_cull_mode(unsigned pipe_face)
318 {
319 static const unsigned map[4] = {
320 [PIPE_FACE_NONE] = CULLMODE_NONE,
321 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
322 [PIPE_FACE_BACK] = CULLMODE_BACK,
323 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
324 };
325 return map[pipe_face];
326 }
327
328 static unsigned
329 translate_fill_mode(unsigned pipe_polymode)
330 {
331 static const unsigned map[4] = {
332 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
333 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
334 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
335 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
336 };
337 return map[pipe_polymode];
338 }
339
340 static unsigned
341 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
342 {
343 static const unsigned map[] = {
344 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
345 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
346 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
347 };
348 return map[pipe_mip];
349 }
350
351 static uint32_t
352 translate_wrap(unsigned pipe_wrap)
353 {
354 static const unsigned map[] = {
355 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
356 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
357 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
358 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
359 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
360 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
361
362 /* These are unsupported. */
363 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
364 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
365 };
366 return map[pipe_wrap];
367 }
368
369 static struct iris_address
370 ro_bo(struct iris_bo *bo, uint64_t offset)
371 {
372 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
373 * validation list at CSO creation time, instead of draw time.
374 */
375 return (struct iris_address) { .bo = bo, .offset = offset };
376 }
377
378 static struct iris_address
379 rw_bo(struct iris_bo *bo, uint64_t offset)
380 {
381 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
382 * validation list at CSO creation time, instead of draw time.
383 */
384 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
385 }
386
387 /**
388 * Allocate space for some indirect state.
389 *
390 * Return a pointer to the map (to fill it out) and a state ref (for
391 * referring to the state in GPU commands).
392 */
393 static void *
394 upload_state(struct u_upload_mgr *uploader,
395 struct iris_state_ref *ref,
396 unsigned size,
397 unsigned alignment)
398 {
399 void *p = NULL;
400 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
401 return p;
402 }
403
404 /**
405 * Stream out temporary/short-lived state.
406 *
407 * This allocates space, pins the BO, and includes the BO address in the
408 * returned offset (which works because all state lives in 32-bit memory
409 * zones).
410 */
411 static uint32_t *
412 stream_state(struct iris_batch *batch,
413 struct u_upload_mgr *uploader,
414 struct pipe_resource **out_res,
415 unsigned size,
416 unsigned alignment,
417 uint32_t *out_offset)
418 {
419 void *ptr = NULL;
420
421 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
422
423 struct iris_bo *bo = iris_resource_bo(*out_res);
424 iris_use_pinned_bo(batch, bo, false);
425
426 *out_offset += iris_bo_offset_from_base_address(bo);
427
428 return ptr;
429 }
430
431 /**
432 * stream_state() + memcpy.
433 */
434 static uint32_t
435 emit_state(struct iris_batch *batch,
436 struct u_upload_mgr *uploader,
437 struct pipe_resource **out_res,
438 const void *data,
439 unsigned size,
440 unsigned alignment)
441 {
442 unsigned offset = 0;
443 uint32_t *map =
444 stream_state(batch, uploader, out_res, size, alignment, &offset);
445
446 if (map)
447 memcpy(map, data, size);
448
449 return offset;
450 }
451
452 /**
453 * Did field 'x' change between 'old_cso' and 'new_cso'?
454 *
455 * (If so, we may want to set some dirty flags.)
456 */
457 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
458 #define cso_changed_memcmp(x) \
459 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
460
461 static void
462 flush_for_state_base_change(struct iris_batch *batch)
463 {
464 /* Flush before emitting STATE_BASE_ADDRESS.
465 *
466 * This isn't documented anywhere in the PRM. However, it seems to be
467 * necessary prior to changing the surface state base adress. We've
468 * seen issues in Vulkan where we get GPU hangs when using multi-level
469 * command buffers which clear depth, reset state base address, and then
470 * go render stuff.
471 *
472 * Normally, in GL, we would trust the kernel to do sufficient stalls
473 * and flushes prior to executing our batch. However, it doesn't seem
474 * as if the kernel's flushing is always sufficient and we don't want to
475 * rely on it.
476 *
477 * We make this an end-of-pipe sync instead of a normal flush because we
478 * do not know the current status of the GPU. On Haswell at least,
479 * having a fast-clear operation in flight at the same time as a normal
480 * rendering operation can cause hangs. Since the kernel's flushing is
481 * insufficient, we need to ensure that any rendering operations from
482 * other processes are definitely complete before we try to do our own
483 * rendering. It's a bit of a big hammer but it appears to work.
484 */
485 iris_emit_end_of_pipe_sync(batch,
486 PIPE_CONTROL_RENDER_TARGET_FLUSH |
487 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
488 PIPE_CONTROL_DATA_CACHE_FLUSH);
489 }
490
491 static void
492 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
493 {
494 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
495 lri.RegisterOffset = reg;
496 lri.DataDWord = val;
497 }
498 }
499 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
500
501 static void
502 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
503 {
504 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
505 lrr.SourceRegisterAddress = src;
506 lrr.DestinationRegisterAddress = dst;
507 }
508 }
509
510 static void
511 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
512 {
513 #if GEN_GEN >= 8 && GEN_GEN < 10
514 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
515 *
516 * Software must clear the COLOR_CALC_STATE Valid field in
517 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
518 * with Pipeline Select set to GPGPU.
519 *
520 * The internal hardware docs recommend the same workaround for Gen9
521 * hardware too.
522 */
523 if (pipeline == GPGPU)
524 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
525 #endif
526
527
528 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
529 * PIPELINE_SELECT [DevBWR+]":
530 *
531 * "Project: DEVSNB+
532 *
533 * Software must ensure all the write caches are flushed through a
534 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
535 * command to invalidate read only caches prior to programming
536 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
537 */
538 iris_emit_pipe_control_flush(batch,
539 PIPE_CONTROL_RENDER_TARGET_FLUSH |
540 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
541 PIPE_CONTROL_DATA_CACHE_FLUSH |
542 PIPE_CONTROL_CS_STALL);
543
544 iris_emit_pipe_control_flush(batch,
545 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
546 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
547 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
548 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
549
550 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
551 #if GEN_GEN >= 9
552 sel.MaskBits = 3;
553 #endif
554 sel.PipelineSelection = pipeline;
555 }
556 }
557
558 UNUSED static void
559 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
560 {
561 #if GEN_GEN == 9
562 /* Project: DevGLK
563 *
564 * "This chicken bit works around a hardware issue with barrier
565 * logic encountered when switching between GPGPU and 3D pipelines.
566 * To workaround the issue, this mode bit should be set after a
567 * pipeline is selected."
568 */
569 uint32_t reg_val;
570 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
571 reg.GLKBarrierMode = value;
572 reg.GLKBarrierModeMask = 1;
573 }
574 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
575 #endif
576 }
577
578 static void
579 init_state_base_address(struct iris_batch *batch)
580 {
581 flush_for_state_base_change(batch);
582
583 /* We program most base addresses once at context initialization time.
584 * Each base address points at a 4GB memory zone, and never needs to
585 * change. See iris_bufmgr.h for a description of the memory zones.
586 *
587 * The one exception is Surface State Base Address, which needs to be
588 * updated occasionally. See iris_binder.c for the details there.
589 */
590 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
591 sba.GeneralStateMOCS = MOCS_WB;
592 sba.StatelessDataPortAccessMOCS = MOCS_WB;
593 sba.DynamicStateMOCS = MOCS_WB;
594 sba.IndirectObjectMOCS = MOCS_WB;
595 sba.InstructionMOCS = MOCS_WB;
596
597 sba.GeneralStateBaseAddressModifyEnable = true;
598 sba.DynamicStateBaseAddressModifyEnable = true;
599 sba.IndirectObjectBaseAddressModifyEnable = true;
600 sba.InstructionBaseAddressModifyEnable = true;
601 sba.GeneralStateBufferSizeModifyEnable = true;
602 sba.DynamicStateBufferSizeModifyEnable = true;
603 #if (GEN_GEN >= 9)
604 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
605 sba.BindlessSurfaceStateMOCS = MOCS_WB;
606 #endif
607 sba.IndirectObjectBufferSizeModifyEnable = true;
608 sba.InstructionBuffersizeModifyEnable = true;
609
610 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
611 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
612
613 sba.GeneralStateBufferSize = 0xfffff;
614 sba.IndirectObjectBufferSize = 0xfffff;
615 sba.InstructionBufferSize = 0xfffff;
616 sba.DynamicStateBufferSize = 0xfffff;
617 }
618 }
619
620 static void
621 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
622 bool has_slm, bool wants_dc_cache)
623 {
624 uint32_t reg_val;
625 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
626 reg.SLMEnable = has_slm;
627 #if GEN_GEN == 11
628 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
629 * in L3CNTLREG register. The default setting of the bit is not the
630 * desirable behavior.
631 */
632 reg.ErrorDetectionBehaviorControl = true;
633 #endif
634 reg.URBAllocation = cfg->n[GEN_L3P_URB];
635 reg.ROAllocation = cfg->n[GEN_L3P_RO];
636 reg.DCAllocation = cfg->n[GEN_L3P_DC];
637 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
638 }
639 iris_emit_lri(batch, L3CNTLREG, reg_val);
640 }
641
642 static void
643 iris_emit_default_l3_config(struct iris_batch *batch,
644 const struct gen_device_info *devinfo,
645 bool compute)
646 {
647 bool wants_dc_cache = true;
648 bool has_slm = compute;
649 const struct gen_l3_weights w =
650 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
651 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
652 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
653 }
654
655 /**
656 * Upload the initial GPU state for a render context.
657 *
658 * This sets some invariant state that needs to be programmed a particular
659 * way, but we never actually change.
660 */
661 static void
662 iris_init_render_context(struct iris_screen *screen,
663 struct iris_batch *batch,
664 struct iris_vtable *vtbl,
665 struct pipe_debug_callback *dbg)
666 {
667 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
668 uint32_t reg_val;
669
670 emit_pipeline_select(batch, _3D);
671
672 iris_emit_default_l3_config(batch, devinfo, false);
673
674 init_state_base_address(batch);
675
676 #if GEN_GEN >= 9
677 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
678 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
679 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
680 }
681 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
682 #else
683 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
684 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
685 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
686 }
687 iris_emit_lri(batch, INSTPM, reg_val);
688 #endif
689
690 #if GEN_GEN == 9
691 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
692 reg.FloatBlendOptimizationEnable = true;
693 reg.FloatBlendOptimizationEnableMask = true;
694 reg.PartialResolveDisableInVC = true;
695 reg.PartialResolveDisableInVCMask = true;
696 }
697 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
698
699 if (devinfo->is_geminilake)
700 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
701 #endif
702
703 #if GEN_GEN == 11
704 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
705 reg.HeaderlessMessageforPreemptableContexts = 1;
706 reg.HeaderlessMessageforPreemptableContextsMask = 1;
707 }
708 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
709
710 // XXX: 3D_MODE?
711 #endif
712
713 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
714 * changing it dynamically. We set it to the maximum size here, and
715 * instead include the render target dimensions in the viewport, so
716 * viewport extents clipping takes care of pruning stray geometry.
717 */
718 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
719 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
720 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
721 }
722
723 /* Set the initial MSAA sample positions. */
724 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
725 GEN_SAMPLE_POS_1X(pat._1xSample);
726 GEN_SAMPLE_POS_2X(pat._2xSample);
727 GEN_SAMPLE_POS_4X(pat._4xSample);
728 GEN_SAMPLE_POS_8X(pat._8xSample);
729 #if GEN_GEN >= 9
730 GEN_SAMPLE_POS_16X(pat._16xSample);
731 #endif
732 }
733
734 /* Use the legacy AA line coverage computation. */
735 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
736
737 /* Disable chromakeying (it's for media) */
738 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
739
740 /* We want regular rendering, not special HiZ operations. */
741 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
742
743 /* No polygon stippling offsets are necessary. */
744 /* TODO: may need to set an offset for origin-UL framebuffers */
745 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
746
747 /* Set a static partitioning of the push constant area. */
748 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
749 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
750 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
751 alloc._3DCommandSubOpcode = 18 + i;
752 alloc.ConstantBufferOffset = 6 * i;
753 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
754 }
755 }
756 }
757
758 static void
759 iris_init_compute_context(struct iris_screen *screen,
760 struct iris_batch *batch,
761 struct iris_vtable *vtbl,
762 struct pipe_debug_callback *dbg)
763 {
764 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
765
766 emit_pipeline_select(batch, GPGPU);
767
768 iris_emit_default_l3_config(batch, devinfo, true);
769
770 init_state_base_address(batch);
771
772 #if GEN_GEN == 9
773 if (devinfo->is_geminilake)
774 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
775 #endif
776 }
777
778 struct iris_vertex_buffer_state {
779 /** The VERTEX_BUFFER_STATE hardware structure. */
780 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
781
782 /** The resource to source vertex data from. */
783 struct pipe_resource *resource;
784 };
785
786 struct iris_depth_buffer_state {
787 /* Depth/HiZ/Stencil related hardware packets. */
788 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
789 GENX(3DSTATE_STENCIL_BUFFER_length) +
790 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
791 GENX(3DSTATE_CLEAR_PARAMS_length)];
792 };
793
794 /**
795 * Generation-specific context state (ice->state.genx->...).
796 *
797 * Most state can go in iris_context directly, but these encode hardware
798 * packets which vary by generation.
799 */
800 struct iris_genx_state {
801 struct iris_vertex_buffer_state vertex_buffers[33];
802
803 struct iris_depth_buffer_state depth_buffer;
804
805 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
806 };
807
808 /**
809 * The pipe->set_blend_color() driver hook.
810 *
811 * This corresponds to our COLOR_CALC_STATE.
812 */
813 static void
814 iris_set_blend_color(struct pipe_context *ctx,
815 const struct pipe_blend_color *state)
816 {
817 struct iris_context *ice = (struct iris_context *) ctx;
818
819 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
820 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
821 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
822 }
823
824 /**
825 * Gallium CSO for blend state (see pipe_blend_state).
826 */
827 struct iris_blend_state {
828 /** Partial 3DSTATE_PS_BLEND */
829 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
830
831 /** Partial BLEND_STATE */
832 uint32_t blend_state[GENX(BLEND_STATE_length) +
833 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
834
835 bool alpha_to_coverage; /* for shader key */
836
837 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
838 uint8_t blend_enables;
839
840 /** Bitfield of whether color writes are enabled for RT[i] */
841 uint8_t color_write_enables;
842 };
843
844 static enum pipe_blendfactor
845 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
846 {
847 if (alpha_to_one) {
848 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
849 return PIPE_BLENDFACTOR_ONE;
850
851 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
852 return PIPE_BLENDFACTOR_ZERO;
853 }
854
855 return f;
856 }
857
858 /**
859 * The pipe->create_blend_state() driver hook.
860 *
861 * Translates a pipe_blend_state into iris_blend_state.
862 */
863 static void *
864 iris_create_blend_state(struct pipe_context *ctx,
865 const struct pipe_blend_state *state)
866 {
867 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
868 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
869
870 cso->blend_enables = 0;
871 cso->color_write_enables = 0;
872 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
873
874 cso->alpha_to_coverage = state->alpha_to_coverage;
875
876 bool indep_alpha_blend = false;
877
878 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
879 const struct pipe_rt_blend_state *rt =
880 &state->rt[state->independent_blend_enable ? i : 0];
881
882 enum pipe_blendfactor src_rgb =
883 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
884 enum pipe_blendfactor src_alpha =
885 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
886 enum pipe_blendfactor dst_rgb =
887 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
888 enum pipe_blendfactor dst_alpha =
889 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
890
891 if (rt->rgb_func != rt->alpha_func ||
892 src_rgb != src_alpha || dst_rgb != dst_alpha)
893 indep_alpha_blend = true;
894
895 if (rt->blend_enable)
896 cso->blend_enables |= 1u << i;
897
898 if (rt->colormask)
899 cso->color_write_enables |= 1u << i;
900
901 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
902 be.LogicOpEnable = state->logicop_enable;
903 be.LogicOpFunction = state->logicop_func;
904
905 be.PreBlendSourceOnlyClampEnable = false;
906 be.ColorClampRange = COLORCLAMP_RTFORMAT;
907 be.PreBlendColorClampEnable = true;
908 be.PostBlendColorClampEnable = true;
909
910 be.ColorBufferBlendEnable = rt->blend_enable;
911
912 be.ColorBlendFunction = rt->rgb_func;
913 be.AlphaBlendFunction = rt->alpha_func;
914 be.SourceBlendFactor = src_rgb;
915 be.SourceAlphaBlendFactor = src_alpha;
916 be.DestinationBlendFactor = dst_rgb;
917 be.DestinationAlphaBlendFactor = dst_alpha;
918
919 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
920 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
921 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
922 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
923 }
924 blend_entry += GENX(BLEND_STATE_ENTRY_length);
925 }
926
927 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
928 /* pb.HasWriteableRT is filled in at draw time. */
929 /* pb.AlphaTestEnable is filled in at draw time. */
930 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
931 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
932
933 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
934
935 pb.SourceBlendFactor =
936 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
937 pb.SourceAlphaBlendFactor =
938 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
939 pb.DestinationBlendFactor =
940 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
941 pb.DestinationAlphaBlendFactor =
942 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
943 }
944
945 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
946 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
947 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
948 bs.AlphaToOneEnable = state->alpha_to_one;
949 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
950 bs.ColorDitherEnable = state->dither;
951 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
952 }
953
954
955 return cso;
956 }
957
958 /**
959 * The pipe->bind_blend_state() driver hook.
960 *
961 * Bind a blending CSO and flag related dirty bits.
962 */
963 static void
964 iris_bind_blend_state(struct pipe_context *ctx, void *state)
965 {
966 struct iris_context *ice = (struct iris_context *) ctx;
967 struct iris_blend_state *cso = state;
968
969 ice->state.cso_blend = cso;
970 ice->state.blend_enables = cso ? cso->blend_enables : 0;
971
972 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
973 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
974 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
975 }
976
977 /**
978 * Return true if the FS writes to any color outputs which are not disabled
979 * via color masking.
980 */
981 static bool
982 has_writeable_rt(const struct iris_blend_state *cso_blend,
983 const struct shader_info *fs_info)
984 {
985 if (!fs_info)
986 return false;
987
988 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
989
990 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
991 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
992
993 return cso_blend->color_write_enables & rt_outputs;
994 }
995
996 /**
997 * Gallium CSO for depth, stencil, and alpha testing state.
998 */
999 struct iris_depth_stencil_alpha_state {
1000 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1001 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1002
1003 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1004 struct pipe_alpha_state alpha;
1005
1006 /** Outbound to resolve and cache set tracking. */
1007 bool depth_writes_enabled;
1008 bool stencil_writes_enabled;
1009 };
1010
1011 /**
1012 * The pipe->create_depth_stencil_alpha_state() driver hook.
1013 *
1014 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1015 * testing state since we need pieces of it in a variety of places.
1016 */
1017 static void *
1018 iris_create_zsa_state(struct pipe_context *ctx,
1019 const struct pipe_depth_stencil_alpha_state *state)
1020 {
1021 struct iris_depth_stencil_alpha_state *cso =
1022 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1023
1024 bool two_sided_stencil = state->stencil[1].enabled;
1025
1026 cso->alpha = state->alpha;
1027 cso->depth_writes_enabled = state->depth.writemask;
1028 cso->stencil_writes_enabled =
1029 state->stencil[0].writemask != 0 ||
1030 (two_sided_stencil && state->stencil[1].writemask != 1);
1031
1032 /* The state tracker needs to optimize away EQUAL writes for us. */
1033 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1034
1035 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1036 wmds.StencilFailOp = state->stencil[0].fail_op;
1037 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1038 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1039 wmds.StencilTestFunction =
1040 translate_compare_func(state->stencil[0].func);
1041 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1042 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1043 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1044 wmds.BackfaceStencilTestFunction =
1045 translate_compare_func(state->stencil[1].func);
1046 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1047 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1048 wmds.StencilTestEnable = state->stencil[0].enabled;
1049 wmds.StencilBufferWriteEnable =
1050 state->stencil[0].writemask != 0 ||
1051 (two_sided_stencil && state->stencil[1].writemask != 0);
1052 wmds.DepthTestEnable = state->depth.enabled;
1053 wmds.DepthBufferWriteEnable = state->depth.writemask;
1054 wmds.StencilTestMask = state->stencil[0].valuemask;
1055 wmds.StencilWriteMask = state->stencil[0].writemask;
1056 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1057 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1058 /* wmds.[Backface]StencilReferenceValue are merged later */
1059 }
1060
1061 return cso;
1062 }
1063
1064 /**
1065 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1066 *
1067 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1068 */
1069 static void
1070 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1071 {
1072 struct iris_context *ice = (struct iris_context *) ctx;
1073 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1074 struct iris_depth_stencil_alpha_state *new_cso = state;
1075
1076 if (new_cso) {
1077 if (cso_changed(alpha.ref_value))
1078 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1079
1080 if (cso_changed(alpha.enabled))
1081 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1082
1083 if (cso_changed(alpha.func))
1084 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1085
1086 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1087 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1088 }
1089
1090 ice->state.cso_zsa = new_cso;
1091 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1092 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1093 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1094 }
1095
1096 /**
1097 * Gallium CSO for rasterizer state.
1098 */
1099 struct iris_rasterizer_state {
1100 uint32_t sf[GENX(3DSTATE_SF_length)];
1101 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1102 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1103 uint32_t wm[GENX(3DSTATE_WM_length)];
1104 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1105
1106 uint8_t num_clip_plane_consts;
1107 bool clip_halfz; /* for CC_VIEWPORT */
1108 bool depth_clip_near; /* for CC_VIEWPORT */
1109 bool depth_clip_far; /* for CC_VIEWPORT */
1110 bool flatshade; /* for shader state */
1111 bool flatshade_first; /* for stream output */
1112 bool clamp_fragment_color; /* for shader state */
1113 bool light_twoside; /* for shader state */
1114 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1115 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1116 bool line_stipple_enable;
1117 bool poly_stipple_enable;
1118 bool multisample;
1119 bool force_persample_interp;
1120 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1121 uint16_t sprite_coord_enable;
1122 };
1123
1124 static float
1125 get_line_width(const struct pipe_rasterizer_state *state)
1126 {
1127 float line_width = state->line_width;
1128
1129 /* From the OpenGL 4.4 spec:
1130 *
1131 * "The actual width of non-antialiased lines is determined by rounding
1132 * the supplied width to the nearest integer, then clamping it to the
1133 * implementation-dependent maximum non-antialiased line width."
1134 */
1135 if (!state->multisample && !state->line_smooth)
1136 line_width = roundf(state->line_width);
1137
1138 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1139 /* For 1 pixel line thickness or less, the general anti-aliasing
1140 * algorithm gives up, and a garbage line is generated. Setting a
1141 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1142 * (one-pixel-wide), non-antialiased lines.
1143 *
1144 * Lines rendered with zero Line Width are rasterized using the
1145 * "Grid Intersection Quantization" rules as specified by the
1146 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1147 */
1148 line_width = 0.0f;
1149 }
1150
1151 return line_width;
1152 }
1153
1154 /**
1155 * The pipe->create_rasterizer_state() driver hook.
1156 */
1157 static void *
1158 iris_create_rasterizer_state(struct pipe_context *ctx,
1159 const struct pipe_rasterizer_state *state)
1160 {
1161 struct iris_rasterizer_state *cso =
1162 malloc(sizeof(struct iris_rasterizer_state));
1163
1164 cso->multisample = state->multisample;
1165 cso->force_persample_interp = state->force_persample_interp;
1166 cso->clip_halfz = state->clip_halfz;
1167 cso->depth_clip_near = state->depth_clip_near;
1168 cso->depth_clip_far = state->depth_clip_far;
1169 cso->flatshade = state->flatshade;
1170 cso->flatshade_first = state->flatshade_first;
1171 cso->clamp_fragment_color = state->clamp_fragment_color;
1172 cso->light_twoside = state->light_twoside;
1173 cso->rasterizer_discard = state->rasterizer_discard;
1174 cso->half_pixel_center = state->half_pixel_center;
1175 cso->sprite_coord_mode = state->sprite_coord_mode;
1176 cso->sprite_coord_enable = state->sprite_coord_enable;
1177 cso->line_stipple_enable = state->line_stipple_enable;
1178 cso->poly_stipple_enable = state->poly_stipple_enable;
1179
1180 if (state->clip_plane_enable != 0)
1181 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1182 else
1183 cso->num_clip_plane_consts = 0;
1184
1185 float line_width = get_line_width(state);
1186
1187 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1188 sf.StatisticsEnable = true;
1189 sf.ViewportTransformEnable = true;
1190 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1191 sf.LineEndCapAntialiasingRegionWidth =
1192 state->line_smooth ? _10pixels : _05pixels;
1193 sf.LastPixelEnable = state->line_last_pixel;
1194 sf.LineWidth = line_width;
1195 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1196 !state->point_quad_rasterization;
1197 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1198 sf.PointWidth = state->point_size;
1199
1200 if (state->flatshade_first) {
1201 sf.TriangleFanProvokingVertexSelect = 1;
1202 } else {
1203 sf.TriangleStripListProvokingVertexSelect = 2;
1204 sf.TriangleFanProvokingVertexSelect = 2;
1205 sf.LineStripListProvokingVertexSelect = 1;
1206 }
1207 }
1208
1209 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1210 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1211 rr.CullMode = translate_cull_mode(state->cull_face);
1212 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1213 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1214 rr.DXMultisampleRasterizationEnable = state->multisample;
1215 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1216 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1217 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1218 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1219 rr.GlobalDepthOffsetScale = state->offset_scale;
1220 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1221 rr.SmoothPointEnable = state->point_smooth;
1222 rr.AntialiasingEnable = state->line_smooth;
1223 rr.ScissorRectangleEnable = state->scissor;
1224 #if GEN_GEN >= 9
1225 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1226 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1227 #else
1228 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1229 #endif
1230 /* TODO: ConservativeRasterizationEnable */
1231 }
1232
1233 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1234 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1235 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1236 */
1237 cl.EarlyCullEnable = true;
1238 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1239 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1240 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1241 cl.GuardbandClipTestEnable = true;
1242 cl.ClipEnable = true;
1243 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1244 cl.MinimumPointWidth = 0.125;
1245 cl.MaximumPointWidth = 255.875;
1246
1247 if (state->flatshade_first) {
1248 cl.TriangleFanProvokingVertexSelect = 1;
1249 } else {
1250 cl.TriangleStripListProvokingVertexSelect = 2;
1251 cl.TriangleFanProvokingVertexSelect = 2;
1252 cl.LineStripListProvokingVertexSelect = 1;
1253 }
1254 }
1255
1256 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1257 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1258 * filled in at draw time from the FS program.
1259 */
1260 wm.LineAntialiasingRegionWidth = _10pixels;
1261 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1262 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1263 wm.LineStippleEnable = state->line_stipple_enable;
1264 wm.PolygonStippleEnable = state->poly_stipple_enable;
1265 }
1266
1267 /* Remap from 0..255 back to 1..256 */
1268 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1269
1270 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1271 line.LineStipplePattern = state->line_stipple_pattern;
1272 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1273 line.LineStippleRepeatCount = line_stipple_factor;
1274 }
1275
1276 return cso;
1277 }
1278
1279 /**
1280 * The pipe->bind_rasterizer_state() driver hook.
1281 *
1282 * Bind a rasterizer CSO and flag related dirty bits.
1283 */
1284 static void
1285 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1286 {
1287 struct iris_context *ice = (struct iris_context *) ctx;
1288 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1289 struct iris_rasterizer_state *new_cso = state;
1290
1291 if (new_cso) {
1292 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1293 if (cso_changed_memcmp(line_stipple))
1294 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1295
1296 if (cso_changed(half_pixel_center))
1297 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1298
1299 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1300 ice->state.dirty |= IRIS_DIRTY_WM;
1301
1302 if (cso_changed(rasterizer_discard))
1303 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1304
1305 if (cso_changed(flatshade_first))
1306 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1307
1308 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1309 cso_changed(clip_halfz))
1310 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1311
1312 if (cso_changed(sprite_coord_enable) ||
1313 cso_changed(sprite_coord_mode) ||
1314 cso_changed(light_twoside))
1315 ice->state.dirty |= IRIS_DIRTY_SBE;
1316 }
1317
1318 ice->state.cso_rast = new_cso;
1319 ice->state.dirty |= IRIS_DIRTY_RASTER;
1320 ice->state.dirty |= IRIS_DIRTY_CLIP;
1321 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1322 }
1323
1324 /**
1325 * Return true if the given wrap mode requires the border color to exist.
1326 *
1327 * (We can skip uploading it if the sampler isn't going to use it.)
1328 */
1329 static bool
1330 wrap_mode_needs_border_color(unsigned wrap_mode)
1331 {
1332 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1333 }
1334
1335 /**
1336 * Gallium CSO for sampler state.
1337 */
1338 struct iris_sampler_state {
1339 union pipe_color_union border_color;
1340 bool needs_border_color;
1341
1342 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1343 };
1344
1345 /**
1346 * The pipe->create_sampler_state() driver hook.
1347 *
1348 * We fill out SAMPLER_STATE (except for the border color pointer), and
1349 * store that on the CPU. It doesn't make sense to upload it to a GPU
1350 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1351 * all bound sampler states to be in contiguous memor.
1352 */
1353 static void *
1354 iris_create_sampler_state(struct pipe_context *ctx,
1355 const struct pipe_sampler_state *state)
1356 {
1357 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1358
1359 if (!cso)
1360 return NULL;
1361
1362 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1363 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1364
1365 unsigned wrap_s = translate_wrap(state->wrap_s);
1366 unsigned wrap_t = translate_wrap(state->wrap_t);
1367 unsigned wrap_r = translate_wrap(state->wrap_r);
1368
1369 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1370
1371 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1372 wrap_mode_needs_border_color(wrap_t) ||
1373 wrap_mode_needs_border_color(wrap_r);
1374
1375 float min_lod = state->min_lod;
1376 unsigned mag_img_filter = state->mag_img_filter;
1377
1378 // XXX: explain this code ported from ilo...I don't get it at all...
1379 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1380 state->min_lod > 0.0f) {
1381 min_lod = 0.0f;
1382 mag_img_filter = state->min_img_filter;
1383 }
1384
1385 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1386 samp.TCXAddressControlMode = wrap_s;
1387 samp.TCYAddressControlMode = wrap_t;
1388 samp.TCZAddressControlMode = wrap_r;
1389 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1390 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1391 samp.MinModeFilter = state->min_img_filter;
1392 samp.MagModeFilter = mag_img_filter;
1393 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1394 samp.MaximumAnisotropy = RATIO21;
1395
1396 if (state->max_anisotropy >= 2) {
1397 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1398 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1399 samp.AnisotropicAlgorithm = EWAApproximation;
1400 }
1401
1402 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1403 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1404
1405 samp.MaximumAnisotropy =
1406 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1407 }
1408
1409 /* Set address rounding bits if not using nearest filtering. */
1410 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1411 samp.UAddressMinFilterRoundingEnable = true;
1412 samp.VAddressMinFilterRoundingEnable = true;
1413 samp.RAddressMinFilterRoundingEnable = true;
1414 }
1415
1416 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1417 samp.UAddressMagFilterRoundingEnable = true;
1418 samp.VAddressMagFilterRoundingEnable = true;
1419 samp.RAddressMagFilterRoundingEnable = true;
1420 }
1421
1422 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1423 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1424
1425 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1426
1427 samp.LODPreClampMode = CLAMP_MODE_OGL;
1428 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1429 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1430 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1431
1432 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1433 }
1434
1435 return cso;
1436 }
1437
1438 /**
1439 * The pipe->bind_sampler_states() driver hook.
1440 *
1441 * Now that we know all the sampler states, we upload them all into a
1442 * contiguous area of GPU memory, for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1443 * We also fill out the border color state pointers at this point.
1444 *
1445 * We could defer this work to draw time, but we assume that binding
1446 * will be less frequent than drawing.
1447 */
1448 // XXX: this may be a bad idea, need to make sure that st/mesa calls us
1449 // XXX: with the complete set of shaders. If it makes multiple calls to
1450 // XXX: things one at a time, we could waste a lot of time assembling things.
1451 // XXX: it doesn't even BUY us anything to do it here, because we only flag
1452 // XXX: IRIS_DIRTY_SAMPLER_STATE when this is called...
1453 static void
1454 iris_bind_sampler_states(struct pipe_context *ctx,
1455 enum pipe_shader_type p_stage,
1456 unsigned start, unsigned count,
1457 void **states)
1458 {
1459 struct iris_context *ice = (struct iris_context *) ctx;
1460 gl_shader_stage stage = stage_from_pipe(p_stage);
1461 struct iris_shader_state *shs = &ice->state.shaders[stage];
1462
1463 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1464
1465 for (int i = 0; i < count; i++) {
1466 shs->samplers[start + i] = states[i];
1467 }
1468
1469 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1470 * in the dynamic state memory zone, so we can point to it via the
1471 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1472 */
1473 uint32_t *map =
1474 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1475 count * 4 * GENX(SAMPLER_STATE_length), 32);
1476 if (unlikely(!map))
1477 return;
1478
1479 struct pipe_resource *res = shs->sampler_table.res;
1480 shs->sampler_table.offset +=
1481 iris_bo_offset_from_base_address(iris_resource_bo(res));
1482
1483 /* Make sure all land in the same BO */
1484 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1485
1486 for (int i = 0; i < count; i++) {
1487 struct iris_sampler_state *state = shs->samplers[i];
1488
1489 if (!state) {
1490 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1491 } else if (!state->needs_border_color) {
1492 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1493 } else {
1494 ice->state.need_border_colors = true;
1495
1496 /* Stream out the border color and merge the pointer. */
1497 uint32_t offset =
1498 iris_upload_border_color(ice, &state->border_color);
1499
1500 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1501 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1502 dyns.BorderColorPointer = offset;
1503 }
1504
1505 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1506 map[j] = state->sampler_state[j] | dynamic[j];
1507 }
1508
1509 map += GENX(SAMPLER_STATE_length);
1510 }
1511
1512 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1513 }
1514
1515 static enum isl_channel_select
1516 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1517 {
1518 switch (swz) {
1519 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1520 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1521 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1522 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1523 case PIPE_SWIZZLE_1: return SCS_ONE;
1524 case PIPE_SWIZZLE_0: return SCS_ZERO;
1525 default: unreachable("invalid swizzle");
1526 }
1527 }
1528
1529 static void
1530 fill_buffer_surface_state(struct isl_device *isl_dev,
1531 struct iris_bo *bo,
1532 void *map,
1533 enum isl_format format,
1534 unsigned offset,
1535 unsigned size)
1536 {
1537 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1538 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1539
1540 /* The ARB_texture_buffer_specification says:
1541 *
1542 * "The number of texels in the buffer texture's texel array is given by
1543 *
1544 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1545 *
1546 * where <buffer_size> is the size of the buffer object, in basic
1547 * machine units and <components> and <base_type> are the element count
1548 * and base data type for elements, as specified in Table X.1. The
1549 * number of texels in the texel array is then clamped to the
1550 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1551 *
1552 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1553 * so that when ISL divides by stride to obtain the number of texels, that
1554 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1555 */
1556 unsigned final_size =
1557 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1558
1559 isl_buffer_fill_state(isl_dev, map,
1560 .address = bo->gtt_offset + offset,
1561 .size_B = final_size,
1562 .format = format,
1563 .stride_B = cpp,
1564 .mocs = mocs(bo));
1565 }
1566
1567 #define SURFACE_STATE_ALIGNMENT 64
1568
1569 /**
1570 * Allocate several contiguous SURFACE_STATE structures, one for each
1571 * supported auxiliary surface mode.
1572 */
1573 static void *
1574 alloc_surface_states(struct u_upload_mgr *mgr,
1575 struct iris_state_ref *ref,
1576 unsigned aux_usages)
1577 {
1578 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1579
1580 /* If this changes, update this to explicitly align pointers */
1581 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1582
1583 assert(aux_usages != 0);
1584
1585 void *map =
1586 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1587 SURFACE_STATE_ALIGNMENT);
1588
1589 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1590
1591 return map;
1592 }
1593
1594 static void
1595 fill_surface_state(struct isl_device *isl_dev,
1596 void *map,
1597 struct iris_resource *res,
1598 struct isl_view *view,
1599 unsigned aux_usage)
1600 {
1601 struct isl_surf_fill_state_info f = {
1602 .surf = &res->surf,
1603 .view = view,
1604 .mocs = mocs(res->bo),
1605 .address = res->bo->gtt_offset,
1606 };
1607
1608 if (aux_usage != ISL_AUX_USAGE_NONE) {
1609 f.aux_surf = &res->aux.surf;
1610 f.aux_usage = aux_usage;
1611 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1612 // XXX: clear color
1613 }
1614
1615 isl_surf_fill_state_s(isl_dev, map, &f);
1616 }
1617
1618 /**
1619 * The pipe->create_sampler_view() driver hook.
1620 */
1621 static struct pipe_sampler_view *
1622 iris_create_sampler_view(struct pipe_context *ctx,
1623 struct pipe_resource *tex,
1624 const struct pipe_sampler_view *tmpl)
1625 {
1626 struct iris_context *ice = (struct iris_context *) ctx;
1627 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1628 const struct gen_device_info *devinfo = &screen->devinfo;
1629 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1630
1631 if (!isv)
1632 return NULL;
1633
1634 /* initialize base object */
1635 isv->base = *tmpl;
1636 isv->base.context = ctx;
1637 isv->base.texture = NULL;
1638 pipe_reference_init(&isv->base.reference, 1);
1639 pipe_resource_reference(&isv->base.texture, tex);
1640
1641 if (util_format_is_depth_or_stencil(tmpl->format)) {
1642 struct iris_resource *zres, *sres;
1643 const struct util_format_description *desc =
1644 util_format_description(tmpl->format);
1645
1646 iris_get_depth_stencil_resources(tex, &zres, &sres);
1647
1648 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1649 }
1650
1651 isv->res = (struct iris_resource *) tex;
1652
1653 void *map = alloc_surface_states(ice->state.surface_uploader,
1654 &isv->surface_state,
1655 isv->res->aux.possible_usages);
1656 if (!unlikely(map))
1657 return NULL;
1658
1659 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1660
1661 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1662 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1663 usage |= ISL_SURF_USAGE_CUBE_BIT;
1664
1665 const struct iris_format_info fmt =
1666 iris_format_for_usage(devinfo, tmpl->format, usage);
1667
1668 isv->view = (struct isl_view) {
1669 .format = fmt.fmt,
1670 .swizzle = (struct isl_swizzle) {
1671 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1672 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1673 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1674 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1675 },
1676 .usage = usage,
1677 };
1678
1679 /* Fill out SURFACE_STATE for this view. */
1680 if (tmpl->target != PIPE_BUFFER) {
1681 isv->view.base_level = tmpl->u.tex.first_level;
1682 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1683 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1684 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1685 isv->view.array_len =
1686 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1687
1688 unsigned aux_modes = isv->res->aux.possible_usages;
1689 while (aux_modes) {
1690 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1691
1692 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view,
1693 aux_usage);
1694
1695 map += SURFACE_STATE_ALIGNMENT;
1696 }
1697 } else {
1698 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1699 isv->view.format, tmpl->u.buf.offset,
1700 tmpl->u.buf.size);
1701 }
1702
1703 return &isv->base;
1704 }
1705
1706 static void
1707 iris_sampler_view_destroy(struct pipe_context *ctx,
1708 struct pipe_sampler_view *state)
1709 {
1710 struct iris_sampler_view *isv = (void *) state;
1711 pipe_resource_reference(&state->texture, NULL);
1712 pipe_resource_reference(&isv->surface_state.res, NULL);
1713 free(isv);
1714 }
1715
1716 /**
1717 * The pipe->create_surface() driver hook.
1718 *
1719 * In Gallium nomenclature, "surfaces" are a view of a resource that
1720 * can be bound as a render target or depth/stencil buffer.
1721 */
1722 static struct pipe_surface *
1723 iris_create_surface(struct pipe_context *ctx,
1724 struct pipe_resource *tex,
1725 const struct pipe_surface *tmpl)
1726 {
1727 struct iris_context *ice = (struct iris_context *) ctx;
1728 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1729 const struct gen_device_info *devinfo = &screen->devinfo;
1730 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1731 struct pipe_surface *psurf = &surf->base;
1732 struct iris_resource *res = (struct iris_resource *) tex;
1733
1734 if (!surf)
1735 return NULL;
1736
1737 pipe_reference_init(&psurf->reference, 1);
1738 pipe_resource_reference(&psurf->texture, tex);
1739 psurf->context = ctx;
1740 psurf->format = tmpl->format;
1741 psurf->width = tex->width0;
1742 psurf->height = tex->height0;
1743 psurf->texture = tex;
1744 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1745 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1746 psurf->u.tex.level = tmpl->u.tex.level;
1747
1748 isl_surf_usage_flags_t usage = 0;
1749 if (tmpl->writable)
1750 usage = ISL_SURF_USAGE_STORAGE_BIT;
1751 else if (util_format_is_depth_or_stencil(tmpl->format))
1752 usage = ISL_SURF_USAGE_DEPTH_BIT;
1753 else
1754 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1755
1756 const struct iris_format_info fmt =
1757 iris_format_for_usage(devinfo, psurf->format, usage);
1758
1759 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1760 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1761 /* Framebuffer validation will reject this invalid case, but it
1762 * hasn't had the opportunity yet. In the meantime, we need to
1763 * avoid hitting ISL asserts about unsupported formats below.
1764 */
1765 free(surf);
1766 return NULL;
1767 }
1768
1769 surf->view = (struct isl_view) {
1770 .format = fmt.fmt,
1771 .base_level = tmpl->u.tex.level,
1772 .levels = 1,
1773 .base_array_layer = tmpl->u.tex.first_layer,
1774 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1775 .swizzle = ISL_SWIZZLE_IDENTITY,
1776 .usage = usage,
1777 };
1778
1779 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1780 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1781 ISL_SURF_USAGE_STENCIL_BIT))
1782 return psurf;
1783
1784
1785 void *map = alloc_surface_states(ice->state.surface_uploader,
1786 &surf->surface_state,
1787 res->aux.possible_usages);
1788 if (!unlikely(map))
1789 return NULL;
1790
1791 unsigned aux_modes = res->aux.possible_usages;
1792 while (aux_modes) {
1793 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1794
1795 fill_surface_state(&screen->isl_dev, map, res, &surf->view, aux_usage);
1796
1797 map += SURFACE_STATE_ALIGNMENT;
1798 }
1799
1800 return psurf;
1801 }
1802
1803 #if GEN_GEN < 9
1804 static void
1805 fill_default_image_param(struct brw_image_param *param)
1806 {
1807 memset(param, 0, sizeof(*param));
1808 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
1809 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
1810 * detailed explanation of these parameters.
1811 */
1812 param->swizzling[0] = 0xff;
1813 param->swizzling[1] = 0xff;
1814 }
1815
1816 static void
1817 fill_buffer_image_param(struct brw_image_param *param,
1818 enum pipe_format pfmt,
1819 unsigned size)
1820 {
1821 const unsigned cpp = util_format_get_blocksize(pfmt);
1822
1823 fill_default_image_param(param);
1824 param->size[0] = size / cpp;
1825 param->stride[0] = cpp;
1826 }
1827 #else
1828 #define isl_surf_fill_image_param(x, ...)
1829 #define fill_default_image_param(x, ...)
1830 #define fill_buffer_image_param(x, ...)
1831 #endif
1832
1833 /**
1834 * The pipe->set_shader_images() driver hook.
1835 */
1836 static void
1837 iris_set_shader_images(struct pipe_context *ctx,
1838 enum pipe_shader_type p_stage,
1839 unsigned start_slot, unsigned count,
1840 const struct pipe_image_view *p_images)
1841 {
1842 struct iris_context *ice = (struct iris_context *) ctx;
1843 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1844 const struct gen_device_info *devinfo = &screen->devinfo;
1845 gl_shader_stage stage = stage_from_pipe(p_stage);
1846 struct iris_shader_state *shs = &ice->state.shaders[stage];
1847
1848 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
1849
1850 for (unsigned i = 0; i < count; i++) {
1851 if (p_images && p_images[i].resource) {
1852 const struct pipe_image_view *img = &p_images[i];
1853 struct iris_resource *res = (void *) img->resource;
1854 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1855
1856 shs->bound_image_views |= 1 << (start_slot + i);
1857
1858 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1859
1860 // XXX: these are not retained forever, use a separate uploader?
1861 void *map =
1862 alloc_surface_states(ice->state.surface_uploader,
1863 &shs->image[start_slot + i].surface_state,
1864 1 << ISL_AUX_USAGE_NONE);
1865 if (!unlikely(map)) {
1866 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1867 return;
1868 }
1869
1870 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1871 enum isl_format isl_fmt =
1872 iris_format_for_usage(devinfo, img->format, usage).fmt;
1873
1874 bool untyped_fallback = false;
1875
1876 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
1877 /* On Gen8, try to use typed surfaces reads (which support a
1878 * limited number of formats), and if not possible, fall back
1879 * to untyped reads.
1880 */
1881 untyped_fallback = GEN_GEN == 8 &&
1882 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
1883
1884 if (untyped_fallback)
1885 isl_fmt = ISL_FORMAT_RAW;
1886 else
1887 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
1888 }
1889
1890 shs->image[start_slot + i].access = img->shader_access;
1891
1892 if (res->base.target != PIPE_BUFFER) {
1893 struct isl_view view = {
1894 .format = isl_fmt,
1895 .base_level = img->u.tex.level,
1896 .levels = 1,
1897 .base_array_layer = img->u.tex.first_layer,
1898 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1899 .swizzle = ISL_SWIZZLE_IDENTITY,
1900 .usage = usage,
1901 };
1902
1903 if (untyped_fallback) {
1904 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1905 isl_fmt, 0, res->bo->size);
1906 } else {
1907 /* Images don't support compression */
1908 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
1909 while (aux_modes) {
1910 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
1911
1912 fill_surface_state(&screen->isl_dev, map, res, &view, usage);
1913
1914 map += SURFACE_STATE_ALIGNMENT;
1915 }
1916 }
1917
1918 isl_surf_fill_image_param(&screen->isl_dev,
1919 &shs->image[start_slot + i].param,
1920 &res->surf, &view);
1921 } else {
1922 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1923 isl_fmt, img->u.buf.offset,
1924 img->u.buf.size);
1925 fill_buffer_image_param(&shs->image[start_slot + i].param,
1926 img->format, img->u.buf.size);
1927 }
1928 } else {
1929 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1930 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1931 NULL);
1932 fill_default_image_param(&shs->image[start_slot + i].param);
1933 }
1934 }
1935
1936 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1937
1938 /* Broadwell also needs brw_image_params re-uploaded */
1939 if (GEN_GEN < 9) {
1940 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
1941 shs->cbuf0_needs_upload = true;
1942 }
1943 }
1944
1945
1946 /**
1947 * The pipe->set_sampler_views() driver hook.
1948 */
1949 static void
1950 iris_set_sampler_views(struct pipe_context *ctx,
1951 enum pipe_shader_type p_stage,
1952 unsigned start, unsigned count,
1953 struct pipe_sampler_view **views)
1954 {
1955 struct iris_context *ice = (struct iris_context *) ctx;
1956 gl_shader_stage stage = stage_from_pipe(p_stage);
1957 struct iris_shader_state *shs = &ice->state.shaders[stage];
1958
1959 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
1960
1961 for (unsigned i = 0; i < count; i++) {
1962 pipe_sampler_view_reference((struct pipe_sampler_view **)
1963 &shs->textures[start + i], views[i]);
1964 struct iris_sampler_view *view = (void *) views[i];
1965 if (view) {
1966 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
1967 shs->bound_sampler_views |= 1 << (start + i);
1968 }
1969 }
1970
1971 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1972 }
1973
1974 /**
1975 * The pipe->set_tess_state() driver hook.
1976 */
1977 static void
1978 iris_set_tess_state(struct pipe_context *ctx,
1979 const float default_outer_level[4],
1980 const float default_inner_level[2])
1981 {
1982 struct iris_context *ice = (struct iris_context *) ctx;
1983
1984 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
1985 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
1986
1987 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
1988 }
1989
1990 static void
1991 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1992 {
1993 struct iris_surface *surf = (void *) p_surf;
1994 pipe_resource_reference(&p_surf->texture, NULL);
1995 pipe_resource_reference(&surf->surface_state.res, NULL);
1996 free(surf);
1997 }
1998
1999 static void
2000 iris_set_clip_state(struct pipe_context *ctx,
2001 const struct pipe_clip_state *state)
2002 {
2003 struct iris_context *ice = (struct iris_context *) ctx;
2004 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2005
2006 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2007
2008 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
2009 shs->cbuf0_needs_upload = true;
2010 }
2011
2012 /**
2013 * The pipe->set_polygon_stipple() driver hook.
2014 */
2015 static void
2016 iris_set_polygon_stipple(struct pipe_context *ctx,
2017 const struct pipe_poly_stipple *state)
2018 {
2019 struct iris_context *ice = (struct iris_context *) ctx;
2020 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2021 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2022 }
2023
2024 /**
2025 * The pipe->set_sample_mask() driver hook.
2026 */
2027 static void
2028 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2029 {
2030 struct iris_context *ice = (struct iris_context *) ctx;
2031
2032 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2033 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2034 */
2035 ice->state.sample_mask = sample_mask & 0xffff;
2036 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2037 }
2038
2039 /**
2040 * The pipe->set_scissor_states() driver hook.
2041 *
2042 * This corresponds to our SCISSOR_RECT state structures. It's an
2043 * exact match, so we just store them, and memcpy them out later.
2044 */
2045 static void
2046 iris_set_scissor_states(struct pipe_context *ctx,
2047 unsigned start_slot,
2048 unsigned num_scissors,
2049 const struct pipe_scissor_state *rects)
2050 {
2051 struct iris_context *ice = (struct iris_context *) ctx;
2052
2053 for (unsigned i = 0; i < num_scissors; i++) {
2054 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2055 /* If the scissor was out of bounds and got clamped to 0 width/height
2056 * at the bounds, the subtraction of 1 from maximums could produce a
2057 * negative number and thus not clip anything. Instead, just provide
2058 * a min > max scissor inside the bounds, which produces the expected
2059 * no rendering.
2060 */
2061 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2062 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2063 };
2064 } else {
2065 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2066 .minx = rects[i].minx, .miny = rects[i].miny,
2067 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2068 };
2069 }
2070 }
2071
2072 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2073 }
2074
2075 /**
2076 * The pipe->set_stencil_ref() driver hook.
2077 *
2078 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2079 */
2080 static void
2081 iris_set_stencil_ref(struct pipe_context *ctx,
2082 const struct pipe_stencil_ref *state)
2083 {
2084 struct iris_context *ice = (struct iris_context *) ctx;
2085 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2086 if (GEN_GEN == 8)
2087 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2088 else
2089 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2090 }
2091
2092 static float
2093 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2094 {
2095 return copysignf(state->scale[axis], sign) + state->translate[axis];
2096 }
2097
2098 static void
2099 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2100 float m00, float m11, float m30, float m31,
2101 float *xmin, float *xmax,
2102 float *ymin, float *ymax)
2103 {
2104 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2105 * Strips and Fans documentation:
2106 *
2107 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2108 * fixed-point "guardband" range supported by the rasterization hardware"
2109 *
2110 * and
2111 *
2112 * "In almost all circumstances, if an object’s vertices are actually
2113 * modified by this clamping (i.e., had X or Y coordinates outside of
2114 * the guardband extent the rendered object will not match the intended
2115 * result. Therefore software should take steps to ensure that this does
2116 * not happen - e.g., by clipping objects such that they do not exceed
2117 * these limits after the Drawing Rectangle is applied."
2118 *
2119 * I believe the fundamental restriction is that the rasterizer (in
2120 * the SF/WM stages) have a limit on the number of pixels that can be
2121 * rasterized. We need to ensure any coordinates beyond the rasterizer
2122 * limit are handled by the clipper. So effectively that limit becomes
2123 * the clipper's guardband size.
2124 *
2125 * It goes on to say:
2126 *
2127 * "In addition, in order to be correctly rendered, objects must have a
2128 * screenspace bounding box not exceeding 8K in the X or Y direction.
2129 * This additional restriction must also be comprehended by software,
2130 * i.e., enforced by use of clipping."
2131 *
2132 * This makes no sense. Gen7+ hardware supports 16K render targets,
2133 * and you definitely need to be able to draw polygons that fill the
2134 * surface. Our assumption is that the rasterizer was limited to 8K
2135 * on Sandybridge, which only supports 8K surfaces, and it was actually
2136 * increased to 16K on Ivybridge and later.
2137 *
2138 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2139 */
2140 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2141
2142 if (m00 != 0 && m11 != 0) {
2143 /* First, we compute the screen-space render area */
2144 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2145 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2146 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2147 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2148
2149 /* We want the guardband to be centered on that */
2150 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2151 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2152 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2153 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2154
2155 /* Now we need it in native device coordinates */
2156 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2157 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2158 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2159 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2160
2161 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2162 * flipped upside-down. X should be fine though.
2163 */
2164 assert(ndc_gb_xmin <= ndc_gb_xmax);
2165 *xmin = ndc_gb_xmin;
2166 *xmax = ndc_gb_xmax;
2167 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2168 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2169 } else {
2170 /* The viewport scales to 0, so nothing will be rendered. */
2171 *xmin = 0.0f;
2172 *xmax = 0.0f;
2173 *ymin = 0.0f;
2174 *ymax = 0.0f;
2175 }
2176 }
2177
2178 /**
2179 * The pipe->set_viewport_states() driver hook.
2180 *
2181 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2182 * the guardband yet, as we need the framebuffer dimensions, but we can
2183 * at least fill out the rest.
2184 */
2185 static void
2186 iris_set_viewport_states(struct pipe_context *ctx,
2187 unsigned start_slot,
2188 unsigned count,
2189 const struct pipe_viewport_state *states)
2190 {
2191 struct iris_context *ice = (struct iris_context *) ctx;
2192
2193 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2194
2195 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2196
2197 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2198 !ice->state.cso_rast->depth_clip_far))
2199 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2200 }
2201
2202 /**
2203 * The pipe->set_framebuffer_state() driver hook.
2204 *
2205 * Sets the current draw FBO, including color render targets, depth,
2206 * and stencil buffers.
2207 */
2208 static void
2209 iris_set_framebuffer_state(struct pipe_context *ctx,
2210 const struct pipe_framebuffer_state *state)
2211 {
2212 struct iris_context *ice = (struct iris_context *) ctx;
2213 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2214 struct isl_device *isl_dev = &screen->isl_dev;
2215 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2216 struct iris_resource *zres;
2217 struct iris_resource *stencil_res;
2218
2219 unsigned samples = util_framebuffer_get_num_samples(state);
2220 unsigned layers = util_framebuffer_get_num_layers(state);
2221
2222 if (cso->samples != samples) {
2223 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2224 }
2225
2226 if (cso->nr_cbufs != state->nr_cbufs) {
2227 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2228 }
2229
2230 if ((cso->layers == 0) != (layers == 0)) {
2231 ice->state.dirty |= IRIS_DIRTY_CLIP;
2232 }
2233
2234 if (cso->width != state->width || cso->height != state->height) {
2235 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2236 }
2237
2238 util_copy_framebuffer_state(cso, state);
2239 cso->samples = samples;
2240 cso->layers = layers;
2241
2242 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2243
2244 struct isl_view view = {
2245 .base_level = 0,
2246 .levels = 1,
2247 .base_array_layer = 0,
2248 .array_len = 1,
2249 .swizzle = ISL_SWIZZLE_IDENTITY,
2250 };
2251
2252 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2253
2254 if (cso->zsbuf) {
2255 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2256 &stencil_res);
2257
2258 view.base_level = cso->zsbuf->u.tex.level;
2259 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2260 view.array_len =
2261 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2262
2263 if (zres) {
2264 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2265
2266 info.depth_surf = &zres->surf;
2267 info.depth_address = zres->bo->gtt_offset;
2268 info.mocs = mocs(zres->bo);
2269
2270 view.format = zres->surf.format;
2271 }
2272
2273 if (stencil_res) {
2274 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2275 info.stencil_surf = &stencil_res->surf;
2276 info.stencil_address = stencil_res->bo->gtt_offset;
2277 if (!zres) {
2278 view.format = stencil_res->surf.format;
2279 info.mocs = mocs(stencil_res->bo);
2280 }
2281 }
2282 }
2283
2284 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2285
2286 /* Make a null surface for unbound buffers */
2287 void *null_surf_map =
2288 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2289 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2290 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2291 isl_extent3d(MAX2(cso->width, 1),
2292 MAX2(cso->height, 1),
2293 cso->layers ? cso->layers : 1));
2294 ice->state.null_fb.offset +=
2295 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2296
2297 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2298
2299 /* Render target change */
2300 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2301
2302 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2303
2304 #if GEN_GEN == 11
2305 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2306 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2307
2308 /* The PIPE_CONTROL command description says:
2309 *
2310 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2311 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2312 * Target Cache Flush by enabling this bit. When render target flush
2313 * is set due to new association of BTI, PS Scoreboard Stall bit must
2314 * be set in this packet."
2315 */
2316 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2317 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2318 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2319 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2320 #endif
2321 }
2322
2323 static void
2324 upload_ubo_surf_state(struct iris_context *ice,
2325 struct iris_const_buffer *cbuf,
2326 unsigned buffer_size)
2327 {
2328 struct pipe_context *ctx = &ice->ctx;
2329 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2330
2331 // XXX: these are not retained forever, use a separate uploader?
2332 void *map =
2333 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2334 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2335 if (!unlikely(map)) {
2336 pipe_resource_reference(&cbuf->data.res, NULL);
2337 return;
2338 }
2339
2340 struct iris_resource *res = (void *) cbuf->data.res;
2341 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2342 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2343
2344 isl_buffer_fill_state(&screen->isl_dev, map,
2345 .address = res->bo->gtt_offset + cbuf->data.offset,
2346 .size_B = MIN2(buffer_size,
2347 res->bo->size - cbuf->data.offset),
2348 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2349 .stride_B = 1,
2350 .mocs = mocs(res->bo))
2351 }
2352
2353 /**
2354 * The pipe->set_constant_buffer() driver hook.
2355 *
2356 * This uploads any constant data in user buffers, and references
2357 * any UBO resources containing constant data.
2358 */
2359 static void
2360 iris_set_constant_buffer(struct pipe_context *ctx,
2361 enum pipe_shader_type p_stage, unsigned index,
2362 const struct pipe_constant_buffer *input)
2363 {
2364 struct iris_context *ice = (struct iris_context *) ctx;
2365 gl_shader_stage stage = stage_from_pipe(p_stage);
2366 struct iris_shader_state *shs = &ice->state.shaders[stage];
2367 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2368
2369 if (input && input->buffer) {
2370 assert(index > 0);
2371
2372 pipe_resource_reference(&cbuf->data.res, input->buffer);
2373 cbuf->data.offset = input->buffer_offset;
2374
2375 struct iris_resource *res = (void *) cbuf->data.res;
2376 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2377
2378 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2379 } else {
2380 pipe_resource_reference(&cbuf->data.res, NULL);
2381 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2382 }
2383
2384 if (index == 0) {
2385 if (input)
2386 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2387 else
2388 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2389
2390 shs->cbuf0_needs_upload = true;
2391 }
2392
2393 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2394 // XXX: maybe not necessary all the time...?
2395 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2396 // XXX: pull model we may need actual new bindings...
2397 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2398 }
2399
2400 static void
2401 upload_uniforms(struct iris_context *ice,
2402 gl_shader_stage stage)
2403 {
2404 struct iris_shader_state *shs = &ice->state.shaders[stage];
2405 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2406 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2407
2408 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2409 shs->cbuf0.buffer_size;
2410
2411 if (upload_size == 0)
2412 return;
2413
2414 uint32_t *map =
2415 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2416
2417 for (int i = 0; i < shader->num_system_values; i++) {
2418 uint32_t sysval = shader->system_values[i];
2419 uint32_t value = 0;
2420
2421 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2422 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2423 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2424 struct brw_image_param *param = &shs->image[img].param;
2425
2426 assert(offset < sizeof(struct brw_image_param));
2427 value = ((uint32_t *) param)[offset];
2428 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2429 value = 0;
2430 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2431 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2432 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2433 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2434 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2435 if (stage == MESA_SHADER_TESS_CTRL) {
2436 value = ice->state.vertices_per_patch;
2437 } else {
2438 assert(stage == MESA_SHADER_TESS_EVAL);
2439 const struct shader_info *tcs_info =
2440 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2441 assert(tcs_info);
2442
2443 value = tcs_info->tess.tcs_vertices_out;
2444 }
2445 } else {
2446 assert(!"unhandled system value");
2447 }
2448
2449 *map++ = value;
2450 }
2451
2452 if (shs->cbuf0.user_buffer) {
2453 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2454 }
2455
2456 upload_ubo_surf_state(ice, cbuf, upload_size);
2457 }
2458
2459 /**
2460 * The pipe->set_shader_buffers() driver hook.
2461 *
2462 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2463 * SURFACE_STATE here, as the buffer offset may change each time.
2464 */
2465 static void
2466 iris_set_shader_buffers(struct pipe_context *ctx,
2467 enum pipe_shader_type p_stage,
2468 unsigned start_slot, unsigned count,
2469 const struct pipe_shader_buffer *buffers)
2470 {
2471 struct iris_context *ice = (struct iris_context *) ctx;
2472 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2473 gl_shader_stage stage = stage_from_pipe(p_stage);
2474 struct iris_shader_state *shs = &ice->state.shaders[stage];
2475
2476 for (unsigned i = 0; i < count; i++) {
2477 if (buffers && buffers[i].buffer) {
2478 const struct pipe_shader_buffer *buffer = &buffers[i];
2479 struct iris_resource *res = (void *) buffer->buffer;
2480 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2481
2482 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2483
2484 // XXX: these are not retained forever, use a separate uploader?
2485 void *map =
2486 upload_state(ice->state.surface_uploader,
2487 &shs->ssbo_surface_state[start_slot + i],
2488 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2489 if (!unlikely(map)) {
2490 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2491 return;
2492 }
2493
2494 struct iris_bo *surf_state_bo =
2495 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2496 shs->ssbo_surface_state[start_slot + i].offset +=
2497 iris_bo_offset_from_base_address(surf_state_bo);
2498
2499 isl_buffer_fill_state(&screen->isl_dev, map,
2500 .address =
2501 res->bo->gtt_offset + buffer->buffer_offset,
2502 .size_B =
2503 MIN2(buffer->buffer_size,
2504 res->bo->size - buffer->buffer_offset),
2505 .format = ISL_FORMAT_RAW,
2506 .stride_B = 1,
2507 .mocs = mocs(res->bo));
2508 } else {
2509 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2510 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2511 NULL);
2512 }
2513 }
2514
2515 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2516 }
2517
2518 static void
2519 iris_delete_state(struct pipe_context *ctx, void *state)
2520 {
2521 free(state);
2522 }
2523
2524 /**
2525 * The pipe->set_vertex_buffers() driver hook.
2526 *
2527 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2528 */
2529 static void
2530 iris_set_vertex_buffers(struct pipe_context *ctx,
2531 unsigned start_slot, unsigned count,
2532 const struct pipe_vertex_buffer *buffers)
2533 {
2534 struct iris_context *ice = (struct iris_context *) ctx;
2535 struct iris_genx_state *genx = ice->state.genx;
2536
2537 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2538
2539 for (unsigned i = 0; i < count; i++) {
2540 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2541 struct iris_vertex_buffer_state *state =
2542 &genx->vertex_buffers[start_slot + i];
2543
2544 if (!buffer) {
2545 pipe_resource_reference(&state->resource, NULL);
2546 continue;
2547 }
2548
2549 assert(!buffer->is_user_buffer);
2550
2551 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2552 struct iris_resource *res = (void *) state->resource;
2553
2554 if (res) {
2555 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2556 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2557 }
2558
2559 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2560 vb.VertexBufferIndex = start_slot + i;
2561 vb.AddressModifyEnable = true;
2562 vb.BufferPitch = buffer->stride;
2563 if (res) {
2564 vb.BufferSize = res->bo->size;
2565 vb.BufferStartingAddress =
2566 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2567 vb.MOCS = mocs(res->bo);
2568 } else {
2569 vb.NullVertexBuffer = true;
2570 }
2571 }
2572 }
2573
2574 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2575 }
2576
2577 /**
2578 * Gallium CSO for vertex elements.
2579 */
2580 struct iris_vertex_element_state {
2581 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2582 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2583 unsigned count;
2584 };
2585
2586 /**
2587 * The pipe->create_vertex_elements() driver hook.
2588 *
2589 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2590 * and 3DSTATE_VF_INSTANCING commands. SGVs are handled at draw time.
2591 */
2592 static void *
2593 iris_create_vertex_elements(struct pipe_context *ctx,
2594 unsigned count,
2595 const struct pipe_vertex_element *state)
2596 {
2597 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2598 const struct gen_device_info *devinfo = &screen->devinfo;
2599 struct iris_vertex_element_state *cso =
2600 malloc(sizeof(struct iris_vertex_element_state));
2601
2602 cso->count = count;
2603
2604 /* TODO:
2605 * - create edge flag one
2606 * - create SGV ones
2607 * - if those are necessary, use count + 1/2/3... OR in the length
2608 */
2609 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2610 ve.DWordLength =
2611 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2612 }
2613
2614 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2615 uint32_t *vfi_pack_dest = cso->vf_instancing;
2616
2617 if (count == 0) {
2618 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2619 ve.Valid = true;
2620 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2621 ve.Component0Control = VFCOMP_STORE_0;
2622 ve.Component1Control = VFCOMP_STORE_0;
2623 ve.Component2Control = VFCOMP_STORE_0;
2624 ve.Component3Control = VFCOMP_STORE_1_FP;
2625 }
2626
2627 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2628 }
2629 }
2630
2631 for (int i = 0; i < count; i++) {
2632 const struct iris_format_info fmt =
2633 iris_format_for_usage(devinfo, state[i].src_format, 0);
2634 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2635 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2636
2637 switch (isl_format_get_num_channels(fmt.fmt)) {
2638 case 0: comp[0] = VFCOMP_STORE_0;
2639 case 1: comp[1] = VFCOMP_STORE_0;
2640 case 2: comp[2] = VFCOMP_STORE_0;
2641 case 3:
2642 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2643 : VFCOMP_STORE_1_FP;
2644 break;
2645 }
2646 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2647 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2648 ve.Valid = true;
2649 ve.SourceElementOffset = state[i].src_offset;
2650 ve.SourceElementFormat = fmt.fmt;
2651 ve.Component0Control = comp[0];
2652 ve.Component1Control = comp[1];
2653 ve.Component2Control = comp[2];
2654 ve.Component3Control = comp[3];
2655 }
2656
2657 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2658 vi.VertexElementIndex = i;
2659 vi.InstancingEnable = state[i].instance_divisor > 0;
2660 vi.InstanceDataStepRate = state[i].instance_divisor;
2661 }
2662
2663 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2664 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2665 }
2666
2667 return cso;
2668 }
2669
2670 /**
2671 * The pipe->bind_vertex_elements_state() driver hook.
2672 */
2673 static void
2674 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2675 {
2676 struct iris_context *ice = (struct iris_context *) ctx;
2677 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2678 struct iris_vertex_element_state *new_cso = state;
2679
2680 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2681 * we need to re-emit it to ensure we're overriding the right one.
2682 */
2683 if (new_cso && cso_changed(count))
2684 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2685
2686 ice->state.cso_vertex_elements = state;
2687 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2688 }
2689
2690 /**
2691 * The pipe->create_stream_output_target() driver hook.
2692 *
2693 * "Target" here refers to a destination buffer. We translate this into
2694 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2695 * know which buffer this represents, or whether we ought to zero the
2696 * write-offsets, or append. Those are handled in the set() hook.
2697 */
2698 static struct pipe_stream_output_target *
2699 iris_create_stream_output_target(struct pipe_context *ctx,
2700 struct pipe_resource *p_res,
2701 unsigned buffer_offset,
2702 unsigned buffer_size)
2703 {
2704 struct iris_resource *res = (void *) p_res;
2705 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2706 if (!cso)
2707 return NULL;
2708
2709 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2710
2711 pipe_reference_init(&cso->base.reference, 1);
2712 pipe_resource_reference(&cso->base.buffer, p_res);
2713 cso->base.buffer_offset = buffer_offset;
2714 cso->base.buffer_size = buffer_size;
2715 cso->base.context = ctx;
2716
2717 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2718
2719 return &cso->base;
2720 }
2721
2722 static void
2723 iris_stream_output_target_destroy(struct pipe_context *ctx,
2724 struct pipe_stream_output_target *state)
2725 {
2726 struct iris_stream_output_target *cso = (void *) state;
2727
2728 pipe_resource_reference(&cso->base.buffer, NULL);
2729 pipe_resource_reference(&cso->offset.res, NULL);
2730
2731 free(cso);
2732 }
2733
2734 /**
2735 * The pipe->set_stream_output_targets() driver hook.
2736 *
2737 * At this point, we know which targets are bound to a particular index,
2738 * and also whether we want to append or start over. We can finish the
2739 * 3DSTATE_SO_BUFFER packets we started earlier.
2740 */
2741 static void
2742 iris_set_stream_output_targets(struct pipe_context *ctx,
2743 unsigned num_targets,
2744 struct pipe_stream_output_target **targets,
2745 const unsigned *offsets)
2746 {
2747 struct iris_context *ice = (struct iris_context *) ctx;
2748 struct iris_genx_state *genx = ice->state.genx;
2749 uint32_t *so_buffers = genx->so_buffers;
2750
2751 const bool active = num_targets > 0;
2752 if (ice->state.streamout_active != active) {
2753 ice->state.streamout_active = active;
2754 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2755
2756 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2757 * it's a non-pipelined command. If we're switching streamout on, we
2758 * may have missed emitting it earlier, so do so now. (We're already
2759 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2760 */
2761 if (active)
2762 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2763 }
2764
2765 for (int i = 0; i < 4; i++) {
2766 pipe_so_target_reference(&ice->state.so_target[i],
2767 i < num_targets ? targets[i] : NULL);
2768 }
2769
2770 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2771 if (!active)
2772 return;
2773
2774 for (unsigned i = 0; i < 4; i++,
2775 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2776
2777 if (i >= num_targets || !targets[i]) {
2778 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2779 sob.SOBufferIndex = i;
2780 continue;
2781 }
2782
2783 struct iris_stream_output_target *tgt = (void *) targets[i];
2784 struct iris_resource *res = (void *) tgt->base.buffer;
2785
2786 /* Note that offsets[i] will either be 0, causing us to zero
2787 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2788 * "continue appending at the existing offset."
2789 */
2790 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2791
2792 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2793 sob.SurfaceBaseAddress =
2794 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2795 sob.SOBufferEnable = true;
2796 sob.StreamOffsetWriteEnable = true;
2797 sob.StreamOutputBufferOffsetAddressEnable = true;
2798 sob.MOCS = mocs(res->bo);
2799
2800 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2801
2802 sob.SOBufferIndex = i;
2803 sob.StreamOffset = offsets[i];
2804 sob.StreamOutputBufferOffsetAddress =
2805 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2806 tgt->offset.offset);
2807 }
2808 }
2809
2810 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2811 }
2812
2813 /**
2814 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2815 * 3DSTATE_STREAMOUT packets.
2816 *
2817 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2818 * hardware to record. We can create it entirely based on the shader, with
2819 * no dynamic state dependencies.
2820 *
2821 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2822 * state-based settings. We capture the shader-related ones here, and merge
2823 * the rest in at draw time.
2824 */
2825 static uint32_t *
2826 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2827 const struct brw_vue_map *vue_map)
2828 {
2829 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2830 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2831 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2832 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2833 int max_decls = 0;
2834 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2835
2836 memset(so_decl, 0, sizeof(so_decl));
2837
2838 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2839 * command feels strange -- each dword pair contains a SO_DECL per stream.
2840 */
2841 for (unsigned i = 0; i < info->num_outputs; i++) {
2842 const struct pipe_stream_output *output = &info->output[i];
2843 const int buffer = output->output_buffer;
2844 const int varying = output->register_index;
2845 const unsigned stream_id = output->stream;
2846 assert(stream_id < MAX_VERTEX_STREAMS);
2847
2848 buffer_mask[stream_id] |= 1 << buffer;
2849
2850 assert(vue_map->varying_to_slot[varying] >= 0);
2851
2852 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2853 * array. Instead, it simply increments DstOffset for the following
2854 * input by the number of components that should be skipped.
2855 *
2856 * Our hardware is unusual in that it requires us to program SO_DECLs
2857 * for fake "hole" components, rather than simply taking the offset
2858 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2859 * program as many size = 4 holes as we can, then a final hole to
2860 * accommodate the final 1, 2, or 3 remaining.
2861 */
2862 int skip_components = output->dst_offset - next_offset[buffer];
2863
2864 while (skip_components > 0) {
2865 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2866 .HoleFlag = 1,
2867 .OutputBufferSlot = output->output_buffer,
2868 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2869 };
2870 skip_components -= 4;
2871 }
2872
2873 next_offset[buffer] = output->dst_offset + output->num_components;
2874
2875 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2876 .OutputBufferSlot = output->output_buffer,
2877 .RegisterIndex = vue_map->varying_to_slot[varying],
2878 .ComponentMask =
2879 ((1 << output->num_components) - 1) << output->start_component,
2880 };
2881
2882 if (decls[stream_id] > max_decls)
2883 max_decls = decls[stream_id];
2884 }
2885
2886 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2887 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2888 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2889
2890 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2891 int urb_entry_read_offset = 0;
2892 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2893 urb_entry_read_offset;
2894
2895 /* We always read the whole vertex. This could be reduced at some
2896 * point by reading less and offsetting the register index in the
2897 * SO_DECLs.
2898 */
2899 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2900 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2901 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2902 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2903 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2904 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2905 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2906 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2907
2908 /* Set buffer pitches; 0 means unbound. */
2909 sol.Buffer0SurfacePitch = 4 * info->stride[0];
2910 sol.Buffer1SurfacePitch = 4 * info->stride[1];
2911 sol.Buffer2SurfacePitch = 4 * info->stride[2];
2912 sol.Buffer3SurfacePitch = 4 * info->stride[3];
2913 }
2914
2915 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2916 list.DWordLength = 3 + 2 * max_decls - 2;
2917 list.StreamtoBufferSelects0 = buffer_mask[0];
2918 list.StreamtoBufferSelects1 = buffer_mask[1];
2919 list.StreamtoBufferSelects2 = buffer_mask[2];
2920 list.StreamtoBufferSelects3 = buffer_mask[3];
2921 list.NumEntries0 = decls[0];
2922 list.NumEntries1 = decls[1];
2923 list.NumEntries2 = decls[2];
2924 list.NumEntries3 = decls[3];
2925 }
2926
2927 for (int i = 0; i < max_decls; i++) {
2928 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
2929 entry.Stream0Decl = so_decl[0][i];
2930 entry.Stream1Decl = so_decl[1][i];
2931 entry.Stream2Decl = so_decl[2][i];
2932 entry.Stream3Decl = so_decl[3][i];
2933 }
2934 }
2935
2936 return map;
2937 }
2938
2939 static void
2940 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
2941 const struct brw_vue_map *last_vue_map,
2942 bool two_sided_color,
2943 unsigned *out_offset,
2944 unsigned *out_length)
2945 {
2946 /* The compiler computes the first URB slot without considering COL/BFC
2947 * swizzling (because it doesn't know whether it's enabled), so we need
2948 * to do that here too. This may result in a smaller offset, which
2949 * should be safe.
2950 */
2951 const unsigned first_slot =
2952 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
2953
2954 /* This becomes the URB read offset (counted in pairs of slots). */
2955 assert(first_slot % 2 == 0);
2956 *out_offset = first_slot / 2;
2957
2958 /* We need to adjust the inputs read to account for front/back color
2959 * swizzling, as it can make the URB length longer.
2960 */
2961 for (int c = 0; c <= 1; c++) {
2962 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
2963 /* If two sided color is enabled, the fragment shader's gl_Color
2964 * (COL0) input comes from either the gl_FrontColor (COL0) or
2965 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
2966 */
2967 if (two_sided_color)
2968 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2969
2970 /* If front color isn't written, we opt to give them back color
2971 * instead of an undefined value. Switch from COL to BFC.
2972 */
2973 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
2974 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
2975 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2976 }
2977 }
2978 }
2979
2980 /* Compute the minimum URB Read Length necessary for the FS inputs.
2981 *
2982 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
2983 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
2984 *
2985 * "This field should be set to the minimum length required to read the
2986 * maximum source attribute. The maximum source attribute is indicated
2987 * by the maximum value of the enabled Attribute # Source Attribute if
2988 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
2989 * enable is not set.
2990 * read_length = ceiling((max_source_attr + 1) / 2)
2991 *
2992 * [errata] Corruption/Hang possible if length programmed larger than
2993 * recommended"
2994 *
2995 * Similar text exists for Ivy Bridge.
2996 *
2997 * We find the last URB slot that's actually read by the FS.
2998 */
2999 unsigned last_read_slot = last_vue_map->num_slots - 1;
3000 while (last_read_slot > first_slot && !(fs_input_slots &
3001 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3002 --last_read_slot;
3003
3004 /* The URB read length is the difference of the two, counted in pairs. */
3005 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3006 }
3007
3008 static void
3009 iris_emit_sbe_swiz(struct iris_batch *batch,
3010 const struct iris_context *ice,
3011 unsigned urb_read_offset,
3012 unsigned sprite_coord_enables)
3013 {
3014 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3015 const struct brw_wm_prog_data *wm_prog_data = (void *)
3016 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3017 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3018 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3019
3020 /* XXX: this should be generated when putting programs in place */
3021
3022 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3023 const int input_index = wm_prog_data->urb_setup[fs_attr];
3024 if (input_index < 0 || input_index >= 16)
3025 continue;
3026
3027 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3028 &attr_overrides[input_index];
3029 int slot = vue_map->varying_to_slot[fs_attr];
3030
3031 /* Viewport and Layer are stored in the VUE header. We need to override
3032 * them to zero if earlier stages didn't write them, as GL requires that
3033 * they read back as zero when not explicitly set.
3034 */
3035 switch (fs_attr) {
3036 case VARYING_SLOT_VIEWPORT:
3037 case VARYING_SLOT_LAYER:
3038 attr->ComponentOverrideX = true;
3039 attr->ComponentOverrideW = true;
3040 attr->ConstantSource = CONST_0000;
3041
3042 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3043 attr->ComponentOverrideY = true;
3044 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3045 attr->ComponentOverrideZ = true;
3046 continue;
3047
3048 case VARYING_SLOT_PRIMITIVE_ID:
3049 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3050 if (slot == -1) {
3051 attr->ComponentOverrideX = true;
3052 attr->ComponentOverrideY = true;
3053 attr->ComponentOverrideZ = true;
3054 attr->ComponentOverrideW = true;
3055 attr->ConstantSource = PRIM_ID;
3056 continue;
3057 }
3058
3059 default:
3060 break;
3061 }
3062
3063 if (sprite_coord_enables & (1 << input_index))
3064 continue;
3065
3066 /* If there was only a back color written but not front, use back
3067 * as the color instead of undefined.
3068 */
3069 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3070 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3071 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3072 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3073
3074 /* Not written by the previous stage - undefined. */
3075 if (slot == -1) {
3076 attr->ComponentOverrideX = true;
3077 attr->ComponentOverrideY = true;
3078 attr->ComponentOverrideZ = true;
3079 attr->ComponentOverrideW = true;
3080 attr->ConstantSource = CONST_0001_FLOAT;
3081 continue;
3082 }
3083
3084 /* Compute the location of the attribute relative to the read offset,
3085 * which is counted in 256-bit increments (two 128-bit VUE slots).
3086 */
3087 const int source_attr = slot - 2 * urb_read_offset;
3088 assert(source_attr >= 0 && source_attr <= 32);
3089 attr->SourceAttribute = source_attr;
3090
3091 /* If we are doing two-sided color, and the VUE slot following this one
3092 * represents a back-facing color, then we need to instruct the SF unit
3093 * to do back-facing swizzling.
3094 */
3095 if (cso_rast->light_twoside &&
3096 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3097 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3098 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3099 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3100 attr->SwizzleSelect = INPUTATTR_FACING;
3101 }
3102
3103 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3104 for (int i = 0; i < 16; i++)
3105 sbes.Attribute[i] = attr_overrides[i];
3106 }
3107 }
3108
3109 static unsigned
3110 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3111 const struct iris_rasterizer_state *cso)
3112 {
3113 unsigned overrides = 0;
3114
3115 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3116 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3117
3118 for (int i = 0; i < 8; i++) {
3119 if ((cso->sprite_coord_enable & (1 << i)) &&
3120 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3121 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3122 }
3123
3124 return overrides;
3125 }
3126
3127 static void
3128 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3129 {
3130 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3131 const struct brw_wm_prog_data *wm_prog_data = (void *)
3132 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3133 const struct shader_info *fs_info =
3134 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3135
3136 unsigned urb_read_offset, urb_read_length;
3137 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3138 ice->shaders.last_vue_map,
3139 cso_rast->light_twoside,
3140 &urb_read_offset, &urb_read_length);
3141
3142 unsigned sprite_coord_overrides =
3143 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3144
3145 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3146 sbe.AttributeSwizzleEnable = true;
3147 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3148 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3149 sbe.VertexURBEntryReadOffset = urb_read_offset;
3150 sbe.VertexURBEntryReadLength = urb_read_length;
3151 sbe.ForceVertexURBEntryReadOffset = true;
3152 sbe.ForceVertexURBEntryReadLength = true;
3153 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3154 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3155 #if GEN_GEN >= 9
3156 for (int i = 0; i < 32; i++) {
3157 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3158 }
3159 #endif
3160 }
3161
3162 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3163 }
3164
3165 /* ------------------------------------------------------------------- */
3166
3167 /**
3168 * Populate VS program key fields based on the current state.
3169 */
3170 static void
3171 iris_populate_vs_key(const struct iris_context *ice,
3172 const struct shader_info *info,
3173 struct brw_vs_prog_key *key)
3174 {
3175 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3176
3177 if (info->clip_distance_array_size == 0 &&
3178 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3179 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3180 }
3181
3182 /**
3183 * Populate TCS program key fields based on the current state.
3184 */
3185 static void
3186 iris_populate_tcs_key(const struct iris_context *ice,
3187 struct brw_tcs_prog_key *key)
3188 {
3189 }
3190
3191 /**
3192 * Populate TES program key fields based on the current state.
3193 */
3194 static void
3195 iris_populate_tes_key(const struct iris_context *ice,
3196 struct brw_tes_prog_key *key)
3197 {
3198 }
3199
3200 /**
3201 * Populate GS program key fields based on the current state.
3202 */
3203 static void
3204 iris_populate_gs_key(const struct iris_context *ice,
3205 struct brw_gs_prog_key *key)
3206 {
3207 }
3208
3209 /**
3210 * Populate FS program key fields based on the current state.
3211 */
3212 static void
3213 iris_populate_fs_key(const struct iris_context *ice,
3214 struct brw_wm_prog_key *key)
3215 {
3216 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3217 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3218 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3219 const struct iris_blend_state *blend = ice->state.cso_blend;
3220
3221 key->nr_color_regions = fb->nr_cbufs;
3222
3223 key->clamp_fragment_color = rast->clamp_fragment_color;
3224
3225 key->replicate_alpha = fb->nr_cbufs > 1 &&
3226 (zsa->alpha.enabled || blend->alpha_to_coverage);
3227
3228 /* XXX: only bother if COL0/1 are read */
3229 key->flat_shade = rast->flatshade;
3230
3231 key->persample_interp = rast->force_persample_interp;
3232 key->multisample_fbo = rast->multisample && fb->samples > 1;
3233
3234 key->coherent_fb_fetch = true;
3235
3236 /* TODO: support key->force_dual_color_blend for Unigine */
3237 /* TODO: Respect glHint for key->high_quality_derivatives */
3238 }
3239
3240 static void
3241 iris_populate_cs_key(const struct iris_context *ice,
3242 struct brw_cs_prog_key *key)
3243 {
3244 }
3245
3246 static uint64_t
3247 KSP(const struct iris_compiled_shader *shader)
3248 {
3249 struct iris_resource *res = (void *) shader->assembly.res;
3250 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3251 }
3252
3253 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3254 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3255 * this WA on C0 stepping.
3256 *
3257 * TODO: Fill out SamplerCount for prefetching?
3258 */
3259
3260 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3261 pkt.KernelStartPointer = KSP(shader); \
3262 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3263 prog_data->binding_table.size_bytes / 4; \
3264 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3265 \
3266 pkt.DispatchGRFStartRegisterForURBData = \
3267 prog_data->dispatch_grf_start_reg; \
3268 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3269 pkt.prefix##URBEntryReadOffset = 0; \
3270 \
3271 pkt.StatisticsEnable = true; \
3272 pkt.Enable = true; \
3273 \
3274 if (prog_data->total_scratch) { \
3275 struct iris_bo *bo = \
3276 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3277 uint32_t scratch_addr = bo->gtt_offset; \
3278 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3279 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3280 }
3281
3282 /**
3283 * Encode most of 3DSTATE_VS based on the compiled shader.
3284 */
3285 static void
3286 iris_store_vs_state(struct iris_context *ice,
3287 const struct gen_device_info *devinfo,
3288 struct iris_compiled_shader *shader)
3289 {
3290 struct brw_stage_prog_data *prog_data = shader->prog_data;
3291 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3292
3293 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3294 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3295 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3296 vs.SIMD8DispatchEnable = true;
3297 vs.UserClipDistanceCullTestEnableBitmask =
3298 vue_prog_data->cull_distance_mask;
3299 }
3300 }
3301
3302 /**
3303 * Encode most of 3DSTATE_HS based on the compiled shader.
3304 */
3305 static void
3306 iris_store_tcs_state(struct iris_context *ice,
3307 const struct gen_device_info *devinfo,
3308 struct iris_compiled_shader *shader)
3309 {
3310 struct brw_stage_prog_data *prog_data = shader->prog_data;
3311 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3312 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3313
3314 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3315 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3316
3317 hs.InstanceCount = tcs_prog_data->instances - 1;
3318 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3319 hs.IncludeVertexHandles = true;
3320 }
3321 }
3322
3323 /**
3324 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3325 */
3326 static void
3327 iris_store_tes_state(struct iris_context *ice,
3328 const struct gen_device_info *devinfo,
3329 struct iris_compiled_shader *shader)
3330 {
3331 struct brw_stage_prog_data *prog_data = shader->prog_data;
3332 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3333 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3334
3335 uint32_t *te_state = (void *) shader->derived_data;
3336 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3337
3338 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3339 te.Partitioning = tes_prog_data->partitioning;
3340 te.OutputTopology = tes_prog_data->output_topology;
3341 te.TEDomain = tes_prog_data->domain;
3342 te.TEEnable = true;
3343 te.MaximumTessellationFactorOdd = 63.0;
3344 te.MaximumTessellationFactorNotOdd = 64.0;
3345 }
3346
3347 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3348 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3349
3350 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3351 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3352 ds.ComputeWCoordinateEnable =
3353 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3354
3355 ds.UserClipDistanceCullTestEnableBitmask =
3356 vue_prog_data->cull_distance_mask;
3357 }
3358
3359 }
3360
3361 /**
3362 * Encode most of 3DSTATE_GS based on the compiled shader.
3363 */
3364 static void
3365 iris_store_gs_state(struct iris_context *ice,
3366 const struct gen_device_info *devinfo,
3367 struct iris_compiled_shader *shader)
3368 {
3369 struct brw_stage_prog_data *prog_data = shader->prog_data;
3370 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3371 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3372
3373 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3374 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3375
3376 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3377 gs.OutputTopology = gs_prog_data->output_topology;
3378 gs.ControlDataHeaderSize =
3379 gs_prog_data->control_data_header_size_hwords;
3380 gs.InstanceControl = gs_prog_data->invocations - 1;
3381 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3382 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3383 gs.ControlDataFormat = gs_prog_data->control_data_format;
3384 gs.ReorderMode = TRAILING;
3385 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3386 gs.MaximumNumberofThreads =
3387 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3388 : (devinfo->max_gs_threads - 1);
3389
3390 if (gs_prog_data->static_vertex_count != -1) {
3391 gs.StaticOutput = true;
3392 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3393 }
3394 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3395
3396 gs.UserClipDistanceCullTestEnableBitmask =
3397 vue_prog_data->cull_distance_mask;
3398
3399 const int urb_entry_write_offset = 1;
3400 const uint32_t urb_entry_output_length =
3401 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3402 urb_entry_write_offset;
3403
3404 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3405 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3406 }
3407 }
3408
3409 /**
3410 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3411 */
3412 static void
3413 iris_store_fs_state(struct iris_context *ice,
3414 const struct gen_device_info *devinfo,
3415 struct iris_compiled_shader *shader)
3416 {
3417 struct brw_stage_prog_data *prog_data = shader->prog_data;
3418 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3419
3420 uint32_t *ps_state = (void *) shader->derived_data;
3421 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3422
3423 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3424 ps.VectorMaskEnable = true;
3425 // XXX: WABTPPrefetchDisable, see above, drop at C0
3426 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3427 prog_data->binding_table.size_bytes / 4;
3428 ps.FloatingPointMode = prog_data->use_alt_mode;
3429 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3430
3431 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3432
3433 /* From the documentation for this packet:
3434 * "If the PS kernel does not need the Position XY Offsets to
3435 * compute a Position Value, then this field should be programmed
3436 * to POSOFFSET_NONE."
3437 *
3438 * "SW Recommendation: If the PS kernel needs the Position Offsets
3439 * to compute a Position XY value, this field should match Position
3440 * ZW Interpolation Mode to ensure a consistent position.xyzw
3441 * computation."
3442 *
3443 * We only require XY sample offsets. So, this recommendation doesn't
3444 * look useful at the moment. We might need this in future.
3445 */
3446 ps.PositionXYOffsetSelect =
3447 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3448 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3449 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3450 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3451
3452 // XXX: Disable SIMD32 with 16x MSAA
3453
3454 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3455 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3456 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3457 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3458 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3459 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3460
3461 ps.KernelStartPointer0 =
3462 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3463 ps.KernelStartPointer1 =
3464 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3465 ps.KernelStartPointer2 =
3466 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3467
3468 if (prog_data->total_scratch) {
3469 struct iris_bo *bo =
3470 iris_get_scratch_space(ice, prog_data->total_scratch,
3471 MESA_SHADER_FRAGMENT);
3472 uint32_t scratch_addr = bo->gtt_offset;
3473 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3474 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3475 }
3476 }
3477
3478 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3479 psx.PixelShaderValid = true;
3480 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3481 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3482 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3483 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3484 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3485 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3486 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3487
3488 #if GEN_GEN >= 9
3489 if (wm_prog_data->uses_sample_mask) {
3490 /* TODO: conservative rasterization */
3491 if (wm_prog_data->post_depth_coverage)
3492 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3493 else
3494 psx.InputCoverageMaskState = ICMS_NORMAL;
3495 }
3496
3497 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3498 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3499 #else
3500 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3501 #endif
3502 // XXX: UAV bit
3503 }
3504 }
3505
3506 /**
3507 * Compute the size of the derived data (shader command packets).
3508 *
3509 * This must match the data written by the iris_store_xs_state() functions.
3510 */
3511 static void
3512 iris_store_cs_state(struct iris_context *ice,
3513 const struct gen_device_info *devinfo,
3514 struct iris_compiled_shader *shader)
3515 {
3516 struct brw_stage_prog_data *prog_data = shader->prog_data;
3517 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3518 void *map = shader->derived_data;
3519
3520 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3521 desc.KernelStartPointer = KSP(shader);
3522 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3523 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3524 desc.SharedLocalMemorySize =
3525 encode_slm_size(GEN_GEN, prog_data->total_shared);
3526 desc.BarrierEnable = cs_prog_data->uses_barrier;
3527 desc.CrossThreadConstantDataReadLength =
3528 cs_prog_data->push.cross_thread.regs;
3529 }
3530 }
3531
3532 static unsigned
3533 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3534 {
3535 assert(cache_id <= IRIS_CACHE_BLORP);
3536
3537 static const unsigned dwords[] = {
3538 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3539 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3540 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3541 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3542 [IRIS_CACHE_FS] =
3543 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3544 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3545 [IRIS_CACHE_BLORP] = 0,
3546 };
3547
3548 return sizeof(uint32_t) * dwords[cache_id];
3549 }
3550
3551 /**
3552 * Create any state packets corresponding to the given shader stage
3553 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3554 * This means that we can look up a program in the in-memory cache and
3555 * get most of the state packet without having to reconstruct it.
3556 */
3557 static void
3558 iris_store_derived_program_state(struct iris_context *ice,
3559 enum iris_program_cache_id cache_id,
3560 struct iris_compiled_shader *shader)
3561 {
3562 struct iris_screen *screen = (void *) ice->ctx.screen;
3563 const struct gen_device_info *devinfo = &screen->devinfo;
3564
3565 switch (cache_id) {
3566 case IRIS_CACHE_VS:
3567 iris_store_vs_state(ice, devinfo, shader);
3568 break;
3569 case IRIS_CACHE_TCS:
3570 iris_store_tcs_state(ice, devinfo, shader);
3571 break;
3572 case IRIS_CACHE_TES:
3573 iris_store_tes_state(ice, devinfo, shader);
3574 break;
3575 case IRIS_CACHE_GS:
3576 iris_store_gs_state(ice, devinfo, shader);
3577 break;
3578 case IRIS_CACHE_FS:
3579 iris_store_fs_state(ice, devinfo, shader);
3580 break;
3581 case IRIS_CACHE_CS:
3582 iris_store_cs_state(ice, devinfo, shader);
3583 case IRIS_CACHE_BLORP:
3584 break;
3585 default:
3586 break;
3587 }
3588 }
3589
3590 /* ------------------------------------------------------------------- */
3591
3592 /**
3593 * Configure the URB.
3594 *
3595 * XXX: write a real comment.
3596 */
3597 static void
3598 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
3599 {
3600 const struct gen_device_info *devinfo = &batch->screen->devinfo;
3601 const unsigned push_size_kB = 32;
3602 unsigned entries[4];
3603 unsigned start[4];
3604 unsigned size[4];
3605
3606 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3607 if (!ice->shaders.prog[i]) {
3608 size[i] = 1;
3609 } else {
3610 struct brw_vue_prog_data *vue_prog_data =
3611 (void *) ice->shaders.prog[i]->prog_data;
3612 size[i] = vue_prog_data->urb_entry_size;
3613 }
3614 assert(size[i] != 0);
3615 }
3616
3617 gen_get_urb_config(devinfo, 1024 * push_size_kB,
3618 1024 * ice->shaders.urb_size,
3619 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
3620 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
3621 size, entries, start);
3622
3623 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3624 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
3625 urb._3DCommandSubOpcode += i;
3626 urb.VSURBStartingAddress = start[i];
3627 urb.VSURBEntryAllocationSize = size[i] - 1;
3628 urb.VSNumberofURBEntries = entries[i];
3629 }
3630 }
3631 }
3632
3633 static const uint32_t push_constant_opcodes[] = {
3634 [MESA_SHADER_VERTEX] = 21,
3635 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3636 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3637 [MESA_SHADER_GEOMETRY] = 22,
3638 [MESA_SHADER_FRAGMENT] = 23,
3639 [MESA_SHADER_COMPUTE] = 0,
3640 };
3641
3642 static uint32_t
3643 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3644 {
3645 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3646
3647 iris_use_pinned_bo(batch, state_bo, false);
3648
3649 return ice->state.unbound_tex.offset;
3650 }
3651
3652 static uint32_t
3653 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3654 {
3655 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3656 if (!ice->state.null_fb.res)
3657 return use_null_surface(batch, ice);
3658
3659 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3660
3661 iris_use_pinned_bo(batch, state_bo, false);
3662
3663 return ice->state.null_fb.offset;
3664 }
3665
3666 /**
3667 * Add a surface to the validation list, as well as the buffer containing
3668 * the corresponding SURFACE_STATE.
3669 *
3670 * Returns the binding table entry (offset to SURFACE_STATE).
3671 */
3672 static uint32_t
3673 use_surface(struct iris_batch *batch,
3674 struct pipe_surface *p_surf,
3675 bool writeable)
3676 {
3677 struct iris_surface *surf = (void *) p_surf;
3678
3679 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3680 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3681
3682 return surf->surface_state.offset;
3683 }
3684
3685 static uint32_t
3686 use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
3687 {
3688 iris_use_pinned_bo(batch, isv->res->bo, false);
3689 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3690
3691 return isv->surface_state.offset;
3692 }
3693
3694 static uint32_t
3695 use_const_buffer(struct iris_batch *batch,
3696 struct iris_context *ice,
3697 struct iris_const_buffer *cbuf)
3698 {
3699 if (!cbuf->surface_state.res)
3700 return use_null_surface(batch, ice);
3701
3702 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3703 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3704
3705 return cbuf->surface_state.offset;
3706 }
3707
3708 static uint32_t
3709 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3710 struct iris_shader_state *shs, int i)
3711 {
3712 if (!shs->ssbo[i])
3713 return use_null_surface(batch, ice);
3714
3715 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3716
3717 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3718 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3719
3720 return surf_state->offset;
3721 }
3722
3723 static uint32_t
3724 use_image(struct iris_batch *batch, struct iris_context *ice,
3725 struct iris_shader_state *shs, int i)
3726 {
3727 if (!shs->image[i].res)
3728 return use_null_surface(batch, ice);
3729
3730 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3731
3732 iris_use_pinned_bo(batch, iris_resource_bo(shs->image[i].res),
3733 shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE);
3734 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3735
3736 return surf_state->offset;
3737 }
3738
3739 #define push_bt_entry(addr) \
3740 assert(addr >= binder_addr); \
3741 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3742 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3743
3744 #define bt_assert(section, exists) \
3745 if (!pin_only) assert(prog_data->binding_table.section == \
3746 (exists) ? s : 0xd0d0d0d0)
3747
3748 /**
3749 * Populate the binding table for a given shader stage.
3750 *
3751 * This fills out the table of pointers to surfaces required by the shader,
3752 * and also adds those buffers to the validation list so the kernel can make
3753 * resident before running our batch.
3754 */
3755 static void
3756 iris_populate_binding_table(struct iris_context *ice,
3757 struct iris_batch *batch,
3758 gl_shader_stage stage,
3759 bool pin_only)
3760 {
3761 const struct iris_binder *binder = &ice->state.binder;
3762 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3763 if (!shader)
3764 return;
3765
3766 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3767 struct iris_shader_state *shs = &ice->state.shaders[stage];
3768 uint32_t binder_addr = binder->bo->gtt_offset;
3769
3770 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3771 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3772 int s = 0;
3773
3774 const struct shader_info *info = iris_get_shader_info(ice, stage);
3775 if (!info) {
3776 /* TCS passthrough doesn't need a binding table. */
3777 assert(stage == MESA_SHADER_TESS_CTRL);
3778 return;
3779 }
3780
3781 // XXX: use different surface states per aux mode
3782
3783 if (stage == MESA_SHADER_COMPUTE) {
3784 /* surface for gl_NumWorkGroups */
3785 struct iris_state_ref *grid_data = &ice->state.grid_size;
3786 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3787 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3788 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3789 push_bt_entry(grid_state->offset);
3790 }
3791
3792 if (stage == MESA_SHADER_FRAGMENT) {
3793 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3794 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3795 if (cso_fb->nr_cbufs) {
3796 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3797 uint32_t addr =
3798 cso_fb->cbufs[i] ? use_surface(batch, cso_fb->cbufs[i], true)
3799 : use_null_fb_surface(batch, ice);
3800 push_bt_entry(addr);
3801 }
3802 } else {
3803 uint32_t addr = use_null_fb_surface(batch, ice);
3804 push_bt_entry(addr);
3805 }
3806 }
3807
3808 unsigned num_textures = util_last_bit(info->textures_used);
3809
3810 bt_assert(texture_start, num_textures > 0);
3811
3812 for (int i = 0; i < num_textures; i++) {
3813 struct iris_sampler_view *view = shs->textures[i];
3814 uint32_t addr = view ? use_sampler_view(batch, view)
3815 : use_null_surface(batch, ice);
3816 push_bt_entry(addr);
3817 }
3818
3819 bt_assert(image_start, info->num_images > 0);
3820
3821 for (int i = 0; i < info->num_images; i++) {
3822 uint32_t addr = use_image(batch, ice, shs, i);
3823 push_bt_entry(addr);
3824 }
3825
3826 bt_assert(ubo_start, shader->num_cbufs > 0);
3827
3828 for (int i = 0; i < shader->num_cbufs; i++) {
3829 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3830 push_bt_entry(addr);
3831 }
3832
3833 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
3834
3835 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3836 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3837 * in st_atom_storagebuf.c so it'll compact them into one range, with
3838 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3839 */
3840 if (info->num_abos + info->num_ssbos > 0) {
3841 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3842 uint32_t addr = use_ssbo(batch, ice, shs, i);
3843 push_bt_entry(addr);
3844 }
3845 }
3846
3847 #if 0
3848 /* XXX: YUV surfaces not implemented yet */
3849 bt_assert(plane_start[1], ...);
3850 bt_assert(plane_start[2], ...);
3851 #endif
3852 }
3853
3854 static void
3855 iris_use_optional_res(struct iris_batch *batch,
3856 struct pipe_resource *res,
3857 bool writeable)
3858 {
3859 if (res) {
3860 struct iris_bo *bo = iris_resource_bo(res);
3861 iris_use_pinned_bo(batch, bo, writeable);
3862 }
3863 }
3864
3865 /* ------------------------------------------------------------------- */
3866
3867 /**
3868 * Pin any BOs which were installed by a previous batch, and restored
3869 * via the hardware logical context mechanism.
3870 *
3871 * We don't need to re-emit all state every batch - the hardware context
3872 * mechanism will save and restore it for us. This includes pointers to
3873 * various BOs...which won't exist unless we ask the kernel to pin them
3874 * by adding them to the validation list.
3875 *
3876 * We can skip buffers if we've re-emitted those packets, as we're
3877 * overwriting those stale pointers with new ones, and don't actually
3878 * refer to the old BOs.
3879 */
3880 static void
3881 iris_restore_render_saved_bos(struct iris_context *ice,
3882 struct iris_batch *batch,
3883 const struct pipe_draw_info *draw)
3884 {
3885 struct iris_genx_state *genx = ice->state.genx;
3886
3887 const uint64_t clean = ~ice->state.dirty;
3888
3889 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3890 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3891 }
3892
3893 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3894 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3895 }
3896
3897 if (clean & IRIS_DIRTY_BLEND_STATE) {
3898 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3899 }
3900
3901 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3902 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3903 }
3904
3905 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3906 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3907 }
3908
3909 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
3910 for (int i = 0; i < 4; i++) {
3911 struct iris_stream_output_target *tgt =
3912 (void *) ice->state.so_target[i];
3913 if (tgt) {
3914 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
3915 true);
3916 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
3917 true);
3918 }
3919 }
3920 }
3921
3922 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3923 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3924 continue;
3925
3926 struct iris_shader_state *shs = &ice->state.shaders[stage];
3927 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3928
3929 if (!shader)
3930 continue;
3931
3932 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3933
3934 for (int i = 0; i < 4; i++) {
3935 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3936
3937 if (range->length == 0)
3938 continue;
3939
3940 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3941 struct iris_resource *res = (void *) cbuf->data.res;
3942
3943 if (res)
3944 iris_use_pinned_bo(batch, res->bo, false);
3945 else
3946 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3947 }
3948 }
3949
3950 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3951 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
3952 /* Re-pin any buffers referred to by the binding table. */
3953 iris_populate_binding_table(ice, batch, stage, true);
3954 }
3955 }
3956
3957 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3958 struct iris_shader_state *shs = &ice->state.shaders[stage];
3959 struct pipe_resource *res = shs->sampler_table.res;
3960 if (res)
3961 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3962 }
3963
3964 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3965 if (clean & (IRIS_DIRTY_VS << stage)) {
3966 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3967
3968 if (shader) {
3969 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3970 iris_use_pinned_bo(batch, bo, false);
3971
3972 struct brw_stage_prog_data *prog_data = shader->prog_data;
3973
3974 if (prog_data->total_scratch > 0) {
3975 struct iris_bo *bo =
3976 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
3977 iris_use_pinned_bo(batch, bo, true);
3978 }
3979 }
3980 }
3981 }
3982
3983 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
3984 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3985
3986 if (cso_fb->zsbuf) {
3987 struct iris_resource *zres, *sres;
3988 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
3989 &zres, &sres);
3990 if (zres) {
3991 iris_cache_flush_for_depth(batch, zres->bo);
3992
3993 iris_use_pinned_bo(batch, zres->bo,
3994 ice->state.depth_writes_enabled);
3995 }
3996
3997 if (sres) {
3998 iris_cache_flush_for_depth(batch, sres->bo);
3999
4000 iris_use_pinned_bo(batch, sres->bo,
4001 ice->state.stencil_writes_enabled);
4002 }
4003 }
4004 }
4005
4006 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
4007 /* This draw didn't emit a new index buffer, so we are inheriting the
4008 * older index buffer. This draw didn't need it, but future ones may.
4009 */
4010 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4011 iris_use_pinned_bo(batch, bo, false);
4012 }
4013
4014 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4015 uint64_t bound = ice->state.bound_vertex_buffers;
4016 while (bound) {
4017 const int i = u_bit_scan64(&bound);
4018 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4019 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4020 }
4021 }
4022 }
4023
4024 static void
4025 iris_restore_compute_saved_bos(struct iris_context *ice,
4026 struct iris_batch *batch,
4027 const struct pipe_grid_info *grid)
4028 {
4029 const uint64_t clean = ~ice->state.dirty;
4030
4031 const int stage = MESA_SHADER_COMPUTE;
4032 struct iris_shader_state *shs = &ice->state.shaders[stage];
4033
4034 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
4035 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4036
4037 if (shader) {
4038 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4039 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
4040
4041 if (range->length > 0) {
4042 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4043 struct iris_resource *res = (void *) cbuf->data.res;
4044
4045 if (res)
4046 iris_use_pinned_bo(batch, res->bo, false);
4047 else
4048 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4049 }
4050 }
4051 }
4052
4053 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4054 /* Re-pin any buffers referred to by the binding table. */
4055 iris_populate_binding_table(ice, batch, stage, true);
4056 }
4057
4058 struct pipe_resource *sampler_res = shs->sampler_table.res;
4059 if (sampler_res)
4060 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4061
4062 if (clean & IRIS_DIRTY_CS) {
4063 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4064
4065 if (shader) {
4066 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4067 iris_use_pinned_bo(batch, bo, false);
4068
4069 struct brw_stage_prog_data *prog_data = shader->prog_data;
4070
4071 if (prog_data->total_scratch > 0) {
4072 struct iris_bo *bo =
4073 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4074 iris_use_pinned_bo(batch, bo, true);
4075 }
4076 }
4077 }
4078 }
4079
4080 /**
4081 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4082 */
4083 static void
4084 iris_update_surface_base_address(struct iris_batch *batch,
4085 struct iris_binder *binder)
4086 {
4087 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4088 return;
4089
4090 flush_for_state_base_change(batch);
4091
4092 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4093 sba.SurfaceStateMOCS = MOCS_WB;
4094 sba.SurfaceStateBaseAddressModifyEnable = true;
4095 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4096 }
4097
4098 batch->last_surface_base_address = binder->bo->gtt_offset;
4099 }
4100
4101 static void
4102 iris_upload_dirty_render_state(struct iris_context *ice,
4103 struct iris_batch *batch,
4104 const struct pipe_draw_info *draw)
4105 {
4106 const uint64_t dirty = ice->state.dirty;
4107
4108 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4109 return;
4110
4111 struct iris_genx_state *genx = ice->state.genx;
4112 struct iris_binder *binder = &ice->state.binder;
4113 struct brw_wm_prog_data *wm_prog_data = (void *)
4114 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4115
4116 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4117 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4118 uint32_t cc_vp_address;
4119
4120 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4121 uint32_t *cc_vp_map =
4122 stream_state(batch, ice->state.dynamic_uploader,
4123 &ice->state.last_res.cc_vp,
4124 4 * ice->state.num_viewports *
4125 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4126 for (int i = 0; i < ice->state.num_viewports; i++) {
4127 float zmin, zmax;
4128 util_viewport_zmin_zmax(&ice->state.viewports[i],
4129 cso_rast->clip_halfz, &zmin, &zmax);
4130 if (cso_rast->depth_clip_near)
4131 zmin = 0.0;
4132 if (cso_rast->depth_clip_far)
4133 zmax = 1.0;
4134
4135 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4136 ccv.MinimumDepth = zmin;
4137 ccv.MaximumDepth = zmax;
4138 }
4139
4140 cc_vp_map += GENX(CC_VIEWPORT_length);
4141 }
4142
4143 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4144 ptr.CCViewportPointer = cc_vp_address;
4145 }
4146 }
4147
4148 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4149 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4150 uint32_t sf_cl_vp_address;
4151 uint32_t *vp_map =
4152 stream_state(batch, ice->state.dynamic_uploader,
4153 &ice->state.last_res.sf_cl_vp,
4154 4 * ice->state.num_viewports *
4155 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4156
4157 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4158 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4159 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4160
4161 float vp_xmin = viewport_extent(state, 0, -1.0f);
4162 float vp_xmax = viewport_extent(state, 0, 1.0f);
4163 float vp_ymin = viewport_extent(state, 1, -1.0f);
4164 float vp_ymax = viewport_extent(state, 1, 1.0f);
4165
4166 calculate_guardband_size(cso_fb->width, cso_fb->height,
4167 state->scale[0], state->scale[1],
4168 state->translate[0], state->translate[1],
4169 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4170
4171 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4172 vp.ViewportMatrixElementm00 = state->scale[0];
4173 vp.ViewportMatrixElementm11 = state->scale[1];
4174 vp.ViewportMatrixElementm22 = state->scale[2];
4175 vp.ViewportMatrixElementm30 = state->translate[0];
4176 vp.ViewportMatrixElementm31 = state->translate[1];
4177 vp.ViewportMatrixElementm32 = state->translate[2];
4178 vp.XMinClipGuardband = gb_xmin;
4179 vp.XMaxClipGuardband = gb_xmax;
4180 vp.YMinClipGuardband = gb_ymin;
4181 vp.YMaxClipGuardband = gb_ymax;
4182 vp.XMinViewPort = MAX2(vp_xmin, 0);
4183 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4184 vp.YMinViewPort = MAX2(vp_ymin, 0);
4185 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4186 }
4187
4188 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4189 }
4190
4191 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4192 ptr.SFClipViewportPointer = sf_cl_vp_address;
4193 }
4194 }
4195
4196 if (dirty & IRIS_DIRTY_URB) {
4197 iris_upload_urb_config(ice, batch);
4198 }
4199
4200 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4201 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4202 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4203 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4204 const int header_dwords = GENX(BLEND_STATE_length);
4205
4206 /* Always write at least one BLEND_STATE - the final RT message will
4207 * reference BLEND_STATE[0] even if there aren't color writes. There
4208 * may still be alpha testing, computed depth, and so on.
4209 */
4210 const int rt_dwords =
4211 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4212
4213 uint32_t blend_offset;
4214 uint32_t *blend_map =
4215 stream_state(batch, ice->state.dynamic_uploader,
4216 &ice->state.last_res.blend,
4217 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4218
4219 uint32_t blend_state_header;
4220 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4221 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4222 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4223 }
4224
4225 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4226 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4227
4228 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4229 ptr.BlendStatePointer = blend_offset;
4230 ptr.BlendStatePointerValid = true;
4231 }
4232 }
4233
4234 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4235 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4236 #if GEN_GEN == 8
4237 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4238 #endif
4239 uint32_t cc_offset;
4240 void *cc_map =
4241 stream_state(batch, ice->state.dynamic_uploader,
4242 &ice->state.last_res.color_calc,
4243 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4244 64, &cc_offset);
4245 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4246 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4247 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4248 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4249 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4250 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4251 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4252 #if GEN_GEN == 8
4253 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4254 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4255 #endif
4256 }
4257 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4258 ptr.ColorCalcStatePointer = cc_offset;
4259 ptr.ColorCalcStatePointerValid = true;
4260 }
4261 }
4262
4263 /* Upload constants for TCS passthrough. */
4264 if ((dirty & IRIS_DIRTY_CONSTANTS_TCS) &&
4265 ice->shaders.prog[MESA_SHADER_TESS_CTRL] &&
4266 !ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]) {
4267 struct iris_compiled_shader *tes_shader = ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4268 assert(tes_shader);
4269
4270 /* Passthrough always copies 2 vec4s, so when uploading data we ensure
4271 * it is in the right layout for TES.
4272 */
4273 float hdr[8] = {};
4274 struct brw_tes_prog_data *tes_prog_data = (void *) tes_shader->prog_data;
4275 switch (tes_prog_data->domain) {
4276 case BRW_TESS_DOMAIN_QUAD:
4277 for (int i = 0; i < 4; i++)
4278 hdr[7 - i] = ice->state.default_outer_level[i];
4279 hdr[3] = ice->state.default_inner_level[0];
4280 hdr[2] = ice->state.default_inner_level[1];
4281 break;
4282 case BRW_TESS_DOMAIN_TRI:
4283 for (int i = 0; i < 3; i++)
4284 hdr[7 - i] = ice->state.default_outer_level[i];
4285 hdr[4] = ice->state.default_inner_level[0];
4286 break;
4287 case BRW_TESS_DOMAIN_ISOLINE:
4288 hdr[7] = ice->state.default_outer_level[1];
4289 hdr[6] = ice->state.default_outer_level[0];
4290 break;
4291 }
4292
4293 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
4294 struct iris_const_buffer *cbuf = &shs->constbuf[0];
4295 u_upload_data(ice->ctx.const_uploader, 0, sizeof(hdr), 32,
4296 &hdr[0], &cbuf->data.offset,
4297 &cbuf->data.res);
4298 }
4299
4300 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4301 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4302 continue;
4303
4304 struct iris_shader_state *shs = &ice->state.shaders[stage];
4305 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4306
4307 if (!shader)
4308 continue;
4309
4310 if (shs->cbuf0_needs_upload)
4311 upload_uniforms(ice, stage);
4312
4313 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4314
4315 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4316 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4317 if (prog_data) {
4318 /* The Skylake PRM contains the following restriction:
4319 *
4320 * "The driver must ensure The following case does not occur
4321 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4322 * buffer 3 read length equal to zero committed followed by a
4323 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4324 * zero committed."
4325 *
4326 * To avoid this, we program the buffers in the highest slots.
4327 * This way, slot 0 is only used if slot 3 is also used.
4328 */
4329 int n = 3;
4330
4331 for (int i = 3; i >= 0; i--) {
4332 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4333
4334 if (range->length == 0)
4335 continue;
4336
4337 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4338 struct iris_resource *res = (void *) cbuf->data.res;
4339
4340 assert(cbuf->data.offset % 32 == 0);
4341
4342 pkt.ConstantBody.ReadLength[n] = range->length;
4343 pkt.ConstantBody.Buffer[n] =
4344 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4345 : ro_bo(batch->screen->workaround_bo, 0);
4346 n--;
4347 }
4348 }
4349 }
4350 }
4351
4352 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4353 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4354 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4355 ptr._3DCommandSubOpcode = 38 + stage;
4356 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4357 }
4358 }
4359 }
4360
4361 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4362 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4363 iris_populate_binding_table(ice, batch, stage, false);
4364 }
4365 }
4366
4367 if (ice->state.need_border_colors)
4368 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4369
4370 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4371 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4372 !ice->shaders.prog[stage])
4373 continue;
4374
4375 struct iris_shader_state *shs = &ice->state.shaders[stage];
4376 struct pipe_resource *res = shs->sampler_table.res;
4377 if (res)
4378 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4379
4380 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4381 ptr._3DCommandSubOpcode = 43 + stage;
4382 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4383 }
4384 }
4385
4386 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4387 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4388 ms.PixelLocation =
4389 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4390 if (ice->state.framebuffer.samples > 0)
4391 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4392 }
4393 }
4394
4395 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4396 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4397 ms.SampleMask = ice->state.sample_mask;
4398 }
4399 }
4400
4401 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4402 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4403 continue;
4404
4405 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4406
4407 if (shader) {
4408 struct iris_resource *cache = (void *) shader->assembly.res;
4409 iris_use_pinned_bo(batch, cache->bo, false);
4410 iris_batch_emit(batch, shader->derived_data,
4411 iris_derived_program_state_size(stage));
4412 } else {
4413 if (stage == MESA_SHADER_TESS_EVAL) {
4414 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4415 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4416 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4417 } else if (stage == MESA_SHADER_GEOMETRY) {
4418 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4419 }
4420 }
4421 }
4422
4423 if (ice->state.streamout_active) {
4424 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4425 iris_batch_emit(batch, genx->so_buffers,
4426 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4427 for (int i = 0; i < 4; i++) {
4428 struct iris_stream_output_target *tgt =
4429 (void *) ice->state.so_target[i];
4430 if (tgt) {
4431 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4432 true);
4433 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4434 true);
4435 }
4436 }
4437 }
4438
4439 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4440 uint32_t *decl_list =
4441 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4442 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4443 }
4444
4445 if (dirty & IRIS_DIRTY_STREAMOUT) {
4446 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4447
4448 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4449 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4450 sol.SOFunctionEnable = true;
4451 sol.SOStatisticsEnable = true;
4452
4453 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4454 !ice->state.prims_generated_query_active;
4455 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4456 }
4457
4458 assert(ice->state.streamout);
4459
4460 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4461 GENX(3DSTATE_STREAMOUT_length));
4462 }
4463 } else {
4464 if (dirty & IRIS_DIRTY_STREAMOUT) {
4465 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4466 }
4467 }
4468
4469 if (dirty & IRIS_DIRTY_CLIP) {
4470 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4471 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4472
4473 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4474 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4475 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4476 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4477 : CLIPMODE_NORMAL;
4478 if (wm_prog_data->barycentric_interp_modes &
4479 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4480 cl.NonPerspectiveBarycentricEnable = true;
4481
4482 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4483 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4484 }
4485 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4486 ARRAY_SIZE(cso_rast->clip));
4487 }
4488
4489 if (dirty & IRIS_DIRTY_RASTER) {
4490 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4491 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4492 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4493
4494 }
4495
4496 if (dirty & IRIS_DIRTY_WM) {
4497 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4498 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4499
4500 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4501 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4502
4503 wm.BarycentricInterpolationMode =
4504 wm_prog_data->barycentric_interp_modes;
4505
4506 if (wm_prog_data->early_fragment_tests)
4507 wm.EarlyDepthStencilControl = EDSC_PREPS;
4508 else if (wm_prog_data->has_side_effects)
4509 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4510
4511 /* We could skip this bit if color writes are enabled. */
4512 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
4513 wm.ForceThreadDispatchEnable = ForceON;
4514 }
4515 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4516 }
4517
4518 if (dirty & IRIS_DIRTY_SBE) {
4519 iris_emit_sbe(batch, ice);
4520 }
4521
4522 if (dirty & IRIS_DIRTY_PS_BLEND) {
4523 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4524 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4525 const struct shader_info *fs_info =
4526 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4527
4528 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4529 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4530 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
4531 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4532 }
4533
4534 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4535 ARRAY_SIZE(cso_blend->ps_blend));
4536 }
4537
4538 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4539 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4540 #if GEN_GEN >= 9
4541 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4542 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4543 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4544 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4545 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4546 }
4547 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4548 #else
4549 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4550 #endif
4551 }
4552
4553 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4554 uint32_t scissor_offset =
4555 emit_state(batch, ice->state.dynamic_uploader,
4556 &ice->state.last_res.scissor,
4557 ice->state.scissors,
4558 sizeof(struct pipe_scissor_state) *
4559 ice->state.num_viewports, 32);
4560
4561 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4562 ptr.ScissorRectPointer = scissor_offset;
4563 }
4564 }
4565
4566 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4567 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4568 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4569
4570 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4571
4572 if (cso_fb->zsbuf) {
4573 struct iris_resource *zres, *sres;
4574 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4575 &zres, &sres);
4576 if (zres) {
4577 iris_use_pinned_bo(batch, zres->bo,
4578 ice->state.depth_writes_enabled);
4579 }
4580
4581 if (sres) {
4582 iris_use_pinned_bo(batch, sres->bo,
4583 ice->state.stencil_writes_enabled);
4584 }
4585 }
4586 }
4587
4588 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4589 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4590 for (int i = 0; i < 32; i++) {
4591 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4592 }
4593 }
4594 }
4595
4596 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4597 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4598 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4599 }
4600
4601 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4602 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4603 topo.PrimitiveTopologyType =
4604 translate_prim_type(draw->mode, draw->vertices_per_patch);
4605 }
4606 }
4607
4608 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4609 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4610
4611 if (count) {
4612 /* The VF cache designers cut corners, and made the cache key's
4613 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4614 * 32 bits of the address. If you have two vertex buffers which get
4615 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4616 * you can get collisions (even within a single batch).
4617 *
4618 * So, we need to do a VF cache invalidate if the buffer for a VB
4619 * slot slot changes [48:32] address bits from the previous time.
4620 */
4621 unsigned flush_flags = 0;
4622
4623 uint64_t bound = ice->state.bound_vertex_buffers;
4624 while (bound) {
4625 const int i = u_bit_scan64(&bound);
4626 uint16_t high_bits = 0;
4627
4628 struct iris_resource *res =
4629 (void *) genx->vertex_buffers[i].resource;
4630 if (res) {
4631 iris_use_pinned_bo(batch, res->bo, false);
4632
4633 high_bits = res->bo->gtt_offset >> 32ull;
4634 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4635 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
4636 PIPE_CONTROL_CS_STALL;
4637 ice->state.last_vbo_high_bits[i] = high_bits;
4638 }
4639
4640 /* If the buffer was written to by streamout, we may need
4641 * to stall so those writes land and become visible to the
4642 * vertex fetcher.
4643 *
4644 * TODO: This may stall more than necessary.
4645 */
4646 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
4647 flush_flags |= PIPE_CONTROL_CS_STALL;
4648 }
4649 }
4650
4651 if (flush_flags)
4652 iris_emit_pipe_control_flush(batch, flush_flags);
4653
4654 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4655
4656 uint32_t *map =
4657 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
4658 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
4659 vb.DWordLength = (vb_dwords * count + 1) - 2;
4660 }
4661 map += 1;
4662
4663 bound = ice->state.bound_vertex_buffers;
4664 while (bound) {
4665 const int i = u_bit_scan64(&bound);
4666 memcpy(map, genx->vertex_buffers[i].state,
4667 sizeof(uint32_t) * vb_dwords);
4668 map += vb_dwords;
4669 }
4670 }
4671 }
4672
4673 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4674 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4675 const unsigned entries = MAX2(cso->count, 1);
4676 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4677 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4678 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4679 entries * GENX(3DSTATE_VF_INSTANCING_length));
4680 }
4681
4682 if (dirty & IRIS_DIRTY_VF_SGVS) {
4683 const struct brw_vs_prog_data *vs_prog_data = (void *)
4684 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4685 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4686
4687 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4688 if (vs_prog_data->uses_vertexid) {
4689 sgv.VertexIDEnable = true;
4690 sgv.VertexIDComponentNumber = 2;
4691 sgv.VertexIDElementOffset = cso->count;
4692 }
4693
4694 if (vs_prog_data->uses_instanceid) {
4695 sgv.InstanceIDEnable = true;
4696 sgv.InstanceIDComponentNumber = 3;
4697 sgv.InstanceIDElementOffset = cso->count;
4698 }
4699 }
4700 }
4701
4702 if (dirty & IRIS_DIRTY_VF) {
4703 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4704 if (draw->primitive_restart) {
4705 vf.IndexedDrawCutIndexEnable = true;
4706 vf.CutIndex = draw->restart_index;
4707 }
4708 }
4709 }
4710
4711 /* TODO: Gen8 PMA fix */
4712 }
4713
4714 static void
4715 iris_upload_render_state(struct iris_context *ice,
4716 struct iris_batch *batch,
4717 const struct pipe_draw_info *draw)
4718 {
4719 /* Always pin the binder. If we're emitting new binding table pointers,
4720 * we need it. If not, we're probably inheriting old tables via the
4721 * context, and need it anyway. Since true zero-bindings cases are
4722 * practically non-existent, just pin it and avoid last_res tracking.
4723 */
4724 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4725
4726 if (!batch->contains_draw) {
4727 iris_restore_render_saved_bos(ice, batch, draw);
4728 batch->contains_draw = true;
4729 }
4730
4731 iris_upload_dirty_render_state(ice, batch, draw);
4732
4733 if (draw->index_size > 0) {
4734 unsigned offset;
4735
4736 if (draw->has_user_indices) {
4737 u_upload_data(ice->ctx.stream_uploader, 0,
4738 draw->count * draw->index_size, 4, draw->index.user,
4739 &offset, &ice->state.last_res.index_buffer);
4740 } else {
4741 struct iris_resource *res = (void *) draw->index.resource;
4742 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
4743
4744 pipe_resource_reference(&ice->state.last_res.index_buffer,
4745 draw->index.resource);
4746 offset = 0;
4747 }
4748
4749 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4750
4751 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4752 ib.IndexFormat = draw->index_size >> 1;
4753 ib.MOCS = mocs(bo);
4754 ib.BufferSize = bo->size;
4755 ib.BufferStartingAddress = ro_bo(bo, offset);
4756 }
4757
4758 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
4759 uint16_t high_bits = bo->gtt_offset >> 32ull;
4760 if (high_bits != ice->state.last_index_bo_high_bits) {
4761 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE |
4762 PIPE_CONTROL_CS_STALL);
4763 ice->state.last_index_bo_high_bits = high_bits;
4764 }
4765 }
4766
4767 #define _3DPRIM_END_OFFSET 0x2420
4768 #define _3DPRIM_START_VERTEX 0x2430
4769 #define _3DPRIM_VERTEX_COUNT 0x2434
4770 #define _3DPRIM_INSTANCE_COUNT 0x2438
4771 #define _3DPRIM_START_INSTANCE 0x243C
4772 #define _3DPRIM_BASE_VERTEX 0x2440
4773
4774 if (draw->indirect) {
4775 /* We don't support this MultidrawIndirect. */
4776 assert(!draw->indirect->indirect_draw_count);
4777
4778 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4779 assert(bo);
4780
4781 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4782 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
4783 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
4784 }
4785 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4786 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
4787 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
4788 }
4789 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4790 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
4791 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
4792 }
4793 if (draw->index_size) {
4794 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4795 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
4796 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4797 }
4798 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4799 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4800 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
4801 }
4802 } else {
4803 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4804 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4805 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4806 }
4807 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4808 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
4809 lri.DataDWord = 0;
4810 }
4811 }
4812 } else if (draw->count_from_stream_output) {
4813 struct iris_stream_output_target *so =
4814 (void *) draw->count_from_stream_output;
4815
4816 /* XXX: Replace with actual cache tracking */
4817 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4818
4819 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4820 lrm.RegisterAddress = CS_GPR(0);
4821 lrm.MemoryAddress =
4822 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
4823 }
4824 iris_math_div32_gpr0(ice, batch, so->stride);
4825 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
4826
4827 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
4828 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
4829 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
4830 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
4831 }
4832
4833 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
4834 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
4835 prim.PredicateEnable =
4836 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
4837
4838 if (draw->indirect || draw->count_from_stream_output) {
4839 prim.IndirectParameterEnable = true;
4840 } else {
4841 prim.StartInstanceLocation = draw->start_instance;
4842 prim.InstanceCount = draw->instance_count;
4843 prim.VertexCountPerInstance = draw->count;
4844
4845 // XXX: this is probably bonkers.
4846 prim.StartVertexLocation = draw->start;
4847
4848 if (draw->index_size) {
4849 prim.BaseVertexLocation += draw->index_bias;
4850 } else {
4851 prim.StartVertexLocation += draw->index_bias;
4852 }
4853
4854 //prim.BaseVertexLocation = ...;
4855 }
4856 }
4857 }
4858
4859 static void
4860 iris_upload_compute_state(struct iris_context *ice,
4861 struct iris_batch *batch,
4862 const struct pipe_grid_info *grid)
4863 {
4864 const uint64_t dirty = ice->state.dirty;
4865 struct iris_screen *screen = batch->screen;
4866 const struct gen_device_info *devinfo = &screen->devinfo;
4867 struct iris_binder *binder = &ice->state.binder;
4868 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
4869 struct iris_compiled_shader *shader =
4870 ice->shaders.prog[MESA_SHADER_COMPUTE];
4871 struct brw_stage_prog_data *prog_data = shader->prog_data;
4872 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
4873
4874 /* Always pin the binder. If we're emitting new binding table pointers,
4875 * we need it. If not, we're probably inheriting old tables via the
4876 * context, and need it anyway. Since true zero-bindings cases are
4877 * practically non-existent, just pin it and avoid last_res tracking.
4878 */
4879 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4880
4881 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
4882 upload_uniforms(ice, MESA_SHADER_COMPUTE);
4883
4884 if (dirty & IRIS_DIRTY_BINDINGS_CS)
4885 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
4886
4887 iris_use_optional_res(batch, shs->sampler_table.res, false);
4888 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
4889
4890 if (ice->state.need_border_colors)
4891 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4892
4893 if (dirty & IRIS_DIRTY_CS) {
4894 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4895 *
4896 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4897 * the only bits that are changed are scoreboard related: Scoreboard
4898 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
4899 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4900 * sufficient."
4901 */
4902 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4903
4904 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
4905 if (prog_data->total_scratch) {
4906 struct iris_bo *bo =
4907 iris_get_scratch_space(ice, prog_data->total_scratch,
4908 MESA_SHADER_COMPUTE);
4909 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4910 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
4911 }
4912
4913 vfe.MaximumNumberofThreads =
4914 devinfo->max_cs_threads * screen->subslice_total - 1;
4915 #if GEN_GEN < 11
4916 vfe.ResetGatewayTimer =
4917 Resettingrelativetimerandlatchingtheglobaltimestamp;
4918 #endif
4919 #if GEN_GEN == 8
4920 vfe.BypassGatewayControl = true;
4921 #endif
4922 vfe.NumberofURBEntries = 2;
4923 vfe.URBEntryAllocationSize = 2;
4924
4925 vfe.CURBEAllocationSize =
4926 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4927 cs_prog_data->push.cross_thread.regs, 2);
4928 }
4929 }
4930
4931 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
4932 uint32_t curbe_data_offset = 0;
4933 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
4934 cs_prog_data->push.per_thread.dwords == 1 &&
4935 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
4936 struct pipe_resource *curbe_data_res = NULL;
4937 uint32_t *curbe_data_map =
4938 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
4939 ALIGN(cs_prog_data->push.total.size, 64), 64,
4940 &curbe_data_offset);
4941 assert(curbe_data_map);
4942 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
4943 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
4944
4945 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
4946 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4947 curbe.CURBETotalDataLength =
4948 ALIGN(cs_prog_data->push.total.size, 64);
4949 curbe.CURBEDataStartAddress = curbe_data_offset;
4950 }
4951 }
4952
4953 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
4954 IRIS_DIRTY_BINDINGS_CS |
4955 IRIS_DIRTY_CONSTANTS_CS |
4956 IRIS_DIRTY_CS)) {
4957 struct pipe_resource *desc_res = NULL;
4958 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4959
4960 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
4961 idd.SamplerStatePointer = shs->sampler_table.offset;
4962 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
4963 }
4964
4965 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
4966 desc[i] |= ((uint32_t *) shader->derived_data)[i];
4967
4968 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4969 load.InterfaceDescriptorTotalLength =
4970 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4971 load.InterfaceDescriptorDataStartAddress =
4972 emit_state(batch, ice->state.dynamic_uploader,
4973 &desc_res, desc, sizeof(desc), 32);
4974 }
4975
4976 pipe_resource_reference(&desc_res, NULL);
4977 }
4978
4979 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
4980 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
4981 uint32_t right_mask;
4982
4983 if (remainder > 0)
4984 right_mask = ~0u >> (32 - remainder);
4985 else
4986 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
4987
4988 #define GPGPU_DISPATCHDIMX 0x2500
4989 #define GPGPU_DISPATCHDIMY 0x2504
4990 #define GPGPU_DISPATCHDIMZ 0x2508
4991
4992 if (grid->indirect) {
4993 struct iris_state_ref *grid_size = &ice->state.grid_size;
4994 struct iris_bo *bo = iris_resource_bo(grid_size->res);
4995 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4996 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
4997 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
4998 }
4999 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5000 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5001 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5002 }
5003 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5004 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5005 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5006 }
5007 }
5008
5009 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5010 ggw.IndirectParameterEnable = grid->indirect != NULL;
5011 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5012 ggw.ThreadDepthCounterMaximum = 0;
5013 ggw.ThreadHeightCounterMaximum = 0;
5014 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5015 ggw.ThreadGroupIDXDimension = grid->grid[0];
5016 ggw.ThreadGroupIDYDimension = grid->grid[1];
5017 ggw.ThreadGroupIDZDimension = grid->grid[2];
5018 ggw.RightExecutionMask = right_mask;
5019 ggw.BottomExecutionMask = 0xffffffff;
5020 }
5021
5022 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5023
5024 if (!batch->contains_draw) {
5025 iris_restore_compute_saved_bos(ice, batch, grid);
5026 batch->contains_draw = true;
5027 }
5028 }
5029
5030 /**
5031 * State module teardown.
5032 */
5033 static void
5034 iris_destroy_state(struct iris_context *ice)
5035 {
5036 struct iris_genx_state *genx = ice->state.genx;
5037
5038 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5039 while (bound_vbs) {
5040 const int i = u_bit_scan64(&bound_vbs);
5041 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5042 }
5043 free(ice->state.genx);
5044
5045 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5046 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5047 }
5048 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5049
5050 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5051 struct iris_shader_state *shs = &ice->state.shaders[stage];
5052 pipe_resource_reference(&shs->sampler_table.res, NULL);
5053 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5054 pipe_resource_reference(&shs->constbuf[i].data.res, NULL);
5055 pipe_resource_reference(&shs->constbuf[i].surface_state.res, NULL);
5056 }
5057 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5058 pipe_resource_reference(&shs->image[i].res, NULL);
5059 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5060 }
5061 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5062 pipe_resource_reference(&shs->ssbo[i], NULL);
5063 pipe_resource_reference(&shs->ssbo_surface_state[i].res, NULL);
5064 }
5065 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5066 pipe_sampler_view_reference((struct pipe_sampler_view **)
5067 &shs->textures[i], NULL);
5068 }
5069 }
5070
5071 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5072 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5073
5074 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5075 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5076
5077 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5078 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5079 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5080 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5081 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5082 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5083 }
5084
5085 /* ------------------------------------------------------------------- */
5086
5087 static void
5088 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
5089 uint32_t src)
5090 {
5091 _iris_emit_lrr(batch, dst, src);
5092 }
5093
5094 static void
5095 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
5096 uint32_t src)
5097 {
5098 _iris_emit_lrr(batch, dst, src);
5099 _iris_emit_lrr(batch, dst + 4, src + 4);
5100 }
5101
5102 static void
5103 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5104 uint32_t val)
5105 {
5106 _iris_emit_lri(batch, reg, val);
5107 }
5108
5109 static void
5110 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5111 uint64_t val)
5112 {
5113 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5114 _iris_emit_lri(batch, reg + 4, val >> 32);
5115 }
5116
5117 /**
5118 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5119 */
5120 static void
5121 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5122 struct iris_bo *bo, uint32_t offset)
5123 {
5124 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5125 lrm.RegisterAddress = reg;
5126 lrm.MemoryAddress = ro_bo(bo, offset);
5127 }
5128 }
5129
5130 /**
5131 * Load a 64-bit value from a buffer into a MMIO register via
5132 * two MI_LOAD_REGISTER_MEM commands.
5133 */
5134 static void
5135 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5136 struct iris_bo *bo, uint32_t offset)
5137 {
5138 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5139 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5140 }
5141
5142 static void
5143 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5144 struct iris_bo *bo, uint32_t offset,
5145 bool predicated)
5146 {
5147 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5148 srm.RegisterAddress = reg;
5149 srm.MemoryAddress = rw_bo(bo, offset);
5150 srm.PredicateEnable = predicated;
5151 }
5152 }
5153
5154 static void
5155 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5156 struct iris_bo *bo, uint32_t offset,
5157 bool predicated)
5158 {
5159 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5160 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5161 }
5162
5163 static void
5164 iris_store_data_imm32(struct iris_batch *batch,
5165 struct iris_bo *bo, uint32_t offset,
5166 uint32_t imm)
5167 {
5168 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5169 sdi.Address = rw_bo(bo, offset);
5170 sdi.ImmediateData = imm;
5171 }
5172 }
5173
5174 static void
5175 iris_store_data_imm64(struct iris_batch *batch,
5176 struct iris_bo *bo, uint32_t offset,
5177 uint64_t imm)
5178 {
5179 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5180 * 2 in genxml but it's actually variable length and we need 5 DWords.
5181 */
5182 void *map = iris_get_command_space(batch, 4 * 5);
5183 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5184 sdi.DWordLength = 5 - 2;
5185 sdi.Address = rw_bo(bo, offset);
5186 sdi.ImmediateData = imm;
5187 }
5188 }
5189
5190 static void
5191 iris_copy_mem_mem(struct iris_batch *batch,
5192 struct iris_bo *dst_bo, uint32_t dst_offset,
5193 struct iris_bo *src_bo, uint32_t src_offset,
5194 unsigned bytes)
5195 {
5196 /* MI_COPY_MEM_MEM operates on DWords. */
5197 assert(bytes % 4 == 0);
5198 assert(dst_offset % 4 == 0);
5199 assert(src_offset % 4 == 0);
5200
5201 for (unsigned i = 0; i < bytes; i += 4) {
5202 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5203 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5204 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5205 }
5206 }
5207 }
5208
5209 /* ------------------------------------------------------------------- */
5210
5211 static unsigned
5212 flags_to_post_sync_op(uint32_t flags)
5213 {
5214 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5215 return WriteImmediateData;
5216
5217 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5218 return WritePSDepthCount;
5219
5220 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5221 return WriteTimestamp;
5222
5223 return 0;
5224 }
5225
5226 /**
5227 * Do the given flags have a Post Sync or LRI Post Sync operation?
5228 */
5229 static enum pipe_control_flags
5230 get_post_sync_flags(enum pipe_control_flags flags)
5231 {
5232 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5233 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5234 PIPE_CONTROL_WRITE_TIMESTAMP |
5235 PIPE_CONTROL_LRI_POST_SYNC_OP;
5236
5237 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5238 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5239 */
5240 assert(util_bitcount(flags) <= 1);
5241
5242 return flags;
5243 }
5244
5245 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5246
5247 /**
5248 * Emit a series of PIPE_CONTROL commands, taking into account any
5249 * workarounds necessary to actually accomplish the caller's request.
5250 *
5251 * Unless otherwise noted, spec quotations in this function come from:
5252 *
5253 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5254 * Restrictions for PIPE_CONTROL.
5255 *
5256 * You should not use this function directly. Use the helpers in
5257 * iris_pipe_control.c instead, which may split the pipe control further.
5258 */
5259 static void
5260 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
5261 struct iris_bo *bo, uint32_t offset, uint64_t imm)
5262 {
5263 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5264 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5265 enum pipe_control_flags non_lri_post_sync_flags =
5266 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5267
5268 /* Recursive PIPE_CONTROL workarounds --------------------------------
5269 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5270 *
5271 * We do these first because we want to look at the original operation,
5272 * rather than any workarounds we set.
5273 */
5274 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5275 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5276 * lists several workarounds:
5277 *
5278 * "Project: SKL, KBL, BXT
5279 *
5280 * If the VF Cache Invalidation Enable is set to a 1 in a
5281 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5282 * sets to 0, with the VF Cache Invalidation Enable set to 0
5283 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5284 * Invalidation Enable set to a 1."
5285 */
5286 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
5287 }
5288
5289 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5290 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5291 *
5292 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5293 * programmed prior to programming a PIPECONTROL command with "LRI
5294 * Post Sync Operation" in GPGPU mode of operation (i.e when
5295 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5296 *
5297 * The same text exists a few rows below for Post Sync Op.
5298 */
5299 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
5300 }
5301
5302 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5303 /* Cannonlake:
5304 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5305 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5306 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5307 */
5308 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
5309 offset, imm);
5310 }
5311
5312 /* "Flush Types" workarounds ---------------------------------------------
5313 * We do these now because they may add post-sync operations or CS stalls.
5314 */
5315
5316 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5317 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5318 *
5319 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5320 * 'Write PS Depth Count' or 'Write Timestamp'."
5321 */
5322 if (!bo) {
5323 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5324 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5325 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5326 bo = batch->screen->workaround_bo;
5327 }
5328 }
5329
5330 /* #1130 from Gen10 workarounds page:
5331 *
5332 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5333 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5334 * board stall if Render target cache flush is enabled."
5335 *
5336 * Applicable to CNL B0 and C0 steppings only.
5337 *
5338 * The wording here is unclear, and this workaround doesn't look anything
5339 * like the internal bug report recommendations, but leave it be for now...
5340 */
5341 if (GEN_GEN == 10) {
5342 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5343 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5344 } else if (flags & non_lri_post_sync_flags) {
5345 flags |= PIPE_CONTROL_DEPTH_STALL;
5346 }
5347 }
5348
5349 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5350 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5351 *
5352 * "This bit must be DISABLED for operations other than writing
5353 * PS_DEPTH_COUNT."
5354 *
5355 * This seems like nonsense. An Ivybridge workaround requires us to
5356 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5357 * operation. Gen8+ requires us to emit depth stalls and depth cache
5358 * flushes together. So, it's hard to imagine this means anything other
5359 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5360 *
5361 * We ignore the supposed restriction and do nothing.
5362 */
5363 }
5364
5365 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5366 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5367 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5368 *
5369 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5370 * PS_DEPTH_COUNT or TIMESTAMP queries."
5371 *
5372 * TODO: Implement end-of-pipe checking.
5373 */
5374 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5375 PIPE_CONTROL_WRITE_TIMESTAMP)));
5376 }
5377
5378 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5379 /* From the PIPE_CONTROL instruction table, bit 1:
5380 *
5381 * "This bit is ignored if Depth Stall Enable is set.
5382 * Further, the render cache is not flushed even if Write Cache
5383 * Flush Enable bit is set."
5384 *
5385 * We assert that the caller doesn't do this combination, to try and
5386 * prevent mistakes. It shouldn't hurt the GPU, though.
5387 *
5388 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5389 * and "Render Target Flush" combo is explicitly required for BTI
5390 * update workarounds.
5391 */
5392 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5393 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5394 }
5395
5396 /* PIPE_CONTROL page workarounds ------------------------------------- */
5397
5398 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5399 /* From the PIPE_CONTROL page itself:
5400 *
5401 * "IVB, HSW, BDW
5402 * Restriction: Pipe_control with CS-stall bit set must be issued
5403 * before a pipe-control command that has the State Cache
5404 * Invalidate bit set."
5405 */
5406 flags |= PIPE_CONTROL_CS_STALL;
5407 }
5408
5409 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5410 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5411 *
5412 * "Project: ALL
5413 * SW must always program Post-Sync Operation to "Write Immediate
5414 * Data" when Flush LLC is set."
5415 *
5416 * For now, we just require the caller to do it.
5417 */
5418 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5419 }
5420
5421 /* "Post-Sync Operation" workarounds -------------------------------- */
5422
5423 /* Project: All / Argument: Global Snapshot Count Reset [19]
5424 *
5425 * "This bit must not be exercised on any product.
5426 * Requires stall bit ([20] of DW1) set."
5427 *
5428 * We don't use this, so we just assert that it isn't used. The
5429 * PIPE_CONTROL instruction page indicates that they intended this
5430 * as a debug feature and don't think it is useful in production,
5431 * but it may actually be usable, should we ever want to.
5432 */
5433 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5434
5435 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5436 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5437 /* Project: All / Arguments:
5438 *
5439 * - Generic Media State Clear [16]
5440 * - Indirect State Pointers Disable [16]
5441 *
5442 * "Requires stall bit ([20] of DW1) set."
5443 *
5444 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5445 * State Clear) says:
5446 *
5447 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5448 * programmed prior to programming a PIPECONTROL command with "Media
5449 * State Clear" set in GPGPU mode of operation"
5450 *
5451 * This is a subset of the earlier rule, so there's nothing to do.
5452 */
5453 flags |= PIPE_CONTROL_CS_STALL;
5454 }
5455
5456 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5457 /* Project: All / Argument: Store Data Index
5458 *
5459 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5460 * than '0'."
5461 *
5462 * For now, we just assert that the caller does this. We might want to
5463 * automatically add a write to the workaround BO...
5464 */
5465 assert(non_lri_post_sync_flags != 0);
5466 }
5467
5468 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5469 /* Project: All / Argument: Sync GFDT
5470 *
5471 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5472 * than '0' or 0x2520[13] must be set."
5473 *
5474 * For now, we just assert that the caller does this.
5475 */
5476 assert(non_lri_post_sync_flags != 0);
5477 }
5478
5479 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5480 /* Project: IVB+ / Argument: TLB inv
5481 *
5482 * "Requires stall bit ([20] of DW1) set."
5483 *
5484 * Also, from the PIPE_CONTROL instruction table:
5485 *
5486 * "Project: SKL+
5487 * Post Sync Operation or CS stall must be set to ensure a TLB
5488 * invalidation occurs. Otherwise no cycle will occur to the TLB
5489 * cache to invalidate."
5490 *
5491 * This is not a subset of the earlier rule, so there's nothing to do.
5492 */
5493 flags |= PIPE_CONTROL_CS_STALL;
5494 }
5495
5496 if (GEN_GEN == 9 && devinfo->gt == 4) {
5497 /* TODO: The big Skylake GT4 post sync op workaround */
5498 }
5499
5500 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5501
5502 if (IS_COMPUTE_PIPELINE(batch)) {
5503 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5504 /* Project: SKL+ / Argument: Tex Invalidate
5505 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5506 */
5507 flags |= PIPE_CONTROL_CS_STALL;
5508 }
5509
5510 if (GEN_GEN == 8 && (post_sync_flags ||
5511 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5512 PIPE_CONTROL_DEPTH_STALL |
5513 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5514 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5515 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5516 /* Project: BDW / Arguments:
5517 *
5518 * - LRI Post Sync Operation [23]
5519 * - Post Sync Op [15:14]
5520 * - Notify En [8]
5521 * - Depth Stall [13]
5522 * - Render Target Cache Flush [12]
5523 * - Depth Cache Flush [0]
5524 * - DC Flush Enable [5]
5525 *
5526 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5527 * Workloads."
5528 */
5529 flags |= PIPE_CONTROL_CS_STALL;
5530
5531 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5532 *
5533 * "Project: BDW
5534 * This bit must be always set when PIPE_CONTROL command is
5535 * programmed by GPGPU and MEDIA workloads, except for the cases
5536 * when only Read Only Cache Invalidation bits are set (State
5537 * Cache Invalidation Enable, Instruction cache Invalidation
5538 * Enable, Texture Cache Invalidation Enable, Constant Cache
5539 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5540 * need not implemented when FF_DOP_CG is disable via "Fixed
5541 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5542 *
5543 * It sounds like we could avoid CS stalls in some cases, but we
5544 * don't currently bother. This list isn't exactly the list above,
5545 * either...
5546 */
5547 }
5548 }
5549
5550 /* "Stall" workarounds ----------------------------------------------
5551 * These have to come after the earlier ones because we may have added
5552 * some additional CS stalls above.
5553 */
5554
5555 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5556 /* Project: PRE-SKL, VLV, CHV
5557 *
5558 * "[All Stepping][All SKUs]:
5559 *
5560 * One of the following must also be set:
5561 *
5562 * - Render Target Cache Flush Enable ([12] of DW1)
5563 * - Depth Cache Flush Enable ([0] of DW1)
5564 * - Stall at Pixel Scoreboard ([1] of DW1)
5565 * - Depth Stall ([13] of DW1)
5566 * - Post-Sync Operation ([13] of DW1)
5567 * - DC Flush Enable ([5] of DW1)"
5568 *
5569 * If we don't already have one of those bits set, we choose to add
5570 * "Stall at Pixel Scoreboard". Some of the other bits require a
5571 * CS stall as a workaround (see above), which would send us into
5572 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5573 * appears to be safe, so we choose that.
5574 */
5575 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5576 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5577 PIPE_CONTROL_WRITE_IMMEDIATE |
5578 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5579 PIPE_CONTROL_WRITE_TIMESTAMP |
5580 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5581 PIPE_CONTROL_DEPTH_STALL |
5582 PIPE_CONTROL_DATA_CACHE_FLUSH;
5583 if (!(flags & wa_bits))
5584 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5585 }
5586
5587 /* Emit --------------------------------------------------------------- */
5588
5589 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5590 pc.LRIPostSyncOperation = NoLRIOperation;
5591 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5592 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5593 pc.StoreDataIndex = 0;
5594 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5595 pc.GlobalSnapshotCountReset =
5596 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5597 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5598 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5599 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5600 pc.RenderTargetCacheFlushEnable =
5601 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5602 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5603 pc.StateCacheInvalidationEnable =
5604 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5605 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5606 pc.ConstantCacheInvalidationEnable =
5607 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5608 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5609 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5610 pc.InstructionCacheInvalidateEnable =
5611 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5612 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5613 pc.IndirectStatePointersDisable =
5614 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5615 pc.TextureCacheInvalidationEnable =
5616 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5617 pc.Address = rw_bo(bo, offset);
5618 pc.ImmediateData = imm;
5619 }
5620 }
5621
5622 void
5623 genX(init_state)(struct iris_context *ice)
5624 {
5625 struct pipe_context *ctx = &ice->ctx;
5626 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5627
5628 ctx->create_blend_state = iris_create_blend_state;
5629 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5630 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5631 ctx->create_sampler_state = iris_create_sampler_state;
5632 ctx->create_sampler_view = iris_create_sampler_view;
5633 ctx->create_surface = iris_create_surface;
5634 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5635 ctx->bind_blend_state = iris_bind_blend_state;
5636 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5637 ctx->bind_sampler_states = iris_bind_sampler_states;
5638 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5639 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5640 ctx->delete_blend_state = iris_delete_state;
5641 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5642 ctx->delete_rasterizer_state = iris_delete_state;
5643 ctx->delete_sampler_state = iris_delete_state;
5644 ctx->delete_vertex_elements_state = iris_delete_state;
5645 ctx->set_blend_color = iris_set_blend_color;
5646 ctx->set_clip_state = iris_set_clip_state;
5647 ctx->set_constant_buffer = iris_set_constant_buffer;
5648 ctx->set_shader_buffers = iris_set_shader_buffers;
5649 ctx->set_shader_images = iris_set_shader_images;
5650 ctx->set_sampler_views = iris_set_sampler_views;
5651 ctx->set_tess_state = iris_set_tess_state;
5652 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5653 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5654 ctx->set_sample_mask = iris_set_sample_mask;
5655 ctx->set_scissor_states = iris_set_scissor_states;
5656 ctx->set_stencil_ref = iris_set_stencil_ref;
5657 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5658 ctx->set_viewport_states = iris_set_viewport_states;
5659 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5660 ctx->surface_destroy = iris_surface_destroy;
5661 ctx->draw_vbo = iris_draw_vbo;
5662 ctx->launch_grid = iris_launch_grid;
5663 ctx->create_stream_output_target = iris_create_stream_output_target;
5664 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5665 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5666
5667 ice->vtbl.destroy_state = iris_destroy_state;
5668 ice->vtbl.init_render_context = iris_init_render_context;
5669 ice->vtbl.init_compute_context = iris_init_compute_context;
5670 ice->vtbl.upload_render_state = iris_upload_render_state;
5671 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5672 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5673 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5674 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
5675 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
5676 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5677 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5678 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5679 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5680 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5681 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5682 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5683 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5684 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5685 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5686 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5687 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5688 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5689 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5690 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5691 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5692 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5693 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5694
5695 ice->state.dirty = ~0ull;
5696
5697 ice->state.statistics_counters_enabled = true;
5698
5699 ice->state.sample_mask = 0xffff;
5700 ice->state.num_viewports = 1;
5701 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5702
5703 /* Make a 1x1x1 null surface for unbound textures */
5704 void *null_surf_map =
5705 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5706 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5707 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5708 ice->state.unbound_tex.offset +=
5709 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5710
5711 /* Default all scissor rectangles to be empty regions. */
5712 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5713 ice->state.scissors[i] = (struct pipe_scissor_state) {
5714 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5715 };
5716 }
5717 }