a3d93b769cebcca7e348a5a7211ec78f91d49e8f
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "drm-uapi/i915_drm.h"
99 #include "nir.h"
100 #include "intel/compiler/brw_compiler.h"
101 #include "intel/common/gen_l3_config.h"
102 #include "intel/common/gen_sample_positions.h"
103 #include "iris_batch.h"
104 #include "iris_context.h"
105 #include "iris_defines.h"
106 #include "iris_pipe.h"
107 #include "iris_resource.h"
108
109 #include "iris_genx_macros.h"
110 #include "intel/common/gen_guardband.h"
111
112 #if GEN_GEN == 8
113 #define MOCS_PTE 0x18
114 #define MOCS_WB 0x78
115 #else
116 #define MOCS_PTE (1 << 1)
117 #define MOCS_WB (2 << 1)
118 #endif
119
120 static uint32_t
121 mocs(const struct iris_bo *bo)
122 {
123 return bo && bo->external ? MOCS_PTE : MOCS_WB;
124 }
125
126 /**
127 * Statically assert that PIPE_* enums match the hardware packets.
128 * (As long as they match, we don't need to translate them.)
129 */
130 UNUSED static void pipe_asserts()
131 {
132 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
133
134 /* pipe_logicop happens to match the hardware. */
135 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
136 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
137 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
138 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
139 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
140 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
141 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
142 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
143 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
144 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
145 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
146 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
147 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
148 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
149 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
150 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
151
152 /* pipe_blend_func happens to match the hardware. */
153 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
157 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
158 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
159 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
160 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
161 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
162 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
163 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
164 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
165 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
166 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
167 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
168 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
169 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
170 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
171 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
172
173 /* pipe_blend_func happens to match the hardware. */
174 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
175 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
176 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
177 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
178 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
179
180 /* pipe_stencil_op happens to match the hardware. */
181 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
182 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
183 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
184 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
185 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
186 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
187 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
188 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
189
190 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
191 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
192 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
193 #undef PIPE_ASSERT
194 }
195
196 static unsigned
197 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
198 {
199 static const unsigned map[] = {
200 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
201 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
202 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
203 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
204 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
205 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
206 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
207 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
208 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
209 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
210 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
211 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
212 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
213 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
214 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
215 };
216
217 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
218 }
219
220 static unsigned
221 translate_compare_func(enum pipe_compare_func pipe_func)
222 {
223 static const unsigned map[] = {
224 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
225 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
226 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
227 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
228 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
229 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
230 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
231 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
232 };
233 return map[pipe_func];
234 }
235
236 static unsigned
237 translate_shadow_func(enum pipe_compare_func pipe_func)
238 {
239 /* Gallium specifies the result of shadow comparisons as:
240 *
241 * 1 if ref <op> texel,
242 * 0 otherwise.
243 *
244 * The hardware does:
245 *
246 * 0 if texel <op> ref,
247 * 1 otherwise.
248 *
249 * So we need to flip the operator and also negate.
250 */
251 static const unsigned map[] = {
252 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
253 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
254 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
255 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
256 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
257 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
258 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
259 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
260 };
261 return map[pipe_func];
262 }
263
264 static unsigned
265 translate_cull_mode(unsigned pipe_face)
266 {
267 static const unsigned map[4] = {
268 [PIPE_FACE_NONE] = CULLMODE_NONE,
269 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
270 [PIPE_FACE_BACK] = CULLMODE_BACK,
271 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
272 };
273 return map[pipe_face];
274 }
275
276 static unsigned
277 translate_fill_mode(unsigned pipe_polymode)
278 {
279 static const unsigned map[4] = {
280 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
281 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
282 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
283 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
284 };
285 return map[pipe_polymode];
286 }
287
288 static unsigned
289 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
290 {
291 static const unsigned map[] = {
292 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
293 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
294 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
295 };
296 return map[pipe_mip];
297 }
298
299 static uint32_t
300 translate_wrap(unsigned pipe_wrap)
301 {
302 static const unsigned map[] = {
303 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
304 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
305 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
306 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
307 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
308 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
309
310 /* These are unsupported. */
311 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
312 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
313 };
314 return map[pipe_wrap];
315 }
316
317 /**
318 * Allocate space for some indirect state.
319 *
320 * Return a pointer to the map (to fill it out) and a state ref (for
321 * referring to the state in GPU commands).
322 */
323 static void *
324 upload_state(struct u_upload_mgr *uploader,
325 struct iris_state_ref *ref,
326 unsigned size,
327 unsigned alignment)
328 {
329 void *p = NULL;
330 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
331 return p;
332 }
333
334 /**
335 * Stream out temporary/short-lived state.
336 *
337 * This allocates space, pins the BO, and includes the BO address in the
338 * returned offset (which works because all state lives in 32-bit memory
339 * zones).
340 */
341 static uint32_t *
342 stream_state(struct iris_batch *batch,
343 struct u_upload_mgr *uploader,
344 struct pipe_resource **out_res,
345 unsigned size,
346 unsigned alignment,
347 uint32_t *out_offset)
348 {
349 void *ptr = NULL;
350
351 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
352
353 struct iris_bo *bo = iris_resource_bo(*out_res);
354 iris_use_pinned_bo(batch, bo, false);
355
356 *out_offset += iris_bo_offset_from_base_address(bo);
357
358 iris_record_state_size(batch->state_sizes, *out_offset, size);
359
360 return ptr;
361 }
362
363 /**
364 * stream_state() + memcpy.
365 */
366 static uint32_t
367 emit_state(struct iris_batch *batch,
368 struct u_upload_mgr *uploader,
369 struct pipe_resource **out_res,
370 const void *data,
371 unsigned size,
372 unsigned alignment)
373 {
374 unsigned offset = 0;
375 uint32_t *map =
376 stream_state(batch, uploader, out_res, size, alignment, &offset);
377
378 if (map)
379 memcpy(map, data, size);
380
381 return offset;
382 }
383
384 /**
385 * Did field 'x' change between 'old_cso' and 'new_cso'?
386 *
387 * (If so, we may want to set some dirty flags.)
388 */
389 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
390 #define cso_changed_memcmp(x) \
391 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
392
393 static void
394 flush_for_state_base_change(struct iris_batch *batch)
395 {
396 /* Flush before emitting STATE_BASE_ADDRESS.
397 *
398 * This isn't documented anywhere in the PRM. However, it seems to be
399 * necessary prior to changing the surface state base adress. We've
400 * seen issues in Vulkan where we get GPU hangs when using multi-level
401 * command buffers which clear depth, reset state base address, and then
402 * go render stuff.
403 *
404 * Normally, in GL, we would trust the kernel to do sufficient stalls
405 * and flushes prior to executing our batch. However, it doesn't seem
406 * as if the kernel's flushing is always sufficient and we don't want to
407 * rely on it.
408 *
409 * We make this an end-of-pipe sync instead of a normal flush because we
410 * do not know the current status of the GPU. On Haswell at least,
411 * having a fast-clear operation in flight at the same time as a normal
412 * rendering operation can cause hangs. Since the kernel's flushing is
413 * insufficient, we need to ensure that any rendering operations from
414 * other processes are definitely complete before we try to do our own
415 * rendering. It's a bit of a big hammer but it appears to work.
416 */
417 iris_emit_end_of_pipe_sync(batch,
418 "change STATE_BASE_ADDRESS",
419 PIPE_CONTROL_RENDER_TARGET_FLUSH |
420 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
421 PIPE_CONTROL_DATA_CACHE_FLUSH);
422 }
423
424 static void
425 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
426 {
427 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
428 lri.RegisterOffset = reg;
429 lri.DataDWord = val;
430 }
431 }
432 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
433
434 static void
435 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
436 {
437 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
438 lrr.SourceRegisterAddress = src;
439 lrr.DestinationRegisterAddress = dst;
440 }
441 }
442
443 static void
444 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
445 {
446 #if GEN_GEN >= 8 && GEN_GEN < 10
447 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
448 *
449 * Software must clear the COLOR_CALC_STATE Valid field in
450 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
451 * with Pipeline Select set to GPGPU.
452 *
453 * The internal hardware docs recommend the same workaround for Gen9
454 * hardware too.
455 */
456 if (pipeline == GPGPU)
457 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
458 #endif
459
460
461 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
462 * PIPELINE_SELECT [DevBWR+]":
463 *
464 * "Project: DEVSNB+
465 *
466 * Software must ensure all the write caches are flushed through a
467 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
468 * command to invalidate read only caches prior to programming
469 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
470 */
471 iris_emit_pipe_control_flush(batch,
472 "workaround: PIPELINE_SELECT flushes (1/2)",
473 PIPE_CONTROL_RENDER_TARGET_FLUSH |
474 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
475 PIPE_CONTROL_DATA_CACHE_FLUSH |
476 PIPE_CONTROL_CS_STALL);
477
478 iris_emit_pipe_control_flush(batch,
479 "workaround: PIPELINE_SELECT flushes (2/2)",
480 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
481 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
482 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
483 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
484
485 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
486 #if GEN_GEN >= 9
487 sel.MaskBits = 3;
488 #endif
489 sel.PipelineSelection = pipeline;
490 }
491 }
492
493 UNUSED static void
494 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
495 {
496 #if GEN_GEN == 9
497 /* Project: DevGLK
498 *
499 * "This chicken bit works around a hardware issue with barrier
500 * logic encountered when switching between GPGPU and 3D pipelines.
501 * To workaround the issue, this mode bit should be set after a
502 * pipeline is selected."
503 */
504 uint32_t reg_val;
505 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
506 reg.GLKBarrierMode = value;
507 reg.GLKBarrierModeMask = 1;
508 }
509 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
510 #endif
511 }
512
513 static void
514 init_state_base_address(struct iris_batch *batch)
515 {
516 flush_for_state_base_change(batch);
517
518 /* We program most base addresses once at context initialization time.
519 * Each base address points at a 4GB memory zone, and never needs to
520 * change. See iris_bufmgr.h for a description of the memory zones.
521 *
522 * The one exception is Surface State Base Address, which needs to be
523 * updated occasionally. See iris_binder.c for the details there.
524 */
525 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
526 sba.GeneralStateMOCS = MOCS_WB;
527 sba.StatelessDataPortAccessMOCS = MOCS_WB;
528 sba.DynamicStateMOCS = MOCS_WB;
529 sba.IndirectObjectMOCS = MOCS_WB;
530 sba.InstructionMOCS = MOCS_WB;
531
532 sba.GeneralStateBaseAddressModifyEnable = true;
533 sba.DynamicStateBaseAddressModifyEnable = true;
534 sba.IndirectObjectBaseAddressModifyEnable = true;
535 sba.InstructionBaseAddressModifyEnable = true;
536 sba.GeneralStateBufferSizeModifyEnable = true;
537 sba.DynamicStateBufferSizeModifyEnable = true;
538 #if (GEN_GEN >= 9)
539 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
540 sba.BindlessSurfaceStateMOCS = MOCS_WB;
541 #endif
542 sba.IndirectObjectBufferSizeModifyEnable = true;
543 sba.InstructionBuffersizeModifyEnable = true;
544
545 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
546 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
547
548 sba.GeneralStateBufferSize = 0xfffff;
549 sba.IndirectObjectBufferSize = 0xfffff;
550 sba.InstructionBufferSize = 0xfffff;
551 sba.DynamicStateBufferSize = 0xfffff;
552 }
553 }
554
555 static void
556 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
557 bool has_slm, bool wants_dc_cache)
558 {
559 uint32_t reg_val;
560 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
561 reg.SLMEnable = has_slm;
562 #if GEN_GEN == 11
563 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
564 * in L3CNTLREG register. The default setting of the bit is not the
565 * desirable behavior.
566 */
567 reg.ErrorDetectionBehaviorControl = true;
568 reg.UseFullWays = true;
569 #endif
570 reg.URBAllocation = cfg->n[GEN_L3P_URB];
571 reg.ROAllocation = cfg->n[GEN_L3P_RO];
572 reg.DCAllocation = cfg->n[GEN_L3P_DC];
573 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
574 }
575 iris_emit_lri(batch, L3CNTLREG, reg_val);
576 }
577
578 static void
579 iris_emit_default_l3_config(struct iris_batch *batch,
580 const struct gen_device_info *devinfo,
581 bool compute)
582 {
583 bool wants_dc_cache = true;
584 bool has_slm = compute;
585 const struct gen_l3_weights w =
586 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
587 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
588 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
589 }
590
591 #if GEN_GEN == 9 || GEN_GEN == 10
592 static void
593 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
594 {
595 uint32_t reg_val;
596
597 /* A fixed function pipe flush is required before modifying this field */
598 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
599 : "disable preemption",
600 PIPE_CONTROL_RENDER_TARGET_FLUSH);
601
602 /* enable object level preemption */
603 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
604 reg.ReplayMode = enable;
605 reg.ReplayModeMask = true;
606 }
607 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
608 }
609 #endif
610
611 #if GEN_GEN == 11
612 static void
613 iris_upload_slice_hashing_state(struct iris_batch *batch)
614 {
615 const struct gen_device_info *devinfo = &batch->screen->devinfo;
616 int subslices_delta =
617 devinfo->ppipe_subslices[0] - devinfo->ppipe_subslices[1];
618 if (subslices_delta == 0)
619 return;
620
621 struct iris_context *ice = NULL;
622 ice = container_of(batch, ice, batches[IRIS_BATCH_RENDER]);
623 assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
624
625 unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
626 uint32_t hash_address;
627 struct pipe_resource *tmp = NULL;
628 uint32_t *map =
629 stream_state(batch, ice->state.dynamic_uploader, &tmp,
630 size, 64, &hash_address);
631 pipe_resource_reference(&tmp, NULL);
632
633 struct GENX(SLICE_HASH_TABLE) table0 = {
634 .Entry = {
635 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
636 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
637 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
638 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
639 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
640 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
641 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
642 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
643 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
644 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
645 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
646 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
647 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
648 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
649 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
650 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 }
651 }
652 };
653
654 struct GENX(SLICE_HASH_TABLE) table1 = {
655 .Entry = {
656 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
657 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
658 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
659 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
660 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
661 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
662 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
663 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
664 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
665 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
666 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
667 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
668 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
669 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
670 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
671 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 }
672 }
673 };
674
675 const struct GENX(SLICE_HASH_TABLE) *table =
676 subslices_delta < 0 ? &table0 : &table1;
677 GENX(SLICE_HASH_TABLE_pack)(NULL, map, table);
678
679 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
680 ptr.SliceHashStatePointerValid = true;
681 ptr.SliceHashTableStatePointer = hash_address;
682 }
683
684 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
685 mode.SliceHashingTableEnable = true;
686 }
687 }
688 #endif
689
690 /**
691 * Upload the initial GPU state for a render context.
692 *
693 * This sets some invariant state that needs to be programmed a particular
694 * way, but we never actually change.
695 */
696 static void
697 iris_init_render_context(struct iris_screen *screen,
698 struct iris_batch *batch,
699 struct iris_vtable *vtbl,
700 struct pipe_debug_callback *dbg)
701 {
702 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
703 uint32_t reg_val;
704
705 emit_pipeline_select(batch, _3D);
706
707 iris_emit_default_l3_config(batch, devinfo, false);
708
709 init_state_base_address(batch);
710
711 #if GEN_GEN >= 9
712 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
713 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
714 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
715 }
716 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
717 #else
718 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
719 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
720 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
721 }
722 iris_emit_lri(batch, INSTPM, reg_val);
723 #endif
724
725 #if GEN_GEN == 9
726 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
727 reg.FloatBlendOptimizationEnable = true;
728 reg.FloatBlendOptimizationEnableMask = true;
729 reg.PartialResolveDisableInVC = true;
730 reg.PartialResolveDisableInVCMask = true;
731 }
732 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
733
734 if (devinfo->is_geminilake)
735 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
736 #endif
737
738 #if GEN_GEN == 11
739 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
740 reg.HeaderlessMessageforPreemptableContexts = 1;
741 reg.HeaderlessMessageforPreemptableContextsMask = 1;
742 }
743 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
744
745 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
746 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
747 reg.EnabledTexelOffsetPrecisionFix = 1;
748 reg.EnabledTexelOffsetPrecisionFixMask = 1;
749 }
750 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
751
752 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
753 reg.StateCacheRedirectToCSSectionEnable = true;
754 reg.StateCacheRedirectToCSSectionEnableMask = true;
755 }
756 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
757
758 /* Hardware specification recommends disabling repacking for the
759 * compatibility with decompression mechanism in display controller.
760 */
761 if (devinfo->disable_ccs_repack) {
762 iris_pack_state(GENX(CACHE_MODE_0), &reg_val, reg) {
763 reg.DisableRepackingforCompression = true;
764 reg.DisableRepackingforCompressionMask = true;
765 }
766 iris_emit_lri(batch, CACHE_MODE_0, reg_val);
767 }
768
769 iris_upload_slice_hashing_state(batch);
770 #endif
771
772 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
773 * changing it dynamically. We set it to the maximum size here, and
774 * instead include the render target dimensions in the viewport, so
775 * viewport extents clipping takes care of pruning stray geometry.
776 */
777 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
778 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
779 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
780 }
781
782 /* Set the initial MSAA sample positions. */
783 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
784 GEN_SAMPLE_POS_1X(pat._1xSample);
785 GEN_SAMPLE_POS_2X(pat._2xSample);
786 GEN_SAMPLE_POS_4X(pat._4xSample);
787 GEN_SAMPLE_POS_8X(pat._8xSample);
788 #if GEN_GEN >= 9
789 GEN_SAMPLE_POS_16X(pat._16xSample);
790 #endif
791 }
792
793 /* Use the legacy AA line coverage computation. */
794 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
795
796 /* Disable chromakeying (it's for media) */
797 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
798
799 /* We want regular rendering, not special HiZ operations. */
800 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
801
802 /* No polygon stippling offsets are necessary. */
803 /* TODO: may need to set an offset for origin-UL framebuffers */
804 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
805
806 /* Set a static partitioning of the push constant area. */
807 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
808 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
809 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
810 alloc._3DCommandSubOpcode = 18 + i;
811 alloc.ConstantBufferOffset = 6 * i;
812 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
813 }
814 }
815
816 #if GEN_GEN == 10
817 /* Gen11+ is enabled for us by the kernel. */
818 iris_enable_obj_preemption(batch, true);
819 #endif
820 }
821
822 static void
823 iris_init_compute_context(struct iris_screen *screen,
824 struct iris_batch *batch,
825 struct iris_vtable *vtbl,
826 struct pipe_debug_callback *dbg)
827 {
828 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
829
830 emit_pipeline_select(batch, GPGPU);
831
832 iris_emit_default_l3_config(batch, devinfo, true);
833
834 init_state_base_address(batch);
835
836 #if GEN_GEN == 9
837 if (devinfo->is_geminilake)
838 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
839 #endif
840 }
841
842 struct iris_vertex_buffer_state {
843 /** The VERTEX_BUFFER_STATE hardware structure. */
844 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
845
846 /** The resource to source vertex data from. */
847 struct pipe_resource *resource;
848 };
849
850 struct iris_depth_buffer_state {
851 /* Depth/HiZ/Stencil related hardware packets. */
852 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
853 GENX(3DSTATE_STENCIL_BUFFER_length) +
854 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
855 GENX(3DSTATE_CLEAR_PARAMS_length)];
856 };
857
858 /**
859 * Generation-specific context state (ice->state.genx->...).
860 *
861 * Most state can go in iris_context directly, but these encode hardware
862 * packets which vary by generation.
863 */
864 struct iris_genx_state {
865 struct iris_vertex_buffer_state vertex_buffers[33];
866 uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
867
868 struct iris_depth_buffer_state depth_buffer;
869
870 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
871
872 #if GEN_GEN == 9
873 /* Is object level preemption enabled? */
874 bool object_preemption;
875 #endif
876
877 struct {
878 #if GEN_GEN == 8
879 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
880 #endif
881 } shaders[MESA_SHADER_STAGES];
882 };
883
884 /**
885 * The pipe->set_blend_color() driver hook.
886 *
887 * This corresponds to our COLOR_CALC_STATE.
888 */
889 static void
890 iris_set_blend_color(struct pipe_context *ctx,
891 const struct pipe_blend_color *state)
892 {
893 struct iris_context *ice = (struct iris_context *) ctx;
894
895 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
896 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
897 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
898 }
899
900 /**
901 * Gallium CSO for blend state (see pipe_blend_state).
902 */
903 struct iris_blend_state {
904 /** Partial 3DSTATE_PS_BLEND */
905 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
906
907 /** Partial BLEND_STATE */
908 uint32_t blend_state[GENX(BLEND_STATE_length) +
909 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
910
911 bool alpha_to_coverage; /* for shader key */
912
913 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
914 uint8_t blend_enables;
915
916 /** Bitfield of whether color writes are enabled for RT[i] */
917 uint8_t color_write_enables;
918
919 /** Does RT[0] use dual color blending? */
920 bool dual_color_blending;
921 };
922
923 static enum pipe_blendfactor
924 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
925 {
926 if (alpha_to_one) {
927 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
928 return PIPE_BLENDFACTOR_ONE;
929
930 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
931 return PIPE_BLENDFACTOR_ZERO;
932 }
933
934 return f;
935 }
936
937 /**
938 * The pipe->create_blend_state() driver hook.
939 *
940 * Translates a pipe_blend_state into iris_blend_state.
941 */
942 static void *
943 iris_create_blend_state(struct pipe_context *ctx,
944 const struct pipe_blend_state *state)
945 {
946 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
947 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
948
949 cso->blend_enables = 0;
950 cso->color_write_enables = 0;
951 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
952
953 cso->alpha_to_coverage = state->alpha_to_coverage;
954
955 bool indep_alpha_blend = false;
956
957 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
958 const struct pipe_rt_blend_state *rt =
959 &state->rt[state->independent_blend_enable ? i : 0];
960
961 enum pipe_blendfactor src_rgb =
962 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
963 enum pipe_blendfactor src_alpha =
964 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
965 enum pipe_blendfactor dst_rgb =
966 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
967 enum pipe_blendfactor dst_alpha =
968 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
969
970 if (rt->rgb_func != rt->alpha_func ||
971 src_rgb != src_alpha || dst_rgb != dst_alpha)
972 indep_alpha_blend = true;
973
974 if (rt->blend_enable)
975 cso->blend_enables |= 1u << i;
976
977 if (rt->colormask)
978 cso->color_write_enables |= 1u << i;
979
980 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
981 be.LogicOpEnable = state->logicop_enable;
982 be.LogicOpFunction = state->logicop_func;
983
984 be.PreBlendSourceOnlyClampEnable = false;
985 be.ColorClampRange = COLORCLAMP_RTFORMAT;
986 be.PreBlendColorClampEnable = true;
987 be.PostBlendColorClampEnable = true;
988
989 be.ColorBufferBlendEnable = rt->blend_enable;
990
991 be.ColorBlendFunction = rt->rgb_func;
992 be.AlphaBlendFunction = rt->alpha_func;
993 be.SourceBlendFactor = src_rgb;
994 be.SourceAlphaBlendFactor = src_alpha;
995 be.DestinationBlendFactor = dst_rgb;
996 be.DestinationAlphaBlendFactor = dst_alpha;
997
998 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
999 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
1000 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
1001 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
1002 }
1003 blend_entry += GENX(BLEND_STATE_ENTRY_length);
1004 }
1005
1006 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
1007 /* pb.HasWriteableRT is filled in at draw time.
1008 * pb.AlphaTestEnable is filled in at draw time.
1009 *
1010 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
1011 * setting it when dual color blending without an appropriate shader.
1012 */
1013
1014 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
1015 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
1016
1017 pb.SourceBlendFactor =
1018 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1019 pb.SourceAlphaBlendFactor =
1020 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1021 pb.DestinationBlendFactor =
1022 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
1023 pb.DestinationAlphaBlendFactor =
1024 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
1025 }
1026
1027 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1028 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1029 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1030 bs.AlphaToOneEnable = state->alpha_to_one;
1031 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
1032 bs.ColorDitherEnable = state->dither;
1033 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1034 }
1035
1036 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1037
1038 return cso;
1039 }
1040
1041 /**
1042 * The pipe->bind_blend_state() driver hook.
1043 *
1044 * Bind a blending CSO and flag related dirty bits.
1045 */
1046 static void
1047 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1048 {
1049 struct iris_context *ice = (struct iris_context *) ctx;
1050 struct iris_blend_state *cso = state;
1051
1052 ice->state.cso_blend = cso;
1053 ice->state.blend_enables = cso ? cso->blend_enables : 0;
1054
1055 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1056 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1057 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1058 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
1059 }
1060
1061 /**
1062 * Return true if the FS writes to any color outputs which are not disabled
1063 * via color masking.
1064 */
1065 static bool
1066 has_writeable_rt(const struct iris_blend_state *cso_blend,
1067 const struct shader_info *fs_info)
1068 {
1069 if (!fs_info)
1070 return false;
1071
1072 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1073
1074 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1075 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
1076
1077 return cso_blend->color_write_enables & rt_outputs;
1078 }
1079
1080 /**
1081 * Gallium CSO for depth, stencil, and alpha testing state.
1082 */
1083 struct iris_depth_stencil_alpha_state {
1084 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1085 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1086
1087 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1088 struct pipe_alpha_state alpha;
1089
1090 /** Outbound to resolve and cache set tracking. */
1091 bool depth_writes_enabled;
1092 bool stencil_writes_enabled;
1093 };
1094
1095 /**
1096 * The pipe->create_depth_stencil_alpha_state() driver hook.
1097 *
1098 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1099 * testing state since we need pieces of it in a variety of places.
1100 */
1101 static void *
1102 iris_create_zsa_state(struct pipe_context *ctx,
1103 const struct pipe_depth_stencil_alpha_state *state)
1104 {
1105 struct iris_depth_stencil_alpha_state *cso =
1106 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1107
1108 bool two_sided_stencil = state->stencil[1].enabled;
1109
1110 cso->alpha = state->alpha;
1111 cso->depth_writes_enabled = state->depth.writemask;
1112 cso->stencil_writes_enabled =
1113 state->stencil[0].writemask != 0 ||
1114 (two_sided_stencil && state->stencil[1].writemask != 0);
1115
1116 /* The state tracker needs to optimize away EQUAL writes for us. */
1117 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1118
1119 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1120 wmds.StencilFailOp = state->stencil[0].fail_op;
1121 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1122 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1123 wmds.StencilTestFunction =
1124 translate_compare_func(state->stencil[0].func);
1125 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1126 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1127 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1128 wmds.BackfaceStencilTestFunction =
1129 translate_compare_func(state->stencil[1].func);
1130 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1131 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1132 wmds.StencilTestEnable = state->stencil[0].enabled;
1133 wmds.StencilBufferWriteEnable =
1134 state->stencil[0].writemask != 0 ||
1135 (two_sided_stencil && state->stencil[1].writemask != 0);
1136 wmds.DepthTestEnable = state->depth.enabled;
1137 wmds.DepthBufferWriteEnable = state->depth.writemask;
1138 wmds.StencilTestMask = state->stencil[0].valuemask;
1139 wmds.StencilWriteMask = state->stencil[0].writemask;
1140 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1141 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1142 /* wmds.[Backface]StencilReferenceValue are merged later */
1143 }
1144
1145 return cso;
1146 }
1147
1148 /**
1149 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1150 *
1151 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1152 */
1153 static void
1154 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1155 {
1156 struct iris_context *ice = (struct iris_context *) ctx;
1157 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1158 struct iris_depth_stencil_alpha_state *new_cso = state;
1159
1160 if (new_cso) {
1161 if (cso_changed(alpha.ref_value))
1162 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1163
1164 if (cso_changed(alpha.enabled))
1165 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1166
1167 if (cso_changed(alpha.func))
1168 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1169
1170 if (cso_changed(depth_writes_enabled))
1171 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1172
1173 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1174 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1175 }
1176
1177 ice->state.cso_zsa = new_cso;
1178 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1179 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1180 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1181 }
1182
1183 /**
1184 * Gallium CSO for rasterizer state.
1185 */
1186 struct iris_rasterizer_state {
1187 uint32_t sf[GENX(3DSTATE_SF_length)];
1188 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1189 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1190 uint32_t wm[GENX(3DSTATE_WM_length)];
1191 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1192
1193 uint8_t num_clip_plane_consts;
1194 bool clip_halfz; /* for CC_VIEWPORT */
1195 bool depth_clip_near; /* for CC_VIEWPORT */
1196 bool depth_clip_far; /* for CC_VIEWPORT */
1197 bool flatshade; /* for shader state */
1198 bool flatshade_first; /* for stream output */
1199 bool clamp_fragment_color; /* for shader state */
1200 bool light_twoside; /* for shader state */
1201 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1202 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1203 bool line_stipple_enable;
1204 bool poly_stipple_enable;
1205 bool multisample;
1206 bool force_persample_interp;
1207 bool conservative_rasterization;
1208 bool fill_mode_point_or_line;
1209 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1210 uint16_t sprite_coord_enable;
1211 };
1212
1213 static float
1214 get_line_width(const struct pipe_rasterizer_state *state)
1215 {
1216 float line_width = state->line_width;
1217
1218 /* From the OpenGL 4.4 spec:
1219 *
1220 * "The actual width of non-antialiased lines is determined by rounding
1221 * the supplied width to the nearest integer, then clamping it to the
1222 * implementation-dependent maximum non-antialiased line width."
1223 */
1224 if (!state->multisample && !state->line_smooth)
1225 line_width = roundf(state->line_width);
1226
1227 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1228 /* For 1 pixel line thickness or less, the general anti-aliasing
1229 * algorithm gives up, and a garbage line is generated. Setting a
1230 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1231 * (one-pixel-wide), non-antialiased lines.
1232 *
1233 * Lines rendered with zero Line Width are rasterized using the
1234 * "Grid Intersection Quantization" rules as specified by the
1235 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1236 */
1237 line_width = 0.0f;
1238 }
1239
1240 return line_width;
1241 }
1242
1243 /**
1244 * The pipe->create_rasterizer_state() driver hook.
1245 */
1246 static void *
1247 iris_create_rasterizer_state(struct pipe_context *ctx,
1248 const struct pipe_rasterizer_state *state)
1249 {
1250 struct iris_rasterizer_state *cso =
1251 malloc(sizeof(struct iris_rasterizer_state));
1252
1253 cso->multisample = state->multisample;
1254 cso->force_persample_interp = state->force_persample_interp;
1255 cso->clip_halfz = state->clip_halfz;
1256 cso->depth_clip_near = state->depth_clip_near;
1257 cso->depth_clip_far = state->depth_clip_far;
1258 cso->flatshade = state->flatshade;
1259 cso->flatshade_first = state->flatshade_first;
1260 cso->clamp_fragment_color = state->clamp_fragment_color;
1261 cso->light_twoside = state->light_twoside;
1262 cso->rasterizer_discard = state->rasterizer_discard;
1263 cso->half_pixel_center = state->half_pixel_center;
1264 cso->sprite_coord_mode = state->sprite_coord_mode;
1265 cso->sprite_coord_enable = state->sprite_coord_enable;
1266 cso->line_stipple_enable = state->line_stipple_enable;
1267 cso->poly_stipple_enable = state->poly_stipple_enable;
1268 cso->conservative_rasterization =
1269 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1270
1271 cso->fill_mode_point_or_line =
1272 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1273 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1274 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1275 state->fill_back == PIPE_POLYGON_MODE_POINT;
1276
1277 if (state->clip_plane_enable != 0)
1278 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1279 else
1280 cso->num_clip_plane_consts = 0;
1281
1282 float line_width = get_line_width(state);
1283
1284 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1285 sf.StatisticsEnable = true;
1286 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1287 sf.LineEndCapAntialiasingRegionWidth =
1288 state->line_smooth ? _10pixels : _05pixels;
1289 sf.LastPixelEnable = state->line_last_pixel;
1290 sf.LineWidth = line_width;
1291 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1292 !state->point_quad_rasterization;
1293 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1294 sf.PointWidth = state->point_size;
1295
1296 if (state->flatshade_first) {
1297 sf.TriangleFanProvokingVertexSelect = 1;
1298 } else {
1299 sf.TriangleStripListProvokingVertexSelect = 2;
1300 sf.TriangleFanProvokingVertexSelect = 2;
1301 sf.LineStripListProvokingVertexSelect = 1;
1302 }
1303 }
1304
1305 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1306 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1307 rr.CullMode = translate_cull_mode(state->cull_face);
1308 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1309 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1310 rr.DXMultisampleRasterizationEnable = state->multisample;
1311 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1312 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1313 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1314 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1315 rr.GlobalDepthOffsetScale = state->offset_scale;
1316 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1317 rr.SmoothPointEnable = state->point_smooth;
1318 rr.AntialiasingEnable = state->line_smooth;
1319 rr.ScissorRectangleEnable = state->scissor;
1320 #if GEN_GEN >= 9
1321 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1322 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1323 rr.ConservativeRasterizationEnable =
1324 cso->conservative_rasterization;
1325 #else
1326 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1327 #endif
1328 }
1329
1330 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1331 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1332 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1333 */
1334 cl.EarlyCullEnable = true;
1335 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1336 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1337 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1338 cl.GuardbandClipTestEnable = true;
1339 cl.ClipEnable = true;
1340 cl.MinimumPointWidth = 0.125;
1341 cl.MaximumPointWidth = 255.875;
1342
1343 if (state->flatshade_first) {
1344 cl.TriangleFanProvokingVertexSelect = 1;
1345 } else {
1346 cl.TriangleStripListProvokingVertexSelect = 2;
1347 cl.TriangleFanProvokingVertexSelect = 2;
1348 cl.LineStripListProvokingVertexSelect = 1;
1349 }
1350 }
1351
1352 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1353 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1354 * filled in at draw time from the FS program.
1355 */
1356 wm.LineAntialiasingRegionWidth = _10pixels;
1357 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1358 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1359 wm.LineStippleEnable = state->line_stipple_enable;
1360 wm.PolygonStippleEnable = state->poly_stipple_enable;
1361 }
1362
1363 /* Remap from 0..255 back to 1..256 */
1364 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1365
1366 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1367 line.LineStipplePattern = state->line_stipple_pattern;
1368 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1369 line.LineStippleRepeatCount = line_stipple_factor;
1370 }
1371
1372 return cso;
1373 }
1374
1375 /**
1376 * The pipe->bind_rasterizer_state() driver hook.
1377 *
1378 * Bind a rasterizer CSO and flag related dirty bits.
1379 */
1380 static void
1381 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1382 {
1383 struct iris_context *ice = (struct iris_context *) ctx;
1384 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1385 struct iris_rasterizer_state *new_cso = state;
1386
1387 if (new_cso) {
1388 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1389 if (cso_changed_memcmp(line_stipple))
1390 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1391
1392 if (cso_changed(half_pixel_center))
1393 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1394
1395 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1396 ice->state.dirty |= IRIS_DIRTY_WM;
1397
1398 if (cso_changed(rasterizer_discard))
1399 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1400
1401 if (cso_changed(flatshade_first))
1402 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1403
1404 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1405 cso_changed(clip_halfz))
1406 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1407
1408 if (cso_changed(sprite_coord_enable) ||
1409 cso_changed(sprite_coord_mode) ||
1410 cso_changed(light_twoside))
1411 ice->state.dirty |= IRIS_DIRTY_SBE;
1412
1413 if (cso_changed(conservative_rasterization))
1414 ice->state.dirty |= IRIS_DIRTY_FS;
1415 }
1416
1417 ice->state.cso_rast = new_cso;
1418 ice->state.dirty |= IRIS_DIRTY_RASTER;
1419 ice->state.dirty |= IRIS_DIRTY_CLIP;
1420 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1421 }
1422
1423 /**
1424 * Return true if the given wrap mode requires the border color to exist.
1425 *
1426 * (We can skip uploading it if the sampler isn't going to use it.)
1427 */
1428 static bool
1429 wrap_mode_needs_border_color(unsigned wrap_mode)
1430 {
1431 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1432 }
1433
1434 /**
1435 * Gallium CSO for sampler state.
1436 */
1437 struct iris_sampler_state {
1438 union pipe_color_union border_color;
1439 bool needs_border_color;
1440
1441 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1442 };
1443
1444 /**
1445 * The pipe->create_sampler_state() driver hook.
1446 *
1447 * We fill out SAMPLER_STATE (except for the border color pointer), and
1448 * store that on the CPU. It doesn't make sense to upload it to a GPU
1449 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1450 * all bound sampler states to be in contiguous memor.
1451 */
1452 static void *
1453 iris_create_sampler_state(struct pipe_context *ctx,
1454 const struct pipe_sampler_state *state)
1455 {
1456 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1457
1458 if (!cso)
1459 return NULL;
1460
1461 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1462 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1463
1464 unsigned wrap_s = translate_wrap(state->wrap_s);
1465 unsigned wrap_t = translate_wrap(state->wrap_t);
1466 unsigned wrap_r = translate_wrap(state->wrap_r);
1467
1468 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1469
1470 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1471 wrap_mode_needs_border_color(wrap_t) ||
1472 wrap_mode_needs_border_color(wrap_r);
1473
1474 float min_lod = state->min_lod;
1475 unsigned mag_img_filter = state->mag_img_filter;
1476
1477 // XXX: explain this code ported from ilo...I don't get it at all...
1478 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1479 state->min_lod > 0.0f) {
1480 min_lod = 0.0f;
1481 mag_img_filter = state->min_img_filter;
1482 }
1483
1484 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1485 samp.TCXAddressControlMode = wrap_s;
1486 samp.TCYAddressControlMode = wrap_t;
1487 samp.TCZAddressControlMode = wrap_r;
1488 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1489 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1490 samp.MinModeFilter = state->min_img_filter;
1491 samp.MagModeFilter = mag_img_filter;
1492 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1493 samp.MaximumAnisotropy = RATIO21;
1494
1495 if (state->max_anisotropy >= 2) {
1496 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1497 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1498 samp.AnisotropicAlgorithm = EWAApproximation;
1499 }
1500
1501 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1502 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1503
1504 samp.MaximumAnisotropy =
1505 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1506 }
1507
1508 /* Set address rounding bits if not using nearest filtering. */
1509 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1510 samp.UAddressMinFilterRoundingEnable = true;
1511 samp.VAddressMinFilterRoundingEnable = true;
1512 samp.RAddressMinFilterRoundingEnable = true;
1513 }
1514
1515 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1516 samp.UAddressMagFilterRoundingEnable = true;
1517 samp.VAddressMagFilterRoundingEnable = true;
1518 samp.RAddressMagFilterRoundingEnable = true;
1519 }
1520
1521 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1522 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1523
1524 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1525
1526 samp.LODPreClampMode = CLAMP_MODE_OGL;
1527 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1528 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1529 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1530
1531 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1532 }
1533
1534 return cso;
1535 }
1536
1537 /**
1538 * The pipe->bind_sampler_states() driver hook.
1539 */
1540 static void
1541 iris_bind_sampler_states(struct pipe_context *ctx,
1542 enum pipe_shader_type p_stage,
1543 unsigned start, unsigned count,
1544 void **states)
1545 {
1546 struct iris_context *ice = (struct iris_context *) ctx;
1547 gl_shader_stage stage = stage_from_pipe(p_stage);
1548 struct iris_shader_state *shs = &ice->state.shaders[stage];
1549
1550 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1551
1552 for (int i = 0; i < count; i++) {
1553 shs->samplers[start + i] = states[i];
1554 }
1555
1556 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1557 }
1558
1559 /**
1560 * Upload the sampler states into a contiguous area of GPU memory, for
1561 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1562 *
1563 * Also fill out the border color state pointers.
1564 */
1565 static void
1566 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1567 {
1568 struct iris_shader_state *shs = &ice->state.shaders[stage];
1569 const struct shader_info *info = iris_get_shader_info(ice, stage);
1570
1571 /* We assume the state tracker will call pipe->bind_sampler_states()
1572 * if the program's number of textures changes.
1573 */
1574 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1575
1576 if (!count)
1577 return;
1578
1579 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1580 * in the dynamic state memory zone, so we can point to it via the
1581 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1582 */
1583 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
1584 uint32_t *map =
1585 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
1586 if (unlikely(!map))
1587 return;
1588
1589 struct pipe_resource *res = shs->sampler_table.res;
1590 shs->sampler_table.offset +=
1591 iris_bo_offset_from_base_address(iris_resource_bo(res));
1592
1593 iris_record_state_size(ice->state.sizes, shs->sampler_table.offset, size);
1594
1595 /* Make sure all land in the same BO */
1596 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1597
1598 ice->state.need_border_colors &= ~(1 << stage);
1599
1600 for (int i = 0; i < count; i++) {
1601 struct iris_sampler_state *state = shs->samplers[i];
1602 struct iris_sampler_view *tex = shs->textures[i];
1603
1604 if (!state) {
1605 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1606 } else if (!state->needs_border_color) {
1607 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1608 } else {
1609 ice->state.need_border_colors |= 1 << stage;
1610
1611 /* We may need to swizzle the border color for format faking.
1612 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
1613 * This means we need to move the border color's A channel into
1614 * the R or G channels so that those read swizzles will move it
1615 * back into A.
1616 */
1617 union pipe_color_union *color = &state->border_color;
1618 union pipe_color_union tmp;
1619 if (tex) {
1620 enum pipe_format internal_format = tex->res->internal_format;
1621
1622 if (util_format_is_alpha(internal_format)) {
1623 unsigned char swz[4] = {
1624 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
1625 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1626 };
1627 util_format_apply_color_swizzle(&tmp, color, swz, true);
1628 color = &tmp;
1629 } else if (util_format_is_luminance_alpha(internal_format) &&
1630 internal_format != PIPE_FORMAT_L8A8_SRGB) {
1631 unsigned char swz[4] = {
1632 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
1633 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1634 };
1635 util_format_apply_color_swizzle(&tmp, color, swz, true);
1636 color = &tmp;
1637 }
1638 }
1639
1640 /* Stream out the border color and merge the pointer. */
1641 uint32_t offset = iris_upload_border_color(ice, color);
1642
1643 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1644 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1645 dyns.BorderColorPointer = offset;
1646 }
1647
1648 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1649 map[j] = state->sampler_state[j] | dynamic[j];
1650 }
1651
1652 map += GENX(SAMPLER_STATE_length);
1653 }
1654 }
1655
1656 static enum isl_channel_select
1657 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1658 {
1659 switch (swz) {
1660 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1661 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1662 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1663 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1664 case PIPE_SWIZZLE_1: return SCS_ONE;
1665 case PIPE_SWIZZLE_0: return SCS_ZERO;
1666 default: unreachable("invalid swizzle");
1667 }
1668 }
1669
1670 static void
1671 fill_buffer_surface_state(struct isl_device *isl_dev,
1672 struct iris_resource *res,
1673 void *map,
1674 enum isl_format format,
1675 struct isl_swizzle swizzle,
1676 unsigned offset,
1677 unsigned size)
1678 {
1679 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1680 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1681
1682 /* The ARB_texture_buffer_specification says:
1683 *
1684 * "The number of texels in the buffer texture's texel array is given by
1685 *
1686 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1687 *
1688 * where <buffer_size> is the size of the buffer object, in basic
1689 * machine units and <components> and <base_type> are the element count
1690 * and base data type for elements, as specified in Table X.1. The
1691 * number of texels in the texel array is then clamped to the
1692 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1693 *
1694 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1695 * so that when ISL divides by stride to obtain the number of texels, that
1696 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1697 */
1698 unsigned final_size =
1699 MIN3(size, res->bo->size - res->offset - offset,
1700 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1701
1702 isl_buffer_fill_state(isl_dev, map,
1703 .address = res->bo->gtt_offset + res->offset + offset,
1704 .size_B = final_size,
1705 .format = format,
1706 .swizzle = swizzle,
1707 .stride_B = cpp,
1708 .mocs = mocs(res->bo));
1709 }
1710
1711 #define SURFACE_STATE_ALIGNMENT 64
1712
1713 /**
1714 * Allocate several contiguous SURFACE_STATE structures, one for each
1715 * supported auxiliary surface mode.
1716 */
1717 static void *
1718 alloc_surface_states(struct u_upload_mgr *mgr,
1719 struct iris_state_ref *ref,
1720 unsigned aux_usages)
1721 {
1722 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1723
1724 /* If this changes, update this to explicitly align pointers */
1725 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1726
1727 assert(aux_usages != 0);
1728
1729 void *map =
1730 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1731 SURFACE_STATE_ALIGNMENT);
1732
1733 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1734
1735 return map;
1736 }
1737
1738 static void
1739 fill_surface_state(struct isl_device *isl_dev,
1740 void *map,
1741 struct iris_resource *res,
1742 struct isl_view *view,
1743 unsigned aux_usage)
1744 {
1745 struct isl_surf_fill_state_info f = {
1746 .surf = &res->surf,
1747 .view = view,
1748 .mocs = mocs(res->bo),
1749 .address = res->bo->gtt_offset + res->offset,
1750 };
1751
1752 if (aux_usage != ISL_AUX_USAGE_NONE) {
1753 f.aux_surf = &res->aux.surf;
1754 f.aux_usage = aux_usage;
1755 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1756
1757 struct iris_bo *clear_bo = NULL;
1758 uint64_t clear_offset = 0;
1759 f.clear_color =
1760 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
1761 if (clear_bo) {
1762 f.clear_address = clear_bo->gtt_offset + clear_offset;
1763 f.use_clear_address = isl_dev->info->gen > 9;
1764 }
1765 }
1766
1767 isl_surf_fill_state_s(isl_dev, map, &f);
1768 }
1769
1770 /**
1771 * The pipe->create_sampler_view() driver hook.
1772 */
1773 static struct pipe_sampler_view *
1774 iris_create_sampler_view(struct pipe_context *ctx,
1775 struct pipe_resource *tex,
1776 const struct pipe_sampler_view *tmpl)
1777 {
1778 struct iris_context *ice = (struct iris_context *) ctx;
1779 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1780 const struct gen_device_info *devinfo = &screen->devinfo;
1781 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1782
1783 if (!isv)
1784 return NULL;
1785
1786 /* initialize base object */
1787 isv->base = *tmpl;
1788 isv->base.context = ctx;
1789 isv->base.texture = NULL;
1790 pipe_reference_init(&isv->base.reference, 1);
1791 pipe_resource_reference(&isv->base.texture, tex);
1792
1793 if (util_format_is_depth_or_stencil(tmpl->format)) {
1794 struct iris_resource *zres, *sres;
1795 const struct util_format_description *desc =
1796 util_format_description(tmpl->format);
1797
1798 iris_get_depth_stencil_resources(tex, &zres, &sres);
1799
1800 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1801 }
1802
1803 isv->res = (struct iris_resource *) tex;
1804
1805 void *map = alloc_surface_states(ice->state.surface_uploader,
1806 &isv->surface_state,
1807 isv->res->aux.sampler_usages);
1808 if (!unlikely(map))
1809 return NULL;
1810
1811 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1812
1813 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1814 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1815 usage |= ISL_SURF_USAGE_CUBE_BIT;
1816
1817 const struct iris_format_info fmt =
1818 iris_format_for_usage(devinfo, tmpl->format, usage);
1819
1820 isv->clear_color = isv->res->aux.clear_color;
1821
1822 isv->view = (struct isl_view) {
1823 .format = fmt.fmt,
1824 .swizzle = (struct isl_swizzle) {
1825 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1826 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1827 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1828 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1829 },
1830 .usage = usage,
1831 };
1832
1833 /* Fill out SURFACE_STATE for this view. */
1834 if (tmpl->target != PIPE_BUFFER) {
1835 isv->view.base_level = tmpl->u.tex.first_level;
1836 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1837 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1838 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1839 isv->view.array_len =
1840 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1841
1842 unsigned aux_modes = isv->res->aux.sampler_usages;
1843 while (aux_modes) {
1844 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1845
1846 /* If we have a multisampled depth buffer, do not create a sampler
1847 * surface state with HiZ.
1848 */
1849 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view,
1850 aux_usage);
1851
1852 map += SURFACE_STATE_ALIGNMENT;
1853 }
1854 } else {
1855 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
1856 isv->view.format, isv->view.swizzle,
1857 tmpl->u.buf.offset, tmpl->u.buf.size);
1858 }
1859
1860 return &isv->base;
1861 }
1862
1863 static void
1864 iris_sampler_view_destroy(struct pipe_context *ctx,
1865 struct pipe_sampler_view *state)
1866 {
1867 struct iris_sampler_view *isv = (void *) state;
1868 pipe_resource_reference(&state->texture, NULL);
1869 pipe_resource_reference(&isv->surface_state.res, NULL);
1870 free(isv);
1871 }
1872
1873 /**
1874 * The pipe->create_surface() driver hook.
1875 *
1876 * In Gallium nomenclature, "surfaces" are a view of a resource that
1877 * can be bound as a render target or depth/stencil buffer.
1878 */
1879 static struct pipe_surface *
1880 iris_create_surface(struct pipe_context *ctx,
1881 struct pipe_resource *tex,
1882 const struct pipe_surface *tmpl)
1883 {
1884 struct iris_context *ice = (struct iris_context *) ctx;
1885 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1886 const struct gen_device_info *devinfo = &screen->devinfo;
1887
1888 isl_surf_usage_flags_t usage = 0;
1889 if (tmpl->writable)
1890 usage = ISL_SURF_USAGE_STORAGE_BIT;
1891 else if (util_format_is_depth_or_stencil(tmpl->format))
1892 usage = ISL_SURF_USAGE_DEPTH_BIT;
1893 else
1894 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1895
1896 const struct iris_format_info fmt =
1897 iris_format_for_usage(devinfo, tmpl->format, usage);
1898
1899 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1900 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1901 /* Framebuffer validation will reject this invalid case, but it
1902 * hasn't had the opportunity yet. In the meantime, we need to
1903 * avoid hitting ISL asserts about unsupported formats below.
1904 */
1905 return NULL;
1906 }
1907
1908 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1909 struct pipe_surface *psurf = &surf->base;
1910 struct iris_resource *res = (struct iris_resource *) tex;
1911
1912 if (!surf)
1913 return NULL;
1914
1915 pipe_reference_init(&psurf->reference, 1);
1916 pipe_resource_reference(&psurf->texture, tex);
1917 psurf->context = ctx;
1918 psurf->format = tmpl->format;
1919 psurf->width = tex->width0;
1920 psurf->height = tex->height0;
1921 psurf->texture = tex;
1922 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1923 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1924 psurf->u.tex.level = tmpl->u.tex.level;
1925
1926 struct isl_view *view = &surf->view;
1927 *view = (struct isl_view) {
1928 .format = fmt.fmt,
1929 .base_level = tmpl->u.tex.level,
1930 .levels = 1,
1931 .base_array_layer = tmpl->u.tex.first_layer,
1932 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1933 .swizzle = ISL_SWIZZLE_IDENTITY,
1934 .usage = usage,
1935 };
1936
1937 surf->clear_color = res->aux.clear_color;
1938
1939 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1940 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1941 ISL_SURF_USAGE_STENCIL_BIT))
1942 return psurf;
1943
1944
1945 void *map = alloc_surface_states(ice->state.surface_uploader,
1946 &surf->surface_state,
1947 res->aux.possible_usages);
1948 if (!unlikely(map))
1949 return NULL;
1950
1951 if (!isl_format_is_compressed(res->surf.format)) {
1952 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
1953 * auxiliary surface mode and return the pipe_surface.
1954 */
1955 unsigned aux_modes = res->aux.possible_usages;
1956 while (aux_modes) {
1957 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1958
1959 fill_surface_state(&screen->isl_dev, map, res, view, aux_usage);
1960
1961 map += SURFACE_STATE_ALIGNMENT;
1962 }
1963
1964 return psurf;
1965 }
1966
1967 /* The resource has a compressed format, which is not renderable, but we
1968 * have a renderable view format. We must be attempting to upload blocks
1969 * of compressed data via an uncompressed view.
1970 *
1971 * In this case, we can assume there are no auxiliary buffers, a single
1972 * miplevel, and that the resource is single-sampled. Gallium may try
1973 * and create an uncompressed view with multiple layers, however.
1974 */
1975 assert(!isl_format_is_compressed(fmt.fmt));
1976 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
1977 assert(res->surf.samples == 1);
1978 assert(view->levels == 1);
1979
1980 struct isl_surf isl_surf;
1981 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
1982
1983 if (view->base_level > 0) {
1984 /* We can't rely on the hardware's miplevel selection with such
1985 * a substantial lie about the format, so we select a single image
1986 * using the Tile X/Y Offset fields. In this case, we can't handle
1987 * multiple array slices.
1988 *
1989 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
1990 * hard-coded to align to exactly the block size of the compressed
1991 * texture. This means that, when reinterpreted as a non-compressed
1992 * texture, the tile offsets may be anything and we can't rely on
1993 * X/Y Offset.
1994 *
1995 * Return NULL to force the state tracker to take fallback paths.
1996 */
1997 if (view->array_len > 1 || GEN_GEN == 8)
1998 return NULL;
1999
2000 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
2001 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
2002 view->base_level,
2003 is_3d ? 0 : view->base_array_layer,
2004 is_3d ? view->base_array_layer : 0,
2005 &isl_surf,
2006 &offset_B, &tile_x_sa, &tile_y_sa);
2007
2008 /* We use address and tile offsets to access a single level/layer
2009 * as a subimage, so reset level/layer so it doesn't offset again.
2010 */
2011 view->base_array_layer = 0;
2012 view->base_level = 0;
2013 } else {
2014 /* Level 0 doesn't require tile offsets, and the hardware can find
2015 * array slices using QPitch even with the format override, so we
2016 * can allow layers in this case. Copy the original ISL surface.
2017 */
2018 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
2019 }
2020
2021 /* Scale down the image dimensions by the block size. */
2022 const struct isl_format_layout *fmtl =
2023 isl_format_get_layout(res->surf.format);
2024 isl_surf.format = fmt.fmt;
2025 isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
2026 isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
2027 tile_x_sa /= fmtl->bw;
2028 tile_y_sa /= fmtl->bh;
2029
2030 psurf->width = isl_surf.logical_level0_px.width;
2031 psurf->height = isl_surf.logical_level0_px.height;
2032
2033 struct isl_surf_fill_state_info f = {
2034 .surf = &isl_surf,
2035 .view = view,
2036 .mocs = mocs(res->bo),
2037 .address = res->bo->gtt_offset + offset_B,
2038 .x_offset_sa = tile_x_sa,
2039 .y_offset_sa = tile_y_sa,
2040 };
2041
2042 isl_surf_fill_state_s(&screen->isl_dev, map, &f);
2043 return psurf;
2044 }
2045
2046 #if GEN_GEN < 9
2047 static void
2048 fill_default_image_param(struct brw_image_param *param)
2049 {
2050 memset(param, 0, sizeof(*param));
2051 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
2052 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
2053 * detailed explanation of these parameters.
2054 */
2055 param->swizzling[0] = 0xff;
2056 param->swizzling[1] = 0xff;
2057 }
2058
2059 static void
2060 fill_buffer_image_param(struct brw_image_param *param,
2061 enum pipe_format pfmt,
2062 unsigned size)
2063 {
2064 const unsigned cpp = util_format_get_blocksize(pfmt);
2065
2066 fill_default_image_param(param);
2067 param->size[0] = size / cpp;
2068 param->stride[0] = cpp;
2069 }
2070 #else
2071 #define isl_surf_fill_image_param(x, ...)
2072 #define fill_default_image_param(x, ...)
2073 #define fill_buffer_image_param(x, ...)
2074 #endif
2075
2076 /**
2077 * The pipe->set_shader_images() driver hook.
2078 */
2079 static void
2080 iris_set_shader_images(struct pipe_context *ctx,
2081 enum pipe_shader_type p_stage,
2082 unsigned start_slot, unsigned count,
2083 const struct pipe_image_view *p_images)
2084 {
2085 struct iris_context *ice = (struct iris_context *) ctx;
2086 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2087 const struct gen_device_info *devinfo = &screen->devinfo;
2088 gl_shader_stage stage = stage_from_pipe(p_stage);
2089 struct iris_shader_state *shs = &ice->state.shaders[stage];
2090 #if GEN_GEN == 8
2091 struct iris_genx_state *genx = ice->state.genx;
2092 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2093 #endif
2094
2095 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2096
2097 for (unsigned i = 0; i < count; i++) {
2098 struct iris_image_view *iv = &shs->image[start_slot + i];
2099
2100 if (p_images && p_images[i].resource) {
2101 const struct pipe_image_view *img = &p_images[i];
2102 struct iris_resource *res = (void *) img->resource;
2103
2104 void *map =
2105 alloc_surface_states(ice->state.surface_uploader,
2106 &iv->surface_state, 1 << ISL_AUX_USAGE_NONE);
2107 if (!unlikely(map))
2108 return;
2109
2110 util_copy_image_view(&iv->base, img);
2111
2112 shs->bound_image_views |= 1 << (start_slot + i);
2113
2114 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2115
2116 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
2117 enum isl_format isl_fmt =
2118 iris_format_for_usage(devinfo, img->format, usage).fmt;
2119
2120 bool untyped_fallback = false;
2121
2122 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
2123 /* On Gen8, try to use typed surfaces reads (which support a
2124 * limited number of formats), and if not possible, fall back
2125 * to untyped reads.
2126 */
2127 untyped_fallback = GEN_GEN == 8 &&
2128 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
2129
2130 if (untyped_fallback)
2131 isl_fmt = ISL_FORMAT_RAW;
2132 else
2133 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
2134 }
2135
2136 if (res->base.target != PIPE_BUFFER) {
2137 struct isl_view view = {
2138 .format = isl_fmt,
2139 .base_level = img->u.tex.level,
2140 .levels = 1,
2141 .base_array_layer = img->u.tex.first_layer,
2142 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2143 .swizzle = ISL_SWIZZLE_IDENTITY,
2144 .usage = usage,
2145 };
2146
2147 if (untyped_fallback) {
2148 fill_buffer_surface_state(&screen->isl_dev, res, map,
2149 isl_fmt, ISL_SWIZZLE_IDENTITY,
2150 0, res->bo->size);
2151 } else {
2152 /* Images don't support compression */
2153 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
2154 while (aux_modes) {
2155 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2156
2157 fill_surface_state(&screen->isl_dev, map, res, &view, usage);
2158
2159 map += SURFACE_STATE_ALIGNMENT;
2160 }
2161 }
2162
2163 isl_surf_fill_image_param(&screen->isl_dev,
2164 &image_params[start_slot + i],
2165 &res->surf, &view);
2166 } else {
2167 util_range_add(&res->valid_buffer_range, img->u.buf.offset,
2168 img->u.buf.offset + img->u.buf.size);
2169
2170 fill_buffer_surface_state(&screen->isl_dev, res, map,
2171 isl_fmt, ISL_SWIZZLE_IDENTITY,
2172 img->u.buf.offset, img->u.buf.size);
2173 fill_buffer_image_param(&image_params[start_slot + i],
2174 img->format, img->u.buf.size);
2175 }
2176 } else {
2177 pipe_resource_reference(&iv->base.resource, NULL);
2178 pipe_resource_reference(&iv->surface_state.res, NULL);
2179 fill_default_image_param(&image_params[start_slot + i]);
2180 }
2181 }
2182
2183 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2184 ice->state.dirty |=
2185 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2186 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2187
2188 /* Broadwell also needs brw_image_params re-uploaded */
2189 if (GEN_GEN < 9) {
2190 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2191 shs->sysvals_need_upload = true;
2192 }
2193 }
2194
2195
2196 /**
2197 * The pipe->set_sampler_views() driver hook.
2198 */
2199 static void
2200 iris_set_sampler_views(struct pipe_context *ctx,
2201 enum pipe_shader_type p_stage,
2202 unsigned start, unsigned count,
2203 struct pipe_sampler_view **views)
2204 {
2205 struct iris_context *ice = (struct iris_context *) ctx;
2206 gl_shader_stage stage = stage_from_pipe(p_stage);
2207 struct iris_shader_state *shs = &ice->state.shaders[stage];
2208
2209 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2210
2211 for (unsigned i = 0; i < count; i++) {
2212 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2213 pipe_sampler_view_reference((struct pipe_sampler_view **)
2214 &shs->textures[start + i], pview);
2215 struct iris_sampler_view *view = (void *) pview;
2216 if (view) {
2217 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2218 shs->bound_sampler_views |= 1 << (start + i);
2219 }
2220 }
2221
2222 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2223 ice->state.dirty |=
2224 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2225 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2226 }
2227
2228 /**
2229 * The pipe->set_tess_state() driver hook.
2230 */
2231 static void
2232 iris_set_tess_state(struct pipe_context *ctx,
2233 const float default_outer_level[4],
2234 const float default_inner_level[2])
2235 {
2236 struct iris_context *ice = (struct iris_context *) ctx;
2237 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2238
2239 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2240 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2241
2242 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2243 shs->sysvals_need_upload = true;
2244 }
2245
2246 static void
2247 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2248 {
2249 struct iris_surface *surf = (void *) p_surf;
2250 pipe_resource_reference(&p_surf->texture, NULL);
2251 pipe_resource_reference(&surf->surface_state.res, NULL);
2252 free(surf);
2253 }
2254
2255 static void
2256 iris_set_clip_state(struct pipe_context *ctx,
2257 const struct pipe_clip_state *state)
2258 {
2259 struct iris_context *ice = (struct iris_context *) ctx;
2260 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2261 struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
2262 struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
2263
2264 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2265
2266 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS | IRIS_DIRTY_CONSTANTS_GS |
2267 IRIS_DIRTY_CONSTANTS_TES;
2268 shs->sysvals_need_upload = true;
2269 gshs->sysvals_need_upload = true;
2270 tshs->sysvals_need_upload = true;
2271 }
2272
2273 /**
2274 * The pipe->set_polygon_stipple() driver hook.
2275 */
2276 static void
2277 iris_set_polygon_stipple(struct pipe_context *ctx,
2278 const struct pipe_poly_stipple *state)
2279 {
2280 struct iris_context *ice = (struct iris_context *) ctx;
2281 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2282 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2283 }
2284
2285 /**
2286 * The pipe->set_sample_mask() driver hook.
2287 */
2288 static void
2289 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2290 {
2291 struct iris_context *ice = (struct iris_context *) ctx;
2292
2293 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2294 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2295 */
2296 ice->state.sample_mask = sample_mask & 0xffff;
2297 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2298 }
2299
2300 /**
2301 * The pipe->set_scissor_states() driver hook.
2302 *
2303 * This corresponds to our SCISSOR_RECT state structures. It's an
2304 * exact match, so we just store them, and memcpy them out later.
2305 */
2306 static void
2307 iris_set_scissor_states(struct pipe_context *ctx,
2308 unsigned start_slot,
2309 unsigned num_scissors,
2310 const struct pipe_scissor_state *rects)
2311 {
2312 struct iris_context *ice = (struct iris_context *) ctx;
2313
2314 for (unsigned i = 0; i < num_scissors; i++) {
2315 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2316 /* If the scissor was out of bounds and got clamped to 0 width/height
2317 * at the bounds, the subtraction of 1 from maximums could produce a
2318 * negative number and thus not clip anything. Instead, just provide
2319 * a min > max scissor inside the bounds, which produces the expected
2320 * no rendering.
2321 */
2322 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2323 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2324 };
2325 } else {
2326 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2327 .minx = rects[i].minx, .miny = rects[i].miny,
2328 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2329 };
2330 }
2331 }
2332
2333 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2334 }
2335
2336 /**
2337 * The pipe->set_stencil_ref() driver hook.
2338 *
2339 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2340 */
2341 static void
2342 iris_set_stencil_ref(struct pipe_context *ctx,
2343 const struct pipe_stencil_ref *state)
2344 {
2345 struct iris_context *ice = (struct iris_context *) ctx;
2346 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2347 if (GEN_GEN == 8)
2348 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2349 else
2350 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2351 }
2352
2353 static float
2354 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2355 {
2356 return copysignf(state->scale[axis], sign) + state->translate[axis];
2357 }
2358
2359 /**
2360 * The pipe->set_viewport_states() driver hook.
2361 *
2362 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2363 * the guardband yet, as we need the framebuffer dimensions, but we can
2364 * at least fill out the rest.
2365 */
2366 static void
2367 iris_set_viewport_states(struct pipe_context *ctx,
2368 unsigned start_slot,
2369 unsigned count,
2370 const struct pipe_viewport_state *states)
2371 {
2372 struct iris_context *ice = (struct iris_context *) ctx;
2373
2374 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2375
2376 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2377
2378 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2379 !ice->state.cso_rast->depth_clip_far))
2380 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2381 }
2382
2383 /**
2384 * The pipe->set_framebuffer_state() driver hook.
2385 *
2386 * Sets the current draw FBO, including color render targets, depth,
2387 * and stencil buffers.
2388 */
2389 static void
2390 iris_set_framebuffer_state(struct pipe_context *ctx,
2391 const struct pipe_framebuffer_state *state)
2392 {
2393 struct iris_context *ice = (struct iris_context *) ctx;
2394 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2395 struct isl_device *isl_dev = &screen->isl_dev;
2396 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2397 struct iris_resource *zres;
2398 struct iris_resource *stencil_res;
2399
2400 unsigned samples = util_framebuffer_get_num_samples(state);
2401 unsigned layers = util_framebuffer_get_num_layers(state);
2402
2403 if (cso->samples != samples) {
2404 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2405
2406 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
2407 if (GEN_GEN >= 9 && (cso->samples == 16 || samples == 16))
2408 ice->state.dirty |= IRIS_DIRTY_FS;
2409 }
2410
2411 if (cso->nr_cbufs != state->nr_cbufs) {
2412 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2413 }
2414
2415 if ((cso->layers == 0) != (layers == 0)) {
2416 ice->state.dirty |= IRIS_DIRTY_CLIP;
2417 }
2418
2419 if (cso->width != state->width || cso->height != state->height) {
2420 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2421 }
2422
2423 if (cso->zsbuf || state->zsbuf) {
2424 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2425 }
2426
2427 util_copy_framebuffer_state(cso, state);
2428 cso->samples = samples;
2429 cso->layers = layers;
2430
2431 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2432
2433 struct isl_view view = {
2434 .base_level = 0,
2435 .levels = 1,
2436 .base_array_layer = 0,
2437 .array_len = 1,
2438 .swizzle = ISL_SWIZZLE_IDENTITY,
2439 };
2440
2441 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2442
2443 if (cso->zsbuf) {
2444 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2445 &stencil_res);
2446
2447 view.base_level = cso->zsbuf->u.tex.level;
2448 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2449 view.array_len =
2450 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2451
2452 if (zres) {
2453 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2454
2455 info.depth_surf = &zres->surf;
2456 info.depth_address = zres->bo->gtt_offset + zres->offset;
2457 info.mocs = mocs(zres->bo);
2458
2459 view.format = zres->surf.format;
2460
2461 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2462 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2463 info.hiz_surf = &zres->aux.surf;
2464 info.hiz_address = zres->aux.bo->gtt_offset + zres->aux.offset;
2465 }
2466 }
2467
2468 if (stencil_res) {
2469 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2470 info.stencil_surf = &stencil_res->surf;
2471 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
2472 if (!zres) {
2473 view.format = stencil_res->surf.format;
2474 info.mocs = mocs(stencil_res->bo);
2475 }
2476 }
2477 }
2478
2479 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2480
2481 /* Make a null surface for unbound buffers */
2482 void *null_surf_map =
2483 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2484 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2485 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2486 isl_extent3d(MAX2(cso->width, 1),
2487 MAX2(cso->height, 1),
2488 cso->layers ? cso->layers : 1));
2489 ice->state.null_fb.offset +=
2490 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2491
2492 /* Render target change */
2493 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2494
2495 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2496
2497 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2498
2499 #if GEN_GEN == 11
2500 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2501 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2502
2503 /* The PIPE_CONTROL command description says:
2504 *
2505 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2506 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2507 * Target Cache Flush by enabling this bit. When render target flush
2508 * is set due to new association of BTI, PS Scoreboard Stall bit must
2509 * be set in this packet."
2510 */
2511 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2512 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2513 "workaround: RT BTI change [draw]",
2514 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2515 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2516 #endif
2517 }
2518
2519 /**
2520 * The pipe->set_constant_buffer() driver hook.
2521 *
2522 * This uploads any constant data in user buffers, and references
2523 * any UBO resources containing constant data.
2524 */
2525 static void
2526 iris_set_constant_buffer(struct pipe_context *ctx,
2527 enum pipe_shader_type p_stage, unsigned index,
2528 const struct pipe_constant_buffer *input)
2529 {
2530 struct iris_context *ice = (struct iris_context *) ctx;
2531 gl_shader_stage stage = stage_from_pipe(p_stage);
2532 struct iris_shader_state *shs = &ice->state.shaders[stage];
2533 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
2534
2535 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
2536 shs->bound_cbufs |= 1u << index;
2537
2538 if (input->user_buffer) {
2539 void *map = NULL;
2540 pipe_resource_reference(&cbuf->buffer, NULL);
2541 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
2542 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2543
2544 if (!cbuf->buffer) {
2545 /* Allocation was unsuccessful - just unbind */
2546 iris_set_constant_buffer(ctx, p_stage, index, NULL);
2547 return;
2548 }
2549
2550 assert(map);
2551 memcpy(map, input->user_buffer, input->buffer_size);
2552 } else if (input->buffer) {
2553 pipe_resource_reference(&cbuf->buffer, input->buffer);
2554
2555 cbuf->buffer_offset = input->buffer_offset;
2556 cbuf->buffer_size =
2557 MIN2(input->buffer_size,
2558 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
2559 }
2560
2561 struct iris_resource *res = (void *) cbuf->buffer;
2562 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2563
2564 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2565 &shs->constbuf_surf_state[index],
2566 false);
2567 } else {
2568 shs->bound_cbufs &= ~(1u << index);
2569 pipe_resource_reference(&cbuf->buffer, NULL);
2570 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
2571 }
2572
2573 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2574 // XXX: maybe not necessary all the time...?
2575 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2576 // XXX: pull model we may need actual new bindings...
2577 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2578 }
2579
2580 static void
2581 upload_sysvals(struct iris_context *ice,
2582 gl_shader_stage stage)
2583 {
2584 UNUSED struct iris_genx_state *genx = ice->state.genx;
2585 struct iris_shader_state *shs = &ice->state.shaders[stage];
2586
2587 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2588 if (!shader || shader->num_system_values == 0)
2589 return;
2590
2591 assert(shader->num_cbufs > 0);
2592
2593 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
2594 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
2595 unsigned upload_size = shader->num_system_values * sizeof(uint32_t);
2596 uint32_t *map = NULL;
2597
2598 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
2599 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
2600 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2601
2602 for (int i = 0; i < shader->num_system_values; i++) {
2603 uint32_t sysval = shader->system_values[i];
2604 uint32_t value = 0;
2605
2606 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2607 #if GEN_GEN == 8
2608 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2609 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2610 struct brw_image_param *param =
2611 &genx->shaders[stage].image_param[img];
2612
2613 assert(offset < sizeof(struct brw_image_param));
2614 value = ((uint32_t *) param)[offset];
2615 #endif
2616 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2617 value = 0;
2618 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2619 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2620 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2621 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2622 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2623 if (stage == MESA_SHADER_TESS_CTRL) {
2624 value = ice->state.vertices_per_patch;
2625 } else {
2626 assert(stage == MESA_SHADER_TESS_EVAL);
2627 const struct shader_info *tcs_info =
2628 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2629 if (tcs_info)
2630 value = tcs_info->tess.tcs_vertices_out;
2631 else
2632 value = ice->state.vertices_per_patch;
2633 }
2634 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
2635 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
2636 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
2637 value = fui(ice->state.default_outer_level[i]);
2638 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
2639 value = fui(ice->state.default_inner_level[0]);
2640 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
2641 value = fui(ice->state.default_inner_level[1]);
2642 } else {
2643 assert(!"unhandled system value");
2644 }
2645
2646 *map++ = value;
2647 }
2648
2649 cbuf->buffer_size = upload_size;
2650 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2651 &shs->constbuf_surf_state[sysval_cbuf_index], false);
2652
2653 shs->sysvals_need_upload = false;
2654 }
2655
2656 /**
2657 * The pipe->set_shader_buffers() driver hook.
2658 *
2659 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2660 * SURFACE_STATE here, as the buffer offset may change each time.
2661 */
2662 static void
2663 iris_set_shader_buffers(struct pipe_context *ctx,
2664 enum pipe_shader_type p_stage,
2665 unsigned start_slot, unsigned count,
2666 const struct pipe_shader_buffer *buffers,
2667 unsigned writable_bitmask)
2668 {
2669 struct iris_context *ice = (struct iris_context *) ctx;
2670 gl_shader_stage stage = stage_from_pipe(p_stage);
2671 struct iris_shader_state *shs = &ice->state.shaders[stage];
2672
2673 unsigned modified_bits = u_bit_consecutive(start_slot, count);
2674
2675 shs->bound_ssbos &= ~modified_bits;
2676 shs->writable_ssbos &= ~modified_bits;
2677 shs->writable_ssbos |= writable_bitmask << start_slot;
2678
2679 for (unsigned i = 0; i < count; i++) {
2680 if (buffers && buffers[i].buffer) {
2681 struct iris_resource *res = (void *) buffers[i].buffer;
2682 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
2683 struct iris_state_ref *surf_state =
2684 &shs->ssbo_surf_state[start_slot + i];
2685 pipe_resource_reference(&ssbo->buffer, &res->base);
2686 ssbo->buffer_offset = buffers[i].buffer_offset;
2687 ssbo->buffer_size =
2688 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
2689
2690 shs->bound_ssbos |= 1 << (start_slot + i);
2691
2692 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
2693
2694 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2695
2696 util_range_add(&res->valid_buffer_range, ssbo->buffer_offset,
2697 ssbo->buffer_offset + ssbo->buffer_size);
2698 } else {
2699 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
2700 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
2701 NULL);
2702 }
2703 }
2704
2705 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2706 }
2707
2708 static void
2709 iris_delete_state(struct pipe_context *ctx, void *state)
2710 {
2711 free(state);
2712 }
2713
2714 /**
2715 * The pipe->set_vertex_buffers() driver hook.
2716 *
2717 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2718 */
2719 static void
2720 iris_set_vertex_buffers(struct pipe_context *ctx,
2721 unsigned start_slot, unsigned count,
2722 const struct pipe_vertex_buffer *buffers)
2723 {
2724 struct iris_context *ice = (struct iris_context *) ctx;
2725 struct iris_genx_state *genx = ice->state.genx;
2726
2727 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2728
2729 for (unsigned i = 0; i < count; i++) {
2730 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2731 struct iris_vertex_buffer_state *state =
2732 &genx->vertex_buffers[start_slot + i];
2733
2734 if (!buffer) {
2735 pipe_resource_reference(&state->resource, NULL);
2736 continue;
2737 }
2738
2739 /* We may see user buffers that are NULL bindings. */
2740 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
2741
2742 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2743 struct iris_resource *res = (void *) state->resource;
2744
2745 if (res) {
2746 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2747 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2748 }
2749
2750 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2751 vb.VertexBufferIndex = start_slot + i;
2752 vb.AddressModifyEnable = true;
2753 vb.BufferPitch = buffer->stride;
2754 if (res) {
2755 vb.BufferSize = res->bo->size - (int) buffer->buffer_offset;
2756 vb.BufferStartingAddress =
2757 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2758 vb.MOCS = mocs(res->bo);
2759 } else {
2760 vb.NullVertexBuffer = true;
2761 }
2762 }
2763 }
2764
2765 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2766 }
2767
2768 /**
2769 * Gallium CSO for vertex elements.
2770 */
2771 struct iris_vertex_element_state {
2772 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2773 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2774 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2775 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2776 unsigned count;
2777 };
2778
2779 /**
2780 * The pipe->create_vertex_elements() driver hook.
2781 *
2782 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2783 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2784 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2785 * needed. In these cases we will need information available at draw time.
2786 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2787 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2788 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2789 */
2790 static void *
2791 iris_create_vertex_elements(struct pipe_context *ctx,
2792 unsigned count,
2793 const struct pipe_vertex_element *state)
2794 {
2795 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2796 const struct gen_device_info *devinfo = &screen->devinfo;
2797 struct iris_vertex_element_state *cso =
2798 malloc(sizeof(struct iris_vertex_element_state));
2799
2800 cso->count = count;
2801
2802 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2803 ve.DWordLength =
2804 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2805 }
2806
2807 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2808 uint32_t *vfi_pack_dest = cso->vf_instancing;
2809
2810 if (count == 0) {
2811 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2812 ve.Valid = true;
2813 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2814 ve.Component0Control = VFCOMP_STORE_0;
2815 ve.Component1Control = VFCOMP_STORE_0;
2816 ve.Component2Control = VFCOMP_STORE_0;
2817 ve.Component3Control = VFCOMP_STORE_1_FP;
2818 }
2819
2820 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2821 }
2822 }
2823
2824 for (int i = 0; i < count; i++) {
2825 const struct iris_format_info fmt =
2826 iris_format_for_usage(devinfo, state[i].src_format, 0);
2827 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2828 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2829
2830 switch (isl_format_get_num_channels(fmt.fmt)) {
2831 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
2832 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
2833 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
2834 case 3:
2835 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2836 : VFCOMP_STORE_1_FP;
2837 break;
2838 }
2839 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2840 ve.EdgeFlagEnable = false;
2841 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2842 ve.Valid = true;
2843 ve.SourceElementOffset = state[i].src_offset;
2844 ve.SourceElementFormat = fmt.fmt;
2845 ve.Component0Control = comp[0];
2846 ve.Component1Control = comp[1];
2847 ve.Component2Control = comp[2];
2848 ve.Component3Control = comp[3];
2849 }
2850
2851 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2852 vi.VertexElementIndex = i;
2853 vi.InstancingEnable = state[i].instance_divisor > 0;
2854 vi.InstanceDataStepRate = state[i].instance_divisor;
2855 }
2856
2857 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2858 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2859 }
2860
2861 /* An alternative version of the last VE and VFI is stored so it
2862 * can be used at draw time in case Vertex Shader uses EdgeFlag
2863 */
2864 if (count) {
2865 const unsigned edgeflag_index = count - 1;
2866 const struct iris_format_info fmt =
2867 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
2868 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
2869 ve.EdgeFlagEnable = true ;
2870 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
2871 ve.Valid = true;
2872 ve.SourceElementOffset = state[edgeflag_index].src_offset;
2873 ve.SourceElementFormat = fmt.fmt;
2874 ve.Component0Control = VFCOMP_STORE_SRC;
2875 ve.Component1Control = VFCOMP_STORE_0;
2876 ve.Component2Control = VFCOMP_STORE_0;
2877 ve.Component3Control = VFCOMP_STORE_0;
2878 }
2879 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
2880 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
2881 * at draw time, as it should change if SGVs are emitted.
2882 */
2883 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
2884 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
2885 }
2886 }
2887
2888 return cso;
2889 }
2890
2891 /**
2892 * The pipe->bind_vertex_elements_state() driver hook.
2893 */
2894 static void
2895 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2896 {
2897 struct iris_context *ice = (struct iris_context *) ctx;
2898 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2899 struct iris_vertex_element_state *new_cso = state;
2900
2901 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2902 * we need to re-emit it to ensure we're overriding the right one.
2903 */
2904 if (new_cso && cso_changed(count))
2905 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2906
2907 ice->state.cso_vertex_elements = state;
2908 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2909 }
2910
2911 /**
2912 * The pipe->create_stream_output_target() driver hook.
2913 *
2914 * "Target" here refers to a destination buffer. We translate this into
2915 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2916 * know which buffer this represents, or whether we ought to zero the
2917 * write-offsets, or append. Those are handled in the set() hook.
2918 */
2919 static struct pipe_stream_output_target *
2920 iris_create_stream_output_target(struct pipe_context *ctx,
2921 struct pipe_resource *p_res,
2922 unsigned buffer_offset,
2923 unsigned buffer_size)
2924 {
2925 struct iris_resource *res = (void *) p_res;
2926 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2927 if (!cso)
2928 return NULL;
2929
2930 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2931
2932 pipe_reference_init(&cso->base.reference, 1);
2933 pipe_resource_reference(&cso->base.buffer, p_res);
2934 cso->base.buffer_offset = buffer_offset;
2935 cso->base.buffer_size = buffer_size;
2936 cso->base.context = ctx;
2937
2938 util_range_add(&res->valid_buffer_range, buffer_offset,
2939 buffer_offset + buffer_size);
2940
2941 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2942
2943 return &cso->base;
2944 }
2945
2946 static void
2947 iris_stream_output_target_destroy(struct pipe_context *ctx,
2948 struct pipe_stream_output_target *state)
2949 {
2950 struct iris_stream_output_target *cso = (void *) state;
2951
2952 pipe_resource_reference(&cso->base.buffer, NULL);
2953 pipe_resource_reference(&cso->offset.res, NULL);
2954
2955 free(cso);
2956 }
2957
2958 /**
2959 * The pipe->set_stream_output_targets() driver hook.
2960 *
2961 * At this point, we know which targets are bound to a particular index,
2962 * and also whether we want to append or start over. We can finish the
2963 * 3DSTATE_SO_BUFFER packets we started earlier.
2964 */
2965 static void
2966 iris_set_stream_output_targets(struct pipe_context *ctx,
2967 unsigned num_targets,
2968 struct pipe_stream_output_target **targets,
2969 const unsigned *offsets)
2970 {
2971 struct iris_context *ice = (struct iris_context *) ctx;
2972 struct iris_genx_state *genx = ice->state.genx;
2973 uint32_t *so_buffers = genx->so_buffers;
2974
2975 const bool active = num_targets > 0;
2976 if (ice->state.streamout_active != active) {
2977 ice->state.streamout_active = active;
2978 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2979
2980 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2981 * it's a non-pipelined command. If we're switching streamout on, we
2982 * may have missed emitting it earlier, so do so now. (We're already
2983 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2984 */
2985 if (active) {
2986 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2987 } else {
2988 uint32_t flush = 0;
2989 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
2990 struct iris_stream_output_target *tgt =
2991 (void *) ice->state.so_target[i];
2992 if (tgt) {
2993 struct iris_resource *res = (void *) tgt->base.buffer;
2994
2995 flush |= iris_flush_bits_for_history(res);
2996 iris_dirty_for_history(ice, res);
2997 }
2998 }
2999 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
3000 "make streamout results visible", flush);
3001 }
3002 }
3003
3004 for (int i = 0; i < 4; i++) {
3005 pipe_so_target_reference(&ice->state.so_target[i],
3006 i < num_targets ? targets[i] : NULL);
3007 }
3008
3009 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
3010 if (!active)
3011 return;
3012
3013 for (unsigned i = 0; i < 4; i++,
3014 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
3015
3016 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
3017 unsigned offset = offsets[i];
3018
3019 if (!tgt) {
3020 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
3021 sob.SOBufferIndex = i;
3022 continue;
3023 }
3024
3025 struct iris_resource *res = (void *) tgt->base.buffer;
3026
3027 /* Note that offsets[i] will either be 0, causing us to zero
3028 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
3029 * "continue appending at the existing offset."
3030 */
3031 assert(offset == 0 || offset == 0xFFFFFFFF);
3032
3033 /* We might be called by Begin (offset = 0), Pause, then Resume
3034 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
3035 * will actually be sent to the GPU). In this case, we don't want
3036 * to append - we still want to do our initial zeroing.
3037 */
3038 if (!tgt->zeroed)
3039 offset = 0;
3040
3041 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3042 sob.SurfaceBaseAddress =
3043 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
3044 sob.SOBufferEnable = true;
3045 sob.StreamOffsetWriteEnable = true;
3046 sob.StreamOutputBufferOffsetAddressEnable = true;
3047 sob.MOCS = mocs(res->bo);
3048
3049 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
3050
3051 sob.SOBufferIndex = i;
3052 sob.StreamOffset = offset;
3053 sob.StreamOutputBufferOffsetAddress =
3054 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
3055 tgt->offset.offset);
3056 }
3057 }
3058
3059 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
3060 }
3061
3062 /**
3063 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
3064 * 3DSTATE_STREAMOUT packets.
3065 *
3066 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
3067 * hardware to record. We can create it entirely based on the shader, with
3068 * no dynamic state dependencies.
3069 *
3070 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
3071 * state-based settings. We capture the shader-related ones here, and merge
3072 * the rest in at draw time.
3073 */
3074 static uint32_t *
3075 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
3076 const struct brw_vue_map *vue_map)
3077 {
3078 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3079 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3080 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3081 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3082 int max_decls = 0;
3083 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3084
3085 memset(so_decl, 0, sizeof(so_decl));
3086
3087 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3088 * command feels strange -- each dword pair contains a SO_DECL per stream.
3089 */
3090 for (unsigned i = 0; i < info->num_outputs; i++) {
3091 const struct pipe_stream_output *output = &info->output[i];
3092 const int buffer = output->output_buffer;
3093 const int varying = output->register_index;
3094 const unsigned stream_id = output->stream;
3095 assert(stream_id < MAX_VERTEX_STREAMS);
3096
3097 buffer_mask[stream_id] |= 1 << buffer;
3098
3099 assert(vue_map->varying_to_slot[varying] >= 0);
3100
3101 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3102 * array. Instead, it simply increments DstOffset for the following
3103 * input by the number of components that should be skipped.
3104 *
3105 * Our hardware is unusual in that it requires us to program SO_DECLs
3106 * for fake "hole" components, rather than simply taking the offset
3107 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3108 * program as many size = 4 holes as we can, then a final hole to
3109 * accommodate the final 1, 2, or 3 remaining.
3110 */
3111 int skip_components = output->dst_offset - next_offset[buffer];
3112
3113 while (skip_components > 0) {
3114 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3115 .HoleFlag = 1,
3116 .OutputBufferSlot = output->output_buffer,
3117 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3118 };
3119 skip_components -= 4;
3120 }
3121
3122 next_offset[buffer] = output->dst_offset + output->num_components;
3123
3124 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3125 .OutputBufferSlot = output->output_buffer,
3126 .RegisterIndex = vue_map->varying_to_slot[varying],
3127 .ComponentMask =
3128 ((1 << output->num_components) - 1) << output->start_component,
3129 };
3130
3131 if (decls[stream_id] > max_decls)
3132 max_decls = decls[stream_id];
3133 }
3134
3135 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3136 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3137 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3138
3139 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3140 int urb_entry_read_offset = 0;
3141 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3142 urb_entry_read_offset;
3143
3144 /* We always read the whole vertex. This could be reduced at some
3145 * point by reading less and offsetting the register index in the
3146 * SO_DECLs.
3147 */
3148 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3149 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3150 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3151 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3152 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3153 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3154 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3155 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3156
3157 /* Set buffer pitches; 0 means unbound. */
3158 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3159 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3160 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3161 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3162 }
3163
3164 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3165 list.DWordLength = 3 + 2 * max_decls - 2;
3166 list.StreamtoBufferSelects0 = buffer_mask[0];
3167 list.StreamtoBufferSelects1 = buffer_mask[1];
3168 list.StreamtoBufferSelects2 = buffer_mask[2];
3169 list.StreamtoBufferSelects3 = buffer_mask[3];
3170 list.NumEntries0 = decls[0];
3171 list.NumEntries1 = decls[1];
3172 list.NumEntries2 = decls[2];
3173 list.NumEntries3 = decls[3];
3174 }
3175
3176 for (int i = 0; i < max_decls; i++) {
3177 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3178 entry.Stream0Decl = so_decl[0][i];
3179 entry.Stream1Decl = so_decl[1][i];
3180 entry.Stream2Decl = so_decl[2][i];
3181 entry.Stream3Decl = so_decl[3][i];
3182 }
3183 }
3184
3185 return map;
3186 }
3187
3188 static void
3189 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3190 const struct brw_vue_map *last_vue_map,
3191 bool two_sided_color,
3192 unsigned *out_offset,
3193 unsigned *out_length)
3194 {
3195 /* The compiler computes the first URB slot without considering COL/BFC
3196 * swizzling (because it doesn't know whether it's enabled), so we need
3197 * to do that here too. This may result in a smaller offset, which
3198 * should be safe.
3199 */
3200 const unsigned first_slot =
3201 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3202
3203 /* This becomes the URB read offset (counted in pairs of slots). */
3204 assert(first_slot % 2 == 0);
3205 *out_offset = first_slot / 2;
3206
3207 /* We need to adjust the inputs read to account for front/back color
3208 * swizzling, as it can make the URB length longer.
3209 */
3210 for (int c = 0; c <= 1; c++) {
3211 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3212 /* If two sided color is enabled, the fragment shader's gl_Color
3213 * (COL0) input comes from either the gl_FrontColor (COL0) or
3214 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3215 */
3216 if (two_sided_color)
3217 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3218
3219 /* If front color isn't written, we opt to give them back color
3220 * instead of an undefined value. Switch from COL to BFC.
3221 */
3222 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3223 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3224 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3225 }
3226 }
3227 }
3228
3229 /* Compute the minimum URB Read Length necessary for the FS inputs.
3230 *
3231 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3232 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3233 *
3234 * "This field should be set to the minimum length required to read the
3235 * maximum source attribute. The maximum source attribute is indicated
3236 * by the maximum value of the enabled Attribute # Source Attribute if
3237 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3238 * enable is not set.
3239 * read_length = ceiling((max_source_attr + 1) / 2)
3240 *
3241 * [errata] Corruption/Hang possible if length programmed larger than
3242 * recommended"
3243 *
3244 * Similar text exists for Ivy Bridge.
3245 *
3246 * We find the last URB slot that's actually read by the FS.
3247 */
3248 unsigned last_read_slot = last_vue_map->num_slots - 1;
3249 while (last_read_slot > first_slot && !(fs_input_slots &
3250 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3251 --last_read_slot;
3252
3253 /* The URB read length is the difference of the two, counted in pairs. */
3254 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3255 }
3256
3257 static void
3258 iris_emit_sbe_swiz(struct iris_batch *batch,
3259 const struct iris_context *ice,
3260 unsigned urb_read_offset,
3261 unsigned sprite_coord_enables)
3262 {
3263 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3264 const struct brw_wm_prog_data *wm_prog_data = (void *)
3265 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3266 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3267 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3268
3269 /* XXX: this should be generated when putting programs in place */
3270
3271 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3272 const int input_index = wm_prog_data->urb_setup[fs_attr];
3273 if (input_index < 0 || input_index >= 16)
3274 continue;
3275
3276 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3277 &attr_overrides[input_index];
3278 int slot = vue_map->varying_to_slot[fs_attr];
3279
3280 /* Viewport and Layer are stored in the VUE header. We need to override
3281 * them to zero if earlier stages didn't write them, as GL requires that
3282 * they read back as zero when not explicitly set.
3283 */
3284 switch (fs_attr) {
3285 case VARYING_SLOT_VIEWPORT:
3286 case VARYING_SLOT_LAYER:
3287 attr->ComponentOverrideX = true;
3288 attr->ComponentOverrideW = true;
3289 attr->ConstantSource = CONST_0000;
3290
3291 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3292 attr->ComponentOverrideY = true;
3293 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3294 attr->ComponentOverrideZ = true;
3295 continue;
3296
3297 case VARYING_SLOT_PRIMITIVE_ID:
3298 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3299 if (slot == -1) {
3300 attr->ComponentOverrideX = true;
3301 attr->ComponentOverrideY = true;
3302 attr->ComponentOverrideZ = true;
3303 attr->ComponentOverrideW = true;
3304 attr->ConstantSource = PRIM_ID;
3305 continue;
3306 }
3307
3308 default:
3309 break;
3310 }
3311
3312 if (sprite_coord_enables & (1 << input_index))
3313 continue;
3314
3315 /* If there was only a back color written but not front, use back
3316 * as the color instead of undefined.
3317 */
3318 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3319 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3320 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3321 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3322
3323 /* Not written by the previous stage - undefined. */
3324 if (slot == -1) {
3325 attr->ComponentOverrideX = true;
3326 attr->ComponentOverrideY = true;
3327 attr->ComponentOverrideZ = true;
3328 attr->ComponentOverrideW = true;
3329 attr->ConstantSource = CONST_0001_FLOAT;
3330 continue;
3331 }
3332
3333 /* Compute the location of the attribute relative to the read offset,
3334 * which is counted in 256-bit increments (two 128-bit VUE slots).
3335 */
3336 const int source_attr = slot - 2 * urb_read_offset;
3337 assert(source_attr >= 0 && source_attr <= 32);
3338 attr->SourceAttribute = source_attr;
3339
3340 /* If we are doing two-sided color, and the VUE slot following this one
3341 * represents a back-facing color, then we need to instruct the SF unit
3342 * to do back-facing swizzling.
3343 */
3344 if (cso_rast->light_twoside &&
3345 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3346 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3347 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3348 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3349 attr->SwizzleSelect = INPUTATTR_FACING;
3350 }
3351
3352 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3353 for (int i = 0; i < 16; i++)
3354 sbes.Attribute[i] = attr_overrides[i];
3355 }
3356 }
3357
3358 static unsigned
3359 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3360 const struct iris_rasterizer_state *cso)
3361 {
3362 unsigned overrides = 0;
3363
3364 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3365 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3366
3367 for (int i = 0; i < 8; i++) {
3368 if ((cso->sprite_coord_enable & (1 << i)) &&
3369 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3370 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3371 }
3372
3373 return overrides;
3374 }
3375
3376 static void
3377 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3378 {
3379 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3380 const struct brw_wm_prog_data *wm_prog_data = (void *)
3381 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3382 const struct shader_info *fs_info =
3383 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3384
3385 unsigned urb_read_offset, urb_read_length;
3386 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3387 ice->shaders.last_vue_map,
3388 cso_rast->light_twoside,
3389 &urb_read_offset, &urb_read_length);
3390
3391 unsigned sprite_coord_overrides =
3392 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3393
3394 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3395 sbe.AttributeSwizzleEnable = true;
3396 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3397 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3398 sbe.VertexURBEntryReadOffset = urb_read_offset;
3399 sbe.VertexURBEntryReadLength = urb_read_length;
3400 sbe.ForceVertexURBEntryReadOffset = true;
3401 sbe.ForceVertexURBEntryReadLength = true;
3402 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3403 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3404 #if GEN_GEN >= 9
3405 for (int i = 0; i < 32; i++) {
3406 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3407 }
3408 #endif
3409 }
3410
3411 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3412 }
3413
3414 /* ------------------------------------------------------------------- */
3415
3416 /**
3417 * Populate VS program key fields based on the current state.
3418 */
3419 static void
3420 iris_populate_vs_key(const struct iris_context *ice,
3421 const struct shader_info *info,
3422 gl_shader_stage last_stage,
3423 struct brw_vs_prog_key *key)
3424 {
3425 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3426
3427 if (info->clip_distance_array_size == 0 &&
3428 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3429 last_stage == MESA_SHADER_VERTEX)
3430 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3431 }
3432
3433 /**
3434 * Populate TCS program key fields based on the current state.
3435 */
3436 static void
3437 iris_populate_tcs_key(const struct iris_context *ice,
3438 struct brw_tcs_prog_key *key)
3439 {
3440 }
3441
3442 /**
3443 * Populate TES program key fields based on the current state.
3444 */
3445 static void
3446 iris_populate_tes_key(const struct iris_context *ice,
3447 const struct shader_info *info,
3448 gl_shader_stage last_stage,
3449 struct brw_tes_prog_key *key)
3450 {
3451 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3452
3453 if (info->clip_distance_array_size == 0 &&
3454 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3455 last_stage == MESA_SHADER_TESS_EVAL)
3456 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3457 }
3458
3459 /**
3460 * Populate GS program key fields based on the current state.
3461 */
3462 static void
3463 iris_populate_gs_key(const struct iris_context *ice,
3464 const struct shader_info *info,
3465 gl_shader_stage last_stage,
3466 struct brw_gs_prog_key *key)
3467 {
3468 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3469
3470 if (info->clip_distance_array_size == 0 &&
3471 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3472 last_stage == MESA_SHADER_GEOMETRY)
3473 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3474 }
3475
3476 /**
3477 * Populate FS program key fields based on the current state.
3478 */
3479 static void
3480 iris_populate_fs_key(const struct iris_context *ice,
3481 const struct shader_info *info,
3482 struct brw_wm_prog_key *key)
3483 {
3484 struct iris_screen *screen = (void *) ice->ctx.screen;
3485 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3486 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3487 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3488 const struct iris_blend_state *blend = ice->state.cso_blend;
3489
3490 key->nr_color_regions = fb->nr_cbufs;
3491
3492 key->clamp_fragment_color = rast->clamp_fragment_color;
3493
3494 key->alpha_to_coverage = blend->alpha_to_coverage;
3495
3496 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
3497
3498 key->flat_shade = rast->flatshade &&
3499 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
3500
3501 key->persample_interp = rast->force_persample_interp;
3502 key->multisample_fbo = rast->multisample && fb->samples > 1;
3503
3504 key->coherent_fb_fetch = true;
3505
3506 key->force_dual_color_blend =
3507 screen->driconf.dual_color_blend_by_location &&
3508 (blend->blend_enables & 1) && blend->dual_color_blending;
3509
3510 /* TODO: Respect glHint for key->high_quality_derivatives */
3511 }
3512
3513 static void
3514 iris_populate_cs_key(const struct iris_context *ice,
3515 struct brw_cs_prog_key *key)
3516 {
3517 }
3518
3519 static uint64_t
3520 KSP(const struct iris_compiled_shader *shader)
3521 {
3522 struct iris_resource *res = (void *) shader->assembly.res;
3523 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3524 }
3525
3526 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3527 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3528 * this WA on C0 stepping.
3529 *
3530 * TODO: Fill out SamplerCount for prefetching?
3531 */
3532
3533 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3534 pkt.KernelStartPointer = KSP(shader); \
3535 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3536 shader->bt.size_bytes / 4; \
3537 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3538 \
3539 pkt.DispatchGRFStartRegisterForURBData = \
3540 prog_data->dispatch_grf_start_reg; \
3541 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3542 pkt.prefix##URBEntryReadOffset = 0; \
3543 \
3544 pkt.StatisticsEnable = true; \
3545 pkt.Enable = true; \
3546 \
3547 if (prog_data->total_scratch) { \
3548 struct iris_bo *bo = \
3549 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3550 uint32_t scratch_addr = bo->gtt_offset; \
3551 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3552 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3553 }
3554
3555 /**
3556 * Encode most of 3DSTATE_VS based on the compiled shader.
3557 */
3558 static void
3559 iris_store_vs_state(struct iris_context *ice,
3560 const struct gen_device_info *devinfo,
3561 struct iris_compiled_shader *shader)
3562 {
3563 struct brw_stage_prog_data *prog_data = shader->prog_data;
3564 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3565
3566 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3567 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3568 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3569 vs.SIMD8DispatchEnable = true;
3570 vs.UserClipDistanceCullTestEnableBitmask =
3571 vue_prog_data->cull_distance_mask;
3572 }
3573 }
3574
3575 /**
3576 * Encode most of 3DSTATE_HS based on the compiled shader.
3577 */
3578 static void
3579 iris_store_tcs_state(struct iris_context *ice,
3580 const struct gen_device_info *devinfo,
3581 struct iris_compiled_shader *shader)
3582 {
3583 struct brw_stage_prog_data *prog_data = shader->prog_data;
3584 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3585 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3586
3587 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3588 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3589
3590 hs.InstanceCount = tcs_prog_data->instances - 1;
3591 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3592 hs.IncludeVertexHandles = true;
3593
3594 #if GEN_GEN >= 9
3595 hs.DispatchMode = vue_prog_data->dispatch_mode;
3596 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
3597 #endif
3598 }
3599 }
3600
3601 /**
3602 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3603 */
3604 static void
3605 iris_store_tes_state(struct iris_context *ice,
3606 const struct gen_device_info *devinfo,
3607 struct iris_compiled_shader *shader)
3608 {
3609 struct brw_stage_prog_data *prog_data = shader->prog_data;
3610 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3611 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3612
3613 uint32_t *te_state = (void *) shader->derived_data;
3614 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3615
3616 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3617 te.Partitioning = tes_prog_data->partitioning;
3618 te.OutputTopology = tes_prog_data->output_topology;
3619 te.TEDomain = tes_prog_data->domain;
3620 te.TEEnable = true;
3621 te.MaximumTessellationFactorOdd = 63.0;
3622 te.MaximumTessellationFactorNotOdd = 64.0;
3623 }
3624
3625 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3626 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3627
3628 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3629 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3630 ds.ComputeWCoordinateEnable =
3631 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3632
3633 ds.UserClipDistanceCullTestEnableBitmask =
3634 vue_prog_data->cull_distance_mask;
3635 }
3636
3637 }
3638
3639 /**
3640 * Encode most of 3DSTATE_GS based on the compiled shader.
3641 */
3642 static void
3643 iris_store_gs_state(struct iris_context *ice,
3644 const struct gen_device_info *devinfo,
3645 struct iris_compiled_shader *shader)
3646 {
3647 struct brw_stage_prog_data *prog_data = shader->prog_data;
3648 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3649 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3650
3651 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3652 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3653
3654 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3655 gs.OutputTopology = gs_prog_data->output_topology;
3656 gs.ControlDataHeaderSize =
3657 gs_prog_data->control_data_header_size_hwords;
3658 gs.InstanceControl = gs_prog_data->invocations - 1;
3659 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3660 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3661 gs.ControlDataFormat = gs_prog_data->control_data_format;
3662 gs.ReorderMode = TRAILING;
3663 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3664 gs.MaximumNumberofThreads =
3665 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3666 : (devinfo->max_gs_threads - 1);
3667
3668 if (gs_prog_data->static_vertex_count != -1) {
3669 gs.StaticOutput = true;
3670 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3671 }
3672 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3673
3674 gs.UserClipDistanceCullTestEnableBitmask =
3675 vue_prog_data->cull_distance_mask;
3676
3677 const int urb_entry_write_offset = 1;
3678 const uint32_t urb_entry_output_length =
3679 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3680 urb_entry_write_offset;
3681
3682 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3683 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3684 }
3685 }
3686
3687 /**
3688 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3689 */
3690 static void
3691 iris_store_fs_state(struct iris_context *ice,
3692 const struct gen_device_info *devinfo,
3693 struct iris_compiled_shader *shader)
3694 {
3695 struct brw_stage_prog_data *prog_data = shader->prog_data;
3696 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3697
3698 uint32_t *ps_state = (void *) shader->derived_data;
3699 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3700
3701 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3702 ps.VectorMaskEnable = true;
3703 // XXX: WABTPPrefetchDisable, see above, drop at C0
3704 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3705 shader->bt.size_bytes / 4;
3706 ps.FloatingPointMode = prog_data->use_alt_mode;
3707 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3708
3709 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3710
3711 /* From the documentation for this packet:
3712 * "If the PS kernel does not need the Position XY Offsets to
3713 * compute a Position Value, then this field should be programmed
3714 * to POSOFFSET_NONE."
3715 *
3716 * "SW Recommendation: If the PS kernel needs the Position Offsets
3717 * to compute a Position XY value, this field should match Position
3718 * ZW Interpolation Mode to ensure a consistent position.xyzw
3719 * computation."
3720 *
3721 * We only require XY sample offsets. So, this recommendation doesn't
3722 * look useful at the moment. We might need this in future.
3723 */
3724 ps.PositionXYOffsetSelect =
3725 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3726
3727 if (prog_data->total_scratch) {
3728 struct iris_bo *bo =
3729 iris_get_scratch_space(ice, prog_data->total_scratch,
3730 MESA_SHADER_FRAGMENT);
3731 uint32_t scratch_addr = bo->gtt_offset;
3732 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3733 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3734 }
3735 }
3736
3737 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3738 psx.PixelShaderValid = true;
3739 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3740 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3741 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3742 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3743 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3744 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3745 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3746
3747 #if GEN_GEN >= 9
3748 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3749 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3750 #endif
3751 }
3752 }
3753
3754 /**
3755 * Compute the size of the derived data (shader command packets).
3756 *
3757 * This must match the data written by the iris_store_xs_state() functions.
3758 */
3759 static void
3760 iris_store_cs_state(struct iris_context *ice,
3761 const struct gen_device_info *devinfo,
3762 struct iris_compiled_shader *shader)
3763 {
3764 struct brw_stage_prog_data *prog_data = shader->prog_data;
3765 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3766 void *map = shader->derived_data;
3767
3768 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3769 desc.KernelStartPointer = KSP(shader);
3770 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3771 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3772 desc.SharedLocalMemorySize =
3773 encode_slm_size(GEN_GEN, prog_data->total_shared);
3774 desc.BarrierEnable = cs_prog_data->uses_barrier;
3775 desc.CrossThreadConstantDataReadLength =
3776 cs_prog_data->push.cross_thread.regs;
3777 }
3778 }
3779
3780 static unsigned
3781 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3782 {
3783 assert(cache_id <= IRIS_CACHE_BLORP);
3784
3785 static const unsigned dwords[] = {
3786 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3787 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3788 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3789 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3790 [IRIS_CACHE_FS] =
3791 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3792 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3793 [IRIS_CACHE_BLORP] = 0,
3794 };
3795
3796 return sizeof(uint32_t) * dwords[cache_id];
3797 }
3798
3799 /**
3800 * Create any state packets corresponding to the given shader stage
3801 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3802 * This means that we can look up a program in the in-memory cache and
3803 * get most of the state packet without having to reconstruct it.
3804 */
3805 static void
3806 iris_store_derived_program_state(struct iris_context *ice,
3807 enum iris_program_cache_id cache_id,
3808 struct iris_compiled_shader *shader)
3809 {
3810 struct iris_screen *screen = (void *) ice->ctx.screen;
3811 const struct gen_device_info *devinfo = &screen->devinfo;
3812
3813 switch (cache_id) {
3814 case IRIS_CACHE_VS:
3815 iris_store_vs_state(ice, devinfo, shader);
3816 break;
3817 case IRIS_CACHE_TCS:
3818 iris_store_tcs_state(ice, devinfo, shader);
3819 break;
3820 case IRIS_CACHE_TES:
3821 iris_store_tes_state(ice, devinfo, shader);
3822 break;
3823 case IRIS_CACHE_GS:
3824 iris_store_gs_state(ice, devinfo, shader);
3825 break;
3826 case IRIS_CACHE_FS:
3827 iris_store_fs_state(ice, devinfo, shader);
3828 break;
3829 case IRIS_CACHE_CS:
3830 iris_store_cs_state(ice, devinfo, shader);
3831 case IRIS_CACHE_BLORP:
3832 break;
3833 default:
3834 break;
3835 }
3836 }
3837
3838 /* ------------------------------------------------------------------- */
3839
3840 static const uint32_t push_constant_opcodes[] = {
3841 [MESA_SHADER_VERTEX] = 21,
3842 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3843 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3844 [MESA_SHADER_GEOMETRY] = 22,
3845 [MESA_SHADER_FRAGMENT] = 23,
3846 [MESA_SHADER_COMPUTE] = 0,
3847 };
3848
3849 static uint32_t
3850 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3851 {
3852 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3853
3854 iris_use_pinned_bo(batch, state_bo, false);
3855
3856 return ice->state.unbound_tex.offset;
3857 }
3858
3859 static uint32_t
3860 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3861 {
3862 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3863 if (!ice->state.null_fb.res)
3864 return use_null_surface(batch, ice);
3865
3866 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3867
3868 iris_use_pinned_bo(batch, state_bo, false);
3869
3870 return ice->state.null_fb.offset;
3871 }
3872
3873 static uint32_t
3874 surf_state_offset_for_aux(struct iris_resource *res,
3875 unsigned aux_modes,
3876 enum isl_aux_usage aux_usage)
3877 {
3878 return SURFACE_STATE_ALIGNMENT *
3879 util_bitcount(res->aux.possible_usages & ((1 << aux_usage) - 1));
3880 }
3881
3882 static void
3883 surf_state_update_clear_value(struct iris_batch *batch,
3884 struct iris_resource *res,
3885 struct iris_state_ref *state,
3886 unsigned aux_modes,
3887 enum isl_aux_usage aux_usage)
3888 {
3889 struct isl_device *isl_dev = &batch->screen->isl_dev;
3890 struct iris_bo *state_bo = iris_resource_bo(state->res);
3891 uint64_t real_offset = state->offset +
3892 IRIS_MEMZONE_BINDER_START;
3893 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
3894 uint32_t clear_offset = offset_into_bo +
3895 isl_dev->ss.clear_value_offset +
3896 surf_state_offset_for_aux(res, aux_modes, aux_usage);
3897
3898 batch->vtbl->copy_mem_mem(batch, state_bo, clear_offset,
3899 res->aux.clear_color_bo,
3900 res->aux.clear_color_offset,
3901 isl_dev->ss.clear_value_size);
3902 }
3903
3904 static void
3905 update_clear_value(struct iris_context *ice,
3906 struct iris_batch *batch,
3907 struct iris_resource *res,
3908 struct iris_state_ref *state,
3909 unsigned aux_modes,
3910 struct isl_view *view)
3911 {
3912 struct iris_screen *screen = batch->screen;
3913 const struct gen_device_info *devinfo = &screen->devinfo;
3914
3915 /* We only need to update the clear color in the surface state for gen8 and
3916 * gen9. Newer gens can read it directly from the clear color state buffer.
3917 */
3918 if (devinfo->gen > 9)
3919 return;
3920
3921 if (devinfo->gen == 9) {
3922 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
3923 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
3924
3925 while (aux_modes) {
3926 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3927
3928 surf_state_update_clear_value(batch, res, state, aux_modes,
3929 aux_usage);
3930 }
3931 } else if (devinfo->gen == 8) {
3932 pipe_resource_reference(&state->res, NULL);
3933 void *map = alloc_surface_states(ice->state.surface_uploader,
3934 state, res->aux.possible_usages);
3935 while (aux_modes) {
3936 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3937 fill_surface_state(&screen->isl_dev, map, res, view, aux_usage);
3938 map += SURFACE_STATE_ALIGNMENT;
3939 }
3940 }
3941 }
3942
3943 /**
3944 * Add a surface to the validation list, as well as the buffer containing
3945 * the corresponding SURFACE_STATE.
3946 *
3947 * Returns the binding table entry (offset to SURFACE_STATE).
3948 */
3949 static uint32_t
3950 use_surface(struct iris_context *ice,
3951 struct iris_batch *batch,
3952 struct pipe_surface *p_surf,
3953 bool writeable,
3954 enum isl_aux_usage aux_usage)
3955 {
3956 struct iris_surface *surf = (void *) p_surf;
3957 struct iris_resource *res = (void *) p_surf->texture;
3958
3959 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3960 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3961
3962 if (res->aux.bo) {
3963 iris_use_pinned_bo(batch, res->aux.bo, writeable);
3964 if (res->aux.clear_color_bo)
3965 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false);
3966
3967 if (memcmp(&res->aux.clear_color, &surf->clear_color,
3968 sizeof(surf->clear_color)) != 0) {
3969 update_clear_value(ice, batch, res, &surf->surface_state,
3970 res->aux.possible_usages, &surf->view);
3971 surf->clear_color = res->aux.clear_color;
3972 }
3973 }
3974
3975 return surf->surface_state.offset +
3976 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
3977 }
3978
3979 static uint32_t
3980 use_sampler_view(struct iris_context *ice,
3981 struct iris_batch *batch,
3982 struct iris_sampler_view *isv)
3983 {
3984 // XXX: ASTC hacks
3985 enum isl_aux_usage aux_usage =
3986 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
3987
3988 iris_use_pinned_bo(batch, isv->res->bo, false);
3989 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3990
3991 if (isv->res->aux.bo) {
3992 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
3993 if (isv->res->aux.clear_color_bo)
3994 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, false);
3995 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
3996 sizeof(isv->clear_color)) != 0) {
3997 update_clear_value(ice, batch, isv->res, &isv->surface_state,
3998 isv->res->aux.sampler_usages, &isv->view);
3999 isv->clear_color = isv->res->aux.clear_color;
4000 }
4001 }
4002
4003 return isv->surface_state.offset +
4004 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
4005 aux_usage);
4006 }
4007
4008 static uint32_t
4009 use_ubo_ssbo(struct iris_batch *batch,
4010 struct iris_context *ice,
4011 struct pipe_shader_buffer *buf,
4012 struct iris_state_ref *surf_state,
4013 bool writable)
4014 {
4015 if (!buf->buffer)
4016 return use_null_surface(batch, ice);
4017
4018 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable);
4019 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
4020
4021 return surf_state->offset;
4022 }
4023
4024 static uint32_t
4025 use_image(struct iris_batch *batch, struct iris_context *ice,
4026 struct iris_shader_state *shs, int i)
4027 {
4028 struct iris_image_view *iv = &shs->image[i];
4029 struct iris_resource *res = (void *) iv->base.resource;
4030
4031 if (!res)
4032 return use_null_surface(batch, ice);
4033
4034 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
4035
4036 iris_use_pinned_bo(batch, res->bo, write);
4037 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.res), false);
4038
4039 if (res->aux.bo)
4040 iris_use_pinned_bo(batch, res->aux.bo, write);
4041
4042 return iv->surface_state.offset;
4043 }
4044
4045 #define push_bt_entry(addr) \
4046 assert(addr >= binder_addr); \
4047 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
4048 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
4049
4050 #define bt_assert(section) \
4051 if (!pin_only && shader->bt.used_mask[section] != 0) \
4052 assert(shader->bt.offsets[section] == s);
4053
4054 /**
4055 * Populate the binding table for a given shader stage.
4056 *
4057 * This fills out the table of pointers to surfaces required by the shader,
4058 * and also adds those buffers to the validation list so the kernel can make
4059 * resident before running our batch.
4060 */
4061 static void
4062 iris_populate_binding_table(struct iris_context *ice,
4063 struct iris_batch *batch,
4064 gl_shader_stage stage,
4065 bool pin_only)
4066 {
4067 const struct iris_binder *binder = &ice->state.binder;
4068 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
4069 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4070 if (!shader)
4071 return;
4072
4073 struct iris_binding_table *bt = &shader->bt;
4074 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
4075 struct iris_shader_state *shs = &ice->state.shaders[stage];
4076 uint32_t binder_addr = binder->bo->gtt_offset;
4077
4078 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4079 int s = 0;
4080
4081 const struct shader_info *info = iris_get_shader_info(ice, stage);
4082 if (!info) {
4083 /* TCS passthrough doesn't need a binding table. */
4084 assert(stage == MESA_SHADER_TESS_CTRL);
4085 return;
4086 }
4087
4088 if (stage == MESA_SHADER_COMPUTE &&
4089 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4090 /* surface for gl_NumWorkGroups */
4091 struct iris_state_ref *grid_data = &ice->state.grid_size;
4092 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4093 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
4094 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
4095 push_bt_entry(grid_state->offset);
4096 }
4097
4098 if (stage == MESA_SHADER_FRAGMENT) {
4099 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4100 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4101 if (cso_fb->nr_cbufs) {
4102 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4103 uint32_t addr;
4104 if (cso_fb->cbufs[i]) {
4105 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4106 ice->state.draw_aux_usage[i]);
4107 } else {
4108 addr = use_null_fb_surface(batch, ice);
4109 }
4110 push_bt_entry(addr);
4111 }
4112 } else {
4113 uint32_t addr = use_null_fb_surface(batch, ice);
4114 push_bt_entry(addr);
4115 }
4116 }
4117
4118 #define foreach_surface_used(index, group) \
4119 bt_assert(group); \
4120 for (int index = 0; index < bt->sizes[group]; index++) \
4121 if (iris_group_index_to_bti(bt, group, index) != \
4122 IRIS_SURFACE_NOT_USED)
4123
4124 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4125 struct iris_sampler_view *view = shs->textures[i];
4126 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4127 : use_null_surface(batch, ice);
4128 push_bt_entry(addr);
4129 }
4130
4131 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4132 uint32_t addr = use_image(batch, ice, shs, i);
4133 push_bt_entry(addr);
4134 }
4135
4136 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4137 uint32_t addr;
4138
4139 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4140 if (ish->const_data) {
4141 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false);
4142 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4143 false);
4144 addr = ish->const_data_state.offset;
4145 } else {
4146 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4147 addr = use_null_surface(batch, ice);
4148 }
4149 } else {
4150 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4151 &shs->constbuf_surf_state[i], false);
4152 }
4153
4154 push_bt_entry(addr);
4155 }
4156
4157 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4158 uint32_t addr =
4159 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4160 shs->writable_ssbos & (1u << i));
4161 push_bt_entry(addr);
4162 }
4163
4164 #if 0
4165 /* XXX: YUV surfaces not implemented yet */
4166 bt_assert(plane_start[1], ...);
4167 bt_assert(plane_start[2], ...);
4168 #endif
4169 }
4170
4171 static void
4172 iris_use_optional_res(struct iris_batch *batch,
4173 struct pipe_resource *res,
4174 bool writeable)
4175 {
4176 if (res) {
4177 struct iris_bo *bo = iris_resource_bo(res);
4178 iris_use_pinned_bo(batch, bo, writeable);
4179 }
4180 }
4181
4182 static void
4183 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4184 struct pipe_surface *zsbuf,
4185 struct iris_depth_stencil_alpha_state *cso_zsa)
4186 {
4187 if (!zsbuf)
4188 return;
4189
4190 struct iris_resource *zres, *sres;
4191 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4192
4193 if (zres) {
4194 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled);
4195 if (zres->aux.bo) {
4196 iris_use_pinned_bo(batch, zres->aux.bo,
4197 cso_zsa->depth_writes_enabled);
4198 }
4199 }
4200
4201 if (sres) {
4202 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled);
4203 }
4204 }
4205
4206 /* ------------------------------------------------------------------- */
4207
4208 /**
4209 * Pin any BOs which were installed by a previous batch, and restored
4210 * via the hardware logical context mechanism.
4211 *
4212 * We don't need to re-emit all state every batch - the hardware context
4213 * mechanism will save and restore it for us. This includes pointers to
4214 * various BOs...which won't exist unless we ask the kernel to pin them
4215 * by adding them to the validation list.
4216 *
4217 * We can skip buffers if we've re-emitted those packets, as we're
4218 * overwriting those stale pointers with new ones, and don't actually
4219 * refer to the old BOs.
4220 */
4221 static void
4222 iris_restore_render_saved_bos(struct iris_context *ice,
4223 struct iris_batch *batch,
4224 const struct pipe_draw_info *draw)
4225 {
4226 struct iris_genx_state *genx = ice->state.genx;
4227
4228 const uint64_t clean = ~ice->state.dirty;
4229
4230 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4231 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
4232 }
4233
4234 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4235 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
4236 }
4237
4238 if (clean & IRIS_DIRTY_BLEND_STATE) {
4239 iris_use_optional_res(batch, ice->state.last_res.blend, false);
4240 }
4241
4242 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4243 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
4244 }
4245
4246 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4247 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
4248 }
4249
4250 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4251 for (int i = 0; i < 4; i++) {
4252 struct iris_stream_output_target *tgt =
4253 (void *) ice->state.so_target[i];
4254 if (tgt) {
4255 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4256 true);
4257 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4258 true);
4259 }
4260 }
4261 }
4262
4263 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4264 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4265 continue;
4266
4267 struct iris_shader_state *shs = &ice->state.shaders[stage];
4268 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4269
4270 if (!shader)
4271 continue;
4272
4273 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4274
4275 for (int i = 0; i < 4; i++) {
4276 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4277
4278 if (range->length == 0)
4279 continue;
4280
4281 /* Range block is a binding table index, map back to UBO index. */
4282 unsigned block_index = iris_bti_to_group_index(
4283 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4284 assert(block_index != IRIS_SURFACE_NOT_USED);
4285
4286 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4287 struct iris_resource *res = (void *) cbuf->buffer;
4288
4289 if (res)
4290 iris_use_pinned_bo(batch, res->bo, false);
4291 else
4292 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4293 }
4294 }
4295
4296 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4297 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4298 /* Re-pin any buffers referred to by the binding table. */
4299 iris_populate_binding_table(ice, batch, stage, true);
4300 }
4301 }
4302
4303 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4304 struct iris_shader_state *shs = &ice->state.shaders[stage];
4305 struct pipe_resource *res = shs->sampler_table.res;
4306 if (res)
4307 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4308 }
4309
4310 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4311 if (clean & (IRIS_DIRTY_VS << stage)) {
4312 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4313
4314 if (shader) {
4315 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4316 iris_use_pinned_bo(batch, bo, false);
4317
4318 struct brw_stage_prog_data *prog_data = shader->prog_data;
4319
4320 if (prog_data->total_scratch > 0) {
4321 struct iris_bo *bo =
4322 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4323 iris_use_pinned_bo(batch, bo, true);
4324 }
4325 }
4326 }
4327 }
4328
4329 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
4330 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4331 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4332 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4333 }
4334
4335 iris_use_optional_res(batch, ice->state.last_res.index_buffer, false);
4336
4337 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4338 uint64_t bound = ice->state.bound_vertex_buffers;
4339 while (bound) {
4340 const int i = u_bit_scan64(&bound);
4341 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4342 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4343 }
4344 }
4345 }
4346
4347 static void
4348 iris_restore_compute_saved_bos(struct iris_context *ice,
4349 struct iris_batch *batch,
4350 const struct pipe_grid_info *grid)
4351 {
4352 const uint64_t clean = ~ice->state.dirty;
4353
4354 const int stage = MESA_SHADER_COMPUTE;
4355 struct iris_shader_state *shs = &ice->state.shaders[stage];
4356
4357 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4358 /* Re-pin any buffers referred to by the binding table. */
4359 iris_populate_binding_table(ice, batch, stage, true);
4360 }
4361
4362 struct pipe_resource *sampler_res = shs->sampler_table.res;
4363 if (sampler_res)
4364 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4365
4366 if ((clean & IRIS_DIRTY_SAMPLER_STATES_CS) &&
4367 (clean & IRIS_DIRTY_BINDINGS_CS) &&
4368 (clean & IRIS_DIRTY_CONSTANTS_CS) &&
4369 (clean & IRIS_DIRTY_CS)) {
4370 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false);
4371 }
4372
4373 if (clean & IRIS_DIRTY_CS) {
4374 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4375
4376 if (shader) {
4377 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4378 iris_use_pinned_bo(batch, bo, false);
4379
4380 struct iris_bo *curbe_bo =
4381 iris_resource_bo(ice->state.last_res.cs_thread_ids);
4382 iris_use_pinned_bo(batch, curbe_bo, false);
4383
4384 struct brw_stage_prog_data *prog_data = shader->prog_data;
4385
4386 if (prog_data->total_scratch > 0) {
4387 struct iris_bo *bo =
4388 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4389 iris_use_pinned_bo(batch, bo, true);
4390 }
4391 }
4392 }
4393 }
4394
4395 /**
4396 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4397 */
4398 static void
4399 iris_update_surface_base_address(struct iris_batch *batch,
4400 struct iris_binder *binder)
4401 {
4402 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4403 return;
4404
4405 flush_for_state_base_change(batch);
4406
4407 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4408 sba.SurfaceStateMOCS = MOCS_WB;
4409 sba.SurfaceStateBaseAddressModifyEnable = true;
4410 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4411 }
4412
4413 batch->last_surface_base_address = binder->bo->gtt_offset;
4414 }
4415
4416 static inline void
4417 iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
4418 bool window_space_position, float *zmin, float *zmax)
4419 {
4420 if (window_space_position) {
4421 *zmin = 0.f;
4422 *zmax = 1.f;
4423 return;
4424 }
4425 util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
4426 }
4427
4428 static void
4429 iris_upload_dirty_render_state(struct iris_context *ice,
4430 struct iris_batch *batch,
4431 const struct pipe_draw_info *draw)
4432 {
4433 const uint64_t dirty = ice->state.dirty;
4434
4435 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4436 return;
4437
4438 struct iris_genx_state *genx = ice->state.genx;
4439 struct iris_binder *binder = &ice->state.binder;
4440 struct brw_wm_prog_data *wm_prog_data = (void *)
4441 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4442
4443 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4444 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4445 uint32_t cc_vp_address;
4446
4447 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4448 uint32_t *cc_vp_map =
4449 stream_state(batch, ice->state.dynamic_uploader,
4450 &ice->state.last_res.cc_vp,
4451 4 * ice->state.num_viewports *
4452 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4453 for (int i = 0; i < ice->state.num_viewports; i++) {
4454 float zmin, zmax;
4455 iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
4456 ice->state.window_space_position,
4457 &zmin, &zmax);
4458 if (cso_rast->depth_clip_near)
4459 zmin = 0.0;
4460 if (cso_rast->depth_clip_far)
4461 zmax = 1.0;
4462
4463 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4464 ccv.MinimumDepth = zmin;
4465 ccv.MaximumDepth = zmax;
4466 }
4467
4468 cc_vp_map += GENX(CC_VIEWPORT_length);
4469 }
4470
4471 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4472 ptr.CCViewportPointer = cc_vp_address;
4473 }
4474 }
4475
4476 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4477 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4478 uint32_t sf_cl_vp_address;
4479 uint32_t *vp_map =
4480 stream_state(batch, ice->state.dynamic_uploader,
4481 &ice->state.last_res.sf_cl_vp,
4482 4 * ice->state.num_viewports *
4483 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4484
4485 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4486 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4487 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4488
4489 float vp_xmin = viewport_extent(state, 0, -1.0f);
4490 float vp_xmax = viewport_extent(state, 0, 1.0f);
4491 float vp_ymin = viewport_extent(state, 1, -1.0f);
4492 float vp_ymax = viewport_extent(state, 1, 1.0f);
4493
4494 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
4495 state->scale[0], state->scale[1],
4496 state->translate[0], state->translate[1],
4497 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4498
4499 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4500 vp.ViewportMatrixElementm00 = state->scale[0];
4501 vp.ViewportMatrixElementm11 = state->scale[1];
4502 vp.ViewportMatrixElementm22 = state->scale[2];
4503 vp.ViewportMatrixElementm30 = state->translate[0];
4504 vp.ViewportMatrixElementm31 = state->translate[1];
4505 vp.ViewportMatrixElementm32 = state->translate[2];
4506 vp.XMinClipGuardband = gb_xmin;
4507 vp.XMaxClipGuardband = gb_xmax;
4508 vp.YMinClipGuardband = gb_ymin;
4509 vp.YMaxClipGuardband = gb_ymax;
4510 vp.XMinViewPort = MAX2(vp_xmin, 0);
4511 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4512 vp.YMinViewPort = MAX2(vp_ymin, 0);
4513 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4514 }
4515
4516 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4517 }
4518
4519 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4520 ptr.SFClipViewportPointer = sf_cl_vp_address;
4521 }
4522 }
4523
4524 if (dirty & IRIS_DIRTY_URB) {
4525 unsigned size[4];
4526
4527 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
4528 if (!ice->shaders.prog[i]) {
4529 size[i] = 1;
4530 } else {
4531 struct brw_vue_prog_data *vue_prog_data =
4532 (void *) ice->shaders.prog[i]->prog_data;
4533 size[i] = vue_prog_data->urb_entry_size;
4534 }
4535 assert(size[i] != 0);
4536 }
4537
4538 genX(emit_urb_setup)(ice, batch, size,
4539 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
4540 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
4541 }
4542
4543 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4544 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4545 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4546 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4547 const int header_dwords = GENX(BLEND_STATE_length);
4548
4549 /* Always write at least one BLEND_STATE - the final RT message will
4550 * reference BLEND_STATE[0] even if there aren't color writes. There
4551 * may still be alpha testing, computed depth, and so on.
4552 */
4553 const int rt_dwords =
4554 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4555
4556 uint32_t blend_offset;
4557 uint32_t *blend_map =
4558 stream_state(batch, ice->state.dynamic_uploader,
4559 &ice->state.last_res.blend,
4560 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4561
4562 uint32_t blend_state_header;
4563 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4564 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4565 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4566 }
4567
4568 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4569 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4570
4571 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4572 ptr.BlendStatePointer = blend_offset;
4573 ptr.BlendStatePointerValid = true;
4574 }
4575 }
4576
4577 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4578 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4579 #if GEN_GEN == 8
4580 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4581 #endif
4582 uint32_t cc_offset;
4583 void *cc_map =
4584 stream_state(batch, ice->state.dynamic_uploader,
4585 &ice->state.last_res.color_calc,
4586 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4587 64, &cc_offset);
4588 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4589 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4590 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4591 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4592 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4593 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4594 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4595 #if GEN_GEN == 8
4596 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4597 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4598 #endif
4599 }
4600 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4601 ptr.ColorCalcStatePointer = cc_offset;
4602 ptr.ColorCalcStatePointerValid = true;
4603 }
4604 }
4605
4606 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4607 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4608 continue;
4609
4610 struct iris_shader_state *shs = &ice->state.shaders[stage];
4611 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4612
4613 if (!shader)
4614 continue;
4615
4616 if (shs->sysvals_need_upload)
4617 upload_sysvals(ice, stage);
4618
4619 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4620
4621 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4622 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4623 if (prog_data) {
4624 /* The Skylake PRM contains the following restriction:
4625 *
4626 * "The driver must ensure The following case does not occur
4627 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4628 * buffer 3 read length equal to zero committed followed by a
4629 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4630 * zero committed."
4631 *
4632 * To avoid this, we program the buffers in the highest slots.
4633 * This way, slot 0 is only used if slot 3 is also used.
4634 */
4635 int n = 3;
4636
4637 for (int i = 3; i >= 0; i--) {
4638 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4639
4640 if (range->length == 0)
4641 continue;
4642
4643 /* Range block is a binding table index, map back to UBO index. */
4644 unsigned block_index = iris_bti_to_group_index(
4645 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4646 assert(block_index != IRIS_SURFACE_NOT_USED);
4647
4648 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4649 struct iris_resource *res = (void *) cbuf->buffer;
4650
4651 assert(cbuf->buffer_offset % 32 == 0);
4652
4653 pkt.ConstantBody.ReadLength[n] = range->length;
4654 pkt.ConstantBody.Buffer[n] =
4655 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
4656 : ro_bo(batch->screen->workaround_bo, 0);
4657 n--;
4658 }
4659 }
4660 }
4661 }
4662
4663 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4664 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4665 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4666 ptr._3DCommandSubOpcode = 38 + stage;
4667 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4668 }
4669 }
4670 }
4671
4672 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4673 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4674 iris_populate_binding_table(ice, batch, stage, false);
4675 }
4676 }
4677
4678 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4679 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4680 !ice->shaders.prog[stage])
4681 continue;
4682
4683 iris_upload_sampler_states(ice, stage);
4684
4685 struct iris_shader_state *shs = &ice->state.shaders[stage];
4686 struct pipe_resource *res = shs->sampler_table.res;
4687 if (res)
4688 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4689
4690 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4691 ptr._3DCommandSubOpcode = 43 + stage;
4692 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4693 }
4694 }
4695
4696 if (ice->state.need_border_colors)
4697 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4698
4699 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4700 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4701 ms.PixelLocation =
4702 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4703 if (ice->state.framebuffer.samples > 0)
4704 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4705 }
4706 }
4707
4708 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4709 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4710 ms.SampleMask = ice->state.sample_mask;
4711 }
4712 }
4713
4714 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4715 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4716 continue;
4717
4718 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4719
4720 if (shader) {
4721 struct brw_stage_prog_data *prog_data = shader->prog_data;
4722 struct iris_resource *cache = (void *) shader->assembly.res;
4723 iris_use_pinned_bo(batch, cache->bo, false);
4724
4725 if (prog_data->total_scratch > 0) {
4726 struct iris_bo *bo =
4727 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4728 iris_use_pinned_bo(batch, bo, true);
4729 }
4730
4731 if (stage == MESA_SHADER_FRAGMENT) {
4732 UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
4733 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4734
4735 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
4736 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
4737 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
4738 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
4739 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
4740
4741 /* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say:
4742 *
4743 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16,
4744 * SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch
4745 * mode."
4746 *
4747 * 16x MSAA only exists on Gen9+, so we can skip this on Gen8.
4748 */
4749 if (GEN_GEN >= 9 && cso_fb->samples == 16 &&
4750 !wm_prog_data->persample_dispatch) {
4751 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
4752 ps._32PixelDispatchEnable = false;
4753 }
4754
4755 ps.DispatchGRFStartRegisterForConstantSetupData0 =
4756 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
4757 ps.DispatchGRFStartRegisterForConstantSetupData1 =
4758 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
4759 ps.DispatchGRFStartRegisterForConstantSetupData2 =
4760 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
4761
4762 ps.KernelStartPointer0 = KSP(shader) +
4763 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
4764 ps.KernelStartPointer1 = KSP(shader) +
4765 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
4766 ps.KernelStartPointer2 = KSP(shader) +
4767 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
4768 }
4769
4770 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
4771 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
4772 #if GEN_GEN >= 9
4773 if (wm_prog_data->post_depth_coverage)
4774 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4775 else if (wm_prog_data->inner_coverage &&
4776 cso->conservative_rasterization)
4777 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4778 else
4779 psx.InputCoverageMaskState = ICMS_NORMAL;
4780 #else
4781 psx.PixelShaderUsesInputCoverageMask =
4782 wm_prog_data->uses_sample_mask;
4783 #endif
4784 }
4785
4786 uint32_t *shader_ps = (uint32_t *) shader->derived_data;
4787 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
4788 iris_emit_merge(batch, shader_ps, ps_state,
4789 GENX(3DSTATE_PS_length));
4790 iris_emit_merge(batch, shader_psx, psx_state,
4791 GENX(3DSTATE_PS_EXTRA_length));
4792 } else {
4793 iris_batch_emit(batch, shader->derived_data,
4794 iris_derived_program_state_size(stage));
4795 }
4796 } else {
4797 if (stage == MESA_SHADER_TESS_EVAL) {
4798 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4799 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4800 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4801 } else if (stage == MESA_SHADER_GEOMETRY) {
4802 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4803 }
4804 }
4805 }
4806
4807 if (ice->state.streamout_active) {
4808 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4809 iris_batch_emit(batch, genx->so_buffers,
4810 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4811 for (int i = 0; i < 4; i++) {
4812 struct iris_stream_output_target *tgt =
4813 (void *) ice->state.so_target[i];
4814 if (tgt) {
4815 tgt->zeroed = true;
4816 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4817 true);
4818 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4819 true);
4820 }
4821 }
4822 }
4823
4824 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4825 uint32_t *decl_list =
4826 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4827 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4828 }
4829
4830 if (dirty & IRIS_DIRTY_STREAMOUT) {
4831 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4832
4833 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4834 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4835 sol.SOFunctionEnable = true;
4836 sol.SOStatisticsEnable = true;
4837
4838 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4839 !ice->state.prims_generated_query_active;
4840 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4841 }
4842
4843 assert(ice->state.streamout);
4844
4845 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4846 GENX(3DSTATE_STREAMOUT_length));
4847 }
4848 } else {
4849 if (dirty & IRIS_DIRTY_STREAMOUT) {
4850 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4851 }
4852 }
4853
4854 if (dirty & IRIS_DIRTY_CLIP) {
4855 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4856 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4857
4858 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
4859 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4860 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
4861 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
4862 : ice->state.prim_is_points_or_lines);
4863
4864 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4865 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4866 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4867 if (cso_rast->rasterizer_discard)
4868 cl.ClipMode = CLIPMODE_REJECT_ALL;
4869 else if (ice->state.window_space_position)
4870 cl.ClipMode = CLIPMODE_ACCEPT_ALL;
4871 else
4872 cl.ClipMode = CLIPMODE_NORMAL;
4873
4874 cl.PerspectiveDivideDisable = ice->state.window_space_position;
4875 cl.ViewportXYClipTestEnable = !points_or_lines;
4876
4877 if (wm_prog_data->barycentric_interp_modes &
4878 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4879 cl.NonPerspectiveBarycentricEnable = true;
4880
4881 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4882 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4883 }
4884 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4885 ARRAY_SIZE(cso_rast->clip));
4886 }
4887
4888 if (dirty & IRIS_DIRTY_RASTER) {
4889 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4890 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4891
4892 uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
4893 iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
4894 sf.ViewportTransformEnable = !ice->state.window_space_position;
4895 }
4896 iris_emit_merge(batch, cso->sf, dynamic_sf,
4897 ARRAY_SIZE(dynamic_sf));
4898 }
4899
4900 if (dirty & IRIS_DIRTY_WM) {
4901 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4902 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4903
4904 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4905 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4906
4907 wm.BarycentricInterpolationMode =
4908 wm_prog_data->barycentric_interp_modes;
4909
4910 if (wm_prog_data->early_fragment_tests)
4911 wm.EarlyDepthStencilControl = EDSC_PREPS;
4912 else if (wm_prog_data->has_side_effects)
4913 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4914
4915 /* We could skip this bit if color writes are enabled. */
4916 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
4917 wm.ForceThreadDispatchEnable = ForceON;
4918 }
4919 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4920 }
4921
4922 if (dirty & IRIS_DIRTY_SBE) {
4923 iris_emit_sbe(batch, ice);
4924 }
4925
4926 if (dirty & IRIS_DIRTY_PS_BLEND) {
4927 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4928 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4929 const struct shader_info *fs_info =
4930 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4931
4932 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4933 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4934 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
4935 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4936
4937 /* The dual source blending docs caution against using SRC1 factors
4938 * when the shader doesn't use a dual source render target write.
4939 * Empirically, this can lead to GPU hangs, and the results are
4940 * undefined anyway, so simply disable blending to avoid the hang.
4941 */
4942 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
4943 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
4944 }
4945
4946 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4947 ARRAY_SIZE(cso_blend->ps_blend));
4948 }
4949
4950 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4951 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4952 #if GEN_GEN >= 9
4953 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4954 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4955 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4956 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4957 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4958 }
4959 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4960 #else
4961 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4962 #endif
4963 }
4964
4965 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4966 uint32_t scissor_offset =
4967 emit_state(batch, ice->state.dynamic_uploader,
4968 &ice->state.last_res.scissor,
4969 ice->state.scissors,
4970 sizeof(struct pipe_scissor_state) *
4971 ice->state.num_viewports, 32);
4972
4973 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4974 ptr.ScissorRectPointer = scissor_offset;
4975 }
4976 }
4977
4978 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4979 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4980
4981 /* Do not emit the clear params yets. We need to update the clear value
4982 * first.
4983 */
4984 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
4985 uint32_t cso_z_size = sizeof(cso_z->packets) - clear_length;
4986 iris_batch_emit(batch, cso_z->packets, cso_z_size);
4987
4988 union isl_color_value clear_value = { .f32 = { 0, } };
4989
4990 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4991 if (cso_fb->zsbuf) {
4992 struct iris_resource *zres, *sres;
4993 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4994 &zres, &sres);
4995 if (zres && zres->aux.bo)
4996 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
4997 }
4998
4999 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
5000 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
5001 clear.DepthClearValueValid = true;
5002 clear.DepthClearValue = clear_value.f32[0];
5003 }
5004 iris_batch_emit(batch, clear_params, clear_length);
5005 }
5006
5007 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
5008 /* Listen for buffer changes, and also write enable changes. */
5009 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5010 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
5011 }
5012
5013 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
5014 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
5015 for (int i = 0; i < 32; i++) {
5016 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
5017 }
5018 }
5019 }
5020
5021 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
5022 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5023 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
5024 }
5025
5026 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
5027 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
5028 topo.PrimitiveTopologyType =
5029 translate_prim_type(draw->mode, draw->vertices_per_patch);
5030 }
5031 }
5032
5033 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
5034 int count = util_bitcount64(ice->state.bound_vertex_buffers);
5035 int dynamic_bound = ice->state.bound_vertex_buffers;
5036
5037 if (ice->state.vs_uses_draw_params) {
5038 if (ice->draw.draw_params_offset == 0) {
5039 u_upload_data(ice->ctx.stream_uploader, 0, sizeof(ice->draw.params),
5040 4, &ice->draw.params, &ice->draw.draw_params_offset,
5041 &ice->draw.draw_params_res);
5042 }
5043 assert(ice->draw.draw_params_res);
5044
5045 struct iris_vertex_buffer_state *state =
5046 &(ice->state.genx->vertex_buffers[count]);
5047 pipe_resource_reference(&state->resource, ice->draw.draw_params_res);
5048 struct iris_resource *res = (void *) state->resource;
5049
5050 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5051 vb.VertexBufferIndex = count;
5052 vb.AddressModifyEnable = true;
5053 vb.BufferPitch = 0;
5054 vb.BufferSize = res->bo->size - ice->draw.draw_params_offset;
5055 vb.BufferStartingAddress =
5056 ro_bo(NULL, res->bo->gtt_offset +
5057 (int) ice->draw.draw_params_offset);
5058 vb.MOCS = mocs(res->bo);
5059 }
5060 dynamic_bound |= 1ull << count;
5061 count++;
5062 }
5063
5064 if (ice->state.vs_uses_derived_draw_params) {
5065 u_upload_data(ice->ctx.stream_uploader, 0,
5066 sizeof(ice->draw.derived_params), 4,
5067 &ice->draw.derived_params,
5068 &ice->draw.derived_draw_params_offset,
5069 &ice->draw.derived_draw_params_res);
5070
5071 struct iris_vertex_buffer_state *state =
5072 &(ice->state.genx->vertex_buffers[count]);
5073 pipe_resource_reference(&state->resource,
5074 ice->draw.derived_draw_params_res);
5075 struct iris_resource *res = (void *) ice->draw.derived_draw_params_res;
5076
5077 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5078 vb.VertexBufferIndex = count;
5079 vb.AddressModifyEnable = true;
5080 vb.BufferPitch = 0;
5081 vb.BufferSize =
5082 res->bo->size - ice->draw.derived_draw_params_offset;
5083 vb.BufferStartingAddress =
5084 ro_bo(NULL, res->bo->gtt_offset +
5085 (int) ice->draw.derived_draw_params_offset);
5086 vb.MOCS = mocs(res->bo);
5087 }
5088 dynamic_bound |= 1ull << count;
5089 count++;
5090 }
5091
5092 if (count) {
5093 /* The VF cache designers cut corners, and made the cache key's
5094 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
5095 * 32 bits of the address. If you have two vertex buffers which get
5096 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
5097 * you can get collisions (even within a single batch).
5098 *
5099 * So, we need to do a VF cache invalidate if the buffer for a VB
5100 * slot slot changes [48:32] address bits from the previous time.
5101 */
5102 unsigned flush_flags = 0;
5103
5104 uint64_t bound = dynamic_bound;
5105 while (bound) {
5106 const int i = u_bit_scan64(&bound);
5107 uint16_t high_bits = 0;
5108
5109 struct iris_resource *res =
5110 (void *) genx->vertex_buffers[i].resource;
5111 if (res) {
5112 iris_use_pinned_bo(batch, res->bo, false);
5113
5114 high_bits = res->bo->gtt_offset >> 32ull;
5115 if (high_bits != ice->state.last_vbo_high_bits[i]) {
5116 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
5117 PIPE_CONTROL_CS_STALL;
5118 ice->state.last_vbo_high_bits[i] = high_bits;
5119 }
5120 }
5121 }
5122
5123 if (flush_flags) {
5124 iris_emit_pipe_control_flush(batch,
5125 "workaround: VF cache 32-bit key [VB]",
5126 flush_flags);
5127 }
5128
5129 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
5130
5131 uint32_t *map =
5132 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
5133 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
5134 vb.DWordLength = (vb_dwords * count + 1) - 2;
5135 }
5136 map += 1;
5137
5138 bound = dynamic_bound;
5139 while (bound) {
5140 const int i = u_bit_scan64(&bound);
5141 memcpy(map, genx->vertex_buffers[i].state,
5142 sizeof(uint32_t) * vb_dwords);
5143 map += vb_dwords;
5144 }
5145 }
5146 }
5147
5148 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
5149 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5150 const unsigned entries = MAX2(cso->count, 1);
5151 if (!(ice->state.vs_needs_sgvs_element ||
5152 ice->state.vs_uses_derived_draw_params ||
5153 ice->state.vs_needs_edge_flag)) {
5154 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
5155 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
5156 } else {
5157 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
5158 const unsigned dyn_count = cso->count +
5159 ice->state.vs_needs_sgvs_element +
5160 ice->state.vs_uses_derived_draw_params;
5161
5162 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
5163 &dynamic_ves, ve) {
5164 ve.DWordLength =
5165 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
5166 }
5167 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
5168 (cso->count - ice->state.vs_needs_edge_flag) *
5169 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
5170 uint32_t *ve_pack_dest =
5171 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
5172 GENX(VERTEX_ELEMENT_STATE_length)];
5173
5174 if (ice->state.vs_needs_sgvs_element) {
5175 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
5176 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
5177 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5178 ve.Valid = true;
5179 ve.VertexBufferIndex =
5180 util_bitcount64(ice->state.bound_vertex_buffers);
5181 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5182 ve.Component0Control = base_ctrl;
5183 ve.Component1Control = base_ctrl;
5184 ve.Component2Control = VFCOMP_STORE_0;
5185 ve.Component3Control = VFCOMP_STORE_0;
5186 }
5187 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5188 }
5189 if (ice->state.vs_uses_derived_draw_params) {
5190 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5191 ve.Valid = true;
5192 ve.VertexBufferIndex =
5193 util_bitcount64(ice->state.bound_vertex_buffers) +
5194 ice->state.vs_uses_draw_params;
5195 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5196 ve.Component0Control = VFCOMP_STORE_SRC;
5197 ve.Component1Control = VFCOMP_STORE_SRC;
5198 ve.Component2Control = VFCOMP_STORE_0;
5199 ve.Component3Control = VFCOMP_STORE_0;
5200 }
5201 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5202 }
5203 if (ice->state.vs_needs_edge_flag) {
5204 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
5205 ve_pack_dest[i] = cso->edgeflag_ve[i];
5206 }
5207
5208 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
5209 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
5210 }
5211
5212 if (!ice->state.vs_needs_edge_flag) {
5213 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
5214 entries * GENX(3DSTATE_VF_INSTANCING_length));
5215 } else {
5216 assert(cso->count > 0);
5217 const unsigned edgeflag_index = cso->count - 1;
5218 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
5219 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
5220 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
5221
5222 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
5223 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
5224 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
5225 vi.VertexElementIndex = edgeflag_index +
5226 ice->state.vs_needs_sgvs_element +
5227 ice->state.vs_uses_derived_draw_params;
5228 }
5229 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
5230 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
5231
5232 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
5233 entries * GENX(3DSTATE_VF_INSTANCING_length));
5234 }
5235 }
5236
5237 if (dirty & IRIS_DIRTY_VF_SGVS) {
5238 const struct brw_vs_prog_data *vs_prog_data = (void *)
5239 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
5240 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5241
5242 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
5243 if (vs_prog_data->uses_vertexid) {
5244 sgv.VertexIDEnable = true;
5245 sgv.VertexIDComponentNumber = 2;
5246 sgv.VertexIDElementOffset =
5247 cso->count - ice->state.vs_needs_edge_flag;
5248 }
5249
5250 if (vs_prog_data->uses_instanceid) {
5251 sgv.InstanceIDEnable = true;
5252 sgv.InstanceIDComponentNumber = 3;
5253 sgv.InstanceIDElementOffset =
5254 cso->count - ice->state.vs_needs_edge_flag;
5255 }
5256 }
5257 }
5258
5259 if (dirty & IRIS_DIRTY_VF) {
5260 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
5261 if (draw->primitive_restart) {
5262 vf.IndexedDrawCutIndexEnable = true;
5263 vf.CutIndex = draw->restart_index;
5264 }
5265 }
5266 }
5267
5268 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
5269 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
5270 vf.StatisticsEnable = true;
5271 }
5272 }
5273
5274 if (ice->state.current_hash_scale != 1)
5275 genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
5276
5277 /* TODO: Gen8 PMA fix */
5278 }
5279
5280 static void
5281 iris_upload_render_state(struct iris_context *ice,
5282 struct iris_batch *batch,
5283 const struct pipe_draw_info *draw)
5284 {
5285 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5286
5287 /* Always pin the binder. If we're emitting new binding table pointers,
5288 * we need it. If not, we're probably inheriting old tables via the
5289 * context, and need it anyway. Since true zero-bindings cases are
5290 * practically non-existent, just pin it and avoid last_res tracking.
5291 */
5292 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5293
5294 if (!batch->contains_draw) {
5295 iris_restore_render_saved_bos(ice, batch, draw);
5296 batch->contains_draw = true;
5297 }
5298
5299 iris_upload_dirty_render_state(ice, batch, draw);
5300
5301 if (draw->index_size > 0) {
5302 unsigned offset;
5303
5304 if (draw->has_user_indices) {
5305 u_upload_data(ice->ctx.stream_uploader, 0,
5306 draw->count * draw->index_size, 4, draw->index.user,
5307 &offset, &ice->state.last_res.index_buffer);
5308 } else {
5309 struct iris_resource *res = (void *) draw->index.resource;
5310 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
5311
5312 pipe_resource_reference(&ice->state.last_res.index_buffer,
5313 draw->index.resource);
5314 offset = 0;
5315 }
5316
5317 struct iris_genx_state *genx = ice->state.genx;
5318 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
5319
5320 uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
5321 iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
5322 ib.IndexFormat = draw->index_size >> 1;
5323 ib.MOCS = mocs(bo);
5324 ib.BufferSize = bo->size - offset;
5325 ib.BufferStartingAddress = ro_bo(NULL, bo->gtt_offset + offset);
5326 }
5327
5328 if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
5329 memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
5330 iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
5331 iris_use_pinned_bo(batch, bo, false);
5332 }
5333
5334 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
5335 uint16_t high_bits = bo->gtt_offset >> 32ull;
5336 if (high_bits != ice->state.last_index_bo_high_bits) {
5337 iris_emit_pipe_control_flush(batch,
5338 "workaround: VF cache 32-bit key [IB]",
5339 PIPE_CONTROL_VF_CACHE_INVALIDATE |
5340 PIPE_CONTROL_CS_STALL);
5341 ice->state.last_index_bo_high_bits = high_bits;
5342 }
5343 }
5344
5345 #define _3DPRIM_END_OFFSET 0x2420
5346 #define _3DPRIM_START_VERTEX 0x2430
5347 #define _3DPRIM_VERTEX_COUNT 0x2434
5348 #define _3DPRIM_INSTANCE_COUNT 0x2438
5349 #define _3DPRIM_START_INSTANCE 0x243C
5350 #define _3DPRIM_BASE_VERTEX 0x2440
5351
5352 if (draw->indirect) {
5353 if (draw->indirect->indirect_draw_count) {
5354 use_predicate = true;
5355
5356 struct iris_bo *draw_count_bo =
5357 iris_resource_bo(draw->indirect->indirect_draw_count);
5358 unsigned draw_count_offset =
5359 draw->indirect->indirect_draw_count_offset;
5360
5361 iris_emit_pipe_control_flush(batch,
5362 "ensure indirect draw buffer is flushed",
5363 PIPE_CONTROL_FLUSH_ENABLE);
5364
5365 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
5366 struct gen_mi_builder b;
5367 gen_mi_builder_init(&b, batch);
5368
5369 /* comparison = draw id < draw count */
5370 struct gen_mi_value comparison =
5371 gen_mi_ult(&b, gen_mi_imm(draw->drawid),
5372 gen_mi_mem32(ro_bo(draw_count_bo,
5373 draw_count_offset)));
5374
5375 /* predicate = comparison & conditional rendering predicate */
5376 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_RESULT),
5377 gen_mi_iand(&b, comparison,
5378 gen_mi_reg32(CS_GPR(15))));
5379 } else {
5380 uint32_t mi_predicate;
5381
5382 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
5383 ice->vtbl.load_register_imm64(batch, MI_PREDICATE_SRC1,
5384 draw->drawid);
5385 /* Upload the current draw count from the draw parameters buffer
5386 * to MI_PREDICATE_SRC0.
5387 */
5388 ice->vtbl.load_register_mem32(batch, MI_PREDICATE_SRC0,
5389 draw_count_bo, draw_count_offset);
5390 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
5391 ice->vtbl.load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
5392
5393 if (draw->drawid == 0) {
5394 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
5395 MI_PREDICATE_COMBINEOP_SET |
5396 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5397 } else {
5398 /* While draw_index < draw_count the predicate's result will be
5399 * (draw_index == draw_count) ^ TRUE = TRUE
5400 * When draw_index == draw_count the result is
5401 * (TRUE) ^ TRUE = FALSE
5402 * After this all results will be:
5403 * (FALSE) ^ FALSE = FALSE
5404 */
5405 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
5406 MI_PREDICATE_COMBINEOP_XOR |
5407 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5408 }
5409 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
5410 }
5411 }
5412 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
5413 assert(bo);
5414
5415 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5416 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
5417 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
5418 }
5419 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5420 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
5421 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
5422 }
5423 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5424 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
5425 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
5426 }
5427 if (draw->index_size) {
5428 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5429 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5430 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5431 }
5432 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5433 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5434 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5435 }
5436 } else {
5437 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5438 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5439 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5440 }
5441 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5442 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5443 lri.DataDWord = 0;
5444 }
5445 }
5446 } else if (draw->count_from_stream_output) {
5447 struct iris_stream_output_target *so =
5448 (void *) draw->count_from_stream_output;
5449
5450 /* XXX: Replace with actual cache tracking */
5451 iris_emit_pipe_control_flush(batch,
5452 "draw count from stream output stall",
5453 PIPE_CONTROL_CS_STALL);
5454
5455 struct gen_mi_builder b;
5456 gen_mi_builder_init(&b, batch);
5457
5458 struct iris_address addr =
5459 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5460 struct gen_mi_value offset =
5461 gen_mi_iadd_imm(&b, gen_mi_mem32(addr), -so->base.buffer_offset);
5462
5463 gen_mi_store(&b, gen_mi_reg32(_3DPRIM_VERTEX_COUNT),
5464 gen_mi_udiv32_imm(&b, offset, so->stride));
5465
5466 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5467 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5468 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5469 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5470 }
5471
5472 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5473 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5474 prim.PredicateEnable = use_predicate;
5475
5476 if (draw->indirect || draw->count_from_stream_output) {
5477 prim.IndirectParameterEnable = true;
5478 } else {
5479 prim.StartInstanceLocation = draw->start_instance;
5480 prim.InstanceCount = draw->instance_count;
5481 prim.VertexCountPerInstance = draw->count;
5482
5483 prim.StartVertexLocation = draw->start;
5484
5485 if (draw->index_size) {
5486 prim.BaseVertexLocation += draw->index_bias;
5487 } else {
5488 prim.StartVertexLocation += draw->index_bias;
5489 }
5490 }
5491 }
5492 }
5493
5494 static void
5495 iris_upload_compute_state(struct iris_context *ice,
5496 struct iris_batch *batch,
5497 const struct pipe_grid_info *grid)
5498 {
5499 const uint64_t dirty = ice->state.dirty;
5500 struct iris_screen *screen = batch->screen;
5501 const struct gen_device_info *devinfo = &screen->devinfo;
5502 struct iris_binder *binder = &ice->state.binder;
5503 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5504 struct iris_compiled_shader *shader =
5505 ice->shaders.prog[MESA_SHADER_COMPUTE];
5506 struct brw_stage_prog_data *prog_data = shader->prog_data;
5507 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5508
5509 /* Always pin the binder. If we're emitting new binding table pointers,
5510 * we need it. If not, we're probably inheriting old tables via the
5511 * context, and need it anyway. Since true zero-bindings cases are
5512 * practically non-existent, just pin it and avoid last_res tracking.
5513 */
5514 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5515
5516 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->sysvals_need_upload)
5517 upload_sysvals(ice, MESA_SHADER_COMPUTE);
5518
5519 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5520 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5521
5522 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
5523 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
5524
5525 iris_use_optional_res(batch, shs->sampler_table.res, false);
5526 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5527
5528 if (ice->state.need_border_colors)
5529 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5530
5531 if (dirty & IRIS_DIRTY_CS) {
5532 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5533 *
5534 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5535 * the only bits that are changed are scoreboard related: Scoreboard
5536 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5537 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5538 * sufficient."
5539 */
5540 iris_emit_pipe_control_flush(batch,
5541 "workaround: stall before MEDIA_VFE_STATE",
5542 PIPE_CONTROL_CS_STALL);
5543
5544 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5545 if (prog_data->total_scratch) {
5546 struct iris_bo *bo =
5547 iris_get_scratch_space(ice, prog_data->total_scratch,
5548 MESA_SHADER_COMPUTE);
5549 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5550 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5551 }
5552
5553 vfe.MaximumNumberofThreads =
5554 devinfo->max_cs_threads * screen->subslice_total - 1;
5555 #if GEN_GEN < 11
5556 vfe.ResetGatewayTimer =
5557 Resettingrelativetimerandlatchingtheglobaltimestamp;
5558 #endif
5559 #if GEN_GEN == 8
5560 vfe.BypassGatewayControl = true;
5561 #endif
5562 vfe.NumberofURBEntries = 2;
5563 vfe.URBEntryAllocationSize = 2;
5564
5565 vfe.CURBEAllocationSize =
5566 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5567 cs_prog_data->push.cross_thread.regs, 2);
5568 }
5569 }
5570
5571 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5572 if (dirty & IRIS_DIRTY_CS) {
5573 uint32_t curbe_data_offset = 0;
5574 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5575 cs_prog_data->push.per_thread.dwords == 1 &&
5576 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5577 uint32_t *curbe_data_map =
5578 stream_state(batch, ice->state.dynamic_uploader,
5579 &ice->state.last_res.cs_thread_ids,
5580 ALIGN(cs_prog_data->push.total.size, 64), 64,
5581 &curbe_data_offset);
5582 assert(curbe_data_map);
5583 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5584 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5585
5586 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5587 curbe.CURBETotalDataLength =
5588 ALIGN(cs_prog_data->push.total.size, 64);
5589 curbe.CURBEDataStartAddress = curbe_data_offset;
5590 }
5591 }
5592
5593 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5594 IRIS_DIRTY_BINDINGS_CS |
5595 IRIS_DIRTY_CONSTANTS_CS |
5596 IRIS_DIRTY_CS)) {
5597 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5598
5599 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5600 idd.SamplerStatePointer = shs->sampler_table.offset;
5601 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5602 }
5603
5604 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5605 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5606
5607 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5608 load.InterfaceDescriptorTotalLength =
5609 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5610 load.InterfaceDescriptorDataStartAddress =
5611 emit_state(batch, ice->state.dynamic_uploader,
5612 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
5613 }
5614 }
5615
5616 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5617 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5618 uint32_t right_mask;
5619
5620 if (remainder > 0)
5621 right_mask = ~0u >> (32 - remainder);
5622 else
5623 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5624
5625 #define GPGPU_DISPATCHDIMX 0x2500
5626 #define GPGPU_DISPATCHDIMY 0x2504
5627 #define GPGPU_DISPATCHDIMZ 0x2508
5628
5629 if (grid->indirect) {
5630 struct iris_state_ref *grid_size = &ice->state.grid_size;
5631 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5632 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5633 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5634 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5635 }
5636 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5637 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5638 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5639 }
5640 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5641 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5642 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5643 }
5644 }
5645
5646 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5647 ggw.IndirectParameterEnable = grid->indirect != NULL;
5648 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5649 ggw.ThreadDepthCounterMaximum = 0;
5650 ggw.ThreadHeightCounterMaximum = 0;
5651 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5652 ggw.ThreadGroupIDXDimension = grid->grid[0];
5653 ggw.ThreadGroupIDYDimension = grid->grid[1];
5654 ggw.ThreadGroupIDZDimension = grid->grid[2];
5655 ggw.RightExecutionMask = right_mask;
5656 ggw.BottomExecutionMask = 0xffffffff;
5657 }
5658
5659 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5660
5661 if (!batch->contains_draw) {
5662 iris_restore_compute_saved_bos(ice, batch, grid);
5663 batch->contains_draw = true;
5664 }
5665 }
5666
5667 /**
5668 * State module teardown.
5669 */
5670 static void
5671 iris_destroy_state(struct iris_context *ice)
5672 {
5673 struct iris_genx_state *genx = ice->state.genx;
5674
5675 pipe_resource_reference(&ice->draw.draw_params_res, NULL);
5676 pipe_resource_reference(&ice->draw.derived_draw_params_res, NULL);
5677
5678 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5679 while (bound_vbs) {
5680 const int i = u_bit_scan64(&bound_vbs);
5681 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5682 }
5683 free(ice->state.genx);
5684
5685 for (int i = 0; i < 4; i++) {
5686 pipe_so_target_reference(&ice->state.so_target[i], NULL);
5687 }
5688
5689 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5690 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5691 }
5692 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5693
5694 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5695 struct iris_shader_state *shs = &ice->state.shaders[stage];
5696 pipe_resource_reference(&shs->sampler_table.res, NULL);
5697 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5698 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
5699 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
5700 }
5701 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5702 pipe_resource_reference(&shs->image[i].base.resource, NULL);
5703 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5704 }
5705 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5706 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
5707 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
5708 }
5709 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5710 pipe_sampler_view_reference((struct pipe_sampler_view **)
5711 &shs->textures[i], NULL);
5712 }
5713 }
5714
5715 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5716 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5717
5718 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5719 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5720
5721 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5722 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5723 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5724 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5725 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5726 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5727 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
5728 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
5729 }
5730
5731 /* ------------------------------------------------------------------- */
5732
5733 static void
5734 iris_rebind_buffer(struct iris_context *ice,
5735 struct iris_resource *res,
5736 uint64_t old_address)
5737 {
5738 struct pipe_context *ctx = &ice->ctx;
5739 struct iris_screen *screen = (void *) ctx->screen;
5740 struct iris_genx_state *genx = ice->state.genx;
5741
5742 assert(res->base.target == PIPE_BUFFER);
5743
5744 /* Buffers can't be framebuffer attachments, nor display related,
5745 * and we don't have upstream Clover support.
5746 */
5747 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
5748 PIPE_BIND_RENDER_TARGET |
5749 PIPE_BIND_BLENDABLE |
5750 PIPE_BIND_DISPLAY_TARGET |
5751 PIPE_BIND_CURSOR |
5752 PIPE_BIND_COMPUTE_RESOURCE |
5753 PIPE_BIND_GLOBAL)));
5754
5755 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
5756 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5757 while (bound_vbs) {
5758 const int i = u_bit_scan64(&bound_vbs);
5759 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
5760
5761 /* Update the CPU struct */
5762 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
5763 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
5764 uint64_t *addr = (uint64_t *) &state->state[1];
5765
5766 if (*addr == old_address) {
5767 *addr = res->bo->gtt_offset;
5768 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
5769 }
5770 }
5771 }
5772
5773 /* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
5774 * the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
5775 *
5776 * There is also no need to handle these:
5777 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
5778 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
5779 */
5780
5781 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
5782 /* XXX: be careful about resetting vs appending... */
5783 assert(false);
5784 }
5785
5786 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
5787 struct iris_shader_state *shs = &ice->state.shaders[s];
5788 enum pipe_shader_type p_stage = stage_to_pipe(s);
5789
5790 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
5791 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
5792 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
5793 while (bound_cbufs) {
5794 const int i = u_bit_scan(&bound_cbufs);
5795 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
5796 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
5797
5798 if (res->bo == iris_resource_bo(cbuf->buffer)) {
5799 iris_upload_ubo_ssbo_surf_state(ice, cbuf, surf_state, false);
5800 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << s;
5801 }
5802 }
5803 }
5804
5805 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
5806 uint32_t bound_ssbos = shs->bound_ssbos;
5807 while (bound_ssbos) {
5808 const int i = u_bit_scan(&bound_ssbos);
5809 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
5810
5811 if (res->bo == iris_resource_bo(ssbo->buffer)) {
5812 struct pipe_shader_buffer buf = {
5813 .buffer = &res->base,
5814 .buffer_offset = ssbo->buffer_offset,
5815 .buffer_size = ssbo->buffer_size,
5816 };
5817 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
5818 (shs->writable_ssbos >> i) & 1);
5819 }
5820 }
5821 }
5822
5823 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
5824 uint32_t bound_sampler_views = shs->bound_sampler_views;
5825 while (bound_sampler_views) {
5826 const int i = u_bit_scan(&bound_sampler_views);
5827 struct iris_sampler_view *isv = shs->textures[i];
5828
5829 if (res->bo == iris_resource_bo(isv->base.texture)) {
5830 void *map = alloc_surface_states(ice->state.surface_uploader,
5831 &isv->surface_state,
5832 isv->res->aux.sampler_usages);
5833 assert(map);
5834 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
5835 isv->view.format, isv->view.swizzle,
5836 isv->base.u.buf.offset,
5837 isv->base.u.buf.size);
5838 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
5839 }
5840 }
5841 }
5842
5843 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
5844 uint32_t bound_image_views = shs->bound_image_views;
5845 while (bound_image_views) {
5846 const int i = u_bit_scan(&bound_image_views);
5847 struct iris_image_view *iv = &shs->image[i];
5848
5849 if (res->bo == iris_resource_bo(iv->base.resource)) {
5850 iris_set_shader_images(ctx, p_stage, i, 1, &iv->base);
5851 }
5852 }
5853 }
5854 }
5855 }
5856
5857 /* ------------------------------------------------------------------- */
5858
5859 static void
5860 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
5861 uint32_t src)
5862 {
5863 _iris_emit_lrr(batch, dst, src);
5864 }
5865
5866 static void
5867 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
5868 uint32_t src)
5869 {
5870 _iris_emit_lrr(batch, dst, src);
5871 _iris_emit_lrr(batch, dst + 4, src + 4);
5872 }
5873
5874 static void
5875 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5876 uint32_t val)
5877 {
5878 _iris_emit_lri(batch, reg, val);
5879 }
5880
5881 static void
5882 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5883 uint64_t val)
5884 {
5885 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5886 _iris_emit_lri(batch, reg + 4, val >> 32);
5887 }
5888
5889 /**
5890 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5891 */
5892 static void
5893 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5894 struct iris_bo *bo, uint32_t offset)
5895 {
5896 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5897 lrm.RegisterAddress = reg;
5898 lrm.MemoryAddress = ro_bo(bo, offset);
5899 }
5900 }
5901
5902 /**
5903 * Load a 64-bit value from a buffer into a MMIO register via
5904 * two MI_LOAD_REGISTER_MEM commands.
5905 */
5906 static void
5907 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5908 struct iris_bo *bo, uint32_t offset)
5909 {
5910 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5911 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5912 }
5913
5914 static void
5915 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5916 struct iris_bo *bo, uint32_t offset,
5917 bool predicated)
5918 {
5919 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5920 srm.RegisterAddress = reg;
5921 srm.MemoryAddress = rw_bo(bo, offset);
5922 srm.PredicateEnable = predicated;
5923 }
5924 }
5925
5926 static void
5927 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5928 struct iris_bo *bo, uint32_t offset,
5929 bool predicated)
5930 {
5931 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5932 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5933 }
5934
5935 static void
5936 iris_store_data_imm32(struct iris_batch *batch,
5937 struct iris_bo *bo, uint32_t offset,
5938 uint32_t imm)
5939 {
5940 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5941 sdi.Address = rw_bo(bo, offset);
5942 sdi.ImmediateData = imm;
5943 }
5944 }
5945
5946 static void
5947 iris_store_data_imm64(struct iris_batch *batch,
5948 struct iris_bo *bo, uint32_t offset,
5949 uint64_t imm)
5950 {
5951 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5952 * 2 in genxml but it's actually variable length and we need 5 DWords.
5953 */
5954 void *map = iris_get_command_space(batch, 4 * 5);
5955 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5956 sdi.DWordLength = 5 - 2;
5957 sdi.Address = rw_bo(bo, offset);
5958 sdi.ImmediateData = imm;
5959 }
5960 }
5961
5962 static void
5963 iris_copy_mem_mem(struct iris_batch *batch,
5964 struct iris_bo *dst_bo, uint32_t dst_offset,
5965 struct iris_bo *src_bo, uint32_t src_offset,
5966 unsigned bytes)
5967 {
5968 /* MI_COPY_MEM_MEM operates on DWords. */
5969 assert(bytes % 4 == 0);
5970 assert(dst_offset % 4 == 0);
5971 assert(src_offset % 4 == 0);
5972
5973 for (unsigned i = 0; i < bytes; i += 4) {
5974 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5975 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5976 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5977 }
5978 }
5979 }
5980
5981 /* ------------------------------------------------------------------- */
5982
5983 static unsigned
5984 flags_to_post_sync_op(uint32_t flags)
5985 {
5986 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5987 return WriteImmediateData;
5988
5989 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5990 return WritePSDepthCount;
5991
5992 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5993 return WriteTimestamp;
5994
5995 return 0;
5996 }
5997
5998 /**
5999 * Do the given flags have a Post Sync or LRI Post Sync operation?
6000 */
6001 static enum pipe_control_flags
6002 get_post_sync_flags(enum pipe_control_flags flags)
6003 {
6004 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
6005 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6006 PIPE_CONTROL_WRITE_TIMESTAMP |
6007 PIPE_CONTROL_LRI_POST_SYNC_OP;
6008
6009 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
6010 * "LRI Post Sync Operation". So more than one bit set would be illegal.
6011 */
6012 assert(util_bitcount(flags) <= 1);
6013
6014 return flags;
6015 }
6016
6017 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
6018
6019 /**
6020 * Emit a series of PIPE_CONTROL commands, taking into account any
6021 * workarounds necessary to actually accomplish the caller's request.
6022 *
6023 * Unless otherwise noted, spec quotations in this function come from:
6024 *
6025 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
6026 * Restrictions for PIPE_CONTROL.
6027 *
6028 * You should not use this function directly. Use the helpers in
6029 * iris_pipe_control.c instead, which may split the pipe control further.
6030 */
6031 static void
6032 iris_emit_raw_pipe_control(struct iris_batch *batch,
6033 const char *reason,
6034 uint32_t flags,
6035 struct iris_bo *bo,
6036 uint32_t offset,
6037 uint64_t imm)
6038 {
6039 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
6040 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
6041 enum pipe_control_flags non_lri_post_sync_flags =
6042 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
6043
6044 /* Recursive PIPE_CONTROL workarounds --------------------------------
6045 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
6046 *
6047 * We do these first because we want to look at the original operation,
6048 * rather than any workarounds we set.
6049 */
6050 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
6051 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
6052 * lists several workarounds:
6053 *
6054 * "Project: SKL, KBL, BXT
6055 *
6056 * If the VF Cache Invalidation Enable is set to a 1 in a
6057 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
6058 * sets to 0, with the VF Cache Invalidation Enable set to 0
6059 * needs to be sent prior to the PIPE_CONTROL with VF Cache
6060 * Invalidation Enable set to a 1."
6061 */
6062 iris_emit_raw_pipe_control(batch,
6063 "workaround: recursive VF cache invalidate",
6064 0, NULL, 0, 0);
6065 }
6066
6067 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
6068 /* Project: SKL / Argument: LRI Post Sync Operation [23]
6069 *
6070 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6071 * programmed prior to programming a PIPECONTROL command with "LRI
6072 * Post Sync Operation" in GPGPU mode of operation (i.e when
6073 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
6074 *
6075 * The same text exists a few rows below for Post Sync Op.
6076 */
6077 iris_emit_raw_pipe_control(batch,
6078 "workaround: CS stall before gpgpu post-sync",
6079 PIPE_CONTROL_CS_STALL, bo, offset, imm);
6080 }
6081
6082 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
6083 /* Cannonlake:
6084 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
6085 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
6086 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
6087 */
6088 iris_emit_raw_pipe_control(batch,
6089 "workaround: PC flush before RT flush",
6090 PIPE_CONTROL_FLUSH_ENABLE, bo, offset, imm);
6091 }
6092
6093 /* "Flush Types" workarounds ---------------------------------------------
6094 * We do these now because they may add post-sync operations or CS stalls.
6095 */
6096
6097 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
6098 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
6099 *
6100 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
6101 * 'Write PS Depth Count' or 'Write Timestamp'."
6102 */
6103 if (!bo) {
6104 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6105 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6106 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6107 bo = batch->screen->workaround_bo;
6108 }
6109 }
6110
6111 /* #1130 from Gen10 workarounds page:
6112 *
6113 * "Enable Depth Stall on every Post Sync Op if Render target Cache
6114 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
6115 * board stall if Render target cache flush is enabled."
6116 *
6117 * Applicable to CNL B0 and C0 steppings only.
6118 *
6119 * The wording here is unclear, and this workaround doesn't look anything
6120 * like the internal bug report recommendations, but leave it be for now...
6121 */
6122 if (GEN_GEN == 10) {
6123 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
6124 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6125 } else if (flags & non_lri_post_sync_flags) {
6126 flags |= PIPE_CONTROL_DEPTH_STALL;
6127 }
6128 }
6129
6130 if (flags & PIPE_CONTROL_DEPTH_STALL) {
6131 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
6132 *
6133 * "This bit must be DISABLED for operations other than writing
6134 * PS_DEPTH_COUNT."
6135 *
6136 * This seems like nonsense. An Ivybridge workaround requires us to
6137 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
6138 * operation. Gen8+ requires us to emit depth stalls and depth cache
6139 * flushes together. So, it's hard to imagine this means anything other
6140 * than "we originally intended this to be used for PS_DEPTH_COUNT".
6141 *
6142 * We ignore the supposed restriction and do nothing.
6143 */
6144 }
6145
6146 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
6147 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6148 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
6149 *
6150 * "This bit must be DISABLED for End-of-pipe (Read) fences,
6151 * PS_DEPTH_COUNT or TIMESTAMP queries."
6152 *
6153 * TODO: Implement end-of-pipe checking.
6154 */
6155 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
6156 PIPE_CONTROL_WRITE_TIMESTAMP)));
6157 }
6158
6159 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6160 /* From the PIPE_CONTROL instruction table, bit 1:
6161 *
6162 * "This bit is ignored if Depth Stall Enable is set.
6163 * Further, the render cache is not flushed even if Write Cache
6164 * Flush Enable bit is set."
6165 *
6166 * We assert that the caller doesn't do this combination, to try and
6167 * prevent mistakes. It shouldn't hurt the GPU, though.
6168 *
6169 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
6170 * and "Render Target Flush" combo is explicitly required for BTI
6171 * update workarounds.
6172 */
6173 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
6174 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
6175 }
6176
6177 /* PIPE_CONTROL page workarounds ------------------------------------- */
6178
6179 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
6180 /* From the PIPE_CONTROL page itself:
6181 *
6182 * "IVB, HSW, BDW
6183 * Restriction: Pipe_control with CS-stall bit set must be issued
6184 * before a pipe-control command that has the State Cache
6185 * Invalidate bit set."
6186 */
6187 flags |= PIPE_CONTROL_CS_STALL;
6188 }
6189
6190 if (flags & PIPE_CONTROL_FLUSH_LLC) {
6191 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
6192 *
6193 * "Project: ALL
6194 * SW must always program Post-Sync Operation to "Write Immediate
6195 * Data" when Flush LLC is set."
6196 *
6197 * For now, we just require the caller to do it.
6198 */
6199 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
6200 }
6201
6202 /* "Post-Sync Operation" workarounds -------------------------------- */
6203
6204 /* Project: All / Argument: Global Snapshot Count Reset [19]
6205 *
6206 * "This bit must not be exercised on any product.
6207 * Requires stall bit ([20] of DW1) set."
6208 *
6209 * We don't use this, so we just assert that it isn't used. The
6210 * PIPE_CONTROL instruction page indicates that they intended this
6211 * as a debug feature and don't think it is useful in production,
6212 * but it may actually be usable, should we ever want to.
6213 */
6214 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
6215
6216 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
6217 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
6218 /* Project: All / Arguments:
6219 *
6220 * - Generic Media State Clear [16]
6221 * - Indirect State Pointers Disable [16]
6222 *
6223 * "Requires stall bit ([20] of DW1) set."
6224 *
6225 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
6226 * State Clear) says:
6227 *
6228 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6229 * programmed prior to programming a PIPECONTROL command with "Media
6230 * State Clear" set in GPGPU mode of operation"
6231 *
6232 * This is a subset of the earlier rule, so there's nothing to do.
6233 */
6234 flags |= PIPE_CONTROL_CS_STALL;
6235 }
6236
6237 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
6238 /* Project: All / Argument: Store Data Index
6239 *
6240 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6241 * than '0'."
6242 *
6243 * For now, we just assert that the caller does this. We might want to
6244 * automatically add a write to the workaround BO...
6245 */
6246 assert(non_lri_post_sync_flags != 0);
6247 }
6248
6249 if (flags & PIPE_CONTROL_SYNC_GFDT) {
6250 /* Project: All / Argument: Sync GFDT
6251 *
6252 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6253 * than '0' or 0x2520[13] must be set."
6254 *
6255 * For now, we just assert that the caller does this.
6256 */
6257 assert(non_lri_post_sync_flags != 0);
6258 }
6259
6260 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
6261 /* Project: IVB+ / Argument: TLB inv
6262 *
6263 * "Requires stall bit ([20] of DW1) set."
6264 *
6265 * Also, from the PIPE_CONTROL instruction table:
6266 *
6267 * "Project: SKL+
6268 * Post Sync Operation or CS stall must be set to ensure a TLB
6269 * invalidation occurs. Otherwise no cycle will occur to the TLB
6270 * cache to invalidate."
6271 *
6272 * This is not a subset of the earlier rule, so there's nothing to do.
6273 */
6274 flags |= PIPE_CONTROL_CS_STALL;
6275 }
6276
6277 if (GEN_GEN == 9 && devinfo->gt == 4) {
6278 /* TODO: The big Skylake GT4 post sync op workaround */
6279 }
6280
6281 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
6282
6283 if (IS_COMPUTE_PIPELINE(batch)) {
6284 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
6285 /* Project: SKL+ / Argument: Tex Invalidate
6286 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
6287 */
6288 flags |= PIPE_CONTROL_CS_STALL;
6289 }
6290
6291 if (GEN_GEN == 8 && (post_sync_flags ||
6292 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
6293 PIPE_CONTROL_DEPTH_STALL |
6294 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6295 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6296 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
6297 /* Project: BDW / Arguments:
6298 *
6299 * - LRI Post Sync Operation [23]
6300 * - Post Sync Op [15:14]
6301 * - Notify En [8]
6302 * - Depth Stall [13]
6303 * - Render Target Cache Flush [12]
6304 * - Depth Cache Flush [0]
6305 * - DC Flush Enable [5]
6306 *
6307 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
6308 * Workloads."
6309 */
6310 flags |= PIPE_CONTROL_CS_STALL;
6311
6312 /* Also, from the PIPE_CONTROL instruction table, bit 20:
6313 *
6314 * "Project: BDW
6315 * This bit must be always set when PIPE_CONTROL command is
6316 * programmed by GPGPU and MEDIA workloads, except for the cases
6317 * when only Read Only Cache Invalidation bits are set (State
6318 * Cache Invalidation Enable, Instruction cache Invalidation
6319 * Enable, Texture Cache Invalidation Enable, Constant Cache
6320 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
6321 * need not implemented when FF_DOP_CG is disable via "Fixed
6322 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
6323 *
6324 * It sounds like we could avoid CS stalls in some cases, but we
6325 * don't currently bother. This list isn't exactly the list above,
6326 * either...
6327 */
6328 }
6329 }
6330
6331 /* "Stall" workarounds ----------------------------------------------
6332 * These have to come after the earlier ones because we may have added
6333 * some additional CS stalls above.
6334 */
6335
6336 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
6337 /* Project: PRE-SKL, VLV, CHV
6338 *
6339 * "[All Stepping][All SKUs]:
6340 *
6341 * One of the following must also be set:
6342 *
6343 * - Render Target Cache Flush Enable ([12] of DW1)
6344 * - Depth Cache Flush Enable ([0] of DW1)
6345 * - Stall at Pixel Scoreboard ([1] of DW1)
6346 * - Depth Stall ([13] of DW1)
6347 * - Post-Sync Operation ([13] of DW1)
6348 * - DC Flush Enable ([5] of DW1)"
6349 *
6350 * If we don't already have one of those bits set, we choose to add
6351 * "Stall at Pixel Scoreboard". Some of the other bits require a
6352 * CS stall as a workaround (see above), which would send us into
6353 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
6354 * appears to be safe, so we choose that.
6355 */
6356 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
6357 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6358 PIPE_CONTROL_WRITE_IMMEDIATE |
6359 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6360 PIPE_CONTROL_WRITE_TIMESTAMP |
6361 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6362 PIPE_CONTROL_DEPTH_STALL |
6363 PIPE_CONTROL_DATA_CACHE_FLUSH;
6364 if (!(flags & wa_bits))
6365 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6366 }
6367
6368 /* Emit --------------------------------------------------------------- */
6369
6370 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
6371 fprintf(stderr,
6372 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
6373 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
6374 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
6375 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
6376 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
6377 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
6378 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
6379 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
6380 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
6381 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
6382 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
6383 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
6384 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
6385 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
6386 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
6387 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
6388 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
6389 "SnapRes" : "",
6390 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
6391 "ISPDis" : "",
6392 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
6393 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
6394 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
6395 imm, reason);
6396 }
6397
6398 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
6399 pc.LRIPostSyncOperation = NoLRIOperation;
6400 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
6401 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
6402 pc.StoreDataIndex = 0;
6403 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
6404 pc.GlobalSnapshotCountReset =
6405 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
6406 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
6407 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
6408 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
6409 pc.RenderTargetCacheFlushEnable =
6410 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
6411 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6412 pc.StateCacheInvalidationEnable =
6413 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
6414 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
6415 pc.ConstantCacheInvalidationEnable =
6416 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
6417 pc.PostSyncOperation = flags_to_post_sync_op(flags);
6418 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
6419 pc.InstructionCacheInvalidateEnable =
6420 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
6421 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
6422 pc.IndirectStatePointersDisable =
6423 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
6424 pc.TextureCacheInvalidationEnable =
6425 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
6426 pc.Address = rw_bo(bo, offset);
6427 pc.ImmediateData = imm;
6428 }
6429 }
6430
6431 void
6432 genX(emit_urb_setup)(struct iris_context *ice,
6433 struct iris_batch *batch,
6434 const unsigned size[4],
6435 bool tess_present, bool gs_present)
6436 {
6437 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6438 const unsigned push_size_kB = 32;
6439 unsigned entries[4];
6440 unsigned start[4];
6441
6442 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
6443
6444 gen_get_urb_config(devinfo, 1024 * push_size_kB,
6445 1024 * ice->shaders.urb_size,
6446 tess_present, gs_present,
6447 size, entries, start);
6448
6449 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
6450 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
6451 urb._3DCommandSubOpcode += i;
6452 urb.VSURBStartingAddress = start[i];
6453 urb.VSURBEntryAllocationSize = size[i] - 1;
6454 urb.VSNumberofURBEntries = entries[i];
6455 }
6456 }
6457 }
6458
6459 #if GEN_GEN == 9
6460 /**
6461 * Preemption on Gen9 has to be enabled or disabled in various cases.
6462 *
6463 * See these workarounds for preemption:
6464 * - WaDisableMidObjectPreemptionForGSLineStripAdj
6465 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
6466 * - WaDisableMidObjectPreemptionForLineLoop
6467 * - WA#0798
6468 *
6469 * We don't put this in the vtable because it's only used on Gen9.
6470 */
6471 void
6472 gen9_toggle_preemption(struct iris_context *ice,
6473 struct iris_batch *batch,
6474 const struct pipe_draw_info *draw)
6475 {
6476 struct iris_genx_state *genx = ice->state.genx;
6477 bool object_preemption = true;
6478
6479 /* WaDisableMidObjectPreemptionForGSLineStripAdj
6480 *
6481 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
6482 * and GS is enabled."
6483 */
6484 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
6485 ice->shaders.prog[MESA_SHADER_GEOMETRY])
6486 object_preemption = false;
6487
6488 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
6489 *
6490 * "TriFan miscompare in Execlist Preemption test. Cut index that is
6491 * on a previous context. End the previous, the resume another context
6492 * with a tri-fan or polygon, and the vertex count is corrupted. If we
6493 * prempt again we will cause corruption.
6494 *
6495 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
6496 */
6497 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
6498 object_preemption = false;
6499
6500 /* WaDisableMidObjectPreemptionForLineLoop
6501 *
6502 * "VF Stats Counters Missing a vertex when preemption enabled.
6503 *
6504 * WA: Disable mid-draw preemption when the draw uses a lineloop
6505 * topology."
6506 */
6507 if (draw->mode == PIPE_PRIM_LINE_LOOP)
6508 object_preemption = false;
6509
6510 /* WA#0798
6511 *
6512 * "VF is corrupting GAFS data when preempted on an instance boundary
6513 * and replayed with instancing enabled.
6514 *
6515 * WA: Disable preemption when using instanceing."
6516 */
6517 if (draw->instance_count > 1)
6518 object_preemption = false;
6519
6520 if (genx->object_preemption != object_preemption) {
6521 iris_enable_obj_preemption(batch, object_preemption);
6522 genx->object_preemption = object_preemption;
6523 }
6524 }
6525 #endif
6526
6527 static void
6528 iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
6529 {
6530 struct iris_genx_state *genx = ice->state.genx;
6531
6532 memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
6533 }
6534
6535 static void
6536 iris_emit_mi_report_perf_count(struct iris_batch *batch,
6537 struct iris_bo *bo,
6538 uint32_t offset_in_bytes,
6539 uint32_t report_id)
6540 {
6541 iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
6542 mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes);
6543 mi_rpc.ReportID = report_id;
6544 }
6545 }
6546
6547 /**
6548 * Update the pixel hashing modes that determine the balancing of PS threads
6549 * across subslices and slices.
6550 *
6551 * \param width Width bound of the rendering area (already scaled down if \p
6552 * scale is greater than 1).
6553 * \param height Height bound of the rendering area (already scaled down if \p
6554 * scale is greater than 1).
6555 * \param scale The number of framebuffer samples that could potentially be
6556 * affected by an individual channel of the PS thread. This is
6557 * typically one for single-sampled rendering, but for operations
6558 * like CCS resolves and fast clears a single PS invocation may
6559 * update a huge number of pixels, in which case a finer
6560 * balancing is desirable in order to maximally utilize the
6561 * bandwidth available. UINT_MAX can be used as shorthand for
6562 * "finest hashing mode available".
6563 */
6564 void
6565 genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
6566 unsigned width, unsigned height, unsigned scale)
6567 {
6568 #if GEN_GEN == 9
6569 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6570 const unsigned slice_hashing[] = {
6571 /* Because all Gen9 platforms with more than one slice require
6572 * three-way subslice hashing, a single "normal" 16x16 slice hashing
6573 * block is guaranteed to suffer from substantial imbalance, with one
6574 * subslice receiving twice as much work as the other two in the
6575 * slice.
6576 *
6577 * The performance impact of that would be particularly severe when
6578 * three-way hashing is also in use for slice balancing (which is the
6579 * case for all Gen9 GT4 platforms), because one of the slices
6580 * receives one every three 16x16 blocks in either direction, which
6581 * is roughly the periodicity of the underlying subslice imbalance
6582 * pattern ("roughly" because in reality the hardware's
6583 * implementation of three-way hashing doesn't do exact modulo 3
6584 * arithmetic, which somewhat decreases the magnitude of this effect
6585 * in practice). This leads to a systematic subslice imbalance
6586 * within that slice regardless of the size of the primitive. The
6587 * 32x32 hashing mode guarantees that the subslice imbalance within a
6588 * single slice hashing block is minimal, largely eliminating this
6589 * effect.
6590 */
6591 _32x32,
6592 /* Finest slice hashing mode available. */
6593 NORMAL
6594 };
6595 const unsigned subslice_hashing[] = {
6596 /* 16x16 would provide a slight cache locality benefit especially
6597 * visible in the sampler L1 cache efficiency of low-bandwidth
6598 * non-LLC platforms, but it comes at the cost of greater subslice
6599 * imbalance for primitives of dimensions approximately intermediate
6600 * between 16x4 and 16x16.
6601 */
6602 _16x4,
6603 /* Finest subslice hashing mode available. */
6604 _8x4
6605 };
6606 /* Dimensions of the smallest hashing block of a given hashing mode. If
6607 * the rendering area is smaller than this there can't possibly be any
6608 * benefit from switching to this mode, so we optimize out the
6609 * transition.
6610 */
6611 const unsigned min_size[][2] = {
6612 { 16, 4 },
6613 { 8, 4 }
6614 };
6615 const unsigned idx = scale > 1;
6616
6617 if (width > min_size[idx][0] || height > min_size[idx][1]) {
6618 uint32_t gt_mode;
6619
6620 iris_pack_state(GENX(GT_MODE), &gt_mode, reg) {
6621 reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
6622 reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
6623 reg.SubsliceHashing = subslice_hashing[idx];
6624 reg.SubsliceHashingMask = -1;
6625 };
6626
6627 iris_emit_raw_pipe_control(batch,
6628 "workaround: CS stall before GT_MODE LRI",
6629 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6630 PIPE_CONTROL_CS_STALL,
6631 NULL, 0, 0);
6632
6633 iris_emit_lri(batch, GT_MODE, gt_mode);
6634
6635 ice->state.current_hash_scale = scale;
6636 }
6637 #endif
6638 }
6639
6640 void
6641 genX(init_state)(struct iris_context *ice)
6642 {
6643 struct pipe_context *ctx = &ice->ctx;
6644 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
6645
6646 ctx->create_blend_state = iris_create_blend_state;
6647 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
6648 ctx->create_rasterizer_state = iris_create_rasterizer_state;
6649 ctx->create_sampler_state = iris_create_sampler_state;
6650 ctx->create_sampler_view = iris_create_sampler_view;
6651 ctx->create_surface = iris_create_surface;
6652 ctx->create_vertex_elements_state = iris_create_vertex_elements;
6653 ctx->bind_blend_state = iris_bind_blend_state;
6654 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
6655 ctx->bind_sampler_states = iris_bind_sampler_states;
6656 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
6657 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
6658 ctx->delete_blend_state = iris_delete_state;
6659 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
6660 ctx->delete_rasterizer_state = iris_delete_state;
6661 ctx->delete_sampler_state = iris_delete_state;
6662 ctx->delete_vertex_elements_state = iris_delete_state;
6663 ctx->set_blend_color = iris_set_blend_color;
6664 ctx->set_clip_state = iris_set_clip_state;
6665 ctx->set_constant_buffer = iris_set_constant_buffer;
6666 ctx->set_shader_buffers = iris_set_shader_buffers;
6667 ctx->set_shader_images = iris_set_shader_images;
6668 ctx->set_sampler_views = iris_set_sampler_views;
6669 ctx->set_tess_state = iris_set_tess_state;
6670 ctx->set_framebuffer_state = iris_set_framebuffer_state;
6671 ctx->set_polygon_stipple = iris_set_polygon_stipple;
6672 ctx->set_sample_mask = iris_set_sample_mask;
6673 ctx->set_scissor_states = iris_set_scissor_states;
6674 ctx->set_stencil_ref = iris_set_stencil_ref;
6675 ctx->set_vertex_buffers = iris_set_vertex_buffers;
6676 ctx->set_viewport_states = iris_set_viewport_states;
6677 ctx->sampler_view_destroy = iris_sampler_view_destroy;
6678 ctx->surface_destroy = iris_surface_destroy;
6679 ctx->draw_vbo = iris_draw_vbo;
6680 ctx->launch_grid = iris_launch_grid;
6681 ctx->create_stream_output_target = iris_create_stream_output_target;
6682 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
6683 ctx->set_stream_output_targets = iris_set_stream_output_targets;
6684
6685 ice->vtbl.destroy_state = iris_destroy_state;
6686 ice->vtbl.init_render_context = iris_init_render_context;
6687 ice->vtbl.init_compute_context = iris_init_compute_context;
6688 ice->vtbl.upload_render_state = iris_upload_render_state;
6689 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
6690 ice->vtbl.upload_compute_state = iris_upload_compute_state;
6691 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
6692 ice->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
6693 ice->vtbl.rebind_buffer = iris_rebind_buffer;
6694 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
6695 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
6696 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
6697 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
6698 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
6699 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
6700 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
6701 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
6702 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
6703 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
6704 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
6705 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
6706 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
6707 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
6708 ice->vtbl.populate_vs_key = iris_populate_vs_key;
6709 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
6710 ice->vtbl.populate_tes_key = iris_populate_tes_key;
6711 ice->vtbl.populate_gs_key = iris_populate_gs_key;
6712 ice->vtbl.populate_fs_key = iris_populate_fs_key;
6713 ice->vtbl.populate_cs_key = iris_populate_cs_key;
6714 ice->vtbl.mocs = mocs;
6715 ice->vtbl.lost_genx_state = iris_lost_genx_state;
6716
6717 ice->state.dirty = ~0ull;
6718
6719 ice->state.statistics_counters_enabled = true;
6720
6721 ice->state.sample_mask = 0xffff;
6722 ice->state.num_viewports = 1;
6723 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
6724
6725 /* Make a 1x1x1 null surface for unbound textures */
6726 void *null_surf_map =
6727 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
6728 4 * GENX(RENDER_SURFACE_STATE_length), 64);
6729 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
6730 ice->state.unbound_tex.offset +=
6731 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
6732
6733 /* Default all scissor rectangles to be empty regions. */
6734 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
6735 ice->state.scissors[i] = (struct pipe_scissor_state) {
6736 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
6737 };
6738 }
6739 }