iris: Pass isl_surf to fill_surface_state
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "drm-uapi/i915_drm.h"
99 #include "nir.h"
100 #include "intel/compiler/brw_compiler.h"
101 #include "intel/common/gen_l3_config.h"
102 #include "intel/common/gen_sample_positions.h"
103 #include "iris_batch.h"
104 #include "iris_context.h"
105 #include "iris_defines.h"
106 #include "iris_pipe.h"
107 #include "iris_resource.h"
108
109 #include "iris_genx_macros.h"
110 #include "intel/common/gen_guardband.h"
111
112 #if GEN_GEN == 8
113 #define MOCS_PTE 0x18
114 #define MOCS_WB 0x78
115 #else
116 #define MOCS_PTE (1 << 1)
117 #define MOCS_WB (2 << 1)
118 #endif
119
120 static uint32_t
121 mocs(const struct iris_bo *bo)
122 {
123 return bo && bo->external ? MOCS_PTE : MOCS_WB;
124 }
125
126 /**
127 * Statically assert that PIPE_* enums match the hardware packets.
128 * (As long as they match, we don't need to translate them.)
129 */
130 UNUSED static void pipe_asserts()
131 {
132 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
133
134 /* pipe_logicop happens to match the hardware. */
135 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
136 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
137 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
138 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
139 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
140 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
141 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
142 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
143 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
144 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
145 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
146 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
147 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
148 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
149 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
150 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
151
152 /* pipe_blend_func happens to match the hardware. */
153 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
157 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
158 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
159 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
160 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
161 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
162 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
163 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
164 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
165 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
166 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
167 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
168 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
169 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
170 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
171 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
172
173 /* pipe_blend_func happens to match the hardware. */
174 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
175 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
176 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
177 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
178 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
179
180 /* pipe_stencil_op happens to match the hardware. */
181 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
182 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
183 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
184 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
185 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
186 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
187 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
188 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
189
190 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
191 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
192 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
193 #undef PIPE_ASSERT
194 }
195
196 static unsigned
197 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
198 {
199 static const unsigned map[] = {
200 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
201 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
202 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
203 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
204 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
205 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
206 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
207 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
208 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
209 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
210 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
211 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
212 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
213 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
214 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
215 };
216
217 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
218 }
219
220 static unsigned
221 translate_compare_func(enum pipe_compare_func pipe_func)
222 {
223 static const unsigned map[] = {
224 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
225 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
226 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
227 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
228 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
229 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
230 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
231 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
232 };
233 return map[pipe_func];
234 }
235
236 static unsigned
237 translate_shadow_func(enum pipe_compare_func pipe_func)
238 {
239 /* Gallium specifies the result of shadow comparisons as:
240 *
241 * 1 if ref <op> texel,
242 * 0 otherwise.
243 *
244 * The hardware does:
245 *
246 * 0 if texel <op> ref,
247 * 1 otherwise.
248 *
249 * So we need to flip the operator and also negate.
250 */
251 static const unsigned map[] = {
252 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
253 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
254 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
255 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
256 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
257 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
258 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
259 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
260 };
261 return map[pipe_func];
262 }
263
264 static unsigned
265 translate_cull_mode(unsigned pipe_face)
266 {
267 static const unsigned map[4] = {
268 [PIPE_FACE_NONE] = CULLMODE_NONE,
269 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
270 [PIPE_FACE_BACK] = CULLMODE_BACK,
271 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
272 };
273 return map[pipe_face];
274 }
275
276 static unsigned
277 translate_fill_mode(unsigned pipe_polymode)
278 {
279 static const unsigned map[4] = {
280 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
281 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
282 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
283 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
284 };
285 return map[pipe_polymode];
286 }
287
288 static unsigned
289 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
290 {
291 static const unsigned map[] = {
292 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
293 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
294 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
295 };
296 return map[pipe_mip];
297 }
298
299 static uint32_t
300 translate_wrap(unsigned pipe_wrap)
301 {
302 static const unsigned map[] = {
303 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
304 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
305 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
306 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
307 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
308 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
309
310 /* These are unsupported. */
311 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
312 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
313 };
314 return map[pipe_wrap];
315 }
316
317 /**
318 * Allocate space for some indirect state.
319 *
320 * Return a pointer to the map (to fill it out) and a state ref (for
321 * referring to the state in GPU commands).
322 */
323 static void *
324 upload_state(struct u_upload_mgr *uploader,
325 struct iris_state_ref *ref,
326 unsigned size,
327 unsigned alignment)
328 {
329 void *p = NULL;
330 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
331 return p;
332 }
333
334 /**
335 * Stream out temporary/short-lived state.
336 *
337 * This allocates space, pins the BO, and includes the BO address in the
338 * returned offset (which works because all state lives in 32-bit memory
339 * zones).
340 */
341 static uint32_t *
342 stream_state(struct iris_batch *batch,
343 struct u_upload_mgr *uploader,
344 struct pipe_resource **out_res,
345 unsigned size,
346 unsigned alignment,
347 uint32_t *out_offset)
348 {
349 void *ptr = NULL;
350
351 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
352
353 struct iris_bo *bo = iris_resource_bo(*out_res);
354 iris_use_pinned_bo(batch, bo, false);
355
356 *out_offset += iris_bo_offset_from_base_address(bo);
357
358 iris_record_state_size(batch->state_sizes, *out_offset, size);
359
360 return ptr;
361 }
362
363 /**
364 * stream_state() + memcpy.
365 */
366 static uint32_t
367 emit_state(struct iris_batch *batch,
368 struct u_upload_mgr *uploader,
369 struct pipe_resource **out_res,
370 const void *data,
371 unsigned size,
372 unsigned alignment)
373 {
374 unsigned offset = 0;
375 uint32_t *map =
376 stream_state(batch, uploader, out_res, size, alignment, &offset);
377
378 if (map)
379 memcpy(map, data, size);
380
381 return offset;
382 }
383
384 /**
385 * Did field 'x' change between 'old_cso' and 'new_cso'?
386 *
387 * (If so, we may want to set some dirty flags.)
388 */
389 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
390 #define cso_changed_memcmp(x) \
391 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
392
393 static void
394 flush_for_state_base_change(struct iris_batch *batch)
395 {
396 /* Flush before emitting STATE_BASE_ADDRESS.
397 *
398 * This isn't documented anywhere in the PRM. However, it seems to be
399 * necessary prior to changing the surface state base adress. We've
400 * seen issues in Vulkan where we get GPU hangs when using multi-level
401 * command buffers which clear depth, reset state base address, and then
402 * go render stuff.
403 *
404 * Normally, in GL, we would trust the kernel to do sufficient stalls
405 * and flushes prior to executing our batch. However, it doesn't seem
406 * as if the kernel's flushing is always sufficient and we don't want to
407 * rely on it.
408 *
409 * We make this an end-of-pipe sync instead of a normal flush because we
410 * do not know the current status of the GPU. On Haswell at least,
411 * having a fast-clear operation in flight at the same time as a normal
412 * rendering operation can cause hangs. Since the kernel's flushing is
413 * insufficient, we need to ensure that any rendering operations from
414 * other processes are definitely complete before we try to do our own
415 * rendering. It's a bit of a big hammer but it appears to work.
416 */
417 iris_emit_end_of_pipe_sync(batch,
418 "change STATE_BASE_ADDRESS",
419 PIPE_CONTROL_RENDER_TARGET_FLUSH |
420 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
421 PIPE_CONTROL_DATA_CACHE_FLUSH);
422 }
423
424 static void
425 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
426 {
427 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
428 lri.RegisterOffset = reg;
429 lri.DataDWord = val;
430 }
431 }
432 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
433
434 static void
435 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
436 {
437 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
438 lrr.SourceRegisterAddress = src;
439 lrr.DestinationRegisterAddress = dst;
440 }
441 }
442
443 static void
444 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
445 {
446 #if GEN_GEN >= 8 && GEN_GEN < 10
447 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
448 *
449 * Software must clear the COLOR_CALC_STATE Valid field in
450 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
451 * with Pipeline Select set to GPGPU.
452 *
453 * The internal hardware docs recommend the same workaround for Gen9
454 * hardware too.
455 */
456 if (pipeline == GPGPU)
457 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
458 #endif
459
460
461 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
462 * PIPELINE_SELECT [DevBWR+]":
463 *
464 * "Project: DEVSNB+
465 *
466 * Software must ensure all the write caches are flushed through a
467 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
468 * command to invalidate read only caches prior to programming
469 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
470 */
471 iris_emit_pipe_control_flush(batch,
472 "workaround: PIPELINE_SELECT flushes (1/2)",
473 PIPE_CONTROL_RENDER_TARGET_FLUSH |
474 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
475 PIPE_CONTROL_DATA_CACHE_FLUSH |
476 PIPE_CONTROL_CS_STALL);
477
478 iris_emit_pipe_control_flush(batch,
479 "workaround: PIPELINE_SELECT flushes (2/2)",
480 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
481 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
482 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
483 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
484
485 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
486 #if GEN_GEN >= 9
487 sel.MaskBits = 3;
488 #endif
489 sel.PipelineSelection = pipeline;
490 }
491 }
492
493 UNUSED static void
494 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
495 {
496 #if GEN_GEN == 9
497 /* Project: DevGLK
498 *
499 * "This chicken bit works around a hardware issue with barrier
500 * logic encountered when switching between GPGPU and 3D pipelines.
501 * To workaround the issue, this mode bit should be set after a
502 * pipeline is selected."
503 */
504 uint32_t reg_val;
505 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
506 reg.GLKBarrierMode = value;
507 reg.GLKBarrierModeMask = 1;
508 }
509 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
510 #endif
511 }
512
513 static void
514 init_state_base_address(struct iris_batch *batch)
515 {
516 flush_for_state_base_change(batch);
517
518 /* We program most base addresses once at context initialization time.
519 * Each base address points at a 4GB memory zone, and never needs to
520 * change. See iris_bufmgr.h for a description of the memory zones.
521 *
522 * The one exception is Surface State Base Address, which needs to be
523 * updated occasionally. See iris_binder.c for the details there.
524 */
525 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
526 sba.GeneralStateMOCS = MOCS_WB;
527 sba.StatelessDataPortAccessMOCS = MOCS_WB;
528 sba.DynamicStateMOCS = MOCS_WB;
529 sba.IndirectObjectMOCS = MOCS_WB;
530 sba.InstructionMOCS = MOCS_WB;
531
532 sba.GeneralStateBaseAddressModifyEnable = true;
533 sba.DynamicStateBaseAddressModifyEnable = true;
534 sba.IndirectObjectBaseAddressModifyEnable = true;
535 sba.InstructionBaseAddressModifyEnable = true;
536 sba.GeneralStateBufferSizeModifyEnable = true;
537 sba.DynamicStateBufferSizeModifyEnable = true;
538 #if (GEN_GEN >= 9)
539 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
540 sba.BindlessSurfaceStateMOCS = MOCS_WB;
541 #endif
542 sba.IndirectObjectBufferSizeModifyEnable = true;
543 sba.InstructionBuffersizeModifyEnable = true;
544
545 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
546 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
547
548 sba.GeneralStateBufferSize = 0xfffff;
549 sba.IndirectObjectBufferSize = 0xfffff;
550 sba.InstructionBufferSize = 0xfffff;
551 sba.DynamicStateBufferSize = 0xfffff;
552 }
553 }
554
555 static void
556 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
557 bool has_slm, bool wants_dc_cache)
558 {
559 uint32_t reg_val;
560 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
561 reg.SLMEnable = has_slm;
562 #if GEN_GEN == 11
563 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
564 * in L3CNTLREG register. The default setting of the bit is not the
565 * desirable behavior.
566 */
567 reg.ErrorDetectionBehaviorControl = true;
568 reg.UseFullWays = true;
569 #endif
570 reg.URBAllocation = cfg->n[GEN_L3P_URB];
571 reg.ROAllocation = cfg->n[GEN_L3P_RO];
572 reg.DCAllocation = cfg->n[GEN_L3P_DC];
573 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
574 }
575 iris_emit_lri(batch, L3CNTLREG, reg_val);
576 }
577
578 static void
579 iris_emit_default_l3_config(struct iris_batch *batch,
580 const struct gen_device_info *devinfo,
581 bool compute)
582 {
583 bool wants_dc_cache = true;
584 bool has_slm = compute;
585 const struct gen_l3_weights w =
586 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
587 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
588 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
589 }
590
591 #if GEN_GEN == 9 || GEN_GEN == 10
592 static void
593 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
594 {
595 uint32_t reg_val;
596
597 /* A fixed function pipe flush is required before modifying this field */
598 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
599 : "disable preemption",
600 PIPE_CONTROL_RENDER_TARGET_FLUSH);
601
602 /* enable object level preemption */
603 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
604 reg.ReplayMode = enable;
605 reg.ReplayModeMask = true;
606 }
607 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
608 }
609 #endif
610
611 #if GEN_GEN == 11
612 static void
613 iris_upload_slice_hashing_state(struct iris_batch *batch)
614 {
615 const struct gen_device_info *devinfo = &batch->screen->devinfo;
616 int subslices_delta =
617 devinfo->ppipe_subslices[0] - devinfo->ppipe_subslices[1];
618 if (subslices_delta == 0)
619 return;
620
621 struct iris_context *ice = NULL;
622 ice = container_of(batch, ice, batches[IRIS_BATCH_RENDER]);
623 assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
624
625 unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
626 uint32_t hash_address;
627 struct pipe_resource *tmp = NULL;
628 uint32_t *map =
629 stream_state(batch, ice->state.dynamic_uploader, &tmp,
630 size, 64, &hash_address);
631 pipe_resource_reference(&tmp, NULL);
632
633 struct GENX(SLICE_HASH_TABLE) table0 = {
634 .Entry = {
635 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
636 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
637 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
638 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
639 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
640 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
641 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
642 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
643 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
644 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
645 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
646 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
647 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
648 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
649 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
650 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 }
651 }
652 };
653
654 struct GENX(SLICE_HASH_TABLE) table1 = {
655 .Entry = {
656 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
657 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
658 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
659 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
660 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
661 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
662 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
663 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
664 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
665 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
666 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
667 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
668 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
669 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
670 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
671 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 }
672 }
673 };
674
675 const struct GENX(SLICE_HASH_TABLE) *table =
676 subslices_delta < 0 ? &table0 : &table1;
677 GENX(SLICE_HASH_TABLE_pack)(NULL, map, table);
678
679 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
680 ptr.SliceHashStatePointerValid = true;
681 ptr.SliceHashTableStatePointer = hash_address;
682 }
683
684 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
685 mode.SliceHashingTableEnable = true;
686 }
687 }
688 #endif
689
690 /**
691 * Upload the initial GPU state for a render context.
692 *
693 * This sets some invariant state that needs to be programmed a particular
694 * way, but we never actually change.
695 */
696 static void
697 iris_init_render_context(struct iris_screen *screen,
698 struct iris_batch *batch,
699 struct iris_vtable *vtbl,
700 struct pipe_debug_callback *dbg)
701 {
702 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
703 uint32_t reg_val;
704
705 emit_pipeline_select(batch, _3D);
706
707 iris_emit_default_l3_config(batch, devinfo, false);
708
709 init_state_base_address(batch);
710
711 #if GEN_GEN >= 9
712 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
713 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
714 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
715 }
716 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
717 #else
718 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
719 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
720 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
721 }
722 iris_emit_lri(batch, INSTPM, reg_val);
723 #endif
724
725 #if GEN_GEN == 9
726 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
727 reg.FloatBlendOptimizationEnable = true;
728 reg.FloatBlendOptimizationEnableMask = true;
729 reg.PartialResolveDisableInVC = true;
730 reg.PartialResolveDisableInVCMask = true;
731 }
732 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
733
734 if (devinfo->is_geminilake)
735 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
736 #endif
737
738 #if GEN_GEN == 11
739 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
740 reg.HeaderlessMessageforPreemptableContexts = 1;
741 reg.HeaderlessMessageforPreemptableContextsMask = 1;
742 }
743 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
744
745 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
746 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
747 reg.EnabledTexelOffsetPrecisionFix = 1;
748 reg.EnabledTexelOffsetPrecisionFixMask = 1;
749 }
750 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
751
752 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
753 reg.StateCacheRedirectToCSSectionEnable = true;
754 reg.StateCacheRedirectToCSSectionEnableMask = true;
755 }
756 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
757
758 /* Hardware specification recommends disabling repacking for the
759 * compatibility with decompression mechanism in display controller.
760 */
761 if (devinfo->disable_ccs_repack) {
762 iris_pack_state(GENX(CACHE_MODE_0), &reg_val, reg) {
763 reg.DisableRepackingforCompression = true;
764 reg.DisableRepackingforCompressionMask = true;
765 }
766 iris_emit_lri(batch, CACHE_MODE_0, reg_val);
767 }
768
769 iris_upload_slice_hashing_state(batch);
770 #endif
771
772 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
773 * changing it dynamically. We set it to the maximum size here, and
774 * instead include the render target dimensions in the viewport, so
775 * viewport extents clipping takes care of pruning stray geometry.
776 */
777 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
778 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
779 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
780 }
781
782 /* Set the initial MSAA sample positions. */
783 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
784 GEN_SAMPLE_POS_1X(pat._1xSample);
785 GEN_SAMPLE_POS_2X(pat._2xSample);
786 GEN_SAMPLE_POS_4X(pat._4xSample);
787 GEN_SAMPLE_POS_8X(pat._8xSample);
788 #if GEN_GEN >= 9
789 GEN_SAMPLE_POS_16X(pat._16xSample);
790 #endif
791 }
792
793 /* Use the legacy AA line coverage computation. */
794 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
795
796 /* Disable chromakeying (it's for media) */
797 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
798
799 /* We want regular rendering, not special HiZ operations. */
800 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
801
802 /* No polygon stippling offsets are necessary. */
803 /* TODO: may need to set an offset for origin-UL framebuffers */
804 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
805
806 /* Set a static partitioning of the push constant area. */
807 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
808 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
809 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
810 alloc._3DCommandSubOpcode = 18 + i;
811 alloc.ConstantBufferOffset = 6 * i;
812 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
813 }
814 }
815
816 #if GEN_GEN == 10
817 /* Gen11+ is enabled for us by the kernel. */
818 iris_enable_obj_preemption(batch, true);
819 #endif
820 }
821
822 static void
823 iris_init_compute_context(struct iris_screen *screen,
824 struct iris_batch *batch,
825 struct iris_vtable *vtbl,
826 struct pipe_debug_callback *dbg)
827 {
828 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
829
830 emit_pipeline_select(batch, GPGPU);
831
832 iris_emit_default_l3_config(batch, devinfo, true);
833
834 init_state_base_address(batch);
835
836 #if GEN_GEN == 9
837 if (devinfo->is_geminilake)
838 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
839 #endif
840 }
841
842 struct iris_vertex_buffer_state {
843 /** The VERTEX_BUFFER_STATE hardware structure. */
844 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
845
846 /** The resource to source vertex data from. */
847 struct pipe_resource *resource;
848 };
849
850 struct iris_depth_buffer_state {
851 /* Depth/HiZ/Stencil related hardware packets. */
852 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
853 GENX(3DSTATE_STENCIL_BUFFER_length) +
854 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
855 GENX(3DSTATE_CLEAR_PARAMS_length)];
856 };
857
858 /**
859 * Generation-specific context state (ice->state.genx->...).
860 *
861 * Most state can go in iris_context directly, but these encode hardware
862 * packets which vary by generation.
863 */
864 struct iris_genx_state {
865 struct iris_vertex_buffer_state vertex_buffers[33];
866 uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
867
868 struct iris_depth_buffer_state depth_buffer;
869
870 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
871
872 #if GEN_GEN == 9
873 /* Is object level preemption enabled? */
874 bool object_preemption;
875 #endif
876
877 struct {
878 #if GEN_GEN == 8
879 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
880 #endif
881 } shaders[MESA_SHADER_STAGES];
882 };
883
884 /**
885 * The pipe->set_blend_color() driver hook.
886 *
887 * This corresponds to our COLOR_CALC_STATE.
888 */
889 static void
890 iris_set_blend_color(struct pipe_context *ctx,
891 const struct pipe_blend_color *state)
892 {
893 struct iris_context *ice = (struct iris_context *) ctx;
894
895 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
896 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
897 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
898 }
899
900 /**
901 * Gallium CSO for blend state (see pipe_blend_state).
902 */
903 struct iris_blend_state {
904 /** Partial 3DSTATE_PS_BLEND */
905 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
906
907 /** Partial BLEND_STATE */
908 uint32_t blend_state[GENX(BLEND_STATE_length) +
909 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
910
911 bool alpha_to_coverage; /* for shader key */
912
913 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
914 uint8_t blend_enables;
915
916 /** Bitfield of whether color writes are enabled for RT[i] */
917 uint8_t color_write_enables;
918
919 /** Does RT[0] use dual color blending? */
920 bool dual_color_blending;
921 };
922
923 static enum pipe_blendfactor
924 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
925 {
926 if (alpha_to_one) {
927 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
928 return PIPE_BLENDFACTOR_ONE;
929
930 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
931 return PIPE_BLENDFACTOR_ZERO;
932 }
933
934 return f;
935 }
936
937 /**
938 * The pipe->create_blend_state() driver hook.
939 *
940 * Translates a pipe_blend_state into iris_blend_state.
941 */
942 static void *
943 iris_create_blend_state(struct pipe_context *ctx,
944 const struct pipe_blend_state *state)
945 {
946 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
947 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
948
949 cso->blend_enables = 0;
950 cso->color_write_enables = 0;
951 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
952
953 cso->alpha_to_coverage = state->alpha_to_coverage;
954
955 bool indep_alpha_blend = false;
956
957 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
958 const struct pipe_rt_blend_state *rt =
959 &state->rt[state->independent_blend_enable ? i : 0];
960
961 enum pipe_blendfactor src_rgb =
962 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
963 enum pipe_blendfactor src_alpha =
964 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
965 enum pipe_blendfactor dst_rgb =
966 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
967 enum pipe_blendfactor dst_alpha =
968 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
969
970 if (rt->rgb_func != rt->alpha_func ||
971 src_rgb != src_alpha || dst_rgb != dst_alpha)
972 indep_alpha_blend = true;
973
974 if (rt->blend_enable)
975 cso->blend_enables |= 1u << i;
976
977 if (rt->colormask)
978 cso->color_write_enables |= 1u << i;
979
980 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
981 be.LogicOpEnable = state->logicop_enable;
982 be.LogicOpFunction = state->logicop_func;
983
984 be.PreBlendSourceOnlyClampEnable = false;
985 be.ColorClampRange = COLORCLAMP_RTFORMAT;
986 be.PreBlendColorClampEnable = true;
987 be.PostBlendColorClampEnable = true;
988
989 be.ColorBufferBlendEnable = rt->blend_enable;
990
991 be.ColorBlendFunction = rt->rgb_func;
992 be.AlphaBlendFunction = rt->alpha_func;
993 be.SourceBlendFactor = src_rgb;
994 be.SourceAlphaBlendFactor = src_alpha;
995 be.DestinationBlendFactor = dst_rgb;
996 be.DestinationAlphaBlendFactor = dst_alpha;
997
998 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
999 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
1000 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
1001 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
1002 }
1003 blend_entry += GENX(BLEND_STATE_ENTRY_length);
1004 }
1005
1006 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
1007 /* pb.HasWriteableRT is filled in at draw time.
1008 * pb.AlphaTestEnable is filled in at draw time.
1009 *
1010 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
1011 * setting it when dual color blending without an appropriate shader.
1012 */
1013
1014 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
1015 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
1016
1017 pb.SourceBlendFactor =
1018 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1019 pb.SourceAlphaBlendFactor =
1020 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1021 pb.DestinationBlendFactor =
1022 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
1023 pb.DestinationAlphaBlendFactor =
1024 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
1025 }
1026
1027 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1028 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1029 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1030 bs.AlphaToOneEnable = state->alpha_to_one;
1031 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
1032 bs.ColorDitherEnable = state->dither;
1033 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1034 }
1035
1036 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1037
1038 return cso;
1039 }
1040
1041 /**
1042 * The pipe->bind_blend_state() driver hook.
1043 *
1044 * Bind a blending CSO and flag related dirty bits.
1045 */
1046 static void
1047 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1048 {
1049 struct iris_context *ice = (struct iris_context *) ctx;
1050 struct iris_blend_state *cso = state;
1051
1052 ice->state.cso_blend = cso;
1053 ice->state.blend_enables = cso ? cso->blend_enables : 0;
1054
1055 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1056 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1057 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1058 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
1059 }
1060
1061 /**
1062 * Return true if the FS writes to any color outputs which are not disabled
1063 * via color masking.
1064 */
1065 static bool
1066 has_writeable_rt(const struct iris_blend_state *cso_blend,
1067 const struct shader_info *fs_info)
1068 {
1069 if (!fs_info)
1070 return false;
1071
1072 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1073
1074 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1075 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
1076
1077 return cso_blend->color_write_enables & rt_outputs;
1078 }
1079
1080 /**
1081 * Gallium CSO for depth, stencil, and alpha testing state.
1082 */
1083 struct iris_depth_stencil_alpha_state {
1084 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1085 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1086
1087 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1088 struct pipe_alpha_state alpha;
1089
1090 /** Outbound to resolve and cache set tracking. */
1091 bool depth_writes_enabled;
1092 bool stencil_writes_enabled;
1093 };
1094
1095 /**
1096 * The pipe->create_depth_stencil_alpha_state() driver hook.
1097 *
1098 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1099 * testing state since we need pieces of it in a variety of places.
1100 */
1101 static void *
1102 iris_create_zsa_state(struct pipe_context *ctx,
1103 const struct pipe_depth_stencil_alpha_state *state)
1104 {
1105 struct iris_depth_stencil_alpha_state *cso =
1106 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1107
1108 bool two_sided_stencil = state->stencil[1].enabled;
1109
1110 cso->alpha = state->alpha;
1111 cso->depth_writes_enabled = state->depth.writemask;
1112 cso->stencil_writes_enabled =
1113 state->stencil[0].writemask != 0 ||
1114 (two_sided_stencil && state->stencil[1].writemask != 0);
1115
1116 /* The state tracker needs to optimize away EQUAL writes for us. */
1117 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1118
1119 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1120 wmds.StencilFailOp = state->stencil[0].fail_op;
1121 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1122 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1123 wmds.StencilTestFunction =
1124 translate_compare_func(state->stencil[0].func);
1125 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1126 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1127 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1128 wmds.BackfaceStencilTestFunction =
1129 translate_compare_func(state->stencil[1].func);
1130 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1131 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1132 wmds.StencilTestEnable = state->stencil[0].enabled;
1133 wmds.StencilBufferWriteEnable =
1134 state->stencil[0].writemask != 0 ||
1135 (two_sided_stencil && state->stencil[1].writemask != 0);
1136 wmds.DepthTestEnable = state->depth.enabled;
1137 wmds.DepthBufferWriteEnable = state->depth.writemask;
1138 wmds.StencilTestMask = state->stencil[0].valuemask;
1139 wmds.StencilWriteMask = state->stencil[0].writemask;
1140 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1141 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1142 /* wmds.[Backface]StencilReferenceValue are merged later */
1143 }
1144
1145 return cso;
1146 }
1147
1148 /**
1149 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1150 *
1151 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1152 */
1153 static void
1154 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1155 {
1156 struct iris_context *ice = (struct iris_context *) ctx;
1157 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1158 struct iris_depth_stencil_alpha_state *new_cso = state;
1159
1160 if (new_cso) {
1161 if (cso_changed(alpha.ref_value))
1162 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1163
1164 if (cso_changed(alpha.enabled))
1165 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1166
1167 if (cso_changed(alpha.func))
1168 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1169
1170 if (cso_changed(depth_writes_enabled))
1171 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1172
1173 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1174 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1175 }
1176
1177 ice->state.cso_zsa = new_cso;
1178 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1179 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1180 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1181 }
1182
1183 /**
1184 * Gallium CSO for rasterizer state.
1185 */
1186 struct iris_rasterizer_state {
1187 uint32_t sf[GENX(3DSTATE_SF_length)];
1188 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1189 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1190 uint32_t wm[GENX(3DSTATE_WM_length)];
1191 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1192
1193 uint8_t num_clip_plane_consts;
1194 bool clip_halfz; /* for CC_VIEWPORT */
1195 bool depth_clip_near; /* for CC_VIEWPORT */
1196 bool depth_clip_far; /* for CC_VIEWPORT */
1197 bool flatshade; /* for shader state */
1198 bool flatshade_first; /* for stream output */
1199 bool clamp_fragment_color; /* for shader state */
1200 bool light_twoside; /* for shader state */
1201 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1202 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1203 bool line_stipple_enable;
1204 bool poly_stipple_enable;
1205 bool multisample;
1206 bool force_persample_interp;
1207 bool conservative_rasterization;
1208 bool fill_mode_point_or_line;
1209 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1210 uint16_t sprite_coord_enable;
1211 };
1212
1213 static float
1214 get_line_width(const struct pipe_rasterizer_state *state)
1215 {
1216 float line_width = state->line_width;
1217
1218 /* From the OpenGL 4.4 spec:
1219 *
1220 * "The actual width of non-antialiased lines is determined by rounding
1221 * the supplied width to the nearest integer, then clamping it to the
1222 * implementation-dependent maximum non-antialiased line width."
1223 */
1224 if (!state->multisample && !state->line_smooth)
1225 line_width = roundf(state->line_width);
1226
1227 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1228 /* For 1 pixel line thickness or less, the general anti-aliasing
1229 * algorithm gives up, and a garbage line is generated. Setting a
1230 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1231 * (one-pixel-wide), non-antialiased lines.
1232 *
1233 * Lines rendered with zero Line Width are rasterized using the
1234 * "Grid Intersection Quantization" rules as specified by the
1235 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1236 */
1237 line_width = 0.0f;
1238 }
1239
1240 return line_width;
1241 }
1242
1243 /**
1244 * The pipe->create_rasterizer_state() driver hook.
1245 */
1246 static void *
1247 iris_create_rasterizer_state(struct pipe_context *ctx,
1248 const struct pipe_rasterizer_state *state)
1249 {
1250 struct iris_rasterizer_state *cso =
1251 malloc(sizeof(struct iris_rasterizer_state));
1252
1253 cso->multisample = state->multisample;
1254 cso->force_persample_interp = state->force_persample_interp;
1255 cso->clip_halfz = state->clip_halfz;
1256 cso->depth_clip_near = state->depth_clip_near;
1257 cso->depth_clip_far = state->depth_clip_far;
1258 cso->flatshade = state->flatshade;
1259 cso->flatshade_first = state->flatshade_first;
1260 cso->clamp_fragment_color = state->clamp_fragment_color;
1261 cso->light_twoside = state->light_twoside;
1262 cso->rasterizer_discard = state->rasterizer_discard;
1263 cso->half_pixel_center = state->half_pixel_center;
1264 cso->sprite_coord_mode = state->sprite_coord_mode;
1265 cso->sprite_coord_enable = state->sprite_coord_enable;
1266 cso->line_stipple_enable = state->line_stipple_enable;
1267 cso->poly_stipple_enable = state->poly_stipple_enable;
1268 cso->conservative_rasterization =
1269 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1270
1271 cso->fill_mode_point_or_line =
1272 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1273 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1274 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1275 state->fill_back == PIPE_POLYGON_MODE_POINT;
1276
1277 if (state->clip_plane_enable != 0)
1278 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1279 else
1280 cso->num_clip_plane_consts = 0;
1281
1282 float line_width = get_line_width(state);
1283
1284 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1285 sf.StatisticsEnable = true;
1286 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1287 sf.LineEndCapAntialiasingRegionWidth =
1288 state->line_smooth ? _10pixels : _05pixels;
1289 sf.LastPixelEnable = state->line_last_pixel;
1290 sf.LineWidth = line_width;
1291 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1292 !state->point_quad_rasterization;
1293 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1294 sf.PointWidth = state->point_size;
1295
1296 if (state->flatshade_first) {
1297 sf.TriangleFanProvokingVertexSelect = 1;
1298 } else {
1299 sf.TriangleStripListProvokingVertexSelect = 2;
1300 sf.TriangleFanProvokingVertexSelect = 2;
1301 sf.LineStripListProvokingVertexSelect = 1;
1302 }
1303 }
1304
1305 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1306 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1307 rr.CullMode = translate_cull_mode(state->cull_face);
1308 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1309 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1310 rr.DXMultisampleRasterizationEnable = state->multisample;
1311 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1312 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1313 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1314 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1315 rr.GlobalDepthOffsetScale = state->offset_scale;
1316 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1317 rr.SmoothPointEnable = state->point_smooth;
1318 rr.AntialiasingEnable = state->line_smooth;
1319 rr.ScissorRectangleEnable = state->scissor;
1320 #if GEN_GEN >= 9
1321 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1322 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1323 rr.ConservativeRasterizationEnable =
1324 cso->conservative_rasterization;
1325 #else
1326 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1327 #endif
1328 }
1329
1330 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1331 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1332 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1333 */
1334 cl.EarlyCullEnable = true;
1335 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1336 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1337 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1338 cl.GuardbandClipTestEnable = true;
1339 cl.ClipEnable = true;
1340 cl.MinimumPointWidth = 0.125;
1341 cl.MaximumPointWidth = 255.875;
1342
1343 if (state->flatshade_first) {
1344 cl.TriangleFanProvokingVertexSelect = 1;
1345 } else {
1346 cl.TriangleStripListProvokingVertexSelect = 2;
1347 cl.TriangleFanProvokingVertexSelect = 2;
1348 cl.LineStripListProvokingVertexSelect = 1;
1349 }
1350 }
1351
1352 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1353 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1354 * filled in at draw time from the FS program.
1355 */
1356 wm.LineAntialiasingRegionWidth = _10pixels;
1357 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1358 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1359 wm.LineStippleEnable = state->line_stipple_enable;
1360 wm.PolygonStippleEnable = state->poly_stipple_enable;
1361 }
1362
1363 /* Remap from 0..255 back to 1..256 */
1364 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1365
1366 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1367 line.LineStipplePattern = state->line_stipple_pattern;
1368 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1369 line.LineStippleRepeatCount = line_stipple_factor;
1370 }
1371
1372 return cso;
1373 }
1374
1375 /**
1376 * The pipe->bind_rasterizer_state() driver hook.
1377 *
1378 * Bind a rasterizer CSO and flag related dirty bits.
1379 */
1380 static void
1381 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1382 {
1383 struct iris_context *ice = (struct iris_context *) ctx;
1384 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1385 struct iris_rasterizer_state *new_cso = state;
1386
1387 if (new_cso) {
1388 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1389 if (cso_changed_memcmp(line_stipple))
1390 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1391
1392 if (cso_changed(half_pixel_center))
1393 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1394
1395 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1396 ice->state.dirty |= IRIS_DIRTY_WM;
1397
1398 if (cso_changed(rasterizer_discard))
1399 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1400
1401 if (cso_changed(flatshade_first))
1402 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1403
1404 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1405 cso_changed(clip_halfz))
1406 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1407
1408 if (cso_changed(sprite_coord_enable) ||
1409 cso_changed(sprite_coord_mode) ||
1410 cso_changed(light_twoside))
1411 ice->state.dirty |= IRIS_DIRTY_SBE;
1412
1413 if (cso_changed(conservative_rasterization))
1414 ice->state.dirty |= IRIS_DIRTY_FS;
1415 }
1416
1417 ice->state.cso_rast = new_cso;
1418 ice->state.dirty |= IRIS_DIRTY_RASTER;
1419 ice->state.dirty |= IRIS_DIRTY_CLIP;
1420 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1421 }
1422
1423 /**
1424 * Return true if the given wrap mode requires the border color to exist.
1425 *
1426 * (We can skip uploading it if the sampler isn't going to use it.)
1427 */
1428 static bool
1429 wrap_mode_needs_border_color(unsigned wrap_mode)
1430 {
1431 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1432 }
1433
1434 /**
1435 * Gallium CSO for sampler state.
1436 */
1437 struct iris_sampler_state {
1438 union pipe_color_union border_color;
1439 bool needs_border_color;
1440
1441 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1442 };
1443
1444 /**
1445 * The pipe->create_sampler_state() driver hook.
1446 *
1447 * We fill out SAMPLER_STATE (except for the border color pointer), and
1448 * store that on the CPU. It doesn't make sense to upload it to a GPU
1449 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1450 * all bound sampler states to be in contiguous memor.
1451 */
1452 static void *
1453 iris_create_sampler_state(struct pipe_context *ctx,
1454 const struct pipe_sampler_state *state)
1455 {
1456 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1457
1458 if (!cso)
1459 return NULL;
1460
1461 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1462 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1463
1464 unsigned wrap_s = translate_wrap(state->wrap_s);
1465 unsigned wrap_t = translate_wrap(state->wrap_t);
1466 unsigned wrap_r = translate_wrap(state->wrap_r);
1467
1468 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1469
1470 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1471 wrap_mode_needs_border_color(wrap_t) ||
1472 wrap_mode_needs_border_color(wrap_r);
1473
1474 float min_lod = state->min_lod;
1475 unsigned mag_img_filter = state->mag_img_filter;
1476
1477 // XXX: explain this code ported from ilo...I don't get it at all...
1478 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1479 state->min_lod > 0.0f) {
1480 min_lod = 0.0f;
1481 mag_img_filter = state->min_img_filter;
1482 }
1483
1484 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1485 samp.TCXAddressControlMode = wrap_s;
1486 samp.TCYAddressControlMode = wrap_t;
1487 samp.TCZAddressControlMode = wrap_r;
1488 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1489 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1490 samp.MinModeFilter = state->min_img_filter;
1491 samp.MagModeFilter = mag_img_filter;
1492 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1493 samp.MaximumAnisotropy = RATIO21;
1494
1495 if (state->max_anisotropy >= 2) {
1496 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1497 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1498 samp.AnisotropicAlgorithm = EWAApproximation;
1499 }
1500
1501 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1502 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1503
1504 samp.MaximumAnisotropy =
1505 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1506 }
1507
1508 /* Set address rounding bits if not using nearest filtering. */
1509 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1510 samp.UAddressMinFilterRoundingEnable = true;
1511 samp.VAddressMinFilterRoundingEnable = true;
1512 samp.RAddressMinFilterRoundingEnable = true;
1513 }
1514
1515 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1516 samp.UAddressMagFilterRoundingEnable = true;
1517 samp.VAddressMagFilterRoundingEnable = true;
1518 samp.RAddressMagFilterRoundingEnable = true;
1519 }
1520
1521 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1522 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1523
1524 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1525
1526 samp.LODPreClampMode = CLAMP_MODE_OGL;
1527 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1528 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1529 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1530
1531 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1532 }
1533
1534 return cso;
1535 }
1536
1537 /**
1538 * The pipe->bind_sampler_states() driver hook.
1539 */
1540 static void
1541 iris_bind_sampler_states(struct pipe_context *ctx,
1542 enum pipe_shader_type p_stage,
1543 unsigned start, unsigned count,
1544 void **states)
1545 {
1546 struct iris_context *ice = (struct iris_context *) ctx;
1547 gl_shader_stage stage = stage_from_pipe(p_stage);
1548 struct iris_shader_state *shs = &ice->state.shaders[stage];
1549
1550 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1551
1552 for (int i = 0; i < count; i++) {
1553 shs->samplers[start + i] = states[i];
1554 }
1555
1556 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1557 }
1558
1559 /**
1560 * Upload the sampler states into a contiguous area of GPU memory, for
1561 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1562 *
1563 * Also fill out the border color state pointers.
1564 */
1565 static void
1566 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1567 {
1568 struct iris_shader_state *shs = &ice->state.shaders[stage];
1569 const struct shader_info *info = iris_get_shader_info(ice, stage);
1570
1571 /* We assume the state tracker will call pipe->bind_sampler_states()
1572 * if the program's number of textures changes.
1573 */
1574 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1575
1576 if (!count)
1577 return;
1578
1579 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1580 * in the dynamic state memory zone, so we can point to it via the
1581 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1582 */
1583 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
1584 uint32_t *map =
1585 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
1586 if (unlikely(!map))
1587 return;
1588
1589 struct pipe_resource *res = shs->sampler_table.res;
1590 shs->sampler_table.offset +=
1591 iris_bo_offset_from_base_address(iris_resource_bo(res));
1592
1593 iris_record_state_size(ice->state.sizes, shs->sampler_table.offset, size);
1594
1595 /* Make sure all land in the same BO */
1596 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1597
1598 ice->state.need_border_colors &= ~(1 << stage);
1599
1600 for (int i = 0; i < count; i++) {
1601 struct iris_sampler_state *state = shs->samplers[i];
1602 struct iris_sampler_view *tex = shs->textures[i];
1603
1604 if (!state) {
1605 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1606 } else if (!state->needs_border_color) {
1607 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1608 } else {
1609 ice->state.need_border_colors |= 1 << stage;
1610
1611 /* We may need to swizzle the border color for format faking.
1612 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
1613 * This means we need to move the border color's A channel into
1614 * the R or G channels so that those read swizzles will move it
1615 * back into A.
1616 */
1617 union pipe_color_union *color = &state->border_color;
1618 union pipe_color_union tmp;
1619 if (tex) {
1620 enum pipe_format internal_format = tex->res->internal_format;
1621
1622 if (util_format_is_alpha(internal_format)) {
1623 unsigned char swz[4] = {
1624 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
1625 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1626 };
1627 util_format_apply_color_swizzle(&tmp, color, swz, true);
1628 color = &tmp;
1629 } else if (util_format_is_luminance_alpha(internal_format) &&
1630 internal_format != PIPE_FORMAT_L8A8_SRGB) {
1631 unsigned char swz[4] = {
1632 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
1633 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1634 };
1635 util_format_apply_color_swizzle(&tmp, color, swz, true);
1636 color = &tmp;
1637 }
1638 }
1639
1640 /* Stream out the border color and merge the pointer. */
1641 uint32_t offset = iris_upload_border_color(ice, color);
1642
1643 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1644 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1645 dyns.BorderColorPointer = offset;
1646 }
1647
1648 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1649 map[j] = state->sampler_state[j] | dynamic[j];
1650 }
1651
1652 map += GENX(SAMPLER_STATE_length);
1653 }
1654 }
1655
1656 static enum isl_channel_select
1657 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1658 {
1659 switch (swz) {
1660 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1661 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1662 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1663 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1664 case PIPE_SWIZZLE_1: return SCS_ONE;
1665 case PIPE_SWIZZLE_0: return SCS_ZERO;
1666 default: unreachable("invalid swizzle");
1667 }
1668 }
1669
1670 static void
1671 fill_buffer_surface_state(struct isl_device *isl_dev,
1672 struct iris_resource *res,
1673 void *map,
1674 enum isl_format format,
1675 struct isl_swizzle swizzle,
1676 unsigned offset,
1677 unsigned size)
1678 {
1679 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1680 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1681
1682 /* The ARB_texture_buffer_specification says:
1683 *
1684 * "The number of texels in the buffer texture's texel array is given by
1685 *
1686 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1687 *
1688 * where <buffer_size> is the size of the buffer object, in basic
1689 * machine units and <components> and <base_type> are the element count
1690 * and base data type for elements, as specified in Table X.1. The
1691 * number of texels in the texel array is then clamped to the
1692 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1693 *
1694 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1695 * so that when ISL divides by stride to obtain the number of texels, that
1696 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1697 */
1698 unsigned final_size =
1699 MIN3(size, res->bo->size - res->offset - offset,
1700 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1701
1702 isl_buffer_fill_state(isl_dev, map,
1703 .address = res->bo->gtt_offset + res->offset + offset,
1704 .size_B = final_size,
1705 .format = format,
1706 .swizzle = swizzle,
1707 .stride_B = cpp,
1708 .mocs = mocs(res->bo));
1709 }
1710
1711 #define SURFACE_STATE_ALIGNMENT 64
1712
1713 /**
1714 * Allocate several contiguous SURFACE_STATE structures, one for each
1715 * supported auxiliary surface mode.
1716 */
1717 static void *
1718 alloc_surface_states(struct u_upload_mgr *mgr,
1719 struct iris_state_ref *ref,
1720 unsigned aux_usages)
1721 {
1722 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1723
1724 /* If this changes, update this to explicitly align pointers */
1725 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1726
1727 assert(aux_usages != 0);
1728
1729 void *map =
1730 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1731 SURFACE_STATE_ALIGNMENT);
1732
1733 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1734
1735 return map;
1736 }
1737
1738 #if GEN_GEN == 8
1739 /**
1740 * Return an ISL surface for use with non-coherent render target reads.
1741 *
1742 * In a few complex cases, we can't use the SURFACE_STATE for normal render
1743 * target writes. We need to make a separate one for sampling which refers
1744 * to the single slice of the texture being read.
1745 */
1746 static void
1747 get_rt_read_isl_surf(const struct gen_device_info *devinfo,
1748 struct iris_resource *res,
1749 enum pipe_texture_target target,
1750 struct isl_view *view,
1751 uint32_t *tile_x_sa,
1752 uint32_t *tile_y_sa,
1753 struct isl_surf *surf)
1754 {
1755
1756 *surf = res->surf;
1757
1758 const enum isl_dim_layout dim_layout =
1759 iris_get_isl_dim_layout(devinfo, res->surf.tiling, target);
1760
1761 surf->dim = target_to_isl_surf_dim(target);
1762
1763 if (surf->dim_layout == dim_layout)
1764 return;
1765
1766 /* The layout of the specified texture target is not compatible with the
1767 * actual layout of the miptree structure in memory -- You're entering
1768 * dangerous territory, this can only possibly work if you only intended
1769 * to access a single level and slice of the texture, and the hardware
1770 * supports the tile offset feature in order to allow non-tile-aligned
1771 * base offsets, since we'll have to point the hardware to the first
1772 * texel of the level instead of relying on the usual base level/layer
1773 * controls.
1774 */
1775 assert(view->levels == 1 && view->array_len == 1);
1776 assert(*tile_x_sa == 0 && *tile_y_sa == 0);
1777
1778 res->offset += iris_resource_get_tile_offsets(res, view->base_level,
1779 view->base_array_layer,
1780 tile_x_sa, tile_y_sa);
1781 const unsigned l = view->base_level;
1782
1783 surf->logical_level0_px.width = minify(surf->logical_level0_px.width, l);
1784 surf->logical_level0_px.height = surf->dim <= ISL_SURF_DIM_1D ? 1 :
1785 minify(surf->logical_level0_px.height, l);
1786 surf->logical_level0_px.depth = surf->dim <= ISL_SURF_DIM_2D ? 1 :
1787 minify(surf->logical_level0_px.depth, l);
1788
1789 surf->logical_level0_px.array_len = 1;
1790 surf->levels = 1;
1791 surf->dim_layout = dim_layout;
1792
1793 view->base_level = 0;
1794 view->base_array_layer = 0;
1795 }
1796 #endif
1797
1798 static void
1799 fill_surface_state(struct isl_device *isl_dev,
1800 void *map,
1801 struct iris_resource *res,
1802 struct isl_surf *surf,
1803 struct isl_view *view,
1804 unsigned aux_usage,
1805 uint32_t tile_x_sa,
1806 uint32_t tile_y_sa)
1807 {
1808 struct isl_surf_fill_state_info f = {
1809 .surf = surf,
1810 .view = view,
1811 .mocs = mocs(res->bo),
1812 .address = res->bo->gtt_offset + res->offset,
1813 .x_offset_sa = tile_x_sa,
1814 .y_offset_sa = tile_y_sa,
1815 };
1816
1817 assert(!iris_resource_unfinished_aux_import(res));
1818
1819 if (aux_usage != ISL_AUX_USAGE_NONE) {
1820 f.aux_surf = &res->aux.surf;
1821 f.aux_usage = aux_usage;
1822 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1823
1824 struct iris_bo *clear_bo = NULL;
1825 uint64_t clear_offset = 0;
1826 f.clear_color =
1827 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
1828 if (clear_bo) {
1829 f.clear_address = clear_bo->gtt_offset + clear_offset;
1830 f.use_clear_address = isl_dev->info->gen > 9;
1831 }
1832 }
1833
1834 isl_surf_fill_state_s(isl_dev, map, &f);
1835 }
1836
1837 /**
1838 * The pipe->create_sampler_view() driver hook.
1839 */
1840 static struct pipe_sampler_view *
1841 iris_create_sampler_view(struct pipe_context *ctx,
1842 struct pipe_resource *tex,
1843 const struct pipe_sampler_view *tmpl)
1844 {
1845 struct iris_context *ice = (struct iris_context *) ctx;
1846 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1847 const struct gen_device_info *devinfo = &screen->devinfo;
1848 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1849
1850 if (!isv)
1851 return NULL;
1852
1853 /* initialize base object */
1854 isv->base = *tmpl;
1855 isv->base.context = ctx;
1856 isv->base.texture = NULL;
1857 pipe_reference_init(&isv->base.reference, 1);
1858 pipe_resource_reference(&isv->base.texture, tex);
1859
1860 if (util_format_is_depth_or_stencil(tmpl->format)) {
1861 struct iris_resource *zres, *sres;
1862 const struct util_format_description *desc =
1863 util_format_description(tmpl->format);
1864
1865 iris_get_depth_stencil_resources(tex, &zres, &sres);
1866
1867 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1868 }
1869
1870 isv->res = (struct iris_resource *) tex;
1871
1872 void *map = alloc_surface_states(ice->state.surface_uploader,
1873 &isv->surface_state,
1874 isv->res->aux.sampler_usages);
1875 if (!unlikely(map))
1876 return NULL;
1877
1878 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1879
1880 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1881 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1882 usage |= ISL_SURF_USAGE_CUBE_BIT;
1883
1884 const struct iris_format_info fmt =
1885 iris_format_for_usage(devinfo, tmpl->format, usage);
1886
1887 isv->clear_color = isv->res->aux.clear_color;
1888
1889 isv->view = (struct isl_view) {
1890 .format = fmt.fmt,
1891 .swizzle = (struct isl_swizzle) {
1892 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1893 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1894 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1895 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1896 },
1897 .usage = usage,
1898 };
1899
1900 /* Fill out SURFACE_STATE for this view. */
1901 if (tmpl->target != PIPE_BUFFER) {
1902 isv->view.base_level = tmpl->u.tex.first_level;
1903 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1904 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1905 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1906 isv->view.array_len =
1907 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1908
1909 if (iris_resource_unfinished_aux_import(isv->res))
1910 iris_resource_finish_aux_import(&screen->base, isv->res);
1911
1912 unsigned aux_modes = isv->res->aux.sampler_usages;
1913 while (aux_modes) {
1914 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1915
1916 /* If we have a multisampled depth buffer, do not create a sampler
1917 * surface state with HiZ.
1918 */
1919 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->res->surf,
1920 &isv->view, aux_usage, 0, 0);
1921
1922 map += SURFACE_STATE_ALIGNMENT;
1923 }
1924 } else {
1925 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
1926 isv->view.format, isv->view.swizzle,
1927 tmpl->u.buf.offset, tmpl->u.buf.size);
1928 }
1929
1930 return &isv->base;
1931 }
1932
1933 static void
1934 iris_sampler_view_destroy(struct pipe_context *ctx,
1935 struct pipe_sampler_view *state)
1936 {
1937 struct iris_sampler_view *isv = (void *) state;
1938 pipe_resource_reference(&state->texture, NULL);
1939 pipe_resource_reference(&isv->surface_state.res, NULL);
1940 free(isv);
1941 }
1942
1943 /**
1944 * The pipe->create_surface() driver hook.
1945 *
1946 * In Gallium nomenclature, "surfaces" are a view of a resource that
1947 * can be bound as a render target or depth/stencil buffer.
1948 */
1949 static struct pipe_surface *
1950 iris_create_surface(struct pipe_context *ctx,
1951 struct pipe_resource *tex,
1952 const struct pipe_surface *tmpl)
1953 {
1954 struct iris_context *ice = (struct iris_context *) ctx;
1955 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1956 const struct gen_device_info *devinfo = &screen->devinfo;
1957
1958 isl_surf_usage_flags_t usage = 0;
1959 if (tmpl->writable)
1960 usage = ISL_SURF_USAGE_STORAGE_BIT;
1961 else if (util_format_is_depth_or_stencil(tmpl->format))
1962 usage = ISL_SURF_USAGE_DEPTH_BIT;
1963 else
1964 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1965
1966 const struct iris_format_info fmt =
1967 iris_format_for_usage(devinfo, tmpl->format, usage);
1968
1969 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1970 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1971 /* Framebuffer validation will reject this invalid case, but it
1972 * hasn't had the opportunity yet. In the meantime, we need to
1973 * avoid hitting ISL asserts about unsupported formats below.
1974 */
1975 return NULL;
1976 }
1977
1978 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1979 struct pipe_surface *psurf = &surf->base;
1980 struct iris_resource *res = (struct iris_resource *) tex;
1981
1982 if (!surf)
1983 return NULL;
1984
1985 pipe_reference_init(&psurf->reference, 1);
1986 pipe_resource_reference(&psurf->texture, tex);
1987 psurf->context = ctx;
1988 psurf->format = tmpl->format;
1989 psurf->width = tex->width0;
1990 psurf->height = tex->height0;
1991 psurf->texture = tex;
1992 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1993 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1994 psurf->u.tex.level = tmpl->u.tex.level;
1995
1996 uint32_t array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1997
1998 struct isl_view *view = &surf->view;
1999 *view = (struct isl_view) {
2000 .format = fmt.fmt,
2001 .base_level = tmpl->u.tex.level,
2002 .levels = 1,
2003 .base_array_layer = tmpl->u.tex.first_layer,
2004 .array_len = array_len,
2005 .swizzle = ISL_SWIZZLE_IDENTITY,
2006 .usage = usage,
2007 };
2008
2009 #if GEN_GEN == 8
2010 enum pipe_texture_target target = (tex->target == PIPE_TEXTURE_3D &&
2011 array_len == 1) ? PIPE_TEXTURE_2D :
2012 tex->target == PIPE_TEXTURE_1D_ARRAY ?
2013 PIPE_TEXTURE_2D_ARRAY : tex->target;
2014
2015 struct isl_view *read_view = &surf->read_view;
2016 *read_view = (struct isl_view) {
2017 .format = fmt.fmt,
2018 .base_level = tmpl->u.tex.level,
2019 .levels = 1,
2020 .base_array_layer = tmpl->u.tex.first_layer,
2021 .array_len = array_len,
2022 .swizzle = ISL_SWIZZLE_IDENTITY,
2023 .usage = ISL_SURF_USAGE_TEXTURE_BIT,
2024 };
2025 #endif
2026
2027 surf->clear_color = res->aux.clear_color;
2028
2029 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
2030 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
2031 ISL_SURF_USAGE_STENCIL_BIT))
2032 return psurf;
2033
2034
2035 void *map = alloc_surface_states(ice->state.surface_uploader,
2036 &surf->surface_state,
2037 res->aux.possible_usages);
2038 if (!unlikely(map))
2039 return NULL;
2040
2041 #if GEN_GEN == 8
2042 void *map_read = alloc_surface_states(ice->state.surface_uploader,
2043 &surf->surface_state_read,
2044 res->aux.possible_usages);
2045 if (!unlikely(map_read)) {
2046 pipe_resource_reference(&surf->surface_state_read.res, NULL);
2047 return NULL;
2048 }
2049 #endif
2050
2051 if (!isl_format_is_compressed(res->surf.format)) {
2052 if (iris_resource_unfinished_aux_import(res))
2053 iris_resource_finish_aux_import(&screen->base, res);
2054
2055 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
2056 * auxiliary surface mode and return the pipe_surface.
2057 */
2058 unsigned aux_modes = res->aux.possible_usages;
2059 while (aux_modes) {
2060 #if GEN_GEN == 8
2061 uint32_t offset = res->offset;
2062 #endif
2063 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2064 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2065 view, aux_usage, 0, 0);
2066 map += SURFACE_STATE_ALIGNMENT;
2067
2068 #if GEN_GEN == 8
2069 struct isl_surf surf;
2070 uint32_t tile_x_sa = 0, tile_y_sa = 0;
2071 get_rt_read_isl_surf(devinfo, res, target, read_view,
2072 &tile_x_sa, &tile_y_sa, &surf);
2073 fill_surface_state(&screen->isl_dev, map_read, res, &surf, read_view,
2074 aux_usage, tile_x_sa, tile_y_sa);
2075 /* Restore offset because we change offset in case of handling
2076 * non_coherent fb fetch
2077 */
2078 res->offset = offset;
2079 map_read += SURFACE_STATE_ALIGNMENT;
2080 #endif
2081 }
2082
2083 return psurf;
2084 }
2085
2086 /* The resource has a compressed format, which is not renderable, but we
2087 * have a renderable view format. We must be attempting to upload blocks
2088 * of compressed data via an uncompressed view.
2089 *
2090 * In this case, we can assume there are no auxiliary buffers, a single
2091 * miplevel, and that the resource is single-sampled. Gallium may try
2092 * and create an uncompressed view with multiple layers, however.
2093 */
2094 assert(!isl_format_is_compressed(fmt.fmt));
2095 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
2096 assert(res->surf.samples == 1);
2097 assert(view->levels == 1);
2098
2099 struct isl_surf isl_surf;
2100 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
2101
2102 if (view->base_level > 0) {
2103 /* We can't rely on the hardware's miplevel selection with such
2104 * a substantial lie about the format, so we select a single image
2105 * using the Tile X/Y Offset fields. In this case, we can't handle
2106 * multiple array slices.
2107 *
2108 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
2109 * hard-coded to align to exactly the block size of the compressed
2110 * texture. This means that, when reinterpreted as a non-compressed
2111 * texture, the tile offsets may be anything and we can't rely on
2112 * X/Y Offset.
2113 *
2114 * Return NULL to force the state tracker to take fallback paths.
2115 */
2116 if (view->array_len > 1 || GEN_GEN == 8)
2117 return NULL;
2118
2119 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
2120 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
2121 view->base_level,
2122 is_3d ? 0 : view->base_array_layer,
2123 is_3d ? view->base_array_layer : 0,
2124 &isl_surf,
2125 &offset_B, &tile_x_sa, &tile_y_sa);
2126
2127 /* We use address and tile offsets to access a single level/layer
2128 * as a subimage, so reset level/layer so it doesn't offset again.
2129 */
2130 view->base_array_layer = 0;
2131 view->base_level = 0;
2132 } else {
2133 /* Level 0 doesn't require tile offsets, and the hardware can find
2134 * array slices using QPitch even with the format override, so we
2135 * can allow layers in this case. Copy the original ISL surface.
2136 */
2137 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
2138 }
2139
2140 /* Scale down the image dimensions by the block size. */
2141 const struct isl_format_layout *fmtl =
2142 isl_format_get_layout(res->surf.format);
2143 isl_surf.format = fmt.fmt;
2144 isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
2145 isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
2146 tile_x_sa /= fmtl->bw;
2147 tile_y_sa /= fmtl->bh;
2148
2149 psurf->width = isl_surf.logical_level0_px.width;
2150 psurf->height = isl_surf.logical_level0_px.height;
2151
2152 struct isl_surf_fill_state_info f = {
2153 .surf = &isl_surf,
2154 .view = view,
2155 .mocs = mocs(res->bo),
2156 .address = res->bo->gtt_offset + offset_B,
2157 .x_offset_sa = tile_x_sa,
2158 .y_offset_sa = tile_y_sa,
2159 };
2160
2161 isl_surf_fill_state_s(&screen->isl_dev, map, &f);
2162 return psurf;
2163 }
2164
2165 #if GEN_GEN < 9
2166 static void
2167 fill_default_image_param(struct brw_image_param *param)
2168 {
2169 memset(param, 0, sizeof(*param));
2170 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
2171 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
2172 * detailed explanation of these parameters.
2173 */
2174 param->swizzling[0] = 0xff;
2175 param->swizzling[1] = 0xff;
2176 }
2177
2178 static void
2179 fill_buffer_image_param(struct brw_image_param *param,
2180 enum pipe_format pfmt,
2181 unsigned size)
2182 {
2183 const unsigned cpp = util_format_get_blocksize(pfmt);
2184
2185 fill_default_image_param(param);
2186 param->size[0] = size / cpp;
2187 param->stride[0] = cpp;
2188 }
2189 #else
2190 #define isl_surf_fill_image_param(x, ...)
2191 #define fill_default_image_param(x, ...)
2192 #define fill_buffer_image_param(x, ...)
2193 #endif
2194
2195 /**
2196 * The pipe->set_shader_images() driver hook.
2197 */
2198 static void
2199 iris_set_shader_images(struct pipe_context *ctx,
2200 enum pipe_shader_type p_stage,
2201 unsigned start_slot, unsigned count,
2202 const struct pipe_image_view *p_images)
2203 {
2204 struct iris_context *ice = (struct iris_context *) ctx;
2205 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2206 const struct gen_device_info *devinfo = &screen->devinfo;
2207 gl_shader_stage stage = stage_from_pipe(p_stage);
2208 struct iris_shader_state *shs = &ice->state.shaders[stage];
2209 #if GEN_GEN == 8
2210 struct iris_genx_state *genx = ice->state.genx;
2211 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2212 #endif
2213
2214 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2215
2216 for (unsigned i = 0; i < count; i++) {
2217 struct iris_image_view *iv = &shs->image[start_slot + i];
2218
2219 if (p_images && p_images[i].resource) {
2220 const struct pipe_image_view *img = &p_images[i];
2221 struct iris_resource *res = (void *) img->resource;
2222
2223 void *map =
2224 alloc_surface_states(ice->state.surface_uploader,
2225 &iv->surface_state, 1 << ISL_AUX_USAGE_NONE);
2226 if (!unlikely(map))
2227 return;
2228
2229 util_copy_image_view(&iv->base, img);
2230
2231 shs->bound_image_views |= 1 << (start_slot + i);
2232
2233 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2234
2235 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
2236 enum isl_format isl_fmt =
2237 iris_format_for_usage(devinfo, img->format, usage).fmt;
2238
2239 bool untyped_fallback = false;
2240
2241 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
2242 /* On Gen8, try to use typed surfaces reads (which support a
2243 * limited number of formats), and if not possible, fall back
2244 * to untyped reads.
2245 */
2246 untyped_fallback = GEN_GEN == 8 &&
2247 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
2248
2249 if (untyped_fallback)
2250 isl_fmt = ISL_FORMAT_RAW;
2251 else
2252 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
2253 }
2254
2255 if (res->base.target != PIPE_BUFFER) {
2256 struct isl_view view = {
2257 .format = isl_fmt,
2258 .base_level = img->u.tex.level,
2259 .levels = 1,
2260 .base_array_layer = img->u.tex.first_layer,
2261 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2262 .swizzle = ISL_SWIZZLE_IDENTITY,
2263 .usage = usage,
2264 };
2265
2266 if (untyped_fallback) {
2267 fill_buffer_surface_state(&screen->isl_dev, res, map,
2268 isl_fmt, ISL_SWIZZLE_IDENTITY,
2269 0, res->bo->size);
2270 } else {
2271 /* Images don't support compression */
2272 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
2273 while (aux_modes) {
2274 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2275
2276 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2277 &view, usage, 0, 0);
2278
2279 map += SURFACE_STATE_ALIGNMENT;
2280 }
2281 }
2282
2283 isl_surf_fill_image_param(&screen->isl_dev,
2284 &image_params[start_slot + i],
2285 &res->surf, &view);
2286 } else {
2287 util_range_add(&res->valid_buffer_range, img->u.buf.offset,
2288 img->u.buf.offset + img->u.buf.size);
2289
2290 fill_buffer_surface_state(&screen->isl_dev, res, map,
2291 isl_fmt, ISL_SWIZZLE_IDENTITY,
2292 img->u.buf.offset, img->u.buf.size);
2293 fill_buffer_image_param(&image_params[start_slot + i],
2294 img->format, img->u.buf.size);
2295 }
2296 } else {
2297 pipe_resource_reference(&iv->base.resource, NULL);
2298 pipe_resource_reference(&iv->surface_state.res, NULL);
2299 fill_default_image_param(&image_params[start_slot + i]);
2300 }
2301 }
2302
2303 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2304 ice->state.dirty |=
2305 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2306 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2307
2308 /* Broadwell also needs brw_image_params re-uploaded */
2309 if (GEN_GEN < 9) {
2310 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2311 shs->sysvals_need_upload = true;
2312 }
2313 }
2314
2315
2316 /**
2317 * The pipe->set_sampler_views() driver hook.
2318 */
2319 static void
2320 iris_set_sampler_views(struct pipe_context *ctx,
2321 enum pipe_shader_type p_stage,
2322 unsigned start, unsigned count,
2323 struct pipe_sampler_view **views)
2324 {
2325 struct iris_context *ice = (struct iris_context *) ctx;
2326 gl_shader_stage stage = stage_from_pipe(p_stage);
2327 struct iris_shader_state *shs = &ice->state.shaders[stage];
2328
2329 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2330
2331 for (unsigned i = 0; i < count; i++) {
2332 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2333 pipe_sampler_view_reference((struct pipe_sampler_view **)
2334 &shs->textures[start + i], pview);
2335 struct iris_sampler_view *view = (void *) pview;
2336 if (view) {
2337 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2338 shs->bound_sampler_views |= 1 << (start + i);
2339 }
2340 }
2341
2342 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2343 ice->state.dirty |=
2344 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2345 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2346 }
2347
2348 /**
2349 * The pipe->set_tess_state() driver hook.
2350 */
2351 static void
2352 iris_set_tess_state(struct pipe_context *ctx,
2353 const float default_outer_level[4],
2354 const float default_inner_level[2])
2355 {
2356 struct iris_context *ice = (struct iris_context *) ctx;
2357 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2358
2359 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2360 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2361
2362 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2363 shs->sysvals_need_upload = true;
2364 }
2365
2366 static void
2367 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2368 {
2369 struct iris_surface *surf = (void *) p_surf;
2370 pipe_resource_reference(&p_surf->texture, NULL);
2371 pipe_resource_reference(&surf->surface_state.res, NULL);
2372 pipe_resource_reference(&surf->surface_state_read.res, NULL);
2373 free(surf);
2374 }
2375
2376 static void
2377 iris_set_clip_state(struct pipe_context *ctx,
2378 const struct pipe_clip_state *state)
2379 {
2380 struct iris_context *ice = (struct iris_context *) ctx;
2381 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2382 struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
2383 struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
2384
2385 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2386
2387 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS | IRIS_DIRTY_CONSTANTS_GS |
2388 IRIS_DIRTY_CONSTANTS_TES;
2389 shs->sysvals_need_upload = true;
2390 gshs->sysvals_need_upload = true;
2391 tshs->sysvals_need_upload = true;
2392 }
2393
2394 /**
2395 * The pipe->set_polygon_stipple() driver hook.
2396 */
2397 static void
2398 iris_set_polygon_stipple(struct pipe_context *ctx,
2399 const struct pipe_poly_stipple *state)
2400 {
2401 struct iris_context *ice = (struct iris_context *) ctx;
2402 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2403 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2404 }
2405
2406 /**
2407 * The pipe->set_sample_mask() driver hook.
2408 */
2409 static void
2410 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2411 {
2412 struct iris_context *ice = (struct iris_context *) ctx;
2413
2414 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2415 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2416 */
2417 ice->state.sample_mask = sample_mask & 0xffff;
2418 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2419 }
2420
2421 /**
2422 * The pipe->set_scissor_states() driver hook.
2423 *
2424 * This corresponds to our SCISSOR_RECT state structures. It's an
2425 * exact match, so we just store them, and memcpy them out later.
2426 */
2427 static void
2428 iris_set_scissor_states(struct pipe_context *ctx,
2429 unsigned start_slot,
2430 unsigned num_scissors,
2431 const struct pipe_scissor_state *rects)
2432 {
2433 struct iris_context *ice = (struct iris_context *) ctx;
2434
2435 for (unsigned i = 0; i < num_scissors; i++) {
2436 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2437 /* If the scissor was out of bounds and got clamped to 0 width/height
2438 * at the bounds, the subtraction of 1 from maximums could produce a
2439 * negative number and thus not clip anything. Instead, just provide
2440 * a min > max scissor inside the bounds, which produces the expected
2441 * no rendering.
2442 */
2443 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2444 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2445 };
2446 } else {
2447 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2448 .minx = rects[i].minx, .miny = rects[i].miny,
2449 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2450 };
2451 }
2452 }
2453
2454 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2455 }
2456
2457 /**
2458 * The pipe->set_stencil_ref() driver hook.
2459 *
2460 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2461 */
2462 static void
2463 iris_set_stencil_ref(struct pipe_context *ctx,
2464 const struct pipe_stencil_ref *state)
2465 {
2466 struct iris_context *ice = (struct iris_context *) ctx;
2467 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2468 if (GEN_GEN == 8)
2469 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2470 else
2471 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2472 }
2473
2474 static float
2475 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2476 {
2477 return copysignf(state->scale[axis], sign) + state->translate[axis];
2478 }
2479
2480 /**
2481 * The pipe->set_viewport_states() driver hook.
2482 *
2483 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2484 * the guardband yet, as we need the framebuffer dimensions, but we can
2485 * at least fill out the rest.
2486 */
2487 static void
2488 iris_set_viewport_states(struct pipe_context *ctx,
2489 unsigned start_slot,
2490 unsigned count,
2491 const struct pipe_viewport_state *states)
2492 {
2493 struct iris_context *ice = (struct iris_context *) ctx;
2494
2495 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2496
2497 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2498
2499 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2500 !ice->state.cso_rast->depth_clip_far))
2501 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2502 }
2503
2504 /**
2505 * The pipe->set_framebuffer_state() driver hook.
2506 *
2507 * Sets the current draw FBO, including color render targets, depth,
2508 * and stencil buffers.
2509 */
2510 static void
2511 iris_set_framebuffer_state(struct pipe_context *ctx,
2512 const struct pipe_framebuffer_state *state)
2513 {
2514 struct iris_context *ice = (struct iris_context *) ctx;
2515 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2516 struct isl_device *isl_dev = &screen->isl_dev;
2517 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2518 struct iris_resource *zres;
2519 struct iris_resource *stencil_res;
2520
2521 unsigned samples = util_framebuffer_get_num_samples(state);
2522 unsigned layers = util_framebuffer_get_num_layers(state);
2523
2524 if (cso->samples != samples) {
2525 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2526
2527 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
2528 if (GEN_GEN >= 9 && (cso->samples == 16 || samples == 16))
2529 ice->state.dirty |= IRIS_DIRTY_FS;
2530 }
2531
2532 if (cso->nr_cbufs != state->nr_cbufs) {
2533 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2534 }
2535
2536 if ((cso->layers == 0) != (layers == 0)) {
2537 ice->state.dirty |= IRIS_DIRTY_CLIP;
2538 }
2539
2540 if (cso->width != state->width || cso->height != state->height) {
2541 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2542 }
2543
2544 if (cso->zsbuf || state->zsbuf) {
2545 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2546 }
2547
2548 util_copy_framebuffer_state(cso, state);
2549 cso->samples = samples;
2550 cso->layers = layers;
2551
2552 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2553
2554 struct isl_view view = {
2555 .base_level = 0,
2556 .levels = 1,
2557 .base_array_layer = 0,
2558 .array_len = 1,
2559 .swizzle = ISL_SWIZZLE_IDENTITY,
2560 };
2561
2562 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2563
2564 if (cso->zsbuf) {
2565 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2566 &stencil_res);
2567
2568 view.base_level = cso->zsbuf->u.tex.level;
2569 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2570 view.array_len =
2571 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2572
2573 if (zres) {
2574 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2575
2576 info.depth_surf = &zres->surf;
2577 info.depth_address = zres->bo->gtt_offset + zres->offset;
2578 info.mocs = mocs(zres->bo);
2579
2580 view.format = zres->surf.format;
2581
2582 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2583 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2584 info.hiz_surf = &zres->aux.surf;
2585 info.hiz_address = zres->aux.bo->gtt_offset + zres->aux.offset;
2586 }
2587 }
2588
2589 if (stencil_res) {
2590 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2591 info.stencil_surf = &stencil_res->surf;
2592 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
2593 if (!zres) {
2594 view.format = stencil_res->surf.format;
2595 info.mocs = mocs(stencil_res->bo);
2596 }
2597 }
2598 }
2599
2600 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2601
2602 /* Make a null surface for unbound buffers */
2603 void *null_surf_map =
2604 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2605 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2606 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2607 isl_extent3d(MAX2(cso->width, 1),
2608 MAX2(cso->height, 1),
2609 cso->layers ? cso->layers : 1));
2610 ice->state.null_fb.offset +=
2611 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2612
2613 /* Render target change */
2614 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2615
2616 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2617
2618 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2619
2620 #if GEN_GEN == 11
2621 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2622 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2623
2624 /* The PIPE_CONTROL command description says:
2625 *
2626 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2627 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2628 * Target Cache Flush by enabling this bit. When render target flush
2629 * is set due to new association of BTI, PS Scoreboard Stall bit must
2630 * be set in this packet."
2631 */
2632 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2633 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2634 "workaround: RT BTI change [draw]",
2635 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2636 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2637 #endif
2638 }
2639
2640 /**
2641 * The pipe->set_constant_buffer() driver hook.
2642 *
2643 * This uploads any constant data in user buffers, and references
2644 * any UBO resources containing constant data.
2645 */
2646 static void
2647 iris_set_constant_buffer(struct pipe_context *ctx,
2648 enum pipe_shader_type p_stage, unsigned index,
2649 const struct pipe_constant_buffer *input)
2650 {
2651 struct iris_context *ice = (struct iris_context *) ctx;
2652 gl_shader_stage stage = stage_from_pipe(p_stage);
2653 struct iris_shader_state *shs = &ice->state.shaders[stage];
2654 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
2655
2656 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
2657 shs->bound_cbufs |= 1u << index;
2658
2659 if (input->user_buffer) {
2660 void *map = NULL;
2661 pipe_resource_reference(&cbuf->buffer, NULL);
2662 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
2663 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2664
2665 if (!cbuf->buffer) {
2666 /* Allocation was unsuccessful - just unbind */
2667 iris_set_constant_buffer(ctx, p_stage, index, NULL);
2668 return;
2669 }
2670
2671 assert(map);
2672 memcpy(map, input->user_buffer, input->buffer_size);
2673 } else if (input->buffer) {
2674 pipe_resource_reference(&cbuf->buffer, input->buffer);
2675
2676 cbuf->buffer_offset = input->buffer_offset;
2677 cbuf->buffer_size =
2678 MIN2(input->buffer_size,
2679 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
2680 }
2681
2682 struct iris_resource *res = (void *) cbuf->buffer;
2683 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2684
2685 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2686 &shs->constbuf_surf_state[index],
2687 false);
2688 } else {
2689 shs->bound_cbufs &= ~(1u << index);
2690 pipe_resource_reference(&cbuf->buffer, NULL);
2691 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
2692 }
2693
2694 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2695 // XXX: maybe not necessary all the time...?
2696 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2697 // XXX: pull model we may need actual new bindings...
2698 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2699 }
2700
2701 static void
2702 upload_sysvals(struct iris_context *ice,
2703 gl_shader_stage stage)
2704 {
2705 UNUSED struct iris_genx_state *genx = ice->state.genx;
2706 struct iris_shader_state *shs = &ice->state.shaders[stage];
2707
2708 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2709 if (!shader || shader->num_system_values == 0)
2710 return;
2711
2712 assert(shader->num_cbufs > 0);
2713
2714 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
2715 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
2716 unsigned upload_size = shader->num_system_values * sizeof(uint32_t);
2717 uint32_t *map = NULL;
2718
2719 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
2720 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
2721 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2722
2723 for (int i = 0; i < shader->num_system_values; i++) {
2724 uint32_t sysval = shader->system_values[i];
2725 uint32_t value = 0;
2726
2727 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2728 #if GEN_GEN == 8
2729 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2730 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2731 struct brw_image_param *param =
2732 &genx->shaders[stage].image_param[img];
2733
2734 assert(offset < sizeof(struct brw_image_param));
2735 value = ((uint32_t *) param)[offset];
2736 #endif
2737 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2738 value = 0;
2739 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2740 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2741 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2742 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2743 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2744 if (stage == MESA_SHADER_TESS_CTRL) {
2745 value = ice->state.vertices_per_patch;
2746 } else {
2747 assert(stage == MESA_SHADER_TESS_EVAL);
2748 const struct shader_info *tcs_info =
2749 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2750 if (tcs_info)
2751 value = tcs_info->tess.tcs_vertices_out;
2752 else
2753 value = ice->state.vertices_per_patch;
2754 }
2755 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
2756 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
2757 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
2758 value = fui(ice->state.default_outer_level[i]);
2759 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
2760 value = fui(ice->state.default_inner_level[0]);
2761 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
2762 value = fui(ice->state.default_inner_level[1]);
2763 } else {
2764 assert(!"unhandled system value");
2765 }
2766
2767 *map++ = value;
2768 }
2769
2770 cbuf->buffer_size = upload_size;
2771 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2772 &shs->constbuf_surf_state[sysval_cbuf_index], false);
2773
2774 shs->sysvals_need_upload = false;
2775 }
2776
2777 /**
2778 * The pipe->set_shader_buffers() driver hook.
2779 *
2780 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2781 * SURFACE_STATE here, as the buffer offset may change each time.
2782 */
2783 static void
2784 iris_set_shader_buffers(struct pipe_context *ctx,
2785 enum pipe_shader_type p_stage,
2786 unsigned start_slot, unsigned count,
2787 const struct pipe_shader_buffer *buffers,
2788 unsigned writable_bitmask)
2789 {
2790 struct iris_context *ice = (struct iris_context *) ctx;
2791 gl_shader_stage stage = stage_from_pipe(p_stage);
2792 struct iris_shader_state *shs = &ice->state.shaders[stage];
2793
2794 unsigned modified_bits = u_bit_consecutive(start_slot, count);
2795
2796 shs->bound_ssbos &= ~modified_bits;
2797 shs->writable_ssbos &= ~modified_bits;
2798 shs->writable_ssbos |= writable_bitmask << start_slot;
2799
2800 for (unsigned i = 0; i < count; i++) {
2801 if (buffers && buffers[i].buffer) {
2802 struct iris_resource *res = (void *) buffers[i].buffer;
2803 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
2804 struct iris_state_ref *surf_state =
2805 &shs->ssbo_surf_state[start_slot + i];
2806 pipe_resource_reference(&ssbo->buffer, &res->base);
2807 ssbo->buffer_offset = buffers[i].buffer_offset;
2808 ssbo->buffer_size =
2809 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
2810
2811 shs->bound_ssbos |= 1 << (start_slot + i);
2812
2813 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
2814
2815 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2816
2817 util_range_add(&res->valid_buffer_range, ssbo->buffer_offset,
2818 ssbo->buffer_offset + ssbo->buffer_size);
2819 } else {
2820 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
2821 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
2822 NULL);
2823 }
2824 }
2825
2826 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2827 }
2828
2829 static void
2830 iris_delete_state(struct pipe_context *ctx, void *state)
2831 {
2832 free(state);
2833 }
2834
2835 /**
2836 * The pipe->set_vertex_buffers() driver hook.
2837 *
2838 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2839 */
2840 static void
2841 iris_set_vertex_buffers(struct pipe_context *ctx,
2842 unsigned start_slot, unsigned count,
2843 const struct pipe_vertex_buffer *buffers)
2844 {
2845 struct iris_context *ice = (struct iris_context *) ctx;
2846 struct iris_genx_state *genx = ice->state.genx;
2847
2848 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2849
2850 for (unsigned i = 0; i < count; i++) {
2851 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2852 struct iris_vertex_buffer_state *state =
2853 &genx->vertex_buffers[start_slot + i];
2854
2855 if (!buffer) {
2856 pipe_resource_reference(&state->resource, NULL);
2857 continue;
2858 }
2859
2860 /* We may see user buffers that are NULL bindings. */
2861 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
2862
2863 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2864 struct iris_resource *res = (void *) state->resource;
2865
2866 if (res) {
2867 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2868 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2869 }
2870
2871 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2872 vb.VertexBufferIndex = start_slot + i;
2873 vb.AddressModifyEnable = true;
2874 vb.BufferPitch = buffer->stride;
2875 if (res) {
2876 vb.BufferSize = res->bo->size - (int) buffer->buffer_offset;
2877 vb.BufferStartingAddress =
2878 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2879 vb.MOCS = mocs(res->bo);
2880 } else {
2881 vb.NullVertexBuffer = true;
2882 }
2883 }
2884 }
2885
2886 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2887 }
2888
2889 /**
2890 * Gallium CSO for vertex elements.
2891 */
2892 struct iris_vertex_element_state {
2893 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2894 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2895 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2896 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2897 unsigned count;
2898 };
2899
2900 /**
2901 * The pipe->create_vertex_elements() driver hook.
2902 *
2903 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2904 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2905 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2906 * needed. In these cases we will need information available at draw time.
2907 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2908 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2909 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2910 */
2911 static void *
2912 iris_create_vertex_elements(struct pipe_context *ctx,
2913 unsigned count,
2914 const struct pipe_vertex_element *state)
2915 {
2916 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2917 const struct gen_device_info *devinfo = &screen->devinfo;
2918 struct iris_vertex_element_state *cso =
2919 malloc(sizeof(struct iris_vertex_element_state));
2920
2921 cso->count = count;
2922
2923 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2924 ve.DWordLength =
2925 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2926 }
2927
2928 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2929 uint32_t *vfi_pack_dest = cso->vf_instancing;
2930
2931 if (count == 0) {
2932 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2933 ve.Valid = true;
2934 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2935 ve.Component0Control = VFCOMP_STORE_0;
2936 ve.Component1Control = VFCOMP_STORE_0;
2937 ve.Component2Control = VFCOMP_STORE_0;
2938 ve.Component3Control = VFCOMP_STORE_1_FP;
2939 }
2940
2941 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2942 }
2943 }
2944
2945 for (int i = 0; i < count; i++) {
2946 const struct iris_format_info fmt =
2947 iris_format_for_usage(devinfo, state[i].src_format, 0);
2948 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2949 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2950
2951 switch (isl_format_get_num_channels(fmt.fmt)) {
2952 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
2953 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
2954 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
2955 case 3:
2956 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2957 : VFCOMP_STORE_1_FP;
2958 break;
2959 }
2960 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2961 ve.EdgeFlagEnable = false;
2962 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2963 ve.Valid = true;
2964 ve.SourceElementOffset = state[i].src_offset;
2965 ve.SourceElementFormat = fmt.fmt;
2966 ve.Component0Control = comp[0];
2967 ve.Component1Control = comp[1];
2968 ve.Component2Control = comp[2];
2969 ve.Component3Control = comp[3];
2970 }
2971
2972 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2973 vi.VertexElementIndex = i;
2974 vi.InstancingEnable = state[i].instance_divisor > 0;
2975 vi.InstanceDataStepRate = state[i].instance_divisor;
2976 }
2977
2978 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2979 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2980 }
2981
2982 /* An alternative version of the last VE and VFI is stored so it
2983 * can be used at draw time in case Vertex Shader uses EdgeFlag
2984 */
2985 if (count) {
2986 const unsigned edgeflag_index = count - 1;
2987 const struct iris_format_info fmt =
2988 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
2989 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
2990 ve.EdgeFlagEnable = true ;
2991 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
2992 ve.Valid = true;
2993 ve.SourceElementOffset = state[edgeflag_index].src_offset;
2994 ve.SourceElementFormat = fmt.fmt;
2995 ve.Component0Control = VFCOMP_STORE_SRC;
2996 ve.Component1Control = VFCOMP_STORE_0;
2997 ve.Component2Control = VFCOMP_STORE_0;
2998 ve.Component3Control = VFCOMP_STORE_0;
2999 }
3000 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
3001 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
3002 * at draw time, as it should change if SGVs are emitted.
3003 */
3004 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
3005 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
3006 }
3007 }
3008
3009 return cso;
3010 }
3011
3012 /**
3013 * The pipe->bind_vertex_elements_state() driver hook.
3014 */
3015 static void
3016 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
3017 {
3018 struct iris_context *ice = (struct iris_context *) ctx;
3019 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
3020 struct iris_vertex_element_state *new_cso = state;
3021
3022 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
3023 * we need to re-emit it to ensure we're overriding the right one.
3024 */
3025 if (new_cso && cso_changed(count))
3026 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
3027
3028 ice->state.cso_vertex_elements = state;
3029 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
3030 }
3031
3032 /**
3033 * The pipe->create_stream_output_target() driver hook.
3034 *
3035 * "Target" here refers to a destination buffer. We translate this into
3036 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
3037 * know which buffer this represents, or whether we ought to zero the
3038 * write-offsets, or append. Those are handled in the set() hook.
3039 */
3040 static struct pipe_stream_output_target *
3041 iris_create_stream_output_target(struct pipe_context *ctx,
3042 struct pipe_resource *p_res,
3043 unsigned buffer_offset,
3044 unsigned buffer_size)
3045 {
3046 struct iris_resource *res = (void *) p_res;
3047 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
3048 if (!cso)
3049 return NULL;
3050
3051 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
3052
3053 pipe_reference_init(&cso->base.reference, 1);
3054 pipe_resource_reference(&cso->base.buffer, p_res);
3055 cso->base.buffer_offset = buffer_offset;
3056 cso->base.buffer_size = buffer_size;
3057 cso->base.context = ctx;
3058
3059 util_range_add(&res->valid_buffer_range, buffer_offset,
3060 buffer_offset + buffer_size);
3061
3062 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
3063
3064 return &cso->base;
3065 }
3066
3067 static void
3068 iris_stream_output_target_destroy(struct pipe_context *ctx,
3069 struct pipe_stream_output_target *state)
3070 {
3071 struct iris_stream_output_target *cso = (void *) state;
3072
3073 pipe_resource_reference(&cso->base.buffer, NULL);
3074 pipe_resource_reference(&cso->offset.res, NULL);
3075
3076 free(cso);
3077 }
3078
3079 /**
3080 * The pipe->set_stream_output_targets() driver hook.
3081 *
3082 * At this point, we know which targets are bound to a particular index,
3083 * and also whether we want to append or start over. We can finish the
3084 * 3DSTATE_SO_BUFFER packets we started earlier.
3085 */
3086 static void
3087 iris_set_stream_output_targets(struct pipe_context *ctx,
3088 unsigned num_targets,
3089 struct pipe_stream_output_target **targets,
3090 const unsigned *offsets)
3091 {
3092 struct iris_context *ice = (struct iris_context *) ctx;
3093 struct iris_genx_state *genx = ice->state.genx;
3094 uint32_t *so_buffers = genx->so_buffers;
3095
3096 const bool active = num_targets > 0;
3097 if (ice->state.streamout_active != active) {
3098 ice->state.streamout_active = active;
3099 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
3100
3101 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
3102 * it's a non-pipelined command. If we're switching streamout on, we
3103 * may have missed emitting it earlier, so do so now. (We're already
3104 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
3105 */
3106 if (active) {
3107 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
3108 } else {
3109 uint32_t flush = 0;
3110 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
3111 struct iris_stream_output_target *tgt =
3112 (void *) ice->state.so_target[i];
3113 if (tgt) {
3114 struct iris_resource *res = (void *) tgt->base.buffer;
3115
3116 flush |= iris_flush_bits_for_history(res);
3117 iris_dirty_for_history(ice, res);
3118 }
3119 }
3120 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
3121 "make streamout results visible", flush);
3122 }
3123 }
3124
3125 for (int i = 0; i < 4; i++) {
3126 pipe_so_target_reference(&ice->state.so_target[i],
3127 i < num_targets ? targets[i] : NULL);
3128 }
3129
3130 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
3131 if (!active)
3132 return;
3133
3134 for (unsigned i = 0; i < 4; i++,
3135 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
3136
3137 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
3138 unsigned offset = offsets[i];
3139
3140 if (!tgt) {
3141 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
3142 sob.SOBufferIndex = i;
3143 continue;
3144 }
3145
3146 struct iris_resource *res = (void *) tgt->base.buffer;
3147
3148 /* Note that offsets[i] will either be 0, causing us to zero
3149 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
3150 * "continue appending at the existing offset."
3151 */
3152 assert(offset == 0 || offset == 0xFFFFFFFF);
3153
3154 /* We might be called by Begin (offset = 0), Pause, then Resume
3155 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
3156 * will actually be sent to the GPU). In this case, we don't want
3157 * to append - we still want to do our initial zeroing.
3158 */
3159 if (!tgt->zeroed)
3160 offset = 0;
3161
3162 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3163 sob.SurfaceBaseAddress =
3164 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
3165 sob.SOBufferEnable = true;
3166 sob.StreamOffsetWriteEnable = true;
3167 sob.StreamOutputBufferOffsetAddressEnable = true;
3168 sob.MOCS = mocs(res->bo);
3169
3170 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
3171
3172 sob.SOBufferIndex = i;
3173 sob.StreamOffset = offset;
3174 sob.StreamOutputBufferOffsetAddress =
3175 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
3176 tgt->offset.offset);
3177 }
3178 }
3179
3180 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
3181 }
3182
3183 /**
3184 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
3185 * 3DSTATE_STREAMOUT packets.
3186 *
3187 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
3188 * hardware to record. We can create it entirely based on the shader, with
3189 * no dynamic state dependencies.
3190 *
3191 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
3192 * state-based settings. We capture the shader-related ones here, and merge
3193 * the rest in at draw time.
3194 */
3195 static uint32_t *
3196 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
3197 const struct brw_vue_map *vue_map)
3198 {
3199 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3200 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3201 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3202 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3203 int max_decls = 0;
3204 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3205
3206 memset(so_decl, 0, sizeof(so_decl));
3207
3208 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3209 * command feels strange -- each dword pair contains a SO_DECL per stream.
3210 */
3211 for (unsigned i = 0; i < info->num_outputs; i++) {
3212 const struct pipe_stream_output *output = &info->output[i];
3213 const int buffer = output->output_buffer;
3214 const int varying = output->register_index;
3215 const unsigned stream_id = output->stream;
3216 assert(stream_id < MAX_VERTEX_STREAMS);
3217
3218 buffer_mask[stream_id] |= 1 << buffer;
3219
3220 assert(vue_map->varying_to_slot[varying] >= 0);
3221
3222 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3223 * array. Instead, it simply increments DstOffset for the following
3224 * input by the number of components that should be skipped.
3225 *
3226 * Our hardware is unusual in that it requires us to program SO_DECLs
3227 * for fake "hole" components, rather than simply taking the offset
3228 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3229 * program as many size = 4 holes as we can, then a final hole to
3230 * accommodate the final 1, 2, or 3 remaining.
3231 */
3232 int skip_components = output->dst_offset - next_offset[buffer];
3233
3234 while (skip_components > 0) {
3235 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3236 .HoleFlag = 1,
3237 .OutputBufferSlot = output->output_buffer,
3238 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3239 };
3240 skip_components -= 4;
3241 }
3242
3243 next_offset[buffer] = output->dst_offset + output->num_components;
3244
3245 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3246 .OutputBufferSlot = output->output_buffer,
3247 .RegisterIndex = vue_map->varying_to_slot[varying],
3248 .ComponentMask =
3249 ((1 << output->num_components) - 1) << output->start_component,
3250 };
3251
3252 if (decls[stream_id] > max_decls)
3253 max_decls = decls[stream_id];
3254 }
3255
3256 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3257 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3258 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3259
3260 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3261 int urb_entry_read_offset = 0;
3262 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3263 urb_entry_read_offset;
3264
3265 /* We always read the whole vertex. This could be reduced at some
3266 * point by reading less and offsetting the register index in the
3267 * SO_DECLs.
3268 */
3269 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3270 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3271 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3272 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3273 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3274 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3275 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3276 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3277
3278 /* Set buffer pitches; 0 means unbound. */
3279 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3280 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3281 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3282 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3283 }
3284
3285 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3286 list.DWordLength = 3 + 2 * max_decls - 2;
3287 list.StreamtoBufferSelects0 = buffer_mask[0];
3288 list.StreamtoBufferSelects1 = buffer_mask[1];
3289 list.StreamtoBufferSelects2 = buffer_mask[2];
3290 list.StreamtoBufferSelects3 = buffer_mask[3];
3291 list.NumEntries0 = decls[0];
3292 list.NumEntries1 = decls[1];
3293 list.NumEntries2 = decls[2];
3294 list.NumEntries3 = decls[3];
3295 }
3296
3297 for (int i = 0; i < max_decls; i++) {
3298 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3299 entry.Stream0Decl = so_decl[0][i];
3300 entry.Stream1Decl = so_decl[1][i];
3301 entry.Stream2Decl = so_decl[2][i];
3302 entry.Stream3Decl = so_decl[3][i];
3303 }
3304 }
3305
3306 return map;
3307 }
3308
3309 static void
3310 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3311 const struct brw_vue_map *last_vue_map,
3312 bool two_sided_color,
3313 unsigned *out_offset,
3314 unsigned *out_length)
3315 {
3316 /* The compiler computes the first URB slot without considering COL/BFC
3317 * swizzling (because it doesn't know whether it's enabled), so we need
3318 * to do that here too. This may result in a smaller offset, which
3319 * should be safe.
3320 */
3321 const unsigned first_slot =
3322 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3323
3324 /* This becomes the URB read offset (counted in pairs of slots). */
3325 assert(first_slot % 2 == 0);
3326 *out_offset = first_slot / 2;
3327
3328 /* We need to adjust the inputs read to account for front/back color
3329 * swizzling, as it can make the URB length longer.
3330 */
3331 for (int c = 0; c <= 1; c++) {
3332 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3333 /* If two sided color is enabled, the fragment shader's gl_Color
3334 * (COL0) input comes from either the gl_FrontColor (COL0) or
3335 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3336 */
3337 if (two_sided_color)
3338 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3339
3340 /* If front color isn't written, we opt to give them back color
3341 * instead of an undefined value. Switch from COL to BFC.
3342 */
3343 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3344 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3345 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3346 }
3347 }
3348 }
3349
3350 /* Compute the minimum URB Read Length necessary for the FS inputs.
3351 *
3352 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3353 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3354 *
3355 * "This field should be set to the minimum length required to read the
3356 * maximum source attribute. The maximum source attribute is indicated
3357 * by the maximum value of the enabled Attribute # Source Attribute if
3358 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3359 * enable is not set.
3360 * read_length = ceiling((max_source_attr + 1) / 2)
3361 *
3362 * [errata] Corruption/Hang possible if length programmed larger than
3363 * recommended"
3364 *
3365 * Similar text exists for Ivy Bridge.
3366 *
3367 * We find the last URB slot that's actually read by the FS.
3368 */
3369 unsigned last_read_slot = last_vue_map->num_slots - 1;
3370 while (last_read_slot > first_slot && !(fs_input_slots &
3371 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3372 --last_read_slot;
3373
3374 /* The URB read length is the difference of the two, counted in pairs. */
3375 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3376 }
3377
3378 static void
3379 iris_emit_sbe_swiz(struct iris_batch *batch,
3380 const struct iris_context *ice,
3381 unsigned urb_read_offset,
3382 unsigned sprite_coord_enables)
3383 {
3384 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3385 const struct brw_wm_prog_data *wm_prog_data = (void *)
3386 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3387 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3388 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3389
3390 /* XXX: this should be generated when putting programs in place */
3391
3392 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3393 const int input_index = wm_prog_data->urb_setup[fs_attr];
3394 if (input_index < 0 || input_index >= 16)
3395 continue;
3396
3397 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3398 &attr_overrides[input_index];
3399 int slot = vue_map->varying_to_slot[fs_attr];
3400
3401 /* Viewport and Layer are stored in the VUE header. We need to override
3402 * them to zero if earlier stages didn't write them, as GL requires that
3403 * they read back as zero when not explicitly set.
3404 */
3405 switch (fs_attr) {
3406 case VARYING_SLOT_VIEWPORT:
3407 case VARYING_SLOT_LAYER:
3408 attr->ComponentOverrideX = true;
3409 attr->ComponentOverrideW = true;
3410 attr->ConstantSource = CONST_0000;
3411
3412 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3413 attr->ComponentOverrideY = true;
3414 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3415 attr->ComponentOverrideZ = true;
3416 continue;
3417
3418 case VARYING_SLOT_PRIMITIVE_ID:
3419 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3420 if (slot == -1) {
3421 attr->ComponentOverrideX = true;
3422 attr->ComponentOverrideY = true;
3423 attr->ComponentOverrideZ = true;
3424 attr->ComponentOverrideW = true;
3425 attr->ConstantSource = PRIM_ID;
3426 continue;
3427 }
3428
3429 default:
3430 break;
3431 }
3432
3433 if (sprite_coord_enables & (1 << input_index))
3434 continue;
3435
3436 /* If there was only a back color written but not front, use back
3437 * as the color instead of undefined.
3438 */
3439 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3440 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3441 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3442 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3443
3444 /* Not written by the previous stage - undefined. */
3445 if (slot == -1) {
3446 attr->ComponentOverrideX = true;
3447 attr->ComponentOverrideY = true;
3448 attr->ComponentOverrideZ = true;
3449 attr->ComponentOverrideW = true;
3450 attr->ConstantSource = CONST_0001_FLOAT;
3451 continue;
3452 }
3453
3454 /* Compute the location of the attribute relative to the read offset,
3455 * which is counted in 256-bit increments (two 128-bit VUE slots).
3456 */
3457 const int source_attr = slot - 2 * urb_read_offset;
3458 assert(source_attr >= 0 && source_attr <= 32);
3459 attr->SourceAttribute = source_attr;
3460
3461 /* If we are doing two-sided color, and the VUE slot following this one
3462 * represents a back-facing color, then we need to instruct the SF unit
3463 * to do back-facing swizzling.
3464 */
3465 if (cso_rast->light_twoside &&
3466 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3467 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3468 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3469 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3470 attr->SwizzleSelect = INPUTATTR_FACING;
3471 }
3472
3473 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3474 for (int i = 0; i < 16; i++)
3475 sbes.Attribute[i] = attr_overrides[i];
3476 }
3477 }
3478
3479 static unsigned
3480 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3481 const struct iris_rasterizer_state *cso)
3482 {
3483 unsigned overrides = 0;
3484
3485 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3486 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3487
3488 for (int i = 0; i < 8; i++) {
3489 if ((cso->sprite_coord_enable & (1 << i)) &&
3490 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3491 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3492 }
3493
3494 return overrides;
3495 }
3496
3497 static void
3498 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3499 {
3500 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3501 const struct brw_wm_prog_data *wm_prog_data = (void *)
3502 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3503 const struct shader_info *fs_info =
3504 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3505
3506 unsigned urb_read_offset, urb_read_length;
3507 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3508 ice->shaders.last_vue_map,
3509 cso_rast->light_twoside,
3510 &urb_read_offset, &urb_read_length);
3511
3512 unsigned sprite_coord_overrides =
3513 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3514
3515 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3516 sbe.AttributeSwizzleEnable = true;
3517 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3518 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3519 sbe.VertexURBEntryReadOffset = urb_read_offset;
3520 sbe.VertexURBEntryReadLength = urb_read_length;
3521 sbe.ForceVertexURBEntryReadOffset = true;
3522 sbe.ForceVertexURBEntryReadLength = true;
3523 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3524 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3525 #if GEN_GEN >= 9
3526 for (int i = 0; i < 32; i++) {
3527 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3528 }
3529 #endif
3530 }
3531
3532 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3533 }
3534
3535 /* ------------------------------------------------------------------- */
3536
3537 /**
3538 * Populate VS program key fields based on the current state.
3539 */
3540 static void
3541 iris_populate_vs_key(const struct iris_context *ice,
3542 const struct shader_info *info,
3543 gl_shader_stage last_stage,
3544 struct brw_vs_prog_key *key)
3545 {
3546 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3547
3548 if (info->clip_distance_array_size == 0 &&
3549 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3550 last_stage == MESA_SHADER_VERTEX)
3551 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3552 }
3553
3554 /**
3555 * Populate TCS program key fields based on the current state.
3556 */
3557 static void
3558 iris_populate_tcs_key(const struct iris_context *ice,
3559 struct brw_tcs_prog_key *key)
3560 {
3561 }
3562
3563 /**
3564 * Populate TES program key fields based on the current state.
3565 */
3566 static void
3567 iris_populate_tes_key(const struct iris_context *ice,
3568 const struct shader_info *info,
3569 gl_shader_stage last_stage,
3570 struct brw_tes_prog_key *key)
3571 {
3572 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3573
3574 if (info->clip_distance_array_size == 0 &&
3575 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3576 last_stage == MESA_SHADER_TESS_EVAL)
3577 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3578 }
3579
3580 /**
3581 * Populate GS program key fields based on the current state.
3582 */
3583 static void
3584 iris_populate_gs_key(const struct iris_context *ice,
3585 const struct shader_info *info,
3586 gl_shader_stage last_stage,
3587 struct brw_gs_prog_key *key)
3588 {
3589 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3590
3591 if (info->clip_distance_array_size == 0 &&
3592 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3593 last_stage == MESA_SHADER_GEOMETRY)
3594 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3595 }
3596
3597 /**
3598 * Populate FS program key fields based on the current state.
3599 */
3600 static void
3601 iris_populate_fs_key(const struct iris_context *ice,
3602 const struct shader_info *info,
3603 struct brw_wm_prog_key *key)
3604 {
3605 struct iris_screen *screen = (void *) ice->ctx.screen;
3606 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3607 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3608 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3609 const struct iris_blend_state *blend = ice->state.cso_blend;
3610
3611 key->nr_color_regions = fb->nr_cbufs;
3612
3613 key->clamp_fragment_color = rast->clamp_fragment_color;
3614
3615 key->alpha_to_coverage = blend->alpha_to_coverage;
3616
3617 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
3618
3619 key->flat_shade = rast->flatshade &&
3620 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
3621
3622 key->persample_interp = rast->force_persample_interp;
3623 key->multisample_fbo = rast->multisample && fb->samples > 1;
3624
3625 key->coherent_fb_fetch = true;
3626
3627 key->force_dual_color_blend =
3628 screen->driconf.dual_color_blend_by_location &&
3629 (blend->blend_enables & 1) && blend->dual_color_blending;
3630
3631 /* TODO: Respect glHint for key->high_quality_derivatives */
3632 }
3633
3634 static void
3635 iris_populate_cs_key(const struct iris_context *ice,
3636 struct brw_cs_prog_key *key)
3637 {
3638 }
3639
3640 static uint64_t
3641 KSP(const struct iris_compiled_shader *shader)
3642 {
3643 struct iris_resource *res = (void *) shader->assembly.res;
3644 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3645 }
3646
3647 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3648 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3649 * this WA on C0 stepping.
3650 *
3651 * TODO: Fill out SamplerCount for prefetching?
3652 */
3653
3654 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3655 pkt.KernelStartPointer = KSP(shader); \
3656 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3657 shader->bt.size_bytes / 4; \
3658 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3659 \
3660 pkt.DispatchGRFStartRegisterForURBData = \
3661 prog_data->dispatch_grf_start_reg; \
3662 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3663 pkt.prefix##URBEntryReadOffset = 0; \
3664 \
3665 pkt.StatisticsEnable = true; \
3666 pkt.Enable = true; \
3667 \
3668 if (prog_data->total_scratch) { \
3669 struct iris_bo *bo = \
3670 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3671 uint32_t scratch_addr = bo->gtt_offset; \
3672 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3673 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3674 }
3675
3676 /**
3677 * Encode most of 3DSTATE_VS based on the compiled shader.
3678 */
3679 static void
3680 iris_store_vs_state(struct iris_context *ice,
3681 const struct gen_device_info *devinfo,
3682 struct iris_compiled_shader *shader)
3683 {
3684 struct brw_stage_prog_data *prog_data = shader->prog_data;
3685 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3686
3687 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3688 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3689 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3690 vs.SIMD8DispatchEnable = true;
3691 vs.UserClipDistanceCullTestEnableBitmask =
3692 vue_prog_data->cull_distance_mask;
3693 }
3694 }
3695
3696 /**
3697 * Encode most of 3DSTATE_HS based on the compiled shader.
3698 */
3699 static void
3700 iris_store_tcs_state(struct iris_context *ice,
3701 const struct gen_device_info *devinfo,
3702 struct iris_compiled_shader *shader)
3703 {
3704 struct brw_stage_prog_data *prog_data = shader->prog_data;
3705 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3706 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3707
3708 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3709 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3710
3711 hs.InstanceCount = tcs_prog_data->instances - 1;
3712 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3713 hs.IncludeVertexHandles = true;
3714
3715 #if GEN_GEN >= 9
3716 hs.DispatchMode = vue_prog_data->dispatch_mode;
3717 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
3718 #endif
3719 }
3720 }
3721
3722 /**
3723 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3724 */
3725 static void
3726 iris_store_tes_state(struct iris_context *ice,
3727 const struct gen_device_info *devinfo,
3728 struct iris_compiled_shader *shader)
3729 {
3730 struct brw_stage_prog_data *prog_data = shader->prog_data;
3731 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3732 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3733
3734 uint32_t *te_state = (void *) shader->derived_data;
3735 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3736
3737 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3738 te.Partitioning = tes_prog_data->partitioning;
3739 te.OutputTopology = tes_prog_data->output_topology;
3740 te.TEDomain = tes_prog_data->domain;
3741 te.TEEnable = true;
3742 te.MaximumTessellationFactorOdd = 63.0;
3743 te.MaximumTessellationFactorNotOdd = 64.0;
3744 }
3745
3746 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3747 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3748
3749 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3750 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3751 ds.ComputeWCoordinateEnable =
3752 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3753
3754 ds.UserClipDistanceCullTestEnableBitmask =
3755 vue_prog_data->cull_distance_mask;
3756 }
3757
3758 }
3759
3760 /**
3761 * Encode most of 3DSTATE_GS based on the compiled shader.
3762 */
3763 static void
3764 iris_store_gs_state(struct iris_context *ice,
3765 const struct gen_device_info *devinfo,
3766 struct iris_compiled_shader *shader)
3767 {
3768 struct brw_stage_prog_data *prog_data = shader->prog_data;
3769 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3770 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3771
3772 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3773 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3774
3775 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3776 gs.OutputTopology = gs_prog_data->output_topology;
3777 gs.ControlDataHeaderSize =
3778 gs_prog_data->control_data_header_size_hwords;
3779 gs.InstanceControl = gs_prog_data->invocations - 1;
3780 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3781 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3782 gs.ControlDataFormat = gs_prog_data->control_data_format;
3783 gs.ReorderMode = TRAILING;
3784 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3785 gs.MaximumNumberofThreads =
3786 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3787 : (devinfo->max_gs_threads - 1);
3788
3789 if (gs_prog_data->static_vertex_count != -1) {
3790 gs.StaticOutput = true;
3791 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3792 }
3793 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3794
3795 gs.UserClipDistanceCullTestEnableBitmask =
3796 vue_prog_data->cull_distance_mask;
3797
3798 const int urb_entry_write_offset = 1;
3799 const uint32_t urb_entry_output_length =
3800 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3801 urb_entry_write_offset;
3802
3803 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3804 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3805 }
3806 }
3807
3808 /**
3809 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3810 */
3811 static void
3812 iris_store_fs_state(struct iris_context *ice,
3813 const struct gen_device_info *devinfo,
3814 struct iris_compiled_shader *shader)
3815 {
3816 struct brw_stage_prog_data *prog_data = shader->prog_data;
3817 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3818
3819 uint32_t *ps_state = (void *) shader->derived_data;
3820 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3821
3822 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3823 ps.VectorMaskEnable = true;
3824 // XXX: WABTPPrefetchDisable, see above, drop at C0
3825 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3826 shader->bt.size_bytes / 4;
3827 ps.FloatingPointMode = prog_data->use_alt_mode;
3828 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3829
3830 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3831
3832 /* From the documentation for this packet:
3833 * "If the PS kernel does not need the Position XY Offsets to
3834 * compute a Position Value, then this field should be programmed
3835 * to POSOFFSET_NONE."
3836 *
3837 * "SW Recommendation: If the PS kernel needs the Position Offsets
3838 * to compute a Position XY value, this field should match Position
3839 * ZW Interpolation Mode to ensure a consistent position.xyzw
3840 * computation."
3841 *
3842 * We only require XY sample offsets. So, this recommendation doesn't
3843 * look useful at the moment. We might need this in future.
3844 */
3845 ps.PositionXYOffsetSelect =
3846 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3847
3848 if (prog_data->total_scratch) {
3849 struct iris_bo *bo =
3850 iris_get_scratch_space(ice, prog_data->total_scratch,
3851 MESA_SHADER_FRAGMENT);
3852 uint32_t scratch_addr = bo->gtt_offset;
3853 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3854 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3855 }
3856 }
3857
3858 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3859 psx.PixelShaderValid = true;
3860 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3861 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3862 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3863 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3864 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3865 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3866 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3867
3868 #if GEN_GEN >= 9
3869 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3870 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3871 #endif
3872 }
3873 }
3874
3875 /**
3876 * Compute the size of the derived data (shader command packets).
3877 *
3878 * This must match the data written by the iris_store_xs_state() functions.
3879 */
3880 static void
3881 iris_store_cs_state(struct iris_context *ice,
3882 const struct gen_device_info *devinfo,
3883 struct iris_compiled_shader *shader)
3884 {
3885 struct brw_stage_prog_data *prog_data = shader->prog_data;
3886 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3887 void *map = shader->derived_data;
3888
3889 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3890 desc.KernelStartPointer = KSP(shader);
3891 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3892 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3893 desc.SharedLocalMemorySize =
3894 encode_slm_size(GEN_GEN, prog_data->total_shared);
3895 desc.BarrierEnable = cs_prog_data->uses_barrier;
3896 desc.CrossThreadConstantDataReadLength =
3897 cs_prog_data->push.cross_thread.regs;
3898 }
3899 }
3900
3901 static unsigned
3902 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3903 {
3904 assert(cache_id <= IRIS_CACHE_BLORP);
3905
3906 static const unsigned dwords[] = {
3907 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3908 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3909 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3910 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3911 [IRIS_CACHE_FS] =
3912 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3913 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3914 [IRIS_CACHE_BLORP] = 0,
3915 };
3916
3917 return sizeof(uint32_t) * dwords[cache_id];
3918 }
3919
3920 /**
3921 * Create any state packets corresponding to the given shader stage
3922 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3923 * This means that we can look up a program in the in-memory cache and
3924 * get most of the state packet without having to reconstruct it.
3925 */
3926 static void
3927 iris_store_derived_program_state(struct iris_context *ice,
3928 enum iris_program_cache_id cache_id,
3929 struct iris_compiled_shader *shader)
3930 {
3931 struct iris_screen *screen = (void *) ice->ctx.screen;
3932 const struct gen_device_info *devinfo = &screen->devinfo;
3933
3934 switch (cache_id) {
3935 case IRIS_CACHE_VS:
3936 iris_store_vs_state(ice, devinfo, shader);
3937 break;
3938 case IRIS_CACHE_TCS:
3939 iris_store_tcs_state(ice, devinfo, shader);
3940 break;
3941 case IRIS_CACHE_TES:
3942 iris_store_tes_state(ice, devinfo, shader);
3943 break;
3944 case IRIS_CACHE_GS:
3945 iris_store_gs_state(ice, devinfo, shader);
3946 break;
3947 case IRIS_CACHE_FS:
3948 iris_store_fs_state(ice, devinfo, shader);
3949 break;
3950 case IRIS_CACHE_CS:
3951 iris_store_cs_state(ice, devinfo, shader);
3952 case IRIS_CACHE_BLORP:
3953 break;
3954 default:
3955 break;
3956 }
3957 }
3958
3959 /* ------------------------------------------------------------------- */
3960
3961 static const uint32_t push_constant_opcodes[] = {
3962 [MESA_SHADER_VERTEX] = 21,
3963 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3964 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3965 [MESA_SHADER_GEOMETRY] = 22,
3966 [MESA_SHADER_FRAGMENT] = 23,
3967 [MESA_SHADER_COMPUTE] = 0,
3968 };
3969
3970 static uint32_t
3971 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3972 {
3973 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3974
3975 iris_use_pinned_bo(batch, state_bo, false);
3976
3977 return ice->state.unbound_tex.offset;
3978 }
3979
3980 static uint32_t
3981 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3982 {
3983 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3984 if (!ice->state.null_fb.res)
3985 return use_null_surface(batch, ice);
3986
3987 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3988
3989 iris_use_pinned_bo(batch, state_bo, false);
3990
3991 return ice->state.null_fb.offset;
3992 }
3993
3994 static uint32_t
3995 surf_state_offset_for_aux(struct iris_resource *res,
3996 unsigned aux_modes,
3997 enum isl_aux_usage aux_usage)
3998 {
3999 return SURFACE_STATE_ALIGNMENT *
4000 util_bitcount(res->aux.possible_usages & ((1 << aux_usage) - 1));
4001 }
4002
4003 static void
4004 surf_state_update_clear_value(struct iris_batch *batch,
4005 struct iris_resource *res,
4006 struct iris_state_ref *state,
4007 unsigned aux_modes,
4008 enum isl_aux_usage aux_usage)
4009 {
4010 struct isl_device *isl_dev = &batch->screen->isl_dev;
4011 struct iris_bo *state_bo = iris_resource_bo(state->res);
4012 uint64_t real_offset = state->offset +
4013 IRIS_MEMZONE_BINDER_START;
4014 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
4015 uint32_t clear_offset = offset_into_bo +
4016 isl_dev->ss.clear_value_offset +
4017 surf_state_offset_for_aux(res, aux_modes, aux_usage);
4018
4019 batch->vtbl->copy_mem_mem(batch, state_bo, clear_offset,
4020 res->aux.clear_color_bo,
4021 res->aux.clear_color_offset,
4022 isl_dev->ss.clear_value_size);
4023 }
4024
4025 static void
4026 update_clear_value(struct iris_context *ice,
4027 struct iris_batch *batch,
4028 struct iris_resource *res,
4029 struct iris_state_ref *state,
4030 unsigned aux_modes,
4031 struct isl_view *view)
4032 {
4033 struct iris_screen *screen = batch->screen;
4034 const struct gen_device_info *devinfo = &screen->devinfo;
4035
4036 /* We only need to update the clear color in the surface state for gen8 and
4037 * gen9. Newer gens can read it directly from the clear color state buffer.
4038 */
4039 if (devinfo->gen > 9)
4040 return;
4041
4042 if (devinfo->gen == 9) {
4043 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
4044 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
4045
4046 while (aux_modes) {
4047 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4048
4049 surf_state_update_clear_value(batch, res, state, aux_modes,
4050 aux_usage);
4051 }
4052 } else if (devinfo->gen == 8) {
4053 pipe_resource_reference(&state->res, NULL);
4054 void *map = alloc_surface_states(ice->state.surface_uploader,
4055 state, res->aux.possible_usages);
4056 while (aux_modes) {
4057 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4058 fill_surface_state(&screen->isl_dev, map, res, &res->surf, view,
4059 aux_usage, 0, 0);
4060 map += SURFACE_STATE_ALIGNMENT;
4061 }
4062 }
4063 }
4064
4065 /**
4066 * Add a surface to the validation list, as well as the buffer containing
4067 * the corresponding SURFACE_STATE.
4068 *
4069 * Returns the binding table entry (offset to SURFACE_STATE).
4070 */
4071 static uint32_t
4072 use_surface(struct iris_context *ice,
4073 struct iris_batch *batch,
4074 struct pipe_surface *p_surf,
4075 bool writeable,
4076 enum isl_aux_usage aux_usage,
4077 bool is_read_surface)
4078 {
4079 struct iris_surface *surf = (void *) p_surf;
4080 struct iris_resource *res = (void *) p_surf->texture;
4081 uint32_t offset = 0;
4082
4083 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
4084 if (GEN_GEN == 8 && is_read_surface) {
4085 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state_read.res), false);
4086 } else {
4087 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
4088 }
4089
4090 if (res->aux.bo) {
4091 iris_use_pinned_bo(batch, res->aux.bo, writeable);
4092 if (res->aux.clear_color_bo)
4093 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false);
4094
4095 if (memcmp(&res->aux.clear_color, &surf->clear_color,
4096 sizeof(surf->clear_color)) != 0) {
4097 update_clear_value(ice, batch, res, &surf->surface_state,
4098 res->aux.possible_usages, &surf->view);
4099 if (GEN_GEN == 8) {
4100 update_clear_value(ice, batch, res, &surf->surface_state_read,
4101 res->aux.possible_usages, &surf->read_view);
4102 }
4103 surf->clear_color = res->aux.clear_color;
4104 }
4105 }
4106
4107 offset = (GEN_GEN == 8 && is_read_surface) ? surf->surface_state_read.offset
4108 : surf->surface_state.offset;
4109
4110 return offset +
4111 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
4112 }
4113
4114 static uint32_t
4115 use_sampler_view(struct iris_context *ice,
4116 struct iris_batch *batch,
4117 struct iris_sampler_view *isv)
4118 {
4119 // XXX: ASTC hacks
4120 enum isl_aux_usage aux_usage =
4121 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
4122
4123 iris_use_pinned_bo(batch, isv->res->bo, false);
4124 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
4125
4126 if (isv->res->aux.bo) {
4127 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
4128 if (isv->res->aux.clear_color_bo)
4129 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, false);
4130 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
4131 sizeof(isv->clear_color)) != 0) {
4132 update_clear_value(ice, batch, isv->res, &isv->surface_state,
4133 isv->res->aux.sampler_usages, &isv->view);
4134 isv->clear_color = isv->res->aux.clear_color;
4135 }
4136 }
4137
4138 return isv->surface_state.offset +
4139 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
4140 aux_usage);
4141 }
4142
4143 static uint32_t
4144 use_ubo_ssbo(struct iris_batch *batch,
4145 struct iris_context *ice,
4146 struct pipe_shader_buffer *buf,
4147 struct iris_state_ref *surf_state,
4148 bool writable)
4149 {
4150 if (!buf->buffer)
4151 return use_null_surface(batch, ice);
4152
4153 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable);
4154 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
4155
4156 return surf_state->offset;
4157 }
4158
4159 static uint32_t
4160 use_image(struct iris_batch *batch, struct iris_context *ice,
4161 struct iris_shader_state *shs, int i)
4162 {
4163 struct iris_image_view *iv = &shs->image[i];
4164 struct iris_resource *res = (void *) iv->base.resource;
4165
4166 if (!res)
4167 return use_null_surface(batch, ice);
4168
4169 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
4170
4171 iris_use_pinned_bo(batch, res->bo, write);
4172 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.res), false);
4173
4174 if (res->aux.bo)
4175 iris_use_pinned_bo(batch, res->aux.bo, write);
4176
4177 return iv->surface_state.offset;
4178 }
4179
4180 #define push_bt_entry(addr) \
4181 assert(addr >= binder_addr); \
4182 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
4183 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
4184
4185 #define bt_assert(section) \
4186 if (!pin_only && shader->bt.used_mask[section] != 0) \
4187 assert(shader->bt.offsets[section] == s);
4188
4189 /**
4190 * Populate the binding table for a given shader stage.
4191 *
4192 * This fills out the table of pointers to surfaces required by the shader,
4193 * and also adds those buffers to the validation list so the kernel can make
4194 * resident before running our batch.
4195 */
4196 static void
4197 iris_populate_binding_table(struct iris_context *ice,
4198 struct iris_batch *batch,
4199 gl_shader_stage stage,
4200 bool pin_only)
4201 {
4202 const struct iris_binder *binder = &ice->state.binder;
4203 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
4204 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4205 if (!shader)
4206 return;
4207
4208 struct iris_binding_table *bt = &shader->bt;
4209 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
4210 struct iris_shader_state *shs = &ice->state.shaders[stage];
4211 uint32_t binder_addr = binder->bo->gtt_offset;
4212
4213 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4214 int s = 0;
4215
4216 const struct shader_info *info = iris_get_shader_info(ice, stage);
4217 if (!info) {
4218 /* TCS passthrough doesn't need a binding table. */
4219 assert(stage == MESA_SHADER_TESS_CTRL);
4220 return;
4221 }
4222
4223 if (stage == MESA_SHADER_COMPUTE &&
4224 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4225 /* surface for gl_NumWorkGroups */
4226 struct iris_state_ref *grid_data = &ice->state.grid_size;
4227 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4228 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
4229 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
4230 push_bt_entry(grid_state->offset);
4231 }
4232
4233 if (stage == MESA_SHADER_FRAGMENT) {
4234 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4235 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4236 if (cso_fb->nr_cbufs) {
4237 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4238 uint32_t addr;
4239 if (cso_fb->cbufs[i]) {
4240 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4241 ice->state.draw_aux_usage[i], false);
4242 } else {
4243 addr = use_null_fb_surface(batch, ice);
4244 }
4245 push_bt_entry(addr);
4246 }
4247 } else {
4248 uint32_t addr = use_null_fb_surface(batch, ice);
4249 push_bt_entry(addr);
4250 }
4251 }
4252
4253 #define foreach_surface_used(index, group) \
4254 bt_assert(group); \
4255 for (int index = 0; index < bt->sizes[group]; index++) \
4256 if (iris_group_index_to_bti(bt, group, index) != \
4257 IRIS_SURFACE_NOT_USED)
4258
4259 foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) {
4260 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4261 uint32_t addr;
4262 if (cso_fb->cbufs[i]) {
4263 addr = use_surface(ice, batch, cso_fb->cbufs[i],
4264 true, ice->state.draw_aux_usage[i], true);
4265 push_bt_entry(addr);
4266 }
4267 }
4268
4269 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4270 struct iris_sampler_view *view = shs->textures[i];
4271 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4272 : use_null_surface(batch, ice);
4273 push_bt_entry(addr);
4274 }
4275
4276 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4277 uint32_t addr = use_image(batch, ice, shs, i);
4278 push_bt_entry(addr);
4279 }
4280
4281 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4282 uint32_t addr;
4283
4284 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4285 if (ish->const_data) {
4286 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false);
4287 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4288 false);
4289 addr = ish->const_data_state.offset;
4290 } else {
4291 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4292 addr = use_null_surface(batch, ice);
4293 }
4294 } else {
4295 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4296 &shs->constbuf_surf_state[i], false);
4297 }
4298
4299 push_bt_entry(addr);
4300 }
4301
4302 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4303 uint32_t addr =
4304 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4305 shs->writable_ssbos & (1u << i));
4306 push_bt_entry(addr);
4307 }
4308
4309 #if 0
4310 /* XXX: YUV surfaces not implemented yet */
4311 bt_assert(plane_start[1], ...);
4312 bt_assert(plane_start[2], ...);
4313 #endif
4314 }
4315
4316 static void
4317 iris_use_optional_res(struct iris_batch *batch,
4318 struct pipe_resource *res,
4319 bool writeable)
4320 {
4321 if (res) {
4322 struct iris_bo *bo = iris_resource_bo(res);
4323 iris_use_pinned_bo(batch, bo, writeable);
4324 }
4325 }
4326
4327 static void
4328 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4329 struct pipe_surface *zsbuf,
4330 struct iris_depth_stencil_alpha_state *cso_zsa)
4331 {
4332 if (!zsbuf)
4333 return;
4334
4335 struct iris_resource *zres, *sres;
4336 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4337
4338 if (zres) {
4339 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled);
4340 if (zres->aux.bo) {
4341 iris_use_pinned_bo(batch, zres->aux.bo,
4342 cso_zsa->depth_writes_enabled);
4343 }
4344 }
4345
4346 if (sres) {
4347 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled);
4348 }
4349 }
4350
4351 /* ------------------------------------------------------------------- */
4352
4353 /**
4354 * Pin any BOs which were installed by a previous batch, and restored
4355 * via the hardware logical context mechanism.
4356 *
4357 * We don't need to re-emit all state every batch - the hardware context
4358 * mechanism will save and restore it for us. This includes pointers to
4359 * various BOs...which won't exist unless we ask the kernel to pin them
4360 * by adding them to the validation list.
4361 *
4362 * We can skip buffers if we've re-emitted those packets, as we're
4363 * overwriting those stale pointers with new ones, and don't actually
4364 * refer to the old BOs.
4365 */
4366 static void
4367 iris_restore_render_saved_bos(struct iris_context *ice,
4368 struct iris_batch *batch,
4369 const struct pipe_draw_info *draw)
4370 {
4371 struct iris_genx_state *genx = ice->state.genx;
4372
4373 const uint64_t clean = ~ice->state.dirty;
4374
4375 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4376 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
4377 }
4378
4379 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4380 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
4381 }
4382
4383 if (clean & IRIS_DIRTY_BLEND_STATE) {
4384 iris_use_optional_res(batch, ice->state.last_res.blend, false);
4385 }
4386
4387 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4388 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
4389 }
4390
4391 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4392 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
4393 }
4394
4395 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4396 for (int i = 0; i < 4; i++) {
4397 struct iris_stream_output_target *tgt =
4398 (void *) ice->state.so_target[i];
4399 if (tgt) {
4400 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4401 true);
4402 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4403 true);
4404 }
4405 }
4406 }
4407
4408 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4409 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4410 continue;
4411
4412 struct iris_shader_state *shs = &ice->state.shaders[stage];
4413 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4414
4415 if (!shader)
4416 continue;
4417
4418 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4419
4420 for (int i = 0; i < 4; i++) {
4421 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4422
4423 if (range->length == 0)
4424 continue;
4425
4426 /* Range block is a binding table index, map back to UBO index. */
4427 unsigned block_index = iris_bti_to_group_index(
4428 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4429 assert(block_index != IRIS_SURFACE_NOT_USED);
4430
4431 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4432 struct iris_resource *res = (void *) cbuf->buffer;
4433
4434 if (res)
4435 iris_use_pinned_bo(batch, res->bo, false);
4436 else
4437 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4438 }
4439 }
4440
4441 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4442 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4443 /* Re-pin any buffers referred to by the binding table. */
4444 iris_populate_binding_table(ice, batch, stage, true);
4445 }
4446 }
4447
4448 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4449 struct iris_shader_state *shs = &ice->state.shaders[stage];
4450 struct pipe_resource *res = shs->sampler_table.res;
4451 if (res)
4452 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4453 }
4454
4455 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4456 if (clean & (IRIS_DIRTY_VS << stage)) {
4457 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4458
4459 if (shader) {
4460 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4461 iris_use_pinned_bo(batch, bo, false);
4462
4463 struct brw_stage_prog_data *prog_data = shader->prog_data;
4464
4465 if (prog_data->total_scratch > 0) {
4466 struct iris_bo *bo =
4467 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4468 iris_use_pinned_bo(batch, bo, true);
4469 }
4470 }
4471 }
4472 }
4473
4474 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
4475 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4476 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4477 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4478 }
4479
4480 iris_use_optional_res(batch, ice->state.last_res.index_buffer, false);
4481
4482 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4483 uint64_t bound = ice->state.bound_vertex_buffers;
4484 while (bound) {
4485 const int i = u_bit_scan64(&bound);
4486 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4487 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4488 }
4489 }
4490 }
4491
4492 static void
4493 iris_restore_compute_saved_bos(struct iris_context *ice,
4494 struct iris_batch *batch,
4495 const struct pipe_grid_info *grid)
4496 {
4497 const uint64_t clean = ~ice->state.dirty;
4498
4499 const int stage = MESA_SHADER_COMPUTE;
4500 struct iris_shader_state *shs = &ice->state.shaders[stage];
4501
4502 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4503 /* Re-pin any buffers referred to by the binding table. */
4504 iris_populate_binding_table(ice, batch, stage, true);
4505 }
4506
4507 struct pipe_resource *sampler_res = shs->sampler_table.res;
4508 if (sampler_res)
4509 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4510
4511 if ((clean & IRIS_DIRTY_SAMPLER_STATES_CS) &&
4512 (clean & IRIS_DIRTY_BINDINGS_CS) &&
4513 (clean & IRIS_DIRTY_CONSTANTS_CS) &&
4514 (clean & IRIS_DIRTY_CS)) {
4515 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false);
4516 }
4517
4518 if (clean & IRIS_DIRTY_CS) {
4519 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4520
4521 if (shader) {
4522 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4523 iris_use_pinned_bo(batch, bo, false);
4524
4525 struct iris_bo *curbe_bo =
4526 iris_resource_bo(ice->state.last_res.cs_thread_ids);
4527 iris_use_pinned_bo(batch, curbe_bo, false);
4528
4529 struct brw_stage_prog_data *prog_data = shader->prog_data;
4530
4531 if (prog_data->total_scratch > 0) {
4532 struct iris_bo *bo =
4533 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4534 iris_use_pinned_bo(batch, bo, true);
4535 }
4536 }
4537 }
4538 }
4539
4540 /**
4541 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4542 */
4543 static void
4544 iris_update_surface_base_address(struct iris_batch *batch,
4545 struct iris_binder *binder)
4546 {
4547 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4548 return;
4549
4550 flush_for_state_base_change(batch);
4551
4552 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4553 sba.SurfaceStateMOCS = MOCS_WB;
4554 sba.SurfaceStateBaseAddressModifyEnable = true;
4555 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4556 }
4557
4558 batch->last_surface_base_address = binder->bo->gtt_offset;
4559 }
4560
4561 static inline void
4562 iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
4563 bool window_space_position, float *zmin, float *zmax)
4564 {
4565 if (window_space_position) {
4566 *zmin = 0.f;
4567 *zmax = 1.f;
4568 return;
4569 }
4570 util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
4571 }
4572
4573 static void
4574 iris_upload_dirty_render_state(struct iris_context *ice,
4575 struct iris_batch *batch,
4576 const struct pipe_draw_info *draw)
4577 {
4578 const uint64_t dirty = ice->state.dirty;
4579
4580 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4581 return;
4582
4583 struct iris_genx_state *genx = ice->state.genx;
4584 struct iris_binder *binder = &ice->state.binder;
4585 struct brw_wm_prog_data *wm_prog_data = (void *)
4586 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4587
4588 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4589 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4590 uint32_t cc_vp_address;
4591
4592 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4593 uint32_t *cc_vp_map =
4594 stream_state(batch, ice->state.dynamic_uploader,
4595 &ice->state.last_res.cc_vp,
4596 4 * ice->state.num_viewports *
4597 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4598 for (int i = 0; i < ice->state.num_viewports; i++) {
4599 float zmin, zmax;
4600 iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
4601 ice->state.window_space_position,
4602 &zmin, &zmax);
4603 if (cso_rast->depth_clip_near)
4604 zmin = 0.0;
4605 if (cso_rast->depth_clip_far)
4606 zmax = 1.0;
4607
4608 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4609 ccv.MinimumDepth = zmin;
4610 ccv.MaximumDepth = zmax;
4611 }
4612
4613 cc_vp_map += GENX(CC_VIEWPORT_length);
4614 }
4615
4616 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4617 ptr.CCViewportPointer = cc_vp_address;
4618 }
4619 }
4620
4621 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4622 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4623 uint32_t sf_cl_vp_address;
4624 uint32_t *vp_map =
4625 stream_state(batch, ice->state.dynamic_uploader,
4626 &ice->state.last_res.sf_cl_vp,
4627 4 * ice->state.num_viewports *
4628 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4629
4630 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4631 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4632 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4633
4634 float vp_xmin = viewport_extent(state, 0, -1.0f);
4635 float vp_xmax = viewport_extent(state, 0, 1.0f);
4636 float vp_ymin = viewport_extent(state, 1, -1.0f);
4637 float vp_ymax = viewport_extent(state, 1, 1.0f);
4638
4639 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
4640 state->scale[0], state->scale[1],
4641 state->translate[0], state->translate[1],
4642 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4643
4644 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4645 vp.ViewportMatrixElementm00 = state->scale[0];
4646 vp.ViewportMatrixElementm11 = state->scale[1];
4647 vp.ViewportMatrixElementm22 = state->scale[2];
4648 vp.ViewportMatrixElementm30 = state->translate[0];
4649 vp.ViewportMatrixElementm31 = state->translate[1];
4650 vp.ViewportMatrixElementm32 = state->translate[2];
4651 vp.XMinClipGuardband = gb_xmin;
4652 vp.XMaxClipGuardband = gb_xmax;
4653 vp.YMinClipGuardband = gb_ymin;
4654 vp.YMaxClipGuardband = gb_ymax;
4655 vp.XMinViewPort = MAX2(vp_xmin, 0);
4656 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4657 vp.YMinViewPort = MAX2(vp_ymin, 0);
4658 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4659 }
4660
4661 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4662 }
4663
4664 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4665 ptr.SFClipViewportPointer = sf_cl_vp_address;
4666 }
4667 }
4668
4669 if (dirty & IRIS_DIRTY_URB) {
4670 unsigned size[4];
4671
4672 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
4673 if (!ice->shaders.prog[i]) {
4674 size[i] = 1;
4675 } else {
4676 struct brw_vue_prog_data *vue_prog_data =
4677 (void *) ice->shaders.prog[i]->prog_data;
4678 size[i] = vue_prog_data->urb_entry_size;
4679 }
4680 assert(size[i] != 0);
4681 }
4682
4683 genX(emit_urb_setup)(ice, batch, size,
4684 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
4685 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
4686 }
4687
4688 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4689 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4690 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4691 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4692 const int header_dwords = GENX(BLEND_STATE_length);
4693
4694 /* Always write at least one BLEND_STATE - the final RT message will
4695 * reference BLEND_STATE[0] even if there aren't color writes. There
4696 * may still be alpha testing, computed depth, and so on.
4697 */
4698 const int rt_dwords =
4699 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4700
4701 uint32_t blend_offset;
4702 uint32_t *blend_map =
4703 stream_state(batch, ice->state.dynamic_uploader,
4704 &ice->state.last_res.blend,
4705 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4706
4707 uint32_t blend_state_header;
4708 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4709 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4710 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4711 }
4712
4713 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4714 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4715
4716 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4717 ptr.BlendStatePointer = blend_offset;
4718 ptr.BlendStatePointerValid = true;
4719 }
4720 }
4721
4722 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4723 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4724 #if GEN_GEN == 8
4725 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4726 #endif
4727 uint32_t cc_offset;
4728 void *cc_map =
4729 stream_state(batch, ice->state.dynamic_uploader,
4730 &ice->state.last_res.color_calc,
4731 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4732 64, &cc_offset);
4733 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4734 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4735 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4736 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4737 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4738 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4739 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4740 #if GEN_GEN == 8
4741 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4742 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4743 #endif
4744 }
4745 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4746 ptr.ColorCalcStatePointer = cc_offset;
4747 ptr.ColorCalcStatePointerValid = true;
4748 }
4749 }
4750
4751 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4752 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4753 continue;
4754
4755 struct iris_shader_state *shs = &ice->state.shaders[stage];
4756 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4757
4758 if (!shader)
4759 continue;
4760
4761 if (shs->sysvals_need_upload)
4762 upload_sysvals(ice, stage);
4763
4764 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4765
4766 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4767 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4768 if (prog_data) {
4769 /* The Skylake PRM contains the following restriction:
4770 *
4771 * "The driver must ensure The following case does not occur
4772 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4773 * buffer 3 read length equal to zero committed followed by a
4774 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4775 * zero committed."
4776 *
4777 * To avoid this, we program the buffers in the highest slots.
4778 * This way, slot 0 is only used if slot 3 is also used.
4779 */
4780 int n = 3;
4781
4782 for (int i = 3; i >= 0; i--) {
4783 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4784
4785 if (range->length == 0)
4786 continue;
4787
4788 /* Range block is a binding table index, map back to UBO index. */
4789 unsigned block_index = iris_bti_to_group_index(
4790 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4791 assert(block_index != IRIS_SURFACE_NOT_USED);
4792
4793 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4794 struct iris_resource *res = (void *) cbuf->buffer;
4795
4796 assert(cbuf->buffer_offset % 32 == 0);
4797
4798 pkt.ConstantBody.ReadLength[n] = range->length;
4799 pkt.ConstantBody.Buffer[n] =
4800 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
4801 : ro_bo(batch->screen->workaround_bo, 0);
4802 n--;
4803 }
4804 }
4805 }
4806 }
4807
4808 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4809 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4810 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4811 ptr._3DCommandSubOpcode = 38 + stage;
4812 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4813 }
4814 }
4815 }
4816
4817 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4818 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4819 iris_populate_binding_table(ice, batch, stage, false);
4820 }
4821 }
4822
4823 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4824 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4825 !ice->shaders.prog[stage])
4826 continue;
4827
4828 iris_upload_sampler_states(ice, stage);
4829
4830 struct iris_shader_state *shs = &ice->state.shaders[stage];
4831 struct pipe_resource *res = shs->sampler_table.res;
4832 if (res)
4833 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4834
4835 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4836 ptr._3DCommandSubOpcode = 43 + stage;
4837 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4838 }
4839 }
4840
4841 if (ice->state.need_border_colors)
4842 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4843
4844 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4845 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4846 ms.PixelLocation =
4847 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4848 if (ice->state.framebuffer.samples > 0)
4849 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4850 }
4851 }
4852
4853 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4854 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4855 ms.SampleMask = ice->state.sample_mask;
4856 }
4857 }
4858
4859 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4860 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4861 continue;
4862
4863 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4864
4865 if (shader) {
4866 struct brw_stage_prog_data *prog_data = shader->prog_data;
4867 struct iris_resource *cache = (void *) shader->assembly.res;
4868 iris_use_pinned_bo(batch, cache->bo, false);
4869
4870 if (prog_data->total_scratch > 0) {
4871 struct iris_bo *bo =
4872 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4873 iris_use_pinned_bo(batch, bo, true);
4874 }
4875
4876 if (stage == MESA_SHADER_FRAGMENT) {
4877 UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
4878 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4879
4880 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
4881 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
4882 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
4883 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
4884 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
4885
4886 /* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say:
4887 *
4888 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16,
4889 * SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch
4890 * mode."
4891 *
4892 * 16x MSAA only exists on Gen9+, so we can skip this on Gen8.
4893 */
4894 if (GEN_GEN >= 9 && cso_fb->samples == 16 &&
4895 !wm_prog_data->persample_dispatch) {
4896 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
4897 ps._32PixelDispatchEnable = false;
4898 }
4899
4900 ps.DispatchGRFStartRegisterForConstantSetupData0 =
4901 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
4902 ps.DispatchGRFStartRegisterForConstantSetupData1 =
4903 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
4904 ps.DispatchGRFStartRegisterForConstantSetupData2 =
4905 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
4906
4907 ps.KernelStartPointer0 = KSP(shader) +
4908 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
4909 ps.KernelStartPointer1 = KSP(shader) +
4910 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
4911 ps.KernelStartPointer2 = KSP(shader) +
4912 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
4913 }
4914
4915 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
4916 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
4917 #if GEN_GEN >= 9
4918 if (!wm_prog_data->uses_sample_mask)
4919 psx.InputCoverageMaskState = ICMS_NONE;
4920 else if (wm_prog_data->post_depth_coverage)
4921 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4922 else if (wm_prog_data->inner_coverage &&
4923 cso->conservative_rasterization)
4924 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4925 else
4926 psx.InputCoverageMaskState = ICMS_NORMAL;
4927 #else
4928 psx.PixelShaderUsesInputCoverageMask =
4929 wm_prog_data->uses_sample_mask;
4930 #endif
4931 }
4932
4933 uint32_t *shader_ps = (uint32_t *) shader->derived_data;
4934 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
4935 iris_emit_merge(batch, shader_ps, ps_state,
4936 GENX(3DSTATE_PS_length));
4937 iris_emit_merge(batch, shader_psx, psx_state,
4938 GENX(3DSTATE_PS_EXTRA_length));
4939 } else {
4940 iris_batch_emit(batch, shader->derived_data,
4941 iris_derived_program_state_size(stage));
4942 }
4943 } else {
4944 if (stage == MESA_SHADER_TESS_EVAL) {
4945 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4946 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4947 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4948 } else if (stage == MESA_SHADER_GEOMETRY) {
4949 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4950 }
4951 }
4952 }
4953
4954 if (ice->state.streamout_active) {
4955 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4956 iris_batch_emit(batch, genx->so_buffers,
4957 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4958 for (int i = 0; i < 4; i++) {
4959 struct iris_stream_output_target *tgt =
4960 (void *) ice->state.so_target[i];
4961 if (tgt) {
4962 tgt->zeroed = true;
4963 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4964 true);
4965 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4966 true);
4967 }
4968 }
4969 }
4970
4971 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4972 uint32_t *decl_list =
4973 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4974 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4975 }
4976
4977 if (dirty & IRIS_DIRTY_STREAMOUT) {
4978 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4979
4980 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4981 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4982 sol.SOFunctionEnable = true;
4983 sol.SOStatisticsEnable = true;
4984
4985 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4986 !ice->state.prims_generated_query_active;
4987 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4988 }
4989
4990 assert(ice->state.streamout);
4991
4992 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4993 GENX(3DSTATE_STREAMOUT_length));
4994 }
4995 } else {
4996 if (dirty & IRIS_DIRTY_STREAMOUT) {
4997 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4998 }
4999 }
5000
5001 if (dirty & IRIS_DIRTY_CLIP) {
5002 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5003 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5004
5005 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
5006 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
5007 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
5008 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
5009 : ice->state.prim_is_points_or_lines);
5010
5011 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
5012 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
5013 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
5014 if (cso_rast->rasterizer_discard)
5015 cl.ClipMode = CLIPMODE_REJECT_ALL;
5016 else if (ice->state.window_space_position)
5017 cl.ClipMode = CLIPMODE_ACCEPT_ALL;
5018 else
5019 cl.ClipMode = CLIPMODE_NORMAL;
5020
5021 cl.PerspectiveDivideDisable = ice->state.window_space_position;
5022 cl.ViewportXYClipTestEnable = !points_or_lines;
5023
5024 if (wm_prog_data->barycentric_interp_modes &
5025 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
5026 cl.NonPerspectiveBarycentricEnable = true;
5027
5028 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
5029 cl.MaximumVPIndex = ice->state.num_viewports - 1;
5030 }
5031 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
5032 ARRAY_SIZE(cso_rast->clip));
5033 }
5034
5035 if (dirty & IRIS_DIRTY_RASTER) {
5036 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5037 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
5038
5039 uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
5040 iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
5041 sf.ViewportTransformEnable = !ice->state.window_space_position;
5042 }
5043 iris_emit_merge(batch, cso->sf, dynamic_sf,
5044 ARRAY_SIZE(dynamic_sf));
5045 }
5046
5047 if (dirty & IRIS_DIRTY_WM) {
5048 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5049 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
5050
5051 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
5052 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
5053
5054 wm.BarycentricInterpolationMode =
5055 wm_prog_data->barycentric_interp_modes;
5056
5057 if (wm_prog_data->early_fragment_tests)
5058 wm.EarlyDepthStencilControl = EDSC_PREPS;
5059 else if (wm_prog_data->has_side_effects)
5060 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
5061
5062 /* We could skip this bit if color writes are enabled. */
5063 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
5064 wm.ForceThreadDispatchEnable = ForceON;
5065 }
5066 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
5067 }
5068
5069 if (dirty & IRIS_DIRTY_SBE) {
5070 iris_emit_sbe(batch, ice);
5071 }
5072
5073 if (dirty & IRIS_DIRTY_PS_BLEND) {
5074 struct iris_blend_state *cso_blend = ice->state.cso_blend;
5075 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
5076 const struct shader_info *fs_info =
5077 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
5078
5079 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
5080 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
5081 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
5082 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
5083
5084 /* The dual source blending docs caution against using SRC1 factors
5085 * when the shader doesn't use a dual source render target write.
5086 * Empirically, this can lead to GPU hangs, and the results are
5087 * undefined anyway, so simply disable blending to avoid the hang.
5088 */
5089 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
5090 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
5091 }
5092
5093 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
5094 ARRAY_SIZE(cso_blend->ps_blend));
5095 }
5096
5097 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
5098 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
5099 #if GEN_GEN >= 9
5100 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5101 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
5102 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
5103 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
5104 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
5105 }
5106 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
5107 #else
5108 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
5109 #endif
5110 }
5111
5112 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
5113 uint32_t scissor_offset =
5114 emit_state(batch, ice->state.dynamic_uploader,
5115 &ice->state.last_res.scissor,
5116 ice->state.scissors,
5117 sizeof(struct pipe_scissor_state) *
5118 ice->state.num_viewports, 32);
5119
5120 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
5121 ptr.ScissorRectPointer = scissor_offset;
5122 }
5123 }
5124
5125 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
5126 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
5127
5128 /* Do not emit the clear params yets. We need to update the clear value
5129 * first.
5130 */
5131 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
5132 uint32_t cso_z_size = sizeof(cso_z->packets) - clear_length;
5133 iris_batch_emit(batch, cso_z->packets, cso_z_size);
5134
5135 union isl_color_value clear_value = { .f32 = { 0, } };
5136
5137 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5138 if (cso_fb->zsbuf) {
5139 struct iris_resource *zres, *sres;
5140 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
5141 &zres, &sres);
5142 if (zres && zres->aux.bo)
5143 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
5144 }
5145
5146 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
5147 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
5148 clear.DepthClearValueValid = true;
5149 clear.DepthClearValue = clear_value.f32[0];
5150 }
5151 iris_batch_emit(batch, clear_params, clear_length);
5152 }
5153
5154 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
5155 /* Listen for buffer changes, and also write enable changes. */
5156 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5157 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
5158 }
5159
5160 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
5161 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
5162 for (int i = 0; i < 32; i++) {
5163 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
5164 }
5165 }
5166 }
5167
5168 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
5169 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5170 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
5171 }
5172
5173 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
5174 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
5175 topo.PrimitiveTopologyType =
5176 translate_prim_type(draw->mode, draw->vertices_per_patch);
5177 }
5178 }
5179
5180 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
5181 int count = util_bitcount64(ice->state.bound_vertex_buffers);
5182 int dynamic_bound = ice->state.bound_vertex_buffers;
5183
5184 if (ice->state.vs_uses_draw_params) {
5185 if (ice->draw.draw_params_offset == 0) {
5186 u_upload_data(ice->ctx.stream_uploader, 0, sizeof(ice->draw.params),
5187 4, &ice->draw.params, &ice->draw.draw_params_offset,
5188 &ice->draw.draw_params_res);
5189 }
5190 assert(ice->draw.draw_params_res);
5191
5192 struct iris_vertex_buffer_state *state =
5193 &(ice->state.genx->vertex_buffers[count]);
5194 pipe_resource_reference(&state->resource, ice->draw.draw_params_res);
5195 struct iris_resource *res = (void *) state->resource;
5196
5197 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5198 vb.VertexBufferIndex = count;
5199 vb.AddressModifyEnable = true;
5200 vb.BufferPitch = 0;
5201 vb.BufferSize = res->bo->size - ice->draw.draw_params_offset;
5202 vb.BufferStartingAddress =
5203 ro_bo(NULL, res->bo->gtt_offset +
5204 (int) ice->draw.draw_params_offset);
5205 vb.MOCS = mocs(res->bo);
5206 }
5207 dynamic_bound |= 1ull << count;
5208 count++;
5209 }
5210
5211 if (ice->state.vs_uses_derived_draw_params) {
5212 u_upload_data(ice->ctx.stream_uploader, 0,
5213 sizeof(ice->draw.derived_params), 4,
5214 &ice->draw.derived_params,
5215 &ice->draw.derived_draw_params_offset,
5216 &ice->draw.derived_draw_params_res);
5217
5218 struct iris_vertex_buffer_state *state =
5219 &(ice->state.genx->vertex_buffers[count]);
5220 pipe_resource_reference(&state->resource,
5221 ice->draw.derived_draw_params_res);
5222 struct iris_resource *res = (void *) ice->draw.derived_draw_params_res;
5223
5224 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5225 vb.VertexBufferIndex = count;
5226 vb.AddressModifyEnable = true;
5227 vb.BufferPitch = 0;
5228 vb.BufferSize =
5229 res->bo->size - ice->draw.derived_draw_params_offset;
5230 vb.BufferStartingAddress =
5231 ro_bo(NULL, res->bo->gtt_offset +
5232 (int) ice->draw.derived_draw_params_offset);
5233 vb.MOCS = mocs(res->bo);
5234 }
5235 dynamic_bound |= 1ull << count;
5236 count++;
5237 }
5238
5239 if (count) {
5240 /* The VF cache designers cut corners, and made the cache key's
5241 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
5242 * 32 bits of the address. If you have two vertex buffers which get
5243 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
5244 * you can get collisions (even within a single batch).
5245 *
5246 * So, we need to do a VF cache invalidate if the buffer for a VB
5247 * slot slot changes [48:32] address bits from the previous time.
5248 */
5249 unsigned flush_flags = 0;
5250
5251 uint64_t bound = dynamic_bound;
5252 while (bound) {
5253 const int i = u_bit_scan64(&bound);
5254 uint16_t high_bits = 0;
5255
5256 struct iris_resource *res =
5257 (void *) genx->vertex_buffers[i].resource;
5258 if (res) {
5259 iris_use_pinned_bo(batch, res->bo, false);
5260
5261 high_bits = res->bo->gtt_offset >> 32ull;
5262 if (high_bits != ice->state.last_vbo_high_bits[i]) {
5263 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
5264 PIPE_CONTROL_CS_STALL;
5265 ice->state.last_vbo_high_bits[i] = high_bits;
5266 }
5267 }
5268 }
5269
5270 if (flush_flags) {
5271 iris_emit_pipe_control_flush(batch,
5272 "workaround: VF cache 32-bit key [VB]",
5273 flush_flags);
5274 }
5275
5276 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
5277
5278 uint32_t *map =
5279 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
5280 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
5281 vb.DWordLength = (vb_dwords * count + 1) - 2;
5282 }
5283 map += 1;
5284
5285 bound = dynamic_bound;
5286 while (bound) {
5287 const int i = u_bit_scan64(&bound);
5288 memcpy(map, genx->vertex_buffers[i].state,
5289 sizeof(uint32_t) * vb_dwords);
5290 map += vb_dwords;
5291 }
5292 }
5293 }
5294
5295 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
5296 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5297 const unsigned entries = MAX2(cso->count, 1);
5298 if (!(ice->state.vs_needs_sgvs_element ||
5299 ice->state.vs_uses_derived_draw_params ||
5300 ice->state.vs_needs_edge_flag)) {
5301 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
5302 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
5303 } else {
5304 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
5305 const unsigned dyn_count = cso->count +
5306 ice->state.vs_needs_sgvs_element +
5307 ice->state.vs_uses_derived_draw_params;
5308
5309 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
5310 &dynamic_ves, ve) {
5311 ve.DWordLength =
5312 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
5313 }
5314 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
5315 (cso->count - ice->state.vs_needs_edge_flag) *
5316 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
5317 uint32_t *ve_pack_dest =
5318 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
5319 GENX(VERTEX_ELEMENT_STATE_length)];
5320
5321 if (ice->state.vs_needs_sgvs_element) {
5322 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
5323 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
5324 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5325 ve.Valid = true;
5326 ve.VertexBufferIndex =
5327 util_bitcount64(ice->state.bound_vertex_buffers);
5328 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5329 ve.Component0Control = base_ctrl;
5330 ve.Component1Control = base_ctrl;
5331 ve.Component2Control = VFCOMP_STORE_0;
5332 ve.Component3Control = VFCOMP_STORE_0;
5333 }
5334 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5335 }
5336 if (ice->state.vs_uses_derived_draw_params) {
5337 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5338 ve.Valid = true;
5339 ve.VertexBufferIndex =
5340 util_bitcount64(ice->state.bound_vertex_buffers) +
5341 ice->state.vs_uses_draw_params;
5342 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5343 ve.Component0Control = VFCOMP_STORE_SRC;
5344 ve.Component1Control = VFCOMP_STORE_SRC;
5345 ve.Component2Control = VFCOMP_STORE_0;
5346 ve.Component3Control = VFCOMP_STORE_0;
5347 }
5348 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5349 }
5350 if (ice->state.vs_needs_edge_flag) {
5351 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
5352 ve_pack_dest[i] = cso->edgeflag_ve[i];
5353 }
5354
5355 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
5356 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
5357 }
5358
5359 if (!ice->state.vs_needs_edge_flag) {
5360 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
5361 entries * GENX(3DSTATE_VF_INSTANCING_length));
5362 } else {
5363 assert(cso->count > 0);
5364 const unsigned edgeflag_index = cso->count - 1;
5365 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
5366 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
5367 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
5368
5369 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
5370 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
5371 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
5372 vi.VertexElementIndex = edgeflag_index +
5373 ice->state.vs_needs_sgvs_element +
5374 ice->state.vs_uses_derived_draw_params;
5375 }
5376 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
5377 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
5378
5379 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
5380 entries * GENX(3DSTATE_VF_INSTANCING_length));
5381 }
5382 }
5383
5384 if (dirty & IRIS_DIRTY_VF_SGVS) {
5385 const struct brw_vs_prog_data *vs_prog_data = (void *)
5386 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
5387 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5388
5389 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
5390 if (vs_prog_data->uses_vertexid) {
5391 sgv.VertexIDEnable = true;
5392 sgv.VertexIDComponentNumber = 2;
5393 sgv.VertexIDElementOffset =
5394 cso->count - ice->state.vs_needs_edge_flag;
5395 }
5396
5397 if (vs_prog_data->uses_instanceid) {
5398 sgv.InstanceIDEnable = true;
5399 sgv.InstanceIDComponentNumber = 3;
5400 sgv.InstanceIDElementOffset =
5401 cso->count - ice->state.vs_needs_edge_flag;
5402 }
5403 }
5404 }
5405
5406 if (dirty & IRIS_DIRTY_VF) {
5407 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
5408 if (draw->primitive_restart) {
5409 vf.IndexedDrawCutIndexEnable = true;
5410 vf.CutIndex = draw->restart_index;
5411 }
5412 }
5413 }
5414
5415 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
5416 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
5417 vf.StatisticsEnable = true;
5418 }
5419 }
5420
5421 if (ice->state.current_hash_scale != 1)
5422 genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
5423
5424 /* TODO: Gen8 PMA fix */
5425 }
5426
5427 static void
5428 iris_upload_render_state(struct iris_context *ice,
5429 struct iris_batch *batch,
5430 const struct pipe_draw_info *draw)
5431 {
5432 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5433
5434 /* Always pin the binder. If we're emitting new binding table pointers,
5435 * we need it. If not, we're probably inheriting old tables via the
5436 * context, and need it anyway. Since true zero-bindings cases are
5437 * practically non-existent, just pin it and avoid last_res tracking.
5438 */
5439 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5440
5441 if (!batch->contains_draw) {
5442 iris_restore_render_saved_bos(ice, batch, draw);
5443 batch->contains_draw = true;
5444 }
5445
5446 iris_upload_dirty_render_state(ice, batch, draw);
5447
5448 if (draw->index_size > 0) {
5449 unsigned offset;
5450
5451 if (draw->has_user_indices) {
5452 u_upload_data(ice->ctx.stream_uploader, 0,
5453 draw->count * draw->index_size, 4, draw->index.user,
5454 &offset, &ice->state.last_res.index_buffer);
5455 } else {
5456 struct iris_resource *res = (void *) draw->index.resource;
5457 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
5458
5459 pipe_resource_reference(&ice->state.last_res.index_buffer,
5460 draw->index.resource);
5461 offset = 0;
5462 }
5463
5464 struct iris_genx_state *genx = ice->state.genx;
5465 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
5466
5467 uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
5468 iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
5469 ib.IndexFormat = draw->index_size >> 1;
5470 ib.MOCS = mocs(bo);
5471 ib.BufferSize = bo->size - offset;
5472 ib.BufferStartingAddress = ro_bo(NULL, bo->gtt_offset + offset);
5473 }
5474
5475 if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
5476 memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
5477 iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
5478 iris_use_pinned_bo(batch, bo, false);
5479 }
5480
5481 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
5482 uint16_t high_bits = bo->gtt_offset >> 32ull;
5483 if (high_bits != ice->state.last_index_bo_high_bits) {
5484 iris_emit_pipe_control_flush(batch,
5485 "workaround: VF cache 32-bit key [IB]",
5486 PIPE_CONTROL_VF_CACHE_INVALIDATE |
5487 PIPE_CONTROL_CS_STALL);
5488 ice->state.last_index_bo_high_bits = high_bits;
5489 }
5490 }
5491
5492 #define _3DPRIM_END_OFFSET 0x2420
5493 #define _3DPRIM_START_VERTEX 0x2430
5494 #define _3DPRIM_VERTEX_COUNT 0x2434
5495 #define _3DPRIM_INSTANCE_COUNT 0x2438
5496 #define _3DPRIM_START_INSTANCE 0x243C
5497 #define _3DPRIM_BASE_VERTEX 0x2440
5498
5499 if (draw->indirect) {
5500 if (draw->indirect->indirect_draw_count) {
5501 use_predicate = true;
5502
5503 struct iris_bo *draw_count_bo =
5504 iris_resource_bo(draw->indirect->indirect_draw_count);
5505 unsigned draw_count_offset =
5506 draw->indirect->indirect_draw_count_offset;
5507
5508 iris_emit_pipe_control_flush(batch,
5509 "ensure indirect draw buffer is flushed",
5510 PIPE_CONTROL_FLUSH_ENABLE);
5511
5512 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
5513 struct gen_mi_builder b;
5514 gen_mi_builder_init(&b, batch);
5515
5516 /* comparison = draw id < draw count */
5517 struct gen_mi_value comparison =
5518 gen_mi_ult(&b, gen_mi_imm(draw->drawid),
5519 gen_mi_mem32(ro_bo(draw_count_bo,
5520 draw_count_offset)));
5521
5522 /* predicate = comparison & conditional rendering predicate */
5523 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_RESULT),
5524 gen_mi_iand(&b, comparison,
5525 gen_mi_reg32(CS_GPR(15))));
5526 } else {
5527 uint32_t mi_predicate;
5528
5529 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
5530 ice->vtbl.load_register_imm64(batch, MI_PREDICATE_SRC1,
5531 draw->drawid);
5532 /* Upload the current draw count from the draw parameters buffer
5533 * to MI_PREDICATE_SRC0.
5534 */
5535 ice->vtbl.load_register_mem32(batch, MI_PREDICATE_SRC0,
5536 draw_count_bo, draw_count_offset);
5537 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
5538 ice->vtbl.load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
5539
5540 if (draw->drawid == 0) {
5541 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
5542 MI_PREDICATE_COMBINEOP_SET |
5543 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5544 } else {
5545 /* While draw_index < draw_count the predicate's result will be
5546 * (draw_index == draw_count) ^ TRUE = TRUE
5547 * When draw_index == draw_count the result is
5548 * (TRUE) ^ TRUE = FALSE
5549 * After this all results will be:
5550 * (FALSE) ^ FALSE = FALSE
5551 */
5552 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
5553 MI_PREDICATE_COMBINEOP_XOR |
5554 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5555 }
5556 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
5557 }
5558 }
5559 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
5560 assert(bo);
5561
5562 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5563 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
5564 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
5565 }
5566 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5567 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
5568 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
5569 }
5570 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5571 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
5572 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
5573 }
5574 if (draw->index_size) {
5575 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5576 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5577 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5578 }
5579 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5580 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5581 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5582 }
5583 } else {
5584 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5585 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5586 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5587 }
5588 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5589 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5590 lri.DataDWord = 0;
5591 }
5592 }
5593 } else if (draw->count_from_stream_output) {
5594 struct iris_stream_output_target *so =
5595 (void *) draw->count_from_stream_output;
5596
5597 /* XXX: Replace with actual cache tracking */
5598 iris_emit_pipe_control_flush(batch,
5599 "draw count from stream output stall",
5600 PIPE_CONTROL_CS_STALL);
5601
5602 struct gen_mi_builder b;
5603 gen_mi_builder_init(&b, batch);
5604
5605 struct iris_address addr =
5606 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5607 struct gen_mi_value offset =
5608 gen_mi_iadd_imm(&b, gen_mi_mem32(addr), -so->base.buffer_offset);
5609
5610 gen_mi_store(&b, gen_mi_reg32(_3DPRIM_VERTEX_COUNT),
5611 gen_mi_udiv32_imm(&b, offset, so->stride));
5612
5613 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5614 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5615 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5616 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5617 }
5618
5619 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5620 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5621 prim.PredicateEnable = use_predicate;
5622
5623 if (draw->indirect || draw->count_from_stream_output) {
5624 prim.IndirectParameterEnable = true;
5625 } else {
5626 prim.StartInstanceLocation = draw->start_instance;
5627 prim.InstanceCount = draw->instance_count;
5628 prim.VertexCountPerInstance = draw->count;
5629
5630 prim.StartVertexLocation = draw->start;
5631
5632 if (draw->index_size) {
5633 prim.BaseVertexLocation += draw->index_bias;
5634 } else {
5635 prim.StartVertexLocation += draw->index_bias;
5636 }
5637 }
5638 }
5639 }
5640
5641 static void
5642 iris_upload_compute_state(struct iris_context *ice,
5643 struct iris_batch *batch,
5644 const struct pipe_grid_info *grid)
5645 {
5646 const uint64_t dirty = ice->state.dirty;
5647 struct iris_screen *screen = batch->screen;
5648 const struct gen_device_info *devinfo = &screen->devinfo;
5649 struct iris_binder *binder = &ice->state.binder;
5650 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5651 struct iris_compiled_shader *shader =
5652 ice->shaders.prog[MESA_SHADER_COMPUTE];
5653 struct brw_stage_prog_data *prog_data = shader->prog_data;
5654 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5655
5656 /* Always pin the binder. If we're emitting new binding table pointers,
5657 * we need it. If not, we're probably inheriting old tables via the
5658 * context, and need it anyway. Since true zero-bindings cases are
5659 * practically non-existent, just pin it and avoid last_res tracking.
5660 */
5661 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5662
5663 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->sysvals_need_upload)
5664 upload_sysvals(ice, MESA_SHADER_COMPUTE);
5665
5666 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5667 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5668
5669 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
5670 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
5671
5672 iris_use_optional_res(batch, shs->sampler_table.res, false);
5673 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5674
5675 if (ice->state.need_border_colors)
5676 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5677
5678 if (dirty & IRIS_DIRTY_CS) {
5679 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5680 *
5681 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5682 * the only bits that are changed are scoreboard related: Scoreboard
5683 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5684 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5685 * sufficient."
5686 */
5687 iris_emit_pipe_control_flush(batch,
5688 "workaround: stall before MEDIA_VFE_STATE",
5689 PIPE_CONTROL_CS_STALL);
5690
5691 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5692 if (prog_data->total_scratch) {
5693 struct iris_bo *bo =
5694 iris_get_scratch_space(ice, prog_data->total_scratch,
5695 MESA_SHADER_COMPUTE);
5696 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5697 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5698 }
5699
5700 vfe.MaximumNumberofThreads =
5701 devinfo->max_cs_threads * screen->subslice_total - 1;
5702 #if GEN_GEN < 11
5703 vfe.ResetGatewayTimer =
5704 Resettingrelativetimerandlatchingtheglobaltimestamp;
5705 #endif
5706 #if GEN_GEN == 8
5707 vfe.BypassGatewayControl = true;
5708 #endif
5709 vfe.NumberofURBEntries = 2;
5710 vfe.URBEntryAllocationSize = 2;
5711
5712 vfe.CURBEAllocationSize =
5713 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5714 cs_prog_data->push.cross_thread.regs, 2);
5715 }
5716 }
5717
5718 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5719 if (dirty & IRIS_DIRTY_CS) {
5720 uint32_t curbe_data_offset = 0;
5721 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5722 cs_prog_data->push.per_thread.dwords == 1 &&
5723 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5724 uint32_t *curbe_data_map =
5725 stream_state(batch, ice->state.dynamic_uploader,
5726 &ice->state.last_res.cs_thread_ids,
5727 ALIGN(cs_prog_data->push.total.size, 64), 64,
5728 &curbe_data_offset);
5729 assert(curbe_data_map);
5730 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5731 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5732
5733 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5734 curbe.CURBETotalDataLength =
5735 ALIGN(cs_prog_data->push.total.size, 64);
5736 curbe.CURBEDataStartAddress = curbe_data_offset;
5737 }
5738 }
5739
5740 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5741 IRIS_DIRTY_BINDINGS_CS |
5742 IRIS_DIRTY_CONSTANTS_CS |
5743 IRIS_DIRTY_CS)) {
5744 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5745
5746 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5747 idd.SamplerStatePointer = shs->sampler_table.offset;
5748 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5749 }
5750
5751 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5752 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5753
5754 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5755 load.InterfaceDescriptorTotalLength =
5756 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5757 load.InterfaceDescriptorDataStartAddress =
5758 emit_state(batch, ice->state.dynamic_uploader,
5759 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
5760 }
5761 }
5762
5763 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5764 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5765 uint32_t right_mask;
5766
5767 if (remainder > 0)
5768 right_mask = ~0u >> (32 - remainder);
5769 else
5770 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5771
5772 #define GPGPU_DISPATCHDIMX 0x2500
5773 #define GPGPU_DISPATCHDIMY 0x2504
5774 #define GPGPU_DISPATCHDIMZ 0x2508
5775
5776 if (grid->indirect) {
5777 struct iris_state_ref *grid_size = &ice->state.grid_size;
5778 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5779 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5780 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5781 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5782 }
5783 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5784 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5785 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5786 }
5787 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5788 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5789 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5790 }
5791 }
5792
5793 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5794 ggw.IndirectParameterEnable = grid->indirect != NULL;
5795 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5796 ggw.ThreadDepthCounterMaximum = 0;
5797 ggw.ThreadHeightCounterMaximum = 0;
5798 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5799 ggw.ThreadGroupIDXDimension = grid->grid[0];
5800 ggw.ThreadGroupIDYDimension = grid->grid[1];
5801 ggw.ThreadGroupIDZDimension = grid->grid[2];
5802 ggw.RightExecutionMask = right_mask;
5803 ggw.BottomExecutionMask = 0xffffffff;
5804 }
5805
5806 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5807
5808 if (!batch->contains_draw) {
5809 iris_restore_compute_saved_bos(ice, batch, grid);
5810 batch->contains_draw = true;
5811 }
5812 }
5813
5814 /**
5815 * State module teardown.
5816 */
5817 static void
5818 iris_destroy_state(struct iris_context *ice)
5819 {
5820 struct iris_genx_state *genx = ice->state.genx;
5821
5822 pipe_resource_reference(&ice->draw.draw_params_res, NULL);
5823 pipe_resource_reference(&ice->draw.derived_draw_params_res, NULL);
5824
5825 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5826 while (bound_vbs) {
5827 const int i = u_bit_scan64(&bound_vbs);
5828 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5829 }
5830 free(ice->state.genx);
5831
5832 for (int i = 0; i < 4; i++) {
5833 pipe_so_target_reference(&ice->state.so_target[i], NULL);
5834 }
5835
5836 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5837 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5838 }
5839 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5840
5841 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5842 struct iris_shader_state *shs = &ice->state.shaders[stage];
5843 pipe_resource_reference(&shs->sampler_table.res, NULL);
5844 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5845 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
5846 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
5847 }
5848 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5849 pipe_resource_reference(&shs->image[i].base.resource, NULL);
5850 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5851 }
5852 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5853 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
5854 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
5855 }
5856 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5857 pipe_sampler_view_reference((struct pipe_sampler_view **)
5858 &shs->textures[i], NULL);
5859 }
5860 }
5861
5862 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5863 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5864
5865 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5866 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5867
5868 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5869 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5870 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5871 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5872 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5873 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5874 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
5875 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
5876 }
5877
5878 /* ------------------------------------------------------------------- */
5879
5880 static void
5881 iris_rebind_buffer(struct iris_context *ice,
5882 struct iris_resource *res,
5883 uint64_t old_address)
5884 {
5885 struct pipe_context *ctx = &ice->ctx;
5886 struct iris_screen *screen = (void *) ctx->screen;
5887 struct iris_genx_state *genx = ice->state.genx;
5888
5889 assert(res->base.target == PIPE_BUFFER);
5890
5891 /* Buffers can't be framebuffer attachments, nor display related,
5892 * and we don't have upstream Clover support.
5893 */
5894 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
5895 PIPE_BIND_RENDER_TARGET |
5896 PIPE_BIND_BLENDABLE |
5897 PIPE_BIND_DISPLAY_TARGET |
5898 PIPE_BIND_CURSOR |
5899 PIPE_BIND_COMPUTE_RESOURCE |
5900 PIPE_BIND_GLOBAL)));
5901
5902 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
5903 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5904 while (bound_vbs) {
5905 const int i = u_bit_scan64(&bound_vbs);
5906 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
5907
5908 /* Update the CPU struct */
5909 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
5910 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
5911 uint64_t *addr = (uint64_t *) &state->state[1];
5912
5913 if (*addr == old_address) {
5914 *addr = res->bo->gtt_offset;
5915 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
5916 }
5917 }
5918 }
5919
5920 /* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
5921 * the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
5922 *
5923 * There is also no need to handle these:
5924 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
5925 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
5926 */
5927
5928 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
5929 /* XXX: be careful about resetting vs appending... */
5930 assert(false);
5931 }
5932
5933 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
5934 struct iris_shader_state *shs = &ice->state.shaders[s];
5935 enum pipe_shader_type p_stage = stage_to_pipe(s);
5936
5937 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
5938 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
5939 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
5940 while (bound_cbufs) {
5941 const int i = u_bit_scan(&bound_cbufs);
5942 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
5943 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
5944
5945 if (res->bo == iris_resource_bo(cbuf->buffer)) {
5946 iris_upload_ubo_ssbo_surf_state(ice, cbuf, surf_state, false);
5947 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << s;
5948 }
5949 }
5950 }
5951
5952 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
5953 uint32_t bound_ssbos = shs->bound_ssbos;
5954 while (bound_ssbos) {
5955 const int i = u_bit_scan(&bound_ssbos);
5956 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
5957
5958 if (res->bo == iris_resource_bo(ssbo->buffer)) {
5959 struct pipe_shader_buffer buf = {
5960 .buffer = &res->base,
5961 .buffer_offset = ssbo->buffer_offset,
5962 .buffer_size = ssbo->buffer_size,
5963 };
5964 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
5965 (shs->writable_ssbos >> i) & 1);
5966 }
5967 }
5968 }
5969
5970 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
5971 uint32_t bound_sampler_views = shs->bound_sampler_views;
5972 while (bound_sampler_views) {
5973 const int i = u_bit_scan(&bound_sampler_views);
5974 struct iris_sampler_view *isv = shs->textures[i];
5975
5976 if (res->bo == iris_resource_bo(isv->base.texture)) {
5977 void *map = alloc_surface_states(ice->state.surface_uploader,
5978 &isv->surface_state,
5979 isv->res->aux.sampler_usages);
5980 assert(map);
5981 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
5982 isv->view.format, isv->view.swizzle,
5983 isv->base.u.buf.offset,
5984 isv->base.u.buf.size);
5985 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
5986 }
5987 }
5988 }
5989
5990 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
5991 uint32_t bound_image_views = shs->bound_image_views;
5992 while (bound_image_views) {
5993 const int i = u_bit_scan(&bound_image_views);
5994 struct iris_image_view *iv = &shs->image[i];
5995
5996 if (res->bo == iris_resource_bo(iv->base.resource)) {
5997 iris_set_shader_images(ctx, p_stage, i, 1, &iv->base);
5998 }
5999 }
6000 }
6001 }
6002 }
6003
6004 /* ------------------------------------------------------------------- */
6005
6006 static void
6007 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
6008 uint32_t src)
6009 {
6010 _iris_emit_lrr(batch, dst, src);
6011 }
6012
6013 static void
6014 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
6015 uint32_t src)
6016 {
6017 _iris_emit_lrr(batch, dst, src);
6018 _iris_emit_lrr(batch, dst + 4, src + 4);
6019 }
6020
6021 static void
6022 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
6023 uint32_t val)
6024 {
6025 _iris_emit_lri(batch, reg, val);
6026 }
6027
6028 static void
6029 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
6030 uint64_t val)
6031 {
6032 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
6033 _iris_emit_lri(batch, reg + 4, val >> 32);
6034 }
6035
6036 /**
6037 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
6038 */
6039 static void
6040 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
6041 struct iris_bo *bo, uint32_t offset)
6042 {
6043 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6044 lrm.RegisterAddress = reg;
6045 lrm.MemoryAddress = ro_bo(bo, offset);
6046 }
6047 }
6048
6049 /**
6050 * Load a 64-bit value from a buffer into a MMIO register via
6051 * two MI_LOAD_REGISTER_MEM commands.
6052 */
6053 static void
6054 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
6055 struct iris_bo *bo, uint32_t offset)
6056 {
6057 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
6058 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
6059 }
6060
6061 static void
6062 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
6063 struct iris_bo *bo, uint32_t offset,
6064 bool predicated)
6065 {
6066 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
6067 srm.RegisterAddress = reg;
6068 srm.MemoryAddress = rw_bo(bo, offset);
6069 srm.PredicateEnable = predicated;
6070 }
6071 }
6072
6073 static void
6074 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
6075 struct iris_bo *bo, uint32_t offset,
6076 bool predicated)
6077 {
6078 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
6079 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
6080 }
6081
6082 static void
6083 iris_store_data_imm32(struct iris_batch *batch,
6084 struct iris_bo *bo, uint32_t offset,
6085 uint32_t imm)
6086 {
6087 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
6088 sdi.Address = rw_bo(bo, offset);
6089 sdi.ImmediateData = imm;
6090 }
6091 }
6092
6093 static void
6094 iris_store_data_imm64(struct iris_batch *batch,
6095 struct iris_bo *bo, uint32_t offset,
6096 uint64_t imm)
6097 {
6098 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
6099 * 2 in genxml but it's actually variable length and we need 5 DWords.
6100 */
6101 void *map = iris_get_command_space(batch, 4 * 5);
6102 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
6103 sdi.DWordLength = 5 - 2;
6104 sdi.Address = rw_bo(bo, offset);
6105 sdi.ImmediateData = imm;
6106 }
6107 }
6108
6109 static void
6110 iris_copy_mem_mem(struct iris_batch *batch,
6111 struct iris_bo *dst_bo, uint32_t dst_offset,
6112 struct iris_bo *src_bo, uint32_t src_offset,
6113 unsigned bytes)
6114 {
6115 /* MI_COPY_MEM_MEM operates on DWords. */
6116 assert(bytes % 4 == 0);
6117 assert(dst_offset % 4 == 0);
6118 assert(src_offset % 4 == 0);
6119
6120 for (unsigned i = 0; i < bytes; i += 4) {
6121 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
6122 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
6123 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
6124 }
6125 }
6126 }
6127
6128 /* ------------------------------------------------------------------- */
6129
6130 static unsigned
6131 flags_to_post_sync_op(uint32_t flags)
6132 {
6133 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
6134 return WriteImmediateData;
6135
6136 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
6137 return WritePSDepthCount;
6138
6139 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
6140 return WriteTimestamp;
6141
6142 return 0;
6143 }
6144
6145 /**
6146 * Do the given flags have a Post Sync or LRI Post Sync operation?
6147 */
6148 static enum pipe_control_flags
6149 get_post_sync_flags(enum pipe_control_flags flags)
6150 {
6151 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
6152 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6153 PIPE_CONTROL_WRITE_TIMESTAMP |
6154 PIPE_CONTROL_LRI_POST_SYNC_OP;
6155
6156 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
6157 * "LRI Post Sync Operation". So more than one bit set would be illegal.
6158 */
6159 assert(util_bitcount(flags) <= 1);
6160
6161 return flags;
6162 }
6163
6164 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
6165
6166 /**
6167 * Emit a series of PIPE_CONTROL commands, taking into account any
6168 * workarounds necessary to actually accomplish the caller's request.
6169 *
6170 * Unless otherwise noted, spec quotations in this function come from:
6171 *
6172 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
6173 * Restrictions for PIPE_CONTROL.
6174 *
6175 * You should not use this function directly. Use the helpers in
6176 * iris_pipe_control.c instead, which may split the pipe control further.
6177 */
6178 static void
6179 iris_emit_raw_pipe_control(struct iris_batch *batch,
6180 const char *reason,
6181 uint32_t flags,
6182 struct iris_bo *bo,
6183 uint32_t offset,
6184 uint64_t imm)
6185 {
6186 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
6187 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
6188 enum pipe_control_flags non_lri_post_sync_flags =
6189 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
6190
6191 /* Recursive PIPE_CONTROL workarounds --------------------------------
6192 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
6193 *
6194 * We do these first because we want to look at the original operation,
6195 * rather than any workarounds we set.
6196 */
6197 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
6198 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
6199 * lists several workarounds:
6200 *
6201 * "Project: SKL, KBL, BXT
6202 *
6203 * If the VF Cache Invalidation Enable is set to a 1 in a
6204 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
6205 * sets to 0, with the VF Cache Invalidation Enable set to 0
6206 * needs to be sent prior to the PIPE_CONTROL with VF Cache
6207 * Invalidation Enable set to a 1."
6208 */
6209 iris_emit_raw_pipe_control(batch,
6210 "workaround: recursive VF cache invalidate",
6211 0, NULL, 0, 0);
6212 }
6213
6214 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
6215 /* Project: SKL / Argument: LRI Post Sync Operation [23]
6216 *
6217 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6218 * programmed prior to programming a PIPECONTROL command with "LRI
6219 * Post Sync Operation" in GPGPU mode of operation (i.e when
6220 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
6221 *
6222 * The same text exists a few rows below for Post Sync Op.
6223 */
6224 iris_emit_raw_pipe_control(batch,
6225 "workaround: CS stall before gpgpu post-sync",
6226 PIPE_CONTROL_CS_STALL, bo, offset, imm);
6227 }
6228
6229 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
6230 /* Cannonlake:
6231 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
6232 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
6233 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
6234 */
6235 iris_emit_raw_pipe_control(batch,
6236 "workaround: PC flush before RT flush",
6237 PIPE_CONTROL_FLUSH_ENABLE, bo, offset, imm);
6238 }
6239
6240 /* "Flush Types" workarounds ---------------------------------------------
6241 * We do these now because they may add post-sync operations or CS stalls.
6242 */
6243
6244 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
6245 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
6246 *
6247 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
6248 * 'Write PS Depth Count' or 'Write Timestamp'."
6249 */
6250 if (!bo) {
6251 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6252 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6253 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6254 bo = batch->screen->workaround_bo;
6255 }
6256 }
6257
6258 /* #1130 from Gen10 workarounds page:
6259 *
6260 * "Enable Depth Stall on every Post Sync Op if Render target Cache
6261 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
6262 * board stall if Render target cache flush is enabled."
6263 *
6264 * Applicable to CNL B0 and C0 steppings only.
6265 *
6266 * The wording here is unclear, and this workaround doesn't look anything
6267 * like the internal bug report recommendations, but leave it be for now...
6268 */
6269 if (GEN_GEN == 10) {
6270 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
6271 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6272 } else if (flags & non_lri_post_sync_flags) {
6273 flags |= PIPE_CONTROL_DEPTH_STALL;
6274 }
6275 }
6276
6277 if (flags & PIPE_CONTROL_DEPTH_STALL) {
6278 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
6279 *
6280 * "This bit must be DISABLED for operations other than writing
6281 * PS_DEPTH_COUNT."
6282 *
6283 * This seems like nonsense. An Ivybridge workaround requires us to
6284 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
6285 * operation. Gen8+ requires us to emit depth stalls and depth cache
6286 * flushes together. So, it's hard to imagine this means anything other
6287 * than "we originally intended this to be used for PS_DEPTH_COUNT".
6288 *
6289 * We ignore the supposed restriction and do nothing.
6290 */
6291 }
6292
6293 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
6294 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6295 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
6296 *
6297 * "This bit must be DISABLED for End-of-pipe (Read) fences,
6298 * PS_DEPTH_COUNT or TIMESTAMP queries."
6299 *
6300 * TODO: Implement end-of-pipe checking.
6301 */
6302 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
6303 PIPE_CONTROL_WRITE_TIMESTAMP)));
6304 }
6305
6306 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6307 /* From the PIPE_CONTROL instruction table, bit 1:
6308 *
6309 * "This bit is ignored if Depth Stall Enable is set.
6310 * Further, the render cache is not flushed even if Write Cache
6311 * Flush Enable bit is set."
6312 *
6313 * We assert that the caller doesn't do this combination, to try and
6314 * prevent mistakes. It shouldn't hurt the GPU, though.
6315 *
6316 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
6317 * and "Render Target Flush" combo is explicitly required for BTI
6318 * update workarounds.
6319 */
6320 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
6321 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
6322 }
6323
6324 /* PIPE_CONTROL page workarounds ------------------------------------- */
6325
6326 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
6327 /* From the PIPE_CONTROL page itself:
6328 *
6329 * "IVB, HSW, BDW
6330 * Restriction: Pipe_control with CS-stall bit set must be issued
6331 * before a pipe-control command that has the State Cache
6332 * Invalidate bit set."
6333 */
6334 flags |= PIPE_CONTROL_CS_STALL;
6335 }
6336
6337 if (flags & PIPE_CONTROL_FLUSH_LLC) {
6338 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
6339 *
6340 * "Project: ALL
6341 * SW must always program Post-Sync Operation to "Write Immediate
6342 * Data" when Flush LLC is set."
6343 *
6344 * For now, we just require the caller to do it.
6345 */
6346 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
6347 }
6348
6349 /* "Post-Sync Operation" workarounds -------------------------------- */
6350
6351 /* Project: All / Argument: Global Snapshot Count Reset [19]
6352 *
6353 * "This bit must not be exercised on any product.
6354 * Requires stall bit ([20] of DW1) set."
6355 *
6356 * We don't use this, so we just assert that it isn't used. The
6357 * PIPE_CONTROL instruction page indicates that they intended this
6358 * as a debug feature and don't think it is useful in production,
6359 * but it may actually be usable, should we ever want to.
6360 */
6361 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
6362
6363 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
6364 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
6365 /* Project: All / Arguments:
6366 *
6367 * - Generic Media State Clear [16]
6368 * - Indirect State Pointers Disable [16]
6369 *
6370 * "Requires stall bit ([20] of DW1) set."
6371 *
6372 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
6373 * State Clear) says:
6374 *
6375 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6376 * programmed prior to programming a PIPECONTROL command with "Media
6377 * State Clear" set in GPGPU mode of operation"
6378 *
6379 * This is a subset of the earlier rule, so there's nothing to do.
6380 */
6381 flags |= PIPE_CONTROL_CS_STALL;
6382 }
6383
6384 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
6385 /* Project: All / Argument: Store Data Index
6386 *
6387 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6388 * than '0'."
6389 *
6390 * For now, we just assert that the caller does this. We might want to
6391 * automatically add a write to the workaround BO...
6392 */
6393 assert(non_lri_post_sync_flags != 0);
6394 }
6395
6396 if (flags & PIPE_CONTROL_SYNC_GFDT) {
6397 /* Project: All / Argument: Sync GFDT
6398 *
6399 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6400 * than '0' or 0x2520[13] must be set."
6401 *
6402 * For now, we just assert that the caller does this.
6403 */
6404 assert(non_lri_post_sync_flags != 0);
6405 }
6406
6407 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
6408 /* Project: IVB+ / Argument: TLB inv
6409 *
6410 * "Requires stall bit ([20] of DW1) set."
6411 *
6412 * Also, from the PIPE_CONTROL instruction table:
6413 *
6414 * "Project: SKL+
6415 * Post Sync Operation or CS stall must be set to ensure a TLB
6416 * invalidation occurs. Otherwise no cycle will occur to the TLB
6417 * cache to invalidate."
6418 *
6419 * This is not a subset of the earlier rule, so there's nothing to do.
6420 */
6421 flags |= PIPE_CONTROL_CS_STALL;
6422 }
6423
6424 if (GEN_GEN == 9 && devinfo->gt == 4) {
6425 /* TODO: The big Skylake GT4 post sync op workaround */
6426 }
6427
6428 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
6429
6430 if (IS_COMPUTE_PIPELINE(batch)) {
6431 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
6432 /* Project: SKL+ / Argument: Tex Invalidate
6433 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
6434 */
6435 flags |= PIPE_CONTROL_CS_STALL;
6436 }
6437
6438 if (GEN_GEN == 8 && (post_sync_flags ||
6439 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
6440 PIPE_CONTROL_DEPTH_STALL |
6441 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6442 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6443 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
6444 /* Project: BDW / Arguments:
6445 *
6446 * - LRI Post Sync Operation [23]
6447 * - Post Sync Op [15:14]
6448 * - Notify En [8]
6449 * - Depth Stall [13]
6450 * - Render Target Cache Flush [12]
6451 * - Depth Cache Flush [0]
6452 * - DC Flush Enable [5]
6453 *
6454 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
6455 * Workloads."
6456 */
6457 flags |= PIPE_CONTROL_CS_STALL;
6458
6459 /* Also, from the PIPE_CONTROL instruction table, bit 20:
6460 *
6461 * "Project: BDW
6462 * This bit must be always set when PIPE_CONTROL command is
6463 * programmed by GPGPU and MEDIA workloads, except for the cases
6464 * when only Read Only Cache Invalidation bits are set (State
6465 * Cache Invalidation Enable, Instruction cache Invalidation
6466 * Enable, Texture Cache Invalidation Enable, Constant Cache
6467 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
6468 * need not implemented when FF_DOP_CG is disable via "Fixed
6469 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
6470 *
6471 * It sounds like we could avoid CS stalls in some cases, but we
6472 * don't currently bother. This list isn't exactly the list above,
6473 * either...
6474 */
6475 }
6476 }
6477
6478 /* "Stall" workarounds ----------------------------------------------
6479 * These have to come after the earlier ones because we may have added
6480 * some additional CS stalls above.
6481 */
6482
6483 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
6484 /* Project: PRE-SKL, VLV, CHV
6485 *
6486 * "[All Stepping][All SKUs]:
6487 *
6488 * One of the following must also be set:
6489 *
6490 * - Render Target Cache Flush Enable ([12] of DW1)
6491 * - Depth Cache Flush Enable ([0] of DW1)
6492 * - Stall at Pixel Scoreboard ([1] of DW1)
6493 * - Depth Stall ([13] of DW1)
6494 * - Post-Sync Operation ([13] of DW1)
6495 * - DC Flush Enable ([5] of DW1)"
6496 *
6497 * If we don't already have one of those bits set, we choose to add
6498 * "Stall at Pixel Scoreboard". Some of the other bits require a
6499 * CS stall as a workaround (see above), which would send us into
6500 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
6501 * appears to be safe, so we choose that.
6502 */
6503 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
6504 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6505 PIPE_CONTROL_WRITE_IMMEDIATE |
6506 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6507 PIPE_CONTROL_WRITE_TIMESTAMP |
6508 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6509 PIPE_CONTROL_DEPTH_STALL |
6510 PIPE_CONTROL_DATA_CACHE_FLUSH;
6511 if (!(flags & wa_bits))
6512 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6513 }
6514
6515 /* Emit --------------------------------------------------------------- */
6516
6517 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
6518 fprintf(stderr,
6519 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
6520 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
6521 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
6522 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
6523 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
6524 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
6525 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
6526 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
6527 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
6528 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
6529 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
6530 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
6531 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
6532 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
6533 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
6534 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
6535 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
6536 "SnapRes" : "",
6537 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
6538 "ISPDis" : "",
6539 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
6540 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
6541 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
6542 imm, reason);
6543 }
6544
6545 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
6546 pc.LRIPostSyncOperation = NoLRIOperation;
6547 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
6548 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
6549 pc.StoreDataIndex = 0;
6550 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
6551 pc.GlobalSnapshotCountReset =
6552 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
6553 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
6554 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
6555 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
6556 pc.RenderTargetCacheFlushEnable =
6557 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
6558 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6559 pc.StateCacheInvalidationEnable =
6560 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
6561 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
6562 pc.ConstantCacheInvalidationEnable =
6563 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
6564 pc.PostSyncOperation = flags_to_post_sync_op(flags);
6565 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
6566 pc.InstructionCacheInvalidateEnable =
6567 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
6568 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
6569 pc.IndirectStatePointersDisable =
6570 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
6571 pc.TextureCacheInvalidationEnable =
6572 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
6573 pc.Address = rw_bo(bo, offset);
6574 pc.ImmediateData = imm;
6575 }
6576 }
6577
6578 void
6579 genX(emit_urb_setup)(struct iris_context *ice,
6580 struct iris_batch *batch,
6581 const unsigned size[4],
6582 bool tess_present, bool gs_present)
6583 {
6584 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6585 const unsigned push_size_kB = 32;
6586 unsigned entries[4];
6587 unsigned start[4];
6588
6589 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
6590
6591 gen_get_urb_config(devinfo, 1024 * push_size_kB,
6592 1024 * ice->shaders.urb_size,
6593 tess_present, gs_present,
6594 size, entries, start);
6595
6596 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
6597 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
6598 urb._3DCommandSubOpcode += i;
6599 urb.VSURBStartingAddress = start[i];
6600 urb.VSURBEntryAllocationSize = size[i] - 1;
6601 urb.VSNumberofURBEntries = entries[i];
6602 }
6603 }
6604 }
6605
6606 #if GEN_GEN == 9
6607 /**
6608 * Preemption on Gen9 has to be enabled or disabled in various cases.
6609 *
6610 * See these workarounds for preemption:
6611 * - WaDisableMidObjectPreemptionForGSLineStripAdj
6612 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
6613 * - WaDisableMidObjectPreemptionForLineLoop
6614 * - WA#0798
6615 *
6616 * We don't put this in the vtable because it's only used on Gen9.
6617 */
6618 void
6619 gen9_toggle_preemption(struct iris_context *ice,
6620 struct iris_batch *batch,
6621 const struct pipe_draw_info *draw)
6622 {
6623 struct iris_genx_state *genx = ice->state.genx;
6624 bool object_preemption = true;
6625
6626 /* WaDisableMidObjectPreemptionForGSLineStripAdj
6627 *
6628 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
6629 * and GS is enabled."
6630 */
6631 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
6632 ice->shaders.prog[MESA_SHADER_GEOMETRY])
6633 object_preemption = false;
6634
6635 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
6636 *
6637 * "TriFan miscompare in Execlist Preemption test. Cut index that is
6638 * on a previous context. End the previous, the resume another context
6639 * with a tri-fan or polygon, and the vertex count is corrupted. If we
6640 * prempt again we will cause corruption.
6641 *
6642 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
6643 */
6644 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
6645 object_preemption = false;
6646
6647 /* WaDisableMidObjectPreemptionForLineLoop
6648 *
6649 * "VF Stats Counters Missing a vertex when preemption enabled.
6650 *
6651 * WA: Disable mid-draw preemption when the draw uses a lineloop
6652 * topology."
6653 */
6654 if (draw->mode == PIPE_PRIM_LINE_LOOP)
6655 object_preemption = false;
6656
6657 /* WA#0798
6658 *
6659 * "VF is corrupting GAFS data when preempted on an instance boundary
6660 * and replayed with instancing enabled.
6661 *
6662 * WA: Disable preemption when using instanceing."
6663 */
6664 if (draw->instance_count > 1)
6665 object_preemption = false;
6666
6667 if (genx->object_preemption != object_preemption) {
6668 iris_enable_obj_preemption(batch, object_preemption);
6669 genx->object_preemption = object_preemption;
6670 }
6671 }
6672 #endif
6673
6674 static void
6675 iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
6676 {
6677 struct iris_genx_state *genx = ice->state.genx;
6678
6679 memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
6680 }
6681
6682 static void
6683 iris_emit_mi_report_perf_count(struct iris_batch *batch,
6684 struct iris_bo *bo,
6685 uint32_t offset_in_bytes,
6686 uint32_t report_id)
6687 {
6688 iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
6689 mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes);
6690 mi_rpc.ReportID = report_id;
6691 }
6692 }
6693
6694 /**
6695 * Update the pixel hashing modes that determine the balancing of PS threads
6696 * across subslices and slices.
6697 *
6698 * \param width Width bound of the rendering area (already scaled down if \p
6699 * scale is greater than 1).
6700 * \param height Height bound of the rendering area (already scaled down if \p
6701 * scale is greater than 1).
6702 * \param scale The number of framebuffer samples that could potentially be
6703 * affected by an individual channel of the PS thread. This is
6704 * typically one for single-sampled rendering, but for operations
6705 * like CCS resolves and fast clears a single PS invocation may
6706 * update a huge number of pixels, in which case a finer
6707 * balancing is desirable in order to maximally utilize the
6708 * bandwidth available. UINT_MAX can be used as shorthand for
6709 * "finest hashing mode available".
6710 */
6711 void
6712 genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
6713 unsigned width, unsigned height, unsigned scale)
6714 {
6715 #if GEN_GEN == 9
6716 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6717 const unsigned slice_hashing[] = {
6718 /* Because all Gen9 platforms with more than one slice require
6719 * three-way subslice hashing, a single "normal" 16x16 slice hashing
6720 * block is guaranteed to suffer from substantial imbalance, with one
6721 * subslice receiving twice as much work as the other two in the
6722 * slice.
6723 *
6724 * The performance impact of that would be particularly severe when
6725 * three-way hashing is also in use for slice balancing (which is the
6726 * case for all Gen9 GT4 platforms), because one of the slices
6727 * receives one every three 16x16 blocks in either direction, which
6728 * is roughly the periodicity of the underlying subslice imbalance
6729 * pattern ("roughly" because in reality the hardware's
6730 * implementation of three-way hashing doesn't do exact modulo 3
6731 * arithmetic, which somewhat decreases the magnitude of this effect
6732 * in practice). This leads to a systematic subslice imbalance
6733 * within that slice regardless of the size of the primitive. The
6734 * 32x32 hashing mode guarantees that the subslice imbalance within a
6735 * single slice hashing block is minimal, largely eliminating this
6736 * effect.
6737 */
6738 _32x32,
6739 /* Finest slice hashing mode available. */
6740 NORMAL
6741 };
6742 const unsigned subslice_hashing[] = {
6743 /* 16x16 would provide a slight cache locality benefit especially
6744 * visible in the sampler L1 cache efficiency of low-bandwidth
6745 * non-LLC platforms, but it comes at the cost of greater subslice
6746 * imbalance for primitives of dimensions approximately intermediate
6747 * between 16x4 and 16x16.
6748 */
6749 _16x4,
6750 /* Finest subslice hashing mode available. */
6751 _8x4
6752 };
6753 /* Dimensions of the smallest hashing block of a given hashing mode. If
6754 * the rendering area is smaller than this there can't possibly be any
6755 * benefit from switching to this mode, so we optimize out the
6756 * transition.
6757 */
6758 const unsigned min_size[][2] = {
6759 { 16, 4 },
6760 { 8, 4 }
6761 };
6762 const unsigned idx = scale > 1;
6763
6764 if (width > min_size[idx][0] || height > min_size[idx][1]) {
6765 uint32_t gt_mode;
6766
6767 iris_pack_state(GENX(GT_MODE), &gt_mode, reg) {
6768 reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
6769 reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
6770 reg.SubsliceHashing = subslice_hashing[idx];
6771 reg.SubsliceHashingMask = -1;
6772 };
6773
6774 iris_emit_raw_pipe_control(batch,
6775 "workaround: CS stall before GT_MODE LRI",
6776 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6777 PIPE_CONTROL_CS_STALL,
6778 NULL, 0, 0);
6779
6780 iris_emit_lri(batch, GT_MODE, gt_mode);
6781
6782 ice->state.current_hash_scale = scale;
6783 }
6784 #endif
6785 }
6786
6787 void
6788 genX(init_state)(struct iris_context *ice)
6789 {
6790 struct pipe_context *ctx = &ice->ctx;
6791 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
6792
6793 ctx->create_blend_state = iris_create_blend_state;
6794 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
6795 ctx->create_rasterizer_state = iris_create_rasterizer_state;
6796 ctx->create_sampler_state = iris_create_sampler_state;
6797 ctx->create_sampler_view = iris_create_sampler_view;
6798 ctx->create_surface = iris_create_surface;
6799 ctx->create_vertex_elements_state = iris_create_vertex_elements;
6800 ctx->bind_blend_state = iris_bind_blend_state;
6801 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
6802 ctx->bind_sampler_states = iris_bind_sampler_states;
6803 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
6804 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
6805 ctx->delete_blend_state = iris_delete_state;
6806 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
6807 ctx->delete_rasterizer_state = iris_delete_state;
6808 ctx->delete_sampler_state = iris_delete_state;
6809 ctx->delete_vertex_elements_state = iris_delete_state;
6810 ctx->set_blend_color = iris_set_blend_color;
6811 ctx->set_clip_state = iris_set_clip_state;
6812 ctx->set_constant_buffer = iris_set_constant_buffer;
6813 ctx->set_shader_buffers = iris_set_shader_buffers;
6814 ctx->set_shader_images = iris_set_shader_images;
6815 ctx->set_sampler_views = iris_set_sampler_views;
6816 ctx->set_tess_state = iris_set_tess_state;
6817 ctx->set_framebuffer_state = iris_set_framebuffer_state;
6818 ctx->set_polygon_stipple = iris_set_polygon_stipple;
6819 ctx->set_sample_mask = iris_set_sample_mask;
6820 ctx->set_scissor_states = iris_set_scissor_states;
6821 ctx->set_stencil_ref = iris_set_stencil_ref;
6822 ctx->set_vertex_buffers = iris_set_vertex_buffers;
6823 ctx->set_viewport_states = iris_set_viewport_states;
6824 ctx->sampler_view_destroy = iris_sampler_view_destroy;
6825 ctx->surface_destroy = iris_surface_destroy;
6826 ctx->draw_vbo = iris_draw_vbo;
6827 ctx->launch_grid = iris_launch_grid;
6828 ctx->create_stream_output_target = iris_create_stream_output_target;
6829 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
6830 ctx->set_stream_output_targets = iris_set_stream_output_targets;
6831
6832 ice->vtbl.destroy_state = iris_destroy_state;
6833 ice->vtbl.init_render_context = iris_init_render_context;
6834 ice->vtbl.init_compute_context = iris_init_compute_context;
6835 ice->vtbl.upload_render_state = iris_upload_render_state;
6836 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
6837 ice->vtbl.upload_compute_state = iris_upload_compute_state;
6838 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
6839 ice->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
6840 ice->vtbl.rebind_buffer = iris_rebind_buffer;
6841 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
6842 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
6843 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
6844 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
6845 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
6846 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
6847 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
6848 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
6849 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
6850 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
6851 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
6852 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
6853 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
6854 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
6855 ice->vtbl.populate_vs_key = iris_populate_vs_key;
6856 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
6857 ice->vtbl.populate_tes_key = iris_populate_tes_key;
6858 ice->vtbl.populate_gs_key = iris_populate_gs_key;
6859 ice->vtbl.populate_fs_key = iris_populate_fs_key;
6860 ice->vtbl.populate_cs_key = iris_populate_cs_key;
6861 ice->vtbl.mocs = mocs;
6862 ice->vtbl.lost_genx_state = iris_lost_genx_state;
6863
6864 ice->state.dirty = ~0ull;
6865
6866 ice->state.statistics_counters_enabled = true;
6867
6868 ice->state.sample_mask = 0xffff;
6869 ice->state.num_viewports = 1;
6870 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
6871
6872 /* Make a 1x1x1 null surface for unbound textures */
6873 void *null_surf_map =
6874 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
6875 4 * GENX(RENDER_SURFACE_STATE_length), 64);
6876 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
6877 ice->state.unbound_tex.offset +=
6878 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
6879
6880 /* Default all scissor rectangles to be empty regions. */
6881 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
6882 ice->state.scissors[i] = (struct pipe_scissor_state) {
6883 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
6884 };
6885 }
6886 }