iris: Fix DrawTransformFeedback math when there's a buffer offset
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "drm-uapi/i915_drm.h"
99 #include "nir.h"
100 #include "intel/compiler/brw_compiler.h"
101 #include "intel/common/gen_l3_config.h"
102 #include "intel/common/gen_sample_positions.h"
103 #include "iris_batch.h"
104 #include "iris_context.h"
105 #include "iris_defines.h"
106 #include "iris_pipe.h"
107 #include "iris_resource.h"
108
109 #define __gen_address_type struct iris_address
110 #define __gen_user_data struct iris_batch
111
112 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
113
114 static uint64_t
115 __gen_combine_address(struct iris_batch *batch, void *location,
116 struct iris_address addr, uint32_t delta)
117 {
118 uint64_t result = addr.offset + delta;
119
120 if (addr.bo) {
121 iris_use_pinned_bo(batch, addr.bo, addr.write);
122 /* Assume this is a general address, not relative to a base. */
123 result += addr.bo->gtt_offset;
124 }
125
126 return result;
127 }
128
129 #define __genxml_cmd_length(cmd) cmd ## _length
130 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
131 #define __genxml_cmd_header(cmd) cmd ## _header
132 #define __genxml_cmd_pack(cmd) cmd ## _pack
133
134 #define _iris_pack_command(batch, cmd, dst, name) \
135 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
136 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
137 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
138 _dst = NULL; \
139 }))
140
141 #define iris_pack_command(cmd, dst, name) \
142 _iris_pack_command(NULL, cmd, dst, name)
143
144 #define iris_pack_state(cmd, dst, name) \
145 for (struct cmd name = {}, \
146 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
147 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
148 _dst = NULL)
149
150 #define iris_emit_cmd(batch, cmd, name) \
151 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
152
153 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
154 do { \
155 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
156 for (uint32_t i = 0; i < num_dwords; i++) \
157 dw[i] = (dwords0)[i] | (dwords1)[i]; \
158 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
159 } while (0)
160
161 #include "genxml/genX_pack.h"
162 #include "genxml/gen_macros.h"
163 #include "genxml/genX_bits.h"
164
165 #if GEN_GEN == 8
166 #define MOCS_PTE 0x18
167 #define MOCS_WB 0x78
168 #else
169 #define MOCS_PTE (1 << 1)
170 #define MOCS_WB (2 << 1)
171 #endif
172
173 static uint32_t
174 mocs(const struct iris_bo *bo)
175 {
176 return bo && bo->external ? MOCS_PTE : MOCS_WB;
177 }
178
179 /**
180 * Statically assert that PIPE_* enums match the hardware packets.
181 * (As long as they match, we don't need to translate them.)
182 */
183 UNUSED static void pipe_asserts()
184 {
185 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
186
187 /* pipe_logicop happens to match the hardware. */
188 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
189 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
190 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
191 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
192 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
193 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
194 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
195 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
196 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
197 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
198 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
199 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
200 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
201 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
202 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
203 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
204
205 /* pipe_blend_func happens to match the hardware. */
206 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
212 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
213 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
214 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
215 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
216 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
217 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
218 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
219 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
220 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
221 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
222 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
223 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
224 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
225
226 /* pipe_blend_func happens to match the hardware. */
227 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
228 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
229 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
230 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
231 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
232
233 /* pipe_stencil_op happens to match the hardware. */
234 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
235 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
236 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
237 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
238 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
239 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
240 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
241 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
242
243 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
244 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
245 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
246 #undef PIPE_ASSERT
247 }
248
249 static unsigned
250 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
251 {
252 static const unsigned map[] = {
253 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
254 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
255 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
256 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
257 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
258 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
259 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
260 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
261 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
262 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
263 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
264 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
265 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
266 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
267 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
268 };
269
270 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
271 }
272
273 static unsigned
274 translate_compare_func(enum pipe_compare_func pipe_func)
275 {
276 static const unsigned map[] = {
277 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
278 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
279 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
280 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
281 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
282 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
283 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
284 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
285 };
286 return map[pipe_func];
287 }
288
289 static unsigned
290 translate_shadow_func(enum pipe_compare_func pipe_func)
291 {
292 /* Gallium specifies the result of shadow comparisons as:
293 *
294 * 1 if ref <op> texel,
295 * 0 otherwise.
296 *
297 * The hardware does:
298 *
299 * 0 if texel <op> ref,
300 * 1 otherwise.
301 *
302 * So we need to flip the operator and also negate.
303 */
304 static const unsigned map[] = {
305 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
306 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
307 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
308 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
309 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
310 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
311 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
312 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
313 };
314 return map[pipe_func];
315 }
316
317 static unsigned
318 translate_cull_mode(unsigned pipe_face)
319 {
320 static const unsigned map[4] = {
321 [PIPE_FACE_NONE] = CULLMODE_NONE,
322 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
323 [PIPE_FACE_BACK] = CULLMODE_BACK,
324 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
325 };
326 return map[pipe_face];
327 }
328
329 static unsigned
330 translate_fill_mode(unsigned pipe_polymode)
331 {
332 static const unsigned map[4] = {
333 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
334 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
335 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
336 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
337 };
338 return map[pipe_polymode];
339 }
340
341 static unsigned
342 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
343 {
344 static const unsigned map[] = {
345 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
346 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
347 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
348 };
349 return map[pipe_mip];
350 }
351
352 static uint32_t
353 translate_wrap(unsigned pipe_wrap)
354 {
355 static const unsigned map[] = {
356 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
357 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
358 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
359 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
360 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
361 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
362
363 /* These are unsupported. */
364 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
365 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
366 };
367 return map[pipe_wrap];
368 }
369
370 static struct iris_address
371 ro_bo(struct iris_bo *bo, uint64_t offset)
372 {
373 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
374 * validation list at CSO creation time, instead of draw time.
375 */
376 return (struct iris_address) { .bo = bo, .offset = offset };
377 }
378
379 static struct iris_address
380 rw_bo(struct iris_bo *bo, uint64_t offset)
381 {
382 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
383 * validation list at CSO creation time, instead of draw time.
384 */
385 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
386 }
387
388 /**
389 * Allocate space for some indirect state.
390 *
391 * Return a pointer to the map (to fill it out) and a state ref (for
392 * referring to the state in GPU commands).
393 */
394 static void *
395 upload_state(struct u_upload_mgr *uploader,
396 struct iris_state_ref *ref,
397 unsigned size,
398 unsigned alignment)
399 {
400 void *p = NULL;
401 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
402 return p;
403 }
404
405 /**
406 * Stream out temporary/short-lived state.
407 *
408 * This allocates space, pins the BO, and includes the BO address in the
409 * returned offset (which works because all state lives in 32-bit memory
410 * zones).
411 */
412 static uint32_t *
413 stream_state(struct iris_batch *batch,
414 struct u_upload_mgr *uploader,
415 struct pipe_resource **out_res,
416 unsigned size,
417 unsigned alignment,
418 uint32_t *out_offset)
419 {
420 void *ptr = NULL;
421
422 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
423
424 struct iris_bo *bo = iris_resource_bo(*out_res);
425 iris_use_pinned_bo(batch, bo, false);
426
427 *out_offset += iris_bo_offset_from_base_address(bo);
428
429 return ptr;
430 }
431
432 /**
433 * stream_state() + memcpy.
434 */
435 static uint32_t
436 emit_state(struct iris_batch *batch,
437 struct u_upload_mgr *uploader,
438 struct pipe_resource **out_res,
439 const void *data,
440 unsigned size,
441 unsigned alignment)
442 {
443 unsigned offset = 0;
444 uint32_t *map =
445 stream_state(batch, uploader, out_res, size, alignment, &offset);
446
447 if (map)
448 memcpy(map, data, size);
449
450 return offset;
451 }
452
453 /**
454 * Did field 'x' change between 'old_cso' and 'new_cso'?
455 *
456 * (If so, we may want to set some dirty flags.)
457 */
458 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
459 #define cso_changed_memcmp(x) \
460 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
461
462 static void
463 flush_for_state_base_change(struct iris_batch *batch)
464 {
465 /* Flush before emitting STATE_BASE_ADDRESS.
466 *
467 * This isn't documented anywhere in the PRM. However, it seems to be
468 * necessary prior to changing the surface state base adress. We've
469 * seen issues in Vulkan where we get GPU hangs when using multi-level
470 * command buffers which clear depth, reset state base address, and then
471 * go render stuff.
472 *
473 * Normally, in GL, we would trust the kernel to do sufficient stalls
474 * and flushes prior to executing our batch. However, it doesn't seem
475 * as if the kernel's flushing is always sufficient and we don't want to
476 * rely on it.
477 *
478 * We make this an end-of-pipe sync instead of a normal flush because we
479 * do not know the current status of the GPU. On Haswell at least,
480 * having a fast-clear operation in flight at the same time as a normal
481 * rendering operation can cause hangs. Since the kernel's flushing is
482 * insufficient, we need to ensure that any rendering operations from
483 * other processes are definitely complete before we try to do our own
484 * rendering. It's a bit of a big hammer but it appears to work.
485 */
486 iris_emit_end_of_pipe_sync(batch,
487 PIPE_CONTROL_RENDER_TARGET_FLUSH |
488 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
489 PIPE_CONTROL_DATA_CACHE_FLUSH);
490 }
491
492 static void
493 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
494 {
495 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
496 lri.RegisterOffset = reg;
497 lri.DataDWord = val;
498 }
499 }
500 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
501
502 static void
503 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
504 {
505 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
506 lrr.SourceRegisterAddress = src;
507 lrr.DestinationRegisterAddress = dst;
508 }
509 }
510
511 static void
512 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
513 {
514 #if GEN_GEN >= 8 && GEN_GEN < 10
515 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
516 *
517 * Software must clear the COLOR_CALC_STATE Valid field in
518 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
519 * with Pipeline Select set to GPGPU.
520 *
521 * The internal hardware docs recommend the same workaround for Gen9
522 * hardware too.
523 */
524 if (pipeline == GPGPU)
525 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
526 #endif
527
528
529 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
530 * PIPELINE_SELECT [DevBWR+]":
531 *
532 * "Project: DEVSNB+
533 *
534 * Software must ensure all the write caches are flushed through a
535 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
536 * command to invalidate read only caches prior to programming
537 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
538 */
539 iris_emit_pipe_control_flush(batch,
540 PIPE_CONTROL_RENDER_TARGET_FLUSH |
541 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
542 PIPE_CONTROL_DATA_CACHE_FLUSH |
543 PIPE_CONTROL_CS_STALL);
544
545 iris_emit_pipe_control_flush(batch,
546 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
547 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
548 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
549 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
550
551 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
552 #if GEN_GEN >= 9
553 sel.MaskBits = 3;
554 #endif
555 sel.PipelineSelection = pipeline;
556 }
557 }
558
559 UNUSED static void
560 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
561 {
562 #if GEN_GEN == 9
563 /* Project: DevGLK
564 *
565 * "This chicken bit works around a hardware issue with barrier
566 * logic encountered when switching between GPGPU and 3D pipelines.
567 * To workaround the issue, this mode bit should be set after a
568 * pipeline is selected."
569 */
570 uint32_t reg_val;
571 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
572 reg.GLKBarrierMode = value;
573 reg.GLKBarrierModeMask = 1;
574 }
575 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
576 #endif
577 }
578
579 static void
580 init_state_base_address(struct iris_batch *batch)
581 {
582 flush_for_state_base_change(batch);
583
584 /* We program most base addresses once at context initialization time.
585 * Each base address points at a 4GB memory zone, and never needs to
586 * change. See iris_bufmgr.h for a description of the memory zones.
587 *
588 * The one exception is Surface State Base Address, which needs to be
589 * updated occasionally. See iris_binder.c for the details there.
590 */
591 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
592 sba.GeneralStateMOCS = MOCS_WB;
593 sba.StatelessDataPortAccessMOCS = MOCS_WB;
594 sba.DynamicStateMOCS = MOCS_WB;
595 sba.IndirectObjectMOCS = MOCS_WB;
596 sba.InstructionMOCS = MOCS_WB;
597
598 sba.GeneralStateBaseAddressModifyEnable = true;
599 sba.DynamicStateBaseAddressModifyEnable = true;
600 sba.IndirectObjectBaseAddressModifyEnable = true;
601 sba.InstructionBaseAddressModifyEnable = true;
602 sba.GeneralStateBufferSizeModifyEnable = true;
603 sba.DynamicStateBufferSizeModifyEnable = true;
604 #if (GEN_GEN >= 9)
605 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
606 sba.BindlessSurfaceStateMOCS = MOCS_WB;
607 #endif
608 sba.IndirectObjectBufferSizeModifyEnable = true;
609 sba.InstructionBuffersizeModifyEnable = true;
610
611 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
612 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
613
614 sba.GeneralStateBufferSize = 0xfffff;
615 sba.IndirectObjectBufferSize = 0xfffff;
616 sba.InstructionBufferSize = 0xfffff;
617 sba.DynamicStateBufferSize = 0xfffff;
618 }
619 }
620
621 static void
622 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
623 bool has_slm, bool wants_dc_cache)
624 {
625 uint32_t reg_val;
626 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
627 reg.SLMEnable = has_slm;
628 #if GEN_GEN == 11
629 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
630 * in L3CNTLREG register. The default setting of the bit is not the
631 * desirable behavior.
632 */
633 reg.ErrorDetectionBehaviorControl = true;
634 #endif
635 reg.URBAllocation = cfg->n[GEN_L3P_URB];
636 reg.ROAllocation = cfg->n[GEN_L3P_RO];
637 reg.DCAllocation = cfg->n[GEN_L3P_DC];
638 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
639 }
640 iris_emit_lri(batch, L3CNTLREG, reg_val);
641 }
642
643 static void
644 iris_emit_default_l3_config(struct iris_batch *batch,
645 const struct gen_device_info *devinfo,
646 bool compute)
647 {
648 bool wants_dc_cache = true;
649 bool has_slm = compute;
650 const struct gen_l3_weights w =
651 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
652 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
653 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
654 }
655
656 /**
657 * Upload the initial GPU state for a render context.
658 *
659 * This sets some invariant state that needs to be programmed a particular
660 * way, but we never actually change.
661 */
662 static void
663 iris_init_render_context(struct iris_screen *screen,
664 struct iris_batch *batch,
665 struct iris_vtable *vtbl,
666 struct pipe_debug_callback *dbg)
667 {
668 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
669 uint32_t reg_val;
670
671 emit_pipeline_select(batch, _3D);
672
673 iris_emit_default_l3_config(batch, devinfo, false);
674
675 init_state_base_address(batch);
676
677 #if GEN_GEN >= 9
678 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
679 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
680 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
681 }
682 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
683 #else
684 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
685 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
686 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
687 }
688 iris_emit_lri(batch, INSTPM, reg_val);
689 #endif
690
691 #if GEN_GEN == 9
692 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
693 reg.FloatBlendOptimizationEnable = true;
694 reg.FloatBlendOptimizationEnableMask = true;
695 reg.PartialResolveDisableInVC = true;
696 reg.PartialResolveDisableInVCMask = true;
697 }
698 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
699
700 if (devinfo->is_geminilake)
701 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
702 #endif
703
704 #if GEN_GEN == 11
705 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
706 reg.HeaderlessMessageforPreemptableContexts = 1;
707 reg.HeaderlessMessageforPreemptableContextsMask = 1;
708 }
709 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
710
711 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
712 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
713 reg.EnabledTexelOffsetPrecisionFix = 1;
714 reg.EnabledTexelOffsetPrecisionFixMask = 1;
715 }
716 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
717
718 /* WA_2204188704: Pixel Shader Panic dispatch must be disabled. */
719 iris_pack_state(GENX(COMMON_SLICE_CHICKEN3), &reg_val, reg) {
720 reg.PSThreadPanicDispatch = 0x3;
721 reg.PSThreadPanicDispatchMask = 0x3;
722 }
723 iris_emit_lri(batch, COMMON_SLICE_CHICKEN3, reg_val);
724
725 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
726 reg.StateCacheRedirectToCSSectionEnable = true;
727 reg.StateCacheRedirectToCSSectionEnableMask = true;
728 }
729 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
730
731
732 // XXX: 3D_MODE?
733 #endif
734
735 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
736 * changing it dynamically. We set it to the maximum size here, and
737 * instead include the render target dimensions in the viewport, so
738 * viewport extents clipping takes care of pruning stray geometry.
739 */
740 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
741 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
742 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
743 }
744
745 /* Set the initial MSAA sample positions. */
746 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
747 GEN_SAMPLE_POS_1X(pat._1xSample);
748 GEN_SAMPLE_POS_2X(pat._2xSample);
749 GEN_SAMPLE_POS_4X(pat._4xSample);
750 GEN_SAMPLE_POS_8X(pat._8xSample);
751 #if GEN_GEN >= 9
752 GEN_SAMPLE_POS_16X(pat._16xSample);
753 #endif
754 }
755
756 /* Use the legacy AA line coverage computation. */
757 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
758
759 /* Disable chromakeying (it's for media) */
760 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
761
762 /* We want regular rendering, not special HiZ operations. */
763 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
764
765 /* No polygon stippling offsets are necessary. */
766 /* TODO: may need to set an offset for origin-UL framebuffers */
767 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
768
769 /* Set a static partitioning of the push constant area. */
770 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
771 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
772 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
773 alloc._3DCommandSubOpcode = 18 + i;
774 alloc.ConstantBufferOffset = 6 * i;
775 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
776 }
777 }
778 }
779
780 static void
781 iris_init_compute_context(struct iris_screen *screen,
782 struct iris_batch *batch,
783 struct iris_vtable *vtbl,
784 struct pipe_debug_callback *dbg)
785 {
786 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
787
788 emit_pipeline_select(batch, GPGPU);
789
790 iris_emit_default_l3_config(batch, devinfo, true);
791
792 init_state_base_address(batch);
793
794 #if GEN_GEN == 9
795 if (devinfo->is_geminilake)
796 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
797 #endif
798 }
799
800 struct iris_vertex_buffer_state {
801 /** The VERTEX_BUFFER_STATE hardware structure. */
802 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
803
804 /** The resource to source vertex data from. */
805 struct pipe_resource *resource;
806 };
807
808 struct iris_depth_buffer_state {
809 /* Depth/HiZ/Stencil related hardware packets. */
810 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
811 GENX(3DSTATE_STENCIL_BUFFER_length) +
812 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
813 GENX(3DSTATE_CLEAR_PARAMS_length)];
814 };
815
816 /**
817 * Generation-specific context state (ice->state.genx->...).
818 *
819 * Most state can go in iris_context directly, but these encode hardware
820 * packets which vary by generation.
821 */
822 struct iris_genx_state {
823 struct iris_vertex_buffer_state vertex_buffers[33];
824
825 struct iris_depth_buffer_state depth_buffer;
826
827 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
828
829 struct {
830 #if GEN_GEN == 8
831 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
832 #endif
833 } shaders[MESA_SHADER_STAGES];
834 };
835
836 /**
837 * The pipe->set_blend_color() driver hook.
838 *
839 * This corresponds to our COLOR_CALC_STATE.
840 */
841 static void
842 iris_set_blend_color(struct pipe_context *ctx,
843 const struct pipe_blend_color *state)
844 {
845 struct iris_context *ice = (struct iris_context *) ctx;
846
847 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
848 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
849 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
850 }
851
852 /**
853 * Gallium CSO for blend state (see pipe_blend_state).
854 */
855 struct iris_blend_state {
856 /** Partial 3DSTATE_PS_BLEND */
857 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
858
859 /** Partial BLEND_STATE */
860 uint32_t blend_state[GENX(BLEND_STATE_length) +
861 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
862
863 bool alpha_to_coverage; /* for shader key */
864
865 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
866 uint8_t blend_enables;
867
868 /** Bitfield of whether color writes are enabled for RT[i] */
869 uint8_t color_write_enables;
870
871 /** Does RT[0] use dual color blending? */
872 bool dual_color_blending;
873 };
874
875 static enum pipe_blendfactor
876 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
877 {
878 if (alpha_to_one) {
879 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
880 return PIPE_BLENDFACTOR_ONE;
881
882 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
883 return PIPE_BLENDFACTOR_ZERO;
884 }
885
886 return f;
887 }
888
889 /**
890 * The pipe->create_blend_state() driver hook.
891 *
892 * Translates a pipe_blend_state into iris_blend_state.
893 */
894 static void *
895 iris_create_blend_state(struct pipe_context *ctx,
896 const struct pipe_blend_state *state)
897 {
898 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
899 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
900
901 cso->blend_enables = 0;
902 cso->color_write_enables = 0;
903 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
904
905 cso->alpha_to_coverage = state->alpha_to_coverage;
906
907 bool indep_alpha_blend = false;
908
909 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
910 const struct pipe_rt_blend_state *rt =
911 &state->rt[state->independent_blend_enable ? i : 0];
912
913 enum pipe_blendfactor src_rgb =
914 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
915 enum pipe_blendfactor src_alpha =
916 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
917 enum pipe_blendfactor dst_rgb =
918 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
919 enum pipe_blendfactor dst_alpha =
920 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
921
922 if (rt->rgb_func != rt->alpha_func ||
923 src_rgb != src_alpha || dst_rgb != dst_alpha)
924 indep_alpha_blend = true;
925
926 if (rt->blend_enable)
927 cso->blend_enables |= 1u << i;
928
929 if (rt->colormask)
930 cso->color_write_enables |= 1u << i;
931
932 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
933 be.LogicOpEnable = state->logicop_enable;
934 be.LogicOpFunction = state->logicop_func;
935
936 be.PreBlendSourceOnlyClampEnable = false;
937 be.ColorClampRange = COLORCLAMP_RTFORMAT;
938 be.PreBlendColorClampEnable = true;
939 be.PostBlendColorClampEnable = true;
940
941 be.ColorBufferBlendEnable = rt->blend_enable;
942
943 be.ColorBlendFunction = rt->rgb_func;
944 be.AlphaBlendFunction = rt->alpha_func;
945 be.SourceBlendFactor = src_rgb;
946 be.SourceAlphaBlendFactor = src_alpha;
947 be.DestinationBlendFactor = dst_rgb;
948 be.DestinationAlphaBlendFactor = dst_alpha;
949
950 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
951 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
952 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
953 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
954 }
955 blend_entry += GENX(BLEND_STATE_ENTRY_length);
956 }
957
958 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
959 /* pb.HasWriteableRT is filled in at draw time. */
960 /* pb.AlphaTestEnable is filled in at draw time. */
961 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
962 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
963
964 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
965
966 pb.SourceBlendFactor =
967 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
968 pb.SourceAlphaBlendFactor =
969 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
970 pb.DestinationBlendFactor =
971 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
972 pb.DestinationAlphaBlendFactor =
973 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
974 }
975
976 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
977 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
978 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
979 bs.AlphaToOneEnable = state->alpha_to_one;
980 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
981 bs.ColorDitherEnable = state->dither;
982 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
983 }
984
985 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
986
987 return cso;
988 }
989
990 /**
991 * The pipe->bind_blend_state() driver hook.
992 *
993 * Bind a blending CSO and flag related dirty bits.
994 */
995 static void
996 iris_bind_blend_state(struct pipe_context *ctx, void *state)
997 {
998 struct iris_context *ice = (struct iris_context *) ctx;
999 struct iris_blend_state *cso = state;
1000
1001 ice->state.cso_blend = cso;
1002 ice->state.blend_enables = cso ? cso->blend_enables : 0;
1003
1004 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1005 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1006 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1007 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
1008 }
1009
1010 /**
1011 * Return true if the FS writes to any color outputs which are not disabled
1012 * via color masking.
1013 */
1014 static bool
1015 has_writeable_rt(const struct iris_blend_state *cso_blend,
1016 const struct shader_info *fs_info)
1017 {
1018 if (!fs_info)
1019 return false;
1020
1021 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1022
1023 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1024 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
1025
1026 return cso_blend->color_write_enables & rt_outputs;
1027 }
1028
1029 /**
1030 * Gallium CSO for depth, stencil, and alpha testing state.
1031 */
1032 struct iris_depth_stencil_alpha_state {
1033 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1034 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1035
1036 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1037 struct pipe_alpha_state alpha;
1038
1039 /** Outbound to resolve and cache set tracking. */
1040 bool depth_writes_enabled;
1041 bool stencil_writes_enabled;
1042 };
1043
1044 /**
1045 * The pipe->create_depth_stencil_alpha_state() driver hook.
1046 *
1047 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1048 * testing state since we need pieces of it in a variety of places.
1049 */
1050 static void *
1051 iris_create_zsa_state(struct pipe_context *ctx,
1052 const struct pipe_depth_stencil_alpha_state *state)
1053 {
1054 struct iris_depth_stencil_alpha_state *cso =
1055 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1056
1057 bool two_sided_stencil = state->stencil[1].enabled;
1058
1059 cso->alpha = state->alpha;
1060 cso->depth_writes_enabled = state->depth.writemask;
1061 cso->stencil_writes_enabled =
1062 state->stencil[0].writemask != 0 ||
1063 (two_sided_stencil && state->stencil[1].writemask != 0);
1064
1065 /* The state tracker needs to optimize away EQUAL writes for us. */
1066 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1067
1068 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1069 wmds.StencilFailOp = state->stencil[0].fail_op;
1070 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1071 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1072 wmds.StencilTestFunction =
1073 translate_compare_func(state->stencil[0].func);
1074 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1075 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1076 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1077 wmds.BackfaceStencilTestFunction =
1078 translate_compare_func(state->stencil[1].func);
1079 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1080 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1081 wmds.StencilTestEnable = state->stencil[0].enabled;
1082 wmds.StencilBufferWriteEnable =
1083 state->stencil[0].writemask != 0 ||
1084 (two_sided_stencil && state->stencil[1].writemask != 0);
1085 wmds.DepthTestEnable = state->depth.enabled;
1086 wmds.DepthBufferWriteEnable = state->depth.writemask;
1087 wmds.StencilTestMask = state->stencil[0].valuemask;
1088 wmds.StencilWriteMask = state->stencil[0].writemask;
1089 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1090 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1091 /* wmds.[Backface]StencilReferenceValue are merged later */
1092 }
1093
1094 return cso;
1095 }
1096
1097 /**
1098 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1099 *
1100 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1101 */
1102 static void
1103 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1104 {
1105 struct iris_context *ice = (struct iris_context *) ctx;
1106 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1107 struct iris_depth_stencil_alpha_state *new_cso = state;
1108
1109 if (new_cso) {
1110 if (cso_changed(alpha.ref_value))
1111 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1112
1113 if (cso_changed(alpha.enabled))
1114 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1115
1116 if (cso_changed(alpha.func))
1117 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1118
1119 if (cso_changed(depth_writes_enabled))
1120 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1121
1122 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1123 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1124 }
1125
1126 ice->state.cso_zsa = new_cso;
1127 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1128 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1129 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1130 }
1131
1132 /**
1133 * Gallium CSO for rasterizer state.
1134 */
1135 struct iris_rasterizer_state {
1136 uint32_t sf[GENX(3DSTATE_SF_length)];
1137 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1138 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1139 uint32_t wm[GENX(3DSTATE_WM_length)];
1140 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1141
1142 uint8_t num_clip_plane_consts;
1143 bool clip_halfz; /* for CC_VIEWPORT */
1144 bool depth_clip_near; /* for CC_VIEWPORT */
1145 bool depth_clip_far; /* for CC_VIEWPORT */
1146 bool flatshade; /* for shader state */
1147 bool flatshade_first; /* for stream output */
1148 bool clamp_fragment_color; /* for shader state */
1149 bool light_twoside; /* for shader state */
1150 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1151 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1152 bool line_stipple_enable;
1153 bool poly_stipple_enable;
1154 bool multisample;
1155 bool force_persample_interp;
1156 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1157 uint16_t sprite_coord_enable;
1158 };
1159
1160 static float
1161 get_line_width(const struct pipe_rasterizer_state *state)
1162 {
1163 float line_width = state->line_width;
1164
1165 /* From the OpenGL 4.4 spec:
1166 *
1167 * "The actual width of non-antialiased lines is determined by rounding
1168 * the supplied width to the nearest integer, then clamping it to the
1169 * implementation-dependent maximum non-antialiased line width."
1170 */
1171 if (!state->multisample && !state->line_smooth)
1172 line_width = roundf(state->line_width);
1173
1174 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1175 /* For 1 pixel line thickness or less, the general anti-aliasing
1176 * algorithm gives up, and a garbage line is generated. Setting a
1177 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1178 * (one-pixel-wide), non-antialiased lines.
1179 *
1180 * Lines rendered with zero Line Width are rasterized using the
1181 * "Grid Intersection Quantization" rules as specified by the
1182 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1183 */
1184 line_width = 0.0f;
1185 }
1186
1187 return line_width;
1188 }
1189
1190 /**
1191 * The pipe->create_rasterizer_state() driver hook.
1192 */
1193 static void *
1194 iris_create_rasterizer_state(struct pipe_context *ctx,
1195 const struct pipe_rasterizer_state *state)
1196 {
1197 struct iris_rasterizer_state *cso =
1198 malloc(sizeof(struct iris_rasterizer_state));
1199
1200 cso->multisample = state->multisample;
1201 cso->force_persample_interp = state->force_persample_interp;
1202 cso->clip_halfz = state->clip_halfz;
1203 cso->depth_clip_near = state->depth_clip_near;
1204 cso->depth_clip_far = state->depth_clip_far;
1205 cso->flatshade = state->flatshade;
1206 cso->flatshade_first = state->flatshade_first;
1207 cso->clamp_fragment_color = state->clamp_fragment_color;
1208 cso->light_twoside = state->light_twoside;
1209 cso->rasterizer_discard = state->rasterizer_discard;
1210 cso->half_pixel_center = state->half_pixel_center;
1211 cso->sprite_coord_mode = state->sprite_coord_mode;
1212 cso->sprite_coord_enable = state->sprite_coord_enable;
1213 cso->line_stipple_enable = state->line_stipple_enable;
1214 cso->poly_stipple_enable = state->poly_stipple_enable;
1215
1216 if (state->clip_plane_enable != 0)
1217 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1218 else
1219 cso->num_clip_plane_consts = 0;
1220
1221 float line_width = get_line_width(state);
1222
1223 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1224 sf.StatisticsEnable = true;
1225 sf.ViewportTransformEnable = true;
1226 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1227 sf.LineEndCapAntialiasingRegionWidth =
1228 state->line_smooth ? _10pixels : _05pixels;
1229 sf.LastPixelEnable = state->line_last_pixel;
1230 sf.LineWidth = line_width;
1231 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1232 !state->point_quad_rasterization;
1233 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1234 sf.PointWidth = state->point_size;
1235
1236 if (state->flatshade_first) {
1237 sf.TriangleFanProvokingVertexSelect = 1;
1238 } else {
1239 sf.TriangleStripListProvokingVertexSelect = 2;
1240 sf.TriangleFanProvokingVertexSelect = 2;
1241 sf.LineStripListProvokingVertexSelect = 1;
1242 }
1243 }
1244
1245 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1246 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1247 rr.CullMode = translate_cull_mode(state->cull_face);
1248 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1249 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1250 rr.DXMultisampleRasterizationEnable = state->multisample;
1251 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1252 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1253 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1254 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1255 rr.GlobalDepthOffsetScale = state->offset_scale;
1256 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1257 rr.SmoothPointEnable = state->point_smooth;
1258 rr.AntialiasingEnable = state->line_smooth;
1259 rr.ScissorRectangleEnable = state->scissor;
1260 #if GEN_GEN >= 9
1261 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1262 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1263 #else
1264 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1265 #endif
1266 /* TODO: ConservativeRasterizationEnable */
1267 }
1268
1269 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1270 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1271 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1272 */
1273 cl.EarlyCullEnable = true;
1274 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1275 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1276 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1277 cl.GuardbandClipTestEnable = true;
1278 cl.ClipEnable = true;
1279 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1280 cl.MinimumPointWidth = 0.125;
1281 cl.MaximumPointWidth = 255.875;
1282
1283 if (state->flatshade_first) {
1284 cl.TriangleFanProvokingVertexSelect = 1;
1285 } else {
1286 cl.TriangleStripListProvokingVertexSelect = 2;
1287 cl.TriangleFanProvokingVertexSelect = 2;
1288 cl.LineStripListProvokingVertexSelect = 1;
1289 }
1290 }
1291
1292 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1293 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1294 * filled in at draw time from the FS program.
1295 */
1296 wm.LineAntialiasingRegionWidth = _10pixels;
1297 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1298 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1299 wm.LineStippleEnable = state->line_stipple_enable;
1300 wm.PolygonStippleEnable = state->poly_stipple_enable;
1301 }
1302
1303 /* Remap from 0..255 back to 1..256 */
1304 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1305
1306 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1307 line.LineStipplePattern = state->line_stipple_pattern;
1308 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1309 line.LineStippleRepeatCount = line_stipple_factor;
1310 }
1311
1312 return cso;
1313 }
1314
1315 /**
1316 * The pipe->bind_rasterizer_state() driver hook.
1317 *
1318 * Bind a rasterizer CSO and flag related dirty bits.
1319 */
1320 static void
1321 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1322 {
1323 struct iris_context *ice = (struct iris_context *) ctx;
1324 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1325 struct iris_rasterizer_state *new_cso = state;
1326
1327 if (new_cso) {
1328 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1329 if (cso_changed_memcmp(line_stipple))
1330 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1331
1332 if (cso_changed(half_pixel_center))
1333 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1334
1335 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1336 ice->state.dirty |= IRIS_DIRTY_WM;
1337
1338 if (cso_changed(rasterizer_discard))
1339 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1340
1341 if (cso_changed(flatshade_first))
1342 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1343
1344 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1345 cso_changed(clip_halfz))
1346 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1347
1348 if (cso_changed(sprite_coord_enable) ||
1349 cso_changed(sprite_coord_mode) ||
1350 cso_changed(light_twoside))
1351 ice->state.dirty |= IRIS_DIRTY_SBE;
1352 }
1353
1354 ice->state.cso_rast = new_cso;
1355 ice->state.dirty |= IRIS_DIRTY_RASTER;
1356 ice->state.dirty |= IRIS_DIRTY_CLIP;
1357 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1358 }
1359
1360 /**
1361 * Return true if the given wrap mode requires the border color to exist.
1362 *
1363 * (We can skip uploading it if the sampler isn't going to use it.)
1364 */
1365 static bool
1366 wrap_mode_needs_border_color(unsigned wrap_mode)
1367 {
1368 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1369 }
1370
1371 /**
1372 * Gallium CSO for sampler state.
1373 */
1374 struct iris_sampler_state {
1375 union pipe_color_union border_color;
1376 bool needs_border_color;
1377
1378 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1379 };
1380
1381 /**
1382 * The pipe->create_sampler_state() driver hook.
1383 *
1384 * We fill out SAMPLER_STATE (except for the border color pointer), and
1385 * store that on the CPU. It doesn't make sense to upload it to a GPU
1386 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1387 * all bound sampler states to be in contiguous memor.
1388 */
1389 static void *
1390 iris_create_sampler_state(struct pipe_context *ctx,
1391 const struct pipe_sampler_state *state)
1392 {
1393 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1394
1395 if (!cso)
1396 return NULL;
1397
1398 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1399 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1400
1401 unsigned wrap_s = translate_wrap(state->wrap_s);
1402 unsigned wrap_t = translate_wrap(state->wrap_t);
1403 unsigned wrap_r = translate_wrap(state->wrap_r);
1404
1405 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1406
1407 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1408 wrap_mode_needs_border_color(wrap_t) ||
1409 wrap_mode_needs_border_color(wrap_r);
1410
1411 float min_lod = state->min_lod;
1412 unsigned mag_img_filter = state->mag_img_filter;
1413
1414 // XXX: explain this code ported from ilo...I don't get it at all...
1415 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1416 state->min_lod > 0.0f) {
1417 min_lod = 0.0f;
1418 mag_img_filter = state->min_img_filter;
1419 }
1420
1421 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1422 samp.TCXAddressControlMode = wrap_s;
1423 samp.TCYAddressControlMode = wrap_t;
1424 samp.TCZAddressControlMode = wrap_r;
1425 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1426 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1427 samp.MinModeFilter = state->min_img_filter;
1428 samp.MagModeFilter = mag_img_filter;
1429 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1430 samp.MaximumAnisotropy = RATIO21;
1431
1432 if (state->max_anisotropy >= 2) {
1433 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1434 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1435 samp.AnisotropicAlgorithm = EWAApproximation;
1436 }
1437
1438 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1439 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1440
1441 samp.MaximumAnisotropy =
1442 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1443 }
1444
1445 /* Set address rounding bits if not using nearest filtering. */
1446 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1447 samp.UAddressMinFilterRoundingEnable = true;
1448 samp.VAddressMinFilterRoundingEnable = true;
1449 samp.RAddressMinFilterRoundingEnable = true;
1450 }
1451
1452 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1453 samp.UAddressMagFilterRoundingEnable = true;
1454 samp.VAddressMagFilterRoundingEnable = true;
1455 samp.RAddressMagFilterRoundingEnable = true;
1456 }
1457
1458 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1459 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1460
1461 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1462
1463 samp.LODPreClampMode = CLAMP_MODE_OGL;
1464 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1465 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1466 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1467
1468 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1469 }
1470
1471 return cso;
1472 }
1473
1474 /**
1475 * The pipe->bind_sampler_states() driver hook.
1476 */
1477 static void
1478 iris_bind_sampler_states(struct pipe_context *ctx,
1479 enum pipe_shader_type p_stage,
1480 unsigned start, unsigned count,
1481 void **states)
1482 {
1483 struct iris_context *ice = (struct iris_context *) ctx;
1484 gl_shader_stage stage = stage_from_pipe(p_stage);
1485 struct iris_shader_state *shs = &ice->state.shaders[stage];
1486
1487 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1488
1489 for (int i = 0; i < count; i++) {
1490 shs->samplers[start + i] = states[i];
1491 }
1492
1493 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1494 }
1495
1496 /**
1497 * Upload the sampler states into a contiguous area of GPU memory, for
1498 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1499 *
1500 * Also fill out the border color state pointers.
1501 */
1502 static void
1503 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1504 {
1505 struct iris_shader_state *shs = &ice->state.shaders[stage];
1506 const struct shader_info *info = iris_get_shader_info(ice, stage);
1507
1508 /* We assume the state tracker will call pipe->bind_sampler_states()
1509 * if the program's number of textures changes.
1510 */
1511 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1512
1513 if (!count)
1514 return;
1515
1516 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1517 * in the dynamic state memory zone, so we can point to it via the
1518 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1519 */
1520 uint32_t *map =
1521 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1522 count * 4 * GENX(SAMPLER_STATE_length), 32);
1523 if (unlikely(!map))
1524 return;
1525
1526 struct pipe_resource *res = shs->sampler_table.res;
1527 shs->sampler_table.offset +=
1528 iris_bo_offset_from_base_address(iris_resource_bo(res));
1529
1530 /* Make sure all land in the same BO */
1531 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1532
1533 ice->state.need_border_colors &= ~(1 << stage);
1534
1535 for (int i = 0; i < count; i++) {
1536 struct iris_sampler_state *state = shs->samplers[i];
1537 struct iris_sampler_view *tex = shs->textures[i];
1538
1539 if (!state) {
1540 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1541 } else if (!state->needs_border_color) {
1542 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1543 } else {
1544 ice->state.need_border_colors |= 1 << stage;
1545
1546 /* We may need to swizzle the border color for format faking.
1547 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
1548 * This means we need to move the border color's A channel into
1549 * the R or G channels so that those read swizzles will move it
1550 * back into A.
1551 */
1552 union pipe_color_union *color = &state->border_color;
1553 union pipe_color_union tmp;
1554 if (tex) {
1555 enum pipe_format internal_format = tex->res->internal_format;
1556
1557 if (util_format_is_alpha(internal_format)) {
1558 unsigned char swz[4] = {
1559 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
1560 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1561 };
1562 util_format_apply_color_swizzle(&tmp, color, swz, true);
1563 color = &tmp;
1564 } else if (util_format_is_luminance_alpha(internal_format) &&
1565 internal_format != PIPE_FORMAT_L8A8_SRGB) {
1566 unsigned char swz[4] = {
1567 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
1568 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1569 };
1570 util_format_apply_color_swizzle(&tmp, color, swz, true);
1571 color = &tmp;
1572 }
1573 }
1574
1575 /* Stream out the border color and merge the pointer. */
1576 uint32_t offset = iris_upload_border_color(ice, color);
1577
1578 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1579 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1580 dyns.BorderColorPointer = offset;
1581 }
1582
1583 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1584 map[j] = state->sampler_state[j] | dynamic[j];
1585 }
1586
1587 map += GENX(SAMPLER_STATE_length);
1588 }
1589 }
1590
1591 static enum isl_channel_select
1592 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1593 {
1594 switch (swz) {
1595 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1596 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1597 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1598 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1599 case PIPE_SWIZZLE_1: return SCS_ONE;
1600 case PIPE_SWIZZLE_0: return SCS_ZERO;
1601 default: unreachable("invalid swizzle");
1602 }
1603 }
1604
1605 static void
1606 fill_buffer_surface_state(struct isl_device *isl_dev,
1607 struct iris_bo *bo,
1608 void *map,
1609 enum isl_format format,
1610 struct isl_swizzle swizzle,
1611 unsigned offset,
1612 unsigned size)
1613 {
1614 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1615 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1616
1617 /* The ARB_texture_buffer_specification says:
1618 *
1619 * "The number of texels in the buffer texture's texel array is given by
1620 *
1621 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1622 *
1623 * where <buffer_size> is the size of the buffer object, in basic
1624 * machine units and <components> and <base_type> are the element count
1625 * and base data type for elements, as specified in Table X.1. The
1626 * number of texels in the texel array is then clamped to the
1627 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1628 *
1629 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1630 * so that when ISL divides by stride to obtain the number of texels, that
1631 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1632 */
1633 unsigned final_size =
1634 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1635
1636 isl_buffer_fill_state(isl_dev, map,
1637 .address = bo->gtt_offset + offset,
1638 .size_B = final_size,
1639 .format = format,
1640 .swizzle = swizzle,
1641 .stride_B = cpp,
1642 .mocs = mocs(bo));
1643 }
1644
1645 #define SURFACE_STATE_ALIGNMENT 64
1646
1647 /**
1648 * Allocate several contiguous SURFACE_STATE structures, one for each
1649 * supported auxiliary surface mode.
1650 */
1651 static void *
1652 alloc_surface_states(struct u_upload_mgr *mgr,
1653 struct iris_state_ref *ref,
1654 unsigned aux_usages)
1655 {
1656 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1657
1658 /* If this changes, update this to explicitly align pointers */
1659 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1660
1661 assert(aux_usages != 0);
1662
1663 void *map =
1664 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1665 SURFACE_STATE_ALIGNMENT);
1666
1667 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1668
1669 return map;
1670 }
1671
1672 static void
1673 fill_surface_state(struct isl_device *isl_dev,
1674 void *map,
1675 struct iris_resource *res,
1676 struct isl_view *view,
1677 unsigned aux_usage)
1678 {
1679 struct isl_surf_fill_state_info f = {
1680 .surf = &res->surf,
1681 .view = view,
1682 .mocs = mocs(res->bo),
1683 .address = res->bo->gtt_offset,
1684 };
1685
1686 if (aux_usage != ISL_AUX_USAGE_NONE) {
1687 f.aux_surf = &res->aux.surf;
1688 f.aux_usage = aux_usage;
1689 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1690 f.clear_color = res->aux.clear_color;
1691 }
1692
1693 isl_surf_fill_state_s(isl_dev, map, &f);
1694 }
1695
1696 /**
1697 * The pipe->create_sampler_view() driver hook.
1698 */
1699 static struct pipe_sampler_view *
1700 iris_create_sampler_view(struct pipe_context *ctx,
1701 struct pipe_resource *tex,
1702 const struct pipe_sampler_view *tmpl)
1703 {
1704 struct iris_context *ice = (struct iris_context *) ctx;
1705 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1706 const struct gen_device_info *devinfo = &screen->devinfo;
1707 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1708
1709 if (!isv)
1710 return NULL;
1711
1712 /* initialize base object */
1713 isv->base = *tmpl;
1714 isv->base.context = ctx;
1715 isv->base.texture = NULL;
1716 pipe_reference_init(&isv->base.reference, 1);
1717 pipe_resource_reference(&isv->base.texture, tex);
1718
1719 if (util_format_is_depth_or_stencil(tmpl->format)) {
1720 struct iris_resource *zres, *sres;
1721 const struct util_format_description *desc =
1722 util_format_description(tmpl->format);
1723
1724 iris_get_depth_stencil_resources(tex, &zres, &sres);
1725
1726 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1727 }
1728
1729 isv->res = (struct iris_resource *) tex;
1730
1731 void *map = alloc_surface_states(ice->state.surface_uploader,
1732 &isv->surface_state,
1733 isv->res->aux.sampler_usages);
1734 if (!unlikely(map))
1735 return NULL;
1736
1737 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1738
1739 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1740 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1741 usage |= ISL_SURF_USAGE_CUBE_BIT;
1742
1743 const struct iris_format_info fmt =
1744 iris_format_for_usage(devinfo, tmpl->format, usage);
1745
1746 isv->clear_color = isv->res->aux.clear_color;
1747
1748 isv->view = (struct isl_view) {
1749 .format = fmt.fmt,
1750 .swizzle = (struct isl_swizzle) {
1751 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1752 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1753 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1754 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1755 },
1756 .usage = usage,
1757 };
1758
1759 /* Fill out SURFACE_STATE for this view. */
1760 if (tmpl->target != PIPE_BUFFER) {
1761 isv->view.base_level = tmpl->u.tex.first_level;
1762 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1763 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1764 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1765 isv->view.array_len =
1766 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1767
1768 unsigned aux_modes = isv->res->aux.sampler_usages;
1769 while (aux_modes) {
1770 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1771
1772 /* If we have a multisampled depth buffer, do not create a sampler
1773 * surface state with HiZ.
1774 */
1775 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view,
1776 aux_usage);
1777
1778 map += SURFACE_STATE_ALIGNMENT;
1779 }
1780 } else {
1781 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1782 isv->view.format, isv->view.swizzle,
1783 tmpl->u.buf.offset, tmpl->u.buf.size);
1784 }
1785
1786 return &isv->base;
1787 }
1788
1789 static void
1790 iris_sampler_view_destroy(struct pipe_context *ctx,
1791 struct pipe_sampler_view *state)
1792 {
1793 struct iris_sampler_view *isv = (void *) state;
1794 pipe_resource_reference(&state->texture, NULL);
1795 pipe_resource_reference(&isv->surface_state.res, NULL);
1796 free(isv);
1797 }
1798
1799 /**
1800 * The pipe->create_surface() driver hook.
1801 *
1802 * In Gallium nomenclature, "surfaces" are a view of a resource that
1803 * can be bound as a render target or depth/stencil buffer.
1804 */
1805 static struct pipe_surface *
1806 iris_create_surface(struct pipe_context *ctx,
1807 struct pipe_resource *tex,
1808 const struct pipe_surface *tmpl)
1809 {
1810 struct iris_context *ice = (struct iris_context *) ctx;
1811 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1812 const struct gen_device_info *devinfo = &screen->devinfo;
1813 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1814 struct pipe_surface *psurf = &surf->base;
1815 struct iris_resource *res = (struct iris_resource *) tex;
1816
1817 if (!surf)
1818 return NULL;
1819
1820 pipe_reference_init(&psurf->reference, 1);
1821 pipe_resource_reference(&psurf->texture, tex);
1822 psurf->context = ctx;
1823 psurf->format = tmpl->format;
1824 psurf->width = tex->width0;
1825 psurf->height = tex->height0;
1826 psurf->texture = tex;
1827 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1828 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1829 psurf->u.tex.level = tmpl->u.tex.level;
1830
1831 isl_surf_usage_flags_t usage = 0;
1832 if (tmpl->writable)
1833 usage = ISL_SURF_USAGE_STORAGE_BIT;
1834 else if (util_format_is_depth_or_stencil(tmpl->format))
1835 usage = ISL_SURF_USAGE_DEPTH_BIT;
1836 else
1837 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1838
1839 const struct iris_format_info fmt =
1840 iris_format_for_usage(devinfo, psurf->format, usage);
1841
1842 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1843 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1844 /* Framebuffer validation will reject this invalid case, but it
1845 * hasn't had the opportunity yet. In the meantime, we need to
1846 * avoid hitting ISL asserts about unsupported formats below.
1847 */
1848 free(surf);
1849 return NULL;
1850 }
1851
1852 surf->view = (struct isl_view) {
1853 .format = fmt.fmt,
1854 .base_level = tmpl->u.tex.level,
1855 .levels = 1,
1856 .base_array_layer = tmpl->u.tex.first_layer,
1857 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1858 .swizzle = ISL_SWIZZLE_IDENTITY,
1859 .usage = usage,
1860 };
1861
1862 surf->clear_color = res->aux.clear_color;
1863
1864 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1865 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1866 ISL_SURF_USAGE_STENCIL_BIT))
1867 return psurf;
1868
1869
1870 void *map = alloc_surface_states(ice->state.surface_uploader,
1871 &surf->surface_state,
1872 res->aux.possible_usages);
1873 if (!unlikely(map))
1874 return NULL;
1875
1876 unsigned aux_modes = res->aux.possible_usages;
1877 while (aux_modes) {
1878 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1879
1880 fill_surface_state(&screen->isl_dev, map, res, &surf->view, aux_usage);
1881
1882 map += SURFACE_STATE_ALIGNMENT;
1883 }
1884
1885 return psurf;
1886 }
1887
1888 #if GEN_GEN < 9
1889 static void
1890 fill_default_image_param(struct brw_image_param *param)
1891 {
1892 memset(param, 0, sizeof(*param));
1893 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
1894 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
1895 * detailed explanation of these parameters.
1896 */
1897 param->swizzling[0] = 0xff;
1898 param->swizzling[1] = 0xff;
1899 }
1900
1901 static void
1902 fill_buffer_image_param(struct brw_image_param *param,
1903 enum pipe_format pfmt,
1904 unsigned size)
1905 {
1906 const unsigned cpp = util_format_get_blocksize(pfmt);
1907
1908 fill_default_image_param(param);
1909 param->size[0] = size / cpp;
1910 param->stride[0] = cpp;
1911 }
1912 #else
1913 #define isl_surf_fill_image_param(x, ...)
1914 #define fill_default_image_param(x, ...)
1915 #define fill_buffer_image_param(x, ...)
1916 #endif
1917
1918 /**
1919 * The pipe->set_shader_images() driver hook.
1920 */
1921 static void
1922 iris_set_shader_images(struct pipe_context *ctx,
1923 enum pipe_shader_type p_stage,
1924 unsigned start_slot, unsigned count,
1925 const struct pipe_image_view *p_images)
1926 {
1927 struct iris_context *ice = (struct iris_context *) ctx;
1928 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1929 const struct gen_device_info *devinfo = &screen->devinfo;
1930 gl_shader_stage stage = stage_from_pipe(p_stage);
1931 struct iris_shader_state *shs = &ice->state.shaders[stage];
1932 #if GEN_GEN == 8
1933 struct iris_genx_state *genx = ice->state.genx;
1934 struct brw_image_param *image_params = genx->shaders[stage].image_param;
1935 #endif
1936
1937 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
1938
1939 for (unsigned i = 0; i < count; i++) {
1940 struct iris_image_view *iv = &shs->image[start_slot + i];
1941
1942 if (p_images && p_images[i].resource) {
1943 const struct pipe_image_view *img = &p_images[i];
1944 struct iris_resource *res = (void *) img->resource;
1945
1946 // XXX: these are not retained forever, use a separate uploader?
1947 void *map =
1948 alloc_surface_states(ice->state.surface_uploader,
1949 &iv->surface_state, 1 << ISL_AUX_USAGE_NONE);
1950 if (!unlikely(map))
1951 return;
1952
1953 iv->base = *img;
1954 iv->base.resource = NULL;
1955 pipe_resource_reference(&iv->base.resource, &res->base);
1956
1957 shs->bound_image_views |= 1 << (start_slot + i);
1958
1959 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1960
1961 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1962 enum isl_format isl_fmt =
1963 iris_format_for_usage(devinfo, img->format, usage).fmt;
1964
1965 bool untyped_fallback = false;
1966
1967 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
1968 /* On Gen8, try to use typed surfaces reads (which support a
1969 * limited number of formats), and if not possible, fall back
1970 * to untyped reads.
1971 */
1972 untyped_fallback = GEN_GEN == 8 &&
1973 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
1974
1975 if (untyped_fallback)
1976 isl_fmt = ISL_FORMAT_RAW;
1977 else
1978 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
1979 }
1980
1981 if (res->base.target != PIPE_BUFFER) {
1982 struct isl_view view = {
1983 .format = isl_fmt,
1984 .base_level = img->u.tex.level,
1985 .levels = 1,
1986 .base_array_layer = img->u.tex.first_layer,
1987 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1988 .swizzle = ISL_SWIZZLE_IDENTITY,
1989 .usage = usage,
1990 };
1991
1992 if (untyped_fallback) {
1993 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1994 isl_fmt, ISL_SWIZZLE_IDENTITY,
1995 0, res->bo->size);
1996 } else {
1997 /* Images don't support compression */
1998 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
1999 while (aux_modes) {
2000 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2001
2002 fill_surface_state(&screen->isl_dev, map, res, &view, usage);
2003
2004 map += SURFACE_STATE_ALIGNMENT;
2005 }
2006 }
2007
2008 isl_surf_fill_image_param(&screen->isl_dev,
2009 &image_params[start_slot + i],
2010 &res->surf, &view);
2011 } else {
2012 util_range_add(&res->valid_buffer_range, img->u.buf.offset,
2013 img->u.buf.offset + img->u.buf.size);
2014
2015 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
2016 isl_fmt, ISL_SWIZZLE_IDENTITY,
2017 img->u.buf.offset, img->u.buf.size);
2018 fill_buffer_image_param(&image_params[start_slot + i],
2019 img->format, img->u.buf.size);
2020 }
2021 } else {
2022 pipe_resource_reference(&iv->base.resource, NULL);
2023 pipe_resource_reference(&iv->surface_state.res, NULL);
2024 fill_default_image_param(&image_params[start_slot + i]);
2025 }
2026 }
2027
2028 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2029 ice->state.dirty |=
2030 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2031 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2032
2033 /* Broadwell also needs brw_image_params re-uploaded */
2034 if (GEN_GEN < 9) {
2035 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2036 shs->cbuf0_needs_upload = true;
2037 }
2038 }
2039
2040
2041 /**
2042 * The pipe->set_sampler_views() driver hook.
2043 */
2044 static void
2045 iris_set_sampler_views(struct pipe_context *ctx,
2046 enum pipe_shader_type p_stage,
2047 unsigned start, unsigned count,
2048 struct pipe_sampler_view **views)
2049 {
2050 struct iris_context *ice = (struct iris_context *) ctx;
2051 gl_shader_stage stage = stage_from_pipe(p_stage);
2052 struct iris_shader_state *shs = &ice->state.shaders[stage];
2053
2054 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2055
2056 for (unsigned i = 0; i < count; i++) {
2057 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2058 pipe_sampler_view_reference((struct pipe_sampler_view **)
2059 &shs->textures[start + i], pview);
2060 struct iris_sampler_view *view = (void *) pview;
2061 if (view) {
2062 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2063 shs->bound_sampler_views |= 1 << (start + i);
2064 }
2065 }
2066
2067 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2068 ice->state.dirty |=
2069 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2070 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2071 }
2072
2073 /**
2074 * The pipe->set_tess_state() driver hook.
2075 */
2076 static void
2077 iris_set_tess_state(struct pipe_context *ctx,
2078 const float default_outer_level[4],
2079 const float default_inner_level[2])
2080 {
2081 struct iris_context *ice = (struct iris_context *) ctx;
2082 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2083
2084 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2085 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2086
2087 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2088 shs->cbuf0_needs_upload = true;
2089 }
2090
2091 static void
2092 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2093 {
2094 struct iris_surface *surf = (void *) p_surf;
2095 pipe_resource_reference(&p_surf->texture, NULL);
2096 pipe_resource_reference(&surf->surface_state.res, NULL);
2097 free(surf);
2098 }
2099
2100 static void
2101 iris_set_clip_state(struct pipe_context *ctx,
2102 const struct pipe_clip_state *state)
2103 {
2104 struct iris_context *ice = (struct iris_context *) ctx;
2105 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2106
2107 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2108
2109 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
2110 shs->cbuf0_needs_upload = true;
2111 }
2112
2113 /**
2114 * The pipe->set_polygon_stipple() driver hook.
2115 */
2116 static void
2117 iris_set_polygon_stipple(struct pipe_context *ctx,
2118 const struct pipe_poly_stipple *state)
2119 {
2120 struct iris_context *ice = (struct iris_context *) ctx;
2121 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2122 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2123 }
2124
2125 /**
2126 * The pipe->set_sample_mask() driver hook.
2127 */
2128 static void
2129 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2130 {
2131 struct iris_context *ice = (struct iris_context *) ctx;
2132
2133 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2134 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2135 */
2136 ice->state.sample_mask = sample_mask & 0xffff;
2137 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2138 }
2139
2140 /**
2141 * The pipe->set_scissor_states() driver hook.
2142 *
2143 * This corresponds to our SCISSOR_RECT state structures. It's an
2144 * exact match, so we just store them, and memcpy them out later.
2145 */
2146 static void
2147 iris_set_scissor_states(struct pipe_context *ctx,
2148 unsigned start_slot,
2149 unsigned num_scissors,
2150 const struct pipe_scissor_state *rects)
2151 {
2152 struct iris_context *ice = (struct iris_context *) ctx;
2153
2154 for (unsigned i = 0; i < num_scissors; i++) {
2155 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2156 /* If the scissor was out of bounds and got clamped to 0 width/height
2157 * at the bounds, the subtraction of 1 from maximums could produce a
2158 * negative number and thus not clip anything. Instead, just provide
2159 * a min > max scissor inside the bounds, which produces the expected
2160 * no rendering.
2161 */
2162 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2163 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2164 };
2165 } else {
2166 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2167 .minx = rects[i].minx, .miny = rects[i].miny,
2168 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2169 };
2170 }
2171 }
2172
2173 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2174 }
2175
2176 /**
2177 * The pipe->set_stencil_ref() driver hook.
2178 *
2179 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2180 */
2181 static void
2182 iris_set_stencil_ref(struct pipe_context *ctx,
2183 const struct pipe_stencil_ref *state)
2184 {
2185 struct iris_context *ice = (struct iris_context *) ctx;
2186 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2187 if (GEN_GEN == 8)
2188 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2189 else
2190 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2191 }
2192
2193 static float
2194 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2195 {
2196 return copysignf(state->scale[axis], sign) + state->translate[axis];
2197 }
2198
2199 static void
2200 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2201 float m00, float m11, float m30, float m31,
2202 float *xmin, float *xmax,
2203 float *ymin, float *ymax)
2204 {
2205 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2206 * Strips and Fans documentation:
2207 *
2208 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2209 * fixed-point "guardband" range supported by the rasterization hardware"
2210 *
2211 * and
2212 *
2213 * "In almost all circumstances, if an object’s vertices are actually
2214 * modified by this clamping (i.e., had X or Y coordinates outside of
2215 * the guardband extent the rendered object will not match the intended
2216 * result. Therefore software should take steps to ensure that this does
2217 * not happen - e.g., by clipping objects such that they do not exceed
2218 * these limits after the Drawing Rectangle is applied."
2219 *
2220 * I believe the fundamental restriction is that the rasterizer (in
2221 * the SF/WM stages) have a limit on the number of pixels that can be
2222 * rasterized. We need to ensure any coordinates beyond the rasterizer
2223 * limit are handled by the clipper. So effectively that limit becomes
2224 * the clipper's guardband size.
2225 *
2226 * It goes on to say:
2227 *
2228 * "In addition, in order to be correctly rendered, objects must have a
2229 * screenspace bounding box not exceeding 8K in the X or Y direction.
2230 * This additional restriction must also be comprehended by software,
2231 * i.e., enforced by use of clipping."
2232 *
2233 * This makes no sense. Gen7+ hardware supports 16K render targets,
2234 * and you definitely need to be able to draw polygons that fill the
2235 * surface. Our assumption is that the rasterizer was limited to 8K
2236 * on Sandybridge, which only supports 8K surfaces, and it was actually
2237 * increased to 16K on Ivybridge and later.
2238 *
2239 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2240 */
2241 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2242
2243 if (m00 != 0 && m11 != 0) {
2244 /* First, we compute the screen-space render area */
2245 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2246 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2247 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2248 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2249
2250 /* We want the guardband to be centered on that */
2251 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2252 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2253 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2254 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2255
2256 /* Now we need it in native device coordinates */
2257 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2258 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2259 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2260 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2261
2262 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2263 * flipped upside-down. X should be fine though.
2264 */
2265 assert(ndc_gb_xmin <= ndc_gb_xmax);
2266 *xmin = ndc_gb_xmin;
2267 *xmax = ndc_gb_xmax;
2268 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2269 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2270 } else {
2271 /* The viewport scales to 0, so nothing will be rendered. */
2272 *xmin = 0.0f;
2273 *xmax = 0.0f;
2274 *ymin = 0.0f;
2275 *ymax = 0.0f;
2276 }
2277 }
2278
2279 /**
2280 * The pipe->set_viewport_states() driver hook.
2281 *
2282 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2283 * the guardband yet, as we need the framebuffer dimensions, but we can
2284 * at least fill out the rest.
2285 */
2286 static void
2287 iris_set_viewport_states(struct pipe_context *ctx,
2288 unsigned start_slot,
2289 unsigned count,
2290 const struct pipe_viewport_state *states)
2291 {
2292 struct iris_context *ice = (struct iris_context *) ctx;
2293
2294 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2295
2296 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2297
2298 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2299 !ice->state.cso_rast->depth_clip_far))
2300 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2301 }
2302
2303 /**
2304 * The pipe->set_framebuffer_state() driver hook.
2305 *
2306 * Sets the current draw FBO, including color render targets, depth,
2307 * and stencil buffers.
2308 */
2309 static void
2310 iris_set_framebuffer_state(struct pipe_context *ctx,
2311 const struct pipe_framebuffer_state *state)
2312 {
2313 struct iris_context *ice = (struct iris_context *) ctx;
2314 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2315 struct isl_device *isl_dev = &screen->isl_dev;
2316 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2317 struct iris_resource *zres;
2318 struct iris_resource *stencil_res;
2319
2320 unsigned samples = util_framebuffer_get_num_samples(state);
2321 unsigned layers = util_framebuffer_get_num_layers(state);
2322
2323 if (cso->samples != samples) {
2324 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2325 }
2326
2327 if (cso->nr_cbufs != state->nr_cbufs) {
2328 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2329 }
2330
2331 if ((cso->layers == 0) != (layers == 0)) {
2332 ice->state.dirty |= IRIS_DIRTY_CLIP;
2333 }
2334
2335 if (cso->width != state->width || cso->height != state->height) {
2336 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2337 }
2338
2339 util_copy_framebuffer_state(cso, state);
2340 cso->samples = samples;
2341 cso->layers = layers;
2342
2343 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2344
2345 struct isl_view view = {
2346 .base_level = 0,
2347 .levels = 1,
2348 .base_array_layer = 0,
2349 .array_len = 1,
2350 .swizzle = ISL_SWIZZLE_IDENTITY,
2351 };
2352
2353 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2354
2355 if (cso->zsbuf) {
2356 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2357 &stencil_res);
2358
2359 view.base_level = cso->zsbuf->u.tex.level;
2360 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2361 view.array_len =
2362 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2363
2364 if (zres) {
2365 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2366
2367 info.depth_surf = &zres->surf;
2368 info.depth_address = zres->bo->gtt_offset;
2369 info.mocs = mocs(zres->bo);
2370
2371 view.format = zres->surf.format;
2372
2373 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2374 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2375 info.hiz_surf = &zres->aux.surf;
2376 info.hiz_address = zres->aux.bo->gtt_offset;
2377 }
2378 }
2379
2380 if (stencil_res) {
2381 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2382 info.stencil_surf = &stencil_res->surf;
2383 info.stencil_address = stencil_res->bo->gtt_offset;
2384 if (!zres) {
2385 view.format = stencil_res->surf.format;
2386 info.mocs = mocs(stencil_res->bo);
2387 }
2388 }
2389 }
2390
2391 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2392
2393 /* Make a null surface for unbound buffers */
2394 void *null_surf_map =
2395 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2396 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2397 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2398 isl_extent3d(MAX2(cso->width, 1),
2399 MAX2(cso->height, 1),
2400 cso->layers ? cso->layers : 1));
2401 ice->state.null_fb.offset +=
2402 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2403
2404 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2405
2406 /* Render target change */
2407 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2408
2409 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2410
2411 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2412
2413 #if GEN_GEN == 11
2414 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2415 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2416
2417 /* The PIPE_CONTROL command description says:
2418 *
2419 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2420 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2421 * Target Cache Flush by enabling this bit. When render target flush
2422 * is set due to new association of BTI, PS Scoreboard Stall bit must
2423 * be set in this packet."
2424 */
2425 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2426 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2427 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2428 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2429 #endif
2430 }
2431
2432 static void
2433 upload_ubo_ssbo_surf_state(struct iris_context *ice,
2434 struct pipe_shader_buffer *buf,
2435 struct iris_state_ref *surf_state,
2436 bool ssbo)
2437 {
2438 struct pipe_context *ctx = &ice->ctx;
2439 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2440
2441 // XXX: these are not retained forever, use a separate uploader?
2442 void *map =
2443 upload_state(ice->state.surface_uploader, surf_state,
2444 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2445 if (!unlikely(map)) {
2446 surf_state->res = NULL;
2447 return;
2448 }
2449
2450 struct iris_resource *res = (void *) buf->buffer;
2451 struct iris_bo *surf_bo = iris_resource_bo(surf_state->res);
2452 surf_state->offset += iris_bo_offset_from_base_address(surf_bo);
2453
2454 isl_buffer_fill_state(&screen->isl_dev, map,
2455 .address = res->bo->gtt_offset + buf->buffer_offset,
2456 .size_B = buf->buffer_size,
2457 .format = ssbo ? ISL_FORMAT_RAW
2458 : ISL_FORMAT_R32G32B32A32_FLOAT,
2459 .swizzle = ISL_SWIZZLE_IDENTITY,
2460 .stride_B = 1,
2461 .mocs = mocs(res->bo))
2462
2463 }
2464
2465 /**
2466 * The pipe->set_constant_buffer() driver hook.
2467 *
2468 * This uploads any constant data in user buffers, and references
2469 * any UBO resources containing constant data.
2470 */
2471 static void
2472 iris_set_constant_buffer(struct pipe_context *ctx,
2473 enum pipe_shader_type p_stage, unsigned index,
2474 const struct pipe_constant_buffer *input)
2475 {
2476 struct iris_context *ice = (struct iris_context *) ctx;
2477 gl_shader_stage stage = stage_from_pipe(p_stage);
2478 struct iris_shader_state *shs = &ice->state.shaders[stage];
2479 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
2480
2481 if (input && input->buffer) {
2482 shs->bound_cbufs |= 1u << index;
2483
2484 assert(index > 0);
2485
2486 pipe_resource_reference(&cbuf->buffer, input->buffer);
2487 cbuf->buffer_offset = input->buffer_offset;
2488 cbuf->buffer_size =
2489 MIN2(input->buffer_size,
2490 iris_resource_bo(input->buffer)->size - cbuf->buffer_offset);
2491
2492 struct iris_resource *res = (void *) cbuf->buffer;
2493 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2494
2495 upload_ubo_ssbo_surf_state(ice, cbuf, &shs->constbuf_surf_state[index],
2496 false);
2497 } else {
2498 shs->bound_cbufs &= ~(1u << index);
2499 pipe_resource_reference(&cbuf->buffer, NULL);
2500 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
2501 }
2502
2503 if (index == 0) {
2504 if (input)
2505 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2506 else
2507 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2508
2509 shs->cbuf0_needs_upload = true;
2510 }
2511
2512 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2513 // XXX: maybe not necessary all the time...?
2514 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2515 // XXX: pull model we may need actual new bindings...
2516 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2517 }
2518
2519 static void
2520 upload_uniforms(struct iris_context *ice,
2521 gl_shader_stage stage)
2522 {
2523 UNUSED struct iris_genx_state *genx = ice->state.genx;
2524 struct iris_shader_state *shs = &ice->state.shaders[stage];
2525 struct pipe_shader_buffer *cbuf = &shs->constbuf[0];
2526 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2527
2528 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2529 shs->cbuf0.buffer_size;
2530
2531 if (upload_size == 0)
2532 return;
2533
2534 uint32_t *map = NULL;
2535 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
2536 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2537
2538 for (int i = 0; i < shader->num_system_values; i++) {
2539 uint32_t sysval = shader->system_values[i];
2540 uint32_t value = 0;
2541
2542 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2543 #if GEN_GEN == 8
2544 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2545 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2546 struct brw_image_param *param =
2547 &genx->shaders[stage].image_param[img];
2548
2549 assert(offset < sizeof(struct brw_image_param));
2550 value = ((uint32_t *) param)[offset];
2551 #endif
2552 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2553 value = 0;
2554 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2555 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2556 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2557 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2558 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2559 if (stage == MESA_SHADER_TESS_CTRL) {
2560 value = ice->state.vertices_per_patch;
2561 } else {
2562 assert(stage == MESA_SHADER_TESS_EVAL);
2563 const struct shader_info *tcs_info =
2564 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2565 if (tcs_info)
2566 value = tcs_info->tess.tcs_vertices_out;
2567 else
2568 value = ice->state.vertices_per_patch;
2569 }
2570 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
2571 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
2572 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
2573 value = fui(ice->state.default_outer_level[i]);
2574 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
2575 value = fui(ice->state.default_inner_level[0]);
2576 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
2577 value = fui(ice->state.default_inner_level[1]);
2578 } else {
2579 assert(!"unhandled system value");
2580 }
2581
2582 *map++ = value;
2583 }
2584
2585 if (shs->cbuf0.user_buffer) {
2586 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2587 }
2588
2589 cbuf->buffer_size = upload_size;
2590 upload_ubo_ssbo_surf_state(ice, cbuf, &shs->constbuf_surf_state[0], false);
2591 }
2592
2593 /**
2594 * The pipe->set_shader_buffers() driver hook.
2595 *
2596 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2597 * SURFACE_STATE here, as the buffer offset may change each time.
2598 */
2599 static void
2600 iris_set_shader_buffers(struct pipe_context *ctx,
2601 enum pipe_shader_type p_stage,
2602 unsigned start_slot, unsigned count,
2603 const struct pipe_shader_buffer *buffers,
2604 unsigned writable_bitmask)
2605 {
2606 struct iris_context *ice = (struct iris_context *) ctx;
2607 gl_shader_stage stage = stage_from_pipe(p_stage);
2608 struct iris_shader_state *shs = &ice->state.shaders[stage];
2609
2610 unsigned modified_bits = u_bit_consecutive(start_slot, count);
2611
2612 shs->bound_ssbos &= ~modified_bits;
2613 shs->writable_ssbos &= ~modified_bits;
2614 shs->writable_ssbos |= writable_bitmask << start_slot;
2615
2616 for (unsigned i = 0; i < count; i++) {
2617 if (buffers && buffers[i].buffer) {
2618 struct iris_resource *res = (void *) buffers[i].buffer;
2619 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
2620 struct iris_state_ref *surf_state =
2621 &shs->ssbo_surf_state[start_slot + i];
2622 pipe_resource_reference(&ssbo->buffer, &res->base);
2623 ssbo->buffer_offset = buffers[i].buffer_offset;
2624 ssbo->buffer_size =
2625 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
2626
2627 shs->bound_ssbos |= 1 << (start_slot + i);
2628
2629 upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
2630
2631 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2632
2633 util_range_add(&res->valid_buffer_range, ssbo->buffer_offset,
2634 ssbo->buffer_offset + ssbo->buffer_size);
2635 } else {
2636 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
2637 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
2638 NULL);
2639 }
2640 }
2641
2642 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2643 }
2644
2645 static void
2646 iris_delete_state(struct pipe_context *ctx, void *state)
2647 {
2648 free(state);
2649 }
2650
2651 /**
2652 * The pipe->set_vertex_buffers() driver hook.
2653 *
2654 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2655 */
2656 static void
2657 iris_set_vertex_buffers(struct pipe_context *ctx,
2658 unsigned start_slot, unsigned count,
2659 const struct pipe_vertex_buffer *buffers)
2660 {
2661 struct iris_context *ice = (struct iris_context *) ctx;
2662 struct iris_genx_state *genx = ice->state.genx;
2663
2664 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2665
2666 for (unsigned i = 0; i < count; i++) {
2667 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2668 struct iris_vertex_buffer_state *state =
2669 &genx->vertex_buffers[start_slot + i];
2670
2671 if (!buffer) {
2672 pipe_resource_reference(&state->resource, NULL);
2673 continue;
2674 }
2675
2676 /* We may see user buffers that are NULL bindings. */
2677 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
2678
2679 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2680 struct iris_resource *res = (void *) state->resource;
2681
2682 if (res) {
2683 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2684 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2685 }
2686
2687 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2688 vb.VertexBufferIndex = start_slot + i;
2689 vb.AddressModifyEnable = true;
2690 vb.BufferPitch = buffer->stride;
2691 if (res) {
2692 vb.BufferSize = res->bo->size - (int) buffer->buffer_offset;
2693 vb.BufferStartingAddress =
2694 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2695 vb.MOCS = mocs(res->bo);
2696 } else {
2697 vb.NullVertexBuffer = true;
2698 }
2699 }
2700 }
2701
2702 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2703 }
2704
2705 /**
2706 * Gallium CSO for vertex elements.
2707 */
2708 struct iris_vertex_element_state {
2709 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2710 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2711 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2712 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2713 unsigned count;
2714 };
2715
2716 /**
2717 * The pipe->create_vertex_elements() driver hook.
2718 *
2719 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2720 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2721 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2722 * needed. In these cases we will need information available at draw time.
2723 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2724 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2725 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2726 */
2727 static void *
2728 iris_create_vertex_elements(struct pipe_context *ctx,
2729 unsigned count,
2730 const struct pipe_vertex_element *state)
2731 {
2732 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2733 const struct gen_device_info *devinfo = &screen->devinfo;
2734 struct iris_vertex_element_state *cso =
2735 malloc(sizeof(struct iris_vertex_element_state));
2736
2737 cso->count = count;
2738
2739 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2740 ve.DWordLength =
2741 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2742 }
2743
2744 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2745 uint32_t *vfi_pack_dest = cso->vf_instancing;
2746
2747 if (count == 0) {
2748 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2749 ve.Valid = true;
2750 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2751 ve.Component0Control = VFCOMP_STORE_0;
2752 ve.Component1Control = VFCOMP_STORE_0;
2753 ve.Component2Control = VFCOMP_STORE_0;
2754 ve.Component3Control = VFCOMP_STORE_1_FP;
2755 }
2756
2757 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2758 }
2759 }
2760
2761 for (int i = 0; i < count; i++) {
2762 const struct iris_format_info fmt =
2763 iris_format_for_usage(devinfo, state[i].src_format, 0);
2764 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2765 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2766
2767 switch (isl_format_get_num_channels(fmt.fmt)) {
2768 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
2769 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
2770 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
2771 case 3:
2772 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2773 : VFCOMP_STORE_1_FP;
2774 break;
2775 }
2776 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2777 ve.EdgeFlagEnable = false;
2778 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2779 ve.Valid = true;
2780 ve.SourceElementOffset = state[i].src_offset;
2781 ve.SourceElementFormat = fmt.fmt;
2782 ve.Component0Control = comp[0];
2783 ve.Component1Control = comp[1];
2784 ve.Component2Control = comp[2];
2785 ve.Component3Control = comp[3];
2786 }
2787
2788 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2789 vi.VertexElementIndex = i;
2790 vi.InstancingEnable = state[i].instance_divisor > 0;
2791 vi.InstanceDataStepRate = state[i].instance_divisor;
2792 }
2793
2794 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2795 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2796 }
2797
2798 /* An alternative version of the last VE and VFI is stored so it
2799 * can be used at draw time in case Vertex Shader uses EdgeFlag
2800 */
2801 if (count) {
2802 const unsigned edgeflag_index = count - 1;
2803 const struct iris_format_info fmt =
2804 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
2805 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
2806 ve.EdgeFlagEnable = true ;
2807 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
2808 ve.Valid = true;
2809 ve.SourceElementOffset = state[edgeflag_index].src_offset;
2810 ve.SourceElementFormat = fmt.fmt;
2811 ve.Component0Control = VFCOMP_STORE_SRC;
2812 ve.Component1Control = VFCOMP_STORE_0;
2813 ve.Component2Control = VFCOMP_STORE_0;
2814 ve.Component3Control = VFCOMP_STORE_0;
2815 }
2816 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
2817 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
2818 * at draw time, as it should change if SGVs are emitted.
2819 */
2820 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
2821 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
2822 }
2823 }
2824
2825 return cso;
2826 }
2827
2828 /**
2829 * The pipe->bind_vertex_elements_state() driver hook.
2830 */
2831 static void
2832 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2833 {
2834 struct iris_context *ice = (struct iris_context *) ctx;
2835 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2836 struct iris_vertex_element_state *new_cso = state;
2837
2838 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2839 * we need to re-emit it to ensure we're overriding the right one.
2840 */
2841 if (new_cso && cso_changed(count))
2842 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2843
2844 ice->state.cso_vertex_elements = state;
2845 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2846 }
2847
2848 /**
2849 * The pipe->create_stream_output_target() driver hook.
2850 *
2851 * "Target" here refers to a destination buffer. We translate this into
2852 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2853 * know which buffer this represents, or whether we ought to zero the
2854 * write-offsets, or append. Those are handled in the set() hook.
2855 */
2856 static struct pipe_stream_output_target *
2857 iris_create_stream_output_target(struct pipe_context *ctx,
2858 struct pipe_resource *p_res,
2859 unsigned buffer_offset,
2860 unsigned buffer_size)
2861 {
2862 struct iris_resource *res = (void *) p_res;
2863 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2864 if (!cso)
2865 return NULL;
2866
2867 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2868
2869 pipe_reference_init(&cso->base.reference, 1);
2870 pipe_resource_reference(&cso->base.buffer, p_res);
2871 cso->base.buffer_offset = buffer_offset;
2872 cso->base.buffer_size = buffer_size;
2873 cso->base.context = ctx;
2874
2875 util_range_add(&res->valid_buffer_range, buffer_offset,
2876 buffer_offset + buffer_size);
2877
2878 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2879
2880 return &cso->base;
2881 }
2882
2883 static void
2884 iris_stream_output_target_destroy(struct pipe_context *ctx,
2885 struct pipe_stream_output_target *state)
2886 {
2887 struct iris_stream_output_target *cso = (void *) state;
2888
2889 pipe_resource_reference(&cso->base.buffer, NULL);
2890 pipe_resource_reference(&cso->offset.res, NULL);
2891
2892 free(cso);
2893 }
2894
2895 /**
2896 * The pipe->set_stream_output_targets() driver hook.
2897 *
2898 * At this point, we know which targets are bound to a particular index,
2899 * and also whether we want to append or start over. We can finish the
2900 * 3DSTATE_SO_BUFFER packets we started earlier.
2901 */
2902 static void
2903 iris_set_stream_output_targets(struct pipe_context *ctx,
2904 unsigned num_targets,
2905 struct pipe_stream_output_target **targets,
2906 const unsigned *offsets)
2907 {
2908 struct iris_context *ice = (struct iris_context *) ctx;
2909 struct iris_genx_state *genx = ice->state.genx;
2910 uint32_t *so_buffers = genx->so_buffers;
2911
2912 const bool active = num_targets > 0;
2913 if (ice->state.streamout_active != active) {
2914 ice->state.streamout_active = active;
2915 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2916
2917 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2918 * it's a non-pipelined command. If we're switching streamout on, we
2919 * may have missed emitting it earlier, so do so now. (We're already
2920 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2921 */
2922 if (active)
2923 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2924 }
2925
2926 for (int i = 0; i < 4; i++) {
2927 pipe_so_target_reference(&ice->state.so_target[i],
2928 i < num_targets ? targets[i] : NULL);
2929 }
2930
2931 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2932 if (!active)
2933 return;
2934
2935 for (unsigned i = 0; i < 4; i++,
2936 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2937
2938 if (i >= num_targets || !targets[i]) {
2939 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2940 sob.SOBufferIndex = i;
2941 continue;
2942 }
2943
2944 struct iris_stream_output_target *tgt = (void *) targets[i];
2945 struct iris_resource *res = (void *) tgt->base.buffer;
2946
2947 /* Note that offsets[i] will either be 0, causing us to zero
2948 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2949 * "continue appending at the existing offset."
2950 */
2951 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2952
2953 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2954 sob.SurfaceBaseAddress =
2955 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2956 sob.SOBufferEnable = true;
2957 sob.StreamOffsetWriteEnable = true;
2958 sob.StreamOutputBufferOffsetAddressEnable = true;
2959 sob.MOCS = mocs(res->bo);
2960
2961 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2962
2963 sob.SOBufferIndex = i;
2964 sob.StreamOffset = offsets[i];
2965 sob.StreamOutputBufferOffsetAddress =
2966 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2967 tgt->offset.offset);
2968 }
2969 }
2970
2971 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2972 }
2973
2974 /**
2975 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2976 * 3DSTATE_STREAMOUT packets.
2977 *
2978 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2979 * hardware to record. We can create it entirely based on the shader, with
2980 * no dynamic state dependencies.
2981 *
2982 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2983 * state-based settings. We capture the shader-related ones here, and merge
2984 * the rest in at draw time.
2985 */
2986 static uint32_t *
2987 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2988 const struct brw_vue_map *vue_map)
2989 {
2990 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2991 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2992 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2993 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2994 int max_decls = 0;
2995 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2996
2997 memset(so_decl, 0, sizeof(so_decl));
2998
2999 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3000 * command feels strange -- each dword pair contains a SO_DECL per stream.
3001 */
3002 for (unsigned i = 0; i < info->num_outputs; i++) {
3003 const struct pipe_stream_output *output = &info->output[i];
3004 const int buffer = output->output_buffer;
3005 const int varying = output->register_index;
3006 const unsigned stream_id = output->stream;
3007 assert(stream_id < MAX_VERTEX_STREAMS);
3008
3009 buffer_mask[stream_id] |= 1 << buffer;
3010
3011 assert(vue_map->varying_to_slot[varying] >= 0);
3012
3013 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3014 * array. Instead, it simply increments DstOffset for the following
3015 * input by the number of components that should be skipped.
3016 *
3017 * Our hardware is unusual in that it requires us to program SO_DECLs
3018 * for fake "hole" components, rather than simply taking the offset
3019 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3020 * program as many size = 4 holes as we can, then a final hole to
3021 * accommodate the final 1, 2, or 3 remaining.
3022 */
3023 int skip_components = output->dst_offset - next_offset[buffer];
3024
3025 while (skip_components > 0) {
3026 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3027 .HoleFlag = 1,
3028 .OutputBufferSlot = output->output_buffer,
3029 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3030 };
3031 skip_components -= 4;
3032 }
3033
3034 next_offset[buffer] = output->dst_offset + output->num_components;
3035
3036 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3037 .OutputBufferSlot = output->output_buffer,
3038 .RegisterIndex = vue_map->varying_to_slot[varying],
3039 .ComponentMask =
3040 ((1 << output->num_components) - 1) << output->start_component,
3041 };
3042
3043 if (decls[stream_id] > max_decls)
3044 max_decls = decls[stream_id];
3045 }
3046
3047 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3048 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3049 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3050
3051 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3052 int urb_entry_read_offset = 0;
3053 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3054 urb_entry_read_offset;
3055
3056 /* We always read the whole vertex. This could be reduced at some
3057 * point by reading less and offsetting the register index in the
3058 * SO_DECLs.
3059 */
3060 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3061 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3062 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3063 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3064 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3065 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3066 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3067 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3068
3069 /* Set buffer pitches; 0 means unbound. */
3070 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3071 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3072 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3073 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3074 }
3075
3076 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3077 list.DWordLength = 3 + 2 * max_decls - 2;
3078 list.StreamtoBufferSelects0 = buffer_mask[0];
3079 list.StreamtoBufferSelects1 = buffer_mask[1];
3080 list.StreamtoBufferSelects2 = buffer_mask[2];
3081 list.StreamtoBufferSelects3 = buffer_mask[3];
3082 list.NumEntries0 = decls[0];
3083 list.NumEntries1 = decls[1];
3084 list.NumEntries2 = decls[2];
3085 list.NumEntries3 = decls[3];
3086 }
3087
3088 for (int i = 0; i < max_decls; i++) {
3089 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3090 entry.Stream0Decl = so_decl[0][i];
3091 entry.Stream1Decl = so_decl[1][i];
3092 entry.Stream2Decl = so_decl[2][i];
3093 entry.Stream3Decl = so_decl[3][i];
3094 }
3095 }
3096
3097 return map;
3098 }
3099
3100 static void
3101 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3102 const struct brw_vue_map *last_vue_map,
3103 bool two_sided_color,
3104 unsigned *out_offset,
3105 unsigned *out_length)
3106 {
3107 /* The compiler computes the first URB slot without considering COL/BFC
3108 * swizzling (because it doesn't know whether it's enabled), so we need
3109 * to do that here too. This may result in a smaller offset, which
3110 * should be safe.
3111 */
3112 const unsigned first_slot =
3113 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3114
3115 /* This becomes the URB read offset (counted in pairs of slots). */
3116 assert(first_slot % 2 == 0);
3117 *out_offset = first_slot / 2;
3118
3119 /* We need to adjust the inputs read to account for front/back color
3120 * swizzling, as it can make the URB length longer.
3121 */
3122 for (int c = 0; c <= 1; c++) {
3123 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3124 /* If two sided color is enabled, the fragment shader's gl_Color
3125 * (COL0) input comes from either the gl_FrontColor (COL0) or
3126 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3127 */
3128 if (two_sided_color)
3129 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3130
3131 /* If front color isn't written, we opt to give them back color
3132 * instead of an undefined value. Switch from COL to BFC.
3133 */
3134 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3135 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3136 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3137 }
3138 }
3139 }
3140
3141 /* Compute the minimum URB Read Length necessary for the FS inputs.
3142 *
3143 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3144 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3145 *
3146 * "This field should be set to the minimum length required to read the
3147 * maximum source attribute. The maximum source attribute is indicated
3148 * by the maximum value of the enabled Attribute # Source Attribute if
3149 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3150 * enable is not set.
3151 * read_length = ceiling((max_source_attr + 1) / 2)
3152 *
3153 * [errata] Corruption/Hang possible if length programmed larger than
3154 * recommended"
3155 *
3156 * Similar text exists for Ivy Bridge.
3157 *
3158 * We find the last URB slot that's actually read by the FS.
3159 */
3160 unsigned last_read_slot = last_vue_map->num_slots - 1;
3161 while (last_read_slot > first_slot && !(fs_input_slots &
3162 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3163 --last_read_slot;
3164
3165 /* The URB read length is the difference of the two, counted in pairs. */
3166 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3167 }
3168
3169 static void
3170 iris_emit_sbe_swiz(struct iris_batch *batch,
3171 const struct iris_context *ice,
3172 unsigned urb_read_offset,
3173 unsigned sprite_coord_enables)
3174 {
3175 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3176 const struct brw_wm_prog_data *wm_prog_data = (void *)
3177 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3178 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3179 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3180
3181 /* XXX: this should be generated when putting programs in place */
3182
3183 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3184 const int input_index = wm_prog_data->urb_setup[fs_attr];
3185 if (input_index < 0 || input_index >= 16)
3186 continue;
3187
3188 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3189 &attr_overrides[input_index];
3190 int slot = vue_map->varying_to_slot[fs_attr];
3191
3192 /* Viewport and Layer are stored in the VUE header. We need to override
3193 * them to zero if earlier stages didn't write them, as GL requires that
3194 * they read back as zero when not explicitly set.
3195 */
3196 switch (fs_attr) {
3197 case VARYING_SLOT_VIEWPORT:
3198 case VARYING_SLOT_LAYER:
3199 attr->ComponentOverrideX = true;
3200 attr->ComponentOverrideW = true;
3201 attr->ConstantSource = CONST_0000;
3202
3203 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3204 attr->ComponentOverrideY = true;
3205 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3206 attr->ComponentOverrideZ = true;
3207 continue;
3208
3209 case VARYING_SLOT_PRIMITIVE_ID:
3210 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3211 if (slot == -1) {
3212 attr->ComponentOverrideX = true;
3213 attr->ComponentOverrideY = true;
3214 attr->ComponentOverrideZ = true;
3215 attr->ComponentOverrideW = true;
3216 attr->ConstantSource = PRIM_ID;
3217 continue;
3218 }
3219
3220 default:
3221 break;
3222 }
3223
3224 if (sprite_coord_enables & (1 << input_index))
3225 continue;
3226
3227 /* If there was only a back color written but not front, use back
3228 * as the color instead of undefined.
3229 */
3230 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3231 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3232 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3233 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3234
3235 /* Not written by the previous stage - undefined. */
3236 if (slot == -1) {
3237 attr->ComponentOverrideX = true;
3238 attr->ComponentOverrideY = true;
3239 attr->ComponentOverrideZ = true;
3240 attr->ComponentOverrideW = true;
3241 attr->ConstantSource = CONST_0001_FLOAT;
3242 continue;
3243 }
3244
3245 /* Compute the location of the attribute relative to the read offset,
3246 * which is counted in 256-bit increments (two 128-bit VUE slots).
3247 */
3248 const int source_attr = slot - 2 * urb_read_offset;
3249 assert(source_attr >= 0 && source_attr <= 32);
3250 attr->SourceAttribute = source_attr;
3251
3252 /* If we are doing two-sided color, and the VUE slot following this one
3253 * represents a back-facing color, then we need to instruct the SF unit
3254 * to do back-facing swizzling.
3255 */
3256 if (cso_rast->light_twoside &&
3257 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3258 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3259 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3260 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3261 attr->SwizzleSelect = INPUTATTR_FACING;
3262 }
3263
3264 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3265 for (int i = 0; i < 16; i++)
3266 sbes.Attribute[i] = attr_overrides[i];
3267 }
3268 }
3269
3270 static unsigned
3271 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3272 const struct iris_rasterizer_state *cso)
3273 {
3274 unsigned overrides = 0;
3275
3276 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3277 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3278
3279 for (int i = 0; i < 8; i++) {
3280 if ((cso->sprite_coord_enable & (1 << i)) &&
3281 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3282 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3283 }
3284
3285 return overrides;
3286 }
3287
3288 static void
3289 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3290 {
3291 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3292 const struct brw_wm_prog_data *wm_prog_data = (void *)
3293 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3294 const struct shader_info *fs_info =
3295 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3296
3297 unsigned urb_read_offset, urb_read_length;
3298 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3299 ice->shaders.last_vue_map,
3300 cso_rast->light_twoside,
3301 &urb_read_offset, &urb_read_length);
3302
3303 unsigned sprite_coord_overrides =
3304 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3305
3306 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3307 sbe.AttributeSwizzleEnable = true;
3308 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3309 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3310 sbe.VertexURBEntryReadOffset = urb_read_offset;
3311 sbe.VertexURBEntryReadLength = urb_read_length;
3312 sbe.ForceVertexURBEntryReadOffset = true;
3313 sbe.ForceVertexURBEntryReadLength = true;
3314 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3315 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3316 #if GEN_GEN >= 9
3317 for (int i = 0; i < 32; i++) {
3318 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3319 }
3320 #endif
3321 }
3322
3323 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3324 }
3325
3326 /* ------------------------------------------------------------------- */
3327
3328 /**
3329 * Populate VS program key fields based on the current state.
3330 */
3331 static void
3332 iris_populate_vs_key(const struct iris_context *ice,
3333 const struct shader_info *info,
3334 struct brw_vs_prog_key *key)
3335 {
3336 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3337
3338 if (info->clip_distance_array_size == 0 &&
3339 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3340 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3341 }
3342
3343 /**
3344 * Populate TCS program key fields based on the current state.
3345 */
3346 static void
3347 iris_populate_tcs_key(const struct iris_context *ice,
3348 struct brw_tcs_prog_key *key)
3349 {
3350 }
3351
3352 /**
3353 * Populate TES program key fields based on the current state.
3354 */
3355 static void
3356 iris_populate_tes_key(const struct iris_context *ice,
3357 struct brw_tes_prog_key *key)
3358 {
3359 }
3360
3361 /**
3362 * Populate GS program key fields based on the current state.
3363 */
3364 static void
3365 iris_populate_gs_key(const struct iris_context *ice,
3366 struct brw_gs_prog_key *key)
3367 {
3368 }
3369
3370 /**
3371 * Populate FS program key fields based on the current state.
3372 */
3373 static void
3374 iris_populate_fs_key(const struct iris_context *ice,
3375 struct brw_wm_prog_key *key)
3376 {
3377 struct iris_screen *screen = (void *) ice->ctx.screen;
3378 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3379 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3380 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3381 const struct iris_blend_state *blend = ice->state.cso_blend;
3382
3383 key->nr_color_regions = fb->nr_cbufs;
3384
3385 key->clamp_fragment_color = rast->clamp_fragment_color;
3386
3387 key->alpha_to_coverage = blend->alpha_to_coverage;
3388
3389 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
3390
3391 /* XXX: only bother if COL0/1 are read */
3392 key->flat_shade = rast->flatshade;
3393
3394 key->persample_interp = rast->force_persample_interp;
3395 key->multisample_fbo = rast->multisample && fb->samples > 1;
3396
3397 key->coherent_fb_fetch = true;
3398
3399 key->force_dual_color_blend =
3400 screen->driconf.dual_color_blend_by_location &&
3401 (blend->blend_enables & 1) && blend->dual_color_blending;
3402
3403 /* TODO: support key->force_dual_color_blend for Unigine */
3404 /* TODO: Respect glHint for key->high_quality_derivatives */
3405 }
3406
3407 static void
3408 iris_populate_cs_key(const struct iris_context *ice,
3409 struct brw_cs_prog_key *key)
3410 {
3411 }
3412
3413 static uint64_t
3414 KSP(const struct iris_compiled_shader *shader)
3415 {
3416 struct iris_resource *res = (void *) shader->assembly.res;
3417 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3418 }
3419
3420 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3421 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3422 * this WA on C0 stepping.
3423 *
3424 * TODO: Fill out SamplerCount for prefetching?
3425 */
3426
3427 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3428 pkt.KernelStartPointer = KSP(shader); \
3429 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3430 prog_data->binding_table.size_bytes / 4; \
3431 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3432 \
3433 pkt.DispatchGRFStartRegisterForURBData = \
3434 prog_data->dispatch_grf_start_reg; \
3435 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3436 pkt.prefix##URBEntryReadOffset = 0; \
3437 \
3438 pkt.StatisticsEnable = true; \
3439 pkt.Enable = true; \
3440 \
3441 if (prog_data->total_scratch) { \
3442 struct iris_bo *bo = \
3443 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3444 uint32_t scratch_addr = bo->gtt_offset; \
3445 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3446 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3447 }
3448
3449 /**
3450 * Encode most of 3DSTATE_VS based on the compiled shader.
3451 */
3452 static void
3453 iris_store_vs_state(struct iris_context *ice,
3454 const struct gen_device_info *devinfo,
3455 struct iris_compiled_shader *shader)
3456 {
3457 struct brw_stage_prog_data *prog_data = shader->prog_data;
3458 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3459
3460 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3461 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3462 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3463 vs.SIMD8DispatchEnable = true;
3464 vs.UserClipDistanceCullTestEnableBitmask =
3465 vue_prog_data->cull_distance_mask;
3466 }
3467 }
3468
3469 /**
3470 * Encode most of 3DSTATE_HS based on the compiled shader.
3471 */
3472 static void
3473 iris_store_tcs_state(struct iris_context *ice,
3474 const struct gen_device_info *devinfo,
3475 struct iris_compiled_shader *shader)
3476 {
3477 struct brw_stage_prog_data *prog_data = shader->prog_data;
3478 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3479 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3480
3481 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3482 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3483
3484 hs.InstanceCount = tcs_prog_data->instances - 1;
3485 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3486 hs.IncludeVertexHandles = true;
3487 }
3488 }
3489
3490 /**
3491 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3492 */
3493 static void
3494 iris_store_tes_state(struct iris_context *ice,
3495 const struct gen_device_info *devinfo,
3496 struct iris_compiled_shader *shader)
3497 {
3498 struct brw_stage_prog_data *prog_data = shader->prog_data;
3499 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3500 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3501
3502 uint32_t *te_state = (void *) shader->derived_data;
3503 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3504
3505 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3506 te.Partitioning = tes_prog_data->partitioning;
3507 te.OutputTopology = tes_prog_data->output_topology;
3508 te.TEDomain = tes_prog_data->domain;
3509 te.TEEnable = true;
3510 te.MaximumTessellationFactorOdd = 63.0;
3511 te.MaximumTessellationFactorNotOdd = 64.0;
3512 }
3513
3514 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3515 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3516
3517 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3518 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3519 ds.ComputeWCoordinateEnable =
3520 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3521
3522 ds.UserClipDistanceCullTestEnableBitmask =
3523 vue_prog_data->cull_distance_mask;
3524 }
3525
3526 }
3527
3528 /**
3529 * Encode most of 3DSTATE_GS based on the compiled shader.
3530 */
3531 static void
3532 iris_store_gs_state(struct iris_context *ice,
3533 const struct gen_device_info *devinfo,
3534 struct iris_compiled_shader *shader)
3535 {
3536 struct brw_stage_prog_data *prog_data = shader->prog_data;
3537 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3538 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3539
3540 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3541 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3542
3543 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3544 gs.OutputTopology = gs_prog_data->output_topology;
3545 gs.ControlDataHeaderSize =
3546 gs_prog_data->control_data_header_size_hwords;
3547 gs.InstanceControl = gs_prog_data->invocations - 1;
3548 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3549 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3550 gs.ControlDataFormat = gs_prog_data->control_data_format;
3551 gs.ReorderMode = TRAILING;
3552 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3553 gs.MaximumNumberofThreads =
3554 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3555 : (devinfo->max_gs_threads - 1);
3556
3557 if (gs_prog_data->static_vertex_count != -1) {
3558 gs.StaticOutput = true;
3559 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3560 }
3561 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3562
3563 gs.UserClipDistanceCullTestEnableBitmask =
3564 vue_prog_data->cull_distance_mask;
3565
3566 const int urb_entry_write_offset = 1;
3567 const uint32_t urb_entry_output_length =
3568 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3569 urb_entry_write_offset;
3570
3571 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3572 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3573 }
3574 }
3575
3576 /**
3577 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3578 */
3579 static void
3580 iris_store_fs_state(struct iris_context *ice,
3581 const struct gen_device_info *devinfo,
3582 struct iris_compiled_shader *shader)
3583 {
3584 struct brw_stage_prog_data *prog_data = shader->prog_data;
3585 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3586
3587 uint32_t *ps_state = (void *) shader->derived_data;
3588 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3589
3590 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3591 ps.VectorMaskEnable = true;
3592 // XXX: WABTPPrefetchDisable, see above, drop at C0
3593 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3594 prog_data->binding_table.size_bytes / 4;
3595 ps.FloatingPointMode = prog_data->use_alt_mode;
3596 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3597
3598 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3599
3600 /* From the documentation for this packet:
3601 * "If the PS kernel does not need the Position XY Offsets to
3602 * compute a Position Value, then this field should be programmed
3603 * to POSOFFSET_NONE."
3604 *
3605 * "SW Recommendation: If the PS kernel needs the Position Offsets
3606 * to compute a Position XY value, this field should match Position
3607 * ZW Interpolation Mode to ensure a consistent position.xyzw
3608 * computation."
3609 *
3610 * We only require XY sample offsets. So, this recommendation doesn't
3611 * look useful at the moment. We might need this in future.
3612 */
3613 ps.PositionXYOffsetSelect =
3614 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3615 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3616 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3617 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3618
3619 // XXX: Disable SIMD32 with 16x MSAA
3620
3621 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3622 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3623 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3624 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3625 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3626 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3627
3628 ps.KernelStartPointer0 =
3629 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3630 ps.KernelStartPointer1 =
3631 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3632 ps.KernelStartPointer2 =
3633 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3634
3635 if (prog_data->total_scratch) {
3636 struct iris_bo *bo =
3637 iris_get_scratch_space(ice, prog_data->total_scratch,
3638 MESA_SHADER_FRAGMENT);
3639 uint32_t scratch_addr = bo->gtt_offset;
3640 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3641 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3642 }
3643 }
3644
3645 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3646 psx.PixelShaderValid = true;
3647 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3648 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3649 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3650 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3651 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3652 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3653 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3654
3655 #if GEN_GEN >= 9
3656 if (wm_prog_data->uses_sample_mask) {
3657 /* TODO: conservative rasterization */
3658 if (wm_prog_data->post_depth_coverage)
3659 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3660 else
3661 psx.InputCoverageMaskState = ICMS_NORMAL;
3662 }
3663
3664 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3665 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3666 #else
3667 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3668 #endif
3669 // XXX: UAV bit
3670 }
3671 }
3672
3673 /**
3674 * Compute the size of the derived data (shader command packets).
3675 *
3676 * This must match the data written by the iris_store_xs_state() functions.
3677 */
3678 static void
3679 iris_store_cs_state(struct iris_context *ice,
3680 const struct gen_device_info *devinfo,
3681 struct iris_compiled_shader *shader)
3682 {
3683 struct brw_stage_prog_data *prog_data = shader->prog_data;
3684 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3685 void *map = shader->derived_data;
3686
3687 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3688 desc.KernelStartPointer = KSP(shader);
3689 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3690 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3691 desc.SharedLocalMemorySize =
3692 encode_slm_size(GEN_GEN, prog_data->total_shared);
3693 desc.BarrierEnable = cs_prog_data->uses_barrier;
3694 desc.CrossThreadConstantDataReadLength =
3695 cs_prog_data->push.cross_thread.regs;
3696 }
3697 }
3698
3699 static unsigned
3700 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3701 {
3702 assert(cache_id <= IRIS_CACHE_BLORP);
3703
3704 static const unsigned dwords[] = {
3705 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3706 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3707 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3708 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3709 [IRIS_CACHE_FS] =
3710 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3711 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3712 [IRIS_CACHE_BLORP] = 0,
3713 };
3714
3715 return sizeof(uint32_t) * dwords[cache_id];
3716 }
3717
3718 /**
3719 * Create any state packets corresponding to the given shader stage
3720 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3721 * This means that we can look up a program in the in-memory cache and
3722 * get most of the state packet without having to reconstruct it.
3723 */
3724 static void
3725 iris_store_derived_program_state(struct iris_context *ice,
3726 enum iris_program_cache_id cache_id,
3727 struct iris_compiled_shader *shader)
3728 {
3729 struct iris_screen *screen = (void *) ice->ctx.screen;
3730 const struct gen_device_info *devinfo = &screen->devinfo;
3731
3732 switch (cache_id) {
3733 case IRIS_CACHE_VS:
3734 iris_store_vs_state(ice, devinfo, shader);
3735 break;
3736 case IRIS_CACHE_TCS:
3737 iris_store_tcs_state(ice, devinfo, shader);
3738 break;
3739 case IRIS_CACHE_TES:
3740 iris_store_tes_state(ice, devinfo, shader);
3741 break;
3742 case IRIS_CACHE_GS:
3743 iris_store_gs_state(ice, devinfo, shader);
3744 break;
3745 case IRIS_CACHE_FS:
3746 iris_store_fs_state(ice, devinfo, shader);
3747 break;
3748 case IRIS_CACHE_CS:
3749 iris_store_cs_state(ice, devinfo, shader);
3750 case IRIS_CACHE_BLORP:
3751 break;
3752 default:
3753 break;
3754 }
3755 }
3756
3757 /* ------------------------------------------------------------------- */
3758
3759 static const uint32_t push_constant_opcodes[] = {
3760 [MESA_SHADER_VERTEX] = 21,
3761 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3762 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3763 [MESA_SHADER_GEOMETRY] = 22,
3764 [MESA_SHADER_FRAGMENT] = 23,
3765 [MESA_SHADER_COMPUTE] = 0,
3766 };
3767
3768 static uint32_t
3769 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3770 {
3771 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3772
3773 iris_use_pinned_bo(batch, state_bo, false);
3774
3775 return ice->state.unbound_tex.offset;
3776 }
3777
3778 static uint32_t
3779 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3780 {
3781 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3782 if (!ice->state.null_fb.res)
3783 return use_null_surface(batch, ice);
3784
3785 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3786
3787 iris_use_pinned_bo(batch, state_bo, false);
3788
3789 return ice->state.null_fb.offset;
3790 }
3791
3792 static uint32_t
3793 surf_state_offset_for_aux(struct iris_resource *res,
3794 unsigned aux_modes,
3795 enum isl_aux_usage aux_usage)
3796 {
3797 return SURFACE_STATE_ALIGNMENT *
3798 util_bitcount(res->aux.possible_usages & ((1 << aux_usage) - 1));
3799 }
3800
3801 static void
3802 surf_state_update_clear_value(struct iris_batch *batch,
3803 struct iris_resource *res,
3804 struct iris_state_ref *state,
3805 unsigned aux_modes,
3806 enum isl_aux_usage aux_usage)
3807 {
3808 struct isl_device *isl_dev = &batch->screen->isl_dev;
3809 struct iris_bo *state_bo = iris_resource_bo(state->res);
3810 uint64_t real_offset = state->offset +
3811 IRIS_MEMZONE_BINDER_START;
3812 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
3813 uint32_t clear_offset = offset_into_bo +
3814 isl_dev->ss.clear_value_offset +
3815 surf_state_offset_for_aux(res, aux_modes, aux_usage);
3816
3817 batch->vtbl->copy_mem_mem(batch, state_bo, clear_offset,
3818 res->aux.clear_color_bo,
3819 res->aux.clear_color_offset,
3820 isl_dev->ss.clear_value_size);
3821 }
3822
3823 static void
3824 update_clear_value(struct iris_context *ice,
3825 struct iris_batch *batch,
3826 struct iris_resource *res,
3827 struct iris_state_ref *state,
3828 unsigned aux_modes,
3829 struct isl_view *view)
3830 {
3831 struct iris_screen *screen = batch->screen;
3832 const struct gen_device_info *devinfo = &screen->devinfo;
3833
3834 /* We only need to update the clear color in the surface state for gen8 and
3835 * gen9. Newer gens can read it directly from the clear color state buffer.
3836 */
3837 if (devinfo->gen > 9)
3838 return;
3839
3840 if (devinfo->gen == 9) {
3841 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
3842 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
3843
3844 while (aux_modes) {
3845 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3846
3847 surf_state_update_clear_value(batch, res, state, aux_modes,
3848 aux_usage);
3849 }
3850 } else if (devinfo->gen == 8) {
3851 pipe_resource_reference(&state->res, NULL);
3852 void *map = alloc_surface_states(ice->state.surface_uploader,
3853 state, res->aux.possible_usages);
3854 while (aux_modes) {
3855 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3856 fill_surface_state(&screen->isl_dev, map, res, view, aux_usage);
3857 map += SURFACE_STATE_ALIGNMENT;
3858 }
3859 }
3860 }
3861
3862 /**
3863 * Add a surface to the validation list, as well as the buffer containing
3864 * the corresponding SURFACE_STATE.
3865 *
3866 * Returns the binding table entry (offset to SURFACE_STATE).
3867 */
3868 static uint32_t
3869 use_surface(struct iris_context *ice,
3870 struct iris_batch *batch,
3871 struct pipe_surface *p_surf,
3872 bool writeable,
3873 enum isl_aux_usage aux_usage)
3874 {
3875 struct iris_surface *surf = (void *) p_surf;
3876 struct iris_resource *res = (void *) p_surf->texture;
3877
3878 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3879 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3880
3881 if (res->aux.bo) {
3882 iris_use_pinned_bo(batch, res->aux.bo, writeable);
3883 if (res->aux.clear_color_bo)
3884 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false);
3885
3886 if (memcmp(&res->aux.clear_color, &surf->clear_color,
3887 sizeof(surf->clear_color)) != 0) {
3888 update_clear_value(ice, batch, res, &surf->surface_state,
3889 res->aux.possible_usages, &surf->view);
3890 surf->clear_color = res->aux.clear_color;
3891 }
3892 }
3893
3894 return surf->surface_state.offset +
3895 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
3896 }
3897
3898 static uint32_t
3899 use_sampler_view(struct iris_context *ice,
3900 struct iris_batch *batch,
3901 struct iris_sampler_view *isv)
3902 {
3903 // XXX: ASTC hacks
3904 enum isl_aux_usage aux_usage =
3905 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
3906
3907 iris_use_pinned_bo(batch, isv->res->bo, false);
3908 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3909
3910 if (isv->res->aux.bo) {
3911 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
3912 if (isv->res->aux.clear_color_bo)
3913 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, false);
3914 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
3915 sizeof(isv->clear_color)) != 0) {
3916 update_clear_value(ice, batch, isv->res, &isv->surface_state,
3917 isv->res->aux.sampler_usages, &isv->view);
3918 isv->clear_color = isv->res->aux.clear_color;
3919 }
3920 }
3921
3922 return isv->surface_state.offset +
3923 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
3924 aux_usage);
3925 }
3926
3927 static uint32_t
3928 use_ubo_ssbo(struct iris_batch *batch,
3929 struct iris_context *ice,
3930 struct pipe_shader_buffer *buf,
3931 struct iris_state_ref *surf_state,
3932 bool writable)
3933 {
3934 if (!buf->buffer)
3935 return use_null_surface(batch, ice);
3936
3937 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable);
3938 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3939
3940 return surf_state->offset;
3941 }
3942
3943 static uint32_t
3944 use_image(struct iris_batch *batch, struct iris_context *ice,
3945 struct iris_shader_state *shs, int i)
3946 {
3947 struct iris_image_view *iv = &shs->image[i];
3948 struct iris_resource *res = (void *) iv->base.resource;
3949
3950 if (!res)
3951 return use_null_surface(batch, ice);
3952
3953 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
3954
3955 iris_use_pinned_bo(batch, res->bo, write);
3956 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.res), false);
3957
3958 if (res->aux.bo)
3959 iris_use_pinned_bo(batch, res->aux.bo, write);
3960
3961 return iv->surface_state.offset;
3962 }
3963
3964 #define push_bt_entry(addr) \
3965 assert(addr >= binder_addr); \
3966 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3967 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3968
3969 #define bt_assert(section, exists) \
3970 if (!pin_only) assert(prog_data->binding_table.section == \
3971 (exists) ? s : 0xd0d0d0d0)
3972
3973 /**
3974 * Populate the binding table for a given shader stage.
3975 *
3976 * This fills out the table of pointers to surfaces required by the shader,
3977 * and also adds those buffers to the validation list so the kernel can make
3978 * resident before running our batch.
3979 */
3980 static void
3981 iris_populate_binding_table(struct iris_context *ice,
3982 struct iris_batch *batch,
3983 gl_shader_stage stage,
3984 bool pin_only)
3985 {
3986 const struct iris_binder *binder = &ice->state.binder;
3987 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3988 if (!shader)
3989 return;
3990
3991 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3992 struct iris_shader_state *shs = &ice->state.shaders[stage];
3993 uint32_t binder_addr = binder->bo->gtt_offset;
3994
3995 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3996 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3997 int s = 0;
3998
3999 const struct shader_info *info = iris_get_shader_info(ice, stage);
4000 if (!info) {
4001 /* TCS passthrough doesn't need a binding table. */
4002 assert(stage == MESA_SHADER_TESS_CTRL);
4003 return;
4004 }
4005
4006 if (stage == MESA_SHADER_COMPUTE) {
4007 /* surface for gl_NumWorkGroups */
4008 struct iris_state_ref *grid_data = &ice->state.grid_size;
4009 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4010 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
4011 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
4012 push_bt_entry(grid_state->offset);
4013 }
4014
4015 if (stage == MESA_SHADER_FRAGMENT) {
4016 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4017 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4018 if (cso_fb->nr_cbufs) {
4019 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4020 uint32_t addr;
4021 if (cso_fb->cbufs[i]) {
4022 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4023 ice->state.draw_aux_usage[i]);
4024 } else {
4025 addr = use_null_fb_surface(batch, ice);
4026 }
4027 push_bt_entry(addr);
4028 }
4029 } else {
4030 uint32_t addr = use_null_fb_surface(batch, ice);
4031 push_bt_entry(addr);
4032 }
4033 }
4034
4035 unsigned num_textures = util_last_bit(info->textures_used);
4036
4037 bt_assert(texture_start, num_textures > 0);
4038
4039 for (int i = 0; i < num_textures; i++) {
4040 struct iris_sampler_view *view = shs->textures[i];
4041 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4042 : use_null_surface(batch, ice);
4043 push_bt_entry(addr);
4044 }
4045
4046 bt_assert(image_start, info->num_images > 0);
4047
4048 for (int i = 0; i < info->num_images; i++) {
4049 uint32_t addr = use_image(batch, ice, shs, i);
4050 push_bt_entry(addr);
4051 }
4052
4053 bt_assert(ubo_start, shader->num_cbufs > 0);
4054
4055 for (int i = 0; i < shader->num_cbufs; i++) {
4056 uint32_t addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4057 &shs->constbuf_surf_state[i], false);
4058 push_bt_entry(addr);
4059 }
4060
4061 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
4062
4063 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
4064 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
4065 * in st_atom_storagebuf.c so it'll compact them into one range, with
4066 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
4067 */
4068 if (info->num_abos + info->num_ssbos > 0) {
4069 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
4070 uint32_t addr =
4071 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4072 shs->writable_ssbos & (1u << i));
4073 push_bt_entry(addr);
4074 }
4075 }
4076
4077 #if 0
4078 /* XXX: YUV surfaces not implemented yet */
4079 bt_assert(plane_start[1], ...);
4080 bt_assert(plane_start[2], ...);
4081 #endif
4082 }
4083
4084 static void
4085 iris_use_optional_res(struct iris_batch *batch,
4086 struct pipe_resource *res,
4087 bool writeable)
4088 {
4089 if (res) {
4090 struct iris_bo *bo = iris_resource_bo(res);
4091 iris_use_pinned_bo(batch, bo, writeable);
4092 }
4093 }
4094
4095 static void
4096 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4097 struct pipe_surface *zsbuf,
4098 struct iris_depth_stencil_alpha_state *cso_zsa)
4099 {
4100 if (!zsbuf)
4101 return;
4102
4103 struct iris_resource *zres, *sres;
4104 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4105
4106 if (zres) {
4107 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled);
4108 if (zres->aux.bo) {
4109 iris_use_pinned_bo(batch, zres->aux.bo,
4110 cso_zsa->depth_writes_enabled);
4111 }
4112 }
4113
4114 if (sres) {
4115 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled);
4116 }
4117 }
4118
4119 /* ------------------------------------------------------------------- */
4120
4121 /**
4122 * Pin any BOs which were installed by a previous batch, and restored
4123 * via the hardware logical context mechanism.
4124 *
4125 * We don't need to re-emit all state every batch - the hardware context
4126 * mechanism will save and restore it for us. This includes pointers to
4127 * various BOs...which won't exist unless we ask the kernel to pin them
4128 * by adding them to the validation list.
4129 *
4130 * We can skip buffers if we've re-emitted those packets, as we're
4131 * overwriting those stale pointers with new ones, and don't actually
4132 * refer to the old BOs.
4133 */
4134 static void
4135 iris_restore_render_saved_bos(struct iris_context *ice,
4136 struct iris_batch *batch,
4137 const struct pipe_draw_info *draw)
4138 {
4139 struct iris_genx_state *genx = ice->state.genx;
4140
4141 const uint64_t clean = ~ice->state.dirty;
4142
4143 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4144 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
4145 }
4146
4147 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4148 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
4149 }
4150
4151 if (clean & IRIS_DIRTY_BLEND_STATE) {
4152 iris_use_optional_res(batch, ice->state.last_res.blend, false);
4153 }
4154
4155 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4156 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
4157 }
4158
4159 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4160 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
4161 }
4162
4163 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4164 for (int i = 0; i < 4; i++) {
4165 struct iris_stream_output_target *tgt =
4166 (void *) ice->state.so_target[i];
4167 if (tgt) {
4168 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4169 true);
4170 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4171 true);
4172 }
4173 }
4174 }
4175
4176 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4177 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4178 continue;
4179
4180 struct iris_shader_state *shs = &ice->state.shaders[stage];
4181 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4182
4183 if (!shader)
4184 continue;
4185
4186 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4187
4188 for (int i = 0; i < 4; i++) {
4189 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4190
4191 if (range->length == 0)
4192 continue;
4193
4194 struct pipe_shader_buffer *cbuf = &shs->constbuf[range->block];
4195 struct iris_resource *res = (void *) cbuf->buffer;
4196
4197 if (res)
4198 iris_use_pinned_bo(batch, res->bo, false);
4199 else
4200 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4201 }
4202 }
4203
4204 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4205 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4206 /* Re-pin any buffers referred to by the binding table. */
4207 iris_populate_binding_table(ice, batch, stage, true);
4208 }
4209 }
4210
4211 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4212 struct iris_shader_state *shs = &ice->state.shaders[stage];
4213 struct pipe_resource *res = shs->sampler_table.res;
4214 if (res)
4215 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4216 }
4217
4218 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4219 if (clean & (IRIS_DIRTY_VS << stage)) {
4220 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4221
4222 if (shader) {
4223 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4224 iris_use_pinned_bo(batch, bo, false);
4225
4226 struct brw_stage_prog_data *prog_data = shader->prog_data;
4227
4228 if (prog_data->total_scratch > 0) {
4229 struct iris_bo *bo =
4230 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4231 iris_use_pinned_bo(batch, bo, true);
4232 }
4233 }
4234 }
4235 }
4236
4237 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
4238 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4239 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4240 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4241 }
4242
4243 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
4244 /* This draw didn't emit a new index buffer, so we are inheriting the
4245 * older index buffer. This draw didn't need it, but future ones may.
4246 */
4247 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4248 iris_use_pinned_bo(batch, bo, false);
4249 }
4250
4251 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4252 uint64_t bound = ice->state.bound_vertex_buffers;
4253 while (bound) {
4254 const int i = u_bit_scan64(&bound);
4255 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4256 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4257 }
4258 }
4259 }
4260
4261 static void
4262 iris_restore_compute_saved_bos(struct iris_context *ice,
4263 struct iris_batch *batch,
4264 const struct pipe_grid_info *grid)
4265 {
4266 const uint64_t clean = ~ice->state.dirty;
4267
4268 const int stage = MESA_SHADER_COMPUTE;
4269 struct iris_shader_state *shs = &ice->state.shaders[stage];
4270
4271 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
4272 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4273
4274 if (shader) {
4275 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4276 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
4277
4278 if (range->length > 0) {
4279 struct pipe_shader_buffer *cbuf = &shs->constbuf[range->block];
4280 struct iris_resource *res = (void *) cbuf->buffer;
4281
4282 if (res)
4283 iris_use_pinned_bo(batch, res->bo, false);
4284 else
4285 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4286 }
4287 }
4288 }
4289
4290 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4291 /* Re-pin any buffers referred to by the binding table. */
4292 iris_populate_binding_table(ice, batch, stage, true);
4293 }
4294
4295 struct pipe_resource *sampler_res = shs->sampler_table.res;
4296 if (sampler_res)
4297 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4298
4299 if (clean & IRIS_DIRTY_CS) {
4300 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4301
4302 if (shader) {
4303 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4304 iris_use_pinned_bo(batch, bo, false);
4305
4306 struct brw_stage_prog_data *prog_data = shader->prog_data;
4307
4308 if (prog_data->total_scratch > 0) {
4309 struct iris_bo *bo =
4310 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4311 iris_use_pinned_bo(batch, bo, true);
4312 }
4313 }
4314 }
4315 }
4316
4317 /**
4318 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4319 */
4320 static void
4321 iris_update_surface_base_address(struct iris_batch *batch,
4322 struct iris_binder *binder)
4323 {
4324 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4325 return;
4326
4327 flush_for_state_base_change(batch);
4328
4329 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4330 sba.SurfaceStateMOCS = MOCS_WB;
4331 sba.SurfaceStateBaseAddressModifyEnable = true;
4332 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4333 }
4334
4335 batch->last_surface_base_address = binder->bo->gtt_offset;
4336 }
4337
4338 static void
4339 iris_upload_dirty_render_state(struct iris_context *ice,
4340 struct iris_batch *batch,
4341 const struct pipe_draw_info *draw)
4342 {
4343 const uint64_t dirty = ice->state.dirty;
4344
4345 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4346 return;
4347
4348 struct iris_genx_state *genx = ice->state.genx;
4349 struct iris_binder *binder = &ice->state.binder;
4350 struct brw_wm_prog_data *wm_prog_data = (void *)
4351 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4352
4353 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4354 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4355 uint32_t cc_vp_address;
4356
4357 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4358 uint32_t *cc_vp_map =
4359 stream_state(batch, ice->state.dynamic_uploader,
4360 &ice->state.last_res.cc_vp,
4361 4 * ice->state.num_viewports *
4362 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4363 for (int i = 0; i < ice->state.num_viewports; i++) {
4364 float zmin, zmax;
4365 util_viewport_zmin_zmax(&ice->state.viewports[i],
4366 cso_rast->clip_halfz, &zmin, &zmax);
4367 if (cso_rast->depth_clip_near)
4368 zmin = 0.0;
4369 if (cso_rast->depth_clip_far)
4370 zmax = 1.0;
4371
4372 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4373 ccv.MinimumDepth = zmin;
4374 ccv.MaximumDepth = zmax;
4375 }
4376
4377 cc_vp_map += GENX(CC_VIEWPORT_length);
4378 }
4379
4380 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4381 ptr.CCViewportPointer = cc_vp_address;
4382 }
4383 }
4384
4385 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4386 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4387 uint32_t sf_cl_vp_address;
4388 uint32_t *vp_map =
4389 stream_state(batch, ice->state.dynamic_uploader,
4390 &ice->state.last_res.sf_cl_vp,
4391 4 * ice->state.num_viewports *
4392 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4393
4394 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4395 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4396 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4397
4398 float vp_xmin = viewport_extent(state, 0, -1.0f);
4399 float vp_xmax = viewport_extent(state, 0, 1.0f);
4400 float vp_ymin = viewport_extent(state, 1, -1.0f);
4401 float vp_ymax = viewport_extent(state, 1, 1.0f);
4402
4403 calculate_guardband_size(cso_fb->width, cso_fb->height,
4404 state->scale[0], state->scale[1],
4405 state->translate[0], state->translate[1],
4406 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4407
4408 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4409 vp.ViewportMatrixElementm00 = state->scale[0];
4410 vp.ViewportMatrixElementm11 = state->scale[1];
4411 vp.ViewportMatrixElementm22 = state->scale[2];
4412 vp.ViewportMatrixElementm30 = state->translate[0];
4413 vp.ViewportMatrixElementm31 = state->translate[1];
4414 vp.ViewportMatrixElementm32 = state->translate[2];
4415 vp.XMinClipGuardband = gb_xmin;
4416 vp.XMaxClipGuardband = gb_xmax;
4417 vp.YMinClipGuardband = gb_ymin;
4418 vp.YMaxClipGuardband = gb_ymax;
4419 vp.XMinViewPort = MAX2(vp_xmin, 0);
4420 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4421 vp.YMinViewPort = MAX2(vp_ymin, 0);
4422 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4423 }
4424
4425 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4426 }
4427
4428 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4429 ptr.SFClipViewportPointer = sf_cl_vp_address;
4430 }
4431 }
4432
4433 if (dirty & IRIS_DIRTY_URB) {
4434 unsigned size[4];
4435
4436 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
4437 if (!ice->shaders.prog[i]) {
4438 size[i] = 1;
4439 } else {
4440 struct brw_vue_prog_data *vue_prog_data =
4441 (void *) ice->shaders.prog[i]->prog_data;
4442 size[i] = vue_prog_data->urb_entry_size;
4443 }
4444 assert(size[i] != 0);
4445 }
4446
4447 genX(emit_urb_setup)(ice, batch, size,
4448 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
4449 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
4450 }
4451
4452 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4453 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4454 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4455 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4456 const int header_dwords = GENX(BLEND_STATE_length);
4457
4458 /* Always write at least one BLEND_STATE - the final RT message will
4459 * reference BLEND_STATE[0] even if there aren't color writes. There
4460 * may still be alpha testing, computed depth, and so on.
4461 */
4462 const int rt_dwords =
4463 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4464
4465 uint32_t blend_offset;
4466 uint32_t *blend_map =
4467 stream_state(batch, ice->state.dynamic_uploader,
4468 &ice->state.last_res.blend,
4469 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4470
4471 uint32_t blend_state_header;
4472 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4473 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4474 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4475 }
4476
4477 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4478 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4479
4480 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4481 ptr.BlendStatePointer = blend_offset;
4482 ptr.BlendStatePointerValid = true;
4483 }
4484 }
4485
4486 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4487 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4488 #if GEN_GEN == 8
4489 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4490 #endif
4491 uint32_t cc_offset;
4492 void *cc_map =
4493 stream_state(batch, ice->state.dynamic_uploader,
4494 &ice->state.last_res.color_calc,
4495 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4496 64, &cc_offset);
4497 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4498 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4499 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4500 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4501 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4502 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4503 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4504 #if GEN_GEN == 8
4505 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4506 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4507 #endif
4508 }
4509 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4510 ptr.ColorCalcStatePointer = cc_offset;
4511 ptr.ColorCalcStatePointerValid = true;
4512 }
4513 }
4514
4515 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4516 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4517 continue;
4518
4519 struct iris_shader_state *shs = &ice->state.shaders[stage];
4520 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4521
4522 if (!shader)
4523 continue;
4524
4525 if (shs->cbuf0_needs_upload)
4526 upload_uniforms(ice, stage);
4527
4528 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4529
4530 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4531 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4532 if (prog_data) {
4533 /* The Skylake PRM contains the following restriction:
4534 *
4535 * "The driver must ensure The following case does not occur
4536 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4537 * buffer 3 read length equal to zero committed followed by a
4538 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4539 * zero committed."
4540 *
4541 * To avoid this, we program the buffers in the highest slots.
4542 * This way, slot 0 is only used if slot 3 is also used.
4543 */
4544 int n = 3;
4545
4546 for (int i = 3; i >= 0; i--) {
4547 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4548
4549 if (range->length == 0)
4550 continue;
4551
4552 struct pipe_shader_buffer *cbuf = &shs->constbuf[range->block];
4553 struct iris_resource *res = (void *) cbuf->buffer;
4554
4555 assert(cbuf->buffer_offset % 32 == 0);
4556
4557 pkt.ConstantBody.ReadLength[n] = range->length;
4558 pkt.ConstantBody.Buffer[n] =
4559 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
4560 : ro_bo(batch->screen->workaround_bo, 0);
4561 n--;
4562 }
4563 }
4564 }
4565 }
4566
4567 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4568 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4569 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4570 ptr._3DCommandSubOpcode = 38 + stage;
4571 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4572 }
4573 }
4574 }
4575
4576 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4577 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4578 iris_populate_binding_table(ice, batch, stage, false);
4579 }
4580 }
4581
4582 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4583 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4584 !ice->shaders.prog[stage])
4585 continue;
4586
4587 iris_upload_sampler_states(ice, stage);
4588
4589 struct iris_shader_state *shs = &ice->state.shaders[stage];
4590 struct pipe_resource *res = shs->sampler_table.res;
4591 if (res)
4592 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4593
4594 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4595 ptr._3DCommandSubOpcode = 43 + stage;
4596 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4597 }
4598 }
4599
4600 if (ice->state.need_border_colors)
4601 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4602
4603 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4604 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4605 ms.PixelLocation =
4606 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4607 if (ice->state.framebuffer.samples > 0)
4608 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4609 }
4610 }
4611
4612 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4613 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4614 ms.SampleMask = ice->state.sample_mask;
4615 }
4616 }
4617
4618 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4619 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4620 continue;
4621
4622 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4623
4624 if (shader) {
4625 struct brw_stage_prog_data *prog_data = shader->prog_data;
4626 struct iris_resource *cache = (void *) shader->assembly.res;
4627 iris_use_pinned_bo(batch, cache->bo, false);
4628
4629 if (prog_data->total_scratch > 0) {
4630 struct iris_bo *bo =
4631 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4632 iris_use_pinned_bo(batch, bo, true);
4633 }
4634
4635 iris_batch_emit(batch, shader->derived_data,
4636 iris_derived_program_state_size(stage));
4637 } else {
4638 if (stage == MESA_SHADER_TESS_EVAL) {
4639 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4640 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4641 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4642 } else if (stage == MESA_SHADER_GEOMETRY) {
4643 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4644 }
4645 }
4646 }
4647
4648 if (ice->state.streamout_active) {
4649 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4650 iris_batch_emit(batch, genx->so_buffers,
4651 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4652 for (int i = 0; i < 4; i++) {
4653 struct iris_stream_output_target *tgt =
4654 (void *) ice->state.so_target[i];
4655 if (tgt) {
4656 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4657 true);
4658 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4659 true);
4660 }
4661 }
4662 }
4663
4664 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4665 uint32_t *decl_list =
4666 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4667 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4668 }
4669
4670 if (dirty & IRIS_DIRTY_STREAMOUT) {
4671 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4672
4673 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4674 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4675 sol.SOFunctionEnable = true;
4676 sol.SOStatisticsEnable = true;
4677
4678 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4679 !ice->state.prims_generated_query_active;
4680 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4681 }
4682
4683 assert(ice->state.streamout);
4684
4685 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4686 GENX(3DSTATE_STREAMOUT_length));
4687 }
4688 } else {
4689 if (dirty & IRIS_DIRTY_STREAMOUT) {
4690 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4691 }
4692 }
4693
4694 if (dirty & IRIS_DIRTY_CLIP) {
4695 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4696 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4697
4698 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4699 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4700 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4701 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4702 : CLIPMODE_NORMAL;
4703 if (wm_prog_data->barycentric_interp_modes &
4704 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4705 cl.NonPerspectiveBarycentricEnable = true;
4706
4707 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4708 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4709 }
4710 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4711 ARRAY_SIZE(cso_rast->clip));
4712 }
4713
4714 if (dirty & IRIS_DIRTY_RASTER) {
4715 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4716 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4717 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4718
4719 }
4720
4721 if (dirty & IRIS_DIRTY_WM) {
4722 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4723 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4724
4725 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4726 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4727
4728 wm.BarycentricInterpolationMode =
4729 wm_prog_data->barycentric_interp_modes;
4730
4731 if (wm_prog_data->early_fragment_tests)
4732 wm.EarlyDepthStencilControl = EDSC_PREPS;
4733 else if (wm_prog_data->has_side_effects)
4734 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4735
4736 /* We could skip this bit if color writes are enabled. */
4737 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
4738 wm.ForceThreadDispatchEnable = ForceON;
4739 }
4740 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4741 }
4742
4743 if (dirty & IRIS_DIRTY_SBE) {
4744 iris_emit_sbe(batch, ice);
4745 }
4746
4747 if (dirty & IRIS_DIRTY_PS_BLEND) {
4748 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4749 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4750 const struct shader_info *fs_info =
4751 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4752
4753 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4754 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4755 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
4756 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4757 }
4758
4759 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4760 ARRAY_SIZE(cso_blend->ps_blend));
4761 }
4762
4763 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4764 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4765 #if GEN_GEN >= 9
4766 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4767 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4768 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4769 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4770 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4771 }
4772 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4773 #else
4774 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4775 #endif
4776 }
4777
4778 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4779 uint32_t scissor_offset =
4780 emit_state(batch, ice->state.dynamic_uploader,
4781 &ice->state.last_res.scissor,
4782 ice->state.scissors,
4783 sizeof(struct pipe_scissor_state) *
4784 ice->state.num_viewports, 32);
4785
4786 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4787 ptr.ScissorRectPointer = scissor_offset;
4788 }
4789 }
4790
4791 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4792 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4793
4794 /* Do not emit the clear params yets. We need to update the clear value
4795 * first.
4796 */
4797 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
4798 uint32_t cso_z_size = sizeof(cso_z->packets) - clear_length;
4799 iris_batch_emit(batch, cso_z->packets, cso_z_size);
4800
4801 union isl_color_value clear_value = { .f32 = { 0, } };
4802
4803 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4804 if (cso_fb->zsbuf) {
4805 struct iris_resource *zres, *sres;
4806 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4807 &zres, &sres);
4808 if (zres && zres->aux.bo)
4809 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
4810 }
4811
4812 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
4813 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
4814 clear.DepthClearValueValid = true;
4815 clear.DepthClearValue = clear_value.f32[0];
4816 }
4817 iris_batch_emit(batch, clear_params, clear_length);
4818 }
4819
4820 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4821 /* Listen for buffer changes, and also write enable changes. */
4822 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4823 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4824 }
4825
4826 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4827 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4828 for (int i = 0; i < 32; i++) {
4829 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4830 }
4831 }
4832 }
4833
4834 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4835 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4836 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4837 }
4838
4839 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4840 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4841 topo.PrimitiveTopologyType =
4842 translate_prim_type(draw->mode, draw->vertices_per_patch);
4843 }
4844 }
4845
4846 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4847 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4848 int dynamic_bound = ice->state.bound_vertex_buffers;
4849
4850 if (ice->state.vs_uses_draw_params) {
4851 if (ice->draw.draw_params_offset == 0) {
4852 u_upload_data(ice->state.dynamic_uploader, 0, sizeof(ice->draw.params),
4853 4, &ice->draw.params, &ice->draw.draw_params_offset,
4854 &ice->draw.draw_params_res);
4855 }
4856 assert(ice->draw.draw_params_res);
4857
4858 struct iris_vertex_buffer_state *state =
4859 &(ice->state.genx->vertex_buffers[count]);
4860 pipe_resource_reference(&state->resource, ice->draw.draw_params_res);
4861 struct iris_resource *res = (void *) state->resource;
4862
4863 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4864 vb.VertexBufferIndex = count;
4865 vb.AddressModifyEnable = true;
4866 vb.BufferPitch = 0;
4867 vb.BufferSize = res->bo->size - ice->draw.draw_params_offset;
4868 vb.BufferStartingAddress =
4869 ro_bo(NULL, res->bo->gtt_offset +
4870 (int) ice->draw.draw_params_offset);
4871 vb.MOCS = mocs(res->bo);
4872 }
4873 dynamic_bound |= 1ull << count;
4874 count++;
4875 }
4876
4877 if (ice->state.vs_uses_derived_draw_params) {
4878 u_upload_data(ice->state.dynamic_uploader, 0,
4879 sizeof(ice->draw.derived_params), 4,
4880 &ice->draw.derived_params,
4881 &ice->draw.derived_draw_params_offset,
4882 &ice->draw.derived_draw_params_res);
4883
4884 struct iris_vertex_buffer_state *state =
4885 &(ice->state.genx->vertex_buffers[count]);
4886 pipe_resource_reference(&state->resource,
4887 ice->draw.derived_draw_params_res);
4888 struct iris_resource *res = (void *) ice->draw.derived_draw_params_res;
4889
4890 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4891 vb.VertexBufferIndex = count;
4892 vb.AddressModifyEnable = true;
4893 vb.BufferPitch = 0;
4894 vb.BufferSize =
4895 res->bo->size - ice->draw.derived_draw_params_offset;
4896 vb.BufferStartingAddress =
4897 ro_bo(NULL, res->bo->gtt_offset +
4898 (int) ice->draw.derived_draw_params_offset);
4899 vb.MOCS = mocs(res->bo);
4900 }
4901 dynamic_bound |= 1ull << count;
4902 count++;
4903 }
4904
4905 if (count) {
4906 /* The VF cache designers cut corners, and made the cache key's
4907 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4908 * 32 bits of the address. If you have two vertex buffers which get
4909 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4910 * you can get collisions (even within a single batch).
4911 *
4912 * So, we need to do a VF cache invalidate if the buffer for a VB
4913 * slot slot changes [48:32] address bits from the previous time.
4914 */
4915 unsigned flush_flags = 0;
4916
4917 uint64_t bound = dynamic_bound;
4918 while (bound) {
4919 const int i = u_bit_scan64(&bound);
4920 uint16_t high_bits = 0;
4921
4922 struct iris_resource *res =
4923 (void *) genx->vertex_buffers[i].resource;
4924 if (res) {
4925 iris_use_pinned_bo(batch, res->bo, false);
4926
4927 high_bits = res->bo->gtt_offset >> 32ull;
4928 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4929 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
4930 PIPE_CONTROL_CS_STALL;
4931 ice->state.last_vbo_high_bits[i] = high_bits;
4932 }
4933
4934 /* If the buffer was written to by streamout, we may need
4935 * to stall so those writes land and become visible to the
4936 * vertex fetcher.
4937 *
4938 * TODO: This may stall more than necessary.
4939 */
4940 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
4941 flush_flags |= PIPE_CONTROL_CS_STALL;
4942 }
4943 }
4944
4945 if (flush_flags)
4946 iris_emit_pipe_control_flush(batch, flush_flags);
4947
4948 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4949
4950 uint32_t *map =
4951 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
4952 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
4953 vb.DWordLength = (vb_dwords * count + 1) - 2;
4954 }
4955 map += 1;
4956
4957 bound = dynamic_bound;
4958 while (bound) {
4959 const int i = u_bit_scan64(&bound);
4960 memcpy(map, genx->vertex_buffers[i].state,
4961 sizeof(uint32_t) * vb_dwords);
4962 map += vb_dwords;
4963 }
4964 }
4965 }
4966
4967 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4968 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4969 const unsigned entries = MAX2(cso->count, 1);
4970 if (!(ice->state.vs_needs_sgvs_element ||
4971 ice->state.vs_uses_derived_draw_params ||
4972 ice->state.vs_needs_edge_flag)) {
4973 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4974 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4975 } else {
4976 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
4977 const unsigned dyn_count = cso->count +
4978 ice->state.vs_needs_sgvs_element +
4979 ice->state.vs_uses_derived_draw_params;
4980
4981 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
4982 &dynamic_ves, ve) {
4983 ve.DWordLength =
4984 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
4985 }
4986 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
4987 (cso->count - ice->state.vs_needs_edge_flag) *
4988 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
4989 uint32_t *ve_pack_dest =
4990 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
4991 GENX(VERTEX_ELEMENT_STATE_length)];
4992
4993 if (ice->state.vs_needs_sgvs_element) {
4994 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
4995 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
4996 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
4997 ve.Valid = true;
4998 ve.VertexBufferIndex =
4999 util_bitcount64(ice->state.bound_vertex_buffers);
5000 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5001 ve.Component0Control = base_ctrl;
5002 ve.Component1Control = base_ctrl;
5003 ve.Component2Control = VFCOMP_STORE_0;
5004 ve.Component3Control = VFCOMP_STORE_0;
5005 }
5006 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5007 }
5008 if (ice->state.vs_uses_derived_draw_params) {
5009 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5010 ve.Valid = true;
5011 ve.VertexBufferIndex =
5012 util_bitcount64(ice->state.bound_vertex_buffers) +
5013 ice->state.vs_uses_draw_params;
5014 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5015 ve.Component0Control = VFCOMP_STORE_SRC;
5016 ve.Component1Control = VFCOMP_STORE_SRC;
5017 ve.Component2Control = VFCOMP_STORE_0;
5018 ve.Component3Control = VFCOMP_STORE_0;
5019 }
5020 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5021 }
5022 if (ice->state.vs_needs_edge_flag) {
5023 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
5024 ve_pack_dest[i] = cso->edgeflag_ve[i];
5025 }
5026
5027 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
5028 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
5029 }
5030
5031 if (!ice->state.vs_needs_edge_flag) {
5032 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
5033 entries * GENX(3DSTATE_VF_INSTANCING_length));
5034 } else {
5035 assert(cso->count > 0);
5036 const unsigned edgeflag_index = cso->count - 1;
5037 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
5038 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
5039 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
5040
5041 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
5042 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
5043 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
5044 vi.VertexElementIndex = edgeflag_index +
5045 ice->state.vs_needs_sgvs_element +
5046 ice->state.vs_uses_derived_draw_params;
5047 }
5048 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
5049 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
5050
5051 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
5052 entries * GENX(3DSTATE_VF_INSTANCING_length));
5053 }
5054 }
5055
5056 if (dirty & IRIS_DIRTY_VF_SGVS) {
5057 const struct brw_vs_prog_data *vs_prog_data = (void *)
5058 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
5059 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5060
5061 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
5062 if (vs_prog_data->uses_vertexid) {
5063 sgv.VertexIDEnable = true;
5064 sgv.VertexIDComponentNumber = 2;
5065 sgv.VertexIDElementOffset =
5066 cso->count - ice->state.vs_needs_edge_flag;
5067 }
5068
5069 if (vs_prog_data->uses_instanceid) {
5070 sgv.InstanceIDEnable = true;
5071 sgv.InstanceIDComponentNumber = 3;
5072 sgv.InstanceIDElementOffset =
5073 cso->count - ice->state.vs_needs_edge_flag;
5074 }
5075 }
5076 }
5077
5078 if (dirty & IRIS_DIRTY_VF) {
5079 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
5080 if (draw->primitive_restart) {
5081 vf.IndexedDrawCutIndexEnable = true;
5082 vf.CutIndex = draw->restart_index;
5083 }
5084 }
5085 }
5086
5087 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
5088 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
5089 vf.StatisticsEnable = true;
5090 }
5091 }
5092
5093 /* TODO: Gen8 PMA fix */
5094 }
5095
5096 static void
5097 iris_upload_render_state(struct iris_context *ice,
5098 struct iris_batch *batch,
5099 const struct pipe_draw_info *draw)
5100 {
5101 /* Always pin the binder. If we're emitting new binding table pointers,
5102 * we need it. If not, we're probably inheriting old tables via the
5103 * context, and need it anyway. Since true zero-bindings cases are
5104 * practically non-existent, just pin it and avoid last_res tracking.
5105 */
5106 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5107
5108 if (!batch->contains_draw) {
5109 iris_restore_render_saved_bos(ice, batch, draw);
5110 batch->contains_draw = true;
5111 }
5112
5113 iris_upload_dirty_render_state(ice, batch, draw);
5114
5115 if (draw->index_size > 0) {
5116 unsigned offset;
5117
5118 if (draw->has_user_indices) {
5119 u_upload_data(ice->ctx.stream_uploader, 0,
5120 draw->count * draw->index_size, 4, draw->index.user,
5121 &offset, &ice->state.last_res.index_buffer);
5122 } else {
5123 struct iris_resource *res = (void *) draw->index.resource;
5124 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
5125
5126 pipe_resource_reference(&ice->state.last_res.index_buffer,
5127 draw->index.resource);
5128 offset = 0;
5129 }
5130
5131 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
5132
5133 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
5134 ib.IndexFormat = draw->index_size >> 1;
5135 ib.MOCS = mocs(bo);
5136 ib.BufferSize = bo->size - offset;
5137 ib.BufferStartingAddress = ro_bo(bo, offset);
5138 }
5139
5140 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
5141 uint16_t high_bits = bo->gtt_offset >> 32ull;
5142 if (high_bits != ice->state.last_index_bo_high_bits) {
5143 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE |
5144 PIPE_CONTROL_CS_STALL);
5145 ice->state.last_index_bo_high_bits = high_bits;
5146 }
5147 }
5148
5149 #define _3DPRIM_END_OFFSET 0x2420
5150 #define _3DPRIM_START_VERTEX 0x2430
5151 #define _3DPRIM_VERTEX_COUNT 0x2434
5152 #define _3DPRIM_INSTANCE_COUNT 0x2438
5153 #define _3DPRIM_START_INSTANCE 0x243C
5154 #define _3DPRIM_BASE_VERTEX 0x2440
5155
5156 if (draw->indirect) {
5157 /* We don't support this MultidrawIndirect. */
5158 assert(!draw->indirect->indirect_draw_count);
5159
5160 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
5161 assert(bo);
5162
5163 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5164 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
5165 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
5166 }
5167 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5168 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
5169 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
5170 }
5171 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5172 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
5173 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
5174 }
5175 if (draw->index_size) {
5176 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5177 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5178 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5179 }
5180 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5181 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5182 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5183 }
5184 } else {
5185 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5186 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5187 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5188 }
5189 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5190 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5191 lri.DataDWord = 0;
5192 }
5193 }
5194 } else if (draw->count_from_stream_output) {
5195 struct iris_stream_output_target *so =
5196 (void *) draw->count_from_stream_output;
5197
5198 /* XXX: Replace with actual cache tracking */
5199 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
5200
5201 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5202 lrm.RegisterAddress = CS_GPR(0);
5203 lrm.MemoryAddress =
5204 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5205 }
5206 if (so->base.buffer_offset)
5207 iris_math_add32_gpr0(ice, batch, -so->base.buffer_offset);
5208 iris_math_div32_gpr0(ice, batch, so->stride);
5209 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
5210
5211 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5212 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5213 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5214 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5215 }
5216
5217 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5218 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5219 prim.PredicateEnable =
5220 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5221
5222 if (draw->indirect || draw->count_from_stream_output) {
5223 prim.IndirectParameterEnable = true;
5224 } else {
5225 prim.StartInstanceLocation = draw->start_instance;
5226 prim.InstanceCount = draw->instance_count;
5227 prim.VertexCountPerInstance = draw->count;
5228
5229 // XXX: this is probably bonkers.
5230 prim.StartVertexLocation = draw->start;
5231
5232 if (draw->index_size) {
5233 prim.BaseVertexLocation += draw->index_bias;
5234 } else {
5235 prim.StartVertexLocation += draw->index_bias;
5236 }
5237
5238 //prim.BaseVertexLocation = ...;
5239 }
5240 }
5241 }
5242
5243 static void
5244 iris_upload_compute_state(struct iris_context *ice,
5245 struct iris_batch *batch,
5246 const struct pipe_grid_info *grid)
5247 {
5248 const uint64_t dirty = ice->state.dirty;
5249 struct iris_screen *screen = batch->screen;
5250 const struct gen_device_info *devinfo = &screen->devinfo;
5251 struct iris_binder *binder = &ice->state.binder;
5252 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5253 struct iris_compiled_shader *shader =
5254 ice->shaders.prog[MESA_SHADER_COMPUTE];
5255 struct brw_stage_prog_data *prog_data = shader->prog_data;
5256 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5257
5258 /* Always pin the binder. If we're emitting new binding table pointers,
5259 * we need it. If not, we're probably inheriting old tables via the
5260 * context, and need it anyway. Since true zero-bindings cases are
5261 * practically non-existent, just pin it and avoid last_res tracking.
5262 */
5263 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5264
5265 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
5266 upload_uniforms(ice, MESA_SHADER_COMPUTE);
5267
5268 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5269 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5270
5271 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
5272 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
5273
5274 iris_use_optional_res(batch, shs->sampler_table.res, false);
5275 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5276
5277 if (ice->state.need_border_colors)
5278 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5279
5280 if (dirty & IRIS_DIRTY_CS) {
5281 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5282 *
5283 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5284 * the only bits that are changed are scoreboard related: Scoreboard
5285 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5286 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5287 * sufficient."
5288 */
5289 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
5290
5291 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5292 if (prog_data->total_scratch) {
5293 struct iris_bo *bo =
5294 iris_get_scratch_space(ice, prog_data->total_scratch,
5295 MESA_SHADER_COMPUTE);
5296 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5297 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5298 }
5299
5300 vfe.MaximumNumberofThreads =
5301 devinfo->max_cs_threads * screen->subslice_total - 1;
5302 #if GEN_GEN < 11
5303 vfe.ResetGatewayTimer =
5304 Resettingrelativetimerandlatchingtheglobaltimestamp;
5305 #endif
5306 #if GEN_GEN == 8
5307 vfe.BypassGatewayControl = true;
5308 #endif
5309 vfe.NumberofURBEntries = 2;
5310 vfe.URBEntryAllocationSize = 2;
5311
5312 vfe.CURBEAllocationSize =
5313 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5314 cs_prog_data->push.cross_thread.regs, 2);
5315 }
5316 }
5317
5318 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5319 uint32_t curbe_data_offset = 0;
5320 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5321 cs_prog_data->push.per_thread.dwords == 1 &&
5322 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5323 struct pipe_resource *curbe_data_res = NULL;
5324 uint32_t *curbe_data_map =
5325 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
5326 ALIGN(cs_prog_data->push.total.size, 64), 64,
5327 &curbe_data_offset);
5328 assert(curbe_data_map);
5329 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5330 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5331
5332 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
5333 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5334 curbe.CURBETotalDataLength =
5335 ALIGN(cs_prog_data->push.total.size, 64);
5336 curbe.CURBEDataStartAddress = curbe_data_offset;
5337 }
5338 }
5339
5340 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5341 IRIS_DIRTY_BINDINGS_CS |
5342 IRIS_DIRTY_CONSTANTS_CS |
5343 IRIS_DIRTY_CS)) {
5344 struct pipe_resource *desc_res = NULL;
5345 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5346
5347 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5348 idd.SamplerStatePointer = shs->sampler_table.offset;
5349 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5350 }
5351
5352 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5353 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5354
5355 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5356 load.InterfaceDescriptorTotalLength =
5357 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5358 load.InterfaceDescriptorDataStartAddress =
5359 emit_state(batch, ice->state.dynamic_uploader,
5360 &desc_res, desc, sizeof(desc), 32);
5361 }
5362
5363 pipe_resource_reference(&desc_res, NULL);
5364 }
5365
5366 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5367 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5368 uint32_t right_mask;
5369
5370 if (remainder > 0)
5371 right_mask = ~0u >> (32 - remainder);
5372 else
5373 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5374
5375 #define GPGPU_DISPATCHDIMX 0x2500
5376 #define GPGPU_DISPATCHDIMY 0x2504
5377 #define GPGPU_DISPATCHDIMZ 0x2508
5378
5379 if (grid->indirect) {
5380 struct iris_state_ref *grid_size = &ice->state.grid_size;
5381 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5382 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5383 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5384 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5385 }
5386 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5387 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5388 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5389 }
5390 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5391 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5392 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5393 }
5394 }
5395
5396 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5397 ggw.IndirectParameterEnable = grid->indirect != NULL;
5398 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5399 ggw.ThreadDepthCounterMaximum = 0;
5400 ggw.ThreadHeightCounterMaximum = 0;
5401 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5402 ggw.ThreadGroupIDXDimension = grid->grid[0];
5403 ggw.ThreadGroupIDYDimension = grid->grid[1];
5404 ggw.ThreadGroupIDZDimension = grid->grid[2];
5405 ggw.RightExecutionMask = right_mask;
5406 ggw.BottomExecutionMask = 0xffffffff;
5407 }
5408
5409 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5410
5411 if (!batch->contains_draw) {
5412 iris_restore_compute_saved_bos(ice, batch, grid);
5413 batch->contains_draw = true;
5414 }
5415 }
5416
5417 /**
5418 * State module teardown.
5419 */
5420 static void
5421 iris_destroy_state(struct iris_context *ice)
5422 {
5423 struct iris_genx_state *genx = ice->state.genx;
5424
5425 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5426 while (bound_vbs) {
5427 const int i = u_bit_scan64(&bound_vbs);
5428 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5429 }
5430 free(ice->state.genx);
5431
5432 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5433 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5434 }
5435 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5436
5437 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5438 struct iris_shader_state *shs = &ice->state.shaders[stage];
5439 pipe_resource_reference(&shs->sampler_table.res, NULL);
5440 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5441 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
5442 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
5443 }
5444 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5445 pipe_resource_reference(&shs->image[i].base.resource, NULL);
5446 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5447 }
5448 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5449 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
5450 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
5451 }
5452 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5453 pipe_sampler_view_reference((struct pipe_sampler_view **)
5454 &shs->textures[i], NULL);
5455 }
5456 }
5457
5458 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5459 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5460
5461 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5462 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5463
5464 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5465 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5466 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5467 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5468 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5469 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5470 }
5471
5472 /* ------------------------------------------------------------------- */
5473
5474 static void
5475 iris_rebind_buffer(struct iris_context *ice,
5476 struct iris_resource *res,
5477 uint64_t old_address)
5478 {
5479 struct pipe_context *ctx = &ice->ctx;
5480 struct iris_screen *screen = (void *) ctx->screen;
5481 struct iris_genx_state *genx = ice->state.genx;
5482
5483 assert(res->base.target == PIPE_BUFFER);
5484
5485 /* Buffers can't be framebuffer attachments, nor display related,
5486 * and we don't have upstream Clover support.
5487 */
5488 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
5489 PIPE_BIND_RENDER_TARGET |
5490 PIPE_BIND_BLENDABLE |
5491 PIPE_BIND_DISPLAY_TARGET |
5492 PIPE_BIND_CURSOR |
5493 PIPE_BIND_COMPUTE_RESOURCE |
5494 PIPE_BIND_GLOBAL)));
5495
5496 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
5497 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5498 while (bound_vbs) {
5499 const int i = u_bit_scan64(&bound_vbs);
5500 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
5501
5502 /* Update the CPU struct */
5503 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
5504 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
5505 uint64_t *addr = (uint64_t *) &state->state[1];
5506
5507 if (*addr == old_address) {
5508 *addr = res->bo->gtt_offset;
5509 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
5510 }
5511 }
5512 }
5513
5514 /* No need to handle these:
5515 * - PIPE_BIND_INDEX_BUFFER (emitted for every indexed draw)
5516 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
5517 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
5518 */
5519
5520 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
5521 /* XXX: be careful about resetting vs appending... */
5522 assert(false);
5523 }
5524
5525 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
5526 struct iris_shader_state *shs = &ice->state.shaders[s];
5527 enum pipe_shader_type p_stage = stage_to_pipe(s);
5528
5529 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
5530 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
5531 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
5532 while (bound_cbufs) {
5533 const int i = u_bit_scan(&bound_cbufs);
5534 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
5535 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
5536
5537 if (res->bo == iris_resource_bo(cbuf->buffer)) {
5538 upload_ubo_ssbo_surf_state(ice, cbuf, surf_state, false);
5539 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << s;
5540 }
5541 }
5542 }
5543
5544 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
5545 uint32_t bound_ssbos = shs->bound_ssbos;
5546 while (bound_ssbos) {
5547 const int i = u_bit_scan(&bound_ssbos);
5548 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
5549
5550 if (res->bo == iris_resource_bo(ssbo->buffer)) {
5551 struct pipe_shader_buffer buf = {
5552 .buffer = &res->base,
5553 .buffer_offset = ssbo->buffer_offset,
5554 .buffer_size = ssbo->buffer_size,
5555 };
5556 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
5557 (shs->writable_ssbos >> i) & 1);
5558 }
5559 }
5560 }
5561
5562 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
5563 uint32_t bound_sampler_views = shs->bound_sampler_views;
5564 while (bound_sampler_views) {
5565 const int i = u_bit_scan(&bound_sampler_views);
5566 struct iris_sampler_view *isv = shs->textures[i];
5567
5568 if (res->bo == iris_resource_bo(isv->base.texture)) {
5569 void *map = alloc_surface_states(ice->state.surface_uploader,
5570 &isv->surface_state,
5571 isv->res->aux.sampler_usages);
5572 assert(map);
5573 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
5574 isv->view.format, isv->view.swizzle,
5575 isv->base.u.buf.offset,
5576 isv->base.u.buf.size);
5577 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
5578 }
5579 }
5580 }
5581
5582 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
5583 uint32_t bound_image_views = shs->bound_image_views;
5584 while (bound_image_views) {
5585 const int i = u_bit_scan(&bound_image_views);
5586 struct iris_image_view *iv = &shs->image[i];
5587
5588 if (res->bo == iris_resource_bo(iv->base.resource)) {
5589 iris_set_shader_images(ctx, p_stage, i, 1, &iv->base);
5590 }
5591 }
5592 }
5593 }
5594 }
5595
5596 /* ------------------------------------------------------------------- */
5597
5598 static void
5599 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
5600 uint32_t src)
5601 {
5602 _iris_emit_lrr(batch, dst, src);
5603 }
5604
5605 static void
5606 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
5607 uint32_t src)
5608 {
5609 _iris_emit_lrr(batch, dst, src);
5610 _iris_emit_lrr(batch, dst + 4, src + 4);
5611 }
5612
5613 static void
5614 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5615 uint32_t val)
5616 {
5617 _iris_emit_lri(batch, reg, val);
5618 }
5619
5620 static void
5621 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5622 uint64_t val)
5623 {
5624 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5625 _iris_emit_lri(batch, reg + 4, val >> 32);
5626 }
5627
5628 /**
5629 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5630 */
5631 static void
5632 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5633 struct iris_bo *bo, uint32_t offset)
5634 {
5635 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5636 lrm.RegisterAddress = reg;
5637 lrm.MemoryAddress = ro_bo(bo, offset);
5638 }
5639 }
5640
5641 /**
5642 * Load a 64-bit value from a buffer into a MMIO register via
5643 * two MI_LOAD_REGISTER_MEM commands.
5644 */
5645 static void
5646 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5647 struct iris_bo *bo, uint32_t offset)
5648 {
5649 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5650 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5651 }
5652
5653 static void
5654 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5655 struct iris_bo *bo, uint32_t offset,
5656 bool predicated)
5657 {
5658 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5659 srm.RegisterAddress = reg;
5660 srm.MemoryAddress = rw_bo(bo, offset);
5661 srm.PredicateEnable = predicated;
5662 }
5663 }
5664
5665 static void
5666 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5667 struct iris_bo *bo, uint32_t offset,
5668 bool predicated)
5669 {
5670 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5671 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5672 }
5673
5674 static void
5675 iris_store_data_imm32(struct iris_batch *batch,
5676 struct iris_bo *bo, uint32_t offset,
5677 uint32_t imm)
5678 {
5679 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5680 sdi.Address = rw_bo(bo, offset);
5681 sdi.ImmediateData = imm;
5682 }
5683 }
5684
5685 static void
5686 iris_store_data_imm64(struct iris_batch *batch,
5687 struct iris_bo *bo, uint32_t offset,
5688 uint64_t imm)
5689 {
5690 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5691 * 2 in genxml but it's actually variable length and we need 5 DWords.
5692 */
5693 void *map = iris_get_command_space(batch, 4 * 5);
5694 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5695 sdi.DWordLength = 5 - 2;
5696 sdi.Address = rw_bo(bo, offset);
5697 sdi.ImmediateData = imm;
5698 }
5699 }
5700
5701 static void
5702 iris_copy_mem_mem(struct iris_batch *batch,
5703 struct iris_bo *dst_bo, uint32_t dst_offset,
5704 struct iris_bo *src_bo, uint32_t src_offset,
5705 unsigned bytes)
5706 {
5707 /* MI_COPY_MEM_MEM operates on DWords. */
5708 assert(bytes % 4 == 0);
5709 assert(dst_offset % 4 == 0);
5710 assert(src_offset % 4 == 0);
5711
5712 for (unsigned i = 0; i < bytes; i += 4) {
5713 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5714 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5715 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5716 }
5717 }
5718 }
5719
5720 /* ------------------------------------------------------------------- */
5721
5722 static unsigned
5723 flags_to_post_sync_op(uint32_t flags)
5724 {
5725 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5726 return WriteImmediateData;
5727
5728 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5729 return WritePSDepthCount;
5730
5731 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5732 return WriteTimestamp;
5733
5734 return 0;
5735 }
5736
5737 /**
5738 * Do the given flags have a Post Sync or LRI Post Sync operation?
5739 */
5740 static enum pipe_control_flags
5741 get_post_sync_flags(enum pipe_control_flags flags)
5742 {
5743 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5744 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5745 PIPE_CONTROL_WRITE_TIMESTAMP |
5746 PIPE_CONTROL_LRI_POST_SYNC_OP;
5747
5748 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5749 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5750 */
5751 assert(util_bitcount(flags) <= 1);
5752
5753 return flags;
5754 }
5755
5756 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5757
5758 /**
5759 * Emit a series of PIPE_CONTROL commands, taking into account any
5760 * workarounds necessary to actually accomplish the caller's request.
5761 *
5762 * Unless otherwise noted, spec quotations in this function come from:
5763 *
5764 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5765 * Restrictions for PIPE_CONTROL.
5766 *
5767 * You should not use this function directly. Use the helpers in
5768 * iris_pipe_control.c instead, which may split the pipe control further.
5769 */
5770 static void
5771 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
5772 struct iris_bo *bo, uint32_t offset, uint64_t imm)
5773 {
5774 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5775 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5776 enum pipe_control_flags non_lri_post_sync_flags =
5777 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5778
5779 /* Recursive PIPE_CONTROL workarounds --------------------------------
5780 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5781 *
5782 * We do these first because we want to look at the original operation,
5783 * rather than any workarounds we set.
5784 */
5785 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5786 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5787 * lists several workarounds:
5788 *
5789 * "Project: SKL, KBL, BXT
5790 *
5791 * If the VF Cache Invalidation Enable is set to a 1 in a
5792 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5793 * sets to 0, with the VF Cache Invalidation Enable set to 0
5794 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5795 * Invalidation Enable set to a 1."
5796 */
5797 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
5798 }
5799
5800 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5801 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5802 *
5803 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5804 * programmed prior to programming a PIPECONTROL command with "LRI
5805 * Post Sync Operation" in GPGPU mode of operation (i.e when
5806 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5807 *
5808 * The same text exists a few rows below for Post Sync Op.
5809 */
5810 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
5811 }
5812
5813 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5814 /* Cannonlake:
5815 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5816 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5817 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5818 */
5819 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
5820 offset, imm);
5821 }
5822
5823 /* "Flush Types" workarounds ---------------------------------------------
5824 * We do these now because they may add post-sync operations or CS stalls.
5825 */
5826
5827 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5828 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5829 *
5830 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5831 * 'Write PS Depth Count' or 'Write Timestamp'."
5832 */
5833 if (!bo) {
5834 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5835 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5836 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5837 bo = batch->screen->workaround_bo;
5838 }
5839 }
5840
5841 /* #1130 from Gen10 workarounds page:
5842 *
5843 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5844 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5845 * board stall if Render target cache flush is enabled."
5846 *
5847 * Applicable to CNL B0 and C0 steppings only.
5848 *
5849 * The wording here is unclear, and this workaround doesn't look anything
5850 * like the internal bug report recommendations, but leave it be for now...
5851 */
5852 if (GEN_GEN == 10) {
5853 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5854 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5855 } else if (flags & non_lri_post_sync_flags) {
5856 flags |= PIPE_CONTROL_DEPTH_STALL;
5857 }
5858 }
5859
5860 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5861 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5862 *
5863 * "This bit must be DISABLED for operations other than writing
5864 * PS_DEPTH_COUNT."
5865 *
5866 * This seems like nonsense. An Ivybridge workaround requires us to
5867 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5868 * operation. Gen8+ requires us to emit depth stalls and depth cache
5869 * flushes together. So, it's hard to imagine this means anything other
5870 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5871 *
5872 * We ignore the supposed restriction and do nothing.
5873 */
5874 }
5875
5876 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5877 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5878 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5879 *
5880 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5881 * PS_DEPTH_COUNT or TIMESTAMP queries."
5882 *
5883 * TODO: Implement end-of-pipe checking.
5884 */
5885 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5886 PIPE_CONTROL_WRITE_TIMESTAMP)));
5887 }
5888
5889 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5890 /* From the PIPE_CONTROL instruction table, bit 1:
5891 *
5892 * "This bit is ignored if Depth Stall Enable is set.
5893 * Further, the render cache is not flushed even if Write Cache
5894 * Flush Enable bit is set."
5895 *
5896 * We assert that the caller doesn't do this combination, to try and
5897 * prevent mistakes. It shouldn't hurt the GPU, though.
5898 *
5899 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5900 * and "Render Target Flush" combo is explicitly required for BTI
5901 * update workarounds.
5902 */
5903 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5904 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5905 }
5906
5907 /* PIPE_CONTROL page workarounds ------------------------------------- */
5908
5909 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5910 /* From the PIPE_CONTROL page itself:
5911 *
5912 * "IVB, HSW, BDW
5913 * Restriction: Pipe_control with CS-stall bit set must be issued
5914 * before a pipe-control command that has the State Cache
5915 * Invalidate bit set."
5916 */
5917 flags |= PIPE_CONTROL_CS_STALL;
5918 }
5919
5920 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5921 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5922 *
5923 * "Project: ALL
5924 * SW must always program Post-Sync Operation to "Write Immediate
5925 * Data" when Flush LLC is set."
5926 *
5927 * For now, we just require the caller to do it.
5928 */
5929 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5930 }
5931
5932 /* "Post-Sync Operation" workarounds -------------------------------- */
5933
5934 /* Project: All / Argument: Global Snapshot Count Reset [19]
5935 *
5936 * "This bit must not be exercised on any product.
5937 * Requires stall bit ([20] of DW1) set."
5938 *
5939 * We don't use this, so we just assert that it isn't used. The
5940 * PIPE_CONTROL instruction page indicates that they intended this
5941 * as a debug feature and don't think it is useful in production,
5942 * but it may actually be usable, should we ever want to.
5943 */
5944 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5945
5946 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5947 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5948 /* Project: All / Arguments:
5949 *
5950 * - Generic Media State Clear [16]
5951 * - Indirect State Pointers Disable [16]
5952 *
5953 * "Requires stall bit ([20] of DW1) set."
5954 *
5955 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5956 * State Clear) says:
5957 *
5958 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5959 * programmed prior to programming a PIPECONTROL command with "Media
5960 * State Clear" set in GPGPU mode of operation"
5961 *
5962 * This is a subset of the earlier rule, so there's nothing to do.
5963 */
5964 flags |= PIPE_CONTROL_CS_STALL;
5965 }
5966
5967 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5968 /* Project: All / Argument: Store Data Index
5969 *
5970 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5971 * than '0'."
5972 *
5973 * For now, we just assert that the caller does this. We might want to
5974 * automatically add a write to the workaround BO...
5975 */
5976 assert(non_lri_post_sync_flags != 0);
5977 }
5978
5979 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5980 /* Project: All / Argument: Sync GFDT
5981 *
5982 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5983 * than '0' or 0x2520[13] must be set."
5984 *
5985 * For now, we just assert that the caller does this.
5986 */
5987 assert(non_lri_post_sync_flags != 0);
5988 }
5989
5990 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5991 /* Project: IVB+ / Argument: TLB inv
5992 *
5993 * "Requires stall bit ([20] of DW1) set."
5994 *
5995 * Also, from the PIPE_CONTROL instruction table:
5996 *
5997 * "Project: SKL+
5998 * Post Sync Operation or CS stall must be set to ensure a TLB
5999 * invalidation occurs. Otherwise no cycle will occur to the TLB
6000 * cache to invalidate."
6001 *
6002 * This is not a subset of the earlier rule, so there's nothing to do.
6003 */
6004 flags |= PIPE_CONTROL_CS_STALL;
6005 }
6006
6007 if (GEN_GEN == 9 && devinfo->gt == 4) {
6008 /* TODO: The big Skylake GT4 post sync op workaround */
6009 }
6010
6011 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
6012
6013 if (IS_COMPUTE_PIPELINE(batch)) {
6014 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
6015 /* Project: SKL+ / Argument: Tex Invalidate
6016 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
6017 */
6018 flags |= PIPE_CONTROL_CS_STALL;
6019 }
6020
6021 if (GEN_GEN == 8 && (post_sync_flags ||
6022 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
6023 PIPE_CONTROL_DEPTH_STALL |
6024 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6025 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6026 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
6027 /* Project: BDW / Arguments:
6028 *
6029 * - LRI Post Sync Operation [23]
6030 * - Post Sync Op [15:14]
6031 * - Notify En [8]
6032 * - Depth Stall [13]
6033 * - Render Target Cache Flush [12]
6034 * - Depth Cache Flush [0]
6035 * - DC Flush Enable [5]
6036 *
6037 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
6038 * Workloads."
6039 */
6040 flags |= PIPE_CONTROL_CS_STALL;
6041
6042 /* Also, from the PIPE_CONTROL instruction table, bit 20:
6043 *
6044 * "Project: BDW
6045 * This bit must be always set when PIPE_CONTROL command is
6046 * programmed by GPGPU and MEDIA workloads, except for the cases
6047 * when only Read Only Cache Invalidation bits are set (State
6048 * Cache Invalidation Enable, Instruction cache Invalidation
6049 * Enable, Texture Cache Invalidation Enable, Constant Cache
6050 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
6051 * need not implemented when FF_DOP_CG is disable via "Fixed
6052 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
6053 *
6054 * It sounds like we could avoid CS stalls in some cases, but we
6055 * don't currently bother. This list isn't exactly the list above,
6056 * either...
6057 */
6058 }
6059 }
6060
6061 /* "Stall" workarounds ----------------------------------------------
6062 * These have to come after the earlier ones because we may have added
6063 * some additional CS stalls above.
6064 */
6065
6066 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
6067 /* Project: PRE-SKL, VLV, CHV
6068 *
6069 * "[All Stepping][All SKUs]:
6070 *
6071 * One of the following must also be set:
6072 *
6073 * - Render Target Cache Flush Enable ([12] of DW1)
6074 * - Depth Cache Flush Enable ([0] of DW1)
6075 * - Stall at Pixel Scoreboard ([1] of DW1)
6076 * - Depth Stall ([13] of DW1)
6077 * - Post-Sync Operation ([13] of DW1)
6078 * - DC Flush Enable ([5] of DW1)"
6079 *
6080 * If we don't already have one of those bits set, we choose to add
6081 * "Stall at Pixel Scoreboard". Some of the other bits require a
6082 * CS stall as a workaround (see above), which would send us into
6083 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
6084 * appears to be safe, so we choose that.
6085 */
6086 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
6087 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6088 PIPE_CONTROL_WRITE_IMMEDIATE |
6089 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6090 PIPE_CONTROL_WRITE_TIMESTAMP |
6091 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6092 PIPE_CONTROL_DEPTH_STALL |
6093 PIPE_CONTROL_DATA_CACHE_FLUSH;
6094 if (!(flags & wa_bits))
6095 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6096 }
6097
6098 /* Emit --------------------------------------------------------------- */
6099
6100 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
6101 pc.LRIPostSyncOperation = NoLRIOperation;
6102 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
6103 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
6104 pc.StoreDataIndex = 0;
6105 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
6106 pc.GlobalSnapshotCountReset =
6107 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
6108 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
6109 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
6110 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
6111 pc.RenderTargetCacheFlushEnable =
6112 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
6113 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6114 pc.StateCacheInvalidationEnable =
6115 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
6116 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
6117 pc.ConstantCacheInvalidationEnable =
6118 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
6119 pc.PostSyncOperation = flags_to_post_sync_op(flags);
6120 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
6121 pc.InstructionCacheInvalidateEnable =
6122 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
6123 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
6124 pc.IndirectStatePointersDisable =
6125 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
6126 pc.TextureCacheInvalidationEnable =
6127 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
6128 pc.Address = rw_bo(bo, offset);
6129 pc.ImmediateData = imm;
6130 }
6131 }
6132
6133 void
6134 genX(emit_urb_setup)(struct iris_context *ice,
6135 struct iris_batch *batch,
6136 const unsigned size[4],
6137 bool tess_present, bool gs_present)
6138 {
6139 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6140 const unsigned push_size_kB = 32;
6141 unsigned entries[4];
6142 unsigned start[4];
6143
6144 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
6145
6146 gen_get_urb_config(devinfo, 1024 * push_size_kB,
6147 1024 * ice->shaders.urb_size,
6148 tess_present, gs_present,
6149 size, entries, start);
6150
6151 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
6152 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
6153 urb._3DCommandSubOpcode += i;
6154 urb.VSURBStartingAddress = start[i];
6155 urb.VSURBEntryAllocationSize = size[i] - 1;
6156 urb.VSNumberofURBEntries = entries[i];
6157 }
6158 }
6159 }
6160
6161 void
6162 genX(init_state)(struct iris_context *ice)
6163 {
6164 struct pipe_context *ctx = &ice->ctx;
6165 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
6166
6167 ctx->create_blend_state = iris_create_blend_state;
6168 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
6169 ctx->create_rasterizer_state = iris_create_rasterizer_state;
6170 ctx->create_sampler_state = iris_create_sampler_state;
6171 ctx->create_sampler_view = iris_create_sampler_view;
6172 ctx->create_surface = iris_create_surface;
6173 ctx->create_vertex_elements_state = iris_create_vertex_elements;
6174 ctx->bind_blend_state = iris_bind_blend_state;
6175 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
6176 ctx->bind_sampler_states = iris_bind_sampler_states;
6177 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
6178 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
6179 ctx->delete_blend_state = iris_delete_state;
6180 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
6181 ctx->delete_rasterizer_state = iris_delete_state;
6182 ctx->delete_sampler_state = iris_delete_state;
6183 ctx->delete_vertex_elements_state = iris_delete_state;
6184 ctx->set_blend_color = iris_set_blend_color;
6185 ctx->set_clip_state = iris_set_clip_state;
6186 ctx->set_constant_buffer = iris_set_constant_buffer;
6187 ctx->set_shader_buffers = iris_set_shader_buffers;
6188 ctx->set_shader_images = iris_set_shader_images;
6189 ctx->set_sampler_views = iris_set_sampler_views;
6190 ctx->set_tess_state = iris_set_tess_state;
6191 ctx->set_framebuffer_state = iris_set_framebuffer_state;
6192 ctx->set_polygon_stipple = iris_set_polygon_stipple;
6193 ctx->set_sample_mask = iris_set_sample_mask;
6194 ctx->set_scissor_states = iris_set_scissor_states;
6195 ctx->set_stencil_ref = iris_set_stencil_ref;
6196 ctx->set_vertex_buffers = iris_set_vertex_buffers;
6197 ctx->set_viewport_states = iris_set_viewport_states;
6198 ctx->sampler_view_destroy = iris_sampler_view_destroy;
6199 ctx->surface_destroy = iris_surface_destroy;
6200 ctx->draw_vbo = iris_draw_vbo;
6201 ctx->launch_grid = iris_launch_grid;
6202 ctx->create_stream_output_target = iris_create_stream_output_target;
6203 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
6204 ctx->set_stream_output_targets = iris_set_stream_output_targets;
6205
6206 ice->vtbl.destroy_state = iris_destroy_state;
6207 ice->vtbl.init_render_context = iris_init_render_context;
6208 ice->vtbl.init_compute_context = iris_init_compute_context;
6209 ice->vtbl.upload_render_state = iris_upload_render_state;
6210 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
6211 ice->vtbl.upload_compute_state = iris_upload_compute_state;
6212 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
6213 ice->vtbl.rebind_buffer = iris_rebind_buffer;
6214 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
6215 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
6216 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
6217 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
6218 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
6219 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
6220 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
6221 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
6222 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
6223 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
6224 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
6225 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
6226 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
6227 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
6228 ice->vtbl.populate_vs_key = iris_populate_vs_key;
6229 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
6230 ice->vtbl.populate_tes_key = iris_populate_tes_key;
6231 ice->vtbl.populate_gs_key = iris_populate_gs_key;
6232 ice->vtbl.populate_fs_key = iris_populate_fs_key;
6233 ice->vtbl.populate_cs_key = iris_populate_cs_key;
6234 ice->vtbl.mocs = mocs;
6235
6236 ice->state.dirty = ~0ull;
6237
6238 ice->state.statistics_counters_enabled = true;
6239
6240 ice->state.sample_mask = 0xffff;
6241 ice->state.num_viewports = 1;
6242 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
6243
6244 /* Make a 1x1x1 null surface for unbound textures */
6245 void *null_surf_map =
6246 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
6247 4 * GENX(RENDER_SURFACE_STATE_length), 64);
6248 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
6249 ice->state.unbound_tex.offset +=
6250 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
6251
6252 /* Default all scissor rectangles to be empty regions. */
6253 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
6254 ice->state.scissors[i] = (struct pipe_scissor_state) {
6255 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
6256 };
6257 }
6258 }