iris: add support for gl_ClipVertex in tess eval shaders
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "drm-uapi/i915_drm.h"
99 #include "nir.h"
100 #include "intel/compiler/brw_compiler.h"
101 #include "intel/common/gen_l3_config.h"
102 #include "intel/common/gen_sample_positions.h"
103 #include "iris_batch.h"
104 #include "iris_context.h"
105 #include "iris_defines.h"
106 #include "iris_pipe.h"
107 #include "iris_resource.h"
108
109 #include "iris_genx_macros.h"
110 #include "intel/common/gen_guardband.h"
111
112 #if GEN_GEN == 8
113 #define MOCS_PTE 0x18
114 #define MOCS_WB 0x78
115 #else
116 #define MOCS_PTE (1 << 1)
117 #define MOCS_WB (2 << 1)
118 #endif
119
120 static uint32_t
121 mocs(const struct iris_bo *bo)
122 {
123 return bo && bo->external ? MOCS_PTE : MOCS_WB;
124 }
125
126 /**
127 * Statically assert that PIPE_* enums match the hardware packets.
128 * (As long as they match, we don't need to translate them.)
129 */
130 UNUSED static void pipe_asserts()
131 {
132 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
133
134 /* pipe_logicop happens to match the hardware. */
135 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
136 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
137 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
138 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
139 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
140 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
141 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
142 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
143 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
144 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
145 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
146 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
147 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
148 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
149 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
150 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
151
152 /* pipe_blend_func happens to match the hardware. */
153 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
157 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
158 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
159 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
160 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
161 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
162 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
163 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
164 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
165 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
166 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
167 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
168 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
169 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
170 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
171 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
172
173 /* pipe_blend_func happens to match the hardware. */
174 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
175 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
176 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
177 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
178 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
179
180 /* pipe_stencil_op happens to match the hardware. */
181 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
182 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
183 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
184 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
185 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
186 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
187 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
188 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
189
190 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
191 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
192 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
193 #undef PIPE_ASSERT
194 }
195
196 static unsigned
197 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
198 {
199 static const unsigned map[] = {
200 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
201 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
202 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
203 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
204 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
205 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
206 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
207 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
208 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
209 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
210 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
211 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
212 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
213 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
214 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
215 };
216
217 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
218 }
219
220 static unsigned
221 translate_compare_func(enum pipe_compare_func pipe_func)
222 {
223 static const unsigned map[] = {
224 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
225 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
226 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
227 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
228 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
229 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
230 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
231 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
232 };
233 return map[pipe_func];
234 }
235
236 static unsigned
237 translate_shadow_func(enum pipe_compare_func pipe_func)
238 {
239 /* Gallium specifies the result of shadow comparisons as:
240 *
241 * 1 if ref <op> texel,
242 * 0 otherwise.
243 *
244 * The hardware does:
245 *
246 * 0 if texel <op> ref,
247 * 1 otherwise.
248 *
249 * So we need to flip the operator and also negate.
250 */
251 static const unsigned map[] = {
252 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
253 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
254 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
255 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
256 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
257 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
258 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
259 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
260 };
261 return map[pipe_func];
262 }
263
264 static unsigned
265 translate_cull_mode(unsigned pipe_face)
266 {
267 static const unsigned map[4] = {
268 [PIPE_FACE_NONE] = CULLMODE_NONE,
269 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
270 [PIPE_FACE_BACK] = CULLMODE_BACK,
271 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
272 };
273 return map[pipe_face];
274 }
275
276 static unsigned
277 translate_fill_mode(unsigned pipe_polymode)
278 {
279 static const unsigned map[4] = {
280 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
281 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
282 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
283 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
284 };
285 return map[pipe_polymode];
286 }
287
288 static unsigned
289 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
290 {
291 static const unsigned map[] = {
292 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
293 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
294 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
295 };
296 return map[pipe_mip];
297 }
298
299 static uint32_t
300 translate_wrap(unsigned pipe_wrap)
301 {
302 static const unsigned map[] = {
303 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
304 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
305 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
306 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
307 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
308 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
309
310 /* These are unsupported. */
311 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
312 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
313 };
314 return map[pipe_wrap];
315 }
316
317 /**
318 * Allocate space for some indirect state.
319 *
320 * Return a pointer to the map (to fill it out) and a state ref (for
321 * referring to the state in GPU commands).
322 */
323 static void *
324 upload_state(struct u_upload_mgr *uploader,
325 struct iris_state_ref *ref,
326 unsigned size,
327 unsigned alignment)
328 {
329 void *p = NULL;
330 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
331 return p;
332 }
333
334 /**
335 * Stream out temporary/short-lived state.
336 *
337 * This allocates space, pins the BO, and includes the BO address in the
338 * returned offset (which works because all state lives in 32-bit memory
339 * zones).
340 */
341 static uint32_t *
342 stream_state(struct iris_batch *batch,
343 struct u_upload_mgr *uploader,
344 struct pipe_resource **out_res,
345 unsigned size,
346 unsigned alignment,
347 uint32_t *out_offset)
348 {
349 void *ptr = NULL;
350
351 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
352
353 struct iris_bo *bo = iris_resource_bo(*out_res);
354 iris_use_pinned_bo(batch, bo, false);
355
356 *out_offset += iris_bo_offset_from_base_address(bo);
357
358 iris_record_state_size(batch->state_sizes, *out_offset, size);
359
360 return ptr;
361 }
362
363 /**
364 * stream_state() + memcpy.
365 */
366 static uint32_t
367 emit_state(struct iris_batch *batch,
368 struct u_upload_mgr *uploader,
369 struct pipe_resource **out_res,
370 const void *data,
371 unsigned size,
372 unsigned alignment)
373 {
374 unsigned offset = 0;
375 uint32_t *map =
376 stream_state(batch, uploader, out_res, size, alignment, &offset);
377
378 if (map)
379 memcpy(map, data, size);
380
381 return offset;
382 }
383
384 /**
385 * Did field 'x' change between 'old_cso' and 'new_cso'?
386 *
387 * (If so, we may want to set some dirty flags.)
388 */
389 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
390 #define cso_changed_memcmp(x) \
391 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
392
393 static void
394 flush_for_state_base_change(struct iris_batch *batch)
395 {
396 /* Flush before emitting STATE_BASE_ADDRESS.
397 *
398 * This isn't documented anywhere in the PRM. However, it seems to be
399 * necessary prior to changing the surface state base adress. We've
400 * seen issues in Vulkan where we get GPU hangs when using multi-level
401 * command buffers which clear depth, reset state base address, and then
402 * go render stuff.
403 *
404 * Normally, in GL, we would trust the kernel to do sufficient stalls
405 * and flushes prior to executing our batch. However, it doesn't seem
406 * as if the kernel's flushing is always sufficient and we don't want to
407 * rely on it.
408 *
409 * We make this an end-of-pipe sync instead of a normal flush because we
410 * do not know the current status of the GPU. On Haswell at least,
411 * having a fast-clear operation in flight at the same time as a normal
412 * rendering operation can cause hangs. Since the kernel's flushing is
413 * insufficient, we need to ensure that any rendering operations from
414 * other processes are definitely complete before we try to do our own
415 * rendering. It's a bit of a big hammer but it appears to work.
416 */
417 iris_emit_end_of_pipe_sync(batch,
418 "change STATE_BASE_ADDRESS",
419 PIPE_CONTROL_RENDER_TARGET_FLUSH |
420 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
421 PIPE_CONTROL_DATA_CACHE_FLUSH);
422 }
423
424 static void
425 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
426 {
427 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
428 lri.RegisterOffset = reg;
429 lri.DataDWord = val;
430 }
431 }
432 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
433
434 static void
435 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
436 {
437 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
438 lrr.SourceRegisterAddress = src;
439 lrr.DestinationRegisterAddress = dst;
440 }
441 }
442
443 static void
444 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
445 {
446 #if GEN_GEN >= 8 && GEN_GEN < 10
447 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
448 *
449 * Software must clear the COLOR_CALC_STATE Valid field in
450 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
451 * with Pipeline Select set to GPGPU.
452 *
453 * The internal hardware docs recommend the same workaround for Gen9
454 * hardware too.
455 */
456 if (pipeline == GPGPU)
457 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
458 #endif
459
460
461 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
462 * PIPELINE_SELECT [DevBWR+]":
463 *
464 * "Project: DEVSNB+
465 *
466 * Software must ensure all the write caches are flushed through a
467 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
468 * command to invalidate read only caches prior to programming
469 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
470 */
471 iris_emit_pipe_control_flush(batch,
472 "workaround: PIPELINE_SELECT flushes (1/2)",
473 PIPE_CONTROL_RENDER_TARGET_FLUSH |
474 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
475 PIPE_CONTROL_DATA_CACHE_FLUSH |
476 PIPE_CONTROL_CS_STALL);
477
478 iris_emit_pipe_control_flush(batch,
479 "workaround: PIPELINE_SELECT flushes (2/2)",
480 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
481 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
482 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
483 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
484
485 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
486 #if GEN_GEN >= 9
487 sel.MaskBits = 3;
488 #endif
489 sel.PipelineSelection = pipeline;
490 }
491 }
492
493 UNUSED static void
494 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
495 {
496 #if GEN_GEN == 9
497 /* Project: DevGLK
498 *
499 * "This chicken bit works around a hardware issue with barrier
500 * logic encountered when switching between GPGPU and 3D pipelines.
501 * To workaround the issue, this mode bit should be set after a
502 * pipeline is selected."
503 */
504 uint32_t reg_val;
505 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
506 reg.GLKBarrierMode = value;
507 reg.GLKBarrierModeMask = 1;
508 }
509 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
510 #endif
511 }
512
513 static void
514 init_state_base_address(struct iris_batch *batch)
515 {
516 flush_for_state_base_change(batch);
517
518 /* We program most base addresses once at context initialization time.
519 * Each base address points at a 4GB memory zone, and never needs to
520 * change. See iris_bufmgr.h for a description of the memory zones.
521 *
522 * The one exception is Surface State Base Address, which needs to be
523 * updated occasionally. See iris_binder.c for the details there.
524 */
525 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
526 sba.GeneralStateMOCS = MOCS_WB;
527 sba.StatelessDataPortAccessMOCS = MOCS_WB;
528 sba.DynamicStateMOCS = MOCS_WB;
529 sba.IndirectObjectMOCS = MOCS_WB;
530 sba.InstructionMOCS = MOCS_WB;
531
532 sba.GeneralStateBaseAddressModifyEnable = true;
533 sba.DynamicStateBaseAddressModifyEnable = true;
534 sba.IndirectObjectBaseAddressModifyEnable = true;
535 sba.InstructionBaseAddressModifyEnable = true;
536 sba.GeneralStateBufferSizeModifyEnable = true;
537 sba.DynamicStateBufferSizeModifyEnable = true;
538 #if (GEN_GEN >= 9)
539 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
540 sba.BindlessSurfaceStateMOCS = MOCS_WB;
541 #endif
542 sba.IndirectObjectBufferSizeModifyEnable = true;
543 sba.InstructionBuffersizeModifyEnable = true;
544
545 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
546 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
547
548 sba.GeneralStateBufferSize = 0xfffff;
549 sba.IndirectObjectBufferSize = 0xfffff;
550 sba.InstructionBufferSize = 0xfffff;
551 sba.DynamicStateBufferSize = 0xfffff;
552 }
553 }
554
555 static void
556 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
557 bool has_slm, bool wants_dc_cache)
558 {
559 uint32_t reg_val;
560 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
561 reg.SLMEnable = has_slm;
562 #if GEN_GEN == 11
563 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
564 * in L3CNTLREG register. The default setting of the bit is not the
565 * desirable behavior.
566 */
567 reg.ErrorDetectionBehaviorControl = true;
568 reg.UseFullWays = true;
569 #endif
570 reg.URBAllocation = cfg->n[GEN_L3P_URB];
571 reg.ROAllocation = cfg->n[GEN_L3P_RO];
572 reg.DCAllocation = cfg->n[GEN_L3P_DC];
573 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
574 }
575 iris_emit_lri(batch, L3CNTLREG, reg_val);
576 }
577
578 static void
579 iris_emit_default_l3_config(struct iris_batch *batch,
580 const struct gen_device_info *devinfo,
581 bool compute)
582 {
583 bool wants_dc_cache = true;
584 bool has_slm = compute;
585 const struct gen_l3_weights w =
586 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
587 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
588 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
589 }
590
591 #if GEN_GEN == 9 || GEN_GEN == 10
592 static void
593 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
594 {
595 uint32_t reg_val;
596
597 /* A fixed function pipe flush is required before modifying this field */
598 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
599 : "disable preemption",
600 PIPE_CONTROL_RENDER_TARGET_FLUSH);
601
602 /* enable object level preemption */
603 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
604 reg.ReplayMode = enable;
605 reg.ReplayModeMask = true;
606 }
607 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
608 }
609 #endif
610
611 /**
612 * Upload the initial GPU state for a render context.
613 *
614 * This sets some invariant state that needs to be programmed a particular
615 * way, but we never actually change.
616 */
617 static void
618 iris_init_render_context(struct iris_screen *screen,
619 struct iris_batch *batch,
620 struct iris_vtable *vtbl,
621 struct pipe_debug_callback *dbg)
622 {
623 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
624 uint32_t reg_val;
625
626 emit_pipeline_select(batch, _3D);
627
628 iris_emit_default_l3_config(batch, devinfo, false);
629
630 init_state_base_address(batch);
631
632 #if GEN_GEN >= 9
633 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
634 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
635 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
636 }
637 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
638 #else
639 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
640 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
641 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
642 }
643 iris_emit_lri(batch, INSTPM, reg_val);
644 #endif
645
646 #if GEN_GEN == 9
647 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
648 reg.FloatBlendOptimizationEnable = true;
649 reg.FloatBlendOptimizationEnableMask = true;
650 reg.PartialResolveDisableInVC = true;
651 reg.PartialResolveDisableInVCMask = true;
652 }
653 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
654
655 if (devinfo->is_geminilake)
656 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
657 #endif
658
659 #if GEN_GEN == 11
660 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
661 reg.HeaderlessMessageforPreemptableContexts = 1;
662 reg.HeaderlessMessageforPreemptableContextsMask = 1;
663 }
664 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
665
666 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
667 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
668 reg.EnabledTexelOffsetPrecisionFix = 1;
669 reg.EnabledTexelOffsetPrecisionFixMask = 1;
670 }
671 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
672
673 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
674 reg.StateCacheRedirectToCSSectionEnable = true;
675 reg.StateCacheRedirectToCSSectionEnableMask = true;
676 }
677 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
678
679 /* Hardware specification recommends disabling repacking for the
680 * compatibility with decompression mechanism in display controller.
681 */
682 if (devinfo->disable_ccs_repack) {
683 iris_pack_state(GENX(CACHE_MODE_0), &reg_val, reg) {
684 reg.DisableRepackingforCompression = true;
685 reg.DisableRepackingforCompressionMask = true;
686 }
687 iris_emit_lri(batch, CACHE_MODE_0, reg_val);
688 }
689
690 // XXX: 3D_MODE?
691 #endif
692
693 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
694 * changing it dynamically. We set it to the maximum size here, and
695 * instead include the render target dimensions in the viewport, so
696 * viewport extents clipping takes care of pruning stray geometry.
697 */
698 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
699 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
700 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
701 }
702
703 /* Set the initial MSAA sample positions. */
704 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
705 GEN_SAMPLE_POS_1X(pat._1xSample);
706 GEN_SAMPLE_POS_2X(pat._2xSample);
707 GEN_SAMPLE_POS_4X(pat._4xSample);
708 GEN_SAMPLE_POS_8X(pat._8xSample);
709 #if GEN_GEN >= 9
710 GEN_SAMPLE_POS_16X(pat._16xSample);
711 #endif
712 }
713
714 /* Use the legacy AA line coverage computation. */
715 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
716
717 /* Disable chromakeying (it's for media) */
718 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
719
720 /* We want regular rendering, not special HiZ operations. */
721 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
722
723 /* No polygon stippling offsets are necessary. */
724 /* TODO: may need to set an offset for origin-UL framebuffers */
725 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
726
727 /* Set a static partitioning of the push constant area. */
728 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
729 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
730 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
731 alloc._3DCommandSubOpcode = 18 + i;
732 alloc.ConstantBufferOffset = 6 * i;
733 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
734 }
735 }
736
737 #if GEN_GEN == 10
738 /* Gen11+ is enabled for us by the kernel. */
739 iris_enable_obj_preemption(batch, true);
740 #endif
741 }
742
743 static void
744 iris_init_compute_context(struct iris_screen *screen,
745 struct iris_batch *batch,
746 struct iris_vtable *vtbl,
747 struct pipe_debug_callback *dbg)
748 {
749 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
750
751 emit_pipeline_select(batch, GPGPU);
752
753 iris_emit_default_l3_config(batch, devinfo, true);
754
755 init_state_base_address(batch);
756
757 #if GEN_GEN == 9
758 if (devinfo->is_geminilake)
759 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
760 #endif
761 }
762
763 struct iris_vertex_buffer_state {
764 /** The VERTEX_BUFFER_STATE hardware structure. */
765 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
766
767 /** The resource to source vertex data from. */
768 struct pipe_resource *resource;
769 };
770
771 struct iris_depth_buffer_state {
772 /* Depth/HiZ/Stencil related hardware packets. */
773 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
774 GENX(3DSTATE_STENCIL_BUFFER_length) +
775 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
776 GENX(3DSTATE_CLEAR_PARAMS_length)];
777 };
778
779 /**
780 * Generation-specific context state (ice->state.genx->...).
781 *
782 * Most state can go in iris_context directly, but these encode hardware
783 * packets which vary by generation.
784 */
785 struct iris_genx_state {
786 struct iris_vertex_buffer_state vertex_buffers[33];
787 uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
788
789 struct iris_depth_buffer_state depth_buffer;
790
791 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
792
793 #if GEN_GEN == 9
794 /* Is object level preemption enabled? */
795 bool object_preemption;
796 #endif
797
798 struct {
799 #if GEN_GEN == 8
800 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
801 #endif
802 } shaders[MESA_SHADER_STAGES];
803 };
804
805 /**
806 * The pipe->set_blend_color() driver hook.
807 *
808 * This corresponds to our COLOR_CALC_STATE.
809 */
810 static void
811 iris_set_blend_color(struct pipe_context *ctx,
812 const struct pipe_blend_color *state)
813 {
814 struct iris_context *ice = (struct iris_context *) ctx;
815
816 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
817 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
818 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
819 }
820
821 /**
822 * Gallium CSO for blend state (see pipe_blend_state).
823 */
824 struct iris_blend_state {
825 /** Partial 3DSTATE_PS_BLEND */
826 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
827
828 /** Partial BLEND_STATE */
829 uint32_t blend_state[GENX(BLEND_STATE_length) +
830 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
831
832 bool alpha_to_coverage; /* for shader key */
833
834 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
835 uint8_t blend_enables;
836
837 /** Bitfield of whether color writes are enabled for RT[i] */
838 uint8_t color_write_enables;
839
840 /** Does RT[0] use dual color blending? */
841 bool dual_color_blending;
842 };
843
844 static enum pipe_blendfactor
845 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
846 {
847 if (alpha_to_one) {
848 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
849 return PIPE_BLENDFACTOR_ONE;
850
851 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
852 return PIPE_BLENDFACTOR_ZERO;
853 }
854
855 return f;
856 }
857
858 /**
859 * The pipe->create_blend_state() driver hook.
860 *
861 * Translates a pipe_blend_state into iris_blend_state.
862 */
863 static void *
864 iris_create_blend_state(struct pipe_context *ctx,
865 const struct pipe_blend_state *state)
866 {
867 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
868 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
869
870 cso->blend_enables = 0;
871 cso->color_write_enables = 0;
872 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
873
874 cso->alpha_to_coverage = state->alpha_to_coverage;
875
876 bool indep_alpha_blend = false;
877
878 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
879 const struct pipe_rt_blend_state *rt =
880 &state->rt[state->independent_blend_enable ? i : 0];
881
882 enum pipe_blendfactor src_rgb =
883 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
884 enum pipe_blendfactor src_alpha =
885 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
886 enum pipe_blendfactor dst_rgb =
887 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
888 enum pipe_blendfactor dst_alpha =
889 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
890
891 if (rt->rgb_func != rt->alpha_func ||
892 src_rgb != src_alpha || dst_rgb != dst_alpha)
893 indep_alpha_blend = true;
894
895 if (rt->blend_enable)
896 cso->blend_enables |= 1u << i;
897
898 if (rt->colormask)
899 cso->color_write_enables |= 1u << i;
900
901 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
902 be.LogicOpEnable = state->logicop_enable;
903 be.LogicOpFunction = state->logicop_func;
904
905 be.PreBlendSourceOnlyClampEnable = false;
906 be.ColorClampRange = COLORCLAMP_RTFORMAT;
907 be.PreBlendColorClampEnable = true;
908 be.PostBlendColorClampEnable = true;
909
910 be.ColorBufferBlendEnable = rt->blend_enable;
911
912 be.ColorBlendFunction = rt->rgb_func;
913 be.AlphaBlendFunction = rt->alpha_func;
914 be.SourceBlendFactor = src_rgb;
915 be.SourceAlphaBlendFactor = src_alpha;
916 be.DestinationBlendFactor = dst_rgb;
917 be.DestinationAlphaBlendFactor = dst_alpha;
918
919 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
920 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
921 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
922 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
923 }
924 blend_entry += GENX(BLEND_STATE_ENTRY_length);
925 }
926
927 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
928 /* pb.HasWriteableRT is filled in at draw time.
929 * pb.AlphaTestEnable is filled in at draw time.
930 *
931 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
932 * setting it when dual color blending without an appropriate shader.
933 */
934
935 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
936 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
937
938 pb.SourceBlendFactor =
939 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
940 pb.SourceAlphaBlendFactor =
941 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
942 pb.DestinationBlendFactor =
943 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
944 pb.DestinationAlphaBlendFactor =
945 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
946 }
947
948 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
949 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
950 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
951 bs.AlphaToOneEnable = state->alpha_to_one;
952 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
953 bs.ColorDitherEnable = state->dither;
954 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
955 }
956
957 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
958
959 return cso;
960 }
961
962 /**
963 * The pipe->bind_blend_state() driver hook.
964 *
965 * Bind a blending CSO and flag related dirty bits.
966 */
967 static void
968 iris_bind_blend_state(struct pipe_context *ctx, void *state)
969 {
970 struct iris_context *ice = (struct iris_context *) ctx;
971 struct iris_blend_state *cso = state;
972
973 ice->state.cso_blend = cso;
974 ice->state.blend_enables = cso ? cso->blend_enables : 0;
975
976 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
977 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
978 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
979 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
980 }
981
982 /**
983 * Return true if the FS writes to any color outputs which are not disabled
984 * via color masking.
985 */
986 static bool
987 has_writeable_rt(const struct iris_blend_state *cso_blend,
988 const struct shader_info *fs_info)
989 {
990 if (!fs_info)
991 return false;
992
993 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
994
995 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
996 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
997
998 return cso_blend->color_write_enables & rt_outputs;
999 }
1000
1001 /**
1002 * Gallium CSO for depth, stencil, and alpha testing state.
1003 */
1004 struct iris_depth_stencil_alpha_state {
1005 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1006 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1007
1008 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1009 struct pipe_alpha_state alpha;
1010
1011 /** Outbound to resolve and cache set tracking. */
1012 bool depth_writes_enabled;
1013 bool stencil_writes_enabled;
1014 };
1015
1016 /**
1017 * The pipe->create_depth_stencil_alpha_state() driver hook.
1018 *
1019 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1020 * testing state since we need pieces of it in a variety of places.
1021 */
1022 static void *
1023 iris_create_zsa_state(struct pipe_context *ctx,
1024 const struct pipe_depth_stencil_alpha_state *state)
1025 {
1026 struct iris_depth_stencil_alpha_state *cso =
1027 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1028
1029 bool two_sided_stencil = state->stencil[1].enabled;
1030
1031 cso->alpha = state->alpha;
1032 cso->depth_writes_enabled = state->depth.writemask;
1033 cso->stencil_writes_enabled =
1034 state->stencil[0].writemask != 0 ||
1035 (two_sided_stencil && state->stencil[1].writemask != 0);
1036
1037 /* The state tracker needs to optimize away EQUAL writes for us. */
1038 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1039
1040 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1041 wmds.StencilFailOp = state->stencil[0].fail_op;
1042 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1043 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1044 wmds.StencilTestFunction =
1045 translate_compare_func(state->stencil[0].func);
1046 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1047 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1048 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1049 wmds.BackfaceStencilTestFunction =
1050 translate_compare_func(state->stencil[1].func);
1051 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1052 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1053 wmds.StencilTestEnable = state->stencil[0].enabled;
1054 wmds.StencilBufferWriteEnable =
1055 state->stencil[0].writemask != 0 ||
1056 (two_sided_stencil && state->stencil[1].writemask != 0);
1057 wmds.DepthTestEnable = state->depth.enabled;
1058 wmds.DepthBufferWriteEnable = state->depth.writemask;
1059 wmds.StencilTestMask = state->stencil[0].valuemask;
1060 wmds.StencilWriteMask = state->stencil[0].writemask;
1061 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1062 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1063 /* wmds.[Backface]StencilReferenceValue are merged later */
1064 }
1065
1066 return cso;
1067 }
1068
1069 /**
1070 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1071 *
1072 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1073 */
1074 static void
1075 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1076 {
1077 struct iris_context *ice = (struct iris_context *) ctx;
1078 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1079 struct iris_depth_stencil_alpha_state *new_cso = state;
1080
1081 if (new_cso) {
1082 if (cso_changed(alpha.ref_value))
1083 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1084
1085 if (cso_changed(alpha.enabled))
1086 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1087
1088 if (cso_changed(alpha.func))
1089 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1090
1091 if (cso_changed(depth_writes_enabled))
1092 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1093
1094 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1095 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1096 }
1097
1098 ice->state.cso_zsa = new_cso;
1099 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1100 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1101 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1102 }
1103
1104 /**
1105 * Gallium CSO for rasterizer state.
1106 */
1107 struct iris_rasterizer_state {
1108 uint32_t sf[GENX(3DSTATE_SF_length)];
1109 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1110 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1111 uint32_t wm[GENX(3DSTATE_WM_length)];
1112 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1113
1114 uint8_t num_clip_plane_consts;
1115 bool clip_halfz; /* for CC_VIEWPORT */
1116 bool depth_clip_near; /* for CC_VIEWPORT */
1117 bool depth_clip_far; /* for CC_VIEWPORT */
1118 bool flatshade; /* for shader state */
1119 bool flatshade_first; /* for stream output */
1120 bool clamp_fragment_color; /* for shader state */
1121 bool light_twoside; /* for shader state */
1122 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1123 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1124 bool line_stipple_enable;
1125 bool poly_stipple_enable;
1126 bool multisample;
1127 bool force_persample_interp;
1128 bool conservative_rasterization;
1129 bool fill_mode_point_or_line;
1130 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1131 uint16_t sprite_coord_enable;
1132 };
1133
1134 static float
1135 get_line_width(const struct pipe_rasterizer_state *state)
1136 {
1137 float line_width = state->line_width;
1138
1139 /* From the OpenGL 4.4 spec:
1140 *
1141 * "The actual width of non-antialiased lines is determined by rounding
1142 * the supplied width to the nearest integer, then clamping it to the
1143 * implementation-dependent maximum non-antialiased line width."
1144 */
1145 if (!state->multisample && !state->line_smooth)
1146 line_width = roundf(state->line_width);
1147
1148 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1149 /* For 1 pixel line thickness or less, the general anti-aliasing
1150 * algorithm gives up, and a garbage line is generated. Setting a
1151 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1152 * (one-pixel-wide), non-antialiased lines.
1153 *
1154 * Lines rendered with zero Line Width are rasterized using the
1155 * "Grid Intersection Quantization" rules as specified by the
1156 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1157 */
1158 line_width = 0.0f;
1159 }
1160
1161 return line_width;
1162 }
1163
1164 /**
1165 * The pipe->create_rasterizer_state() driver hook.
1166 */
1167 static void *
1168 iris_create_rasterizer_state(struct pipe_context *ctx,
1169 const struct pipe_rasterizer_state *state)
1170 {
1171 struct iris_rasterizer_state *cso =
1172 malloc(sizeof(struct iris_rasterizer_state));
1173
1174 cso->multisample = state->multisample;
1175 cso->force_persample_interp = state->force_persample_interp;
1176 cso->clip_halfz = state->clip_halfz;
1177 cso->depth_clip_near = state->depth_clip_near;
1178 cso->depth_clip_far = state->depth_clip_far;
1179 cso->flatshade = state->flatshade;
1180 cso->flatshade_first = state->flatshade_first;
1181 cso->clamp_fragment_color = state->clamp_fragment_color;
1182 cso->light_twoside = state->light_twoside;
1183 cso->rasterizer_discard = state->rasterizer_discard;
1184 cso->half_pixel_center = state->half_pixel_center;
1185 cso->sprite_coord_mode = state->sprite_coord_mode;
1186 cso->sprite_coord_enable = state->sprite_coord_enable;
1187 cso->line_stipple_enable = state->line_stipple_enable;
1188 cso->poly_stipple_enable = state->poly_stipple_enable;
1189 cso->conservative_rasterization =
1190 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1191
1192 cso->fill_mode_point_or_line =
1193 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1194 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1195 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1196 state->fill_back == PIPE_POLYGON_MODE_POINT;
1197
1198 if (state->clip_plane_enable != 0)
1199 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1200 else
1201 cso->num_clip_plane_consts = 0;
1202
1203 float line_width = get_line_width(state);
1204
1205 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1206 sf.StatisticsEnable = true;
1207 sf.ViewportTransformEnable = true;
1208 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1209 sf.LineEndCapAntialiasingRegionWidth =
1210 state->line_smooth ? _10pixels : _05pixels;
1211 sf.LastPixelEnable = state->line_last_pixel;
1212 sf.LineWidth = line_width;
1213 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1214 !state->point_quad_rasterization;
1215 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1216 sf.PointWidth = state->point_size;
1217
1218 if (state->flatshade_first) {
1219 sf.TriangleFanProvokingVertexSelect = 1;
1220 } else {
1221 sf.TriangleStripListProvokingVertexSelect = 2;
1222 sf.TriangleFanProvokingVertexSelect = 2;
1223 sf.LineStripListProvokingVertexSelect = 1;
1224 }
1225 }
1226
1227 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1228 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1229 rr.CullMode = translate_cull_mode(state->cull_face);
1230 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1231 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1232 rr.DXMultisampleRasterizationEnable = state->multisample;
1233 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1234 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1235 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1236 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1237 rr.GlobalDepthOffsetScale = state->offset_scale;
1238 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1239 rr.SmoothPointEnable = state->point_smooth;
1240 rr.AntialiasingEnable = state->line_smooth;
1241 rr.ScissorRectangleEnable = state->scissor;
1242 #if GEN_GEN >= 9
1243 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1244 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1245 rr.ConservativeRasterizationEnable =
1246 cso->conservative_rasterization;
1247 #else
1248 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1249 #endif
1250 }
1251
1252 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1253 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1254 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1255 */
1256 cl.EarlyCullEnable = true;
1257 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1258 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1259 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1260 cl.GuardbandClipTestEnable = true;
1261 cl.ClipEnable = true;
1262 cl.MinimumPointWidth = 0.125;
1263 cl.MaximumPointWidth = 255.875;
1264
1265 if (state->flatshade_first) {
1266 cl.TriangleFanProvokingVertexSelect = 1;
1267 } else {
1268 cl.TriangleStripListProvokingVertexSelect = 2;
1269 cl.TriangleFanProvokingVertexSelect = 2;
1270 cl.LineStripListProvokingVertexSelect = 1;
1271 }
1272 }
1273
1274 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1275 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1276 * filled in at draw time from the FS program.
1277 */
1278 wm.LineAntialiasingRegionWidth = _10pixels;
1279 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1280 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1281 wm.LineStippleEnable = state->line_stipple_enable;
1282 wm.PolygonStippleEnable = state->poly_stipple_enable;
1283 }
1284
1285 /* Remap from 0..255 back to 1..256 */
1286 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1287
1288 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1289 line.LineStipplePattern = state->line_stipple_pattern;
1290 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1291 line.LineStippleRepeatCount = line_stipple_factor;
1292 }
1293
1294 return cso;
1295 }
1296
1297 /**
1298 * The pipe->bind_rasterizer_state() driver hook.
1299 *
1300 * Bind a rasterizer CSO and flag related dirty bits.
1301 */
1302 static void
1303 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1304 {
1305 struct iris_context *ice = (struct iris_context *) ctx;
1306 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1307 struct iris_rasterizer_state *new_cso = state;
1308
1309 if (new_cso) {
1310 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1311 if (cso_changed_memcmp(line_stipple))
1312 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1313
1314 if (cso_changed(half_pixel_center))
1315 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1316
1317 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1318 ice->state.dirty |= IRIS_DIRTY_WM;
1319
1320 if (cso_changed(rasterizer_discard))
1321 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1322
1323 if (cso_changed(flatshade_first))
1324 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1325
1326 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1327 cso_changed(clip_halfz))
1328 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1329
1330 if (cso_changed(sprite_coord_enable) ||
1331 cso_changed(sprite_coord_mode) ||
1332 cso_changed(light_twoside))
1333 ice->state.dirty |= IRIS_DIRTY_SBE;
1334
1335 if (cso_changed(conservative_rasterization))
1336 ice->state.dirty |= IRIS_DIRTY_FS;
1337 }
1338
1339 ice->state.cso_rast = new_cso;
1340 ice->state.dirty |= IRIS_DIRTY_RASTER;
1341 ice->state.dirty |= IRIS_DIRTY_CLIP;
1342 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1343 }
1344
1345 /**
1346 * Return true if the given wrap mode requires the border color to exist.
1347 *
1348 * (We can skip uploading it if the sampler isn't going to use it.)
1349 */
1350 static bool
1351 wrap_mode_needs_border_color(unsigned wrap_mode)
1352 {
1353 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1354 }
1355
1356 /**
1357 * Gallium CSO for sampler state.
1358 */
1359 struct iris_sampler_state {
1360 union pipe_color_union border_color;
1361 bool needs_border_color;
1362
1363 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1364 };
1365
1366 /**
1367 * The pipe->create_sampler_state() driver hook.
1368 *
1369 * We fill out SAMPLER_STATE (except for the border color pointer), and
1370 * store that on the CPU. It doesn't make sense to upload it to a GPU
1371 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1372 * all bound sampler states to be in contiguous memor.
1373 */
1374 static void *
1375 iris_create_sampler_state(struct pipe_context *ctx,
1376 const struct pipe_sampler_state *state)
1377 {
1378 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1379
1380 if (!cso)
1381 return NULL;
1382
1383 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1384 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1385
1386 unsigned wrap_s = translate_wrap(state->wrap_s);
1387 unsigned wrap_t = translate_wrap(state->wrap_t);
1388 unsigned wrap_r = translate_wrap(state->wrap_r);
1389
1390 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1391
1392 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1393 wrap_mode_needs_border_color(wrap_t) ||
1394 wrap_mode_needs_border_color(wrap_r);
1395
1396 float min_lod = state->min_lod;
1397 unsigned mag_img_filter = state->mag_img_filter;
1398
1399 // XXX: explain this code ported from ilo...I don't get it at all...
1400 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1401 state->min_lod > 0.0f) {
1402 min_lod = 0.0f;
1403 mag_img_filter = state->min_img_filter;
1404 }
1405
1406 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1407 samp.TCXAddressControlMode = wrap_s;
1408 samp.TCYAddressControlMode = wrap_t;
1409 samp.TCZAddressControlMode = wrap_r;
1410 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1411 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1412 samp.MinModeFilter = state->min_img_filter;
1413 samp.MagModeFilter = mag_img_filter;
1414 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1415 samp.MaximumAnisotropy = RATIO21;
1416
1417 if (state->max_anisotropy >= 2) {
1418 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1419 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1420 samp.AnisotropicAlgorithm = EWAApproximation;
1421 }
1422
1423 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1424 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1425
1426 samp.MaximumAnisotropy =
1427 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1428 }
1429
1430 /* Set address rounding bits if not using nearest filtering. */
1431 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1432 samp.UAddressMinFilterRoundingEnable = true;
1433 samp.VAddressMinFilterRoundingEnable = true;
1434 samp.RAddressMinFilterRoundingEnable = true;
1435 }
1436
1437 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1438 samp.UAddressMagFilterRoundingEnable = true;
1439 samp.VAddressMagFilterRoundingEnable = true;
1440 samp.RAddressMagFilterRoundingEnable = true;
1441 }
1442
1443 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1444 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1445
1446 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1447
1448 samp.LODPreClampMode = CLAMP_MODE_OGL;
1449 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1450 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1451 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1452
1453 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1454 }
1455
1456 return cso;
1457 }
1458
1459 /**
1460 * The pipe->bind_sampler_states() driver hook.
1461 */
1462 static void
1463 iris_bind_sampler_states(struct pipe_context *ctx,
1464 enum pipe_shader_type p_stage,
1465 unsigned start, unsigned count,
1466 void **states)
1467 {
1468 struct iris_context *ice = (struct iris_context *) ctx;
1469 gl_shader_stage stage = stage_from_pipe(p_stage);
1470 struct iris_shader_state *shs = &ice->state.shaders[stage];
1471
1472 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1473
1474 for (int i = 0; i < count; i++) {
1475 shs->samplers[start + i] = states[i];
1476 }
1477
1478 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1479 }
1480
1481 /**
1482 * Upload the sampler states into a contiguous area of GPU memory, for
1483 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1484 *
1485 * Also fill out the border color state pointers.
1486 */
1487 static void
1488 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1489 {
1490 struct iris_shader_state *shs = &ice->state.shaders[stage];
1491 const struct shader_info *info = iris_get_shader_info(ice, stage);
1492
1493 /* We assume the state tracker will call pipe->bind_sampler_states()
1494 * if the program's number of textures changes.
1495 */
1496 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1497
1498 if (!count)
1499 return;
1500
1501 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1502 * in the dynamic state memory zone, so we can point to it via the
1503 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1504 */
1505 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
1506 uint32_t *map =
1507 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
1508 if (unlikely(!map))
1509 return;
1510
1511 struct pipe_resource *res = shs->sampler_table.res;
1512 shs->sampler_table.offset +=
1513 iris_bo_offset_from_base_address(iris_resource_bo(res));
1514
1515 iris_record_state_size(ice->state.sizes, shs->sampler_table.offset, size);
1516
1517 /* Make sure all land in the same BO */
1518 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1519
1520 ice->state.need_border_colors &= ~(1 << stage);
1521
1522 for (int i = 0; i < count; i++) {
1523 struct iris_sampler_state *state = shs->samplers[i];
1524 struct iris_sampler_view *tex = shs->textures[i];
1525
1526 if (!state) {
1527 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1528 } else if (!state->needs_border_color) {
1529 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1530 } else {
1531 ice->state.need_border_colors |= 1 << stage;
1532
1533 /* We may need to swizzle the border color for format faking.
1534 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
1535 * This means we need to move the border color's A channel into
1536 * the R or G channels so that those read swizzles will move it
1537 * back into A.
1538 */
1539 union pipe_color_union *color = &state->border_color;
1540 union pipe_color_union tmp;
1541 if (tex) {
1542 enum pipe_format internal_format = tex->res->internal_format;
1543
1544 if (util_format_is_alpha(internal_format)) {
1545 unsigned char swz[4] = {
1546 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
1547 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1548 };
1549 util_format_apply_color_swizzle(&tmp, color, swz, true);
1550 color = &tmp;
1551 } else if (util_format_is_luminance_alpha(internal_format) &&
1552 internal_format != PIPE_FORMAT_L8A8_SRGB) {
1553 unsigned char swz[4] = {
1554 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
1555 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1556 };
1557 util_format_apply_color_swizzle(&tmp, color, swz, true);
1558 color = &tmp;
1559 }
1560 }
1561
1562 /* Stream out the border color and merge the pointer. */
1563 uint32_t offset = iris_upload_border_color(ice, color);
1564
1565 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1566 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1567 dyns.BorderColorPointer = offset;
1568 }
1569
1570 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1571 map[j] = state->sampler_state[j] | dynamic[j];
1572 }
1573
1574 map += GENX(SAMPLER_STATE_length);
1575 }
1576 }
1577
1578 static enum isl_channel_select
1579 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1580 {
1581 switch (swz) {
1582 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1583 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1584 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1585 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1586 case PIPE_SWIZZLE_1: return SCS_ONE;
1587 case PIPE_SWIZZLE_0: return SCS_ZERO;
1588 default: unreachable("invalid swizzle");
1589 }
1590 }
1591
1592 static void
1593 fill_buffer_surface_state(struct isl_device *isl_dev,
1594 struct iris_resource *res,
1595 void *map,
1596 enum isl_format format,
1597 struct isl_swizzle swizzle,
1598 unsigned offset,
1599 unsigned size)
1600 {
1601 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1602 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1603
1604 /* The ARB_texture_buffer_specification says:
1605 *
1606 * "The number of texels in the buffer texture's texel array is given by
1607 *
1608 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1609 *
1610 * where <buffer_size> is the size of the buffer object, in basic
1611 * machine units and <components> and <base_type> are the element count
1612 * and base data type for elements, as specified in Table X.1. The
1613 * number of texels in the texel array is then clamped to the
1614 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1615 *
1616 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1617 * so that when ISL divides by stride to obtain the number of texels, that
1618 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1619 */
1620 unsigned final_size =
1621 MIN3(size, res->bo->size - res->offset - offset,
1622 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1623
1624 isl_buffer_fill_state(isl_dev, map,
1625 .address = res->bo->gtt_offset + res->offset + offset,
1626 .size_B = final_size,
1627 .format = format,
1628 .swizzle = swizzle,
1629 .stride_B = cpp,
1630 .mocs = mocs(res->bo));
1631 }
1632
1633 #define SURFACE_STATE_ALIGNMENT 64
1634
1635 /**
1636 * Allocate several contiguous SURFACE_STATE structures, one for each
1637 * supported auxiliary surface mode.
1638 */
1639 static void *
1640 alloc_surface_states(struct u_upload_mgr *mgr,
1641 struct iris_state_ref *ref,
1642 unsigned aux_usages)
1643 {
1644 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1645
1646 /* If this changes, update this to explicitly align pointers */
1647 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1648
1649 assert(aux_usages != 0);
1650
1651 void *map =
1652 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1653 SURFACE_STATE_ALIGNMENT);
1654
1655 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1656
1657 return map;
1658 }
1659
1660 static void
1661 fill_surface_state(struct isl_device *isl_dev,
1662 void *map,
1663 struct iris_resource *res,
1664 struct isl_view *view,
1665 unsigned aux_usage)
1666 {
1667 struct isl_surf_fill_state_info f = {
1668 .surf = &res->surf,
1669 .view = view,
1670 .mocs = mocs(res->bo),
1671 .address = res->bo->gtt_offset + res->offset,
1672 };
1673
1674 if (aux_usage != ISL_AUX_USAGE_NONE) {
1675 f.aux_surf = &res->aux.surf;
1676 f.aux_usage = aux_usage;
1677 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1678
1679 struct iris_bo *clear_bo = NULL;
1680 uint64_t clear_offset = 0;
1681 f.clear_color =
1682 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
1683 if (clear_bo) {
1684 f.clear_address = clear_bo->gtt_offset + clear_offset;
1685 f.use_clear_address = isl_dev->info->gen > 9;
1686 }
1687 }
1688
1689 isl_surf_fill_state_s(isl_dev, map, &f);
1690 }
1691
1692 /**
1693 * The pipe->create_sampler_view() driver hook.
1694 */
1695 static struct pipe_sampler_view *
1696 iris_create_sampler_view(struct pipe_context *ctx,
1697 struct pipe_resource *tex,
1698 const struct pipe_sampler_view *tmpl)
1699 {
1700 struct iris_context *ice = (struct iris_context *) ctx;
1701 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1702 const struct gen_device_info *devinfo = &screen->devinfo;
1703 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1704
1705 if (!isv)
1706 return NULL;
1707
1708 /* initialize base object */
1709 isv->base = *tmpl;
1710 isv->base.context = ctx;
1711 isv->base.texture = NULL;
1712 pipe_reference_init(&isv->base.reference, 1);
1713 pipe_resource_reference(&isv->base.texture, tex);
1714
1715 if (util_format_is_depth_or_stencil(tmpl->format)) {
1716 struct iris_resource *zres, *sres;
1717 const struct util_format_description *desc =
1718 util_format_description(tmpl->format);
1719
1720 iris_get_depth_stencil_resources(tex, &zres, &sres);
1721
1722 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1723 }
1724
1725 isv->res = (struct iris_resource *) tex;
1726
1727 void *map = alloc_surface_states(ice->state.surface_uploader,
1728 &isv->surface_state,
1729 isv->res->aux.sampler_usages);
1730 if (!unlikely(map))
1731 return NULL;
1732
1733 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1734
1735 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1736 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1737 usage |= ISL_SURF_USAGE_CUBE_BIT;
1738
1739 const struct iris_format_info fmt =
1740 iris_format_for_usage(devinfo, tmpl->format, usage);
1741
1742 isv->clear_color = isv->res->aux.clear_color;
1743
1744 isv->view = (struct isl_view) {
1745 .format = fmt.fmt,
1746 .swizzle = (struct isl_swizzle) {
1747 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1748 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1749 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1750 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1751 },
1752 .usage = usage,
1753 };
1754
1755 /* Fill out SURFACE_STATE for this view. */
1756 if (tmpl->target != PIPE_BUFFER) {
1757 isv->view.base_level = tmpl->u.tex.first_level;
1758 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1759 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1760 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1761 isv->view.array_len =
1762 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1763
1764 unsigned aux_modes = isv->res->aux.sampler_usages;
1765 while (aux_modes) {
1766 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1767
1768 /* If we have a multisampled depth buffer, do not create a sampler
1769 * surface state with HiZ.
1770 */
1771 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view,
1772 aux_usage);
1773
1774 map += SURFACE_STATE_ALIGNMENT;
1775 }
1776 } else {
1777 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
1778 isv->view.format, isv->view.swizzle,
1779 tmpl->u.buf.offset, tmpl->u.buf.size);
1780 }
1781
1782 return &isv->base;
1783 }
1784
1785 static void
1786 iris_sampler_view_destroy(struct pipe_context *ctx,
1787 struct pipe_sampler_view *state)
1788 {
1789 struct iris_sampler_view *isv = (void *) state;
1790 pipe_resource_reference(&state->texture, NULL);
1791 pipe_resource_reference(&isv->surface_state.res, NULL);
1792 free(isv);
1793 }
1794
1795 /**
1796 * The pipe->create_surface() driver hook.
1797 *
1798 * In Gallium nomenclature, "surfaces" are a view of a resource that
1799 * can be bound as a render target or depth/stencil buffer.
1800 */
1801 static struct pipe_surface *
1802 iris_create_surface(struct pipe_context *ctx,
1803 struct pipe_resource *tex,
1804 const struct pipe_surface *tmpl)
1805 {
1806 struct iris_context *ice = (struct iris_context *) ctx;
1807 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1808 const struct gen_device_info *devinfo = &screen->devinfo;
1809
1810 isl_surf_usage_flags_t usage = 0;
1811 if (tmpl->writable)
1812 usage = ISL_SURF_USAGE_STORAGE_BIT;
1813 else if (util_format_is_depth_or_stencil(tmpl->format))
1814 usage = ISL_SURF_USAGE_DEPTH_BIT;
1815 else
1816 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1817
1818 const struct iris_format_info fmt =
1819 iris_format_for_usage(devinfo, tmpl->format, usage);
1820
1821 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1822 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1823 /* Framebuffer validation will reject this invalid case, but it
1824 * hasn't had the opportunity yet. In the meantime, we need to
1825 * avoid hitting ISL asserts about unsupported formats below.
1826 */
1827 return NULL;
1828 }
1829
1830 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1831 struct pipe_surface *psurf = &surf->base;
1832 struct iris_resource *res = (struct iris_resource *) tex;
1833
1834 if (!surf)
1835 return NULL;
1836
1837 pipe_reference_init(&psurf->reference, 1);
1838 pipe_resource_reference(&psurf->texture, tex);
1839 psurf->context = ctx;
1840 psurf->format = tmpl->format;
1841 psurf->width = tex->width0;
1842 psurf->height = tex->height0;
1843 psurf->texture = tex;
1844 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1845 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1846 psurf->u.tex.level = tmpl->u.tex.level;
1847
1848 struct isl_view *view = &surf->view;
1849 *view = (struct isl_view) {
1850 .format = fmt.fmt,
1851 .base_level = tmpl->u.tex.level,
1852 .levels = 1,
1853 .base_array_layer = tmpl->u.tex.first_layer,
1854 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1855 .swizzle = ISL_SWIZZLE_IDENTITY,
1856 .usage = usage,
1857 };
1858
1859 surf->clear_color = res->aux.clear_color;
1860
1861 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1862 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1863 ISL_SURF_USAGE_STENCIL_BIT))
1864 return psurf;
1865
1866
1867 void *map = alloc_surface_states(ice->state.surface_uploader,
1868 &surf->surface_state,
1869 res->aux.possible_usages);
1870 if (!unlikely(map))
1871 return NULL;
1872
1873 if (!isl_format_is_compressed(res->surf.format)) {
1874 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
1875 * auxiliary surface mode and return the pipe_surface.
1876 */
1877 unsigned aux_modes = res->aux.possible_usages;
1878 while (aux_modes) {
1879 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1880
1881 fill_surface_state(&screen->isl_dev, map, res, view, aux_usage);
1882
1883 map += SURFACE_STATE_ALIGNMENT;
1884 }
1885
1886 return psurf;
1887 }
1888
1889 /* The resource has a compressed format, which is not renderable, but we
1890 * have a renderable view format. We must be attempting to upload blocks
1891 * of compressed data via an uncompressed view.
1892 *
1893 * In this case, we can assume there are no auxiliary buffers, a single
1894 * miplevel, and that the resource is single-sampled. Gallium may try
1895 * and create an uncompressed view with multiple layers, however.
1896 */
1897 assert(!isl_format_is_compressed(fmt.fmt));
1898 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
1899 assert(res->surf.samples == 1);
1900 assert(view->levels == 1);
1901
1902 struct isl_surf isl_surf;
1903 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
1904
1905 if (view->base_level > 0) {
1906 /* We can't rely on the hardware's miplevel selection with such
1907 * a substantial lie about the format, so we select a single image
1908 * using the Tile X/Y Offset fields. In this case, we can't handle
1909 * multiple array slices.
1910 *
1911 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
1912 * hard-coded to align to exactly the block size of the compressed
1913 * texture. This means that, when reinterpreted as a non-compressed
1914 * texture, the tile offsets may be anything and we can't rely on
1915 * X/Y Offset.
1916 *
1917 * Return NULL to force the state tracker to take fallback paths.
1918 */
1919 if (view->array_len > 1 || GEN_GEN == 8)
1920 return NULL;
1921
1922 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
1923 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
1924 view->base_level,
1925 is_3d ? 0 : view->base_array_layer,
1926 is_3d ? view->base_array_layer : 0,
1927 &isl_surf,
1928 &offset_B, &tile_x_sa, &tile_y_sa);
1929
1930 /* We use address and tile offsets to access a single level/layer
1931 * as a subimage, so reset level/layer so it doesn't offset again.
1932 */
1933 view->base_array_layer = 0;
1934 view->base_level = 0;
1935 } else {
1936 /* Level 0 doesn't require tile offsets, and the hardware can find
1937 * array slices using QPitch even with the format override, so we
1938 * can allow layers in this case. Copy the original ISL surface.
1939 */
1940 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
1941 }
1942
1943 /* Scale down the image dimensions by the block size. */
1944 const struct isl_format_layout *fmtl =
1945 isl_format_get_layout(res->surf.format);
1946 isl_surf.format = fmt.fmt;
1947 isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
1948 isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
1949 tile_x_sa /= fmtl->bw;
1950 tile_y_sa /= fmtl->bh;
1951
1952 psurf->width = isl_surf.logical_level0_px.width;
1953 psurf->height = isl_surf.logical_level0_px.height;
1954
1955 struct isl_surf_fill_state_info f = {
1956 .surf = &isl_surf,
1957 .view = view,
1958 .mocs = mocs(res->bo),
1959 .address = res->bo->gtt_offset + offset_B,
1960 .x_offset_sa = tile_x_sa,
1961 .y_offset_sa = tile_y_sa,
1962 };
1963
1964 isl_surf_fill_state_s(&screen->isl_dev, map, &f);
1965 return psurf;
1966 }
1967
1968 #if GEN_GEN < 9
1969 static void
1970 fill_default_image_param(struct brw_image_param *param)
1971 {
1972 memset(param, 0, sizeof(*param));
1973 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
1974 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
1975 * detailed explanation of these parameters.
1976 */
1977 param->swizzling[0] = 0xff;
1978 param->swizzling[1] = 0xff;
1979 }
1980
1981 static void
1982 fill_buffer_image_param(struct brw_image_param *param,
1983 enum pipe_format pfmt,
1984 unsigned size)
1985 {
1986 const unsigned cpp = util_format_get_blocksize(pfmt);
1987
1988 fill_default_image_param(param);
1989 param->size[0] = size / cpp;
1990 param->stride[0] = cpp;
1991 }
1992 #else
1993 #define isl_surf_fill_image_param(x, ...)
1994 #define fill_default_image_param(x, ...)
1995 #define fill_buffer_image_param(x, ...)
1996 #endif
1997
1998 /**
1999 * The pipe->set_shader_images() driver hook.
2000 */
2001 static void
2002 iris_set_shader_images(struct pipe_context *ctx,
2003 enum pipe_shader_type p_stage,
2004 unsigned start_slot, unsigned count,
2005 const struct pipe_image_view *p_images)
2006 {
2007 struct iris_context *ice = (struct iris_context *) ctx;
2008 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2009 const struct gen_device_info *devinfo = &screen->devinfo;
2010 gl_shader_stage stage = stage_from_pipe(p_stage);
2011 struct iris_shader_state *shs = &ice->state.shaders[stage];
2012 #if GEN_GEN == 8
2013 struct iris_genx_state *genx = ice->state.genx;
2014 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2015 #endif
2016
2017 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2018
2019 for (unsigned i = 0; i < count; i++) {
2020 struct iris_image_view *iv = &shs->image[start_slot + i];
2021
2022 if (p_images && p_images[i].resource) {
2023 const struct pipe_image_view *img = &p_images[i];
2024 struct iris_resource *res = (void *) img->resource;
2025
2026 void *map =
2027 alloc_surface_states(ice->state.surface_uploader,
2028 &iv->surface_state, 1 << ISL_AUX_USAGE_NONE);
2029 if (!unlikely(map))
2030 return;
2031
2032 util_copy_image_view(&iv->base, img);
2033
2034 shs->bound_image_views |= 1 << (start_slot + i);
2035
2036 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2037
2038 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
2039 enum isl_format isl_fmt =
2040 iris_format_for_usage(devinfo, img->format, usage).fmt;
2041
2042 bool untyped_fallback = false;
2043
2044 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
2045 /* On Gen8, try to use typed surfaces reads (which support a
2046 * limited number of formats), and if not possible, fall back
2047 * to untyped reads.
2048 */
2049 untyped_fallback = GEN_GEN == 8 &&
2050 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
2051
2052 if (untyped_fallback)
2053 isl_fmt = ISL_FORMAT_RAW;
2054 else
2055 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
2056 }
2057
2058 if (res->base.target != PIPE_BUFFER) {
2059 struct isl_view view = {
2060 .format = isl_fmt,
2061 .base_level = img->u.tex.level,
2062 .levels = 1,
2063 .base_array_layer = img->u.tex.first_layer,
2064 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2065 .swizzle = ISL_SWIZZLE_IDENTITY,
2066 .usage = usage,
2067 };
2068
2069 if (untyped_fallback) {
2070 fill_buffer_surface_state(&screen->isl_dev, res, map,
2071 isl_fmt, ISL_SWIZZLE_IDENTITY,
2072 0, res->bo->size);
2073 } else {
2074 /* Images don't support compression */
2075 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
2076 while (aux_modes) {
2077 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2078
2079 fill_surface_state(&screen->isl_dev, map, res, &view, usage);
2080
2081 map += SURFACE_STATE_ALIGNMENT;
2082 }
2083 }
2084
2085 isl_surf_fill_image_param(&screen->isl_dev,
2086 &image_params[start_slot + i],
2087 &res->surf, &view);
2088 } else {
2089 util_range_add(&res->valid_buffer_range, img->u.buf.offset,
2090 img->u.buf.offset + img->u.buf.size);
2091
2092 fill_buffer_surface_state(&screen->isl_dev, res, map,
2093 isl_fmt, ISL_SWIZZLE_IDENTITY,
2094 img->u.buf.offset, img->u.buf.size);
2095 fill_buffer_image_param(&image_params[start_slot + i],
2096 img->format, img->u.buf.size);
2097 }
2098 } else {
2099 pipe_resource_reference(&iv->base.resource, NULL);
2100 pipe_resource_reference(&iv->surface_state.res, NULL);
2101 fill_default_image_param(&image_params[start_slot + i]);
2102 }
2103 }
2104
2105 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2106 ice->state.dirty |=
2107 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2108 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2109
2110 /* Broadwell also needs brw_image_params re-uploaded */
2111 if (GEN_GEN < 9) {
2112 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2113 shs->sysvals_need_upload = true;
2114 }
2115 }
2116
2117
2118 /**
2119 * The pipe->set_sampler_views() driver hook.
2120 */
2121 static void
2122 iris_set_sampler_views(struct pipe_context *ctx,
2123 enum pipe_shader_type p_stage,
2124 unsigned start, unsigned count,
2125 struct pipe_sampler_view **views)
2126 {
2127 struct iris_context *ice = (struct iris_context *) ctx;
2128 gl_shader_stage stage = stage_from_pipe(p_stage);
2129 struct iris_shader_state *shs = &ice->state.shaders[stage];
2130
2131 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2132
2133 for (unsigned i = 0; i < count; i++) {
2134 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2135 pipe_sampler_view_reference((struct pipe_sampler_view **)
2136 &shs->textures[start + i], pview);
2137 struct iris_sampler_view *view = (void *) pview;
2138 if (view) {
2139 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2140 shs->bound_sampler_views |= 1 << (start + i);
2141 }
2142 }
2143
2144 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2145 ice->state.dirty |=
2146 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2147 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2148 }
2149
2150 /**
2151 * The pipe->set_tess_state() driver hook.
2152 */
2153 static void
2154 iris_set_tess_state(struct pipe_context *ctx,
2155 const float default_outer_level[4],
2156 const float default_inner_level[2])
2157 {
2158 struct iris_context *ice = (struct iris_context *) ctx;
2159 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2160
2161 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2162 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2163
2164 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2165 shs->sysvals_need_upload = true;
2166 }
2167
2168 static void
2169 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2170 {
2171 struct iris_surface *surf = (void *) p_surf;
2172 pipe_resource_reference(&p_surf->texture, NULL);
2173 pipe_resource_reference(&surf->surface_state.res, NULL);
2174 free(surf);
2175 }
2176
2177 static void
2178 iris_set_clip_state(struct pipe_context *ctx,
2179 const struct pipe_clip_state *state)
2180 {
2181 struct iris_context *ice = (struct iris_context *) ctx;
2182 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2183 struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
2184 struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
2185
2186 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2187
2188 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS | IRIS_DIRTY_CONSTANTS_GS |
2189 IRIS_DIRTY_CONSTANTS_TES;
2190 shs->sysvals_need_upload = true;
2191 gshs->sysvals_need_upload = true;
2192 tshs->sysvals_need_upload = true;
2193 }
2194
2195 /**
2196 * The pipe->set_polygon_stipple() driver hook.
2197 */
2198 static void
2199 iris_set_polygon_stipple(struct pipe_context *ctx,
2200 const struct pipe_poly_stipple *state)
2201 {
2202 struct iris_context *ice = (struct iris_context *) ctx;
2203 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2204 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2205 }
2206
2207 /**
2208 * The pipe->set_sample_mask() driver hook.
2209 */
2210 static void
2211 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2212 {
2213 struct iris_context *ice = (struct iris_context *) ctx;
2214
2215 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2216 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2217 */
2218 ice->state.sample_mask = sample_mask & 0xffff;
2219 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2220 }
2221
2222 /**
2223 * The pipe->set_scissor_states() driver hook.
2224 *
2225 * This corresponds to our SCISSOR_RECT state structures. It's an
2226 * exact match, so we just store them, and memcpy them out later.
2227 */
2228 static void
2229 iris_set_scissor_states(struct pipe_context *ctx,
2230 unsigned start_slot,
2231 unsigned num_scissors,
2232 const struct pipe_scissor_state *rects)
2233 {
2234 struct iris_context *ice = (struct iris_context *) ctx;
2235
2236 for (unsigned i = 0; i < num_scissors; i++) {
2237 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2238 /* If the scissor was out of bounds and got clamped to 0 width/height
2239 * at the bounds, the subtraction of 1 from maximums could produce a
2240 * negative number and thus not clip anything. Instead, just provide
2241 * a min > max scissor inside the bounds, which produces the expected
2242 * no rendering.
2243 */
2244 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2245 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2246 };
2247 } else {
2248 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2249 .minx = rects[i].minx, .miny = rects[i].miny,
2250 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2251 };
2252 }
2253 }
2254
2255 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2256 }
2257
2258 /**
2259 * The pipe->set_stencil_ref() driver hook.
2260 *
2261 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2262 */
2263 static void
2264 iris_set_stencil_ref(struct pipe_context *ctx,
2265 const struct pipe_stencil_ref *state)
2266 {
2267 struct iris_context *ice = (struct iris_context *) ctx;
2268 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2269 if (GEN_GEN == 8)
2270 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2271 else
2272 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2273 }
2274
2275 static float
2276 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2277 {
2278 return copysignf(state->scale[axis], sign) + state->translate[axis];
2279 }
2280
2281 /**
2282 * The pipe->set_viewport_states() driver hook.
2283 *
2284 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2285 * the guardband yet, as we need the framebuffer dimensions, but we can
2286 * at least fill out the rest.
2287 */
2288 static void
2289 iris_set_viewport_states(struct pipe_context *ctx,
2290 unsigned start_slot,
2291 unsigned count,
2292 const struct pipe_viewport_state *states)
2293 {
2294 struct iris_context *ice = (struct iris_context *) ctx;
2295
2296 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2297
2298 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2299
2300 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2301 !ice->state.cso_rast->depth_clip_far))
2302 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2303 }
2304
2305 /**
2306 * The pipe->set_framebuffer_state() driver hook.
2307 *
2308 * Sets the current draw FBO, including color render targets, depth,
2309 * and stencil buffers.
2310 */
2311 static void
2312 iris_set_framebuffer_state(struct pipe_context *ctx,
2313 const struct pipe_framebuffer_state *state)
2314 {
2315 struct iris_context *ice = (struct iris_context *) ctx;
2316 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2317 struct isl_device *isl_dev = &screen->isl_dev;
2318 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2319 struct iris_resource *zres;
2320 struct iris_resource *stencil_res;
2321
2322 unsigned samples = util_framebuffer_get_num_samples(state);
2323 unsigned layers = util_framebuffer_get_num_layers(state);
2324
2325 if (cso->samples != samples) {
2326 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2327
2328 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
2329 if (GEN_GEN >= 9 && (cso->samples == 16 || samples == 16))
2330 ice->state.dirty |= IRIS_DIRTY_FS;
2331 }
2332
2333 if (cso->nr_cbufs != state->nr_cbufs) {
2334 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2335 }
2336
2337 if ((cso->layers == 0) != (layers == 0)) {
2338 ice->state.dirty |= IRIS_DIRTY_CLIP;
2339 }
2340
2341 if (cso->width != state->width || cso->height != state->height) {
2342 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2343 }
2344
2345 if (cso->zsbuf || state->zsbuf) {
2346 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2347 }
2348
2349 util_copy_framebuffer_state(cso, state);
2350 cso->samples = samples;
2351 cso->layers = layers;
2352
2353 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2354
2355 struct isl_view view = {
2356 .base_level = 0,
2357 .levels = 1,
2358 .base_array_layer = 0,
2359 .array_len = 1,
2360 .swizzle = ISL_SWIZZLE_IDENTITY,
2361 };
2362
2363 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2364
2365 if (cso->zsbuf) {
2366 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2367 &stencil_res);
2368
2369 view.base_level = cso->zsbuf->u.tex.level;
2370 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2371 view.array_len =
2372 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2373
2374 if (zres) {
2375 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2376
2377 info.depth_surf = &zres->surf;
2378 info.depth_address = zres->bo->gtt_offset + zres->offset;
2379 info.mocs = mocs(zres->bo);
2380
2381 view.format = zres->surf.format;
2382
2383 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2384 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2385 info.hiz_surf = &zres->aux.surf;
2386 info.hiz_address = zres->aux.bo->gtt_offset;
2387 }
2388 }
2389
2390 if (stencil_res) {
2391 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2392 info.stencil_surf = &stencil_res->surf;
2393 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
2394 if (!zres) {
2395 view.format = stencil_res->surf.format;
2396 info.mocs = mocs(stencil_res->bo);
2397 }
2398 }
2399 }
2400
2401 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2402
2403 /* Make a null surface for unbound buffers */
2404 void *null_surf_map =
2405 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2406 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2407 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2408 isl_extent3d(MAX2(cso->width, 1),
2409 MAX2(cso->height, 1),
2410 cso->layers ? cso->layers : 1));
2411 ice->state.null_fb.offset +=
2412 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2413
2414 /* Render target change */
2415 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2416
2417 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2418
2419 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2420
2421 #if GEN_GEN == 11
2422 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2423 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2424
2425 /* The PIPE_CONTROL command description says:
2426 *
2427 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2428 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2429 * Target Cache Flush by enabling this bit. When render target flush
2430 * is set due to new association of BTI, PS Scoreboard Stall bit must
2431 * be set in this packet."
2432 */
2433 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2434 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2435 "workaround: RT BTI change [draw]",
2436 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2437 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2438 #endif
2439 }
2440
2441 /**
2442 * The pipe->set_constant_buffer() driver hook.
2443 *
2444 * This uploads any constant data in user buffers, and references
2445 * any UBO resources containing constant data.
2446 */
2447 static void
2448 iris_set_constant_buffer(struct pipe_context *ctx,
2449 enum pipe_shader_type p_stage, unsigned index,
2450 const struct pipe_constant_buffer *input)
2451 {
2452 struct iris_context *ice = (struct iris_context *) ctx;
2453 gl_shader_stage stage = stage_from_pipe(p_stage);
2454 struct iris_shader_state *shs = &ice->state.shaders[stage];
2455 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
2456
2457 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
2458 shs->bound_cbufs |= 1u << index;
2459
2460 if (input->user_buffer) {
2461 void *map = NULL;
2462 pipe_resource_reference(&cbuf->buffer, NULL);
2463 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
2464 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2465
2466 if (!cbuf->buffer) {
2467 /* Allocation was unsuccessful - just unbind */
2468 iris_set_constant_buffer(ctx, p_stage, index, NULL);
2469 return;
2470 }
2471
2472 assert(map);
2473 memcpy(map, input->user_buffer, input->buffer_size);
2474 } else if (input->buffer) {
2475 pipe_resource_reference(&cbuf->buffer, input->buffer);
2476
2477 cbuf->buffer_offset = input->buffer_offset;
2478 cbuf->buffer_size =
2479 MIN2(input->buffer_size,
2480 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
2481 }
2482
2483 struct iris_resource *res = (void *) cbuf->buffer;
2484 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2485
2486 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2487 &shs->constbuf_surf_state[index],
2488 false);
2489 } else {
2490 shs->bound_cbufs &= ~(1u << index);
2491 pipe_resource_reference(&cbuf->buffer, NULL);
2492 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
2493 }
2494
2495 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2496 // XXX: maybe not necessary all the time...?
2497 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2498 // XXX: pull model we may need actual new bindings...
2499 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2500 }
2501
2502 static void
2503 upload_sysvals(struct iris_context *ice,
2504 gl_shader_stage stage)
2505 {
2506 UNUSED struct iris_genx_state *genx = ice->state.genx;
2507 struct iris_shader_state *shs = &ice->state.shaders[stage];
2508
2509 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2510 if (!shader || shader->num_system_values == 0)
2511 return;
2512
2513 assert(shader->num_cbufs > 0);
2514
2515 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
2516 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
2517 unsigned upload_size = shader->num_system_values * sizeof(uint32_t);
2518 uint32_t *map = NULL;
2519
2520 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
2521 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
2522 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2523
2524 for (int i = 0; i < shader->num_system_values; i++) {
2525 uint32_t sysval = shader->system_values[i];
2526 uint32_t value = 0;
2527
2528 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2529 #if GEN_GEN == 8
2530 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2531 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2532 struct brw_image_param *param =
2533 &genx->shaders[stage].image_param[img];
2534
2535 assert(offset < sizeof(struct brw_image_param));
2536 value = ((uint32_t *) param)[offset];
2537 #endif
2538 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2539 value = 0;
2540 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2541 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2542 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2543 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2544 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2545 if (stage == MESA_SHADER_TESS_CTRL) {
2546 value = ice->state.vertices_per_patch;
2547 } else {
2548 assert(stage == MESA_SHADER_TESS_EVAL);
2549 const struct shader_info *tcs_info =
2550 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2551 if (tcs_info)
2552 value = tcs_info->tess.tcs_vertices_out;
2553 else
2554 value = ice->state.vertices_per_patch;
2555 }
2556 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
2557 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
2558 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
2559 value = fui(ice->state.default_outer_level[i]);
2560 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
2561 value = fui(ice->state.default_inner_level[0]);
2562 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
2563 value = fui(ice->state.default_inner_level[1]);
2564 } else {
2565 assert(!"unhandled system value");
2566 }
2567
2568 *map++ = value;
2569 }
2570
2571 cbuf->buffer_size = upload_size;
2572 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2573 &shs->constbuf_surf_state[sysval_cbuf_index], false);
2574
2575 shs->sysvals_need_upload = false;
2576 }
2577
2578 /**
2579 * The pipe->set_shader_buffers() driver hook.
2580 *
2581 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2582 * SURFACE_STATE here, as the buffer offset may change each time.
2583 */
2584 static void
2585 iris_set_shader_buffers(struct pipe_context *ctx,
2586 enum pipe_shader_type p_stage,
2587 unsigned start_slot, unsigned count,
2588 const struct pipe_shader_buffer *buffers,
2589 unsigned writable_bitmask)
2590 {
2591 struct iris_context *ice = (struct iris_context *) ctx;
2592 gl_shader_stage stage = stage_from_pipe(p_stage);
2593 struct iris_shader_state *shs = &ice->state.shaders[stage];
2594
2595 unsigned modified_bits = u_bit_consecutive(start_slot, count);
2596
2597 shs->bound_ssbos &= ~modified_bits;
2598 shs->writable_ssbos &= ~modified_bits;
2599 shs->writable_ssbos |= writable_bitmask << start_slot;
2600
2601 for (unsigned i = 0; i < count; i++) {
2602 if (buffers && buffers[i].buffer) {
2603 struct iris_resource *res = (void *) buffers[i].buffer;
2604 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
2605 struct iris_state_ref *surf_state =
2606 &shs->ssbo_surf_state[start_slot + i];
2607 pipe_resource_reference(&ssbo->buffer, &res->base);
2608 ssbo->buffer_offset = buffers[i].buffer_offset;
2609 ssbo->buffer_size =
2610 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
2611
2612 shs->bound_ssbos |= 1 << (start_slot + i);
2613
2614 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
2615
2616 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2617
2618 util_range_add(&res->valid_buffer_range, ssbo->buffer_offset,
2619 ssbo->buffer_offset + ssbo->buffer_size);
2620 } else {
2621 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
2622 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
2623 NULL);
2624 }
2625 }
2626
2627 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2628 }
2629
2630 static void
2631 iris_delete_state(struct pipe_context *ctx, void *state)
2632 {
2633 free(state);
2634 }
2635
2636 /**
2637 * The pipe->set_vertex_buffers() driver hook.
2638 *
2639 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2640 */
2641 static void
2642 iris_set_vertex_buffers(struct pipe_context *ctx,
2643 unsigned start_slot, unsigned count,
2644 const struct pipe_vertex_buffer *buffers)
2645 {
2646 struct iris_context *ice = (struct iris_context *) ctx;
2647 struct iris_genx_state *genx = ice->state.genx;
2648
2649 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2650
2651 for (unsigned i = 0; i < count; i++) {
2652 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2653 struct iris_vertex_buffer_state *state =
2654 &genx->vertex_buffers[start_slot + i];
2655
2656 if (!buffer) {
2657 pipe_resource_reference(&state->resource, NULL);
2658 continue;
2659 }
2660
2661 /* We may see user buffers that are NULL bindings. */
2662 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
2663
2664 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2665 struct iris_resource *res = (void *) state->resource;
2666
2667 if (res) {
2668 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2669 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2670 }
2671
2672 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2673 vb.VertexBufferIndex = start_slot + i;
2674 vb.AddressModifyEnable = true;
2675 vb.BufferPitch = buffer->stride;
2676 if (res) {
2677 vb.BufferSize = res->bo->size - (int) buffer->buffer_offset;
2678 vb.BufferStartingAddress =
2679 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2680 vb.MOCS = mocs(res->bo);
2681 } else {
2682 vb.NullVertexBuffer = true;
2683 }
2684 }
2685 }
2686
2687 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2688 }
2689
2690 /**
2691 * Gallium CSO for vertex elements.
2692 */
2693 struct iris_vertex_element_state {
2694 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2695 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2696 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2697 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2698 unsigned count;
2699 };
2700
2701 /**
2702 * The pipe->create_vertex_elements() driver hook.
2703 *
2704 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2705 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2706 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2707 * needed. In these cases we will need information available at draw time.
2708 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2709 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2710 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2711 */
2712 static void *
2713 iris_create_vertex_elements(struct pipe_context *ctx,
2714 unsigned count,
2715 const struct pipe_vertex_element *state)
2716 {
2717 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2718 const struct gen_device_info *devinfo = &screen->devinfo;
2719 struct iris_vertex_element_state *cso =
2720 malloc(sizeof(struct iris_vertex_element_state));
2721
2722 cso->count = count;
2723
2724 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2725 ve.DWordLength =
2726 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2727 }
2728
2729 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2730 uint32_t *vfi_pack_dest = cso->vf_instancing;
2731
2732 if (count == 0) {
2733 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2734 ve.Valid = true;
2735 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2736 ve.Component0Control = VFCOMP_STORE_0;
2737 ve.Component1Control = VFCOMP_STORE_0;
2738 ve.Component2Control = VFCOMP_STORE_0;
2739 ve.Component3Control = VFCOMP_STORE_1_FP;
2740 }
2741
2742 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2743 }
2744 }
2745
2746 for (int i = 0; i < count; i++) {
2747 const struct iris_format_info fmt =
2748 iris_format_for_usage(devinfo, state[i].src_format, 0);
2749 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2750 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2751
2752 switch (isl_format_get_num_channels(fmt.fmt)) {
2753 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
2754 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
2755 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
2756 case 3:
2757 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2758 : VFCOMP_STORE_1_FP;
2759 break;
2760 }
2761 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2762 ve.EdgeFlagEnable = false;
2763 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2764 ve.Valid = true;
2765 ve.SourceElementOffset = state[i].src_offset;
2766 ve.SourceElementFormat = fmt.fmt;
2767 ve.Component0Control = comp[0];
2768 ve.Component1Control = comp[1];
2769 ve.Component2Control = comp[2];
2770 ve.Component3Control = comp[3];
2771 }
2772
2773 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2774 vi.VertexElementIndex = i;
2775 vi.InstancingEnable = state[i].instance_divisor > 0;
2776 vi.InstanceDataStepRate = state[i].instance_divisor;
2777 }
2778
2779 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2780 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2781 }
2782
2783 /* An alternative version of the last VE and VFI is stored so it
2784 * can be used at draw time in case Vertex Shader uses EdgeFlag
2785 */
2786 if (count) {
2787 const unsigned edgeflag_index = count - 1;
2788 const struct iris_format_info fmt =
2789 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
2790 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
2791 ve.EdgeFlagEnable = true ;
2792 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
2793 ve.Valid = true;
2794 ve.SourceElementOffset = state[edgeflag_index].src_offset;
2795 ve.SourceElementFormat = fmt.fmt;
2796 ve.Component0Control = VFCOMP_STORE_SRC;
2797 ve.Component1Control = VFCOMP_STORE_0;
2798 ve.Component2Control = VFCOMP_STORE_0;
2799 ve.Component3Control = VFCOMP_STORE_0;
2800 }
2801 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
2802 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
2803 * at draw time, as it should change if SGVs are emitted.
2804 */
2805 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
2806 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
2807 }
2808 }
2809
2810 return cso;
2811 }
2812
2813 /**
2814 * The pipe->bind_vertex_elements_state() driver hook.
2815 */
2816 static void
2817 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2818 {
2819 struct iris_context *ice = (struct iris_context *) ctx;
2820 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2821 struct iris_vertex_element_state *new_cso = state;
2822
2823 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2824 * we need to re-emit it to ensure we're overriding the right one.
2825 */
2826 if (new_cso && cso_changed(count))
2827 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2828
2829 ice->state.cso_vertex_elements = state;
2830 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2831 }
2832
2833 /**
2834 * The pipe->create_stream_output_target() driver hook.
2835 *
2836 * "Target" here refers to a destination buffer. We translate this into
2837 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2838 * know which buffer this represents, or whether we ought to zero the
2839 * write-offsets, or append. Those are handled in the set() hook.
2840 */
2841 static struct pipe_stream_output_target *
2842 iris_create_stream_output_target(struct pipe_context *ctx,
2843 struct pipe_resource *p_res,
2844 unsigned buffer_offset,
2845 unsigned buffer_size)
2846 {
2847 struct iris_resource *res = (void *) p_res;
2848 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2849 if (!cso)
2850 return NULL;
2851
2852 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2853
2854 pipe_reference_init(&cso->base.reference, 1);
2855 pipe_resource_reference(&cso->base.buffer, p_res);
2856 cso->base.buffer_offset = buffer_offset;
2857 cso->base.buffer_size = buffer_size;
2858 cso->base.context = ctx;
2859
2860 util_range_add(&res->valid_buffer_range, buffer_offset,
2861 buffer_offset + buffer_size);
2862
2863 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2864
2865 return &cso->base;
2866 }
2867
2868 static void
2869 iris_stream_output_target_destroy(struct pipe_context *ctx,
2870 struct pipe_stream_output_target *state)
2871 {
2872 struct iris_stream_output_target *cso = (void *) state;
2873
2874 pipe_resource_reference(&cso->base.buffer, NULL);
2875 pipe_resource_reference(&cso->offset.res, NULL);
2876
2877 free(cso);
2878 }
2879
2880 /**
2881 * The pipe->set_stream_output_targets() driver hook.
2882 *
2883 * At this point, we know which targets are bound to a particular index,
2884 * and also whether we want to append or start over. We can finish the
2885 * 3DSTATE_SO_BUFFER packets we started earlier.
2886 */
2887 static void
2888 iris_set_stream_output_targets(struct pipe_context *ctx,
2889 unsigned num_targets,
2890 struct pipe_stream_output_target **targets,
2891 const unsigned *offsets)
2892 {
2893 struct iris_context *ice = (struct iris_context *) ctx;
2894 struct iris_genx_state *genx = ice->state.genx;
2895 uint32_t *so_buffers = genx->so_buffers;
2896
2897 const bool active = num_targets > 0;
2898 if (ice->state.streamout_active != active) {
2899 ice->state.streamout_active = active;
2900 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2901
2902 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2903 * it's a non-pipelined command. If we're switching streamout on, we
2904 * may have missed emitting it earlier, so do so now. (We're already
2905 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2906 */
2907 if (active) {
2908 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2909 } else {
2910 uint32_t flush = 0;
2911 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
2912 struct iris_stream_output_target *tgt =
2913 (void *) ice->state.so_target[i];
2914 if (tgt) {
2915 struct iris_resource *res = (void *) tgt->base.buffer;
2916
2917 flush |= iris_flush_bits_for_history(res);
2918 iris_dirty_for_history(ice, res);
2919 }
2920 }
2921 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2922 "make streamout results visible", flush);
2923 }
2924 }
2925
2926 for (int i = 0; i < 4; i++) {
2927 pipe_so_target_reference(&ice->state.so_target[i],
2928 i < num_targets ? targets[i] : NULL);
2929 }
2930
2931 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2932 if (!active)
2933 return;
2934
2935 for (unsigned i = 0; i < 4; i++,
2936 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2937
2938 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
2939 unsigned offset = offsets[i];
2940
2941 if (!tgt) {
2942 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2943 sob.SOBufferIndex = i;
2944 continue;
2945 }
2946
2947 struct iris_resource *res = (void *) tgt->base.buffer;
2948
2949 /* Note that offsets[i] will either be 0, causing us to zero
2950 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2951 * "continue appending at the existing offset."
2952 */
2953 assert(offset == 0 || offset == 0xFFFFFFFF);
2954
2955 /* We might be called by Begin (offset = 0), Pause, then Resume
2956 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
2957 * will actually be sent to the GPU). In this case, we don't want
2958 * to append - we still want to do our initial zeroing.
2959 */
2960 if (!tgt->zeroed)
2961 offset = 0;
2962
2963 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2964 sob.SurfaceBaseAddress =
2965 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2966 sob.SOBufferEnable = true;
2967 sob.StreamOffsetWriteEnable = true;
2968 sob.StreamOutputBufferOffsetAddressEnable = true;
2969 sob.MOCS = mocs(res->bo);
2970
2971 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2972
2973 sob.SOBufferIndex = i;
2974 sob.StreamOffset = offset;
2975 sob.StreamOutputBufferOffsetAddress =
2976 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2977 tgt->offset.offset);
2978 }
2979 }
2980
2981 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2982 }
2983
2984 /**
2985 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2986 * 3DSTATE_STREAMOUT packets.
2987 *
2988 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2989 * hardware to record. We can create it entirely based on the shader, with
2990 * no dynamic state dependencies.
2991 *
2992 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2993 * state-based settings. We capture the shader-related ones here, and merge
2994 * the rest in at draw time.
2995 */
2996 static uint32_t *
2997 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2998 const struct brw_vue_map *vue_map)
2999 {
3000 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3001 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3002 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3003 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3004 int max_decls = 0;
3005 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3006
3007 memset(so_decl, 0, sizeof(so_decl));
3008
3009 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3010 * command feels strange -- each dword pair contains a SO_DECL per stream.
3011 */
3012 for (unsigned i = 0; i < info->num_outputs; i++) {
3013 const struct pipe_stream_output *output = &info->output[i];
3014 const int buffer = output->output_buffer;
3015 const int varying = output->register_index;
3016 const unsigned stream_id = output->stream;
3017 assert(stream_id < MAX_VERTEX_STREAMS);
3018
3019 buffer_mask[stream_id] |= 1 << buffer;
3020
3021 assert(vue_map->varying_to_slot[varying] >= 0);
3022
3023 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3024 * array. Instead, it simply increments DstOffset for the following
3025 * input by the number of components that should be skipped.
3026 *
3027 * Our hardware is unusual in that it requires us to program SO_DECLs
3028 * for fake "hole" components, rather than simply taking the offset
3029 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3030 * program as many size = 4 holes as we can, then a final hole to
3031 * accommodate the final 1, 2, or 3 remaining.
3032 */
3033 int skip_components = output->dst_offset - next_offset[buffer];
3034
3035 while (skip_components > 0) {
3036 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3037 .HoleFlag = 1,
3038 .OutputBufferSlot = output->output_buffer,
3039 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3040 };
3041 skip_components -= 4;
3042 }
3043
3044 next_offset[buffer] = output->dst_offset + output->num_components;
3045
3046 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3047 .OutputBufferSlot = output->output_buffer,
3048 .RegisterIndex = vue_map->varying_to_slot[varying],
3049 .ComponentMask =
3050 ((1 << output->num_components) - 1) << output->start_component,
3051 };
3052
3053 if (decls[stream_id] > max_decls)
3054 max_decls = decls[stream_id];
3055 }
3056
3057 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3058 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3059 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3060
3061 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3062 int urb_entry_read_offset = 0;
3063 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3064 urb_entry_read_offset;
3065
3066 /* We always read the whole vertex. This could be reduced at some
3067 * point by reading less and offsetting the register index in the
3068 * SO_DECLs.
3069 */
3070 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3071 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3072 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3073 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3074 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3075 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3076 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3077 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3078
3079 /* Set buffer pitches; 0 means unbound. */
3080 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3081 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3082 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3083 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3084 }
3085
3086 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3087 list.DWordLength = 3 + 2 * max_decls - 2;
3088 list.StreamtoBufferSelects0 = buffer_mask[0];
3089 list.StreamtoBufferSelects1 = buffer_mask[1];
3090 list.StreamtoBufferSelects2 = buffer_mask[2];
3091 list.StreamtoBufferSelects3 = buffer_mask[3];
3092 list.NumEntries0 = decls[0];
3093 list.NumEntries1 = decls[1];
3094 list.NumEntries2 = decls[2];
3095 list.NumEntries3 = decls[3];
3096 }
3097
3098 for (int i = 0; i < max_decls; i++) {
3099 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3100 entry.Stream0Decl = so_decl[0][i];
3101 entry.Stream1Decl = so_decl[1][i];
3102 entry.Stream2Decl = so_decl[2][i];
3103 entry.Stream3Decl = so_decl[3][i];
3104 }
3105 }
3106
3107 return map;
3108 }
3109
3110 static void
3111 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3112 const struct brw_vue_map *last_vue_map,
3113 bool two_sided_color,
3114 unsigned *out_offset,
3115 unsigned *out_length)
3116 {
3117 /* The compiler computes the first URB slot without considering COL/BFC
3118 * swizzling (because it doesn't know whether it's enabled), so we need
3119 * to do that here too. This may result in a smaller offset, which
3120 * should be safe.
3121 */
3122 const unsigned first_slot =
3123 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3124
3125 /* This becomes the URB read offset (counted in pairs of slots). */
3126 assert(first_slot % 2 == 0);
3127 *out_offset = first_slot / 2;
3128
3129 /* We need to adjust the inputs read to account for front/back color
3130 * swizzling, as it can make the URB length longer.
3131 */
3132 for (int c = 0; c <= 1; c++) {
3133 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3134 /* If two sided color is enabled, the fragment shader's gl_Color
3135 * (COL0) input comes from either the gl_FrontColor (COL0) or
3136 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3137 */
3138 if (two_sided_color)
3139 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3140
3141 /* If front color isn't written, we opt to give them back color
3142 * instead of an undefined value. Switch from COL to BFC.
3143 */
3144 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3145 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3146 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3147 }
3148 }
3149 }
3150
3151 /* Compute the minimum URB Read Length necessary for the FS inputs.
3152 *
3153 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3154 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3155 *
3156 * "This field should be set to the minimum length required to read the
3157 * maximum source attribute. The maximum source attribute is indicated
3158 * by the maximum value of the enabled Attribute # Source Attribute if
3159 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3160 * enable is not set.
3161 * read_length = ceiling((max_source_attr + 1) / 2)
3162 *
3163 * [errata] Corruption/Hang possible if length programmed larger than
3164 * recommended"
3165 *
3166 * Similar text exists for Ivy Bridge.
3167 *
3168 * We find the last URB slot that's actually read by the FS.
3169 */
3170 unsigned last_read_slot = last_vue_map->num_slots - 1;
3171 while (last_read_slot > first_slot && !(fs_input_slots &
3172 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3173 --last_read_slot;
3174
3175 /* The URB read length is the difference of the two, counted in pairs. */
3176 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3177 }
3178
3179 static void
3180 iris_emit_sbe_swiz(struct iris_batch *batch,
3181 const struct iris_context *ice,
3182 unsigned urb_read_offset,
3183 unsigned sprite_coord_enables)
3184 {
3185 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3186 const struct brw_wm_prog_data *wm_prog_data = (void *)
3187 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3188 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3189 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3190
3191 /* XXX: this should be generated when putting programs in place */
3192
3193 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3194 const int input_index = wm_prog_data->urb_setup[fs_attr];
3195 if (input_index < 0 || input_index >= 16)
3196 continue;
3197
3198 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3199 &attr_overrides[input_index];
3200 int slot = vue_map->varying_to_slot[fs_attr];
3201
3202 /* Viewport and Layer are stored in the VUE header. We need to override
3203 * them to zero if earlier stages didn't write them, as GL requires that
3204 * they read back as zero when not explicitly set.
3205 */
3206 switch (fs_attr) {
3207 case VARYING_SLOT_VIEWPORT:
3208 case VARYING_SLOT_LAYER:
3209 attr->ComponentOverrideX = true;
3210 attr->ComponentOverrideW = true;
3211 attr->ConstantSource = CONST_0000;
3212
3213 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3214 attr->ComponentOverrideY = true;
3215 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3216 attr->ComponentOverrideZ = true;
3217 continue;
3218
3219 case VARYING_SLOT_PRIMITIVE_ID:
3220 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3221 if (slot == -1) {
3222 attr->ComponentOverrideX = true;
3223 attr->ComponentOverrideY = true;
3224 attr->ComponentOverrideZ = true;
3225 attr->ComponentOverrideW = true;
3226 attr->ConstantSource = PRIM_ID;
3227 continue;
3228 }
3229
3230 default:
3231 break;
3232 }
3233
3234 if (sprite_coord_enables & (1 << input_index))
3235 continue;
3236
3237 /* If there was only a back color written but not front, use back
3238 * as the color instead of undefined.
3239 */
3240 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3241 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3242 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3243 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3244
3245 /* Not written by the previous stage - undefined. */
3246 if (slot == -1) {
3247 attr->ComponentOverrideX = true;
3248 attr->ComponentOverrideY = true;
3249 attr->ComponentOverrideZ = true;
3250 attr->ComponentOverrideW = true;
3251 attr->ConstantSource = CONST_0001_FLOAT;
3252 continue;
3253 }
3254
3255 /* Compute the location of the attribute relative to the read offset,
3256 * which is counted in 256-bit increments (two 128-bit VUE slots).
3257 */
3258 const int source_attr = slot - 2 * urb_read_offset;
3259 assert(source_attr >= 0 && source_attr <= 32);
3260 attr->SourceAttribute = source_attr;
3261
3262 /* If we are doing two-sided color, and the VUE slot following this one
3263 * represents a back-facing color, then we need to instruct the SF unit
3264 * to do back-facing swizzling.
3265 */
3266 if (cso_rast->light_twoside &&
3267 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3268 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3269 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3270 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3271 attr->SwizzleSelect = INPUTATTR_FACING;
3272 }
3273
3274 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3275 for (int i = 0; i < 16; i++)
3276 sbes.Attribute[i] = attr_overrides[i];
3277 }
3278 }
3279
3280 static unsigned
3281 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3282 const struct iris_rasterizer_state *cso)
3283 {
3284 unsigned overrides = 0;
3285
3286 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3287 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3288
3289 for (int i = 0; i < 8; i++) {
3290 if ((cso->sprite_coord_enable & (1 << i)) &&
3291 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3292 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3293 }
3294
3295 return overrides;
3296 }
3297
3298 static void
3299 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3300 {
3301 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3302 const struct brw_wm_prog_data *wm_prog_data = (void *)
3303 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3304 const struct shader_info *fs_info =
3305 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3306
3307 unsigned urb_read_offset, urb_read_length;
3308 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3309 ice->shaders.last_vue_map,
3310 cso_rast->light_twoside,
3311 &urb_read_offset, &urb_read_length);
3312
3313 unsigned sprite_coord_overrides =
3314 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3315
3316 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3317 sbe.AttributeSwizzleEnable = true;
3318 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3319 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3320 sbe.VertexURBEntryReadOffset = urb_read_offset;
3321 sbe.VertexURBEntryReadLength = urb_read_length;
3322 sbe.ForceVertexURBEntryReadOffset = true;
3323 sbe.ForceVertexURBEntryReadLength = true;
3324 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3325 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3326 #if GEN_GEN >= 9
3327 for (int i = 0; i < 32; i++) {
3328 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3329 }
3330 #endif
3331 }
3332
3333 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3334 }
3335
3336 /* ------------------------------------------------------------------- */
3337
3338 /**
3339 * Populate VS program key fields based on the current state.
3340 */
3341 static void
3342 iris_populate_vs_key(const struct iris_context *ice,
3343 const struct shader_info *info,
3344 gl_shader_stage last_stage,
3345 struct brw_vs_prog_key *key)
3346 {
3347 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3348
3349 if (info->clip_distance_array_size == 0 &&
3350 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3351 last_stage == MESA_SHADER_VERTEX)
3352 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3353 }
3354
3355 /**
3356 * Populate TCS program key fields based on the current state.
3357 */
3358 static void
3359 iris_populate_tcs_key(const struct iris_context *ice,
3360 struct brw_tcs_prog_key *key)
3361 {
3362 }
3363
3364 /**
3365 * Populate TES program key fields based on the current state.
3366 */
3367 static void
3368 iris_populate_tes_key(const struct iris_context *ice,
3369 const struct shader_info *info,
3370 gl_shader_stage last_stage,
3371 struct brw_tes_prog_key *key)
3372 {
3373 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3374
3375 if (info->clip_distance_array_size == 0 &&
3376 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3377 last_stage == MESA_SHADER_TESS_EVAL)
3378 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3379 }
3380
3381 /**
3382 * Populate GS program key fields based on the current state.
3383 */
3384 static void
3385 iris_populate_gs_key(const struct iris_context *ice,
3386 const struct shader_info *info,
3387 gl_shader_stage last_stage,
3388 struct brw_gs_prog_key *key)
3389 {
3390 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3391
3392 if (info->clip_distance_array_size == 0 &&
3393 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3394 last_stage == MESA_SHADER_GEOMETRY)
3395 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3396 }
3397
3398 /**
3399 * Populate FS program key fields based on the current state.
3400 */
3401 static void
3402 iris_populate_fs_key(const struct iris_context *ice,
3403 const struct shader_info *info,
3404 struct brw_wm_prog_key *key)
3405 {
3406 struct iris_screen *screen = (void *) ice->ctx.screen;
3407 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3408 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3409 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3410 const struct iris_blend_state *blend = ice->state.cso_blend;
3411
3412 key->nr_color_regions = fb->nr_cbufs;
3413
3414 key->clamp_fragment_color = rast->clamp_fragment_color;
3415
3416 key->alpha_to_coverage = blend->alpha_to_coverage;
3417
3418 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
3419
3420 key->flat_shade = rast->flatshade &&
3421 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
3422
3423 key->persample_interp = rast->force_persample_interp;
3424 key->multisample_fbo = rast->multisample && fb->samples > 1;
3425
3426 key->coherent_fb_fetch = true;
3427
3428 key->force_dual_color_blend =
3429 screen->driconf.dual_color_blend_by_location &&
3430 (blend->blend_enables & 1) && blend->dual_color_blending;
3431
3432 /* TODO: Respect glHint for key->high_quality_derivatives */
3433 }
3434
3435 static void
3436 iris_populate_cs_key(const struct iris_context *ice,
3437 struct brw_cs_prog_key *key)
3438 {
3439 }
3440
3441 static uint64_t
3442 KSP(const struct iris_compiled_shader *shader)
3443 {
3444 struct iris_resource *res = (void *) shader->assembly.res;
3445 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3446 }
3447
3448 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3449 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3450 * this WA on C0 stepping.
3451 *
3452 * TODO: Fill out SamplerCount for prefetching?
3453 */
3454
3455 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3456 pkt.KernelStartPointer = KSP(shader); \
3457 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3458 shader->bt.size_bytes / 4; \
3459 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3460 \
3461 pkt.DispatchGRFStartRegisterForURBData = \
3462 prog_data->dispatch_grf_start_reg; \
3463 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3464 pkt.prefix##URBEntryReadOffset = 0; \
3465 \
3466 pkt.StatisticsEnable = true; \
3467 pkt.Enable = true; \
3468 \
3469 if (prog_data->total_scratch) { \
3470 struct iris_bo *bo = \
3471 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3472 uint32_t scratch_addr = bo->gtt_offset; \
3473 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3474 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3475 }
3476
3477 /**
3478 * Encode most of 3DSTATE_VS based on the compiled shader.
3479 */
3480 static void
3481 iris_store_vs_state(struct iris_context *ice,
3482 const struct gen_device_info *devinfo,
3483 struct iris_compiled_shader *shader)
3484 {
3485 struct brw_stage_prog_data *prog_data = shader->prog_data;
3486 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3487
3488 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3489 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3490 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3491 vs.SIMD8DispatchEnable = true;
3492 vs.UserClipDistanceCullTestEnableBitmask =
3493 vue_prog_data->cull_distance_mask;
3494 }
3495 }
3496
3497 /**
3498 * Encode most of 3DSTATE_HS based on the compiled shader.
3499 */
3500 static void
3501 iris_store_tcs_state(struct iris_context *ice,
3502 const struct gen_device_info *devinfo,
3503 struct iris_compiled_shader *shader)
3504 {
3505 struct brw_stage_prog_data *prog_data = shader->prog_data;
3506 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3507 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3508
3509 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3510 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3511
3512 hs.InstanceCount = tcs_prog_data->instances - 1;
3513 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3514 hs.IncludeVertexHandles = true;
3515
3516 #if GEN_GEN >= 9
3517 hs.DispatchMode = vue_prog_data->dispatch_mode;
3518 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
3519 #endif
3520 }
3521 }
3522
3523 /**
3524 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3525 */
3526 static void
3527 iris_store_tes_state(struct iris_context *ice,
3528 const struct gen_device_info *devinfo,
3529 struct iris_compiled_shader *shader)
3530 {
3531 struct brw_stage_prog_data *prog_data = shader->prog_data;
3532 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3533 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3534
3535 uint32_t *te_state = (void *) shader->derived_data;
3536 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3537
3538 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3539 te.Partitioning = tes_prog_data->partitioning;
3540 te.OutputTopology = tes_prog_data->output_topology;
3541 te.TEDomain = tes_prog_data->domain;
3542 te.TEEnable = true;
3543 te.MaximumTessellationFactorOdd = 63.0;
3544 te.MaximumTessellationFactorNotOdd = 64.0;
3545 }
3546
3547 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3548 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3549
3550 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3551 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3552 ds.ComputeWCoordinateEnable =
3553 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3554
3555 ds.UserClipDistanceCullTestEnableBitmask =
3556 vue_prog_data->cull_distance_mask;
3557 }
3558
3559 }
3560
3561 /**
3562 * Encode most of 3DSTATE_GS based on the compiled shader.
3563 */
3564 static void
3565 iris_store_gs_state(struct iris_context *ice,
3566 const struct gen_device_info *devinfo,
3567 struct iris_compiled_shader *shader)
3568 {
3569 struct brw_stage_prog_data *prog_data = shader->prog_data;
3570 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3571 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3572
3573 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3574 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3575
3576 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3577 gs.OutputTopology = gs_prog_data->output_topology;
3578 gs.ControlDataHeaderSize =
3579 gs_prog_data->control_data_header_size_hwords;
3580 gs.InstanceControl = gs_prog_data->invocations - 1;
3581 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3582 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3583 gs.ControlDataFormat = gs_prog_data->control_data_format;
3584 gs.ReorderMode = TRAILING;
3585 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3586 gs.MaximumNumberofThreads =
3587 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3588 : (devinfo->max_gs_threads - 1);
3589
3590 if (gs_prog_data->static_vertex_count != -1) {
3591 gs.StaticOutput = true;
3592 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3593 }
3594 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3595
3596 gs.UserClipDistanceCullTestEnableBitmask =
3597 vue_prog_data->cull_distance_mask;
3598
3599 const int urb_entry_write_offset = 1;
3600 const uint32_t urb_entry_output_length =
3601 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3602 urb_entry_write_offset;
3603
3604 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3605 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3606 }
3607 }
3608
3609 /**
3610 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3611 */
3612 static void
3613 iris_store_fs_state(struct iris_context *ice,
3614 const struct gen_device_info *devinfo,
3615 struct iris_compiled_shader *shader)
3616 {
3617 struct brw_stage_prog_data *prog_data = shader->prog_data;
3618 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3619
3620 uint32_t *ps_state = (void *) shader->derived_data;
3621 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3622
3623 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3624 ps.VectorMaskEnable = true;
3625 // XXX: WABTPPrefetchDisable, see above, drop at C0
3626 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3627 shader->bt.size_bytes / 4;
3628 ps.FloatingPointMode = prog_data->use_alt_mode;
3629 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3630
3631 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3632
3633 /* From the documentation for this packet:
3634 * "If the PS kernel does not need the Position XY Offsets to
3635 * compute a Position Value, then this field should be programmed
3636 * to POSOFFSET_NONE."
3637 *
3638 * "SW Recommendation: If the PS kernel needs the Position Offsets
3639 * to compute a Position XY value, this field should match Position
3640 * ZW Interpolation Mode to ensure a consistent position.xyzw
3641 * computation."
3642 *
3643 * We only require XY sample offsets. So, this recommendation doesn't
3644 * look useful at the moment. We might need this in future.
3645 */
3646 ps.PositionXYOffsetSelect =
3647 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3648 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3649 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3650 /* ps._32PixelDispatchEnable is filled in at draw time. */
3651
3652 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3653 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3654 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3655 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3656 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3657 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3658
3659 ps.KernelStartPointer0 =
3660 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3661 ps.KernelStartPointer1 =
3662 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3663 ps.KernelStartPointer2 =
3664 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3665
3666 if (prog_data->total_scratch) {
3667 struct iris_bo *bo =
3668 iris_get_scratch_space(ice, prog_data->total_scratch,
3669 MESA_SHADER_FRAGMENT);
3670 uint32_t scratch_addr = bo->gtt_offset;
3671 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3672 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3673 }
3674 }
3675
3676 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3677 psx.PixelShaderValid = true;
3678 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3679 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3680 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3681 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3682 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3683 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3684 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3685
3686 #if GEN_GEN >= 9
3687 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3688 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3689 #else
3690 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3691 #endif
3692 }
3693 }
3694
3695 /**
3696 * Compute the size of the derived data (shader command packets).
3697 *
3698 * This must match the data written by the iris_store_xs_state() functions.
3699 */
3700 static void
3701 iris_store_cs_state(struct iris_context *ice,
3702 const struct gen_device_info *devinfo,
3703 struct iris_compiled_shader *shader)
3704 {
3705 struct brw_stage_prog_data *prog_data = shader->prog_data;
3706 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3707 void *map = shader->derived_data;
3708
3709 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3710 desc.KernelStartPointer = KSP(shader);
3711 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3712 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3713 desc.SharedLocalMemorySize =
3714 encode_slm_size(GEN_GEN, prog_data->total_shared);
3715 desc.BarrierEnable = cs_prog_data->uses_barrier;
3716 desc.CrossThreadConstantDataReadLength =
3717 cs_prog_data->push.cross_thread.regs;
3718 }
3719 }
3720
3721 static unsigned
3722 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3723 {
3724 assert(cache_id <= IRIS_CACHE_BLORP);
3725
3726 static const unsigned dwords[] = {
3727 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3728 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3729 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3730 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3731 [IRIS_CACHE_FS] =
3732 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3733 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3734 [IRIS_CACHE_BLORP] = 0,
3735 };
3736
3737 return sizeof(uint32_t) * dwords[cache_id];
3738 }
3739
3740 /**
3741 * Create any state packets corresponding to the given shader stage
3742 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3743 * This means that we can look up a program in the in-memory cache and
3744 * get most of the state packet without having to reconstruct it.
3745 */
3746 static void
3747 iris_store_derived_program_state(struct iris_context *ice,
3748 enum iris_program_cache_id cache_id,
3749 struct iris_compiled_shader *shader)
3750 {
3751 struct iris_screen *screen = (void *) ice->ctx.screen;
3752 const struct gen_device_info *devinfo = &screen->devinfo;
3753
3754 switch (cache_id) {
3755 case IRIS_CACHE_VS:
3756 iris_store_vs_state(ice, devinfo, shader);
3757 break;
3758 case IRIS_CACHE_TCS:
3759 iris_store_tcs_state(ice, devinfo, shader);
3760 break;
3761 case IRIS_CACHE_TES:
3762 iris_store_tes_state(ice, devinfo, shader);
3763 break;
3764 case IRIS_CACHE_GS:
3765 iris_store_gs_state(ice, devinfo, shader);
3766 break;
3767 case IRIS_CACHE_FS:
3768 iris_store_fs_state(ice, devinfo, shader);
3769 break;
3770 case IRIS_CACHE_CS:
3771 iris_store_cs_state(ice, devinfo, shader);
3772 case IRIS_CACHE_BLORP:
3773 break;
3774 default:
3775 break;
3776 }
3777 }
3778
3779 /* ------------------------------------------------------------------- */
3780
3781 static const uint32_t push_constant_opcodes[] = {
3782 [MESA_SHADER_VERTEX] = 21,
3783 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3784 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3785 [MESA_SHADER_GEOMETRY] = 22,
3786 [MESA_SHADER_FRAGMENT] = 23,
3787 [MESA_SHADER_COMPUTE] = 0,
3788 };
3789
3790 static uint32_t
3791 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3792 {
3793 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3794
3795 iris_use_pinned_bo(batch, state_bo, false);
3796
3797 return ice->state.unbound_tex.offset;
3798 }
3799
3800 static uint32_t
3801 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3802 {
3803 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3804 if (!ice->state.null_fb.res)
3805 return use_null_surface(batch, ice);
3806
3807 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3808
3809 iris_use_pinned_bo(batch, state_bo, false);
3810
3811 return ice->state.null_fb.offset;
3812 }
3813
3814 static uint32_t
3815 surf_state_offset_for_aux(struct iris_resource *res,
3816 unsigned aux_modes,
3817 enum isl_aux_usage aux_usage)
3818 {
3819 return SURFACE_STATE_ALIGNMENT *
3820 util_bitcount(res->aux.possible_usages & ((1 << aux_usage) - 1));
3821 }
3822
3823 static void
3824 surf_state_update_clear_value(struct iris_batch *batch,
3825 struct iris_resource *res,
3826 struct iris_state_ref *state,
3827 unsigned aux_modes,
3828 enum isl_aux_usage aux_usage)
3829 {
3830 struct isl_device *isl_dev = &batch->screen->isl_dev;
3831 struct iris_bo *state_bo = iris_resource_bo(state->res);
3832 uint64_t real_offset = state->offset +
3833 IRIS_MEMZONE_BINDER_START;
3834 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
3835 uint32_t clear_offset = offset_into_bo +
3836 isl_dev->ss.clear_value_offset +
3837 surf_state_offset_for_aux(res, aux_modes, aux_usage);
3838
3839 batch->vtbl->copy_mem_mem(batch, state_bo, clear_offset,
3840 res->aux.clear_color_bo,
3841 res->aux.clear_color_offset,
3842 isl_dev->ss.clear_value_size);
3843 }
3844
3845 static void
3846 update_clear_value(struct iris_context *ice,
3847 struct iris_batch *batch,
3848 struct iris_resource *res,
3849 struct iris_state_ref *state,
3850 unsigned aux_modes,
3851 struct isl_view *view)
3852 {
3853 struct iris_screen *screen = batch->screen;
3854 const struct gen_device_info *devinfo = &screen->devinfo;
3855
3856 /* We only need to update the clear color in the surface state for gen8 and
3857 * gen9. Newer gens can read it directly from the clear color state buffer.
3858 */
3859 if (devinfo->gen > 9)
3860 return;
3861
3862 if (devinfo->gen == 9) {
3863 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
3864 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
3865
3866 while (aux_modes) {
3867 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3868
3869 surf_state_update_clear_value(batch, res, state, aux_modes,
3870 aux_usage);
3871 }
3872 } else if (devinfo->gen == 8) {
3873 pipe_resource_reference(&state->res, NULL);
3874 void *map = alloc_surface_states(ice->state.surface_uploader,
3875 state, res->aux.possible_usages);
3876 while (aux_modes) {
3877 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
3878 fill_surface_state(&screen->isl_dev, map, res, view, aux_usage);
3879 map += SURFACE_STATE_ALIGNMENT;
3880 }
3881 }
3882 }
3883
3884 /**
3885 * Add a surface to the validation list, as well as the buffer containing
3886 * the corresponding SURFACE_STATE.
3887 *
3888 * Returns the binding table entry (offset to SURFACE_STATE).
3889 */
3890 static uint32_t
3891 use_surface(struct iris_context *ice,
3892 struct iris_batch *batch,
3893 struct pipe_surface *p_surf,
3894 bool writeable,
3895 enum isl_aux_usage aux_usage)
3896 {
3897 struct iris_surface *surf = (void *) p_surf;
3898 struct iris_resource *res = (void *) p_surf->texture;
3899
3900 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3901 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3902
3903 if (res->aux.bo) {
3904 iris_use_pinned_bo(batch, res->aux.bo, writeable);
3905 if (res->aux.clear_color_bo)
3906 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false);
3907
3908 if (memcmp(&res->aux.clear_color, &surf->clear_color,
3909 sizeof(surf->clear_color)) != 0) {
3910 update_clear_value(ice, batch, res, &surf->surface_state,
3911 res->aux.possible_usages, &surf->view);
3912 surf->clear_color = res->aux.clear_color;
3913 }
3914 }
3915
3916 return surf->surface_state.offset +
3917 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
3918 }
3919
3920 static uint32_t
3921 use_sampler_view(struct iris_context *ice,
3922 struct iris_batch *batch,
3923 struct iris_sampler_view *isv)
3924 {
3925 // XXX: ASTC hacks
3926 enum isl_aux_usage aux_usage =
3927 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
3928
3929 iris_use_pinned_bo(batch, isv->res->bo, false);
3930 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3931
3932 if (isv->res->aux.bo) {
3933 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
3934 if (isv->res->aux.clear_color_bo)
3935 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, false);
3936 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
3937 sizeof(isv->clear_color)) != 0) {
3938 update_clear_value(ice, batch, isv->res, &isv->surface_state,
3939 isv->res->aux.sampler_usages, &isv->view);
3940 isv->clear_color = isv->res->aux.clear_color;
3941 }
3942 }
3943
3944 return isv->surface_state.offset +
3945 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
3946 aux_usage);
3947 }
3948
3949 static uint32_t
3950 use_ubo_ssbo(struct iris_batch *batch,
3951 struct iris_context *ice,
3952 struct pipe_shader_buffer *buf,
3953 struct iris_state_ref *surf_state,
3954 bool writable)
3955 {
3956 if (!buf->buffer)
3957 return use_null_surface(batch, ice);
3958
3959 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable);
3960 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3961
3962 return surf_state->offset;
3963 }
3964
3965 static uint32_t
3966 use_image(struct iris_batch *batch, struct iris_context *ice,
3967 struct iris_shader_state *shs, int i)
3968 {
3969 struct iris_image_view *iv = &shs->image[i];
3970 struct iris_resource *res = (void *) iv->base.resource;
3971
3972 if (!res)
3973 return use_null_surface(batch, ice);
3974
3975 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
3976
3977 iris_use_pinned_bo(batch, res->bo, write);
3978 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.res), false);
3979
3980 if (res->aux.bo)
3981 iris_use_pinned_bo(batch, res->aux.bo, write);
3982
3983 return iv->surface_state.offset;
3984 }
3985
3986 #define push_bt_entry(addr) \
3987 assert(addr >= binder_addr); \
3988 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
3989 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3990
3991 #define bt_assert(section) \
3992 if (!pin_only && shader->bt.used_mask[section] != 0) \
3993 assert(shader->bt.offsets[section] == s);
3994
3995 /**
3996 * Populate the binding table for a given shader stage.
3997 *
3998 * This fills out the table of pointers to surfaces required by the shader,
3999 * and also adds those buffers to the validation list so the kernel can make
4000 * resident before running our batch.
4001 */
4002 static void
4003 iris_populate_binding_table(struct iris_context *ice,
4004 struct iris_batch *batch,
4005 gl_shader_stage stage,
4006 bool pin_only)
4007 {
4008 const struct iris_binder *binder = &ice->state.binder;
4009 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
4010 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4011 if (!shader)
4012 return;
4013
4014 struct iris_binding_table *bt = &shader->bt;
4015 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
4016 struct iris_shader_state *shs = &ice->state.shaders[stage];
4017 uint32_t binder_addr = binder->bo->gtt_offset;
4018
4019 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4020 int s = 0;
4021
4022 const struct shader_info *info = iris_get_shader_info(ice, stage);
4023 if (!info) {
4024 /* TCS passthrough doesn't need a binding table. */
4025 assert(stage == MESA_SHADER_TESS_CTRL);
4026 return;
4027 }
4028
4029 if (stage == MESA_SHADER_COMPUTE &&
4030 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4031 /* surface for gl_NumWorkGroups */
4032 struct iris_state_ref *grid_data = &ice->state.grid_size;
4033 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4034 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
4035 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
4036 push_bt_entry(grid_state->offset);
4037 }
4038
4039 if (stage == MESA_SHADER_FRAGMENT) {
4040 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4041 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4042 if (cso_fb->nr_cbufs) {
4043 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4044 uint32_t addr;
4045 if (cso_fb->cbufs[i]) {
4046 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4047 ice->state.draw_aux_usage[i]);
4048 } else {
4049 addr = use_null_fb_surface(batch, ice);
4050 }
4051 push_bt_entry(addr);
4052 }
4053 } else {
4054 uint32_t addr = use_null_fb_surface(batch, ice);
4055 push_bt_entry(addr);
4056 }
4057 }
4058
4059 #define foreach_surface_used(index, group) \
4060 bt_assert(group); \
4061 for (int index = 0; index < bt->sizes[group]; index++) \
4062 if (iris_group_index_to_bti(bt, group, index) != \
4063 IRIS_SURFACE_NOT_USED)
4064
4065 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4066 struct iris_sampler_view *view = shs->textures[i];
4067 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4068 : use_null_surface(batch, ice);
4069 push_bt_entry(addr);
4070 }
4071
4072 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4073 uint32_t addr = use_image(batch, ice, shs, i);
4074 push_bt_entry(addr);
4075 }
4076
4077 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4078 uint32_t addr;
4079
4080 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4081 if (ish->const_data) {
4082 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false);
4083 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4084 false);
4085 addr = ish->const_data_state.offset;
4086 } else {
4087 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4088 addr = use_null_surface(batch, ice);
4089 }
4090 } else {
4091 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4092 &shs->constbuf_surf_state[i], false);
4093 }
4094
4095 push_bt_entry(addr);
4096 }
4097
4098 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4099 uint32_t addr =
4100 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4101 shs->writable_ssbos & (1u << i));
4102 push_bt_entry(addr);
4103 }
4104
4105 #if 0
4106 /* XXX: YUV surfaces not implemented yet */
4107 bt_assert(plane_start[1], ...);
4108 bt_assert(plane_start[2], ...);
4109 #endif
4110 }
4111
4112 static void
4113 iris_use_optional_res(struct iris_batch *batch,
4114 struct pipe_resource *res,
4115 bool writeable)
4116 {
4117 if (res) {
4118 struct iris_bo *bo = iris_resource_bo(res);
4119 iris_use_pinned_bo(batch, bo, writeable);
4120 }
4121 }
4122
4123 static void
4124 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4125 struct pipe_surface *zsbuf,
4126 struct iris_depth_stencil_alpha_state *cso_zsa)
4127 {
4128 if (!zsbuf)
4129 return;
4130
4131 struct iris_resource *zres, *sres;
4132 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4133
4134 if (zres) {
4135 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled);
4136 if (zres->aux.bo) {
4137 iris_use_pinned_bo(batch, zres->aux.bo,
4138 cso_zsa->depth_writes_enabled);
4139 }
4140 }
4141
4142 if (sres) {
4143 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled);
4144 }
4145 }
4146
4147 /* ------------------------------------------------------------------- */
4148
4149 /**
4150 * Pin any BOs which were installed by a previous batch, and restored
4151 * via the hardware logical context mechanism.
4152 *
4153 * We don't need to re-emit all state every batch - the hardware context
4154 * mechanism will save and restore it for us. This includes pointers to
4155 * various BOs...which won't exist unless we ask the kernel to pin them
4156 * by adding them to the validation list.
4157 *
4158 * We can skip buffers if we've re-emitted those packets, as we're
4159 * overwriting those stale pointers with new ones, and don't actually
4160 * refer to the old BOs.
4161 */
4162 static void
4163 iris_restore_render_saved_bos(struct iris_context *ice,
4164 struct iris_batch *batch,
4165 const struct pipe_draw_info *draw)
4166 {
4167 struct iris_genx_state *genx = ice->state.genx;
4168
4169 const uint64_t clean = ~ice->state.dirty;
4170
4171 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4172 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
4173 }
4174
4175 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4176 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
4177 }
4178
4179 if (clean & IRIS_DIRTY_BLEND_STATE) {
4180 iris_use_optional_res(batch, ice->state.last_res.blend, false);
4181 }
4182
4183 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4184 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
4185 }
4186
4187 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4188 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
4189 }
4190
4191 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4192 for (int i = 0; i < 4; i++) {
4193 struct iris_stream_output_target *tgt =
4194 (void *) ice->state.so_target[i];
4195 if (tgt) {
4196 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4197 true);
4198 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4199 true);
4200 }
4201 }
4202 }
4203
4204 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4205 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4206 continue;
4207
4208 struct iris_shader_state *shs = &ice->state.shaders[stage];
4209 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4210
4211 if (!shader)
4212 continue;
4213
4214 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4215
4216 for (int i = 0; i < 4; i++) {
4217 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4218
4219 if (range->length == 0)
4220 continue;
4221
4222 /* Range block is a binding table index, map back to UBO index. */
4223 unsigned block_index = iris_bti_to_group_index(
4224 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4225 assert(block_index != IRIS_SURFACE_NOT_USED);
4226
4227 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4228 struct iris_resource *res = (void *) cbuf->buffer;
4229
4230 if (res)
4231 iris_use_pinned_bo(batch, res->bo, false);
4232 else
4233 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4234 }
4235 }
4236
4237 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4238 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4239 /* Re-pin any buffers referred to by the binding table. */
4240 iris_populate_binding_table(ice, batch, stage, true);
4241 }
4242 }
4243
4244 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4245 struct iris_shader_state *shs = &ice->state.shaders[stage];
4246 struct pipe_resource *res = shs->sampler_table.res;
4247 if (res)
4248 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4249 }
4250
4251 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4252 if (clean & (IRIS_DIRTY_VS << stage)) {
4253 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4254
4255 if (shader) {
4256 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4257 iris_use_pinned_bo(batch, bo, false);
4258
4259 struct brw_stage_prog_data *prog_data = shader->prog_data;
4260
4261 if (prog_data->total_scratch > 0) {
4262 struct iris_bo *bo =
4263 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4264 iris_use_pinned_bo(batch, bo, true);
4265 }
4266 }
4267 }
4268 }
4269
4270 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
4271 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4272 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4273 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4274 }
4275
4276 iris_use_optional_res(batch, ice->state.last_res.index_buffer, false);
4277
4278 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4279 uint64_t bound = ice->state.bound_vertex_buffers;
4280 while (bound) {
4281 const int i = u_bit_scan64(&bound);
4282 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4283 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4284 }
4285 }
4286 }
4287
4288 static void
4289 iris_restore_compute_saved_bos(struct iris_context *ice,
4290 struct iris_batch *batch,
4291 const struct pipe_grid_info *grid)
4292 {
4293 const uint64_t clean = ~ice->state.dirty;
4294
4295 const int stage = MESA_SHADER_COMPUTE;
4296 struct iris_shader_state *shs = &ice->state.shaders[stage];
4297
4298 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4299 /* Re-pin any buffers referred to by the binding table. */
4300 iris_populate_binding_table(ice, batch, stage, true);
4301 }
4302
4303 struct pipe_resource *sampler_res = shs->sampler_table.res;
4304 if (sampler_res)
4305 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4306
4307 if ((clean & IRIS_DIRTY_SAMPLER_STATES_CS) &&
4308 (clean & IRIS_DIRTY_BINDINGS_CS) &&
4309 (clean & IRIS_DIRTY_CONSTANTS_CS) &&
4310 (clean & IRIS_DIRTY_CS)) {
4311 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false);
4312 }
4313
4314 if (clean & IRIS_DIRTY_CS) {
4315 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4316
4317 if (shader) {
4318 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4319 iris_use_pinned_bo(batch, bo, false);
4320
4321 struct iris_bo *curbe_bo =
4322 iris_resource_bo(ice->state.last_res.cs_thread_ids);
4323 iris_use_pinned_bo(batch, curbe_bo, false);
4324
4325 struct brw_stage_prog_data *prog_data = shader->prog_data;
4326
4327 if (prog_data->total_scratch > 0) {
4328 struct iris_bo *bo =
4329 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4330 iris_use_pinned_bo(batch, bo, true);
4331 }
4332 }
4333 }
4334 }
4335
4336 /**
4337 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4338 */
4339 static void
4340 iris_update_surface_base_address(struct iris_batch *batch,
4341 struct iris_binder *binder)
4342 {
4343 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4344 return;
4345
4346 flush_for_state_base_change(batch);
4347
4348 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4349 sba.SurfaceStateMOCS = MOCS_WB;
4350 sba.SurfaceStateBaseAddressModifyEnable = true;
4351 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4352 }
4353
4354 batch->last_surface_base_address = binder->bo->gtt_offset;
4355 }
4356
4357 static void
4358 iris_upload_dirty_render_state(struct iris_context *ice,
4359 struct iris_batch *batch,
4360 const struct pipe_draw_info *draw)
4361 {
4362 const uint64_t dirty = ice->state.dirty;
4363
4364 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4365 return;
4366
4367 struct iris_genx_state *genx = ice->state.genx;
4368 struct iris_binder *binder = &ice->state.binder;
4369 struct brw_wm_prog_data *wm_prog_data = (void *)
4370 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4371
4372 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4373 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4374 uint32_t cc_vp_address;
4375
4376 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4377 uint32_t *cc_vp_map =
4378 stream_state(batch, ice->state.dynamic_uploader,
4379 &ice->state.last_res.cc_vp,
4380 4 * ice->state.num_viewports *
4381 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4382 for (int i = 0; i < ice->state.num_viewports; i++) {
4383 float zmin, zmax;
4384 util_viewport_zmin_zmax(&ice->state.viewports[i],
4385 cso_rast->clip_halfz, &zmin, &zmax);
4386 if (cso_rast->depth_clip_near)
4387 zmin = 0.0;
4388 if (cso_rast->depth_clip_far)
4389 zmax = 1.0;
4390
4391 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4392 ccv.MinimumDepth = zmin;
4393 ccv.MaximumDepth = zmax;
4394 }
4395
4396 cc_vp_map += GENX(CC_VIEWPORT_length);
4397 }
4398
4399 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4400 ptr.CCViewportPointer = cc_vp_address;
4401 }
4402 }
4403
4404 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4405 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4406 uint32_t sf_cl_vp_address;
4407 uint32_t *vp_map =
4408 stream_state(batch, ice->state.dynamic_uploader,
4409 &ice->state.last_res.sf_cl_vp,
4410 4 * ice->state.num_viewports *
4411 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4412
4413 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4414 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4415 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4416
4417 float vp_xmin = viewport_extent(state, 0, -1.0f);
4418 float vp_xmax = viewport_extent(state, 0, 1.0f);
4419 float vp_ymin = viewport_extent(state, 1, -1.0f);
4420 float vp_ymax = viewport_extent(state, 1, 1.0f);
4421
4422 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
4423 state->scale[0], state->scale[1],
4424 state->translate[0], state->translate[1],
4425 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4426
4427 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4428 vp.ViewportMatrixElementm00 = state->scale[0];
4429 vp.ViewportMatrixElementm11 = state->scale[1];
4430 vp.ViewportMatrixElementm22 = state->scale[2];
4431 vp.ViewportMatrixElementm30 = state->translate[0];
4432 vp.ViewportMatrixElementm31 = state->translate[1];
4433 vp.ViewportMatrixElementm32 = state->translate[2];
4434 vp.XMinClipGuardband = gb_xmin;
4435 vp.XMaxClipGuardband = gb_xmax;
4436 vp.YMinClipGuardband = gb_ymin;
4437 vp.YMaxClipGuardband = gb_ymax;
4438 vp.XMinViewPort = MAX2(vp_xmin, 0);
4439 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4440 vp.YMinViewPort = MAX2(vp_ymin, 0);
4441 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4442 }
4443
4444 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4445 }
4446
4447 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4448 ptr.SFClipViewportPointer = sf_cl_vp_address;
4449 }
4450 }
4451
4452 if (dirty & IRIS_DIRTY_URB) {
4453 unsigned size[4];
4454
4455 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
4456 if (!ice->shaders.prog[i]) {
4457 size[i] = 1;
4458 } else {
4459 struct brw_vue_prog_data *vue_prog_data =
4460 (void *) ice->shaders.prog[i]->prog_data;
4461 size[i] = vue_prog_data->urb_entry_size;
4462 }
4463 assert(size[i] != 0);
4464 }
4465
4466 genX(emit_urb_setup)(ice, batch, size,
4467 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
4468 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
4469 }
4470
4471 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4472 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4473 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4474 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4475 const int header_dwords = GENX(BLEND_STATE_length);
4476
4477 /* Always write at least one BLEND_STATE - the final RT message will
4478 * reference BLEND_STATE[0] even if there aren't color writes. There
4479 * may still be alpha testing, computed depth, and so on.
4480 */
4481 const int rt_dwords =
4482 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4483
4484 uint32_t blend_offset;
4485 uint32_t *blend_map =
4486 stream_state(batch, ice->state.dynamic_uploader,
4487 &ice->state.last_res.blend,
4488 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4489
4490 uint32_t blend_state_header;
4491 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4492 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4493 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4494 }
4495
4496 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4497 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4498
4499 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4500 ptr.BlendStatePointer = blend_offset;
4501 ptr.BlendStatePointerValid = true;
4502 }
4503 }
4504
4505 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4506 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4507 #if GEN_GEN == 8
4508 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4509 #endif
4510 uint32_t cc_offset;
4511 void *cc_map =
4512 stream_state(batch, ice->state.dynamic_uploader,
4513 &ice->state.last_res.color_calc,
4514 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4515 64, &cc_offset);
4516 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4517 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4518 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4519 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4520 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4521 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4522 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4523 #if GEN_GEN == 8
4524 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4525 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4526 #endif
4527 }
4528 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4529 ptr.ColorCalcStatePointer = cc_offset;
4530 ptr.ColorCalcStatePointerValid = true;
4531 }
4532 }
4533
4534 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4535 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4536 continue;
4537
4538 struct iris_shader_state *shs = &ice->state.shaders[stage];
4539 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4540
4541 if (!shader)
4542 continue;
4543
4544 if (shs->sysvals_need_upload)
4545 upload_sysvals(ice, stage);
4546
4547 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4548
4549 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4550 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4551 if (prog_data) {
4552 /* The Skylake PRM contains the following restriction:
4553 *
4554 * "The driver must ensure The following case does not occur
4555 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4556 * buffer 3 read length equal to zero committed followed by a
4557 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4558 * zero committed."
4559 *
4560 * To avoid this, we program the buffers in the highest slots.
4561 * This way, slot 0 is only used if slot 3 is also used.
4562 */
4563 int n = 3;
4564
4565 for (int i = 3; i >= 0; i--) {
4566 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4567
4568 if (range->length == 0)
4569 continue;
4570
4571 /* Range block is a binding table index, map back to UBO index. */
4572 unsigned block_index = iris_bti_to_group_index(
4573 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4574 assert(block_index != IRIS_SURFACE_NOT_USED);
4575
4576 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4577 struct iris_resource *res = (void *) cbuf->buffer;
4578
4579 assert(cbuf->buffer_offset % 32 == 0);
4580
4581 pkt.ConstantBody.ReadLength[n] = range->length;
4582 pkt.ConstantBody.Buffer[n] =
4583 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
4584 : ro_bo(batch->screen->workaround_bo, 0);
4585 n--;
4586 }
4587 }
4588 }
4589 }
4590
4591 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4592 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4593 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4594 ptr._3DCommandSubOpcode = 38 + stage;
4595 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4596 }
4597 }
4598 }
4599
4600 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4601 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4602 iris_populate_binding_table(ice, batch, stage, false);
4603 }
4604 }
4605
4606 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4607 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4608 !ice->shaders.prog[stage])
4609 continue;
4610
4611 iris_upload_sampler_states(ice, stage);
4612
4613 struct iris_shader_state *shs = &ice->state.shaders[stage];
4614 struct pipe_resource *res = shs->sampler_table.res;
4615 if (res)
4616 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4617
4618 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4619 ptr._3DCommandSubOpcode = 43 + stage;
4620 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4621 }
4622 }
4623
4624 if (ice->state.need_border_colors)
4625 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4626
4627 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4628 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4629 ms.PixelLocation =
4630 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4631 if (ice->state.framebuffer.samples > 0)
4632 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4633 }
4634 }
4635
4636 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4637 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4638 ms.SampleMask = ice->state.sample_mask;
4639 }
4640 }
4641
4642 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4643 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4644 continue;
4645
4646 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4647
4648 if (shader) {
4649 struct brw_stage_prog_data *prog_data = shader->prog_data;
4650 struct iris_resource *cache = (void *) shader->assembly.res;
4651 iris_use_pinned_bo(batch, cache->bo, false);
4652
4653 if (prog_data->total_scratch > 0) {
4654 struct iris_bo *bo =
4655 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4656 iris_use_pinned_bo(batch, bo, true);
4657 }
4658 #if GEN_GEN >= 9
4659 if (stage == MESA_SHADER_FRAGMENT && wm_prog_data->uses_sample_mask) {
4660 uint32_t *shader_ps = (uint32_t *) shader->derived_data;
4661 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
4662 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
4663 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
4664 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4665 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4666
4667 /* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say:
4668 *
4669 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16,
4670 * SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch
4671 * mode."
4672 *
4673 * 16x MSAA only exists on Gen9+, so we can skip this on Gen8.
4674 */
4675 iris_pack_command(GENX(3DSTATE_PS), &ps_state, ps) {
4676 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32 &&
4677 (cso_fb->samples != 16 || wm_prog_data->persample_dispatch);
4678 }
4679
4680 iris_pack_command(GENX(3DSTATE_PS_EXTRA), &psx_state, psx) {
4681 if (wm_prog_data->post_depth_coverage)
4682 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4683 else if (wm_prog_data->inner_coverage && cso->conservative_rasterization)
4684 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4685 else
4686 psx.InputCoverageMaskState = ICMS_NORMAL;
4687 }
4688
4689 iris_emit_merge(batch, shader_ps, ps_state,
4690 GENX(3DSTATE_PS_length));
4691 iris_emit_merge(batch,
4692 shader_psx,
4693 psx_state,
4694 GENX(3DSTATE_PS_EXTRA_length));
4695 } else
4696 #endif
4697 iris_batch_emit(batch, shader->derived_data,
4698 iris_derived_program_state_size(stage));
4699 } else {
4700 if (stage == MESA_SHADER_TESS_EVAL) {
4701 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4702 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4703 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4704 } else if (stage == MESA_SHADER_GEOMETRY) {
4705 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4706 }
4707 }
4708 }
4709
4710 if (ice->state.streamout_active) {
4711 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4712 iris_batch_emit(batch, genx->so_buffers,
4713 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4714 for (int i = 0; i < 4; i++) {
4715 struct iris_stream_output_target *tgt =
4716 (void *) ice->state.so_target[i];
4717 if (tgt) {
4718 tgt->zeroed = true;
4719 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4720 true);
4721 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4722 true);
4723 }
4724 }
4725 }
4726
4727 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4728 uint32_t *decl_list =
4729 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4730 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4731 }
4732
4733 if (dirty & IRIS_DIRTY_STREAMOUT) {
4734 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4735
4736 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4737 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4738 sol.SOFunctionEnable = true;
4739 sol.SOStatisticsEnable = true;
4740
4741 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4742 !ice->state.prims_generated_query_active;
4743 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4744 }
4745
4746 assert(ice->state.streamout);
4747
4748 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4749 GENX(3DSTATE_STREAMOUT_length));
4750 }
4751 } else {
4752 if (dirty & IRIS_DIRTY_STREAMOUT) {
4753 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4754 }
4755 }
4756
4757 if (dirty & IRIS_DIRTY_CLIP) {
4758 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4759 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4760
4761 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
4762 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4763 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
4764 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
4765 : ice->state.prim_is_points_or_lines);
4766
4767 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4768 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4769 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4770 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4771 : CLIPMODE_NORMAL;
4772 cl.ViewportXYClipTestEnable = !points_or_lines;
4773
4774 if (wm_prog_data->barycentric_interp_modes &
4775 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4776 cl.NonPerspectiveBarycentricEnable = true;
4777
4778 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4779 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4780 }
4781 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4782 ARRAY_SIZE(cso_rast->clip));
4783 }
4784
4785 if (dirty & IRIS_DIRTY_RASTER) {
4786 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4787 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4788 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4789
4790 }
4791
4792 if (dirty & IRIS_DIRTY_WM) {
4793 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4794 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4795
4796 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4797 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4798
4799 wm.BarycentricInterpolationMode =
4800 wm_prog_data->barycentric_interp_modes;
4801
4802 if (wm_prog_data->early_fragment_tests)
4803 wm.EarlyDepthStencilControl = EDSC_PREPS;
4804 else if (wm_prog_data->has_side_effects)
4805 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4806
4807 /* We could skip this bit if color writes are enabled. */
4808 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
4809 wm.ForceThreadDispatchEnable = ForceON;
4810 }
4811 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4812 }
4813
4814 if (dirty & IRIS_DIRTY_SBE) {
4815 iris_emit_sbe(batch, ice);
4816 }
4817
4818 if (dirty & IRIS_DIRTY_PS_BLEND) {
4819 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4820 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4821 const struct shader_info *fs_info =
4822 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4823
4824 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4825 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4826 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
4827 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4828
4829 /* The dual source blending docs caution against using SRC1 factors
4830 * when the shader doesn't use a dual source render target write.
4831 * Empirically, this can lead to GPU hangs, and the results are
4832 * undefined anyway, so simply disable blending to avoid the hang.
4833 */
4834 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
4835 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
4836 }
4837
4838 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4839 ARRAY_SIZE(cso_blend->ps_blend));
4840 }
4841
4842 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4843 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4844 #if GEN_GEN >= 9
4845 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4846 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4847 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4848 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4849 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4850 }
4851 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4852 #else
4853 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4854 #endif
4855 }
4856
4857 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4858 uint32_t scissor_offset =
4859 emit_state(batch, ice->state.dynamic_uploader,
4860 &ice->state.last_res.scissor,
4861 ice->state.scissors,
4862 sizeof(struct pipe_scissor_state) *
4863 ice->state.num_viewports, 32);
4864
4865 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4866 ptr.ScissorRectPointer = scissor_offset;
4867 }
4868 }
4869
4870 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4871 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4872
4873 /* Do not emit the clear params yets. We need to update the clear value
4874 * first.
4875 */
4876 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
4877 uint32_t cso_z_size = sizeof(cso_z->packets) - clear_length;
4878 iris_batch_emit(batch, cso_z->packets, cso_z_size);
4879
4880 union isl_color_value clear_value = { .f32 = { 0, } };
4881
4882 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4883 if (cso_fb->zsbuf) {
4884 struct iris_resource *zres, *sres;
4885 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4886 &zres, &sres);
4887 if (zres && zres->aux.bo)
4888 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
4889 }
4890
4891 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
4892 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
4893 clear.DepthClearValueValid = true;
4894 clear.DepthClearValue = clear_value.f32[0];
4895 }
4896 iris_batch_emit(batch, clear_params, clear_length);
4897 }
4898
4899 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4900 /* Listen for buffer changes, and also write enable changes. */
4901 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4902 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4903 }
4904
4905 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4906 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4907 for (int i = 0; i < 32; i++) {
4908 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4909 }
4910 }
4911 }
4912
4913 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4914 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4915 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4916 }
4917
4918 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4919 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4920 topo.PrimitiveTopologyType =
4921 translate_prim_type(draw->mode, draw->vertices_per_patch);
4922 }
4923 }
4924
4925 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4926 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4927 int dynamic_bound = ice->state.bound_vertex_buffers;
4928
4929 if (ice->state.vs_uses_draw_params) {
4930 if (ice->draw.draw_params_offset == 0) {
4931 u_upload_data(ice->ctx.stream_uploader, 0, sizeof(ice->draw.params),
4932 4, &ice->draw.params, &ice->draw.draw_params_offset,
4933 &ice->draw.draw_params_res);
4934 }
4935 assert(ice->draw.draw_params_res);
4936
4937 struct iris_vertex_buffer_state *state =
4938 &(ice->state.genx->vertex_buffers[count]);
4939 pipe_resource_reference(&state->resource, ice->draw.draw_params_res);
4940 struct iris_resource *res = (void *) state->resource;
4941
4942 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4943 vb.VertexBufferIndex = count;
4944 vb.AddressModifyEnable = true;
4945 vb.BufferPitch = 0;
4946 vb.BufferSize = res->bo->size - ice->draw.draw_params_offset;
4947 vb.BufferStartingAddress =
4948 ro_bo(NULL, res->bo->gtt_offset +
4949 (int) ice->draw.draw_params_offset);
4950 vb.MOCS = mocs(res->bo);
4951 }
4952 dynamic_bound |= 1ull << count;
4953 count++;
4954 }
4955
4956 if (ice->state.vs_uses_derived_draw_params) {
4957 u_upload_data(ice->ctx.stream_uploader, 0,
4958 sizeof(ice->draw.derived_params), 4,
4959 &ice->draw.derived_params,
4960 &ice->draw.derived_draw_params_offset,
4961 &ice->draw.derived_draw_params_res);
4962
4963 struct iris_vertex_buffer_state *state =
4964 &(ice->state.genx->vertex_buffers[count]);
4965 pipe_resource_reference(&state->resource,
4966 ice->draw.derived_draw_params_res);
4967 struct iris_resource *res = (void *) ice->draw.derived_draw_params_res;
4968
4969 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4970 vb.VertexBufferIndex = count;
4971 vb.AddressModifyEnable = true;
4972 vb.BufferPitch = 0;
4973 vb.BufferSize =
4974 res->bo->size - ice->draw.derived_draw_params_offset;
4975 vb.BufferStartingAddress =
4976 ro_bo(NULL, res->bo->gtt_offset +
4977 (int) ice->draw.derived_draw_params_offset);
4978 vb.MOCS = mocs(res->bo);
4979 }
4980 dynamic_bound |= 1ull << count;
4981 count++;
4982 }
4983
4984 if (count) {
4985 /* The VF cache designers cut corners, and made the cache key's
4986 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4987 * 32 bits of the address. If you have two vertex buffers which get
4988 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4989 * you can get collisions (even within a single batch).
4990 *
4991 * So, we need to do a VF cache invalidate if the buffer for a VB
4992 * slot slot changes [48:32] address bits from the previous time.
4993 */
4994 unsigned flush_flags = 0;
4995
4996 uint64_t bound = dynamic_bound;
4997 while (bound) {
4998 const int i = u_bit_scan64(&bound);
4999 uint16_t high_bits = 0;
5000
5001 struct iris_resource *res =
5002 (void *) genx->vertex_buffers[i].resource;
5003 if (res) {
5004 iris_use_pinned_bo(batch, res->bo, false);
5005
5006 high_bits = res->bo->gtt_offset >> 32ull;
5007 if (high_bits != ice->state.last_vbo_high_bits[i]) {
5008 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
5009 PIPE_CONTROL_CS_STALL;
5010 ice->state.last_vbo_high_bits[i] = high_bits;
5011 }
5012 }
5013 }
5014
5015 if (flush_flags) {
5016 iris_emit_pipe_control_flush(batch,
5017 "workaround: VF cache 32-bit key [VB]",
5018 flush_flags);
5019 }
5020
5021 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
5022
5023 uint32_t *map =
5024 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
5025 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
5026 vb.DWordLength = (vb_dwords * count + 1) - 2;
5027 }
5028 map += 1;
5029
5030 bound = dynamic_bound;
5031 while (bound) {
5032 const int i = u_bit_scan64(&bound);
5033 memcpy(map, genx->vertex_buffers[i].state,
5034 sizeof(uint32_t) * vb_dwords);
5035 map += vb_dwords;
5036 }
5037 }
5038 }
5039
5040 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
5041 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5042 const unsigned entries = MAX2(cso->count, 1);
5043 if (!(ice->state.vs_needs_sgvs_element ||
5044 ice->state.vs_uses_derived_draw_params ||
5045 ice->state.vs_needs_edge_flag)) {
5046 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
5047 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
5048 } else {
5049 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
5050 const unsigned dyn_count = cso->count +
5051 ice->state.vs_needs_sgvs_element +
5052 ice->state.vs_uses_derived_draw_params;
5053
5054 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
5055 &dynamic_ves, ve) {
5056 ve.DWordLength =
5057 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
5058 }
5059 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
5060 (cso->count - ice->state.vs_needs_edge_flag) *
5061 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
5062 uint32_t *ve_pack_dest =
5063 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
5064 GENX(VERTEX_ELEMENT_STATE_length)];
5065
5066 if (ice->state.vs_needs_sgvs_element) {
5067 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
5068 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
5069 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5070 ve.Valid = true;
5071 ve.VertexBufferIndex =
5072 util_bitcount64(ice->state.bound_vertex_buffers);
5073 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5074 ve.Component0Control = base_ctrl;
5075 ve.Component1Control = base_ctrl;
5076 ve.Component2Control = VFCOMP_STORE_0;
5077 ve.Component3Control = VFCOMP_STORE_0;
5078 }
5079 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5080 }
5081 if (ice->state.vs_uses_derived_draw_params) {
5082 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5083 ve.Valid = true;
5084 ve.VertexBufferIndex =
5085 util_bitcount64(ice->state.bound_vertex_buffers) +
5086 ice->state.vs_uses_draw_params;
5087 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5088 ve.Component0Control = VFCOMP_STORE_SRC;
5089 ve.Component1Control = VFCOMP_STORE_SRC;
5090 ve.Component2Control = VFCOMP_STORE_0;
5091 ve.Component3Control = VFCOMP_STORE_0;
5092 }
5093 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5094 }
5095 if (ice->state.vs_needs_edge_flag) {
5096 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
5097 ve_pack_dest[i] = cso->edgeflag_ve[i];
5098 }
5099
5100 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
5101 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
5102 }
5103
5104 if (!ice->state.vs_needs_edge_flag) {
5105 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
5106 entries * GENX(3DSTATE_VF_INSTANCING_length));
5107 } else {
5108 assert(cso->count > 0);
5109 const unsigned edgeflag_index = cso->count - 1;
5110 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
5111 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
5112 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
5113
5114 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
5115 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
5116 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
5117 vi.VertexElementIndex = edgeflag_index +
5118 ice->state.vs_needs_sgvs_element +
5119 ice->state.vs_uses_derived_draw_params;
5120 }
5121 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
5122 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
5123
5124 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
5125 entries * GENX(3DSTATE_VF_INSTANCING_length));
5126 }
5127 }
5128
5129 if (dirty & IRIS_DIRTY_VF_SGVS) {
5130 const struct brw_vs_prog_data *vs_prog_data = (void *)
5131 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
5132 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5133
5134 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
5135 if (vs_prog_data->uses_vertexid) {
5136 sgv.VertexIDEnable = true;
5137 sgv.VertexIDComponentNumber = 2;
5138 sgv.VertexIDElementOffset =
5139 cso->count - ice->state.vs_needs_edge_flag;
5140 }
5141
5142 if (vs_prog_data->uses_instanceid) {
5143 sgv.InstanceIDEnable = true;
5144 sgv.InstanceIDComponentNumber = 3;
5145 sgv.InstanceIDElementOffset =
5146 cso->count - ice->state.vs_needs_edge_flag;
5147 }
5148 }
5149 }
5150
5151 if (dirty & IRIS_DIRTY_VF) {
5152 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
5153 if (draw->primitive_restart) {
5154 vf.IndexedDrawCutIndexEnable = true;
5155 vf.CutIndex = draw->restart_index;
5156 }
5157 }
5158 }
5159
5160 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
5161 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
5162 vf.StatisticsEnable = true;
5163 }
5164 }
5165
5166 /* TODO: Gen8 PMA fix */
5167 }
5168
5169 static void
5170 iris_upload_render_state(struct iris_context *ice,
5171 struct iris_batch *batch,
5172 const struct pipe_draw_info *draw)
5173 {
5174 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5175
5176 /* Always pin the binder. If we're emitting new binding table pointers,
5177 * we need it. If not, we're probably inheriting old tables via the
5178 * context, and need it anyway. Since true zero-bindings cases are
5179 * practically non-existent, just pin it and avoid last_res tracking.
5180 */
5181 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5182
5183 if (!batch->contains_draw) {
5184 iris_restore_render_saved_bos(ice, batch, draw);
5185 batch->contains_draw = true;
5186 }
5187
5188 iris_upload_dirty_render_state(ice, batch, draw);
5189
5190 if (draw->index_size > 0) {
5191 unsigned offset;
5192
5193 if (draw->has_user_indices) {
5194 u_upload_data(ice->ctx.stream_uploader, 0,
5195 draw->count * draw->index_size, 4, draw->index.user,
5196 &offset, &ice->state.last_res.index_buffer);
5197 } else {
5198 struct iris_resource *res = (void *) draw->index.resource;
5199 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
5200
5201 pipe_resource_reference(&ice->state.last_res.index_buffer,
5202 draw->index.resource);
5203 offset = 0;
5204 }
5205
5206 struct iris_genx_state *genx = ice->state.genx;
5207 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
5208
5209 uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
5210 iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
5211 ib.IndexFormat = draw->index_size >> 1;
5212 ib.MOCS = mocs(bo);
5213 ib.BufferSize = bo->size - offset;
5214 ib.BufferStartingAddress = ro_bo(NULL, bo->gtt_offset + offset);
5215 }
5216
5217 if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
5218 memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
5219 iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
5220 iris_use_pinned_bo(batch, bo, false);
5221 }
5222
5223 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
5224 uint16_t high_bits = bo->gtt_offset >> 32ull;
5225 if (high_bits != ice->state.last_index_bo_high_bits) {
5226 iris_emit_pipe_control_flush(batch,
5227 "workaround: VF cache 32-bit key [IB]",
5228 PIPE_CONTROL_VF_CACHE_INVALIDATE |
5229 PIPE_CONTROL_CS_STALL);
5230 ice->state.last_index_bo_high_bits = high_bits;
5231 }
5232 }
5233
5234 #define _3DPRIM_END_OFFSET 0x2420
5235 #define _3DPRIM_START_VERTEX 0x2430
5236 #define _3DPRIM_VERTEX_COUNT 0x2434
5237 #define _3DPRIM_INSTANCE_COUNT 0x2438
5238 #define _3DPRIM_START_INSTANCE 0x243C
5239 #define _3DPRIM_BASE_VERTEX 0x2440
5240
5241 if (draw->indirect) {
5242 if (draw->indirect->indirect_draw_count) {
5243 use_predicate = true;
5244
5245 struct iris_bo *draw_count_bo =
5246 iris_resource_bo(draw->indirect->indirect_draw_count);
5247 unsigned draw_count_offset =
5248 draw->indirect->indirect_draw_count_offset;
5249
5250 iris_emit_pipe_control_flush(batch,
5251 "ensure indirect draw buffer is flushed",
5252 PIPE_CONTROL_FLUSH_ENABLE);
5253
5254 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
5255 struct gen_mi_builder b;
5256 gen_mi_builder_init(&b, batch);
5257
5258 /* comparison = draw id < draw count */
5259 struct gen_mi_value comparison =
5260 gen_mi_ult(&b, gen_mi_imm(draw->drawid),
5261 gen_mi_mem32(ro_bo(draw_count_bo,
5262 draw_count_offset)));
5263
5264 /* predicate = comparison & conditional rendering predicate */
5265 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_RESULT),
5266 gen_mi_iand(&b, comparison,
5267 gen_mi_reg32(CS_GPR(15))));
5268 } else {
5269 uint32_t mi_predicate;
5270
5271 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
5272 ice->vtbl.load_register_imm64(batch, MI_PREDICATE_SRC1,
5273 draw->drawid);
5274 /* Upload the current draw count from the draw parameters buffer
5275 * to MI_PREDICATE_SRC0.
5276 */
5277 ice->vtbl.load_register_mem32(batch, MI_PREDICATE_SRC0,
5278 draw_count_bo, draw_count_offset);
5279 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
5280 ice->vtbl.load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
5281
5282 if (draw->drawid == 0) {
5283 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
5284 MI_PREDICATE_COMBINEOP_SET |
5285 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5286 } else {
5287 /* While draw_index < draw_count the predicate's result will be
5288 * (draw_index == draw_count) ^ TRUE = TRUE
5289 * When draw_index == draw_count the result is
5290 * (TRUE) ^ TRUE = FALSE
5291 * After this all results will be:
5292 * (FALSE) ^ FALSE = FALSE
5293 */
5294 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
5295 MI_PREDICATE_COMBINEOP_XOR |
5296 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5297 }
5298 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
5299 }
5300 }
5301 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
5302 assert(bo);
5303
5304 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5305 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
5306 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
5307 }
5308 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5309 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
5310 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
5311 }
5312 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5313 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
5314 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
5315 }
5316 if (draw->index_size) {
5317 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5318 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5319 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5320 }
5321 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5322 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5323 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5324 }
5325 } else {
5326 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5327 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5328 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5329 }
5330 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5331 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5332 lri.DataDWord = 0;
5333 }
5334 }
5335 } else if (draw->count_from_stream_output) {
5336 struct iris_stream_output_target *so =
5337 (void *) draw->count_from_stream_output;
5338
5339 /* XXX: Replace with actual cache tracking */
5340 iris_emit_pipe_control_flush(batch,
5341 "draw count from stream output stall",
5342 PIPE_CONTROL_CS_STALL);
5343
5344 struct gen_mi_builder b;
5345 gen_mi_builder_init(&b, batch);
5346
5347 struct iris_address addr =
5348 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5349 struct gen_mi_value offset =
5350 gen_mi_iadd_imm(&b, gen_mi_mem32(addr), -so->base.buffer_offset);
5351
5352 gen_mi_store(&b, gen_mi_reg32(_3DPRIM_VERTEX_COUNT),
5353 gen_mi_udiv32_imm(&b, offset, so->stride));
5354
5355 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5356 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5357 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5358 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5359 }
5360
5361 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5362 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5363 prim.PredicateEnable = use_predicate;
5364
5365 if (draw->indirect || draw->count_from_stream_output) {
5366 prim.IndirectParameterEnable = true;
5367 } else {
5368 prim.StartInstanceLocation = draw->start_instance;
5369 prim.InstanceCount = draw->instance_count;
5370 prim.VertexCountPerInstance = draw->count;
5371
5372 prim.StartVertexLocation = draw->start;
5373
5374 if (draw->index_size) {
5375 prim.BaseVertexLocation += draw->index_bias;
5376 } else {
5377 prim.StartVertexLocation += draw->index_bias;
5378 }
5379 }
5380 }
5381 }
5382
5383 static void
5384 iris_upload_compute_state(struct iris_context *ice,
5385 struct iris_batch *batch,
5386 const struct pipe_grid_info *grid)
5387 {
5388 const uint64_t dirty = ice->state.dirty;
5389 struct iris_screen *screen = batch->screen;
5390 const struct gen_device_info *devinfo = &screen->devinfo;
5391 struct iris_binder *binder = &ice->state.binder;
5392 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5393 struct iris_compiled_shader *shader =
5394 ice->shaders.prog[MESA_SHADER_COMPUTE];
5395 struct brw_stage_prog_data *prog_data = shader->prog_data;
5396 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5397
5398 /* Always pin the binder. If we're emitting new binding table pointers,
5399 * we need it. If not, we're probably inheriting old tables via the
5400 * context, and need it anyway. Since true zero-bindings cases are
5401 * practically non-existent, just pin it and avoid last_res tracking.
5402 */
5403 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5404
5405 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->sysvals_need_upload)
5406 upload_sysvals(ice, MESA_SHADER_COMPUTE);
5407
5408 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5409 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5410
5411 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
5412 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
5413
5414 iris_use_optional_res(batch, shs->sampler_table.res, false);
5415 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5416
5417 if (ice->state.need_border_colors)
5418 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5419
5420 if (dirty & IRIS_DIRTY_CS) {
5421 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5422 *
5423 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5424 * the only bits that are changed are scoreboard related: Scoreboard
5425 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5426 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5427 * sufficient."
5428 */
5429 iris_emit_pipe_control_flush(batch,
5430 "workaround: stall before MEDIA_VFE_STATE",
5431 PIPE_CONTROL_CS_STALL);
5432
5433 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5434 if (prog_data->total_scratch) {
5435 struct iris_bo *bo =
5436 iris_get_scratch_space(ice, prog_data->total_scratch,
5437 MESA_SHADER_COMPUTE);
5438 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5439 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5440 }
5441
5442 vfe.MaximumNumberofThreads =
5443 devinfo->max_cs_threads * screen->subslice_total - 1;
5444 #if GEN_GEN < 11
5445 vfe.ResetGatewayTimer =
5446 Resettingrelativetimerandlatchingtheglobaltimestamp;
5447 #endif
5448 #if GEN_GEN == 8
5449 vfe.BypassGatewayControl = true;
5450 #endif
5451 vfe.NumberofURBEntries = 2;
5452 vfe.URBEntryAllocationSize = 2;
5453
5454 vfe.CURBEAllocationSize =
5455 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5456 cs_prog_data->push.cross_thread.regs, 2);
5457 }
5458 }
5459
5460 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5461 if (dirty & IRIS_DIRTY_CS) {
5462 uint32_t curbe_data_offset = 0;
5463 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5464 cs_prog_data->push.per_thread.dwords == 1 &&
5465 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5466 uint32_t *curbe_data_map =
5467 stream_state(batch, ice->state.dynamic_uploader,
5468 &ice->state.last_res.cs_thread_ids,
5469 ALIGN(cs_prog_data->push.total.size, 64), 64,
5470 &curbe_data_offset);
5471 assert(curbe_data_map);
5472 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5473 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5474
5475 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5476 curbe.CURBETotalDataLength =
5477 ALIGN(cs_prog_data->push.total.size, 64);
5478 curbe.CURBEDataStartAddress = curbe_data_offset;
5479 }
5480 }
5481
5482 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5483 IRIS_DIRTY_BINDINGS_CS |
5484 IRIS_DIRTY_CONSTANTS_CS |
5485 IRIS_DIRTY_CS)) {
5486 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5487
5488 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5489 idd.SamplerStatePointer = shs->sampler_table.offset;
5490 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5491 }
5492
5493 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5494 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5495
5496 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5497 load.InterfaceDescriptorTotalLength =
5498 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5499 load.InterfaceDescriptorDataStartAddress =
5500 emit_state(batch, ice->state.dynamic_uploader,
5501 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
5502 }
5503 }
5504
5505 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5506 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5507 uint32_t right_mask;
5508
5509 if (remainder > 0)
5510 right_mask = ~0u >> (32 - remainder);
5511 else
5512 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5513
5514 #define GPGPU_DISPATCHDIMX 0x2500
5515 #define GPGPU_DISPATCHDIMY 0x2504
5516 #define GPGPU_DISPATCHDIMZ 0x2508
5517
5518 if (grid->indirect) {
5519 struct iris_state_ref *grid_size = &ice->state.grid_size;
5520 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5521 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5522 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5523 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5524 }
5525 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5526 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5527 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5528 }
5529 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5530 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5531 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5532 }
5533 }
5534
5535 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5536 ggw.IndirectParameterEnable = grid->indirect != NULL;
5537 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5538 ggw.ThreadDepthCounterMaximum = 0;
5539 ggw.ThreadHeightCounterMaximum = 0;
5540 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5541 ggw.ThreadGroupIDXDimension = grid->grid[0];
5542 ggw.ThreadGroupIDYDimension = grid->grid[1];
5543 ggw.ThreadGroupIDZDimension = grid->grid[2];
5544 ggw.RightExecutionMask = right_mask;
5545 ggw.BottomExecutionMask = 0xffffffff;
5546 }
5547
5548 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5549
5550 if (!batch->contains_draw) {
5551 iris_restore_compute_saved_bos(ice, batch, grid);
5552 batch->contains_draw = true;
5553 }
5554 }
5555
5556 /**
5557 * State module teardown.
5558 */
5559 static void
5560 iris_destroy_state(struct iris_context *ice)
5561 {
5562 struct iris_genx_state *genx = ice->state.genx;
5563
5564 pipe_resource_reference(&ice->draw.draw_params_res, NULL);
5565 pipe_resource_reference(&ice->draw.derived_draw_params_res, NULL);
5566
5567 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5568 while (bound_vbs) {
5569 const int i = u_bit_scan64(&bound_vbs);
5570 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5571 }
5572 free(ice->state.genx);
5573
5574 for (int i = 0; i < 4; i++) {
5575 pipe_so_target_reference(&ice->state.so_target[i], NULL);
5576 }
5577
5578 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5579 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5580 }
5581 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5582
5583 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5584 struct iris_shader_state *shs = &ice->state.shaders[stage];
5585 pipe_resource_reference(&shs->sampler_table.res, NULL);
5586 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5587 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
5588 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
5589 }
5590 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5591 pipe_resource_reference(&shs->image[i].base.resource, NULL);
5592 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5593 }
5594 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5595 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
5596 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
5597 }
5598 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5599 pipe_sampler_view_reference((struct pipe_sampler_view **)
5600 &shs->textures[i], NULL);
5601 }
5602 }
5603
5604 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5605 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5606
5607 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5608 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5609
5610 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5611 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5612 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5613 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5614 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5615 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5616 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
5617 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
5618 }
5619
5620 /* ------------------------------------------------------------------- */
5621
5622 static void
5623 iris_rebind_buffer(struct iris_context *ice,
5624 struct iris_resource *res,
5625 uint64_t old_address)
5626 {
5627 struct pipe_context *ctx = &ice->ctx;
5628 struct iris_screen *screen = (void *) ctx->screen;
5629 struct iris_genx_state *genx = ice->state.genx;
5630
5631 assert(res->base.target == PIPE_BUFFER);
5632
5633 /* Buffers can't be framebuffer attachments, nor display related,
5634 * and we don't have upstream Clover support.
5635 */
5636 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
5637 PIPE_BIND_RENDER_TARGET |
5638 PIPE_BIND_BLENDABLE |
5639 PIPE_BIND_DISPLAY_TARGET |
5640 PIPE_BIND_CURSOR |
5641 PIPE_BIND_COMPUTE_RESOURCE |
5642 PIPE_BIND_GLOBAL)));
5643
5644 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
5645 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5646 while (bound_vbs) {
5647 const int i = u_bit_scan64(&bound_vbs);
5648 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
5649
5650 /* Update the CPU struct */
5651 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
5652 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
5653 uint64_t *addr = (uint64_t *) &state->state[1];
5654
5655 if (*addr == old_address) {
5656 *addr = res->bo->gtt_offset;
5657 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
5658 }
5659 }
5660 }
5661
5662 /* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
5663 * the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
5664 *
5665 * There is also no need to handle these:
5666 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
5667 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
5668 */
5669
5670 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
5671 /* XXX: be careful about resetting vs appending... */
5672 assert(false);
5673 }
5674
5675 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
5676 struct iris_shader_state *shs = &ice->state.shaders[s];
5677 enum pipe_shader_type p_stage = stage_to_pipe(s);
5678
5679 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
5680 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
5681 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
5682 while (bound_cbufs) {
5683 const int i = u_bit_scan(&bound_cbufs);
5684 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
5685 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
5686
5687 if (res->bo == iris_resource_bo(cbuf->buffer)) {
5688 iris_upload_ubo_ssbo_surf_state(ice, cbuf, surf_state, false);
5689 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << s;
5690 }
5691 }
5692 }
5693
5694 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
5695 uint32_t bound_ssbos = shs->bound_ssbos;
5696 while (bound_ssbos) {
5697 const int i = u_bit_scan(&bound_ssbos);
5698 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
5699
5700 if (res->bo == iris_resource_bo(ssbo->buffer)) {
5701 struct pipe_shader_buffer buf = {
5702 .buffer = &res->base,
5703 .buffer_offset = ssbo->buffer_offset,
5704 .buffer_size = ssbo->buffer_size,
5705 };
5706 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
5707 (shs->writable_ssbos >> i) & 1);
5708 }
5709 }
5710 }
5711
5712 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
5713 uint32_t bound_sampler_views = shs->bound_sampler_views;
5714 while (bound_sampler_views) {
5715 const int i = u_bit_scan(&bound_sampler_views);
5716 struct iris_sampler_view *isv = shs->textures[i];
5717
5718 if (res->bo == iris_resource_bo(isv->base.texture)) {
5719 void *map = alloc_surface_states(ice->state.surface_uploader,
5720 &isv->surface_state,
5721 isv->res->aux.sampler_usages);
5722 assert(map);
5723 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
5724 isv->view.format, isv->view.swizzle,
5725 isv->base.u.buf.offset,
5726 isv->base.u.buf.size);
5727 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
5728 }
5729 }
5730 }
5731
5732 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
5733 uint32_t bound_image_views = shs->bound_image_views;
5734 while (bound_image_views) {
5735 const int i = u_bit_scan(&bound_image_views);
5736 struct iris_image_view *iv = &shs->image[i];
5737
5738 if (res->bo == iris_resource_bo(iv->base.resource)) {
5739 iris_set_shader_images(ctx, p_stage, i, 1, &iv->base);
5740 }
5741 }
5742 }
5743 }
5744 }
5745
5746 /* ------------------------------------------------------------------- */
5747
5748 static void
5749 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
5750 uint32_t src)
5751 {
5752 _iris_emit_lrr(batch, dst, src);
5753 }
5754
5755 static void
5756 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
5757 uint32_t src)
5758 {
5759 _iris_emit_lrr(batch, dst, src);
5760 _iris_emit_lrr(batch, dst + 4, src + 4);
5761 }
5762
5763 static void
5764 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5765 uint32_t val)
5766 {
5767 _iris_emit_lri(batch, reg, val);
5768 }
5769
5770 static void
5771 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5772 uint64_t val)
5773 {
5774 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5775 _iris_emit_lri(batch, reg + 4, val >> 32);
5776 }
5777
5778 /**
5779 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5780 */
5781 static void
5782 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5783 struct iris_bo *bo, uint32_t offset)
5784 {
5785 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5786 lrm.RegisterAddress = reg;
5787 lrm.MemoryAddress = ro_bo(bo, offset);
5788 }
5789 }
5790
5791 /**
5792 * Load a 64-bit value from a buffer into a MMIO register via
5793 * two MI_LOAD_REGISTER_MEM commands.
5794 */
5795 static void
5796 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5797 struct iris_bo *bo, uint32_t offset)
5798 {
5799 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5800 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5801 }
5802
5803 static void
5804 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5805 struct iris_bo *bo, uint32_t offset,
5806 bool predicated)
5807 {
5808 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5809 srm.RegisterAddress = reg;
5810 srm.MemoryAddress = rw_bo(bo, offset);
5811 srm.PredicateEnable = predicated;
5812 }
5813 }
5814
5815 static void
5816 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5817 struct iris_bo *bo, uint32_t offset,
5818 bool predicated)
5819 {
5820 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5821 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5822 }
5823
5824 static void
5825 iris_store_data_imm32(struct iris_batch *batch,
5826 struct iris_bo *bo, uint32_t offset,
5827 uint32_t imm)
5828 {
5829 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5830 sdi.Address = rw_bo(bo, offset);
5831 sdi.ImmediateData = imm;
5832 }
5833 }
5834
5835 static void
5836 iris_store_data_imm64(struct iris_batch *batch,
5837 struct iris_bo *bo, uint32_t offset,
5838 uint64_t imm)
5839 {
5840 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5841 * 2 in genxml but it's actually variable length and we need 5 DWords.
5842 */
5843 void *map = iris_get_command_space(batch, 4 * 5);
5844 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5845 sdi.DWordLength = 5 - 2;
5846 sdi.Address = rw_bo(bo, offset);
5847 sdi.ImmediateData = imm;
5848 }
5849 }
5850
5851 static void
5852 iris_copy_mem_mem(struct iris_batch *batch,
5853 struct iris_bo *dst_bo, uint32_t dst_offset,
5854 struct iris_bo *src_bo, uint32_t src_offset,
5855 unsigned bytes)
5856 {
5857 /* MI_COPY_MEM_MEM operates on DWords. */
5858 assert(bytes % 4 == 0);
5859 assert(dst_offset % 4 == 0);
5860 assert(src_offset % 4 == 0);
5861
5862 for (unsigned i = 0; i < bytes; i += 4) {
5863 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5864 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5865 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5866 }
5867 }
5868 }
5869
5870 /* ------------------------------------------------------------------- */
5871
5872 static unsigned
5873 flags_to_post_sync_op(uint32_t flags)
5874 {
5875 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5876 return WriteImmediateData;
5877
5878 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5879 return WritePSDepthCount;
5880
5881 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5882 return WriteTimestamp;
5883
5884 return 0;
5885 }
5886
5887 /**
5888 * Do the given flags have a Post Sync or LRI Post Sync operation?
5889 */
5890 static enum pipe_control_flags
5891 get_post_sync_flags(enum pipe_control_flags flags)
5892 {
5893 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5894 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5895 PIPE_CONTROL_WRITE_TIMESTAMP |
5896 PIPE_CONTROL_LRI_POST_SYNC_OP;
5897
5898 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5899 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5900 */
5901 assert(util_bitcount(flags) <= 1);
5902
5903 return flags;
5904 }
5905
5906 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5907
5908 /**
5909 * Emit a series of PIPE_CONTROL commands, taking into account any
5910 * workarounds necessary to actually accomplish the caller's request.
5911 *
5912 * Unless otherwise noted, spec quotations in this function come from:
5913 *
5914 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5915 * Restrictions for PIPE_CONTROL.
5916 *
5917 * You should not use this function directly. Use the helpers in
5918 * iris_pipe_control.c instead, which may split the pipe control further.
5919 */
5920 static void
5921 iris_emit_raw_pipe_control(struct iris_batch *batch,
5922 const char *reason,
5923 uint32_t flags,
5924 struct iris_bo *bo,
5925 uint32_t offset,
5926 uint64_t imm)
5927 {
5928 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5929 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5930 enum pipe_control_flags non_lri_post_sync_flags =
5931 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5932
5933 /* Recursive PIPE_CONTROL workarounds --------------------------------
5934 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5935 *
5936 * We do these first because we want to look at the original operation,
5937 * rather than any workarounds we set.
5938 */
5939 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5940 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5941 * lists several workarounds:
5942 *
5943 * "Project: SKL, KBL, BXT
5944 *
5945 * If the VF Cache Invalidation Enable is set to a 1 in a
5946 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5947 * sets to 0, with the VF Cache Invalidation Enable set to 0
5948 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5949 * Invalidation Enable set to a 1."
5950 */
5951 iris_emit_raw_pipe_control(batch,
5952 "workaround: recursive VF cache invalidate",
5953 0, NULL, 0, 0);
5954 }
5955
5956 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5957 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5958 *
5959 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5960 * programmed prior to programming a PIPECONTROL command with "LRI
5961 * Post Sync Operation" in GPGPU mode of operation (i.e when
5962 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5963 *
5964 * The same text exists a few rows below for Post Sync Op.
5965 */
5966 iris_emit_raw_pipe_control(batch,
5967 "workaround: CS stall before gpgpu post-sync",
5968 PIPE_CONTROL_CS_STALL, bo, offset, imm);
5969 }
5970
5971 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5972 /* Cannonlake:
5973 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5974 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5975 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5976 */
5977 iris_emit_raw_pipe_control(batch,
5978 "workaround: PC flush before RT flush",
5979 PIPE_CONTROL_FLUSH_ENABLE, bo, offset, imm);
5980 }
5981
5982 /* "Flush Types" workarounds ---------------------------------------------
5983 * We do these now because they may add post-sync operations or CS stalls.
5984 */
5985
5986 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5987 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5988 *
5989 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5990 * 'Write PS Depth Count' or 'Write Timestamp'."
5991 */
5992 if (!bo) {
5993 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5994 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5995 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5996 bo = batch->screen->workaround_bo;
5997 }
5998 }
5999
6000 /* #1130 from Gen10 workarounds page:
6001 *
6002 * "Enable Depth Stall on every Post Sync Op if Render target Cache
6003 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
6004 * board stall if Render target cache flush is enabled."
6005 *
6006 * Applicable to CNL B0 and C0 steppings only.
6007 *
6008 * The wording here is unclear, and this workaround doesn't look anything
6009 * like the internal bug report recommendations, but leave it be for now...
6010 */
6011 if (GEN_GEN == 10) {
6012 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
6013 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6014 } else if (flags & non_lri_post_sync_flags) {
6015 flags |= PIPE_CONTROL_DEPTH_STALL;
6016 }
6017 }
6018
6019 if (flags & PIPE_CONTROL_DEPTH_STALL) {
6020 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
6021 *
6022 * "This bit must be DISABLED for operations other than writing
6023 * PS_DEPTH_COUNT."
6024 *
6025 * This seems like nonsense. An Ivybridge workaround requires us to
6026 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
6027 * operation. Gen8+ requires us to emit depth stalls and depth cache
6028 * flushes together. So, it's hard to imagine this means anything other
6029 * than "we originally intended this to be used for PS_DEPTH_COUNT".
6030 *
6031 * We ignore the supposed restriction and do nothing.
6032 */
6033 }
6034
6035 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
6036 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6037 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
6038 *
6039 * "This bit must be DISABLED for End-of-pipe (Read) fences,
6040 * PS_DEPTH_COUNT or TIMESTAMP queries."
6041 *
6042 * TODO: Implement end-of-pipe checking.
6043 */
6044 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
6045 PIPE_CONTROL_WRITE_TIMESTAMP)));
6046 }
6047
6048 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6049 /* From the PIPE_CONTROL instruction table, bit 1:
6050 *
6051 * "This bit is ignored if Depth Stall Enable is set.
6052 * Further, the render cache is not flushed even if Write Cache
6053 * Flush Enable bit is set."
6054 *
6055 * We assert that the caller doesn't do this combination, to try and
6056 * prevent mistakes. It shouldn't hurt the GPU, though.
6057 *
6058 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
6059 * and "Render Target Flush" combo is explicitly required for BTI
6060 * update workarounds.
6061 */
6062 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
6063 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
6064 }
6065
6066 /* PIPE_CONTROL page workarounds ------------------------------------- */
6067
6068 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
6069 /* From the PIPE_CONTROL page itself:
6070 *
6071 * "IVB, HSW, BDW
6072 * Restriction: Pipe_control with CS-stall bit set must be issued
6073 * before a pipe-control command that has the State Cache
6074 * Invalidate bit set."
6075 */
6076 flags |= PIPE_CONTROL_CS_STALL;
6077 }
6078
6079 if (flags & PIPE_CONTROL_FLUSH_LLC) {
6080 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
6081 *
6082 * "Project: ALL
6083 * SW must always program Post-Sync Operation to "Write Immediate
6084 * Data" when Flush LLC is set."
6085 *
6086 * For now, we just require the caller to do it.
6087 */
6088 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
6089 }
6090
6091 /* "Post-Sync Operation" workarounds -------------------------------- */
6092
6093 /* Project: All / Argument: Global Snapshot Count Reset [19]
6094 *
6095 * "This bit must not be exercised on any product.
6096 * Requires stall bit ([20] of DW1) set."
6097 *
6098 * We don't use this, so we just assert that it isn't used. The
6099 * PIPE_CONTROL instruction page indicates that they intended this
6100 * as a debug feature and don't think it is useful in production,
6101 * but it may actually be usable, should we ever want to.
6102 */
6103 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
6104
6105 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
6106 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
6107 /* Project: All / Arguments:
6108 *
6109 * - Generic Media State Clear [16]
6110 * - Indirect State Pointers Disable [16]
6111 *
6112 * "Requires stall bit ([20] of DW1) set."
6113 *
6114 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
6115 * State Clear) says:
6116 *
6117 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6118 * programmed prior to programming a PIPECONTROL command with "Media
6119 * State Clear" set in GPGPU mode of operation"
6120 *
6121 * This is a subset of the earlier rule, so there's nothing to do.
6122 */
6123 flags |= PIPE_CONTROL_CS_STALL;
6124 }
6125
6126 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
6127 /* Project: All / Argument: Store Data Index
6128 *
6129 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6130 * than '0'."
6131 *
6132 * For now, we just assert that the caller does this. We might want to
6133 * automatically add a write to the workaround BO...
6134 */
6135 assert(non_lri_post_sync_flags != 0);
6136 }
6137
6138 if (flags & PIPE_CONTROL_SYNC_GFDT) {
6139 /* Project: All / Argument: Sync GFDT
6140 *
6141 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6142 * than '0' or 0x2520[13] must be set."
6143 *
6144 * For now, we just assert that the caller does this.
6145 */
6146 assert(non_lri_post_sync_flags != 0);
6147 }
6148
6149 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
6150 /* Project: IVB+ / Argument: TLB inv
6151 *
6152 * "Requires stall bit ([20] of DW1) set."
6153 *
6154 * Also, from the PIPE_CONTROL instruction table:
6155 *
6156 * "Project: SKL+
6157 * Post Sync Operation or CS stall must be set to ensure a TLB
6158 * invalidation occurs. Otherwise no cycle will occur to the TLB
6159 * cache to invalidate."
6160 *
6161 * This is not a subset of the earlier rule, so there's nothing to do.
6162 */
6163 flags |= PIPE_CONTROL_CS_STALL;
6164 }
6165
6166 if (GEN_GEN == 9 && devinfo->gt == 4) {
6167 /* TODO: The big Skylake GT4 post sync op workaround */
6168 }
6169
6170 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
6171
6172 if (IS_COMPUTE_PIPELINE(batch)) {
6173 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
6174 /* Project: SKL+ / Argument: Tex Invalidate
6175 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
6176 */
6177 flags |= PIPE_CONTROL_CS_STALL;
6178 }
6179
6180 if (GEN_GEN == 8 && (post_sync_flags ||
6181 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
6182 PIPE_CONTROL_DEPTH_STALL |
6183 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6184 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6185 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
6186 /* Project: BDW / Arguments:
6187 *
6188 * - LRI Post Sync Operation [23]
6189 * - Post Sync Op [15:14]
6190 * - Notify En [8]
6191 * - Depth Stall [13]
6192 * - Render Target Cache Flush [12]
6193 * - Depth Cache Flush [0]
6194 * - DC Flush Enable [5]
6195 *
6196 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
6197 * Workloads."
6198 */
6199 flags |= PIPE_CONTROL_CS_STALL;
6200
6201 /* Also, from the PIPE_CONTROL instruction table, bit 20:
6202 *
6203 * "Project: BDW
6204 * This bit must be always set when PIPE_CONTROL command is
6205 * programmed by GPGPU and MEDIA workloads, except for the cases
6206 * when only Read Only Cache Invalidation bits are set (State
6207 * Cache Invalidation Enable, Instruction cache Invalidation
6208 * Enable, Texture Cache Invalidation Enable, Constant Cache
6209 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
6210 * need not implemented when FF_DOP_CG is disable via "Fixed
6211 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
6212 *
6213 * It sounds like we could avoid CS stalls in some cases, but we
6214 * don't currently bother. This list isn't exactly the list above,
6215 * either...
6216 */
6217 }
6218 }
6219
6220 /* "Stall" workarounds ----------------------------------------------
6221 * These have to come after the earlier ones because we may have added
6222 * some additional CS stalls above.
6223 */
6224
6225 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
6226 /* Project: PRE-SKL, VLV, CHV
6227 *
6228 * "[All Stepping][All SKUs]:
6229 *
6230 * One of the following must also be set:
6231 *
6232 * - Render Target Cache Flush Enable ([12] of DW1)
6233 * - Depth Cache Flush Enable ([0] of DW1)
6234 * - Stall at Pixel Scoreboard ([1] of DW1)
6235 * - Depth Stall ([13] of DW1)
6236 * - Post-Sync Operation ([13] of DW1)
6237 * - DC Flush Enable ([5] of DW1)"
6238 *
6239 * If we don't already have one of those bits set, we choose to add
6240 * "Stall at Pixel Scoreboard". Some of the other bits require a
6241 * CS stall as a workaround (see above), which would send us into
6242 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
6243 * appears to be safe, so we choose that.
6244 */
6245 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
6246 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6247 PIPE_CONTROL_WRITE_IMMEDIATE |
6248 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6249 PIPE_CONTROL_WRITE_TIMESTAMP |
6250 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6251 PIPE_CONTROL_DEPTH_STALL |
6252 PIPE_CONTROL_DATA_CACHE_FLUSH;
6253 if (!(flags & wa_bits))
6254 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6255 }
6256
6257 /* Emit --------------------------------------------------------------- */
6258
6259 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
6260 fprintf(stderr,
6261 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
6262 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
6263 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
6264 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
6265 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
6266 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
6267 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
6268 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
6269 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
6270 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
6271 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
6272 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
6273 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
6274 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
6275 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
6276 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
6277 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
6278 "SnapRes" : "",
6279 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
6280 "ISPDis" : "",
6281 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
6282 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
6283 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
6284 imm, reason);
6285 }
6286
6287 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
6288 pc.LRIPostSyncOperation = NoLRIOperation;
6289 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
6290 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
6291 pc.StoreDataIndex = 0;
6292 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
6293 pc.GlobalSnapshotCountReset =
6294 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
6295 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
6296 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
6297 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
6298 pc.RenderTargetCacheFlushEnable =
6299 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
6300 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6301 pc.StateCacheInvalidationEnable =
6302 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
6303 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
6304 pc.ConstantCacheInvalidationEnable =
6305 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
6306 pc.PostSyncOperation = flags_to_post_sync_op(flags);
6307 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
6308 pc.InstructionCacheInvalidateEnable =
6309 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
6310 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
6311 pc.IndirectStatePointersDisable =
6312 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
6313 pc.TextureCacheInvalidationEnable =
6314 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
6315 pc.Address = rw_bo(bo, offset);
6316 pc.ImmediateData = imm;
6317 }
6318 }
6319
6320 void
6321 genX(emit_urb_setup)(struct iris_context *ice,
6322 struct iris_batch *batch,
6323 const unsigned size[4],
6324 bool tess_present, bool gs_present)
6325 {
6326 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6327 const unsigned push_size_kB = 32;
6328 unsigned entries[4];
6329 unsigned start[4];
6330
6331 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
6332
6333 gen_get_urb_config(devinfo, 1024 * push_size_kB,
6334 1024 * ice->shaders.urb_size,
6335 tess_present, gs_present,
6336 size, entries, start);
6337
6338 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
6339 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
6340 urb._3DCommandSubOpcode += i;
6341 urb.VSURBStartingAddress = start[i];
6342 urb.VSURBEntryAllocationSize = size[i] - 1;
6343 urb.VSNumberofURBEntries = entries[i];
6344 }
6345 }
6346 }
6347
6348 #if GEN_GEN == 9
6349 /**
6350 * Preemption on Gen9 has to be enabled or disabled in various cases.
6351 *
6352 * See these workarounds for preemption:
6353 * - WaDisableMidObjectPreemptionForGSLineStripAdj
6354 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
6355 * - WaDisableMidObjectPreemptionForLineLoop
6356 * - WA#0798
6357 *
6358 * We don't put this in the vtable because it's only used on Gen9.
6359 */
6360 void
6361 gen9_toggle_preemption(struct iris_context *ice,
6362 struct iris_batch *batch,
6363 const struct pipe_draw_info *draw)
6364 {
6365 struct iris_genx_state *genx = ice->state.genx;
6366 bool object_preemption = true;
6367
6368 /* WaDisableMidObjectPreemptionForGSLineStripAdj
6369 *
6370 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
6371 * and GS is enabled."
6372 */
6373 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
6374 ice->shaders.prog[MESA_SHADER_GEOMETRY])
6375 object_preemption = false;
6376
6377 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
6378 *
6379 * "TriFan miscompare in Execlist Preemption test. Cut index that is
6380 * on a previous context. End the previous, the resume another context
6381 * with a tri-fan or polygon, and the vertex count is corrupted. If we
6382 * prempt again we will cause corruption.
6383 *
6384 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
6385 */
6386 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
6387 object_preemption = false;
6388
6389 /* WaDisableMidObjectPreemptionForLineLoop
6390 *
6391 * "VF Stats Counters Missing a vertex when preemption enabled.
6392 *
6393 * WA: Disable mid-draw preemption when the draw uses a lineloop
6394 * topology."
6395 */
6396 if (draw->mode == PIPE_PRIM_LINE_LOOP)
6397 object_preemption = false;
6398
6399 /* WA#0798
6400 *
6401 * "VF is corrupting GAFS data when preempted on an instance boundary
6402 * and replayed with instancing enabled.
6403 *
6404 * WA: Disable preemption when using instanceing."
6405 */
6406 if (draw->instance_count > 1)
6407 object_preemption = false;
6408
6409 if (genx->object_preemption != object_preemption) {
6410 iris_enable_obj_preemption(batch, object_preemption);
6411 genx->object_preemption = object_preemption;
6412 }
6413 }
6414 #endif
6415
6416 static void
6417 iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
6418 {
6419 struct iris_genx_state *genx = ice->state.genx;
6420
6421 memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
6422 }
6423
6424 void
6425 genX(init_state)(struct iris_context *ice)
6426 {
6427 struct pipe_context *ctx = &ice->ctx;
6428 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
6429
6430 ctx->create_blend_state = iris_create_blend_state;
6431 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
6432 ctx->create_rasterizer_state = iris_create_rasterizer_state;
6433 ctx->create_sampler_state = iris_create_sampler_state;
6434 ctx->create_sampler_view = iris_create_sampler_view;
6435 ctx->create_surface = iris_create_surface;
6436 ctx->create_vertex_elements_state = iris_create_vertex_elements;
6437 ctx->bind_blend_state = iris_bind_blend_state;
6438 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
6439 ctx->bind_sampler_states = iris_bind_sampler_states;
6440 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
6441 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
6442 ctx->delete_blend_state = iris_delete_state;
6443 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
6444 ctx->delete_rasterizer_state = iris_delete_state;
6445 ctx->delete_sampler_state = iris_delete_state;
6446 ctx->delete_vertex_elements_state = iris_delete_state;
6447 ctx->set_blend_color = iris_set_blend_color;
6448 ctx->set_clip_state = iris_set_clip_state;
6449 ctx->set_constant_buffer = iris_set_constant_buffer;
6450 ctx->set_shader_buffers = iris_set_shader_buffers;
6451 ctx->set_shader_images = iris_set_shader_images;
6452 ctx->set_sampler_views = iris_set_sampler_views;
6453 ctx->set_tess_state = iris_set_tess_state;
6454 ctx->set_framebuffer_state = iris_set_framebuffer_state;
6455 ctx->set_polygon_stipple = iris_set_polygon_stipple;
6456 ctx->set_sample_mask = iris_set_sample_mask;
6457 ctx->set_scissor_states = iris_set_scissor_states;
6458 ctx->set_stencil_ref = iris_set_stencil_ref;
6459 ctx->set_vertex_buffers = iris_set_vertex_buffers;
6460 ctx->set_viewport_states = iris_set_viewport_states;
6461 ctx->sampler_view_destroy = iris_sampler_view_destroy;
6462 ctx->surface_destroy = iris_surface_destroy;
6463 ctx->draw_vbo = iris_draw_vbo;
6464 ctx->launch_grid = iris_launch_grid;
6465 ctx->create_stream_output_target = iris_create_stream_output_target;
6466 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
6467 ctx->set_stream_output_targets = iris_set_stream_output_targets;
6468
6469 ice->vtbl.destroy_state = iris_destroy_state;
6470 ice->vtbl.init_render_context = iris_init_render_context;
6471 ice->vtbl.init_compute_context = iris_init_compute_context;
6472 ice->vtbl.upload_render_state = iris_upload_render_state;
6473 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
6474 ice->vtbl.upload_compute_state = iris_upload_compute_state;
6475 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
6476 ice->vtbl.rebind_buffer = iris_rebind_buffer;
6477 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
6478 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
6479 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
6480 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
6481 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
6482 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
6483 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
6484 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
6485 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
6486 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
6487 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
6488 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
6489 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
6490 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
6491 ice->vtbl.populate_vs_key = iris_populate_vs_key;
6492 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
6493 ice->vtbl.populate_tes_key = iris_populate_tes_key;
6494 ice->vtbl.populate_gs_key = iris_populate_gs_key;
6495 ice->vtbl.populate_fs_key = iris_populate_fs_key;
6496 ice->vtbl.populate_cs_key = iris_populate_cs_key;
6497 ice->vtbl.mocs = mocs;
6498 ice->vtbl.lost_genx_state = iris_lost_genx_state;
6499
6500 ice->state.dirty = ~0ull;
6501
6502 ice->state.statistics_counters_enabled = true;
6503
6504 ice->state.sample_mask = 0xffff;
6505 ice->state.num_viewports = 1;
6506 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
6507
6508 /* Make a 1x1x1 null surface for unbound textures */
6509 void *null_surf_map =
6510 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
6511 4 * GENX(RENDER_SURFACE_STATE_length), 64);
6512 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
6513 ice->state.unbound_tex.offset +=
6514 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
6515
6516 /* Default all scissor rectangles to be empty regions. */
6517 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
6518 ice->state.scissors[i] = (struct pipe_scissor_state) {
6519 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
6520 };
6521 }
6522 }