iris: hook up key stuff for clip plane lowering
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_pipe.h"
105 #include "iris_resource.h"
106
107 #define __gen_address_type struct iris_address
108 #define __gen_user_data struct iris_batch
109
110 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
111
112 static uint64_t
113 __gen_combine_address(struct iris_batch *batch, void *location,
114 struct iris_address addr, uint32_t delta)
115 {
116 uint64_t result = addr.offset + delta;
117
118 if (addr.bo) {
119 iris_use_pinned_bo(batch, addr.bo, addr.write);
120 /* Assume this is a general address, not relative to a base. */
121 result += addr.bo->gtt_offset;
122 }
123
124 return result;
125 }
126
127 #define __genxml_cmd_length(cmd) cmd ## _length
128 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
129 #define __genxml_cmd_header(cmd) cmd ## _header
130 #define __genxml_cmd_pack(cmd) cmd ## _pack
131
132 #define _iris_pack_command(batch, cmd, dst, name) \
133 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
134 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
135 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
136 _dst = NULL; \
137 }))
138
139 #define iris_pack_command(cmd, dst, name) \
140 _iris_pack_command(NULL, cmd, dst, name)
141
142 #define iris_pack_state(cmd, dst, name) \
143 for (struct cmd name = {}, \
144 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
145 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
146 _dst = NULL)
147
148 #define iris_emit_cmd(batch, cmd, name) \
149 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
150
151 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
152 do { \
153 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
154 for (uint32_t i = 0; i < num_dwords; i++) \
155 dw[i] = (dwords0)[i] | (dwords1)[i]; \
156 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
157 } while (0)
158
159 #include "genxml/genX_pack.h"
160 #include "genxml/gen_macros.h"
161 #include "genxml/genX_bits.h"
162
163 #define MOCS_WB (2 << 1)
164
165 /**
166 * Statically assert that PIPE_* enums match the hardware packets.
167 * (As long as they match, we don't need to translate them.)
168 */
169 UNUSED static void pipe_asserts()
170 {
171 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
172
173 /* pipe_logicop happens to match the hardware. */
174 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
175 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
176 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
177 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
178 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
179 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
180 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
181 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
182 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
183 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
184 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
185 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
186 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
187 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
188 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
189 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
190
191 /* pipe_blend_func happens to match the hardware. */
192 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
193 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
194 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
195 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
196 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
197 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
198 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
199 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
200 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
201 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
202 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
203 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
204 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
205 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
211
212 /* pipe_blend_func happens to match the hardware. */
213 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
214 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
215 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
216 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
217 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
218
219 /* pipe_stencil_op happens to match the hardware. */
220 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
221 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
222 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
223 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
224 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
225 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
226 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
227 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
228
229 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
230 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
231 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
232 #undef PIPE_ASSERT
233 }
234
235 static unsigned
236 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
237 {
238 static const unsigned map[] = {
239 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
240 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
241 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
242 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
243 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
244 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
245 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
246 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
247 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
248 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
249 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
250 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
251 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
252 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
253 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
254 };
255
256 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
257 }
258
259 static unsigned
260 translate_compare_func(enum pipe_compare_func pipe_func)
261 {
262 static const unsigned map[] = {
263 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
264 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
265 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
266 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
267 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
268 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
269 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
270 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
271 };
272 return map[pipe_func];
273 }
274
275 static unsigned
276 translate_shadow_func(enum pipe_compare_func pipe_func)
277 {
278 /* Gallium specifies the result of shadow comparisons as:
279 *
280 * 1 if ref <op> texel,
281 * 0 otherwise.
282 *
283 * The hardware does:
284 *
285 * 0 if texel <op> ref,
286 * 1 otherwise.
287 *
288 * So we need to flip the operator and also negate.
289 */
290 static const unsigned map[] = {
291 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
292 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
293 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
294 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
295 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
296 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
297 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
298 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
299 };
300 return map[pipe_func];
301 }
302
303 static unsigned
304 translate_cull_mode(unsigned pipe_face)
305 {
306 static const unsigned map[4] = {
307 [PIPE_FACE_NONE] = CULLMODE_NONE,
308 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
309 [PIPE_FACE_BACK] = CULLMODE_BACK,
310 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
311 };
312 return map[pipe_face];
313 }
314
315 static unsigned
316 translate_fill_mode(unsigned pipe_polymode)
317 {
318 static const unsigned map[4] = {
319 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
320 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
321 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
322 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
323 };
324 return map[pipe_polymode];
325 }
326
327 static unsigned
328 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
329 {
330 static const unsigned map[] = {
331 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
332 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
333 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
334 };
335 return map[pipe_mip];
336 }
337
338 static uint32_t
339 translate_wrap(unsigned pipe_wrap)
340 {
341 static const unsigned map[] = {
342 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
343 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
344 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
345 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
346 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
347 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
348
349 /* These are unsupported. */
350 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
351 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
352 };
353 return map[pipe_wrap];
354 }
355
356 static struct iris_address
357 ro_bo(struct iris_bo *bo, uint64_t offset)
358 {
359 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
360 * validation list at CSO creation time, instead of draw time.
361 */
362 return (struct iris_address) { .bo = bo, .offset = offset };
363 }
364
365 static struct iris_address
366 rw_bo(struct iris_bo *bo, uint64_t offset)
367 {
368 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
369 * validation list at CSO creation time, instead of draw time.
370 */
371 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
372 }
373
374 /**
375 * Allocate space for some indirect state.
376 *
377 * Return a pointer to the map (to fill it out) and a state ref (for
378 * referring to the state in GPU commands).
379 */
380 static void *
381 upload_state(struct u_upload_mgr *uploader,
382 struct iris_state_ref *ref,
383 unsigned size,
384 unsigned alignment)
385 {
386 void *p = NULL;
387 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
388 return p;
389 }
390
391 /**
392 * Stream out temporary/short-lived state.
393 *
394 * This allocates space, pins the BO, and includes the BO address in the
395 * returned offset (which works because all state lives in 32-bit memory
396 * zones).
397 */
398 static uint32_t *
399 stream_state(struct iris_batch *batch,
400 struct u_upload_mgr *uploader,
401 struct pipe_resource **out_res,
402 unsigned size,
403 unsigned alignment,
404 uint32_t *out_offset)
405 {
406 void *ptr = NULL;
407
408 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
409
410 struct iris_bo *bo = iris_resource_bo(*out_res);
411 iris_use_pinned_bo(batch, bo, false);
412
413 *out_offset += iris_bo_offset_from_base_address(bo);
414
415 return ptr;
416 }
417
418 /**
419 * stream_state() + memcpy.
420 */
421 static uint32_t
422 emit_state(struct iris_batch *batch,
423 struct u_upload_mgr *uploader,
424 struct pipe_resource **out_res,
425 const void *data,
426 unsigned size,
427 unsigned alignment)
428 {
429 unsigned offset = 0;
430 uint32_t *map =
431 stream_state(batch, uploader, out_res, size, alignment, &offset);
432
433 if (map)
434 memcpy(map, data, size);
435
436 return offset;
437 }
438
439 /**
440 * Did field 'x' change between 'old_cso' and 'new_cso'?
441 *
442 * (If so, we may want to set some dirty flags.)
443 */
444 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
445 #define cso_changed_memcmp(x) \
446 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
447
448 static void
449 flush_for_state_base_change(struct iris_batch *batch)
450 {
451 /* Flush before emitting STATE_BASE_ADDRESS.
452 *
453 * This isn't documented anywhere in the PRM. However, it seems to be
454 * necessary prior to changing the surface state base adress. We've
455 * seen issues in Vulkan where we get GPU hangs when using multi-level
456 * command buffers which clear depth, reset state base address, and then
457 * go render stuff.
458 *
459 * Normally, in GL, we would trust the kernel to do sufficient stalls
460 * and flushes prior to executing our batch. However, it doesn't seem
461 * as if the kernel's flushing is always sufficient and we don't want to
462 * rely on it.
463 *
464 * We make this an end-of-pipe sync instead of a normal flush because we
465 * do not know the current status of the GPU. On Haswell at least,
466 * having a fast-clear operation in flight at the same time as a normal
467 * rendering operation can cause hangs. Since the kernel's flushing is
468 * insufficient, we need to ensure that any rendering operations from
469 * other processes are definitely complete before we try to do our own
470 * rendering. It's a bit of a big hammer but it appears to work.
471 */
472 iris_emit_end_of_pipe_sync(batch,
473 PIPE_CONTROL_RENDER_TARGET_FLUSH |
474 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
475 PIPE_CONTROL_DATA_CACHE_FLUSH);
476 }
477
478 static void
479 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
480 {
481 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
482 lri.RegisterOffset = reg;
483 lri.DataDWord = val;
484 }
485 }
486 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
487
488 static void
489 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
490 {
491 #if GEN_GEN >= 8 && GEN_GEN < 10
492 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
493 *
494 * Software must clear the COLOR_CALC_STATE Valid field in
495 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
496 * with Pipeline Select set to GPGPU.
497 *
498 * The internal hardware docs recommend the same workaround for Gen9
499 * hardware too.
500 */
501 if (pipeline == GPGPU)
502 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
503 #endif
504
505
506 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
507 * PIPELINE_SELECT [DevBWR+]":
508 *
509 * "Project: DEVSNB+
510 *
511 * Software must ensure all the write caches are flushed through a
512 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
513 * command to invalidate read only caches prior to programming
514 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
515 */
516 iris_emit_pipe_control_flush(batch,
517 PIPE_CONTROL_RENDER_TARGET_FLUSH |
518 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
519 PIPE_CONTROL_DATA_CACHE_FLUSH |
520 PIPE_CONTROL_CS_STALL);
521
522 iris_emit_pipe_control_flush(batch,
523 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
524 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
525 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
526 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
527
528 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
529 #if GEN_GEN >= 9
530 sel.MaskBits = 3;
531 #endif
532 sel.PipelineSelection = pipeline;
533 }
534 }
535
536 UNUSED static void
537 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
538 {
539 #if GEN_GEN == 9
540 /* Project: DevGLK
541 *
542 * "This chicken bit works around a hardware issue with barrier
543 * logic encountered when switching between GPGPU and 3D pipelines.
544 * To workaround the issue, this mode bit should be set after a
545 * pipeline is selected."
546 */
547 uint32_t reg_val;
548 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
549 reg.GLKBarrierMode = value;
550 reg.GLKBarrierModeMask = 1;
551 }
552 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
553 #endif
554 }
555
556 static void
557 init_state_base_address(struct iris_batch *batch)
558 {
559 flush_for_state_base_change(batch);
560
561 /* We program most base addresses once at context initialization time.
562 * Each base address points at a 4GB memory zone, and never needs to
563 * change. See iris_bufmgr.h for a description of the memory zones.
564 *
565 * The one exception is Surface State Base Address, which needs to be
566 * updated occasionally. See iris_binder.c for the details there.
567 */
568 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
569 #if 0
570 // XXX: MOCS is stupid for this.
571 sba.GeneralStateMemoryObjectControlState = MOCS_WB;
572 sba.StatelessDataPortAccessMemoryObjectControlState = MOCS_WB;
573 sba.DynamicStateMemoryObjectControlState = MOCS_WB;
574 sba.IndirectObjectMemoryObjectControlState = MOCS_WB;
575 sba.InstructionMemoryObjectControlState = MOCS_WB;
576 sba.BindlessSurfaceStateMemoryObjectControlState = MOCS_WB;
577 #endif
578
579 sba.GeneralStateBaseAddressModifyEnable = true;
580 sba.DynamicStateBaseAddressModifyEnable = true;
581 sba.IndirectObjectBaseAddressModifyEnable = true;
582 sba.InstructionBaseAddressModifyEnable = true;
583 sba.GeneralStateBufferSizeModifyEnable = true;
584 sba.DynamicStateBufferSizeModifyEnable = true;
585 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
586 sba.IndirectObjectBufferSizeModifyEnable = true;
587 sba.InstructionBuffersizeModifyEnable = true;
588
589 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
590 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
591
592 sba.GeneralStateBufferSize = 0xfffff;
593 sba.IndirectObjectBufferSize = 0xfffff;
594 sba.InstructionBufferSize = 0xfffff;
595 sba.DynamicStateBufferSize = 0xfffff;
596 }
597 }
598
599 /**
600 * Upload the initial GPU state for a render context.
601 *
602 * This sets some invariant state that needs to be programmed a particular
603 * way, but we never actually change.
604 */
605 static void
606 iris_init_render_context(struct iris_screen *screen,
607 struct iris_batch *batch,
608 struct iris_vtable *vtbl,
609 struct pipe_debug_callback *dbg)
610 {
611 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
612 uint32_t reg_val;
613
614 emit_pipeline_select(batch, _3D);
615
616 init_state_base_address(batch);
617
618 // XXX: INSTPM on Gen8
619 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
620 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
621 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
622 }
623 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
624
625 #if GEN_GEN == 9
626 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
627 reg.FloatBlendOptimizationEnable = true;
628 reg.FloatBlendOptimizationEnableMask = true;
629 reg.PartialResolveDisableInVC = true;
630 reg.PartialResolveDisableInVCMask = true;
631 }
632 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
633
634 if (devinfo->is_geminilake)
635 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
636 #endif
637
638 #if GEN_GEN == 11
639 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
640 reg.HeaderlessMessageforPreemptableContexts = 1;
641 reg.HeaderlessMessageforPreemptableContextsMask = 1;
642 }
643 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
644
645 // XXX: 3D_MODE?
646 #endif
647
648 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
649 * changing it dynamically. We set it to the maximum size here, and
650 * instead include the render target dimensions in the viewport, so
651 * viewport extents clipping takes care of pruning stray geometry.
652 */
653 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
654 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
655 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
656 }
657
658 /* Set the initial MSAA sample positions. */
659 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
660 GEN_SAMPLE_POS_1X(pat._1xSample);
661 GEN_SAMPLE_POS_2X(pat._2xSample);
662 GEN_SAMPLE_POS_4X(pat._4xSample);
663 GEN_SAMPLE_POS_8X(pat._8xSample);
664 GEN_SAMPLE_POS_16X(pat._16xSample);
665 }
666
667 /* Use the legacy AA line coverage computation. */
668 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
669
670 /* Disable chromakeying (it's for media) */
671 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
672
673 /* We want regular rendering, not special HiZ operations. */
674 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
675
676 /* No polygon stippling offsets are necessary. */
677 // XXX: may need to set an offset for origin-UL framebuffers
678 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
679
680 /* Set a static partitioning of the push constant area. */
681 // XXX: this may be a bad idea...could starve the push ringbuffers...
682 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
683 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
684 alloc._3DCommandSubOpcode = 18 + i;
685 alloc.ConstantBufferOffset = 6 * i;
686 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
687 }
688 }
689 }
690
691 static void
692 iris_init_compute_context(struct iris_screen *screen,
693 struct iris_batch *batch,
694 struct iris_vtable *vtbl,
695 struct pipe_debug_callback *dbg)
696 {
697 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
698
699 emit_pipeline_select(batch, GPGPU);
700
701 init_state_base_address(batch);
702
703 #if GEN_GEN == 9
704 if (devinfo->is_geminilake)
705 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
706 #endif
707 }
708
709 struct iris_vertex_buffer_state {
710 /** The 3DSTATE_VERTEX_BUFFERS hardware packet. */
711 uint32_t vertex_buffers[1 + 33 * GENX(VERTEX_BUFFER_STATE_length)];
712
713 /** The resource to source vertex data from. */
714 struct pipe_resource *resources[33];
715
716 /** The number of bound vertex buffers. */
717 unsigned num_buffers;
718 };
719
720 struct iris_depth_buffer_state {
721 /* Depth/HiZ/Stencil related hardware packets. */
722 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
723 GENX(3DSTATE_STENCIL_BUFFER_length) +
724 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
725 GENX(3DSTATE_CLEAR_PARAMS_length)];
726 };
727
728 /**
729 * Generation-specific context state (ice->state.genx->...).
730 *
731 * Most state can go in iris_context directly, but these encode hardware
732 * packets which vary by generation.
733 */
734 struct iris_genx_state {
735 /** SF_CLIP_VIEWPORT */
736 uint32_t sf_cl_vp[GENX(SF_CLIP_VIEWPORT_length) * IRIS_MAX_VIEWPORTS];
737
738 struct iris_vertex_buffer_state vertex_buffers;
739 struct iris_depth_buffer_state depth_buffer;
740
741 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
742 uint32_t streamout[4 * GENX(3DSTATE_STREAMOUT_length)];
743 };
744
745 /**
746 * The pipe->set_blend_color() driver hook.
747 *
748 * This corresponds to our COLOR_CALC_STATE.
749 */
750 static void
751 iris_set_blend_color(struct pipe_context *ctx,
752 const struct pipe_blend_color *state)
753 {
754 struct iris_context *ice = (struct iris_context *) ctx;
755
756 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
757 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
758 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
759 }
760
761 /**
762 * Gallium CSO for blend state (see pipe_blend_state).
763 */
764 struct iris_blend_state {
765 /** Partial 3DSTATE_PS_BLEND */
766 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
767
768 /** Partial BLEND_STATE */
769 uint32_t blend_state[GENX(BLEND_STATE_length) +
770 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
771
772 bool alpha_to_coverage; /* for shader key */
773 };
774
775 /**
776 * The pipe->create_blend_state() driver hook.
777 *
778 * Translates a pipe_blend_state into iris_blend_state.
779 */
780 static void *
781 iris_create_blend_state(struct pipe_context *ctx,
782 const struct pipe_blend_state *state)
783 {
784 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
785 uint32_t *blend_state = cso->blend_state;
786
787 cso->alpha_to_coverage = state->alpha_to_coverage;
788
789 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
790 /* pb.HasWriteableRT is filled in at draw time. */
791 /* pb.AlphaTestEnable is filled in at draw time. */
792 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
793 pb.IndependentAlphaBlendEnable = state->independent_blend_enable;
794
795 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
796
797 pb.SourceBlendFactor = state->rt[0].rgb_src_factor;
798 pb.SourceAlphaBlendFactor = state->rt[0].alpha_func;
799 pb.DestinationBlendFactor = state->rt[0].rgb_dst_factor;
800 pb.DestinationAlphaBlendFactor = state->rt[0].alpha_dst_factor;
801 }
802
803 iris_pack_state(GENX(BLEND_STATE), blend_state, bs) {
804 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
805 bs.IndependentAlphaBlendEnable = state->independent_blend_enable;
806 bs.AlphaToOneEnable = state->alpha_to_one;
807 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
808 bs.ColorDitherEnable = state->dither;
809 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
810 }
811
812 blend_state += GENX(BLEND_STATE_length);
813
814 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
815 const struct pipe_rt_blend_state *rt =
816 &state->rt[state->independent_blend_enable ? i : 0];
817 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_state, be) {
818 be.LogicOpEnable = state->logicop_enable;
819 be.LogicOpFunction = state->logicop_func;
820
821 be.PreBlendSourceOnlyClampEnable = false;
822 be.ColorClampRange = COLORCLAMP_RTFORMAT;
823 be.PreBlendColorClampEnable = true;
824 be.PostBlendColorClampEnable = true;
825
826 be.ColorBufferBlendEnable = rt->blend_enable;
827
828 be.ColorBlendFunction = rt->rgb_func;
829 be.AlphaBlendFunction = rt->alpha_func;
830 be.SourceBlendFactor = rt->rgb_src_factor;
831 be.SourceAlphaBlendFactor = rt->alpha_func;
832 be.DestinationBlendFactor = rt->rgb_dst_factor;
833 be.DestinationAlphaBlendFactor = rt->alpha_dst_factor;
834
835 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
836 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
837 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
838 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
839 }
840 blend_state += GENX(BLEND_STATE_ENTRY_length);
841 }
842
843 return cso;
844 }
845
846 /**
847 * The pipe->bind_blend_state() driver hook.
848 *
849 * Bind a blending CSO and flag related dirty bits.
850 */
851 static void
852 iris_bind_blend_state(struct pipe_context *ctx, void *state)
853 {
854 struct iris_context *ice = (struct iris_context *) ctx;
855 ice->state.cso_blend = state;
856 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
857 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
858 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
859 }
860
861 /**
862 * Gallium CSO for depth, stencil, and alpha testing state.
863 */
864 struct iris_depth_stencil_alpha_state {
865 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
866 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
867
868 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
869 struct pipe_alpha_state alpha;
870
871 /** Outbound to resolve and cache set tracking. */
872 bool depth_writes_enabled;
873 bool stencil_writes_enabled;
874 };
875
876 /**
877 * The pipe->create_depth_stencil_alpha_state() driver hook.
878 *
879 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
880 * testing state since we need pieces of it in a variety of places.
881 */
882 static void *
883 iris_create_zsa_state(struct pipe_context *ctx,
884 const struct pipe_depth_stencil_alpha_state *state)
885 {
886 struct iris_depth_stencil_alpha_state *cso =
887 malloc(sizeof(struct iris_depth_stencil_alpha_state));
888
889 bool two_sided_stencil = state->stencil[1].enabled;
890
891 cso->alpha = state->alpha;
892 cso->depth_writes_enabled = state->depth.writemask;
893 cso->stencil_writes_enabled =
894 state->stencil[0].writemask != 0 ||
895 (two_sided_stencil && state->stencil[1].writemask != 1);
896
897 /* The state tracker needs to optimize away EQUAL writes for us. */
898 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
899
900 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
901 wmds.StencilFailOp = state->stencil[0].fail_op;
902 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
903 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
904 wmds.StencilTestFunction =
905 translate_compare_func(state->stencil[0].func);
906 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
907 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
908 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
909 wmds.BackfaceStencilTestFunction =
910 translate_compare_func(state->stencil[1].func);
911 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
912 wmds.DoubleSidedStencilEnable = two_sided_stencil;
913 wmds.StencilTestEnable = state->stencil[0].enabled;
914 wmds.StencilBufferWriteEnable =
915 state->stencil[0].writemask != 0 ||
916 (two_sided_stencil && state->stencil[1].writemask != 0);
917 wmds.DepthTestEnable = state->depth.enabled;
918 wmds.DepthBufferWriteEnable = state->depth.writemask;
919 wmds.StencilTestMask = state->stencil[0].valuemask;
920 wmds.StencilWriteMask = state->stencil[0].writemask;
921 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
922 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
923 /* wmds.[Backface]StencilReferenceValue are merged later */
924 }
925
926 return cso;
927 }
928
929 /**
930 * The pipe->bind_depth_stencil_alpha_state() driver hook.
931 *
932 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
933 */
934 static void
935 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
936 {
937 struct iris_context *ice = (struct iris_context *) ctx;
938 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
939 struct iris_depth_stencil_alpha_state *new_cso = state;
940
941 if (new_cso) {
942 if (cso_changed(alpha.ref_value))
943 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
944
945 if (cso_changed(alpha.enabled))
946 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
947
948 if (cso_changed(alpha.func))
949 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
950
951 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
952 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
953 }
954
955 ice->state.cso_zsa = new_cso;
956 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
957 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
958 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
959 }
960
961 /**
962 * Gallium CSO for rasterizer state.
963 */
964 struct iris_rasterizer_state {
965 uint32_t sf[GENX(3DSTATE_SF_length)];
966 uint32_t clip[GENX(3DSTATE_CLIP_length)];
967 uint32_t raster[GENX(3DSTATE_RASTER_length)];
968 uint32_t wm[GENX(3DSTATE_WM_length)];
969 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
970
971 uint8_t num_clip_plane_consts;
972 bool clip_halfz; /* for CC_VIEWPORT */
973 bool depth_clip_near; /* for CC_VIEWPORT */
974 bool depth_clip_far; /* for CC_VIEWPORT */
975 bool flatshade; /* for shader state */
976 bool flatshade_first; /* for stream output */
977 bool clamp_fragment_color; /* for shader state */
978 bool light_twoside; /* for shader state */
979 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT */
980 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
981 bool line_stipple_enable;
982 bool poly_stipple_enable;
983 bool multisample;
984 bool force_persample_interp;
985 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
986 uint16_t sprite_coord_enable;
987 };
988
989 static float
990 get_line_width(const struct pipe_rasterizer_state *state)
991 {
992 float line_width = state->line_width;
993
994 /* From the OpenGL 4.4 spec:
995 *
996 * "The actual width of non-antialiased lines is determined by rounding
997 * the supplied width to the nearest integer, then clamping it to the
998 * implementation-dependent maximum non-antialiased line width."
999 */
1000 if (!state->multisample && !state->line_smooth)
1001 line_width = roundf(state->line_width);
1002
1003 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1004 /* For 1 pixel line thickness or less, the general anti-aliasing
1005 * algorithm gives up, and a garbage line is generated. Setting a
1006 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1007 * (one-pixel-wide), non-antialiased lines.
1008 *
1009 * Lines rendered with zero Line Width are rasterized using the
1010 * "Grid Intersection Quantization" rules as specified by the
1011 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1012 */
1013 line_width = 0.0f;
1014 }
1015
1016 return line_width;
1017 }
1018
1019 /**
1020 * The pipe->create_rasterizer_state() driver hook.
1021 */
1022 static void *
1023 iris_create_rasterizer_state(struct pipe_context *ctx,
1024 const struct pipe_rasterizer_state *state)
1025 {
1026 struct iris_rasterizer_state *cso =
1027 malloc(sizeof(struct iris_rasterizer_state));
1028
1029 #if 0
1030 point_quad_rasterization -> SBE?
1031
1032 not necessary?
1033 {
1034 poly_smooth
1035 force_persample_interp - ?
1036 bottom_edge_rule
1037
1038 offset_units_unscaled - cap not exposed
1039 }
1040 #endif
1041
1042 // XXX: it may make more sense just to store the pipe_rasterizer_state,
1043 // we're copying a lot of booleans here. But we don't need all of them...
1044
1045 cso->multisample = state->multisample;
1046 cso->force_persample_interp = state->force_persample_interp;
1047 cso->clip_halfz = state->clip_halfz;
1048 cso->depth_clip_near = state->depth_clip_near;
1049 cso->depth_clip_far = state->depth_clip_far;
1050 cso->flatshade = state->flatshade;
1051 cso->flatshade_first = state->flatshade_first;
1052 cso->clamp_fragment_color = state->clamp_fragment_color;
1053 cso->light_twoside = state->light_twoside;
1054 cso->rasterizer_discard = state->rasterizer_discard;
1055 cso->half_pixel_center = state->half_pixel_center;
1056 cso->sprite_coord_mode = state->sprite_coord_mode;
1057 cso->sprite_coord_enable = state->sprite_coord_enable;
1058 cso->line_stipple_enable = state->line_stipple_enable;
1059 cso->poly_stipple_enable = state->poly_stipple_enable;
1060
1061 float line_width = get_line_width(state);
1062
1063 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1064 sf.StatisticsEnable = true;
1065 sf.ViewportTransformEnable = true;
1066 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1067 sf.LineEndCapAntialiasingRegionWidth =
1068 state->line_smooth ? _10pixels : _05pixels;
1069 sf.LastPixelEnable = state->line_last_pixel;
1070 sf.LineWidth = line_width;
1071 sf.SmoothPointEnable = state->point_smooth || state->multisample;
1072 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1073 sf.PointWidth = state->point_size;
1074
1075 if (state->flatshade_first) {
1076 sf.TriangleFanProvokingVertexSelect = 1;
1077 } else {
1078 sf.TriangleStripListProvokingVertexSelect = 2;
1079 sf.TriangleFanProvokingVertexSelect = 2;
1080 sf.LineStripListProvokingVertexSelect = 1;
1081 }
1082 }
1083
1084 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1085 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1086 rr.CullMode = translate_cull_mode(state->cull_face);
1087 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1088 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1089 rr.DXMultisampleRasterizationEnable = state->multisample;
1090 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1091 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1092 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1093 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1094 rr.GlobalDepthOffsetScale = state->offset_scale;
1095 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1096 rr.SmoothPointEnable = state->point_smooth || state->multisample;
1097 rr.AntialiasingEnable = state->line_smooth;
1098 rr.ScissorRectangleEnable = state->scissor;
1099 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1100 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1101 //rr.ConservativeRasterizationEnable = not yet supported by Gallium...
1102 }
1103
1104 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1105 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1106 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1107 */
1108 cl.StatisticsEnable = true;
1109 cl.EarlyCullEnable = true;
1110 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1111 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1112 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1113 cl.GuardbandClipTestEnable = true;
1114 cl.ClipMode = CLIPMODE_NORMAL;
1115 cl.ClipEnable = true;
1116 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1117 cl.MinimumPointWidth = 0.125;
1118 cl.MaximumPointWidth = 255.875;
1119
1120 if (state->flatshade_first) {
1121 cl.TriangleFanProvokingVertexSelect = 1;
1122 } else {
1123 cl.TriangleStripListProvokingVertexSelect = 2;
1124 cl.TriangleFanProvokingVertexSelect = 2;
1125 cl.LineStripListProvokingVertexSelect = 1;
1126 }
1127 }
1128
1129 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1130 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1131 * filled in at draw time from the FS program.
1132 */
1133 wm.LineAntialiasingRegionWidth = _10pixels;
1134 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1135 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1136 wm.LineStippleEnable = state->line_stipple_enable;
1137 wm.PolygonStippleEnable = state->poly_stipple_enable;
1138 }
1139
1140 /* Remap from 0..255 back to 1..256 */
1141 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1142
1143 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1144 line.LineStipplePattern = state->line_stipple_pattern;
1145 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1146 line.LineStippleRepeatCount = line_stipple_factor;
1147 }
1148
1149 if (state->clip_plane_enable != 0)
1150 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1151
1152 return cso;
1153 }
1154
1155 /**
1156 * The pipe->bind_rasterizer_state() driver hook.
1157 *
1158 * Bind a rasterizer CSO and flag related dirty bits.
1159 */
1160 static void
1161 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1162 {
1163 struct iris_context *ice = (struct iris_context *) ctx;
1164 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1165 struct iris_rasterizer_state *new_cso = state;
1166
1167 if (new_cso) {
1168 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1169 if (cso_changed_memcmp(line_stipple))
1170 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1171
1172 if (cso_changed(half_pixel_center))
1173 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1174
1175 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1176 ice->state.dirty |= IRIS_DIRTY_WM;
1177
1178 if (cso_changed(rasterizer_discard) || cso_changed(flatshade_first))
1179 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1180
1181 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1182 cso_changed(clip_halfz))
1183 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1184
1185 if (cso_changed(sprite_coord_enable) || cso_changed(light_twoside))
1186 ice->state.dirty |= IRIS_DIRTY_SBE;
1187 }
1188
1189 ice->state.cso_rast = new_cso;
1190 ice->state.dirty |= IRIS_DIRTY_RASTER;
1191 ice->state.dirty |= IRIS_DIRTY_CLIP;
1192 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1193 }
1194
1195 /**
1196 * Return true if the given wrap mode requires the border color to exist.
1197 *
1198 * (We can skip uploading it if the sampler isn't going to use it.)
1199 */
1200 static bool
1201 wrap_mode_needs_border_color(unsigned wrap_mode)
1202 {
1203 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1204 }
1205
1206 /**
1207 * Gallium CSO for sampler state.
1208 */
1209 struct iris_sampler_state {
1210 union pipe_color_union border_color;
1211 bool needs_border_color;
1212
1213 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1214 };
1215
1216 /**
1217 * The pipe->create_sampler_state() driver hook.
1218 *
1219 * We fill out SAMPLER_STATE (except for the border color pointer), and
1220 * store that on the CPU. It doesn't make sense to upload it to a GPU
1221 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1222 * all bound sampler states to be in contiguous memor.
1223 */
1224 static void *
1225 iris_create_sampler_state(struct pipe_context *ctx,
1226 const struct pipe_sampler_state *state)
1227 {
1228 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1229
1230 if (!cso)
1231 return NULL;
1232
1233 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1234 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1235
1236 unsigned wrap_s = translate_wrap(state->wrap_s);
1237 unsigned wrap_t = translate_wrap(state->wrap_t);
1238 unsigned wrap_r = translate_wrap(state->wrap_r);
1239
1240 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1241
1242 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1243 wrap_mode_needs_border_color(wrap_t) ||
1244 wrap_mode_needs_border_color(wrap_r);
1245
1246 float min_lod = state->min_lod;
1247 unsigned mag_img_filter = state->mag_img_filter;
1248
1249 // XXX: explain this code ported from ilo...I don't get it at all...
1250 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1251 state->min_lod > 0.0f) {
1252 min_lod = 0.0f;
1253 mag_img_filter = state->min_img_filter;
1254 }
1255
1256 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1257 samp.TCXAddressControlMode = wrap_s;
1258 samp.TCYAddressControlMode = wrap_t;
1259 samp.TCZAddressControlMode = wrap_r;
1260 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1261 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1262 samp.MinModeFilter = state->min_img_filter;
1263 samp.MagModeFilter = mag_img_filter;
1264 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1265 samp.MaximumAnisotropy = RATIO21;
1266
1267 if (state->max_anisotropy >= 2) {
1268 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1269 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1270 samp.AnisotropicAlgorithm = EWAApproximation;
1271 }
1272
1273 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1274 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1275
1276 samp.MaximumAnisotropy =
1277 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1278 }
1279
1280 /* Set address rounding bits if not using nearest filtering. */
1281 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1282 samp.UAddressMinFilterRoundingEnable = true;
1283 samp.VAddressMinFilterRoundingEnable = true;
1284 samp.RAddressMinFilterRoundingEnable = true;
1285 }
1286
1287 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1288 samp.UAddressMagFilterRoundingEnable = true;
1289 samp.VAddressMagFilterRoundingEnable = true;
1290 samp.RAddressMagFilterRoundingEnable = true;
1291 }
1292
1293 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1294 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1295
1296 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1297
1298 samp.LODPreClampMode = CLAMP_MODE_OGL;
1299 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1300 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1301 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1302
1303 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1304 }
1305
1306 return cso;
1307 }
1308
1309 /**
1310 * The pipe->bind_sampler_states() driver hook.
1311 *
1312 * Now that we know all the sampler states, we upload them all into a
1313 * contiguous area of GPU memory, for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1314 * We also fill out the border color state pointers at this point.
1315 *
1316 * We could defer this work to draw time, but we assume that binding
1317 * will be less frequent than drawing.
1318 */
1319 // XXX: this may be a bad idea, need to make sure that st/mesa calls us
1320 // XXX: with the complete set of shaders. If it makes multiple calls to
1321 // XXX: things one at a time, we could waste a lot of time assembling things.
1322 // XXX: it doesn't even BUY us anything to do it here, because we only flag
1323 // XXX: IRIS_DIRTY_SAMPLER_STATE when this is called...
1324 static void
1325 iris_bind_sampler_states(struct pipe_context *ctx,
1326 enum pipe_shader_type p_stage,
1327 unsigned start, unsigned count,
1328 void **states)
1329 {
1330 struct iris_context *ice = (struct iris_context *) ctx;
1331 gl_shader_stage stage = stage_from_pipe(p_stage);
1332 struct iris_shader_state *shs = &ice->state.shaders[stage];
1333
1334 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1335 shs->num_samplers = MAX2(shs->num_samplers, start + count);
1336
1337 for (int i = 0; i < count; i++) {
1338 shs->samplers[start + i] = states[i];
1339 }
1340
1341 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1342 * in the dynamic state memory zone, so we can point to it via the
1343 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1344 */
1345 uint32_t *map =
1346 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1347 count * 4 * GENX(SAMPLER_STATE_length), 32);
1348 if (unlikely(!map))
1349 return;
1350
1351 struct pipe_resource *res = shs->sampler_table.res;
1352 shs->sampler_table.offset +=
1353 iris_bo_offset_from_base_address(iris_resource_bo(res));
1354
1355 /* Make sure all land in the same BO */
1356 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1357
1358 for (int i = 0; i < count; i++) {
1359 struct iris_sampler_state *state = shs->samplers[i];
1360
1361 if (!state) {
1362 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1363 } else if (!state->needs_border_color) {
1364 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1365 } else {
1366 ice->state.need_border_colors = true;
1367
1368 /* Stream out the border color and merge the pointer. */
1369 uint32_t offset =
1370 iris_upload_border_color(ice, &state->border_color);
1371
1372 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1373 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1374 dyns.BorderColorPointer = offset;
1375 }
1376
1377 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1378 map[j] = state->sampler_state[j] | dynamic[j];
1379 }
1380
1381 map += GENX(SAMPLER_STATE_length);
1382 }
1383
1384 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1385 }
1386
1387 static enum isl_channel_select
1388 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1389 {
1390 switch (swz) {
1391 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1392 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1393 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1394 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1395 case PIPE_SWIZZLE_1: return SCS_ONE;
1396 case PIPE_SWIZZLE_0: return SCS_ZERO;
1397 default: unreachable("invalid swizzle");
1398 }
1399 }
1400
1401 static void
1402 fill_buffer_surface_state(struct isl_device *isl_dev,
1403 struct iris_bo *bo,
1404 void *map,
1405 enum isl_format format,
1406 unsigned offset,
1407 unsigned size)
1408 {
1409 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1410 const unsigned cpp = fmtl->bpb / 8;
1411
1412 /* The ARB_texture_buffer_specification says:
1413 *
1414 * "The number of texels in the buffer texture's texel array is given by
1415 *
1416 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1417 *
1418 * where <buffer_size> is the size of the buffer object, in basic
1419 * machine units and <components> and <base_type> are the element count
1420 * and base data type for elements, as specified in Table X.1. The
1421 * number of texels in the texel array is then clamped to the
1422 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1423 *
1424 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1425 * so that when ISL divides by stride to obtain the number of texels, that
1426 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1427 */
1428 unsigned final_size =
1429 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1430
1431 isl_buffer_fill_state(isl_dev, map,
1432 .address = bo->gtt_offset + offset,
1433 .size_B = final_size,
1434 .format = format,
1435 .stride_B = cpp,
1436 .mocs = MOCS_WB);
1437 }
1438
1439 /**
1440 * The pipe->create_sampler_view() driver hook.
1441 */
1442 static struct pipe_sampler_view *
1443 iris_create_sampler_view(struct pipe_context *ctx,
1444 struct pipe_resource *tex,
1445 const struct pipe_sampler_view *tmpl)
1446 {
1447 struct iris_context *ice = (struct iris_context *) ctx;
1448 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1449 const struct gen_device_info *devinfo = &screen->devinfo;
1450 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1451
1452 if (!isv)
1453 return NULL;
1454
1455 /* initialize base object */
1456 isv->base = *tmpl;
1457 isv->base.context = ctx;
1458 isv->base.texture = NULL;
1459 pipe_reference_init(&isv->base.reference, 1);
1460 pipe_resource_reference(&isv->base.texture, tex);
1461
1462 void *map = upload_state(ice->state.surface_uploader, &isv->surface_state,
1463 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1464 if (!unlikely(map))
1465 return NULL;
1466
1467 struct iris_bo *state_bo = iris_resource_bo(isv->surface_state.res);
1468 isv->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1469
1470 if (util_format_is_depth_or_stencil(tmpl->format)) {
1471 struct iris_resource *zres, *sres;
1472 const struct util_format_description *desc =
1473 util_format_description(tmpl->format);
1474
1475 iris_get_depth_stencil_resources(tex, &zres, &sres);
1476
1477 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1478 }
1479
1480 isv->res = (struct iris_resource *) tex;
1481
1482 isl_surf_usage_flags_t usage =
1483 ISL_SURF_USAGE_TEXTURE_BIT |
1484 (isv->res->surf.usage & ISL_SURF_USAGE_CUBE_BIT);
1485
1486 const struct iris_format_info fmt =
1487 iris_format_for_usage(devinfo, tmpl->format, usage);
1488
1489 isv->view = (struct isl_view) {
1490 .format = fmt.fmt,
1491 .swizzle = (struct isl_swizzle) {
1492 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1493 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1494 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1495 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1496 },
1497 .usage = usage,
1498 };
1499
1500 /* Fill out SURFACE_STATE for this view. */
1501 if (tmpl->target != PIPE_BUFFER) {
1502 isv->view.base_level = tmpl->u.tex.first_level;
1503 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1504 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1505 isv->view.array_len =
1506 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1507
1508 isl_surf_fill_state(&screen->isl_dev, map,
1509 .surf = &isv->res->surf, .view = &isv->view,
1510 .mocs = MOCS_WB,
1511 .address = isv->res->bo->gtt_offset);
1512 // .aux_surf =
1513 // .clear_color = clear_color,
1514 } else {
1515 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1516 isv->view.format, tmpl->u.buf.offset,
1517 tmpl->u.buf.size);
1518 }
1519
1520 return &isv->base;
1521 }
1522
1523 static void
1524 iris_sampler_view_destroy(struct pipe_context *ctx,
1525 struct pipe_sampler_view *state)
1526 {
1527 struct iris_sampler_view *isv = (void *) state;
1528 pipe_resource_reference(&state->texture, NULL);
1529 pipe_resource_reference(&isv->surface_state.res, NULL);
1530 free(isv);
1531 }
1532
1533 /**
1534 * The pipe->create_surface() driver hook.
1535 *
1536 * In Gallium nomenclature, "surfaces" are a view of a resource that
1537 * can be bound as a render target or depth/stencil buffer.
1538 */
1539 static struct pipe_surface *
1540 iris_create_surface(struct pipe_context *ctx,
1541 struct pipe_resource *tex,
1542 const struct pipe_surface *tmpl)
1543 {
1544 struct iris_context *ice = (struct iris_context *) ctx;
1545 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1546 const struct gen_device_info *devinfo = &screen->devinfo;
1547 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1548 struct pipe_surface *psurf = &surf->base;
1549 struct iris_resource *res = (struct iris_resource *) tex;
1550
1551 if (!surf)
1552 return NULL;
1553
1554 pipe_reference_init(&psurf->reference, 1);
1555 pipe_resource_reference(&psurf->texture, tex);
1556 psurf->context = ctx;
1557 psurf->format = tmpl->format;
1558 psurf->width = tex->width0;
1559 psurf->height = tex->height0;
1560 psurf->texture = tex;
1561 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1562 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1563 psurf->u.tex.level = tmpl->u.tex.level;
1564
1565 isl_surf_usage_flags_t usage = 0;
1566 if (tmpl->writable)
1567 usage = ISL_SURF_USAGE_STORAGE_BIT;
1568 else if (util_format_is_depth_or_stencil(tmpl->format))
1569 usage = ISL_SURF_USAGE_DEPTH_BIT;
1570 else
1571 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1572
1573 const struct iris_format_info fmt =
1574 iris_format_for_usage(devinfo, psurf->format, usage);
1575
1576 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1577 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1578 /* Framebuffer validation will reject this invalid case, but it
1579 * hasn't had the opportunity yet. In the meantime, we need to
1580 * avoid hitting ISL asserts about unsupported formats below.
1581 */
1582 free(surf);
1583 return NULL;
1584 }
1585
1586 surf->view = (struct isl_view) {
1587 .format = fmt.fmt,
1588 .base_level = tmpl->u.tex.level,
1589 .levels = 1,
1590 .base_array_layer = tmpl->u.tex.first_layer,
1591 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1592 .swizzle = ISL_SWIZZLE_IDENTITY,
1593 .usage = usage,
1594 };
1595
1596 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1597 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1598 ISL_SURF_USAGE_STENCIL_BIT))
1599 return psurf;
1600
1601
1602 void *map = upload_state(ice->state.surface_uploader, &surf->surface_state,
1603 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1604 if (!unlikely(map))
1605 return NULL;
1606
1607 struct iris_bo *state_bo = iris_resource_bo(surf->surface_state.res);
1608 surf->surface_state.offset += iris_bo_offset_from_base_address(state_bo);
1609
1610 isl_surf_fill_state(&screen->isl_dev, map,
1611 .surf = &res->surf, .view = &surf->view,
1612 .mocs = MOCS_WB,
1613 .address = res->bo->gtt_offset);
1614 // .aux_surf =
1615 // .clear_color = clear_color,
1616
1617 return psurf;
1618 }
1619
1620 /**
1621 * The pipe->set_shader_images() driver hook.
1622 */
1623 static void
1624 iris_set_shader_images(struct pipe_context *ctx,
1625 enum pipe_shader_type p_stage,
1626 unsigned start_slot, unsigned count,
1627 const struct pipe_image_view *p_images)
1628 {
1629 struct iris_context *ice = (struct iris_context *) ctx;
1630 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1631 const struct gen_device_info *devinfo = &screen->devinfo;
1632 gl_shader_stage stage = stage_from_pipe(p_stage);
1633 struct iris_shader_state *shs = &ice->state.shaders[stage];
1634
1635 for (unsigned i = 0; i < count; i++) {
1636 if (p_images && p_images[i].resource) {
1637 const struct pipe_image_view *img = &p_images[i];
1638 struct iris_resource *res = (void *) img->resource;
1639 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1640
1641 // XXX: these are not retained forever, use a separate uploader?
1642 void *map =
1643 upload_state(ice->state.surface_uploader,
1644 &shs->image[start_slot + i].surface_state,
1645 4 * GENX(RENDER_SURFACE_STATE_length), 64);
1646 if (!unlikely(map)) {
1647 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1648 return;
1649 }
1650
1651 struct iris_bo *surf_state_bo =
1652 iris_resource_bo(shs->image[start_slot + i].surface_state.res);
1653 shs->image[start_slot + i].surface_state.offset +=
1654 iris_bo_offset_from_base_address(surf_state_bo);
1655
1656 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1657 enum isl_format isl_format =
1658 iris_format_for_usage(devinfo, img->format, usage).fmt;
1659
1660 if (img->shader_access & PIPE_IMAGE_ACCESS_READ)
1661 isl_format = isl_lower_storage_image_format(devinfo, isl_format);
1662
1663 shs->image[start_slot + i].access = img->shader_access;
1664
1665 if (res->base.target != PIPE_BUFFER) {
1666 struct isl_view view = {
1667 .format = isl_format,
1668 .base_level = img->u.tex.level,
1669 .levels = 1,
1670 .base_array_layer = img->u.tex.first_layer,
1671 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1672 .swizzle = ISL_SWIZZLE_IDENTITY,
1673 .usage = usage,
1674 };
1675
1676 isl_surf_fill_state(&screen->isl_dev, map,
1677 .surf = &res->surf, .view = &view,
1678 .mocs = MOCS_WB,
1679 .address = res->bo->gtt_offset);
1680 // .aux_surf =
1681 // .clear_color = clear_color,
1682 } else {
1683 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1684 isl_format, img->u.buf.offset,
1685 img->u.buf.size);
1686 }
1687 } else {
1688 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1689 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1690 NULL);
1691 }
1692 }
1693
1694 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1695 }
1696
1697
1698 /**
1699 * The pipe->set_sampler_views() driver hook.
1700 */
1701 static void
1702 iris_set_sampler_views(struct pipe_context *ctx,
1703 enum pipe_shader_type p_stage,
1704 unsigned start, unsigned count,
1705 struct pipe_sampler_view **views)
1706 {
1707 struct iris_context *ice = (struct iris_context *) ctx;
1708 gl_shader_stage stage = stage_from_pipe(p_stage);
1709 struct iris_shader_state *shs = &ice->state.shaders[stage];
1710
1711 unsigned i;
1712 for (i = 0; i < count; i++) {
1713 pipe_sampler_view_reference((struct pipe_sampler_view **)
1714 &shs->textures[i], views[i]);
1715 }
1716 for (; i < shs->num_textures; i++) {
1717 pipe_sampler_view_reference((struct pipe_sampler_view **)
1718 &shs->textures[i], NULL);
1719 }
1720
1721 shs->num_textures = count;
1722
1723 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1724 }
1725
1726 /**
1727 * The pipe->set_tess_state() driver hook.
1728 */
1729 static void
1730 iris_set_tess_state(struct pipe_context *ctx,
1731 const float default_outer_level[4],
1732 const float default_inner_level[2])
1733 {
1734 struct iris_context *ice = (struct iris_context *) ctx;
1735
1736 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
1737 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
1738
1739 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
1740 }
1741
1742 static void
1743 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1744 {
1745 struct iris_surface *surf = (void *) p_surf;
1746 pipe_resource_reference(&p_surf->texture, NULL);
1747 pipe_resource_reference(&surf->surface_state.res, NULL);
1748 free(surf);
1749 }
1750
1751 // XXX: actually implement user clip planes
1752 static void
1753 iris_set_clip_state(struct pipe_context *ctx,
1754 const struct pipe_clip_state *state)
1755 {
1756 }
1757
1758 /**
1759 * The pipe->set_polygon_stipple() driver hook.
1760 */
1761 static void
1762 iris_set_polygon_stipple(struct pipe_context *ctx,
1763 const struct pipe_poly_stipple *state)
1764 {
1765 struct iris_context *ice = (struct iris_context *) ctx;
1766 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
1767 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
1768 }
1769
1770 /**
1771 * The pipe->set_sample_mask() driver hook.
1772 */
1773 static void
1774 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
1775 {
1776 struct iris_context *ice = (struct iris_context *) ctx;
1777
1778 /* We only support 16x MSAA, so we have 16 bits of sample maks.
1779 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
1780 */
1781 ice->state.sample_mask = sample_mask & 0xffff;
1782 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
1783 }
1784
1785 /**
1786 * The pipe->set_scissor_states() driver hook.
1787 *
1788 * This corresponds to our SCISSOR_RECT state structures. It's an
1789 * exact match, so we just store them, and memcpy them out later.
1790 */
1791 static void
1792 iris_set_scissor_states(struct pipe_context *ctx,
1793 unsigned start_slot,
1794 unsigned num_scissors,
1795 const struct pipe_scissor_state *rects)
1796 {
1797 struct iris_context *ice = (struct iris_context *) ctx;
1798
1799 for (unsigned i = 0; i < num_scissors; i++) {
1800 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
1801 /* If the scissor was out of bounds and got clamped to 0 width/height
1802 * at the bounds, the subtraction of 1 from maximums could produce a
1803 * negative number and thus not clip anything. Instead, just provide
1804 * a min > max scissor inside the bounds, which produces the expected
1805 * no rendering.
1806 */
1807 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1808 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
1809 };
1810 } else {
1811 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1812 .minx = rects[i].minx, .miny = rects[i].miny,
1813 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
1814 };
1815 }
1816 }
1817
1818 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
1819 }
1820
1821 /**
1822 * The pipe->set_stencil_ref() driver hook.
1823 *
1824 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
1825 */
1826 static void
1827 iris_set_stencil_ref(struct pipe_context *ctx,
1828 const struct pipe_stencil_ref *state)
1829 {
1830 struct iris_context *ice = (struct iris_context *) ctx;
1831 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
1832 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1833 }
1834
1835 static float
1836 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
1837 {
1838 return copysignf(state->scale[axis], sign) + state->translate[axis];
1839 }
1840
1841 #if 0
1842 static void
1843 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
1844 float m00, float m11, float m30, float m31,
1845 float *xmin, float *xmax,
1846 float *ymin, float *ymax)
1847 {
1848 /* According to the "Vertex X,Y Clamping and Quantization" section of the
1849 * Strips and Fans documentation:
1850 *
1851 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
1852 * fixed-point "guardband" range supported by the rasterization hardware"
1853 *
1854 * and
1855 *
1856 * "In almost all circumstances, if an object’s vertices are actually
1857 * modified by this clamping (i.e., had X or Y coordinates outside of
1858 * the guardband extent the rendered object will not match the intended
1859 * result. Therefore software should take steps to ensure that this does
1860 * not happen - e.g., by clipping objects such that they do not exceed
1861 * these limits after the Drawing Rectangle is applied."
1862 *
1863 * I believe the fundamental restriction is that the rasterizer (in
1864 * the SF/WM stages) have a limit on the number of pixels that can be
1865 * rasterized. We need to ensure any coordinates beyond the rasterizer
1866 * limit are handled by the clipper. So effectively that limit becomes
1867 * the clipper's guardband size.
1868 *
1869 * It goes on to say:
1870 *
1871 * "In addition, in order to be correctly rendered, objects must have a
1872 * screenspace bounding box not exceeding 8K in the X or Y direction.
1873 * This additional restriction must also be comprehended by software,
1874 * i.e., enforced by use of clipping."
1875 *
1876 * This makes no sense. Gen7+ hardware supports 16K render targets,
1877 * and you definitely need to be able to draw polygons that fill the
1878 * surface. Our assumption is that the rasterizer was limited to 8K
1879 * on Sandybridge, which only supports 8K surfaces, and it was actually
1880 * increased to 16K on Ivybridge and later.
1881 *
1882 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
1883 */
1884 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
1885
1886 if (m00 != 0 && m11 != 0) {
1887 /* First, we compute the screen-space render area */
1888 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
1889 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
1890 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
1891 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
1892
1893 /* We want the guardband to be centered on that */
1894 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
1895 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
1896 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
1897 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
1898
1899 /* Now we need it in native device coordinates */
1900 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
1901 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
1902 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
1903 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
1904
1905 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
1906 * flipped upside-down. X should be fine though.
1907 */
1908 assert(ndc_gb_xmin <= ndc_gb_xmax);
1909 *xmin = ndc_gb_xmin;
1910 *xmax = ndc_gb_xmax;
1911 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
1912 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
1913 } else {
1914 /* The viewport scales to 0, so nothing will be rendered. */
1915 *xmin = 0.0f;
1916 *xmax = 0.0f;
1917 *ymin = 0.0f;
1918 *ymax = 0.0f;
1919 }
1920 }
1921 #endif
1922
1923 /**
1924 * The pipe->set_viewport_states() driver hook.
1925 *
1926 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
1927 * the guardband yet, as we need the framebuffer dimensions, but we can
1928 * at least fill out the rest.
1929 */
1930 static void
1931 iris_set_viewport_states(struct pipe_context *ctx,
1932 unsigned start_slot,
1933 unsigned count,
1934 const struct pipe_viewport_state *states)
1935 {
1936 struct iris_context *ice = (struct iris_context *) ctx;
1937 struct iris_genx_state *genx = ice->state.genx;
1938 uint32_t *vp_map =
1939 &genx->sf_cl_vp[start_slot * GENX(SF_CLIP_VIEWPORT_length)];
1940
1941 for (unsigned i = 0; i < count; i++) {
1942 const struct pipe_viewport_state *state = &states[i];
1943
1944 memcpy(&ice->state.viewports[start_slot + i], state, sizeof(*state));
1945
1946 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
1947 vp.ViewportMatrixElementm00 = state->scale[0];
1948 vp.ViewportMatrixElementm11 = state->scale[1];
1949 vp.ViewportMatrixElementm22 = state->scale[2];
1950 vp.ViewportMatrixElementm30 = state->translate[0];
1951 vp.ViewportMatrixElementm31 = state->translate[1];
1952 vp.ViewportMatrixElementm32 = state->translate[2];
1953 /* XXX: in i965 this is computed based on the drawbuffer size,
1954 * but we don't have that here...
1955 */
1956 vp.XMinClipGuardband = -1.0;
1957 vp.XMaxClipGuardband = 1.0;
1958 vp.YMinClipGuardband = -1.0;
1959 vp.YMaxClipGuardband = 1.0;
1960 vp.XMinViewPort = viewport_extent(state, 0, -1.0f);
1961 vp.XMaxViewPort = viewport_extent(state, 0, 1.0f) - 1;
1962 vp.YMinViewPort = viewport_extent(state, 1, -1.0f);
1963 vp.YMaxViewPort = viewport_extent(state, 1, 1.0f) - 1;
1964 }
1965
1966 vp_map += GENX(SF_CLIP_VIEWPORT_length);
1967 }
1968
1969 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
1970
1971 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
1972 !ice->state.cso_rast->depth_clip_far))
1973 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1974 }
1975
1976 /**
1977 * The pipe->set_framebuffer_state() driver hook.
1978 *
1979 * Sets the current draw FBO, including color render targets, depth,
1980 * and stencil buffers.
1981 */
1982 static void
1983 iris_set_framebuffer_state(struct pipe_context *ctx,
1984 const struct pipe_framebuffer_state *state)
1985 {
1986 struct iris_context *ice = (struct iris_context *) ctx;
1987 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1988 struct isl_device *isl_dev = &screen->isl_dev;
1989 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
1990 struct iris_resource *zres;
1991 struct iris_resource *stencil_res;
1992
1993 unsigned samples = util_framebuffer_get_num_samples(state);
1994
1995 if (cso->samples != samples) {
1996 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1997 }
1998
1999 if (cso->nr_cbufs != state->nr_cbufs) {
2000 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2001 }
2002
2003 if ((cso->layers == 0) != (state->layers == 0)) {
2004 ice->state.dirty |= IRIS_DIRTY_CLIP;
2005 }
2006
2007 util_copy_framebuffer_state(cso, state);
2008 cso->samples = samples;
2009
2010 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2011
2012 struct isl_view view = {
2013 .base_level = 0,
2014 .levels = 1,
2015 .base_array_layer = 0,
2016 .array_len = 1,
2017 .swizzle = ISL_SWIZZLE_IDENTITY,
2018 };
2019
2020 struct isl_depth_stencil_hiz_emit_info info = {
2021 .view = &view,
2022 .mocs = MOCS_WB,
2023 };
2024
2025 if (cso->zsbuf) {
2026 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2027 &stencil_res);
2028
2029 view.base_level = cso->zsbuf->u.tex.level;
2030 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2031 view.array_len =
2032 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2033
2034 if (zres) {
2035 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2036
2037 info.depth_surf = &zres->surf;
2038 info.depth_address = zres->bo->gtt_offset;
2039 info.hiz_usage = ISL_AUX_USAGE_NONE;
2040
2041 view.format = zres->surf.format;
2042 }
2043
2044 if (stencil_res) {
2045 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2046 info.stencil_surf = &stencil_res->surf;
2047 info.stencil_address = stencil_res->bo->gtt_offset;
2048 if (!zres)
2049 view.format = stencil_res->surf.format;
2050 }
2051 }
2052
2053 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2054
2055 /* Make a null surface for unbound buffers */
2056 void *null_surf_map =
2057 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2058 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2059 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2060 isl_extent3d(MAX2(cso->width, 1),
2061 MAX2(cso->height, 1),
2062 cso->layers ? cso->layers : 1));
2063 ice->state.null_fb.offset +=
2064 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2065
2066 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2067
2068 /* Render target change */
2069 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2070
2071 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2072
2073 #if GEN_GEN == 11
2074 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2075 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2076
2077 /* The PIPE_CONTROL command description says:
2078 *
2079 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2080 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2081 * Target Cache Flush by enabling this bit. When render target flush
2082 * is set due to new association of BTI, PS Scoreboard Stall bit must
2083 * be set in this packet."
2084 */
2085 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2086 iris_emit_pipe_control_flush(&ice->render_batch,
2087 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2088 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2089 #endif
2090 }
2091
2092 static void
2093 upload_ubo_surf_state(struct iris_context *ice,
2094 struct iris_const_buffer *cbuf,
2095 unsigned buffer_size)
2096 {
2097 struct pipe_context *ctx = &ice->ctx;
2098 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2099
2100 // XXX: these are not retained forever, use a separate uploader?
2101 void *map =
2102 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2103 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2104 if (!unlikely(map)) {
2105 pipe_resource_reference(&cbuf->data.res, NULL);
2106 return;
2107 }
2108
2109 struct iris_resource *res = (void *) cbuf->data.res;
2110 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2111 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2112
2113 isl_buffer_fill_state(&screen->isl_dev, map,
2114 .address = res->bo->gtt_offset + cbuf->data.offset,
2115 .size_B = MIN2(buffer_size,
2116 res->bo->size - cbuf->data.offset),
2117 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2118 .stride_B = 1,
2119 .mocs = MOCS_WB)
2120 }
2121
2122 /**
2123 * The pipe->set_constant_buffer() driver hook.
2124 *
2125 * This uploads any constant data in user buffers, and references
2126 * any UBO resources containing constant data.
2127 */
2128 static void
2129 iris_set_constant_buffer(struct pipe_context *ctx,
2130 enum pipe_shader_type p_stage, unsigned index,
2131 const struct pipe_constant_buffer *input)
2132 {
2133 struct iris_context *ice = (struct iris_context *) ctx;
2134 gl_shader_stage stage = stage_from_pipe(p_stage);
2135 struct iris_shader_state *shs = &ice->state.shaders[stage];
2136 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2137
2138 if (input && input->buffer) {
2139 assert(index > 0);
2140
2141 pipe_resource_reference(&cbuf->data.res, input->buffer);
2142 cbuf->data.offset = input->buffer_offset;
2143
2144 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2145 } else {
2146 pipe_resource_reference(&cbuf->data.res, NULL);
2147 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2148 }
2149
2150 if (index == 0) {
2151 if (input)
2152 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2153 else
2154 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2155
2156 shs->cbuf0_needs_upload = true;
2157 }
2158
2159 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2160 // XXX: maybe not necessary all the time...?
2161 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2162 // XXX: pull model we may need actual new bindings...
2163 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2164 }
2165
2166 static void
2167 upload_uniforms(struct iris_context *ice,
2168 gl_shader_stage stage)
2169 {
2170 struct iris_shader_state *shs = &ice->state.shaders[stage];
2171 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2172 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2173 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
2174
2175 unsigned upload_size = prog_data->nr_params * sizeof(uint32_t) +
2176 shs->cbuf0.buffer_size;
2177
2178 if (upload_size == 0)
2179 return;
2180
2181 uint32_t *map =
2182 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2183
2184 for (int i = 0; i < prog_data->nr_params; i++) {
2185 uint32_t param = prog_data->param[i];
2186 uint32_t value = 0;
2187
2188 printf("got a param to upload - %u\n", param);
2189
2190 *map++ = value;
2191 }
2192
2193 if (shs->cbuf0.user_buffer) {
2194 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2195 }
2196
2197 upload_ubo_surf_state(ice, cbuf, upload_size);
2198 }
2199
2200 /**
2201 * The pipe->set_shader_buffers() driver hook.
2202 *
2203 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2204 * SURFACE_STATE here, as the buffer offset may change each time.
2205 */
2206 static void
2207 iris_set_shader_buffers(struct pipe_context *ctx,
2208 enum pipe_shader_type p_stage,
2209 unsigned start_slot, unsigned count,
2210 const struct pipe_shader_buffer *buffers)
2211 {
2212 struct iris_context *ice = (struct iris_context *) ctx;
2213 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2214 gl_shader_stage stage = stage_from_pipe(p_stage);
2215 struct iris_shader_state *shs = &ice->state.shaders[stage];
2216
2217 for (unsigned i = 0; i < count; i++) {
2218 if (buffers && buffers[i].buffer) {
2219 const struct pipe_shader_buffer *buffer = &buffers[i];
2220 struct iris_resource *res = (void *) buffer->buffer;
2221 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2222
2223 // XXX: these are not retained forever, use a separate uploader?
2224 void *map =
2225 upload_state(ice->state.surface_uploader,
2226 &shs->ssbo_surface_state[start_slot + i],
2227 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2228 if (!unlikely(map)) {
2229 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2230 return;
2231 }
2232
2233 struct iris_bo *surf_state_bo =
2234 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2235 shs->ssbo_surface_state[start_slot + i].offset +=
2236 iris_bo_offset_from_base_address(surf_state_bo);
2237
2238 isl_buffer_fill_state(&screen->isl_dev, map,
2239 .address =
2240 res->bo->gtt_offset + buffer->buffer_offset,
2241 .size_B =
2242 MIN2(buffer->buffer_size,
2243 res->bo->size - buffer->buffer_offset),
2244 .format = ISL_FORMAT_RAW,
2245 .stride_B = 1,
2246 .mocs = MOCS_WB);
2247 } else {
2248 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2249 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2250 NULL);
2251 }
2252 }
2253
2254 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2255 }
2256
2257 static void
2258 iris_delete_state(struct pipe_context *ctx, void *state)
2259 {
2260 free(state);
2261 }
2262
2263 static void
2264 iris_free_vertex_buffers(struct iris_vertex_buffer_state *cso)
2265 {
2266 for (unsigned i = 0; i < cso->num_buffers; i++)
2267 pipe_resource_reference(&cso->resources[i], NULL);
2268 }
2269
2270 /**
2271 * The pipe->set_vertex_buffers() driver hook.
2272 *
2273 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2274 */
2275 static void
2276 iris_set_vertex_buffers(struct pipe_context *ctx,
2277 unsigned start_slot, unsigned count,
2278 const struct pipe_vertex_buffer *buffers)
2279 {
2280 struct iris_context *ice = (struct iris_context *) ctx;
2281 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
2282
2283 iris_free_vertex_buffers(&ice->state.genx->vertex_buffers);
2284
2285 if (!buffers)
2286 count = 0;
2287
2288 cso->num_buffers = count;
2289
2290 iris_pack_command(GENX(3DSTATE_VERTEX_BUFFERS), cso->vertex_buffers, vb) {
2291 vb.DWordLength = 4 * MAX2(cso->num_buffers, 1) - 1;
2292 }
2293
2294 uint32_t *vb_pack_dest = &cso->vertex_buffers[1];
2295
2296 if (count == 0) {
2297 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
2298 vb.VertexBufferIndex = start_slot;
2299 vb.NullVertexBuffer = true;
2300 vb.AddressModifyEnable = true;
2301 }
2302 }
2303
2304 for (unsigned i = 0; i < count; i++) {
2305 assert(!buffers[i].is_user_buffer);
2306
2307 pipe_resource_reference(&cso->resources[i], buffers[i].buffer.resource);
2308 struct iris_resource *res = (void *) cso->resources[i];
2309
2310 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
2311 vb.VertexBufferIndex = start_slot + i;
2312 vb.MOCS = MOCS_WB;
2313 vb.AddressModifyEnable = true;
2314 vb.BufferPitch = buffers[i].stride;
2315 if (res) {
2316 vb.BufferSize = res->bo->size;
2317 vb.BufferStartingAddress =
2318 ro_bo(NULL, res->bo->gtt_offset + buffers[i].buffer_offset);
2319 } else {
2320 vb.NullVertexBuffer = true;
2321 }
2322 }
2323
2324 vb_pack_dest += GENX(VERTEX_BUFFER_STATE_length);
2325 }
2326
2327 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2328 }
2329
2330 /**
2331 * Gallium CSO for vertex elements.
2332 */
2333 struct iris_vertex_element_state {
2334 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2335 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2336 unsigned count;
2337 };
2338
2339 /**
2340 * The pipe->create_vertex_elements() driver hook.
2341 *
2342 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2343 * and 3DSTATE_VF_INSTANCING commands. SGVs are handled at draw time.
2344 */
2345 static void *
2346 iris_create_vertex_elements(struct pipe_context *ctx,
2347 unsigned count,
2348 const struct pipe_vertex_element *state)
2349 {
2350 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2351 const struct gen_device_info *devinfo = &screen->devinfo;
2352 struct iris_vertex_element_state *cso =
2353 malloc(sizeof(struct iris_vertex_element_state));
2354
2355 cso->count = count;
2356
2357 /* TODO:
2358 * - create edge flag one
2359 * - create SGV ones
2360 * - if those are necessary, use count + 1/2/3... OR in the length
2361 */
2362 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2363 ve.DWordLength =
2364 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2365 }
2366
2367 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2368 uint32_t *vfi_pack_dest = cso->vf_instancing;
2369
2370 if (count == 0) {
2371 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2372 ve.Valid = true;
2373 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2374 ve.Component0Control = VFCOMP_STORE_0;
2375 ve.Component1Control = VFCOMP_STORE_0;
2376 ve.Component2Control = VFCOMP_STORE_0;
2377 ve.Component3Control = VFCOMP_STORE_1_FP;
2378 }
2379
2380 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2381 }
2382 }
2383
2384 for (int i = 0; i < count; i++) {
2385 const struct iris_format_info fmt =
2386 iris_format_for_usage(devinfo, state[i].src_format, 0);
2387 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2388 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2389
2390 switch (isl_format_get_num_channels(fmt.fmt)) {
2391 case 0: comp[0] = VFCOMP_STORE_0;
2392 case 1: comp[1] = VFCOMP_STORE_0;
2393 case 2: comp[2] = VFCOMP_STORE_0;
2394 case 3:
2395 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2396 : VFCOMP_STORE_1_FP;
2397 break;
2398 }
2399 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2400 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2401 ve.Valid = true;
2402 ve.SourceElementOffset = state[i].src_offset;
2403 ve.SourceElementFormat = fmt.fmt;
2404 ve.Component0Control = comp[0];
2405 ve.Component1Control = comp[1];
2406 ve.Component2Control = comp[2];
2407 ve.Component3Control = comp[3];
2408 }
2409
2410 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2411 vi.VertexElementIndex = i;
2412 vi.InstancingEnable = state[i].instance_divisor > 0;
2413 vi.InstanceDataStepRate = state[i].instance_divisor;
2414 }
2415
2416 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2417 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2418 }
2419
2420 return cso;
2421 }
2422
2423 /**
2424 * The pipe->bind_vertex_elements_state() driver hook.
2425 */
2426 static void
2427 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2428 {
2429 struct iris_context *ice = (struct iris_context *) ctx;
2430 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2431 struct iris_vertex_element_state *new_cso = state;
2432
2433 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2434 * we need to re-emit it to ensure we're overriding the right one.
2435 */
2436 if (new_cso && cso_changed(count))
2437 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2438
2439 ice->state.cso_vertex_elements = state;
2440 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2441 }
2442
2443 /**
2444 * Gallium CSO for stream output (transform feedback) targets.
2445 */
2446 struct iris_stream_output_target {
2447 struct pipe_stream_output_target base;
2448
2449 uint32_t so_buffer[GENX(3DSTATE_SO_BUFFER_length)];
2450
2451 /** Storage holding the offset where we're writing in the buffer */
2452 struct iris_state_ref offset;
2453 };
2454
2455 /**
2456 * The pipe->create_stream_output_target() driver hook.
2457 *
2458 * "Target" here refers to a destination buffer. We translate this into
2459 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2460 * know which buffer this represents, or whether we ought to zero the
2461 * write-offsets, or append. Those are handled in the set() hook.
2462 */
2463 static struct pipe_stream_output_target *
2464 iris_create_stream_output_target(struct pipe_context *ctx,
2465 struct pipe_resource *res,
2466 unsigned buffer_offset,
2467 unsigned buffer_size)
2468 {
2469 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2470 if (!cso)
2471 return NULL;
2472
2473 pipe_reference_init(&cso->base.reference, 1);
2474 pipe_resource_reference(&cso->base.buffer, res);
2475 cso->base.buffer_offset = buffer_offset;
2476 cso->base.buffer_size = buffer_size;
2477 cso->base.context = ctx;
2478
2479 upload_state(ctx->stream_uploader, &cso->offset, 4 * sizeof(uint32_t), 4);
2480
2481 iris_pack_command(GENX(3DSTATE_SO_BUFFER), cso->so_buffer, sob) {
2482 sob.SurfaceBaseAddress =
2483 rw_bo(NULL, iris_resource_bo(res)->gtt_offset + buffer_offset);
2484 sob.SOBufferEnable = true;
2485 sob.StreamOffsetWriteEnable = true;
2486 sob.StreamOutputBufferOffsetAddressEnable = true;
2487 sob.MOCS = MOCS_WB; // XXX: MOCS
2488
2489 sob.SurfaceSize = MAX2(buffer_size / 4, 1) - 1;
2490
2491 /* .SOBufferIndex, .StreamOffset, and .StreamOutputBufferOffsetAddress
2492 * are filled in later when we have stream IDs.
2493 */
2494 }
2495
2496 return &cso->base;
2497 }
2498
2499 static void
2500 iris_stream_output_target_destroy(struct pipe_context *ctx,
2501 struct pipe_stream_output_target *state)
2502 {
2503 struct iris_stream_output_target *cso = (void *) state;
2504
2505 pipe_resource_reference(&cso->base.buffer, NULL);
2506 pipe_resource_reference(&cso->offset.res, NULL);
2507
2508 free(cso);
2509 }
2510
2511 /**
2512 * The pipe->set_stream_output_targets() driver hook.
2513 *
2514 * At this point, we know which targets are bound to a particular index,
2515 * and also whether we want to append or start over. We can finish the
2516 * 3DSTATE_SO_BUFFER packets we started earlier.
2517 */
2518 static void
2519 iris_set_stream_output_targets(struct pipe_context *ctx,
2520 unsigned num_targets,
2521 struct pipe_stream_output_target **targets,
2522 const unsigned *offsets)
2523 {
2524 struct iris_context *ice = (struct iris_context *) ctx;
2525 struct iris_genx_state *genx = ice->state.genx;
2526 uint32_t *so_buffers = genx->so_buffers;
2527
2528 const bool active = num_targets > 0;
2529 if (ice->state.streamout_active != active) {
2530 ice->state.streamout_active = active;
2531 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2532
2533 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2534 * it's a non-pipelined command. If we're switching streamout on, we
2535 * may have missed emitting it earlier, so do so now. (We're already
2536 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2537 */
2538 if (active)
2539 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2540 }
2541
2542 for (int i = 0; i < 4; i++) {
2543 pipe_so_target_reference(&ice->state.so_target[i],
2544 i < num_targets ? targets[i] : NULL);
2545 }
2546
2547 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2548 if (!active)
2549 return;
2550
2551 for (unsigned i = 0; i < 4; i++,
2552 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2553
2554 if (i >= num_targets || !targets[i]) {
2555 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2556 sob.SOBufferIndex = i;
2557 continue;
2558 }
2559
2560 struct iris_stream_output_target *tgt = (void *) targets[i];
2561
2562 /* Note that offsets[i] will either be 0, causing us to zero
2563 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2564 * "continue appending at the existing offset."
2565 */
2566 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2567
2568 uint32_t dynamic[GENX(3DSTATE_SO_BUFFER_length)];
2569 iris_pack_state(GENX(3DSTATE_SO_BUFFER), dynamic, dyns) {
2570 dyns.SOBufferIndex = i;
2571 dyns.StreamOffset = offsets[i];
2572 dyns.StreamOutputBufferOffsetAddress =
2573 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset + tgt->offset.offset + i * sizeof(uint32_t));
2574 }
2575
2576 for (uint32_t j = 0; j < GENX(3DSTATE_SO_BUFFER_length); j++) {
2577 so_buffers[j] = tgt->so_buffer[j] | dynamic[j];
2578 }
2579 }
2580
2581 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2582 }
2583
2584 /**
2585 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2586 * 3DSTATE_STREAMOUT packets.
2587 *
2588 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2589 * hardware to record. We can create it entirely based on the shader, with
2590 * no dynamic state dependencies.
2591 *
2592 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2593 * state-based settings. We capture the shader-related ones here, and merge
2594 * the rest in at draw time.
2595 */
2596 static uint32_t *
2597 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2598 const struct brw_vue_map *vue_map)
2599 {
2600 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2601 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2602 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2603 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2604 int max_decls = 0;
2605 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2606
2607 memset(so_decl, 0, sizeof(so_decl));
2608
2609 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2610 * command feels strange -- each dword pair contains a SO_DECL per stream.
2611 */
2612 for (unsigned i = 0; i < info->num_outputs; i++) {
2613 const struct pipe_stream_output *output = &info->output[i];
2614 const int buffer = output->output_buffer;
2615 const int varying = output->register_index;
2616 const unsigned stream_id = output->stream;
2617 assert(stream_id < MAX_VERTEX_STREAMS);
2618
2619 buffer_mask[stream_id] |= 1 << buffer;
2620
2621 assert(vue_map->varying_to_slot[varying] >= 0);
2622
2623 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2624 * array. Instead, it simply increments DstOffset for the following
2625 * input by the number of components that should be skipped.
2626 *
2627 * Our hardware is unusual in that it requires us to program SO_DECLs
2628 * for fake "hole" components, rather than simply taking the offset
2629 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2630 * program as many size = 4 holes as we can, then a final hole to
2631 * accommodate the final 1, 2, or 3 remaining.
2632 */
2633 int skip_components = output->dst_offset - next_offset[buffer];
2634
2635 while (skip_components > 0) {
2636 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2637 .HoleFlag = 1,
2638 .OutputBufferSlot = output->output_buffer,
2639 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2640 };
2641 skip_components -= 4;
2642 }
2643
2644 next_offset[buffer] = output->dst_offset + output->num_components;
2645
2646 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2647 .OutputBufferSlot = output->output_buffer,
2648 .RegisterIndex = vue_map->varying_to_slot[varying],
2649 .ComponentMask =
2650 ((1 << output->num_components) - 1) << output->start_component,
2651 };
2652
2653 if (decls[stream_id] > max_decls)
2654 max_decls = decls[stream_id];
2655 }
2656
2657 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2658 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2659 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2660
2661 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2662 int urb_entry_read_offset = 0;
2663 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2664 urb_entry_read_offset;
2665
2666 /* We always read the whole vertex. This could be reduced at some
2667 * point by reading less and offsetting the register index in the
2668 * SO_DECLs.
2669 */
2670 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2671 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2672 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2673 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2674 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2675 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2676 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2677 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2678
2679 /* Set buffer pitches; 0 means unbound. */
2680 sol.Buffer0SurfacePitch = 4 * info->stride[0];
2681 sol.Buffer1SurfacePitch = 4 * info->stride[1];
2682 sol.Buffer2SurfacePitch = 4 * info->stride[2];
2683 sol.Buffer3SurfacePitch = 4 * info->stride[3];
2684 }
2685
2686 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2687 list.DWordLength = 3 + 2 * max_decls - 2;
2688 list.StreamtoBufferSelects0 = buffer_mask[0];
2689 list.StreamtoBufferSelects1 = buffer_mask[1];
2690 list.StreamtoBufferSelects2 = buffer_mask[2];
2691 list.StreamtoBufferSelects3 = buffer_mask[3];
2692 list.NumEntries0 = decls[0];
2693 list.NumEntries1 = decls[1];
2694 list.NumEntries2 = decls[2];
2695 list.NumEntries3 = decls[3];
2696 }
2697
2698 for (int i = 0; i < max_decls; i++) {
2699 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
2700 entry.Stream0Decl = so_decl[0][i];
2701 entry.Stream1Decl = so_decl[1][i];
2702 entry.Stream2Decl = so_decl[2][i];
2703 entry.Stream3Decl = so_decl[3][i];
2704 }
2705 }
2706
2707 return map;
2708 }
2709
2710 static void
2711 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
2712 const struct brw_vue_map *last_vue_map,
2713 bool two_sided_color,
2714 unsigned *out_offset,
2715 unsigned *out_length)
2716 {
2717 /* The compiler computes the first URB slot without considering COL/BFC
2718 * swizzling (because it doesn't know whether it's enabled), so we need
2719 * to do that here too. This may result in a smaller offset, which
2720 * should be safe.
2721 */
2722 const unsigned first_slot =
2723 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
2724
2725 /* This becomes the URB read offset (counted in pairs of slots). */
2726 assert(first_slot % 2 == 0);
2727 *out_offset = first_slot / 2;
2728
2729 /* We need to adjust the inputs read to account for front/back color
2730 * swizzling, as it can make the URB length longer.
2731 */
2732 for (int c = 0; c <= 1; c++) {
2733 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
2734 /* If two sided color is enabled, the fragment shader's gl_Color
2735 * (COL0) input comes from either the gl_FrontColor (COL0) or
2736 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
2737 */
2738 if (two_sided_color)
2739 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2740
2741 /* If front color isn't written, we opt to give them back color
2742 * instead of an undefined value. Switch from COL to BFC.
2743 */
2744 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
2745 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
2746 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2747 }
2748 }
2749 }
2750
2751 /* Compute the minimum URB Read Length necessary for the FS inputs.
2752 *
2753 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
2754 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
2755 *
2756 * "This field should be set to the minimum length required to read the
2757 * maximum source attribute. The maximum source attribute is indicated
2758 * by the maximum value of the enabled Attribute # Source Attribute if
2759 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
2760 * enable is not set.
2761 * read_length = ceiling((max_source_attr + 1) / 2)
2762 *
2763 * [errata] Corruption/Hang possible if length programmed larger than
2764 * recommended"
2765 *
2766 * Similar text exists for Ivy Bridge.
2767 *
2768 * We find the last URB slot that's actually read by the FS.
2769 */
2770 unsigned last_read_slot = last_vue_map->num_slots - 1;
2771 while (last_read_slot > first_slot && !(fs_input_slots &
2772 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
2773 --last_read_slot;
2774
2775 /* The URB read length is the difference of the two, counted in pairs. */
2776 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
2777 }
2778
2779 static void
2780 iris_emit_sbe_swiz(struct iris_batch *batch,
2781 const struct iris_context *ice,
2782 unsigned urb_read_offset,
2783 unsigned sprite_coord_enables)
2784 {
2785 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
2786 const struct brw_wm_prog_data *wm_prog_data = (void *)
2787 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2788 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
2789 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2790
2791 /* XXX: this should be generated when putting programs in place */
2792
2793 // XXX: raster->sprite_coord_enable
2794
2795 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
2796 const int input_index = wm_prog_data->urb_setup[fs_attr];
2797 if (input_index < 0 || input_index >= 16)
2798 continue;
2799
2800 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
2801 &attr_overrides[input_index];
2802 int slot = vue_map->varying_to_slot[fs_attr];
2803
2804 /* Viewport and Layer are stored in the VUE header. We need to override
2805 * them to zero if earlier stages didn't write them, as GL requires that
2806 * they read back as zero when not explicitly set.
2807 */
2808 switch (fs_attr) {
2809 case VARYING_SLOT_VIEWPORT:
2810 case VARYING_SLOT_LAYER:
2811 attr->ComponentOverrideX = true;
2812 attr->ComponentOverrideW = true;
2813 attr->ConstantSource = CONST_0000;
2814
2815 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
2816 attr->ComponentOverrideY = true;
2817 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
2818 attr->ComponentOverrideZ = true;
2819 continue;
2820
2821 case VARYING_SLOT_PRIMITIVE_ID:
2822 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
2823 if (slot == -1) {
2824 attr->ComponentOverrideX = true;
2825 attr->ComponentOverrideY = true;
2826 attr->ComponentOverrideZ = true;
2827 attr->ComponentOverrideW = true;
2828 attr->ConstantSource = PRIM_ID;
2829 continue;
2830 }
2831
2832 default:
2833 break;
2834 }
2835
2836 if (sprite_coord_enables & (1 << input_index))
2837 continue;
2838
2839 /* If there was only a back color written but not front, use back
2840 * as the color instead of undefined.
2841 */
2842 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
2843 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
2844 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
2845 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
2846
2847 /* Not written by the previous stage - undefined. */
2848 if (slot == -1) {
2849 attr->ComponentOverrideX = true;
2850 attr->ComponentOverrideY = true;
2851 attr->ComponentOverrideZ = true;
2852 attr->ComponentOverrideW = true;
2853 attr->ConstantSource = CONST_0001_FLOAT;
2854 continue;
2855 }
2856
2857 /* Compute the location of the attribute relative to the read offset,
2858 * which is counted in 256-bit increments (two 128-bit VUE slots).
2859 */
2860 const int source_attr = slot - 2 * urb_read_offset;
2861 assert(source_attr >= 0 && source_attr <= 32);
2862 attr->SourceAttribute = source_attr;
2863
2864 /* If we are doing two-sided color, and the VUE slot following this one
2865 * represents a back-facing color, then we need to instruct the SF unit
2866 * to do back-facing swizzling.
2867 */
2868 if (cso_rast->light_twoside &&
2869 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
2870 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
2871 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
2872 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
2873 attr->SwizzleSelect = INPUTATTR_FACING;
2874 }
2875
2876 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
2877 for (int i = 0; i < 16; i++)
2878 sbes.Attribute[i] = attr_overrides[i];
2879 }
2880 }
2881
2882 static unsigned
2883 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
2884 const struct iris_rasterizer_state *cso)
2885 {
2886 unsigned overrides = 0;
2887
2888 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
2889 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
2890
2891 for (int i = 0; i < 8; i++) {
2892 if ((cso->sprite_coord_enable & (1 << i)) &&
2893 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
2894 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
2895 }
2896
2897 return overrides;
2898 }
2899
2900 static void
2901 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
2902 {
2903 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2904 const struct brw_wm_prog_data *wm_prog_data = (void *)
2905 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2906 const struct shader_info *fs_info =
2907 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
2908
2909 unsigned urb_read_offset, urb_read_length;
2910 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
2911 ice->shaders.last_vue_map,
2912 cso_rast->light_twoside,
2913 &urb_read_offset, &urb_read_length);
2914
2915 unsigned sprite_coord_overrides =
2916 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
2917
2918 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
2919 sbe.AttributeSwizzleEnable = true;
2920 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
2921 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
2922 sbe.VertexURBEntryReadOffset = urb_read_offset;
2923 sbe.VertexURBEntryReadLength = urb_read_length;
2924 sbe.ForceVertexURBEntryReadOffset = true;
2925 sbe.ForceVertexURBEntryReadLength = true;
2926 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
2927 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
2928
2929 for (int i = 0; i < 32; i++) {
2930 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
2931 }
2932 }
2933
2934 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
2935 }
2936
2937 /* ------------------------------------------------------------------- */
2938
2939 /**
2940 * Set sampler-related program key fields based on the current state.
2941 */
2942 static void
2943 iris_populate_sampler_key(const struct iris_context *ice,
2944 struct brw_sampler_prog_key_data *key)
2945 {
2946 for (int i = 0; i < MAX_SAMPLERS; i++) {
2947 key->swizzles[i] = 0x688; /* XYZW */
2948 }
2949 }
2950
2951 /**
2952 * Populate VS program key fields based on the current state.
2953 */
2954 static void
2955 iris_populate_vs_key(const struct iris_context *ice,
2956 const struct shader_info *info,
2957 struct brw_vs_prog_key *key)
2958 {
2959 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2960
2961 iris_populate_sampler_key(ice, &key->tex);
2962
2963 if (info->clip_distance_array_size == 0)
2964 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
2965 }
2966
2967 /**
2968 * Populate TCS program key fields based on the current state.
2969 */
2970 static void
2971 iris_populate_tcs_key(const struct iris_context *ice,
2972 struct brw_tcs_prog_key *key)
2973 {
2974 iris_populate_sampler_key(ice, &key->tex);
2975 }
2976
2977 /**
2978 * Populate TES program key fields based on the current state.
2979 */
2980 static void
2981 iris_populate_tes_key(const struct iris_context *ice,
2982 struct brw_tes_prog_key *key)
2983 {
2984 iris_populate_sampler_key(ice, &key->tex);
2985 }
2986
2987 /**
2988 * Populate GS program key fields based on the current state.
2989 */
2990 static void
2991 iris_populate_gs_key(const struct iris_context *ice,
2992 struct brw_gs_prog_key *key)
2993 {
2994 iris_populate_sampler_key(ice, &key->tex);
2995 }
2996
2997 /**
2998 * Populate FS program key fields based on the current state.
2999 */
3000 static void
3001 iris_populate_fs_key(const struct iris_context *ice,
3002 struct brw_wm_prog_key *key)
3003 {
3004 iris_populate_sampler_key(ice, &key->tex);
3005
3006 /* XXX: dirty flags? */
3007 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3008 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3009 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3010 const struct iris_blend_state *blend = ice->state.cso_blend;
3011
3012 key->nr_color_regions = fb->nr_cbufs;
3013
3014 key->clamp_fragment_color = rast->clamp_fragment_color;
3015
3016 key->replicate_alpha = fb->nr_cbufs > 1 &&
3017 (zsa->alpha.enabled || blend->alpha_to_coverage);
3018
3019 /* XXX: only bother if COL0/1 are read */
3020 key->flat_shade = rast->flatshade;
3021
3022 key->persample_interp = rast->force_persample_interp;
3023 key->multisample_fbo = rast->multisample && fb->samples > 1;
3024
3025 key->coherent_fb_fetch = true;
3026
3027 // XXX: uint64_t input_slots_valid; - for >16 inputs
3028
3029 // XXX: key->force_dual_color_blend for unigine
3030 // XXX: respect hint for high_quality_derivatives:1;
3031 }
3032
3033 static void
3034 iris_populate_cs_key(const struct iris_context *ice,
3035 struct brw_cs_prog_key *key)
3036 {
3037 iris_populate_sampler_key(ice, &key->tex);
3038 }
3039
3040 #if 0
3041 // XXX: these need to go in INIT_THREAD_DISPATCH_FIELDS
3042 pkt.SamplerCount = \
3043 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
3044
3045 #endif
3046
3047 static uint64_t
3048 KSP(const struct iris_compiled_shader *shader)
3049 {
3050 struct iris_resource *res = (void *) shader->assembly.res;
3051 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3052 }
3053
3054 // Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3055 // prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3056 // this WA on C0 stepping.
3057
3058 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3059 pkt.KernelStartPointer = KSP(shader); \
3060 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3061 prog_data->binding_table.size_bytes / 4; \
3062 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3063 \
3064 pkt.DispatchGRFStartRegisterForURBData = \
3065 prog_data->dispatch_grf_start_reg; \
3066 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3067 pkt.prefix##URBEntryReadOffset = 0; \
3068 \
3069 pkt.StatisticsEnable = true; \
3070 pkt.Enable = true; \
3071 \
3072 if (prog_data->total_scratch) { \
3073 uint32_t scratch_addr = \
3074 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3075 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3076 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3077 }
3078
3079 /**
3080 * Encode most of 3DSTATE_VS based on the compiled shader.
3081 */
3082 static void
3083 iris_store_vs_state(struct iris_context *ice,
3084 const struct gen_device_info *devinfo,
3085 struct iris_compiled_shader *shader)
3086 {
3087 struct brw_stage_prog_data *prog_data = shader->prog_data;
3088 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3089
3090 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3091 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3092 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3093 vs.SIMD8DispatchEnable = true;
3094 vs.UserClipDistanceCullTestEnableBitmask =
3095 vue_prog_data->cull_distance_mask;
3096 }
3097 }
3098
3099 /**
3100 * Encode most of 3DSTATE_HS based on the compiled shader.
3101 */
3102 static void
3103 iris_store_tcs_state(struct iris_context *ice,
3104 const struct gen_device_info *devinfo,
3105 struct iris_compiled_shader *shader)
3106 {
3107 struct brw_stage_prog_data *prog_data = shader->prog_data;
3108 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3109 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3110
3111 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3112 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3113
3114 hs.InstanceCount = tcs_prog_data->instances - 1;
3115 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3116 hs.IncludeVertexHandles = true;
3117 }
3118 }
3119
3120 /**
3121 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3122 */
3123 static void
3124 iris_store_tes_state(struct iris_context *ice,
3125 const struct gen_device_info *devinfo,
3126 struct iris_compiled_shader *shader)
3127 {
3128 struct brw_stage_prog_data *prog_data = shader->prog_data;
3129 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3130 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3131
3132 uint32_t *te_state = (void *) shader->derived_data;
3133 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3134
3135 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3136 te.Partitioning = tes_prog_data->partitioning;
3137 te.OutputTopology = tes_prog_data->output_topology;
3138 te.TEDomain = tes_prog_data->domain;
3139 te.TEEnable = true;
3140 te.MaximumTessellationFactorOdd = 63.0;
3141 te.MaximumTessellationFactorNotOdd = 64.0;
3142 }
3143
3144 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3145 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3146
3147 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3148 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3149 ds.ComputeWCoordinateEnable =
3150 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3151
3152 ds.UserClipDistanceCullTestEnableBitmask =
3153 vue_prog_data->cull_distance_mask;
3154 }
3155
3156 }
3157
3158 /**
3159 * Encode most of 3DSTATE_GS based on the compiled shader.
3160 */
3161 static void
3162 iris_store_gs_state(struct iris_context *ice,
3163 const struct gen_device_info *devinfo,
3164 struct iris_compiled_shader *shader)
3165 {
3166 struct brw_stage_prog_data *prog_data = shader->prog_data;
3167 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3168 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3169
3170 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3171 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3172
3173 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3174 gs.OutputTopology = gs_prog_data->output_topology;
3175 gs.ControlDataHeaderSize =
3176 gs_prog_data->control_data_header_size_hwords;
3177 gs.InstanceControl = gs_prog_data->invocations - 1;
3178 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3179 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3180 gs.ControlDataFormat = gs_prog_data->control_data_format;
3181 gs.ReorderMode = TRAILING;
3182 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3183 gs.MaximumNumberofThreads =
3184 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3185 : (devinfo->max_gs_threads - 1);
3186
3187 if (gs_prog_data->static_vertex_count != -1) {
3188 gs.StaticOutput = true;
3189 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3190 }
3191 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3192
3193 gs.UserClipDistanceCullTestEnableBitmask =
3194 vue_prog_data->cull_distance_mask;
3195
3196 const int urb_entry_write_offset = 1;
3197 const uint32_t urb_entry_output_length =
3198 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3199 urb_entry_write_offset;
3200
3201 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3202 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3203 }
3204 }
3205
3206 /**
3207 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3208 */
3209 static void
3210 iris_store_fs_state(struct iris_context *ice,
3211 const struct gen_device_info *devinfo,
3212 struct iris_compiled_shader *shader)
3213 {
3214 struct brw_stage_prog_data *prog_data = shader->prog_data;
3215 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3216
3217 uint32_t *ps_state = (void *) shader->derived_data;
3218 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3219
3220 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3221 ps.VectorMaskEnable = true;
3222 //ps.SamplerCount = ...
3223 // XXX: WABTPPrefetchDisable, see above, drop at C0
3224 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3225 prog_data->binding_table.size_bytes / 4;
3226 ps.FloatingPointMode = prog_data->use_alt_mode;
3227 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3228
3229 ps.PushConstantEnable = prog_data->nr_params > 0 ||
3230 prog_data->ubo_ranges[0].length > 0;
3231
3232 /* From the documentation for this packet:
3233 * "If the PS kernel does not need the Position XY Offsets to
3234 * compute a Position Value, then this field should be programmed
3235 * to POSOFFSET_NONE."
3236 *
3237 * "SW Recommendation: If the PS kernel needs the Position Offsets
3238 * to compute a Position XY value, this field should match Position
3239 * ZW Interpolation Mode to ensure a consistent position.xyzw
3240 * computation."
3241 *
3242 * We only require XY sample offsets. So, this recommendation doesn't
3243 * look useful at the moment. We might need this in future.
3244 */
3245 ps.PositionXYOffsetSelect =
3246 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3247 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3248 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3249 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3250
3251 // XXX: Disable SIMD32 with 16x MSAA
3252
3253 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3254 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3255 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3256 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3257 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3258 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3259
3260 ps.KernelStartPointer0 =
3261 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3262 ps.KernelStartPointer1 =
3263 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3264 ps.KernelStartPointer2 =
3265 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3266
3267 if (prog_data->total_scratch) {
3268 uint32_t scratch_addr =
3269 iris_get_scratch_space(ice, prog_data->total_scratch,
3270 MESA_SHADER_FRAGMENT);
3271 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3272 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3273 }
3274 }
3275
3276 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3277 psx.PixelShaderValid = true;
3278 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3279 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3280 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3281 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3282 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3283 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3284
3285 if (wm_prog_data->uses_sample_mask) {
3286 /* TODO: conservative rasterization */
3287 if (wm_prog_data->post_depth_coverage)
3288 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3289 else
3290 psx.InputCoverageMaskState = ICMS_NORMAL;
3291 }
3292
3293 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3294 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3295 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3296
3297 // XXX: UAV bit
3298 }
3299 }
3300
3301 /**
3302 * Compute the size of the derived data (shader command packets).
3303 *
3304 * This must match the data written by the iris_store_xs_state() functions.
3305 */
3306 static void
3307 iris_store_cs_state(struct iris_context *ice,
3308 const struct gen_device_info *devinfo,
3309 struct iris_compiled_shader *shader)
3310 {
3311 struct brw_stage_prog_data *prog_data = shader->prog_data;
3312 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3313 void *map = shader->derived_data;
3314
3315 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3316 desc.KernelStartPointer = KSP(shader);
3317 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3318 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3319 desc.SharedLocalMemorySize =
3320 encode_slm_size(GEN_GEN, prog_data->total_shared);
3321 desc.BarrierEnable = cs_prog_data->uses_barrier;
3322 desc.CrossThreadConstantDataReadLength =
3323 cs_prog_data->push.cross_thread.regs;
3324 }
3325 }
3326
3327 static unsigned
3328 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3329 {
3330 assert(cache_id <= IRIS_CACHE_BLORP);
3331
3332 static const unsigned dwords[] = {
3333 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3334 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3335 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3336 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3337 [IRIS_CACHE_FS] =
3338 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3339 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3340 [IRIS_CACHE_BLORP] = 0,
3341 };
3342
3343 return sizeof(uint32_t) * dwords[cache_id];
3344 }
3345
3346 /**
3347 * Create any state packets corresponding to the given shader stage
3348 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3349 * This means that we can look up a program in the in-memory cache and
3350 * get most of the state packet without having to reconstruct it.
3351 */
3352 static void
3353 iris_store_derived_program_state(struct iris_context *ice,
3354 enum iris_program_cache_id cache_id,
3355 struct iris_compiled_shader *shader)
3356 {
3357 struct iris_screen *screen = (void *) ice->ctx.screen;
3358 const struct gen_device_info *devinfo = &screen->devinfo;
3359
3360 switch (cache_id) {
3361 case IRIS_CACHE_VS:
3362 iris_store_vs_state(ice, devinfo, shader);
3363 break;
3364 case IRIS_CACHE_TCS:
3365 iris_store_tcs_state(ice, devinfo, shader);
3366 break;
3367 case IRIS_CACHE_TES:
3368 iris_store_tes_state(ice, devinfo, shader);
3369 break;
3370 case IRIS_CACHE_GS:
3371 iris_store_gs_state(ice, devinfo, shader);
3372 break;
3373 case IRIS_CACHE_FS:
3374 iris_store_fs_state(ice, devinfo, shader);
3375 break;
3376 case IRIS_CACHE_CS:
3377 iris_store_cs_state(ice, devinfo, shader);
3378 case IRIS_CACHE_BLORP:
3379 break;
3380 default:
3381 break;
3382 }
3383 }
3384
3385 /* ------------------------------------------------------------------- */
3386
3387 /**
3388 * Configure the URB.
3389 *
3390 * XXX: write a real comment.
3391 */
3392 static void
3393 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
3394 {
3395 const struct gen_device_info *devinfo = &batch->screen->devinfo;
3396 const unsigned push_size_kB = 32;
3397 unsigned entries[4];
3398 unsigned start[4];
3399 unsigned size[4];
3400
3401 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3402 if (!ice->shaders.prog[i]) {
3403 size[i] = 1;
3404 } else {
3405 struct brw_vue_prog_data *vue_prog_data =
3406 (void *) ice->shaders.prog[i]->prog_data;
3407 size[i] = vue_prog_data->urb_entry_size;
3408 }
3409 assert(size[i] != 0);
3410 }
3411
3412 gen_get_urb_config(devinfo, 1024 * push_size_kB,
3413 1024 * ice->shaders.urb_size,
3414 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
3415 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
3416 size, entries, start);
3417
3418 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3419 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
3420 urb._3DCommandSubOpcode += i;
3421 urb.VSURBStartingAddress = start[i];
3422 urb.VSURBEntryAllocationSize = size[i] - 1;
3423 urb.VSNumberofURBEntries = entries[i];
3424 }
3425 }
3426 }
3427
3428 static const uint32_t push_constant_opcodes[] = {
3429 [MESA_SHADER_VERTEX] = 21,
3430 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3431 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3432 [MESA_SHADER_GEOMETRY] = 22,
3433 [MESA_SHADER_FRAGMENT] = 23,
3434 [MESA_SHADER_COMPUTE] = 0,
3435 };
3436
3437 static uint32_t
3438 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3439 {
3440 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3441
3442 iris_use_pinned_bo(batch, state_bo, false);
3443
3444 return ice->state.unbound_tex.offset;
3445 }
3446
3447 static uint32_t
3448 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3449 {
3450 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3451 if (!ice->state.null_fb.res)
3452 return use_null_surface(batch, ice);
3453
3454 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3455
3456 iris_use_pinned_bo(batch, state_bo, false);
3457
3458 return ice->state.null_fb.offset;
3459 }
3460
3461 /**
3462 * Add a surface to the validation list, as well as the buffer containing
3463 * the corresponding SURFACE_STATE.
3464 *
3465 * Returns the binding table entry (offset to SURFACE_STATE).
3466 */
3467 static uint32_t
3468 use_surface(struct iris_batch *batch,
3469 struct pipe_surface *p_surf,
3470 bool writeable)
3471 {
3472 struct iris_surface *surf = (void *) p_surf;
3473
3474 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3475 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3476
3477 return surf->surface_state.offset;
3478 }
3479
3480 static uint32_t
3481 use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
3482 {
3483 iris_use_pinned_bo(batch, isv->res->bo, false);
3484 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3485
3486 return isv->surface_state.offset;
3487 }
3488
3489 static uint32_t
3490 use_const_buffer(struct iris_batch *batch,
3491 struct iris_context *ice,
3492 struct iris_const_buffer *cbuf)
3493 {
3494 if (!cbuf->surface_state.res)
3495 return use_null_surface(batch, ice);
3496
3497 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3498 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3499
3500 return cbuf->surface_state.offset;
3501 }
3502
3503 static uint32_t
3504 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3505 struct iris_shader_state *shs, int i)
3506 {
3507 if (!shs->ssbo[i])
3508 return use_null_surface(batch, ice);
3509
3510 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3511
3512 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3513 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3514
3515 return surf_state->offset;
3516 }
3517
3518 static uint32_t
3519 use_image(struct iris_batch *batch, struct iris_context *ice,
3520 struct iris_shader_state *shs, int i)
3521 {
3522 if (!shs->image[i].res)
3523 return use_null_surface(batch, ice);
3524
3525 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3526
3527 iris_use_pinned_bo(batch, iris_resource_bo(shs->image[i].res),
3528 shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE);
3529 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3530
3531 return surf_state->offset;
3532 }
3533
3534 #define push_bt_entry(addr) \
3535 assert(addr >= binder_addr); \
3536 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3537
3538 /**
3539 * Populate the binding table for a given shader stage.
3540 *
3541 * This fills out the table of pointers to surfaces required by the shader,
3542 * and also adds those buffers to the validation list so the kernel can make
3543 * resident before running our batch.
3544 */
3545 static void
3546 iris_populate_binding_table(struct iris_context *ice,
3547 struct iris_batch *batch,
3548 gl_shader_stage stage,
3549 bool pin_only)
3550 {
3551 const struct iris_binder *binder = &ice->state.binder;
3552 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3553 if (!shader)
3554 return;
3555
3556 struct iris_shader_state *shs = &ice->state.shaders[stage];
3557 uint32_t binder_addr = binder->bo->gtt_offset;
3558
3559 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3560 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3561 int s = 0;
3562
3563 const struct shader_info *info = iris_get_shader_info(ice, stage);
3564 if (!info) {
3565 /* TCS passthrough doesn't need a binding table. */
3566 assert(stage == MESA_SHADER_TESS_CTRL);
3567 return;
3568 }
3569
3570 if (stage == MESA_SHADER_COMPUTE) {
3571 /* surface for gl_NumWorkGroups */
3572 struct iris_state_ref *grid_data = &ice->state.grid_size;
3573 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3574 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3575 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3576 push_bt_entry(grid_state->offset);
3577 }
3578
3579 if (stage == MESA_SHADER_FRAGMENT) {
3580 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3581 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3582 if (cso_fb->nr_cbufs) {
3583 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3584 uint32_t addr =
3585 cso_fb->cbufs[i] ? use_surface(batch, cso_fb->cbufs[i], true)
3586 : use_null_fb_surface(batch, ice);
3587 push_bt_entry(addr);
3588 }
3589 } else {
3590 uint32_t addr = use_null_fb_surface(batch, ice);
3591 push_bt_entry(addr);
3592 }
3593 }
3594
3595 //assert(prog_data->binding_table.texture_start ==
3596 //(ice->state.num_textures[stage] ? s : 0xd0d0d0d0));
3597
3598 for (int i = 0; i < shs->num_textures; i++) {
3599 struct iris_sampler_view *view = shs->textures[i];
3600 uint32_t addr = view ? use_sampler_view(batch, view)
3601 : use_null_surface(batch, ice);
3602 push_bt_entry(addr);
3603 }
3604
3605 for (int i = 0; i < info->num_images; i++) {
3606 uint32_t addr = use_image(batch, ice, shs, i);
3607 push_bt_entry(addr);
3608 }
3609
3610 const int num_ubos = iris_get_shader_num_ubos(ice, stage);
3611
3612 for (int i = 0; i < num_ubos; i++) {
3613 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3614 push_bt_entry(addr);
3615 }
3616
3617 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3618 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3619 * in st_atom_storagebuf.c so it'll compact them into one range, with
3620 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3621 */
3622 if (info->num_abos + info->num_ssbos > 0) {
3623 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3624 uint32_t addr = use_ssbo(batch, ice, shs, i);
3625 push_bt_entry(addr);
3626 }
3627 }
3628
3629 #if 0
3630 // XXX: not implemented yet
3631 assert(prog_data->binding_table.plane_start[1] == 0xd0d0d0d0);
3632 assert(prog_data->binding_table.plane_start[2] == 0xd0d0d0d0);
3633 #endif
3634 }
3635
3636 static void
3637 iris_use_optional_res(struct iris_batch *batch,
3638 struct pipe_resource *res,
3639 bool writeable)
3640 {
3641 if (res) {
3642 struct iris_bo *bo = iris_resource_bo(res);
3643 iris_use_pinned_bo(batch, bo, writeable);
3644 }
3645 }
3646
3647 /* ------------------------------------------------------------------- */
3648
3649 /**
3650 * Pin any BOs which were installed by a previous batch, and restored
3651 * via the hardware logical context mechanism.
3652 *
3653 * We don't need to re-emit all state every batch - the hardware context
3654 * mechanism will save and restore it for us. This includes pointers to
3655 * various BOs...which won't exist unless we ask the kernel to pin them
3656 * by adding them to the validation list.
3657 *
3658 * We can skip buffers if we've re-emitted those packets, as we're
3659 * overwriting those stale pointers with new ones, and don't actually
3660 * refer to the old BOs.
3661 */
3662 static void
3663 iris_restore_render_saved_bos(struct iris_context *ice,
3664 struct iris_batch *batch,
3665 const struct pipe_draw_info *draw)
3666 {
3667 // XXX: whack IRIS_SHADER_DIRTY_BINDING_TABLE on new batch
3668
3669 const uint64_t clean = ~ice->state.dirty;
3670
3671 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3672 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3673 }
3674
3675 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3676 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3677 }
3678
3679 if (clean & IRIS_DIRTY_BLEND_STATE) {
3680 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3681 }
3682
3683 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3684 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3685 }
3686
3687 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3688 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3689 }
3690
3691 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3692 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3693 continue;
3694
3695 struct iris_shader_state *shs = &ice->state.shaders[stage];
3696 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3697
3698 if (!shader)
3699 continue;
3700
3701 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3702
3703 for (int i = 0; i < 4; i++) {
3704 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3705
3706 if (range->length == 0)
3707 continue;
3708
3709 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3710 struct iris_resource *res = (void *) cbuf->data.res;
3711
3712 if (res)
3713 iris_use_pinned_bo(batch, res->bo, false);
3714 else
3715 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3716 }
3717 }
3718
3719 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3720 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
3721 /* Re-pin any buffers referred to by the binding table. */
3722 iris_populate_binding_table(ice, batch, stage, true);
3723 }
3724 }
3725
3726 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3727 struct iris_shader_state *shs = &ice->state.shaders[stage];
3728 struct pipe_resource *res = shs->sampler_table.res;
3729 if (res)
3730 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3731 }
3732
3733 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3734 if (clean & (IRIS_DIRTY_VS << stage)) {
3735 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3736 if (shader) {
3737 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3738 iris_use_pinned_bo(batch, bo, false);
3739 }
3740
3741 // XXX: scratch buffer
3742 }
3743 }
3744
3745 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
3746 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3747
3748 if (cso_fb->zsbuf) {
3749 struct iris_resource *zres, *sres;
3750 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
3751 &zres, &sres);
3752 // XXX: might not be writable...
3753 if (zres)
3754 iris_use_pinned_bo(batch, zres->bo, true);
3755 if (sres)
3756 iris_use_pinned_bo(batch, sres->bo, true);
3757 }
3758 }
3759
3760 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
3761 /* This draw didn't emit a new index buffer, so we are inheriting the
3762 * older index buffer. This draw didn't need it, but future ones may.
3763 */
3764 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
3765 iris_use_pinned_bo(batch, bo, false);
3766 }
3767
3768 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
3769 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
3770 for (unsigned i = 0; i < cso->num_buffers; i++) {
3771 struct iris_resource *res = (void *) cso->resources[i];
3772 iris_use_pinned_bo(batch, res->bo, false);
3773 }
3774 }
3775 }
3776
3777 static void
3778 iris_restore_compute_saved_bos(struct iris_context *ice,
3779 struct iris_batch *batch,
3780 const struct pipe_grid_info *grid)
3781 {
3782 const uint64_t clean = ~ice->state.dirty;
3783
3784 const int stage = MESA_SHADER_COMPUTE;
3785 struct iris_shader_state *shs = &ice->state.shaders[stage];
3786
3787 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
3788 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3789
3790 if (shader) {
3791 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3792 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
3793
3794 if (range->length > 0) {
3795 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3796 struct iris_resource *res = (void *) cbuf->data.res;
3797
3798 if (res)
3799 iris_use_pinned_bo(batch, res->bo, false);
3800 else
3801 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3802 }
3803 }
3804 }
3805
3806 if (clean & IRIS_DIRTY_BINDINGS_CS) {
3807 /* Re-pin any buffers referred to by the binding table. */
3808 iris_populate_binding_table(ice, batch, stage, true);
3809 }
3810
3811 struct pipe_resource *sampler_res = shs->sampler_table.res;
3812 if (sampler_res)
3813 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
3814
3815 if (clean & IRIS_DIRTY_CS) {
3816 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3817 if (shader) {
3818 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3819 iris_use_pinned_bo(batch, bo, false);
3820 }
3821
3822 // XXX: scratch buffer
3823 }
3824 }
3825
3826 /**
3827 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
3828 */
3829 static void
3830 iris_update_surface_base_address(struct iris_batch *batch,
3831 struct iris_binder *binder)
3832 {
3833 if (batch->last_surface_base_address == binder->bo->gtt_offset)
3834 return;
3835
3836 flush_for_state_base_change(batch);
3837
3838 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
3839 // XXX: sba.SurfaceStateMemoryObjectControlState = MOCS_WB;
3840 sba.SurfaceStateBaseAddressModifyEnable = true;
3841 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
3842 }
3843
3844 batch->last_surface_base_address = binder->bo->gtt_offset;
3845 }
3846
3847 static void
3848 iris_upload_dirty_render_state(struct iris_context *ice,
3849 struct iris_batch *batch,
3850 const struct pipe_draw_info *draw)
3851 {
3852 const uint64_t dirty = ice->state.dirty;
3853
3854 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
3855 return;
3856
3857 struct iris_genx_state *genx = ice->state.genx;
3858 struct iris_binder *binder = &ice->state.binder;
3859 struct brw_wm_prog_data *wm_prog_data = (void *)
3860 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3861
3862 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
3863 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3864 uint32_t cc_vp_address;
3865
3866 /* XXX: could avoid streaming for depth_clip [0,1] case. */
3867 uint32_t *cc_vp_map =
3868 stream_state(batch, ice->state.dynamic_uploader,
3869 &ice->state.last_res.cc_vp,
3870 4 * ice->state.num_viewports *
3871 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
3872 for (int i = 0; i < ice->state.num_viewports; i++) {
3873 float zmin, zmax;
3874 util_viewport_zmin_zmax(&ice->state.viewports[i],
3875 cso_rast->clip_halfz, &zmin, &zmax);
3876 if (cso_rast->depth_clip_near)
3877 zmin = 0.0;
3878 if (cso_rast->depth_clip_far)
3879 zmax = 1.0;
3880
3881 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
3882 ccv.MinimumDepth = zmin;
3883 ccv.MaximumDepth = zmax;
3884 }
3885
3886 cc_vp_map += GENX(CC_VIEWPORT_length);
3887 }
3888
3889 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
3890 ptr.CCViewportPointer = cc_vp_address;
3891 }
3892 }
3893
3894 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
3895 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
3896 ptr.SFClipViewportPointer =
3897 emit_state(batch, ice->state.dynamic_uploader,
3898 &ice->state.last_res.sf_cl_vp,
3899 genx->sf_cl_vp, 4 * GENX(SF_CLIP_VIEWPORT_length) *
3900 ice->state.num_viewports, 64);
3901 }
3902 }
3903
3904 /* XXX: L3 State */
3905
3906 // XXX: this is only flagged at setup, we assume a static configuration
3907 if (dirty & IRIS_DIRTY_URB) {
3908 iris_upload_urb_config(ice, batch);
3909 }
3910
3911 if (dirty & IRIS_DIRTY_BLEND_STATE) {
3912 struct iris_blend_state *cso_blend = ice->state.cso_blend;
3913 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3914 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
3915 const int header_dwords = GENX(BLEND_STATE_length);
3916 const int rt_dwords = cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length);
3917 uint32_t blend_offset;
3918 uint32_t *blend_map =
3919 stream_state(batch, ice->state.dynamic_uploader,
3920 &ice->state.last_res.blend,
3921 4 * (header_dwords + rt_dwords), 64, &blend_offset);
3922
3923 uint32_t blend_state_header;
3924 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
3925 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
3926 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
3927 }
3928
3929 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
3930 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
3931
3932 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
3933 ptr.BlendStatePointer = blend_offset;
3934 ptr.BlendStatePointerValid = true;
3935 }
3936 }
3937
3938 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
3939 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
3940 uint32_t cc_offset;
3941 void *cc_map =
3942 stream_state(batch, ice->state.dynamic_uploader,
3943 &ice->state.last_res.color_calc,
3944 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
3945 64, &cc_offset);
3946 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
3947 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
3948 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
3949 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
3950 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
3951 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
3952 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
3953 }
3954 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3955 ptr.ColorCalcStatePointer = cc_offset;
3956 ptr.ColorCalcStatePointerValid = true;
3957 }
3958 }
3959
3960 /* Upload constants for TCS passthrough. */
3961 if ((dirty & IRIS_DIRTY_CONSTANTS_TCS) &&
3962 ice->shaders.prog[MESA_SHADER_TESS_CTRL] &&
3963 !ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]) {
3964 struct iris_compiled_shader *tes_shader = ice->shaders.prog[MESA_SHADER_TESS_EVAL];
3965 assert(tes_shader);
3966
3967 /* Passthrough always copies 2 vec4s, so when uploading data we ensure
3968 * it is in the right layout for TES.
3969 */
3970 float hdr[8] = {};
3971 struct brw_tes_prog_data *tes_prog_data = (void *) tes_shader->prog_data;
3972 switch (tes_prog_data->domain) {
3973 case BRW_TESS_DOMAIN_QUAD:
3974 for (int i = 0; i < 4; i++)
3975 hdr[7 - i] = ice->state.default_outer_level[i];
3976 hdr[3] = ice->state.default_inner_level[0];
3977 hdr[2] = ice->state.default_inner_level[1];
3978 break;
3979 case BRW_TESS_DOMAIN_TRI:
3980 for (int i = 0; i < 3; i++)
3981 hdr[7 - i] = ice->state.default_outer_level[i];
3982 hdr[4] = ice->state.default_inner_level[0];
3983 break;
3984 case BRW_TESS_DOMAIN_ISOLINE:
3985 hdr[7] = ice->state.default_outer_level[1];
3986 hdr[6] = ice->state.default_outer_level[0];
3987 break;
3988 }
3989
3990 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
3991 struct iris_const_buffer *cbuf = &shs->constbuf[0];
3992 u_upload_data(ice->ctx.const_uploader, 0, sizeof(hdr), 32,
3993 &hdr[0], &cbuf->data.offset,
3994 &cbuf->data.res);
3995 }
3996
3997 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3998 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3999 continue;
4000
4001 struct iris_shader_state *shs = &ice->state.shaders[stage];
4002 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4003
4004 if (!shader)
4005 continue;
4006
4007 if (shs->cbuf0_needs_upload)
4008 upload_uniforms(ice, stage);
4009
4010 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4011
4012 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4013 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4014 if (prog_data) {
4015 /* The Skylake PRM contains the following restriction:
4016 *
4017 * "The driver must ensure The following case does not occur
4018 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4019 * buffer 3 read length equal to zero committed followed by a
4020 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4021 * zero committed."
4022 *
4023 * To avoid this, we program the buffers in the highest slots.
4024 * This way, slot 0 is only used if slot 3 is also used.
4025 */
4026 int n = 3;
4027
4028 for (int i = 3; i >= 0; i--) {
4029 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4030
4031 if (range->length == 0)
4032 continue;
4033
4034 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4035 struct iris_resource *res = (void *) cbuf->data.res;
4036
4037 assert(cbuf->data.offset % 32 == 0);
4038
4039 pkt.ConstantBody.ReadLength[n] = range->length;
4040 pkt.ConstantBody.Buffer[n] =
4041 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4042 : ro_bo(batch->screen->workaround_bo, 0);
4043 n--;
4044 }
4045 }
4046 }
4047 }
4048
4049 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4050 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4051 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4052 ptr._3DCommandSubOpcode = 38 + stage;
4053 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4054 }
4055 }
4056 }
4057
4058 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4059 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4060 iris_populate_binding_table(ice, batch, stage, false);
4061 }
4062 }
4063
4064 if (ice->state.need_border_colors)
4065 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4066
4067 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4068 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4069 !ice->shaders.prog[stage])
4070 continue;
4071
4072 struct iris_shader_state *shs = &ice->state.shaders[stage];
4073 struct pipe_resource *res = shs->sampler_table.res;
4074 if (res)
4075 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4076
4077 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4078 ptr._3DCommandSubOpcode = 43 + stage;
4079 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4080 }
4081 }
4082
4083 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4084 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4085 ms.PixelLocation =
4086 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4087 if (ice->state.framebuffer.samples > 0)
4088 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4089 }
4090 }
4091
4092 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4093 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4094 ms.SampleMask = MAX2(ice->state.sample_mask, 1);
4095 }
4096 }
4097
4098 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4099 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4100 continue;
4101
4102 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4103
4104 if (shader) {
4105 struct iris_resource *cache = (void *) shader->assembly.res;
4106 iris_use_pinned_bo(batch, cache->bo, false);
4107 iris_batch_emit(batch, shader->derived_data,
4108 iris_derived_program_state_size(stage));
4109 } else {
4110 if (stage == MESA_SHADER_TESS_EVAL) {
4111 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4112 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4113 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4114 } else if (stage == MESA_SHADER_GEOMETRY) {
4115 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4116 }
4117 }
4118 }
4119
4120 if (ice->state.streamout_active) {
4121 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4122 iris_batch_emit(batch, genx->so_buffers,
4123 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4124 for (int i = 0; i < 4; i++) {
4125 struct iris_stream_output_target *tgt =
4126 (void *) ice->state.so_target[i];
4127 if (tgt) {
4128 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4129 true);
4130 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4131 true);
4132 }
4133 }
4134 }
4135
4136 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4137 uint32_t *decl_list =
4138 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4139 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4140 }
4141
4142 if (dirty & IRIS_DIRTY_STREAMOUT) {
4143 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4144
4145 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4146 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4147 sol.SOFunctionEnable = true;
4148 sol.SOStatisticsEnable = true;
4149
4150 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4151 !ice->state.prims_generated_query_active;
4152 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4153 }
4154
4155 assert(ice->state.streamout);
4156
4157 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4158 GENX(3DSTATE_STREAMOUT_length));
4159 }
4160 } else {
4161 if (dirty & IRIS_DIRTY_STREAMOUT) {
4162 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4163 }
4164 }
4165
4166 if (dirty & IRIS_DIRTY_CLIP) {
4167 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4168 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4169
4170 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4171 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4172 if (wm_prog_data->barycentric_interp_modes &
4173 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4174 cl.NonPerspectiveBarycentricEnable = true;
4175
4176 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4177 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4178 }
4179 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4180 ARRAY_SIZE(cso_rast->clip));
4181 }
4182
4183 if (dirty & IRIS_DIRTY_RASTER) {
4184 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4185 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4186 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4187
4188 }
4189
4190 /* XXX: FS program updates needs to flag IRIS_DIRTY_WM */
4191 if (dirty & IRIS_DIRTY_WM) {
4192 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4193 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4194
4195 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4196 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4197
4198 wm.BarycentricInterpolationMode =
4199 wm_prog_data->barycentric_interp_modes;
4200
4201 if (wm_prog_data->early_fragment_tests)
4202 wm.EarlyDepthStencilControl = EDSC_PREPS;
4203 else if (wm_prog_data->has_side_effects)
4204 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4205 }
4206 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4207 }
4208
4209 if (dirty & IRIS_DIRTY_SBE) {
4210 iris_emit_sbe(batch, ice);
4211 }
4212
4213 if (dirty & IRIS_DIRTY_PS_BLEND) {
4214 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4215 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4216 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4217 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4218 pb.HasWriteableRT = true; // XXX: comes from somewhere :(
4219 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4220 }
4221
4222 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4223 ARRAY_SIZE(cso_blend->ps_blend));
4224 }
4225
4226 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4227 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4228 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4229
4230 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4231 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4232 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4233 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4234 }
4235 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4236 }
4237
4238 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4239 uint32_t scissor_offset =
4240 emit_state(batch, ice->state.dynamic_uploader,
4241 &ice->state.last_res.scissor,
4242 ice->state.scissors,
4243 sizeof(struct pipe_scissor_state) *
4244 ice->state.num_viewports, 32);
4245
4246 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4247 ptr.ScissorRectPointer = scissor_offset;
4248 }
4249 }
4250
4251 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4252 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4253 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4254
4255 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4256
4257 if (cso_fb->zsbuf) {
4258 struct iris_resource *zres = (void *) cso_fb->zsbuf->texture;
4259 // XXX: depth might not be writable...
4260 iris_use_pinned_bo(batch, zres->bo, true);
4261 }
4262 }
4263
4264 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4265 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4266 for (int i = 0; i < 32; i++) {
4267 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4268 }
4269 }
4270 }
4271
4272 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4273 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4274 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4275 }
4276
4277 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4278 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4279 topo.PrimitiveTopologyType =
4280 translate_prim_type(draw->mode, draw->vertices_per_patch);
4281 }
4282 }
4283
4284 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4285 struct iris_vertex_buffer_state *cso = &ice->state.genx->vertex_buffers;
4286 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4287
4288 if (cso->num_buffers > 0) {
4289 iris_batch_emit(batch, cso->vertex_buffers, sizeof(uint32_t) *
4290 (1 + vb_dwords * cso->num_buffers));
4291
4292 for (unsigned i = 0; i < cso->num_buffers; i++) {
4293 struct iris_resource *res = (void *) cso->resources[i];
4294 if (res)
4295 iris_use_pinned_bo(batch, res->bo, false);
4296 }
4297 }
4298 }
4299
4300 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4301 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4302 const unsigned entries = MAX2(cso->count, 1);
4303 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4304 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4305 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4306 entries * GENX(3DSTATE_VF_INSTANCING_length));
4307 }
4308
4309 if (dirty & IRIS_DIRTY_VF_SGVS) {
4310 const struct brw_vs_prog_data *vs_prog_data = (void *)
4311 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4312 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4313
4314 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4315 if (vs_prog_data->uses_vertexid) {
4316 sgv.VertexIDEnable = true;
4317 sgv.VertexIDComponentNumber = 2;
4318 sgv.VertexIDElementOffset = cso->count;
4319 }
4320
4321 if (vs_prog_data->uses_instanceid) {
4322 sgv.InstanceIDEnable = true;
4323 sgv.InstanceIDComponentNumber = 3;
4324 sgv.InstanceIDElementOffset = cso->count;
4325 }
4326 }
4327 }
4328
4329 if (dirty & IRIS_DIRTY_VF) {
4330 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4331 if (draw->primitive_restart) {
4332 vf.IndexedDrawCutIndexEnable = true;
4333 vf.CutIndex = draw->restart_index;
4334 }
4335 }
4336 }
4337
4338 // XXX: Gen8 - PMA fix
4339 }
4340
4341 static void
4342 iris_upload_render_state(struct iris_context *ice,
4343 struct iris_batch *batch,
4344 const struct pipe_draw_info *draw)
4345 {
4346 /* Always pin the binder. If we're emitting new binding table pointers,
4347 * we need it. If not, we're probably inheriting old tables via the
4348 * context, and need it anyway. Since true zero-bindings cases are
4349 * practically non-existent, just pin it and avoid last_res tracking.
4350 */
4351 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4352
4353 iris_upload_dirty_render_state(ice, batch, draw);
4354
4355 if (draw->index_size > 0) {
4356 unsigned offset;
4357
4358 if (draw->has_user_indices) {
4359 u_upload_data(ice->ctx.stream_uploader, 0,
4360 draw->count * draw->index_size, 4, draw->index.user,
4361 &offset, &ice->state.last_res.index_buffer);
4362 } else {
4363 pipe_resource_reference(&ice->state.last_res.index_buffer,
4364 draw->index.resource);
4365 offset = 0;
4366 }
4367
4368 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4369
4370 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4371 ib.IndexFormat = draw->index_size >> 1;
4372 ib.MOCS = MOCS_WB;
4373 ib.BufferSize = bo->size;
4374 ib.BufferStartingAddress = ro_bo(bo, offset);
4375 }
4376 }
4377
4378 #define _3DPRIM_END_OFFSET 0x2420
4379 #define _3DPRIM_START_VERTEX 0x2430
4380 #define _3DPRIM_VERTEX_COUNT 0x2434
4381 #define _3DPRIM_INSTANCE_COUNT 0x2438
4382 #define _3DPRIM_START_INSTANCE 0x243C
4383 #define _3DPRIM_BASE_VERTEX 0x2440
4384
4385 if (draw->indirect) {
4386 /* We don't support this MultidrawIndirect. */
4387 assert(!draw->indirect->indirect_draw_count);
4388
4389 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4390 assert(bo);
4391
4392 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4393 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
4394 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
4395 }
4396 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4397 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
4398 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
4399 }
4400 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4401 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
4402 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
4403 }
4404 if (draw->index_size) {
4405 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4406 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
4407 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4408 }
4409 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4410 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4411 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
4412 }
4413 } else {
4414 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4415 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4416 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4417 }
4418 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4419 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
4420 lri.DataDWord = 0;
4421 }
4422 }
4423 }
4424
4425 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
4426 prim.StartInstanceLocation = draw->start_instance;
4427 prim.InstanceCount = draw->instance_count;
4428 prim.VertexCountPerInstance = draw->count;
4429 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
4430
4431 // XXX: this is probably bonkers.
4432 prim.StartVertexLocation = draw->start;
4433
4434 prim.IndirectParameterEnable = draw->indirect != NULL;
4435
4436 if (draw->index_size) {
4437 prim.BaseVertexLocation += draw->index_bias;
4438 } else {
4439 prim.StartVertexLocation += draw->index_bias;
4440 }
4441
4442 //prim.BaseVertexLocation = ...;
4443 }
4444
4445 if (!batch->contains_draw) {
4446 iris_restore_render_saved_bos(ice, batch, draw);
4447 batch->contains_draw = true;
4448 }
4449 }
4450
4451 static void
4452 iris_upload_compute_state(struct iris_context *ice,
4453 struct iris_batch *batch,
4454 const struct pipe_grid_info *grid)
4455 {
4456 const uint64_t dirty = ice->state.dirty;
4457 struct iris_screen *screen = batch->screen;
4458 const struct gen_device_info *devinfo = &screen->devinfo;
4459 struct iris_binder *binder = &ice->state.binder;
4460 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
4461 struct iris_compiled_shader *shader =
4462 ice->shaders.prog[MESA_SHADER_COMPUTE];
4463 struct brw_stage_prog_data *prog_data = shader->prog_data;
4464 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
4465
4466 // XXX: L3 configuration not set up for SLM
4467 assert(prog_data->total_shared == 0);
4468
4469 if (dirty & IRIS_DIRTY_BINDINGS_CS)
4470 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
4471
4472 iris_use_optional_res(batch, shs->sampler_table.res, false);
4473 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
4474
4475 if (ice->state.need_border_colors)
4476 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4477
4478 if (dirty & IRIS_DIRTY_CS) {
4479 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4480 *
4481 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4482 * the only bits that are changed are scoreboard related: Scoreboard
4483 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
4484 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4485 * sufficient."
4486 */
4487 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4488
4489 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
4490 if (prog_data->total_scratch) {
4491 uint32_t scratch_addr =
4492 iris_get_scratch_space(ice, prog_data->total_scratch,
4493 MESA_SHADER_COMPUTE);
4494 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4495 vfe.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
4496 }
4497
4498 vfe.MaximumNumberofThreads =
4499 devinfo->max_cs_threads * screen->subslice_total - 1;
4500 #if GEN_GEN < 11
4501 vfe.ResetGatewayTimer =
4502 Resettingrelativetimerandlatchingtheglobaltimestamp;
4503 #endif
4504
4505 vfe.NumberofURBEntries = 2;
4506 vfe.URBEntryAllocationSize = 2;
4507
4508 // XXX: Use Indirect Payload Storage?
4509 vfe.CURBEAllocationSize =
4510 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4511 cs_prog_data->push.cross_thread.regs, 2);
4512 }
4513 }
4514
4515 // XXX: hack iris_set_constant_buffers to upload these thread counts
4516 // XXX: along with regular uniforms for compute shaders, somehow.
4517
4518 uint32_t curbe_data_offset = 0;
4519 // TODO: Move subgroup-id into uniforms ubo so we can push uniforms
4520 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
4521 cs_prog_data->push.per_thread.dwords == 1 &&
4522 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
4523 struct pipe_resource *curbe_data_res = NULL;
4524 uint32_t *curbe_data_map =
4525 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
4526 ALIGN(cs_prog_data->push.total.size, 64), 64,
4527 &curbe_data_offset);
4528 assert(curbe_data_map);
4529 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
4530 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
4531
4532 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
4533 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4534 curbe.CURBETotalDataLength =
4535 ALIGN(cs_prog_data->push.total.size, 64);
4536 curbe.CURBEDataStartAddress = curbe_data_offset;
4537 }
4538 }
4539
4540 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
4541 IRIS_DIRTY_BINDINGS_CS |
4542 IRIS_DIRTY_CONSTANTS_CS |
4543 IRIS_DIRTY_CS)) {
4544 struct pipe_resource *desc_res = NULL;
4545 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4546
4547 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
4548 idd.SamplerStatePointer = shs->sampler_table.offset;
4549 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
4550 idd.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
4551 idd.CrossThreadConstantDataReadLength =
4552 cs_prog_data->push.cross_thread.regs;
4553 }
4554
4555 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
4556 desc[i] |= ((uint32_t *) shader->derived_data)[i];
4557
4558 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4559 load.InterfaceDescriptorTotalLength =
4560 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4561 load.InterfaceDescriptorDataStartAddress =
4562 emit_state(batch, ice->state.dynamic_uploader,
4563 &desc_res, desc, sizeof(desc), 32);
4564 }
4565
4566 pipe_resource_reference(&desc_res, NULL);
4567 }
4568
4569 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
4570 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
4571 uint32_t right_mask;
4572
4573 if (remainder > 0)
4574 right_mask = ~0u >> (32 - remainder);
4575 else
4576 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
4577
4578 #define GPGPU_DISPATCHDIMX 0x2500
4579 #define GPGPU_DISPATCHDIMY 0x2504
4580 #define GPGPU_DISPATCHDIMZ 0x2508
4581
4582 if (grid->indirect) {
4583 struct iris_state_ref *grid_size = &ice->state.grid_size;
4584 struct iris_bo *bo = iris_resource_bo(grid_size->res);
4585 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4586 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
4587 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
4588 }
4589 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4590 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
4591 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
4592 }
4593 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4594 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
4595 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
4596 }
4597 }
4598
4599 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
4600 ggw.IndirectParameterEnable = grid->indirect != NULL;
4601 ggw.SIMDSize = cs_prog_data->simd_size / 16;
4602 ggw.ThreadDepthCounterMaximum = 0;
4603 ggw.ThreadHeightCounterMaximum = 0;
4604 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
4605 ggw.ThreadGroupIDXDimension = grid->grid[0];
4606 ggw.ThreadGroupIDYDimension = grid->grid[1];
4607 ggw.ThreadGroupIDZDimension = grid->grid[2];
4608 ggw.RightExecutionMask = right_mask;
4609 ggw.BottomExecutionMask = 0xffffffff;
4610 }
4611
4612 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
4613
4614 if (!batch->contains_draw) {
4615 iris_restore_compute_saved_bos(ice, batch, grid);
4616 batch->contains_draw = true;
4617 }
4618 }
4619
4620 /**
4621 * State module teardown.
4622 */
4623 static void
4624 iris_destroy_state(struct iris_context *ice)
4625 {
4626 iris_free_vertex_buffers(&ice->state.genx->vertex_buffers);
4627
4628 // XXX: unreference resources/surfaces.
4629 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
4630 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
4631 }
4632 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
4633
4634 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4635 struct iris_shader_state *shs = &ice->state.shaders[stage];
4636 pipe_resource_reference(&shs->sampler_table.res, NULL);
4637 }
4638 free(ice->state.genx);
4639
4640 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
4641 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
4642 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
4643 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
4644 pipe_resource_reference(&ice->state.last_res.blend, NULL);
4645 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
4646 }
4647
4648 /* ------------------------------------------------------------------- */
4649
4650 static void
4651 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
4652 uint32_t val)
4653 {
4654 _iris_emit_lri(batch, reg, val);
4655 }
4656
4657 static void
4658 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
4659 uint64_t val)
4660 {
4661 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
4662 _iris_emit_lri(batch, reg + 4, val >> 32);
4663 }
4664
4665 /**
4666 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
4667 */
4668 static void
4669 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
4670 struct iris_bo *bo, uint32_t offset)
4671 {
4672 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4673 lrm.RegisterAddress = reg;
4674 lrm.MemoryAddress = ro_bo(bo, offset);
4675 }
4676 }
4677
4678 /**
4679 * Load a 64-bit value from a buffer into a MMIO register via
4680 * two MI_LOAD_REGISTER_MEM commands.
4681 */
4682 static void
4683 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
4684 struct iris_bo *bo, uint32_t offset)
4685 {
4686 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
4687 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
4688 }
4689
4690 static void
4691 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
4692 struct iris_bo *bo, uint32_t offset,
4693 bool predicated)
4694 {
4695 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
4696 srm.RegisterAddress = reg;
4697 srm.MemoryAddress = rw_bo(bo, offset);
4698 srm.PredicateEnable = predicated;
4699 }
4700 }
4701
4702 static void
4703 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
4704 struct iris_bo *bo, uint32_t offset,
4705 bool predicated)
4706 {
4707 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
4708 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
4709 }
4710
4711 static void
4712 iris_store_data_imm32(struct iris_batch *batch,
4713 struct iris_bo *bo, uint32_t offset,
4714 uint32_t imm)
4715 {
4716 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
4717 sdi.Address = rw_bo(bo, offset);
4718 sdi.ImmediateData = imm;
4719 }
4720 }
4721
4722 static void
4723 iris_store_data_imm64(struct iris_batch *batch,
4724 struct iris_bo *bo, uint32_t offset,
4725 uint64_t imm)
4726 {
4727 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
4728 * 2 in genxml but it's actually variable length and we need 5 DWords.
4729 */
4730 void *map = iris_get_command_space(batch, 4 * 5);
4731 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
4732 sdi.DWordLength = 5 - 2;
4733 sdi.Address = rw_bo(bo, offset);
4734 sdi.ImmediateData = imm;
4735 }
4736 }
4737
4738 static void
4739 iris_copy_mem_mem(struct iris_batch *batch,
4740 struct iris_bo *dst_bo, uint32_t dst_offset,
4741 struct iris_bo *src_bo, uint32_t src_offset,
4742 unsigned bytes)
4743 {
4744 /* MI_COPY_MEM_MEM operates on DWords. */
4745 assert(bytes % 4 == 0);
4746 assert(dst_offset % 4 == 0);
4747 assert(src_offset % 4 == 0);
4748
4749 for (unsigned i = 0; i < bytes; i += 4) {
4750 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
4751 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
4752 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
4753 }
4754 }
4755 }
4756
4757 /* ------------------------------------------------------------------- */
4758
4759 static unsigned
4760 flags_to_post_sync_op(uint32_t flags)
4761 {
4762 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
4763 return WriteImmediateData;
4764
4765 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
4766 return WritePSDepthCount;
4767
4768 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
4769 return WriteTimestamp;
4770
4771 return 0;
4772 }
4773
4774 /**
4775 * Do the given flags have a Post Sync or LRI Post Sync operation?
4776 */
4777 static enum pipe_control_flags
4778 get_post_sync_flags(enum pipe_control_flags flags)
4779 {
4780 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
4781 PIPE_CONTROL_WRITE_DEPTH_COUNT |
4782 PIPE_CONTROL_WRITE_TIMESTAMP |
4783 PIPE_CONTROL_LRI_POST_SYNC_OP;
4784
4785 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
4786 * "LRI Post Sync Operation". So more than one bit set would be illegal.
4787 */
4788 assert(util_bitcount(flags) <= 1);
4789
4790 return flags;
4791 }
4792
4793 // XXX: compute support
4794 #define IS_COMPUTE_PIPELINE(batch) (batch->engine != I915_EXEC_RENDER)
4795
4796 /**
4797 * Emit a series of PIPE_CONTROL commands, taking into account any
4798 * workarounds necessary to actually accomplish the caller's request.
4799 *
4800 * Unless otherwise noted, spec quotations in this function come from:
4801 *
4802 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
4803 * Restrictions for PIPE_CONTROL.
4804 *
4805 * You should not use this function directly. Use the helpers in
4806 * iris_pipe_control.c instead, which may split the pipe control further.
4807 */
4808 static void
4809 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
4810 struct iris_bo *bo, uint32_t offset, uint64_t imm)
4811 {
4812 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
4813 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
4814 enum pipe_control_flags non_lri_post_sync_flags =
4815 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
4816
4817 /* Recursive PIPE_CONTROL workarounds --------------------------------
4818 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
4819 *
4820 * We do these first because we want to look at the original operation,
4821 * rather than any workarounds we set.
4822 */
4823 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
4824 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
4825 * lists several workarounds:
4826 *
4827 * "Project: SKL, KBL, BXT
4828 *
4829 * If the VF Cache Invalidation Enable is set to a 1 in a
4830 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
4831 * sets to 0, with the VF Cache Invalidation Enable set to 0
4832 * needs to be sent prior to the PIPE_CONTROL with VF Cache
4833 * Invalidation Enable set to a 1."
4834 */
4835 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
4836 }
4837
4838 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
4839 /* Project: SKL / Argument: LRI Post Sync Operation [23]
4840 *
4841 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
4842 * programmed prior to programming a PIPECONTROL command with "LRI
4843 * Post Sync Operation" in GPGPU mode of operation (i.e when
4844 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
4845 *
4846 * The same text exists a few rows below for Post Sync Op.
4847 */
4848 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
4849 }
4850
4851 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
4852 /* Cannonlake:
4853 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
4854 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
4855 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
4856 */
4857 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
4858 offset, imm);
4859 }
4860
4861 /* "Flush Types" workarounds ---------------------------------------------
4862 * We do these now because they may add post-sync operations or CS stalls.
4863 */
4864
4865 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
4866 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
4867 *
4868 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
4869 * 'Write PS Depth Count' or 'Write Timestamp'."
4870 */
4871 if (!bo) {
4872 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
4873 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
4874 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
4875 bo = batch->screen->workaround_bo;
4876 }
4877 }
4878
4879 /* #1130 from Gen10 workarounds page:
4880 *
4881 * "Enable Depth Stall on every Post Sync Op if Render target Cache
4882 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
4883 * board stall if Render target cache flush is enabled."
4884 *
4885 * Applicable to CNL B0 and C0 steppings only.
4886 *
4887 * The wording here is unclear, and this workaround doesn't look anything
4888 * like the internal bug report recommendations, but leave it be for now...
4889 */
4890 if (GEN_GEN == 10) {
4891 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
4892 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
4893 } else if (flags & non_lri_post_sync_flags) {
4894 flags |= PIPE_CONTROL_DEPTH_STALL;
4895 }
4896 }
4897
4898 if (flags & PIPE_CONTROL_DEPTH_STALL) {
4899 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
4900 *
4901 * "This bit must be DISABLED for operations other than writing
4902 * PS_DEPTH_COUNT."
4903 *
4904 * This seems like nonsense. An Ivybridge workaround requires us to
4905 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
4906 * operation. Gen8+ requires us to emit depth stalls and depth cache
4907 * flushes together. So, it's hard to imagine this means anything other
4908 * than "we originally intended this to be used for PS_DEPTH_COUNT".
4909 *
4910 * We ignore the supposed restriction and do nothing.
4911 */
4912 }
4913
4914 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
4915 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
4916 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
4917 *
4918 * "This bit must be DISABLED for End-of-pipe (Read) fences,
4919 * PS_DEPTH_COUNT or TIMESTAMP queries."
4920 *
4921 * TODO: Implement end-of-pipe checking.
4922 */
4923 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
4924 PIPE_CONTROL_WRITE_TIMESTAMP)));
4925 }
4926
4927 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
4928 /* From the PIPE_CONTROL instruction table, bit 1:
4929 *
4930 * "This bit is ignored if Depth Stall Enable is set.
4931 * Further, the render cache is not flushed even if Write Cache
4932 * Flush Enable bit is set."
4933 *
4934 * We assert that the caller doesn't do this combination, to try and
4935 * prevent mistakes. It shouldn't hurt the GPU, though.
4936 *
4937 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
4938 * and "Render Target Flush" combo is explicitly required for BTI
4939 * update workarounds.
4940 */
4941 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
4942 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
4943 }
4944
4945 /* PIPE_CONTROL page workarounds ------------------------------------- */
4946
4947 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
4948 /* From the PIPE_CONTROL page itself:
4949 *
4950 * "IVB, HSW, BDW
4951 * Restriction: Pipe_control with CS-stall bit set must be issued
4952 * before a pipe-control command that has the State Cache
4953 * Invalidate bit set."
4954 */
4955 flags |= PIPE_CONTROL_CS_STALL;
4956 }
4957
4958 if (flags & PIPE_CONTROL_FLUSH_LLC) {
4959 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
4960 *
4961 * "Project: ALL
4962 * SW must always program Post-Sync Operation to "Write Immediate
4963 * Data" when Flush LLC is set."
4964 *
4965 * For now, we just require the caller to do it.
4966 */
4967 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
4968 }
4969
4970 /* "Post-Sync Operation" workarounds -------------------------------- */
4971
4972 /* Project: All / Argument: Global Snapshot Count Reset [19]
4973 *
4974 * "This bit must not be exercised on any product.
4975 * Requires stall bit ([20] of DW1) set."
4976 *
4977 * We don't use this, so we just assert that it isn't used. The
4978 * PIPE_CONTROL instruction page indicates that they intended this
4979 * as a debug feature and don't think it is useful in production,
4980 * but it may actually be usable, should we ever want to.
4981 */
4982 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
4983
4984 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
4985 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
4986 /* Project: All / Arguments:
4987 *
4988 * - Generic Media State Clear [16]
4989 * - Indirect State Pointers Disable [16]
4990 *
4991 * "Requires stall bit ([20] of DW1) set."
4992 *
4993 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
4994 * State Clear) says:
4995 *
4996 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
4997 * programmed prior to programming a PIPECONTROL command with "Media
4998 * State Clear" set in GPGPU mode of operation"
4999 *
5000 * This is a subset of the earlier rule, so there's nothing to do.
5001 */
5002 flags |= PIPE_CONTROL_CS_STALL;
5003 }
5004
5005 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5006 /* Project: All / Argument: Store Data Index
5007 *
5008 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5009 * than '0'."
5010 *
5011 * For now, we just assert that the caller does this. We might want to
5012 * automatically add a write to the workaround BO...
5013 */
5014 assert(non_lri_post_sync_flags != 0);
5015 }
5016
5017 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5018 /* Project: All / Argument: Sync GFDT
5019 *
5020 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5021 * than '0' or 0x2520[13] must be set."
5022 *
5023 * For now, we just assert that the caller does this.
5024 */
5025 assert(non_lri_post_sync_flags != 0);
5026 }
5027
5028 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5029 /* Project: IVB+ / Argument: TLB inv
5030 *
5031 * "Requires stall bit ([20] of DW1) set."
5032 *
5033 * Also, from the PIPE_CONTROL instruction table:
5034 *
5035 * "Project: SKL+
5036 * Post Sync Operation or CS stall must be set to ensure a TLB
5037 * invalidation occurs. Otherwise no cycle will occur to the TLB
5038 * cache to invalidate."
5039 *
5040 * This is not a subset of the earlier rule, so there's nothing to do.
5041 */
5042 flags |= PIPE_CONTROL_CS_STALL;
5043 }
5044
5045 if (GEN_GEN == 9 && devinfo->gt == 4) {
5046 /* TODO: The big Skylake GT4 post sync op workaround */
5047 }
5048
5049 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5050
5051 if (IS_COMPUTE_PIPELINE(batch)) {
5052 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5053 /* Project: SKL+ / Argument: Tex Invalidate
5054 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5055 */
5056 flags |= PIPE_CONTROL_CS_STALL;
5057 }
5058
5059 if (GEN_GEN == 8 && (post_sync_flags ||
5060 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5061 PIPE_CONTROL_DEPTH_STALL |
5062 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5063 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5064 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5065 /* Project: BDW / Arguments:
5066 *
5067 * - LRI Post Sync Operation [23]
5068 * - Post Sync Op [15:14]
5069 * - Notify En [8]
5070 * - Depth Stall [13]
5071 * - Render Target Cache Flush [12]
5072 * - Depth Cache Flush [0]
5073 * - DC Flush Enable [5]
5074 *
5075 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5076 * Workloads."
5077 */
5078 flags |= PIPE_CONTROL_CS_STALL;
5079
5080 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5081 *
5082 * "Project: BDW
5083 * This bit must be always set when PIPE_CONTROL command is
5084 * programmed by GPGPU and MEDIA workloads, except for the cases
5085 * when only Read Only Cache Invalidation bits are set (State
5086 * Cache Invalidation Enable, Instruction cache Invalidation
5087 * Enable, Texture Cache Invalidation Enable, Constant Cache
5088 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5089 * need not implemented when FF_DOP_CG is disable via "Fixed
5090 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5091 *
5092 * It sounds like we could avoid CS stalls in some cases, but we
5093 * don't currently bother. This list isn't exactly the list above,
5094 * either...
5095 */
5096 }
5097 }
5098
5099 /* "Stall" workarounds ----------------------------------------------
5100 * These have to come after the earlier ones because we may have added
5101 * some additional CS stalls above.
5102 */
5103
5104 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5105 /* Project: PRE-SKL, VLV, CHV
5106 *
5107 * "[All Stepping][All SKUs]:
5108 *
5109 * One of the following must also be set:
5110 *
5111 * - Render Target Cache Flush Enable ([12] of DW1)
5112 * - Depth Cache Flush Enable ([0] of DW1)
5113 * - Stall at Pixel Scoreboard ([1] of DW1)
5114 * - Depth Stall ([13] of DW1)
5115 * - Post-Sync Operation ([13] of DW1)
5116 * - DC Flush Enable ([5] of DW1)"
5117 *
5118 * If we don't already have one of those bits set, we choose to add
5119 * "Stall at Pixel Scoreboard". Some of the other bits require a
5120 * CS stall as a workaround (see above), which would send us into
5121 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5122 * appears to be safe, so we choose that.
5123 */
5124 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5125 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5126 PIPE_CONTROL_WRITE_IMMEDIATE |
5127 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5128 PIPE_CONTROL_WRITE_TIMESTAMP |
5129 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5130 PIPE_CONTROL_DEPTH_STALL |
5131 PIPE_CONTROL_DATA_CACHE_FLUSH;
5132 if (!(flags & wa_bits))
5133 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5134 }
5135
5136 /* Emit --------------------------------------------------------------- */
5137
5138 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5139 pc.LRIPostSyncOperation = NoLRIOperation;
5140 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5141 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5142 pc.StoreDataIndex = 0;
5143 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5144 pc.GlobalSnapshotCountReset =
5145 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5146 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5147 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5148 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5149 pc.RenderTargetCacheFlushEnable =
5150 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5151 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5152 pc.StateCacheInvalidationEnable =
5153 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5154 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5155 pc.ConstantCacheInvalidationEnable =
5156 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5157 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5158 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5159 pc.InstructionCacheInvalidateEnable =
5160 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5161 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5162 pc.IndirectStatePointersDisable =
5163 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5164 pc.TextureCacheInvalidationEnable =
5165 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5166 pc.Address = rw_bo(bo, offset);
5167 pc.ImmediateData = imm;
5168 }
5169 }
5170
5171 void
5172 genX(init_state)(struct iris_context *ice)
5173 {
5174 struct pipe_context *ctx = &ice->ctx;
5175 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5176
5177 ctx->create_blend_state = iris_create_blend_state;
5178 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5179 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5180 ctx->create_sampler_state = iris_create_sampler_state;
5181 ctx->create_sampler_view = iris_create_sampler_view;
5182 ctx->create_surface = iris_create_surface;
5183 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5184 ctx->bind_blend_state = iris_bind_blend_state;
5185 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5186 ctx->bind_sampler_states = iris_bind_sampler_states;
5187 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5188 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5189 ctx->delete_blend_state = iris_delete_state;
5190 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5191 ctx->delete_fs_state = iris_delete_state;
5192 ctx->delete_rasterizer_state = iris_delete_state;
5193 ctx->delete_sampler_state = iris_delete_state;
5194 ctx->delete_vertex_elements_state = iris_delete_state;
5195 ctx->delete_tcs_state = iris_delete_state;
5196 ctx->delete_tes_state = iris_delete_state;
5197 ctx->delete_gs_state = iris_delete_state;
5198 ctx->delete_vs_state = iris_delete_state;
5199 ctx->set_blend_color = iris_set_blend_color;
5200 ctx->set_clip_state = iris_set_clip_state;
5201 ctx->set_constant_buffer = iris_set_constant_buffer;
5202 ctx->set_shader_buffers = iris_set_shader_buffers;
5203 ctx->set_shader_images = iris_set_shader_images;
5204 ctx->set_sampler_views = iris_set_sampler_views;
5205 ctx->set_tess_state = iris_set_tess_state;
5206 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5207 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5208 ctx->set_sample_mask = iris_set_sample_mask;
5209 ctx->set_scissor_states = iris_set_scissor_states;
5210 ctx->set_stencil_ref = iris_set_stencil_ref;
5211 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5212 ctx->set_viewport_states = iris_set_viewport_states;
5213 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5214 ctx->surface_destroy = iris_surface_destroy;
5215 ctx->draw_vbo = iris_draw_vbo;
5216 ctx->launch_grid = iris_launch_grid;
5217 ctx->create_stream_output_target = iris_create_stream_output_target;
5218 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5219 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5220
5221 ice->vtbl.destroy_state = iris_destroy_state;
5222 ice->vtbl.init_render_context = iris_init_render_context;
5223 ice->vtbl.init_compute_context = iris_init_compute_context;
5224 ice->vtbl.upload_render_state = iris_upload_render_state;
5225 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5226 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5227 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5228 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5229 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5230 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5231 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5232 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5233 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5234 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5235 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5236 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5237 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5238 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5239 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5240 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5241 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5242 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5243 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5244 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5245 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5246
5247 ice->state.dirty = ~0ull;
5248
5249 ice->state.statistics_counters_enabled = true;
5250
5251 ice->state.sample_mask = 0xffff;
5252 ice->state.num_viewports = 1;
5253 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5254
5255 /* Make a 1x1x1 null surface for unbound textures */
5256 void *null_surf_map =
5257 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5258 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5259 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5260 ice->state.unbound_tex.offset +=
5261 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5262
5263 /* Default all scissor rectangles to be empty regions. */
5264 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5265 ice->state.scissors[i] = (struct pipe_scissor_state) {
5266 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5267 };
5268 }
5269 }