iris: fix the validation list on new batches
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23 #include <stdio.h>
24 #include <errno.h>
25
26 #if HAVE_VALGRIND
27 #include <valgrind.h>
28 #include <memcheck.h>
29 #define VG(x) x
30 #ifndef NDEBUG
31 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
32 #endif
33 #else
34 #define VG(x)
35 #endif
36
37 #include "pipe/p_defines.h"
38 #include "pipe/p_state.h"
39 #include "pipe/p_context.h"
40 #include "pipe/p_screen.h"
41 #include "util/u_inlines.h"
42 #include "util/u_format.h"
43 #include "util/u_framebuffer.h"
44 #include "util/u_transfer.h"
45 #include "util/u_upload_mgr.h"
46 #include "i915_drm.h"
47 #include "nir.h"
48 #include "intel/compiler/brw_compiler.h"
49 #include "intel/common/gen_l3_config.h"
50 #include "intel/common/gen_sample_positions.h"
51 #include "iris_batch.h"
52 #include "iris_context.h"
53 #include "iris_pipe.h"
54 #include "iris_resource.h"
55
56 #define __gen_address_type struct iris_address
57 #define __gen_user_data struct iris_batch
58
59 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
60
61 static uint64_t
62 __gen_combine_address(struct iris_batch *batch, void *location,
63 struct iris_address addr, uint32_t delta)
64 {
65 uint64_t result = addr.offset + delta;
66
67 if (addr.bo) {
68 iris_use_pinned_bo(batch, addr.bo, addr.write);
69 /* Assume this is a general address, not relative to a base. */
70 result += addr.bo->gtt_offset;
71 }
72
73 return result;
74 }
75
76 #define __genxml_cmd_length(cmd) cmd ## _length
77 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
78 #define __genxml_cmd_header(cmd) cmd ## _header
79 #define __genxml_cmd_pack(cmd) cmd ## _pack
80
81 #define _iris_pack_command(batch, cmd, dst, name) \
82 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
83 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
84 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
85 _dst = NULL; \
86 }))
87
88 #define iris_pack_command(cmd, dst, name) \
89 _iris_pack_command(NULL, cmd, dst, name)
90
91 #define iris_pack_state(cmd, dst, name) \
92 for (struct cmd name = {}, \
93 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
94 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
95 _dst = NULL)
96
97 #define iris_emit_cmd(batch, cmd, name) \
98 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
99
100 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
101 do { \
102 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
103 for (uint32_t i = 0; i < num_dwords; i++) \
104 dw[i] = (dwords0)[i] | (dwords1)[i]; \
105 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
106 } while (0)
107
108 #include "genxml/genX_pack.h"
109 #include "genxml/gen_macros.h"
110 #include "genxml/genX_bits.h"
111
112 #define MOCS_WB (2 << 1)
113
114 UNUSED static void pipe_asserts()
115 {
116 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
117
118 /* pipe_logicop happens to match the hardware. */
119 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
120 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
121 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
122 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
123 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
124 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
125 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
126 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
127 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
128 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
129 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
130 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
131 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
132 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
133 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
134 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
135
136 /* pipe_blend_func happens to match the hardware. */
137 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
138 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
139 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
140 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
141 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
142 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
143 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
144 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
145 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
146 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
147 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
148 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
149 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
150 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
151 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
152 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
153 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
156
157 /* pipe_blend_func happens to match the hardware. */
158 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
159 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
160 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
161 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
162 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
163
164 /* pipe_stencil_op happens to match the hardware. */
165 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
166 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
167 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
168 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
169 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
170 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
171 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
172 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
173
174 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
175 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
176 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
177 #undef PIPE_ASSERT
178 }
179
180 static unsigned
181 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
182 {
183 static const unsigned map[] = {
184 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
185 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
186 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
187 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
188 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
189 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
190 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
191 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
192 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
193 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
194 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
195 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
196 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
197 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
198 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
199 };
200
201 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
202 }
203
204 static unsigned
205 translate_compare_func(enum pipe_compare_func pipe_func)
206 {
207 static const unsigned map[] = {
208 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
209 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
210 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
211 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
212 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
213 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
214 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
215 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
216 };
217 return map[pipe_func];
218 }
219
220 static unsigned
221 translate_shadow_func(enum pipe_compare_func pipe_func)
222 {
223 /* Gallium specifies the result of shadow comparisons as:
224 *
225 * 1 if ref <op> texel,
226 * 0 otherwise.
227 *
228 * The hardware does:
229 *
230 * 0 if texel <op> ref,
231 * 1 otherwise.
232 *
233 * So we need to flip the operator and also negate.
234 */
235 static const unsigned map[] = {
236 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
237 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
238 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
239 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
240 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
241 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
242 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
243 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
244 };
245 return map[pipe_func];
246 }
247
248 static unsigned
249 translate_cull_mode(unsigned pipe_face)
250 {
251 static const unsigned map[4] = {
252 [PIPE_FACE_NONE] = CULLMODE_NONE,
253 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
254 [PIPE_FACE_BACK] = CULLMODE_BACK,
255 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
256 };
257 return map[pipe_face];
258 }
259
260 static unsigned
261 translate_fill_mode(unsigned pipe_polymode)
262 {
263 static const unsigned map[4] = {
264 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
265 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
266 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
267 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
268 };
269 return map[pipe_polymode];
270 }
271
272 static struct iris_address
273 ro_bo(struct iris_bo *bo, uint64_t offset)
274 {
275 /* Not for CSOs! */
276 return (struct iris_address) { .bo = bo, .offset = offset };
277 }
278
279 static uint32_t *
280 stream_state(struct iris_batch *batch,
281 struct u_upload_mgr *uploader,
282 struct pipe_resource **out_res,
283 unsigned size,
284 unsigned alignment,
285 uint32_t *out_offset)
286 {
287 void *ptr = NULL;
288
289 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
290
291 struct iris_bo *bo = iris_resource_bo(*out_res);
292 iris_use_pinned_bo(batch, bo, false);
293
294 *out_offset += iris_bo_offset_from_base_address(bo);
295
296 return ptr;
297 }
298
299 static uint32_t
300 emit_state(struct iris_batch *batch,
301 struct u_upload_mgr *uploader,
302 struct pipe_resource **out_res,
303 const void *data,
304 unsigned size,
305 unsigned alignment)
306 {
307 unsigned offset = 0;
308 uint32_t *map =
309 stream_state(batch, uploader, out_res, size, alignment, &offset);
310
311 if (map)
312 memcpy(map, data, size);
313
314 return offset;
315 }
316
317 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
318 #define cso_changed_memcmp(x) \
319 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
320
321 static void
322 iris_init_render_context(struct iris_screen *screen,
323 struct iris_batch *batch,
324 struct iris_vtable *vtbl,
325 struct pipe_debug_callback *dbg)
326 {
327 iris_init_batch(batch, screen, vtbl, dbg, I915_EXEC_RENDER);
328
329 /* XXX: PIPE_CONTROLs */
330
331 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
332 #if 0
333 // XXX: MOCS is stupid for this.
334 sba.GeneralStateMemoryObjectControlState = MOCS_WB;
335 sba.StatelessDataPortAccessMemoryObjectControlState = MOCS_WB;
336 sba.SurfaceStateMemoryObjectControlState = MOCS_WB;
337 sba.DynamicStateMemoryObjectControlState = MOCS_WB;
338 sba.IndirectObjectMemoryObjectControlState = MOCS_WB;
339 sba.InstructionMemoryObjectControlState = MOCS_WB;
340 sba.BindlessSurfaceStateMemoryObjectControlState = MOCS_WB;
341 #endif
342
343 sba.GeneralStateBaseAddressModifyEnable = true;
344 sba.SurfaceStateBaseAddressModifyEnable = true;
345 sba.DynamicStateBaseAddressModifyEnable = true;
346 sba.IndirectObjectBaseAddressModifyEnable = true;
347 sba.InstructionBaseAddressModifyEnable = true;
348 sba.GeneralStateBufferSizeModifyEnable = true;
349 sba.DynamicStateBufferSizeModifyEnable = true;
350 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
351 sba.IndirectObjectBufferSizeModifyEnable = true;
352 sba.InstructionBuffersizeModifyEnable = true;
353
354 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
355 sba.SurfaceStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SURFACE_START);
356 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
357
358 sba.GeneralStateBufferSize = 0xfffff;
359 sba.IndirectObjectBufferSize = 0xfffff;
360 sba.InstructionBufferSize = 0xfffff;
361 sba.DynamicStateBufferSize = 0xfffff;
362 }
363
364 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
365 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
366 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
367 }
368 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
369 GEN_SAMPLE_POS_1X(pat._1xSample);
370 GEN_SAMPLE_POS_2X(pat._2xSample);
371 GEN_SAMPLE_POS_4X(pat._4xSample);
372 GEN_SAMPLE_POS_8X(pat._8xSample);
373 GEN_SAMPLE_POS_16X(pat._16xSample);
374 }
375 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
376 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
377 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
378 /* XXX: may need to set an offset for origin-UL framebuffers */
379 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
380
381 /* Just assign a static partitioning. */
382 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
383 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
384 alloc._3DCommandSubOpcode = 18 + i;
385 alloc.ConstantBufferOffset = 6 * i;
386 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
387 }
388 }
389 }
390
391 static void
392 iris_launch_grid(struct pipe_context *ctx, const struct pipe_grid_info *info)
393 {
394 }
395
396 static void
397 iris_set_blend_color(struct pipe_context *ctx,
398 const struct pipe_blend_color *state)
399 {
400 struct iris_context *ice = (struct iris_context *) ctx;
401
402 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
403 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
404 }
405
406 struct iris_blend_state {
407 /** Partial 3DSTATE_PS_BLEND */
408 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
409
410 /** Partial BLEND_STATE */
411 uint32_t blend_state[GENX(BLEND_STATE_length) +
412 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
413
414 bool alpha_to_coverage; /* for shader key */
415 };
416
417 static void *
418 iris_create_blend_state(struct pipe_context *ctx,
419 const struct pipe_blend_state *state)
420 {
421 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
422 uint32_t *blend_state = cso->blend_state;
423
424 cso->alpha_to_coverage = state->alpha_to_coverage;
425
426 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
427 /* pb.HasWriteableRT is filled in at draw time. */
428 /* pb.AlphaTestEnable is filled in at draw time. */
429 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
430 pb.IndependentAlphaBlendEnable = state->independent_blend_enable;
431
432 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
433
434 pb.SourceBlendFactor = state->rt[0].rgb_src_factor;
435 pb.SourceAlphaBlendFactor = state->rt[0].alpha_func;
436 pb.DestinationBlendFactor = state->rt[0].rgb_dst_factor;
437 pb.DestinationAlphaBlendFactor = state->rt[0].alpha_dst_factor;
438 }
439
440 iris_pack_state(GENX(BLEND_STATE), blend_state, bs) {
441 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
442 bs.IndependentAlphaBlendEnable = state->independent_blend_enable;
443 bs.AlphaToOneEnable = state->alpha_to_one;
444 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
445 bs.ColorDitherEnable = state->dither;
446 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
447 }
448
449 blend_state += GENX(BLEND_STATE_length);
450
451 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
452 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_state, be) {
453 be.LogicOpEnable = state->logicop_enable;
454 be.LogicOpFunction = state->logicop_func;
455
456 be.PreBlendSourceOnlyClampEnable = false;
457 be.ColorClampRange = COLORCLAMP_RTFORMAT;
458 be.PreBlendColorClampEnable = true;
459 be.PostBlendColorClampEnable = true;
460
461 be.ColorBufferBlendEnable = state->rt[i].blend_enable;
462
463 be.ColorBlendFunction = state->rt[i].rgb_func;
464 be.AlphaBlendFunction = state->rt[i].alpha_func;
465 be.SourceBlendFactor = state->rt[i].rgb_src_factor;
466 be.SourceAlphaBlendFactor = state->rt[i].alpha_func;
467 be.DestinationBlendFactor = state->rt[i].rgb_dst_factor;
468 be.DestinationAlphaBlendFactor = state->rt[i].alpha_dst_factor;
469
470 be.WriteDisableRed = !(state->rt[i].colormask & PIPE_MASK_R);
471 be.WriteDisableGreen = !(state->rt[i].colormask & PIPE_MASK_G);
472 be.WriteDisableBlue = !(state->rt[i].colormask & PIPE_MASK_B);
473 be.WriteDisableAlpha = !(state->rt[i].colormask & PIPE_MASK_A);
474 }
475 blend_state += GENX(BLEND_STATE_ENTRY_length);
476 }
477
478 return cso;
479 }
480
481 static void
482 iris_bind_blend_state(struct pipe_context *ctx, void *state)
483 {
484 struct iris_context *ice = (struct iris_context *) ctx;
485 ice->state.cso_blend = state;
486 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
487 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
488 }
489
490 struct iris_depth_stencil_alpha_state {
491 /** Partial 3DSTATE_WM_DEPTH_STENCIL */
492 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
493
494 /** Complete CC_VIEWPORT */
495 uint32_t cc_vp[GENX(CC_VIEWPORT_length)];
496
497 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE */
498 struct pipe_alpha_state alpha;
499 };
500
501 static void *
502 iris_create_zsa_state(struct pipe_context *ctx,
503 const struct pipe_depth_stencil_alpha_state *state)
504 {
505 struct iris_depth_stencil_alpha_state *cso =
506 malloc(sizeof(struct iris_depth_stencil_alpha_state));
507
508 cso->alpha = state->alpha;
509
510 bool two_sided_stencil = state->stencil[1].enabled;
511
512 /* The state tracker needs to optimize away EQUAL writes for us. */
513 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
514
515 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
516 wmds.StencilFailOp = state->stencil[0].fail_op;
517 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
518 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
519 wmds.StencilTestFunction =
520 translate_compare_func(state->stencil[0].func);
521 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
522 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
523 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
524 wmds.BackfaceStencilTestFunction =
525 translate_compare_func(state->stencil[1].func);
526 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
527 wmds.DoubleSidedStencilEnable = two_sided_stencil;
528 wmds.StencilTestEnable = state->stencil[0].enabled;
529 wmds.StencilBufferWriteEnable =
530 state->stencil[0].writemask != 0 ||
531 (two_sided_stencil && state->stencil[1].writemask != 0);
532 wmds.DepthTestEnable = state->depth.enabled;
533 wmds.DepthBufferWriteEnable = state->depth.writemask;
534 wmds.StencilTestMask = state->stencil[0].valuemask;
535 wmds.StencilWriteMask = state->stencil[0].writemask;
536 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
537 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
538 /* wmds.[Backface]StencilReferenceValue are merged later */
539 }
540
541 iris_pack_state(GENX(CC_VIEWPORT), cso->cc_vp, ccvp) {
542 ccvp.MinimumDepth = state->depth.bounds_min;
543 ccvp.MaximumDepth = state->depth.bounds_max;
544 }
545
546 return cso;
547 }
548
549 static void
550 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
551 {
552 struct iris_context *ice = (struct iris_context *) ctx;
553 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
554 struct iris_depth_stencil_alpha_state *new_cso = state;
555
556 if (new_cso) {
557 if (cso_changed(alpha.ref_value))
558 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
559
560 if (cso_changed(alpha.enabled))
561 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
562 }
563
564 ice->state.cso_zsa = new_cso;
565 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
566 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
567 }
568
569 struct iris_rasterizer_state {
570 uint32_t sf[GENX(3DSTATE_SF_length)];
571 uint32_t clip[GENX(3DSTATE_CLIP_length)];
572 uint32_t raster[GENX(3DSTATE_RASTER_length)];
573 uint32_t wm[GENX(3DSTATE_WM_length)];
574 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
575
576 bool flatshade; /* for shader state */
577 bool clamp_fragment_color; /* for shader state */
578 bool light_twoside; /* for shader state */
579 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT */
580 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
581 bool line_stipple_enable;
582 bool poly_stipple_enable;
583 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
584 uint16_t sprite_coord_enable;
585 };
586
587 static void *
588 iris_create_rasterizer_state(struct pipe_context *ctx,
589 const struct pipe_rasterizer_state *state)
590 {
591 struct iris_rasterizer_state *cso =
592 malloc(sizeof(struct iris_rasterizer_state));
593
594 #if 0
595 point_quad_rasterization -> SBE?
596
597 not necessary?
598 {
599 poly_smooth
600 force_persample_interp - ?
601 bottom_edge_rule
602
603 offset_units_unscaled - cap not exposed
604 }
605 #endif
606
607 cso->flatshade = state->flatshade;
608 cso->clamp_fragment_color = state->clamp_fragment_color;
609 cso->light_twoside = state->light_twoside;
610 cso->rasterizer_discard = state->rasterizer_discard;
611 cso->half_pixel_center = state->half_pixel_center;
612 cso->sprite_coord_mode = state->sprite_coord_mode;
613 cso->sprite_coord_enable = state->sprite_coord_enable;
614 cso->line_stipple_enable = state->line_stipple_enable;
615 cso->poly_stipple_enable = state->poly_stipple_enable;
616
617 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
618 sf.StatisticsEnable = true;
619 sf.ViewportTransformEnable = true;
620 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
621 sf.LineEndCapAntialiasingRegionWidth =
622 state->line_smooth ? _10pixels : _05pixels;
623 sf.LastPixelEnable = state->line_last_pixel;
624 sf.LineWidth = state->line_width;
625 sf.SmoothPointEnable = state->point_smooth;
626 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
627 sf.PointWidth = state->point_size;
628
629 if (state->flatshade_first) {
630 sf.TriangleStripListProvokingVertexSelect = 2;
631 sf.TriangleFanProvokingVertexSelect = 2;
632 sf.LineStripListProvokingVertexSelect = 1;
633 } else {
634 sf.TriangleFanProvokingVertexSelect = 1;
635 }
636 }
637
638 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
639 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
640 rr.CullMode = translate_cull_mode(state->cull_face);
641 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
642 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
643 rr.DXMultisampleRasterizationEnable = state->multisample;
644 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
645 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
646 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
647 rr.GlobalDepthOffsetConstant = state->offset_units;
648 rr.GlobalDepthOffsetScale = state->offset_scale;
649 rr.GlobalDepthOffsetClamp = state->offset_clamp;
650 rr.SmoothPointEnable = state->point_smooth;
651 rr.AntialiasingEnable = state->line_smooth;
652 rr.ScissorRectangleEnable = state->scissor;
653 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
654 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
655 //rr.ConservativeRasterizationEnable = not yet supported by Gallium...
656 }
657
658 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
659 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
660 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
661 */
662 cl.StatisticsEnable = true;
663 cl.EarlyCullEnable = true;
664 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
665 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
666 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
667 cl.GuardbandClipTestEnable = true;
668 cl.ClipMode = CLIPMODE_NORMAL;
669 cl.ClipEnable = true;
670 cl.ViewportXYClipTestEnable = state->point_tri_clip;
671 cl.MinimumPointWidth = 0.125;
672 cl.MaximumPointWidth = 255.875;
673
674 if (state->flatshade_first) {
675 cl.TriangleStripListProvokingVertexSelect = 2;
676 cl.TriangleFanProvokingVertexSelect = 2;
677 cl.LineStripListProvokingVertexSelect = 1;
678 } else {
679 cl.TriangleFanProvokingVertexSelect = 1;
680 }
681 }
682
683 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
684 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
685 * filled in at draw time from the FS program.
686 */
687 wm.LineAntialiasingRegionWidth = _10pixels;
688 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
689 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
690 wm.StatisticsEnable = true;
691 wm.LineStippleEnable = state->line_stipple_enable;
692 wm.PolygonStippleEnable = state->poly_stipple_enable;
693 }
694
695 /* Remap from 0..255 back to 1..256 */
696 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
697
698 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
699 line.LineStipplePattern = state->line_stipple_pattern;
700 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
701 line.LineStippleRepeatCount = line_stipple_factor;
702 }
703
704 return cso;
705 }
706
707 static void
708 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
709 {
710 struct iris_context *ice = (struct iris_context *) ctx;
711 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
712 struct iris_rasterizer_state *new_cso = state;
713
714 if (new_cso) {
715 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
716 if (cso_changed_memcmp(line_stipple))
717 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
718
719 if (cso_changed(half_pixel_center))
720 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
721
722 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
723 ice->state.dirty |= IRIS_DIRTY_WM;
724 }
725
726 ice->state.cso_rast = new_cso;
727 ice->state.dirty |= IRIS_DIRTY_RASTER;
728 }
729
730 static uint32_t
731 translate_wrap(unsigned pipe_wrap)
732 {
733 static const unsigned map[] = {
734 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
735 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
736 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
737 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
738 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
739 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
740 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1, // XXX: ???
741 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1, // XXX: ???
742 };
743 return map[pipe_wrap];
744 }
745
746 /**
747 * Return true if the given wrap mode requires the border color to exist.
748 */
749 static bool
750 wrap_mode_needs_border_color(unsigned wrap_mode)
751 {
752 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
753 }
754
755 static unsigned
756 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
757 {
758 static const unsigned map[] = {
759 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
760 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
761 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
762 };
763 return map[pipe_mip];
764 }
765
766 struct iris_sampler_state {
767 struct pipe_sampler_state base;
768
769 bool needs_border_color;
770
771 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
772 };
773
774 static void *
775 iris_create_sampler_state(struct pipe_context *pctx,
776 const struct pipe_sampler_state *state)
777 {
778 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
779
780 if (!cso)
781 return NULL;
782
783 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
784 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
785
786 unsigned wrap_s = translate_wrap(state->wrap_s);
787 unsigned wrap_t = translate_wrap(state->wrap_t);
788 unsigned wrap_r = translate_wrap(state->wrap_r);
789
790 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
791 wrap_mode_needs_border_color(wrap_t) ||
792 wrap_mode_needs_border_color(wrap_r);
793
794 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
795 samp.TCXAddressControlMode = wrap_s;
796 samp.TCYAddressControlMode = wrap_t;
797 samp.TCZAddressControlMode = wrap_r;
798 samp.CubeSurfaceControlMode = state->seamless_cube_map;
799 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
800 samp.MinModeFilter = state->min_img_filter;
801 samp.MagModeFilter = state->mag_img_filter;
802 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
803 samp.MaximumAnisotropy = RATIO21;
804
805 if (state->max_anisotropy >= 2) {
806 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
807 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
808 samp.AnisotropicAlgorithm = EWAApproximation;
809 }
810
811 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
812 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
813
814 samp.MaximumAnisotropy =
815 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
816 }
817
818 /* Set address rounding bits if not using nearest filtering. */
819 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
820 samp.UAddressMinFilterRoundingEnable = true;
821 samp.VAddressMinFilterRoundingEnable = true;
822 samp.RAddressMinFilterRoundingEnable = true;
823 }
824
825 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
826 samp.UAddressMagFilterRoundingEnable = true;
827 samp.VAddressMagFilterRoundingEnable = true;
828 samp.RAddressMagFilterRoundingEnable = true;
829 }
830
831 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
832 samp.ShadowFunction = translate_shadow_func(state->compare_func);
833
834 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
835
836 samp.LODPreClampMode = CLAMP_MODE_OGL;
837 samp.MinLOD = CLAMP(state->min_lod, 0, hw_max_lod);
838 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
839 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
840
841 //samp.BorderColorPointer = <<comes from elsewhere>>
842 }
843
844 return cso;
845 }
846
847 static void
848 iris_bind_sampler_states(struct pipe_context *ctx,
849 enum pipe_shader_type p_stage,
850 unsigned start, unsigned count,
851 void **states)
852 {
853 struct iris_context *ice = (struct iris_context *) ctx;
854 gl_shader_stage stage = stage_from_pipe(p_stage);
855
856 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
857
858 /* Assemble the SAMPLER_STATEs into a contiguous chunk of memory
859 * relative to Dynamic State Base Address.
860 */
861 void *map = NULL;
862 u_upload_alloc(ice->state.dynamic_uploader, 0,
863 count * 4 * GENX(SAMPLER_STATE_length), 32,
864 &ice->state.sampler_table_offset[stage],
865 &ice->state.sampler_table_resource[stage],
866 &map);
867 if (unlikely(!map))
868 return;
869
870 struct pipe_resource *res = ice->state.sampler_table_resource[stage];
871 ice->state.sampler_table_offset[stage] +=
872 iris_bo_offset_from_base_address(iris_resource_bo(res));
873
874 for (int i = 0; i < count; i++) {
875 struct iris_sampler_state *state = states[i];
876
877 /* Save a pointer to the iris_sampler_state, a few fields need
878 * to inform draw-time decisions.
879 */
880 ice->state.samplers[stage][start + i] = state;
881
882 if (state)
883 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
884
885 map += GENX(SAMPLER_STATE_length);
886 }
887
888 ice->state.num_samplers[stage] = count;
889
890 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
891 }
892
893 struct iris_sampler_view {
894 struct pipe_sampler_view pipe;
895 struct isl_view view;
896
897 /** The resource (BO) holding our SURFACE_STATE. */
898 struct pipe_resource *surface_state_resource;
899 unsigned surface_state_offset;
900 };
901
902 /**
903 * Convert an swizzle enumeration (i.e. PIPE_SWIZZLE_X) to one of the Gen7.5+
904 * "Shader Channel Select" enumerations (i.e. HSW_SCS_RED). The mappings are
905 *
906 * SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_ZERO, SWIZZLE_ONE
907 * 0 1 2 3 4 5
908 * 4 5 6 7 0 1
909 * SCS_RED, SCS_GREEN, SCS_BLUE, SCS_ALPHA, SCS_ZERO, SCS_ONE
910 *
911 * which is simply adding 4 then modding by 8 (or anding with 7).
912 *
913 * We then may need to apply workarounds for textureGather hardware bugs.
914 */
915 static enum isl_channel_select
916 pipe_swizzle_to_isl_channel(enum pipe_swizzle swizzle)
917 {
918 return (swizzle + 4) & 7;
919 }
920
921 static struct pipe_sampler_view *
922 iris_create_sampler_view(struct pipe_context *ctx,
923 struct pipe_resource *tex,
924 const struct pipe_sampler_view *tmpl)
925 {
926 struct iris_context *ice = (struct iris_context *) ctx;
927 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
928 struct iris_resource *itex = (struct iris_resource *) tex;
929 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
930
931 if (!isv)
932 return NULL;
933
934 /* initialize base object */
935 isv->pipe = *tmpl;
936 isv->pipe.context = ctx;
937 isv->pipe.texture = NULL;
938 pipe_reference_init(&isv->pipe.reference, 1);
939 pipe_resource_reference(&isv->pipe.texture, tex);
940
941 /* XXX: do we need brw_get_texture_swizzle hacks here? */
942
943 isv->view = (struct isl_view) {
944 .format = iris_isl_format_for_pipe_format(tmpl->format),
945 .base_level = tmpl->u.tex.first_level,
946 .levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1,
947 .base_array_layer = tmpl->u.tex.first_layer,
948 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
949 .swizzle = (struct isl_swizzle) {
950 .r = pipe_swizzle_to_isl_channel(tmpl->swizzle_r),
951 .g = pipe_swizzle_to_isl_channel(tmpl->swizzle_g),
952 .b = pipe_swizzle_to_isl_channel(tmpl->swizzle_b),
953 .a = pipe_swizzle_to_isl_channel(tmpl->swizzle_a),
954 },
955 .usage = ISL_SURF_USAGE_TEXTURE_BIT,
956 };
957
958 void *map = NULL;
959 u_upload_alloc(ice->state.surface_uploader, 0,
960 4 * GENX(RENDER_SURFACE_STATE_length), 64,
961 &isv->surface_state_offset,
962 &isv->surface_state_resource,
963 &map);
964 if (!unlikely(map))
965 return NULL;
966
967 struct iris_bo *state_bo = iris_resource_bo(isv->surface_state_resource);
968 isv->surface_state_offset += iris_bo_offset_from_base_address(state_bo);
969
970 isl_surf_fill_state(&screen->isl_dev, map,
971 .surf = &itex->surf, .view = &isv->view,
972 .mocs = MOCS_WB,
973 .address = itex->bo->gtt_offset);
974 // .aux_surf =
975 // .clear_color = clear_color,
976
977 return &isv->pipe;
978 }
979
980 struct iris_surface {
981 struct pipe_surface pipe;
982 struct isl_view view;
983
984 /** The resource (BO) holding our SURFACE_STATE. */
985 struct pipe_resource *surface_state_resource;
986 unsigned surface_state_offset;
987
988 // uint32_t surface_state[GENX(RENDER_SURFACE_STATE_length)];
989 };
990
991 static struct pipe_surface *
992 iris_create_surface(struct pipe_context *ctx,
993 struct pipe_resource *tex,
994 const struct pipe_surface *tmpl)
995 {
996 struct iris_context *ice = (struct iris_context *) ctx;
997 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
998 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
999 struct pipe_surface *psurf = &surf->pipe;
1000 struct iris_resource *res = (struct iris_resource *) tex;
1001
1002 if (!surf)
1003 return NULL;
1004
1005 pipe_reference_init(&psurf->reference, 1);
1006 pipe_resource_reference(&psurf->texture, tex);
1007 psurf->context = ctx;
1008 psurf->format = tmpl->format;
1009 psurf->width = tex->width0;
1010 psurf->height = tex->height0;
1011 psurf->texture = tex;
1012 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1013 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1014 psurf->u.tex.level = tmpl->u.tex.level;
1015
1016 unsigned usage = 0;
1017 if (tmpl->writable)
1018 usage = ISL_SURF_USAGE_STORAGE_BIT;
1019 else if (util_format_is_depth_or_stencil(tmpl->format))
1020 usage = ISL_SURF_USAGE_DEPTH_BIT;
1021 else
1022 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1023
1024 surf->view = (struct isl_view) {
1025 .format = iris_isl_format_for_pipe_format(tmpl->format),
1026 .base_level = tmpl->u.tex.level,
1027 .levels = 1,
1028 .base_array_layer = tmpl->u.tex.first_layer,
1029 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1030 .swizzle = ISL_SWIZZLE_IDENTITY,
1031 .usage = usage,
1032 };
1033
1034 /* Bail early for depth/stencil */
1035 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1036 ISL_SURF_USAGE_STENCIL_BIT))
1037 return psurf;
1038
1039 void *map = NULL;
1040 u_upload_alloc(ice->state.surface_uploader, 0,
1041 4 * GENX(RENDER_SURFACE_STATE_length), 64,
1042 &surf->surface_state_offset,
1043 &surf->surface_state_resource,
1044 &map);
1045 if (!unlikely(map))
1046 return NULL;
1047
1048 struct iris_bo *state_bo = iris_resource_bo(surf->surface_state_resource);
1049 surf->surface_state_offset += iris_bo_offset_from_base_address(state_bo);
1050
1051 isl_surf_fill_state(&screen->isl_dev, map,
1052 .surf = &res->surf, .view = &surf->view,
1053 .mocs = MOCS_WB,
1054 .address = res->bo->gtt_offset);
1055 // .aux_surf =
1056 // .clear_color = clear_color,
1057
1058 return psurf;
1059 }
1060
1061 static void
1062 iris_set_sampler_views(struct pipe_context *ctx,
1063 enum pipe_shader_type p_stage,
1064 unsigned start, unsigned count,
1065 struct pipe_sampler_view **views)
1066 {
1067 struct iris_context *ice = (struct iris_context *) ctx;
1068 gl_shader_stage stage = stage_from_pipe(p_stage);
1069
1070 unsigned i;
1071 for (i = 0; i < count; i++) {
1072 pipe_sampler_view_reference((struct pipe_sampler_view **)
1073 &ice->state.textures[stage][i], views[i]);
1074 }
1075 for (; i < ice->state.num_textures[stage]; i++) {
1076 pipe_sampler_view_reference((struct pipe_sampler_view **)
1077 &ice->state.textures[stage][i], NULL);
1078 }
1079
1080 ice->state.num_textures[stage] = count;
1081
1082 // XXX: ice->state.dirty |= (IRIS_DIRTY_BINDING_TABLE_VS << stage);
1083 }
1084
1085 static void
1086 iris_set_clip_state(struct pipe_context *ctx,
1087 const struct pipe_clip_state *state)
1088 {
1089 }
1090
1091 static void
1092 iris_set_polygon_stipple(struct pipe_context *ctx,
1093 const struct pipe_poly_stipple *state)
1094 {
1095 struct iris_context *ice = (struct iris_context *) ctx;
1096 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
1097 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
1098 }
1099
1100 static void
1101 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
1102 {
1103 struct iris_context *ice = (struct iris_context *) ctx;
1104
1105 ice->state.sample_mask = sample_mask;
1106 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
1107 }
1108
1109 static void
1110 iris_set_scissor_states(struct pipe_context *ctx,
1111 unsigned start_slot,
1112 unsigned num_scissors,
1113 const struct pipe_scissor_state *states)
1114 {
1115 struct iris_context *ice = (struct iris_context *) ctx;
1116
1117 ice->state.num_scissors = num_scissors;
1118
1119 for (unsigned i = 0; i < num_scissors; i++) {
1120 ice->state.scissors[start_slot + i] = states[i];
1121 }
1122
1123 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
1124 }
1125
1126 static void
1127 iris_set_stencil_ref(struct pipe_context *ctx,
1128 const struct pipe_stencil_ref *state)
1129 {
1130 struct iris_context *ice = (struct iris_context *) ctx;
1131 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
1132 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1133 }
1134
1135
1136 struct iris_viewport_state {
1137 uint32_t sf_cl_vp[GENX(SF_CLIP_VIEWPORT_length) * IRIS_MAX_VIEWPORTS];
1138 };
1139
1140 static float
1141 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
1142 {
1143 return copysignf(state->scale[axis], sign) + state->translate[axis];
1144 }
1145
1146 #if 0
1147 static void
1148 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
1149 float m00, float m11, float m30, float m31,
1150 float *xmin, float *xmax,
1151 float *ymin, float *ymax)
1152 {
1153 /* According to the "Vertex X,Y Clamping and Quantization" section of the
1154 * Strips and Fans documentation:
1155 *
1156 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
1157 * fixed-point "guardband" range supported by the rasterization hardware"
1158 *
1159 * and
1160 *
1161 * "In almost all circumstances, if an object’s vertices are actually
1162 * modified by this clamping (i.e., had X or Y coordinates outside of
1163 * the guardband extent the rendered object will not match the intended
1164 * result. Therefore software should take steps to ensure that this does
1165 * not happen - e.g., by clipping objects such that they do not exceed
1166 * these limits after the Drawing Rectangle is applied."
1167 *
1168 * I believe the fundamental restriction is that the rasterizer (in
1169 * the SF/WM stages) have a limit on the number of pixels that can be
1170 * rasterized. We need to ensure any coordinates beyond the rasterizer
1171 * limit are handled by the clipper. So effectively that limit becomes
1172 * the clipper's guardband size.
1173 *
1174 * It goes on to say:
1175 *
1176 * "In addition, in order to be correctly rendered, objects must have a
1177 * screenspace bounding box not exceeding 8K in the X or Y direction.
1178 * This additional restriction must also be comprehended by software,
1179 * i.e., enforced by use of clipping."
1180 *
1181 * This makes no sense. Gen7+ hardware supports 16K render targets,
1182 * and you definitely need to be able to draw polygons that fill the
1183 * surface. Our assumption is that the rasterizer was limited to 8K
1184 * on Sandybridge, which only supports 8K surfaces, and it was actually
1185 * increased to 16K on Ivybridge and later.
1186 *
1187 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
1188 */
1189 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
1190
1191 if (m00 != 0 && m11 != 0) {
1192 /* First, we compute the screen-space render area */
1193 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
1194 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
1195 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
1196 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
1197
1198 /* We want the guardband to be centered on that */
1199 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
1200 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
1201 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
1202 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
1203
1204 /* Now we need it in native device coordinates */
1205 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
1206 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
1207 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
1208 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
1209
1210 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
1211 * flipped upside-down. X should be fine though.
1212 */
1213 assert(ndc_gb_xmin <= ndc_gb_xmax);
1214 *xmin = ndc_gb_xmin;
1215 *xmax = ndc_gb_xmax;
1216 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
1217 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
1218 } else {
1219 /* The viewport scales to 0, so nothing will be rendered. */
1220 *xmin = 0.0f;
1221 *xmax = 0.0f;
1222 *ymin = 0.0f;
1223 *ymax = 0.0f;
1224 }
1225 }
1226 #endif
1227
1228 static void
1229 iris_set_viewport_states(struct pipe_context *ctx,
1230 unsigned start_slot,
1231 unsigned num_viewports,
1232 const struct pipe_viewport_state *state)
1233 {
1234 struct iris_context *ice = (struct iris_context *) ctx;
1235 struct iris_viewport_state *cso =
1236 malloc(sizeof(struct iris_viewport_state));
1237 uint32_t *vp_map = &cso->sf_cl_vp[start_slot];
1238
1239 // XXX: sf_cl_vp is only big enough for one slot, we don't iterate right
1240 for (unsigned i = 0; i < num_viewports; i++) {
1241 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
1242 vp.ViewportMatrixElementm00 = state[i].scale[0];
1243 vp.ViewportMatrixElementm11 = state[i].scale[1];
1244 vp.ViewportMatrixElementm22 = state[i].scale[2];
1245 vp.ViewportMatrixElementm30 = state[i].translate[0];
1246 vp.ViewportMatrixElementm31 = state[i].translate[1];
1247 vp.ViewportMatrixElementm32 = state[i].translate[2];
1248 /* XXX: in i965 this is computed based on the drawbuffer size,
1249 * but we don't have that here...
1250 */
1251 vp.XMinClipGuardband = -1.0;
1252 vp.XMaxClipGuardband = 1.0;
1253 vp.YMinClipGuardband = -1.0;
1254 vp.YMaxClipGuardband = 1.0;
1255 vp.XMinViewPort = viewport_extent(&state[i], 0, -1.0f);
1256 vp.XMaxViewPort = viewport_extent(&state[i], 0, 1.0f) - 1;
1257 vp.YMinViewPort = viewport_extent(&state[i], 1, -1.0f);
1258 vp.YMaxViewPort = viewport_extent(&state[i], 1, 1.0f) - 1;
1259 }
1260
1261 vp_map += GENX(SF_CLIP_VIEWPORT_length);
1262 }
1263
1264 ice->state.cso_vp = cso;
1265 ice->state.num_viewports = num_viewports;
1266 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
1267 }
1268
1269 struct iris_depth_buffer_state
1270 {
1271 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
1272 GENX(3DSTATE_STENCIL_BUFFER_length) +
1273 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
1274 GENX(3DSTATE_CLEAR_PARAMS_length)];
1275 };
1276
1277 static void
1278 iris_set_framebuffer_state(struct pipe_context *ctx,
1279 const struct pipe_framebuffer_state *state)
1280 {
1281 struct iris_context *ice = (struct iris_context *) ctx;
1282 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1283 struct isl_device *isl_dev = &screen->isl_dev;
1284 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
1285
1286 if (cso->samples != state->samples) {
1287 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1288 }
1289
1290 if (cso->nr_cbufs != state->nr_cbufs) {
1291 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1292 }
1293
1294 util_copy_framebuffer_state(cso, state);
1295
1296 struct iris_depth_buffer_state *cso_z =
1297 malloc(sizeof(struct iris_depth_buffer_state));
1298
1299 struct isl_view view = {
1300 .base_level = 0,
1301 .levels = 1,
1302 .base_array_layer = 0,
1303 .array_len = 1,
1304 .swizzle = ISL_SWIZZLE_IDENTITY,
1305 };
1306
1307 struct isl_depth_stencil_hiz_emit_info info = {
1308 .view = &view,
1309 .mocs = MOCS_WB,
1310 };
1311
1312 struct iris_resource *zres =
1313 (void *) (cso->zsbuf ? cso->zsbuf->texture : NULL);
1314
1315 if (zres) {
1316 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
1317
1318 info.depth_surf = &zres->surf;
1319 info.depth_address = zres->bo->gtt_offset;
1320
1321 view.format = zres->surf.format;
1322
1323 view.base_level = cso->zsbuf->u.tex.level;
1324 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
1325 view.array_len =
1326 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
1327
1328 info.hiz_usage = ISL_AUX_USAGE_NONE;
1329 }
1330
1331 #if 0
1332 if (stencil_mt) {
1333 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
1334 info.stencil_surf = &stencil_mt->surf;
1335
1336 if (!depth_mt) {
1337 view.base_level = stencil_irb->mt_level - stencil_irb->mt->first_level;
1338 view.base_array_layer = stencil_irb->mt_layer;
1339 view.array_len = MAX2(stencil_irb->layer_count, 1);
1340 view.format = stencil_mt->surf.format;
1341 }
1342
1343 uint32_t stencil_offset = 0;
1344 info.stencil_address = stencil_mt->bo->gtt_offset + stencil_mt->offset;
1345 }
1346 #endif
1347
1348 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
1349
1350 ice->state.cso_depthbuffer = cso_z;
1351 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
1352 }
1353
1354 static void
1355 iris_set_constant_buffer(struct pipe_context *ctx,
1356 enum pipe_shader_type p_stage, unsigned index,
1357 const struct pipe_constant_buffer *input)
1358 {
1359 struct iris_context *ice = (struct iris_context *) ctx;
1360 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1361 gl_shader_stage stage = stage_from_pipe(p_stage);
1362 struct iris_shader_state *shs = &ice->shaders.state[stage];
1363 struct iris_const_buffer *cbuf = &shs->constbuf[index];
1364
1365 if (input && (input->buffer || input->user_buffer)) {
1366 if (input->user_buffer) {
1367 u_upload_data(ctx->const_uploader, 0, input->buffer_size, 32,
1368 input->user_buffer, &cbuf->offset, &cbuf->resource);
1369 } else {
1370 pipe_resource_reference(&cbuf->resource, input->buffer);
1371 }
1372
1373 void *map = NULL;
1374 // XXX: these are not retained forever, use a separate uploader?
1375 u_upload_alloc(ice->state.surface_uploader, 0,
1376 4 * GENX(RENDER_SURFACE_STATE_length), 64,
1377 &cbuf->surface_state_offset,
1378 &cbuf->surface_state_resource,
1379 &map);
1380 if (!unlikely(map)) {
1381 pipe_resource_reference(&cbuf->resource, NULL);
1382 return;
1383 }
1384
1385 struct iris_resource *res = (void *) cbuf->resource;
1386 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state_resource);
1387 cbuf->surface_state_offset += iris_bo_offset_from_base_address(surf_bo);
1388
1389 isl_buffer_fill_state(&screen->isl_dev, map,
1390 .address = res->bo->gtt_offset + cbuf->offset,
1391 .size_B = input->buffer_size,
1392 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
1393 .stride_B = 1,
1394 .mocs = MOCS_WB)
1395 } else {
1396 pipe_resource_reference(&cbuf->resource, NULL);
1397 pipe_resource_reference(&cbuf->surface_state_resource, NULL);
1398 }
1399 }
1400
1401 static void
1402 iris_sampler_view_destroy(struct pipe_context *ctx,
1403 struct pipe_sampler_view *state)
1404 {
1405 struct iris_sampler_view *isv = (void *) state;
1406 pipe_resource_reference(&state->texture, NULL);
1407 pipe_resource_reference(&isv->surface_state_resource, NULL);
1408 free(isv);
1409 }
1410
1411
1412 static void
1413 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1414 {
1415 struct iris_surface *surf = (void *) p_surf;
1416 pipe_resource_reference(&p_surf->texture, NULL);
1417 pipe_resource_reference(&surf->surface_state_resource, NULL);
1418 free(surf);
1419 }
1420
1421 static void
1422 iris_delete_state(struct pipe_context *ctx, void *state)
1423 {
1424 free(state);
1425 }
1426
1427 struct iris_vertex_buffer_state {
1428 uint32_t vertex_buffers[1 + 33 * GENX(VERTEX_BUFFER_STATE_length)];
1429 struct iris_bo *bos[33];
1430 unsigned num_buffers;
1431 };
1432
1433 static void
1434 iris_free_vertex_buffers(struct iris_vertex_buffer_state *cso)
1435 {
1436 if (cso) {
1437 for (unsigned i = 0; i < cso->num_buffers; i++)
1438 iris_bo_unreference(cso->bos[i]);
1439 free(cso);
1440 }
1441 }
1442
1443 static void
1444 iris_set_vertex_buffers(struct pipe_context *ctx,
1445 unsigned start_slot, unsigned count,
1446 const struct pipe_vertex_buffer *buffers)
1447 {
1448 struct iris_context *ice = (struct iris_context *) ctx;
1449 struct iris_vertex_buffer_state *cso =
1450 malloc(sizeof(struct iris_vertex_buffer_state));
1451
1452 /* If there are no buffers, do nothing. We can leave the stale
1453 * 3DSTATE_VERTEX_BUFFERS in place - as long as there are no vertex
1454 * elements that point to them, it should be fine.
1455 */
1456 if (!buffers)
1457 return;
1458
1459 iris_free_vertex_buffers(ice->state.cso_vertex_buffers);
1460
1461 cso->num_buffers = count;
1462
1463 iris_pack_command(GENX(3DSTATE_VERTEX_BUFFERS), cso->vertex_buffers, vb) {
1464 vb.DWordLength = 4 * cso->num_buffers - 1;
1465 }
1466
1467 uint32_t *vb_pack_dest = &cso->vertex_buffers[1];
1468
1469 for (unsigned i = 0; i < count; i++) {
1470 assert(!buffers[i].is_user_buffer);
1471
1472 struct iris_resource *res = (void *) buffers[i].buffer.resource;
1473 iris_bo_reference(res->bo);
1474 cso->bos[i] = res->bo;
1475
1476 iris_pack_state(GENX(VERTEX_BUFFER_STATE), vb_pack_dest, vb) {
1477 vb.VertexBufferIndex = start_slot + i;
1478 vb.MOCS = MOCS_WB;
1479 vb.AddressModifyEnable = true;
1480 vb.BufferPitch = buffers[i].stride;
1481 vb.BufferSize = res->bo->size;
1482 vb.BufferStartingAddress =
1483 ro_bo(NULL, res->bo->gtt_offset + buffers[i].buffer_offset);
1484 }
1485
1486 vb_pack_dest += GENX(VERTEX_BUFFER_STATE_length);
1487 }
1488
1489 ice->state.cso_vertex_buffers = cso;
1490 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
1491 }
1492
1493 struct iris_vertex_element_state {
1494 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
1495 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
1496 unsigned count;
1497 };
1498
1499 static void *
1500 iris_create_vertex_elements(struct pipe_context *ctx,
1501 unsigned count,
1502 const struct pipe_vertex_element *state)
1503 {
1504 struct iris_vertex_element_state *cso =
1505 malloc(sizeof(struct iris_vertex_element_state));
1506
1507 cso->count = count;
1508
1509 /* TODO:
1510 * - create edge flag one
1511 * - create SGV ones
1512 * - if those are necessary, use count + 1/2/3... OR in the length
1513 */
1514 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
1515 ve.DWordLength =
1516 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
1517 }
1518
1519 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
1520 uint32_t *vfi_pack_dest = cso->vf_instancing;
1521
1522 for (int i = 0; i < count; i++) {
1523 enum isl_format isl_format =
1524 iris_isl_format_for_pipe_format(state[i].src_format);
1525 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
1526 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
1527
1528 switch (isl_format_get_num_channels(isl_format)) {
1529 case 0: comp[0] = VFCOMP_STORE_0;
1530 case 1: comp[1] = VFCOMP_STORE_0;
1531 case 2: comp[2] = VFCOMP_STORE_0;
1532 case 3:
1533 comp[3] = isl_format_has_int_channel(isl_format) ? VFCOMP_STORE_1_INT
1534 : VFCOMP_STORE_1_FP;
1535 break;
1536 }
1537 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
1538 ve.VertexBufferIndex = state[i].vertex_buffer_index;
1539 ve.Valid = true;
1540 ve.SourceElementOffset = state[i].src_offset;
1541 ve.SourceElementFormat = isl_format;
1542 ve.Component0Control = comp[0];
1543 ve.Component1Control = comp[1];
1544 ve.Component2Control = comp[2];
1545 ve.Component3Control = comp[3];
1546 }
1547
1548 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
1549 vi.VertexElementIndex = i;
1550 vi.InstancingEnable = state[i].instance_divisor > 0;
1551 vi.InstanceDataStepRate = state[i].instance_divisor;
1552 }
1553
1554 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
1555 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
1556 }
1557
1558 return cso;
1559 }
1560
1561 static void
1562 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
1563 {
1564 struct iris_context *ice = (struct iris_context *) ctx;
1565
1566 ice->state.cso_vertex_elements = state;
1567 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
1568 }
1569
1570 static void *
1571 iris_create_compute_state(struct pipe_context *ctx,
1572 const struct pipe_compute_state *state)
1573 {
1574 return malloc(1);
1575 }
1576
1577 static struct pipe_stream_output_target *
1578 iris_create_stream_output_target(struct pipe_context *ctx,
1579 struct pipe_resource *res,
1580 unsigned buffer_offset,
1581 unsigned buffer_size)
1582 {
1583 struct pipe_stream_output_target *t =
1584 CALLOC_STRUCT(pipe_stream_output_target);
1585 if (!t)
1586 return NULL;
1587
1588 pipe_reference_init(&t->reference, 1);
1589 pipe_resource_reference(&t->buffer, res);
1590 t->buffer_offset = buffer_offset;
1591 t->buffer_size = buffer_size;
1592 return t;
1593 }
1594
1595 static void
1596 iris_stream_output_target_destroy(struct pipe_context *ctx,
1597 struct pipe_stream_output_target *t)
1598 {
1599 pipe_resource_reference(&t->buffer, NULL);
1600 free(t);
1601 }
1602
1603 static void
1604 iris_set_stream_output_targets(struct pipe_context *ctx,
1605 unsigned num_targets,
1606 struct pipe_stream_output_target **targets,
1607 const unsigned *offsets)
1608 {
1609 }
1610
1611 static void
1612 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
1613 const struct brw_vue_map *last_vue_map,
1614 bool two_sided_color,
1615 unsigned *out_offset,
1616 unsigned *out_length)
1617 {
1618 /* The compiler computes the first URB slot without considering COL/BFC
1619 * swizzling (because it doesn't know whether it's enabled), so we need
1620 * to do that here too. This may result in a smaller offset, which
1621 * should be safe.
1622 */
1623 const unsigned first_slot =
1624 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
1625
1626 /* This becomes the URB read offset (counted in pairs of slots). */
1627 assert(first_slot % 2 == 0);
1628 *out_offset = first_slot / 2;
1629
1630 /* We need to adjust the inputs read to account for front/back color
1631 * swizzling, as it can make the URB length longer.
1632 */
1633 for (int c = 0; c <= 1; c++) {
1634 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
1635 /* If two sided color is enabled, the fragment shader's gl_Color
1636 * (COL0) input comes from either the gl_FrontColor (COL0) or
1637 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
1638 */
1639 if (two_sided_color)
1640 fs_input_slots |= (VARYING_BIT_BFC0 << c);
1641
1642 /* If front color isn't written, we opt to give them back color
1643 * instead of an undefined value. Switch from COL to BFC.
1644 */
1645 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
1646 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
1647 fs_input_slots |= (VARYING_BIT_BFC0 << c);
1648 }
1649 }
1650 }
1651
1652 /* Compute the minimum URB Read Length necessary for the FS inputs.
1653 *
1654 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1655 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1656 *
1657 * "This field should be set to the minimum length required to read the
1658 * maximum source attribute. The maximum source attribute is indicated
1659 * by the maximum value of the enabled Attribute # Source Attribute if
1660 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1661 * enable is not set.
1662 * read_length = ceiling((max_source_attr + 1) / 2)
1663 *
1664 * [errata] Corruption/Hang possible if length programmed larger than
1665 * recommended"
1666 *
1667 * Similar text exists for Ivy Bridge.
1668 *
1669 * We find the last URB slot that's actually read by the FS.
1670 */
1671 unsigned last_read_slot = last_vue_map->num_slots - 1;
1672 while (last_read_slot > first_slot && !(fs_input_slots &
1673 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
1674 --last_read_slot;
1675
1676 /* The URB read length is the difference of the two, counted in pairs. */
1677 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
1678 }
1679
1680 static void
1681 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
1682 {
1683 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
1684 const struct brw_wm_prog_data *wm_prog_data = (void *)
1685 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
1686 struct pipe_shader_state *p_fs =
1687 (void *) ice->shaders.uncompiled[MESA_SHADER_FRAGMENT];
1688 assert(p_fs->type == PIPE_SHADER_IR_NIR);
1689 nir_shader *fs_nir = p_fs->ir.nir;
1690
1691 unsigned urb_read_offset, urb_read_length;
1692 iris_compute_sbe_urb_read_interval(fs_nir->info.inputs_read,
1693 ice->shaders.last_vue_map,
1694 cso_rast->light_twoside,
1695 &urb_read_offset, &urb_read_length);
1696
1697 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
1698 sbe.AttributeSwizzleEnable = true;
1699 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1700 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
1701 sbe.VertexURBEntryReadOffset = urb_read_offset;
1702 sbe.VertexURBEntryReadLength = urb_read_length;
1703 sbe.ForceVertexURBEntryReadOffset = true;
1704 sbe.ForceVertexURBEntryReadLength = true;
1705 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
1706
1707 for (int i = 0; i < 32; i++) {
1708 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
1709 }
1710 }
1711 }
1712
1713 static void
1714 iris_bind_compute_state(struct pipe_context *ctx, void *state)
1715 {
1716 }
1717
1718 static void
1719 iris_populate_sampler_key(const struct iris_context *ice,
1720 struct brw_sampler_prog_key_data *key)
1721 {
1722 for (int i = 0; i < MAX_SAMPLERS; i++) {
1723 key->swizzles[i] = 0x688; /* XYZW */
1724 }
1725 }
1726
1727 static void
1728 iris_populate_vs_key(const struct iris_context *ice,
1729 struct brw_vs_prog_key *key)
1730 {
1731 memset(key, 0, sizeof(*key));
1732 iris_populate_sampler_key(ice, &key->tex);
1733 }
1734
1735 static void
1736 iris_populate_tcs_key(const struct iris_context *ice,
1737 struct brw_tcs_prog_key *key)
1738 {
1739 memset(key, 0, sizeof(*key));
1740 iris_populate_sampler_key(ice, &key->tex);
1741 }
1742
1743 static void
1744 iris_populate_tes_key(const struct iris_context *ice,
1745 struct brw_tes_prog_key *key)
1746 {
1747 memset(key, 0, sizeof(*key));
1748 iris_populate_sampler_key(ice, &key->tex);
1749 }
1750
1751 static void
1752 iris_populate_gs_key(const struct iris_context *ice,
1753 struct brw_gs_prog_key *key)
1754 {
1755 memset(key, 0, sizeof(*key));
1756 iris_populate_sampler_key(ice, &key->tex);
1757 }
1758
1759 static void
1760 iris_populate_fs_key(const struct iris_context *ice,
1761 struct brw_wm_prog_key *key)
1762 {
1763 memset(key, 0, sizeof(*key));
1764 iris_populate_sampler_key(ice, &key->tex);
1765
1766 /* XXX: dirty flags? */
1767 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
1768 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
1769 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
1770 const struct iris_blend_state *blend = ice->state.cso_blend;
1771
1772 key->nr_color_regions = fb->nr_cbufs;
1773
1774 key->clamp_fragment_color = rast->clamp_fragment_color;
1775
1776 key->replicate_alpha = fb->nr_cbufs > 1 &&
1777 (zsa->alpha.enabled || blend->alpha_to_coverage);
1778
1779 // key->force_dual_color_blend for unigine
1780 #if 0
1781 if (cso_rast->multisample) {
1782 key->persample_interp =
1783 ctx->Multisample.SampleShading &&
1784 (ctx->Multisample.MinSampleShadingValue *
1785 _mesa_geometric_samples(ctx->DrawBuffer) > 1);
1786
1787 key->multisample_fbo = fb->samples > 1;
1788 }
1789 #endif
1790
1791 key->coherent_fb_fetch = true;
1792 }
1793
1794 //pkt.SamplerCount = \
1795 //DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
1796 //pkt.PerThreadScratchSpace = prog_data->total_scratch == 0 ? 0 : \
1797 //ffs(stage_state->per_thread_scratch) - 11; \
1798
1799 static uint64_t
1800 KSP(const struct iris_compiled_shader *shader)
1801 {
1802 struct iris_resource *res = (void *) shader->buffer;
1803 return res->bo->gtt_offset + shader->offset;
1804 }
1805
1806 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
1807 pkt.KernelStartPointer = KSP(shader); \
1808 pkt.BindingTableEntryCount = prog_data->binding_table.size_bytes / 4; \
1809 pkt.FloatingPointMode = prog_data->use_alt_mode; \
1810 \
1811 pkt.DispatchGRFStartRegisterForURBData = \
1812 prog_data->dispatch_grf_start_reg; \
1813 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
1814 pkt.prefix##URBEntryReadOffset = 0; \
1815 \
1816 pkt.StatisticsEnable = true; \
1817 pkt.Enable = true;
1818
1819 static void
1820 iris_store_vs_state(const struct gen_device_info *devinfo,
1821 struct iris_compiled_shader *shader)
1822 {
1823 struct brw_stage_prog_data *prog_data = shader->prog_data;
1824 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
1825
1826 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
1827 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
1828 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
1829 vs.SIMD8DispatchEnable = true;
1830 vs.UserClipDistanceCullTestEnableBitmask =
1831 vue_prog_data->cull_distance_mask;
1832 }
1833 }
1834
1835 static void
1836 iris_store_tcs_state(const struct gen_device_info *devinfo,
1837 struct iris_compiled_shader *shader)
1838 {
1839 struct brw_stage_prog_data *prog_data = shader->prog_data;
1840 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
1841 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
1842
1843 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
1844 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
1845
1846 hs.InstanceCount = tcs_prog_data->instances - 1;
1847 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
1848 hs.IncludeVertexHandles = true;
1849 }
1850 }
1851
1852 static void
1853 iris_store_tes_state(const struct gen_device_info *devinfo,
1854 struct iris_compiled_shader *shader)
1855 {
1856 struct brw_stage_prog_data *prog_data = shader->prog_data;
1857 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
1858 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
1859
1860 uint32_t *te_state = (void *) shader->derived_data;
1861 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
1862
1863 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
1864 te.Partitioning = tes_prog_data->partitioning;
1865 te.OutputTopology = tes_prog_data->output_topology;
1866 te.TEDomain = tes_prog_data->domain;
1867 te.TEEnable = true;
1868 te.MaximumTessellationFactorOdd = 63.0;
1869 te.MaximumTessellationFactorNotOdd = 64.0;
1870 }
1871
1872 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
1873 INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
1874
1875 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
1876 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
1877 ds.ComputeWCoordinateEnable =
1878 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
1879
1880 ds.UserClipDistanceCullTestEnableBitmask =
1881 vue_prog_data->cull_distance_mask;
1882 }
1883
1884 }
1885
1886 static void
1887 iris_store_gs_state(const struct gen_device_info *devinfo,
1888 struct iris_compiled_shader *shader)
1889 {
1890 struct brw_stage_prog_data *prog_data = shader->prog_data;
1891 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
1892 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
1893
1894 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
1895 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
1896
1897 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
1898 gs.OutputTopology = gs_prog_data->output_topology;
1899 gs.ControlDataHeaderSize =
1900 gs_prog_data->control_data_header_size_hwords;
1901 gs.InstanceControl = gs_prog_data->invocations - 1;
1902 gs.DispatchMode = SIMD8;
1903 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
1904 gs.ControlDataFormat = gs_prog_data->control_data_format;
1905 gs.ReorderMode = TRAILING;
1906 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
1907 gs.MaximumNumberofThreads =
1908 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
1909 : (devinfo->max_gs_threads - 1);
1910
1911 if (gs_prog_data->static_vertex_count != -1) {
1912 gs.StaticOutput = true;
1913 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
1914 }
1915 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
1916
1917 gs.UserClipDistanceCullTestEnableBitmask =
1918 vue_prog_data->cull_distance_mask;
1919
1920 const int urb_entry_write_offset = 1;
1921 const uint32_t urb_entry_output_length =
1922 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
1923 urb_entry_write_offset;
1924
1925 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
1926 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
1927 }
1928 }
1929
1930 static void
1931 iris_store_fs_state(const struct gen_device_info *devinfo,
1932 struct iris_compiled_shader *shader)
1933 {
1934 struct brw_stage_prog_data *prog_data = shader->prog_data;
1935 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
1936
1937 uint32_t *ps_state = (void *) shader->derived_data;
1938 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
1939
1940 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
1941 ps.VectorMaskEnable = true;
1942 //ps.SamplerCount = ...
1943 ps.BindingTableEntryCount = prog_data->binding_table.size_bytes / 4;
1944 ps.FloatingPointMode = prog_data->use_alt_mode;
1945 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
1946
1947 ps.PushConstantEnable = prog_data->nr_params > 0 ||
1948 prog_data->ubo_ranges[0].length > 0;
1949
1950 /* From the documentation for this packet:
1951 * "If the PS kernel does not need the Position XY Offsets to
1952 * compute a Position Value, then this field should be programmed
1953 * to POSOFFSET_NONE."
1954 *
1955 * "SW Recommendation: If the PS kernel needs the Position Offsets
1956 * to compute a Position XY value, this field should match Position
1957 * ZW Interpolation Mode to ensure a consistent position.xyzw
1958 * computation."
1959 *
1960 * We only require XY sample offsets. So, this recommendation doesn't
1961 * look useful at the moment. We might need this in future.
1962 */
1963 ps.PositionXYOffsetSelect =
1964 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
1965 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1966 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1967 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
1968
1969 // XXX: Disable SIMD32 with 16x MSAA
1970
1971 ps.DispatchGRFStartRegisterForConstantSetupData0 =
1972 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
1973 ps.DispatchGRFStartRegisterForConstantSetupData1 =
1974 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
1975 ps.DispatchGRFStartRegisterForConstantSetupData2 =
1976 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
1977
1978 ps.KernelStartPointer0 =
1979 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
1980 ps.KernelStartPointer1 =
1981 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
1982 ps.KernelStartPointer2 =
1983 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
1984 }
1985
1986 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
1987 psx.PixelShaderValid = true;
1988 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1989 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
1990 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
1991 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1992 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1993 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
1994
1995 if (wm_prog_data->uses_sample_mask) {
1996 /* TODO: conservative rasterization */
1997 if (wm_prog_data->post_depth_coverage)
1998 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
1999 else
2000 psx.InputCoverageMaskState = ICMS_NORMAL;
2001 }
2002
2003 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
2004 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
2005 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
2006
2007 // XXX: UAV bit
2008 }
2009 }
2010
2011 static unsigned
2012 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
2013 {
2014 assert(cache_id <= IRIS_CACHE_BLORP);
2015
2016 static const unsigned dwords[] = {
2017 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
2018 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
2019 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
2020 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
2021 [IRIS_CACHE_FS] =
2022 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
2023 [IRIS_CACHE_CS] = 0,
2024 [IRIS_CACHE_BLORP] = 0,
2025 };
2026
2027 return sizeof(uint32_t) * dwords[cache_id];
2028 }
2029
2030 static void
2031 iris_store_derived_program_state(const struct gen_device_info *devinfo,
2032 enum iris_program_cache_id cache_id,
2033 struct iris_compiled_shader *shader)
2034 {
2035 switch (cache_id) {
2036 case IRIS_CACHE_VS:
2037 iris_store_vs_state(devinfo, shader);
2038 break;
2039 case IRIS_CACHE_TCS:
2040 iris_store_tcs_state(devinfo, shader);
2041 break;
2042 case IRIS_CACHE_TES:
2043 iris_store_tes_state(devinfo, shader);
2044 break;
2045 case IRIS_CACHE_GS:
2046 iris_store_gs_state(devinfo, shader);
2047 break;
2048 case IRIS_CACHE_FS:
2049 iris_store_fs_state(devinfo, shader);
2050 break;
2051 case IRIS_CACHE_CS:
2052 case IRIS_CACHE_BLORP:
2053 break;
2054 default:
2055 break;
2056 }
2057 }
2058
2059 static void
2060 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
2061 {
2062 const struct gen_device_info *devinfo = &batch->screen->devinfo;
2063 const unsigned push_size_kB = 32;
2064 unsigned entries[4];
2065 unsigned start[4];
2066 unsigned size[4];
2067
2068 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
2069 if (!ice->shaders.prog[i]) {
2070 size[i] = 1;
2071 } else {
2072 struct brw_vue_prog_data *vue_prog_data =
2073 (void *) ice->shaders.prog[i]->prog_data;
2074 size[i] = vue_prog_data->urb_entry_size;
2075 }
2076 assert(size[i] != 0);
2077 }
2078
2079 gen_get_urb_config(devinfo, 1024 * push_size_kB,
2080 1024 * ice->shaders.urb_size,
2081 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
2082 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
2083 size, entries, start);
2084
2085 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
2086 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
2087 urb._3DCommandSubOpcode += i;
2088 urb.VSURBStartingAddress = start[i];
2089 urb.VSURBEntryAllocationSize = size[i] - 1;
2090 urb.VSNumberofURBEntries = entries[i];
2091 }
2092 }
2093 }
2094
2095 static const uint32_t push_constant_opcodes[] = {
2096 [MESA_SHADER_VERTEX] = 21,
2097 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2098 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2099 [MESA_SHADER_GEOMETRY] = 22,
2100 [MESA_SHADER_FRAGMENT] = 23,
2101 [MESA_SHADER_COMPUTE] = 0,
2102 };
2103
2104 /**
2105 * Add a surface to the validation list, as well as the buffer containing
2106 * the corresponding SURFACE_STATE.
2107 *
2108 * Returns the binding table entry (offset to SURFACE_STATE).
2109 */
2110 static uint32_t
2111 use_surface(struct iris_batch *batch,
2112 struct pipe_surface *p_surf,
2113 bool writeable)
2114 {
2115 struct iris_surface *surf = (void *) p_surf;
2116 struct iris_resource *res = (void *) p_surf->texture;
2117 struct iris_resource *state_res = (void *) surf->surface_state_resource;
2118 iris_use_pinned_bo(batch, res->bo, writeable);
2119 iris_use_pinned_bo(batch, state_res->bo, false);
2120
2121 return surf->surface_state_offset;
2122 }
2123
2124 static uint32_t
2125 use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
2126 {
2127 struct iris_resource *res = (void *) isv->pipe.texture;
2128 struct iris_resource *state_res = (void *) isv->surface_state_resource;
2129 iris_use_pinned_bo(batch, res->bo, false);
2130 iris_use_pinned_bo(batch, state_res->bo, false);
2131
2132 return isv->surface_state_offset;
2133 }
2134
2135 static uint32_t
2136 use_const_buffer(struct iris_batch *batch, struct iris_const_buffer *cbuf)
2137 {
2138 struct iris_resource *res = (void *) cbuf->resource;
2139 struct iris_resource *state_res = (void *) cbuf->surface_state_resource;
2140 iris_use_pinned_bo(batch, res->bo, false);
2141 iris_use_pinned_bo(batch, state_res->bo, false);
2142
2143 return cbuf->surface_state_offset;
2144 }
2145
2146 static void
2147 iris_populate_binding_table(struct iris_context *ice,
2148 struct iris_batch *batch,
2149 gl_shader_stage stage)
2150 {
2151 const struct iris_binder *binder = &batch->binder;
2152 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2153 if (!shader)
2154 return;
2155
2156 // Surfaces:
2157 // - pull constants
2158 // - ubos/ssbos/abos
2159 // - images
2160 // - textures
2161 // - render targets - write and read
2162
2163 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
2164 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
2165 int s = 0;
2166
2167 if (stage == MESA_SHADER_FRAGMENT) {
2168 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2169 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
2170 bt_map[s++] = use_surface(batch, cso_fb->cbufs[i], true);
2171 }
2172 }
2173
2174 //assert(prog_data->binding_table.texture_start ==
2175 //(ice->state.num_textures[stage] ? s : 0xd0d0d0d0));
2176
2177 for (int i = 0; i < ice->state.num_textures[stage]; i++) {
2178 struct iris_sampler_view *view = ice->state.textures[stage][i];
2179 bt_map[s++] = use_sampler_view(batch, view);
2180 }
2181
2182 // XXX: want the number of BTE's to shorten this loop
2183 struct iris_shader_state *shs = &ice->shaders.state[stage];
2184 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
2185 struct iris_const_buffer *cbuf = &shs->constbuf[i];
2186 if (!cbuf->surface_state_resource)
2187 break;
2188
2189 bt_map[s++] = use_const_buffer(batch, cbuf);
2190 }
2191 #if 0
2192 // XXX: not implemented yet
2193 assert(prog_data->binding_table.pull_constants_start == 0xd0d0d0d0);
2194 assert(prog_data->binding_table.ubo_start == 0xd0d0d0d0);
2195 assert(prog_data->binding_table.ssbo_start == 0xd0d0d0d0);
2196 assert(prog_data->binding_table.image_start == 0xd0d0d0d0);
2197 assert(prog_data->binding_table.shader_time_start == 0xd0d0d0d0);
2198 //assert(prog_data->binding_table.plane_start[1] == 0xd0d0d0d0);
2199 //assert(prog_data->binding_table.plane_start[2] == 0xd0d0d0d0);
2200 #endif
2201 }
2202
2203 static void
2204 iris_use_optional_res(struct iris_batch *batch,
2205 struct pipe_resource *res,
2206 bool writeable)
2207 {
2208 if (res) {
2209 struct iris_bo *bo = iris_resource_bo(res);
2210 iris_use_pinned_bo(batch, bo, writeable);
2211 }
2212 }
2213
2214
2215 /**
2216 * Pin any BOs which were installed by a previous batch, and restored
2217 * via the hardware logical context mechanism.
2218 *
2219 * We don't need to re-emit all state every batch - the hardware context
2220 * mechanism will save and restore it for us. This includes pointers to
2221 * various BOs...which won't exist unless we ask the kernel to pin them
2222 * by adding them to the validation list.
2223 *
2224 * We can skip buffers if we've re-emitted those packets, as we're
2225 * overwriting those stale pointers with new ones, and don't actually
2226 * refer to the old BOs.
2227 */
2228 static void
2229 iris_restore_context_saved_bos(struct iris_context *ice,
2230 struct iris_batch *batch,
2231 const struct pipe_draw_info *draw)
2232 {
2233 // XXX: whack IRIS_SHADER_DIRTY_BINDING_TABLE on new batch
2234
2235 const uint64_t clean =
2236 unlikely(INTEL_DEBUG & DEBUG_REEMIT) ? 0ull : ~ice->state.dirty;
2237
2238 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
2239 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
2240 }
2241
2242 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
2243 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
2244 }
2245
2246 if (clean & IRIS_DIRTY_BLEND_STATE) {
2247 iris_use_optional_res(batch, ice->state.last_res.blend, false);
2248 }
2249
2250 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
2251 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
2252 }
2253
2254 if (clean & IRIS_DIRTY_SCISSOR) {
2255 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
2256 }
2257
2258 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2259 if (clean & (IRIS_DIRTY_CONSTANTS_VS << stage))
2260 continue;
2261
2262 struct iris_shader_state *shs = &ice->shaders.state[stage];
2263 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2264
2265 if (!shader)
2266 continue;
2267
2268 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
2269
2270 for (int i = 0; i < 4; i++) {
2271 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2272
2273 if (range->length == 0)
2274 continue;
2275
2276 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
2277 struct iris_resource *res = (void *) cbuf->resource;
2278
2279 iris_use_pinned_bo(batch, res->bo, false);
2280 }
2281 }
2282
2283 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2284 struct pipe_resource *res = ice->state.sampler_table_resource[stage];
2285 if (res)
2286 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
2287 }
2288
2289 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2290 if (clean & (IRIS_DIRTY_VS << stage)) {
2291 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2292 if (shader)
2293 iris_use_pinned_bo(batch, iris_resource_bo(shader->buffer), false);
2294
2295 // XXX: scratch buffer
2296 }
2297 }
2298
2299 // XXX: 3DSTATE_SO_BUFFER
2300
2301 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
2302 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2303
2304 if (cso_fb->zsbuf) {
2305 struct iris_resource *zres = (void *) cso_fb->zsbuf->texture;
2306 // XXX: depth might not be writable...
2307 iris_use_pinned_bo(batch, zres->bo, true);
2308 }
2309 }
2310
2311 if (draw->index_size > 0) {
2312 // XXX: index buffer
2313 }
2314
2315 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
2316 struct iris_vertex_buffer_state *cso = ice->state.cso_vertex_buffers;
2317 for (unsigned i = 0; i < cso->num_buffers; i++) {
2318 iris_use_pinned_bo(batch, cso->bos[i], false);
2319 }
2320 }
2321 }
2322
2323 static void
2324 iris_upload_render_state(struct iris_context *ice,
2325 struct iris_batch *batch,
2326 const struct pipe_draw_info *draw)
2327 {
2328 const uint64_t dirty =
2329 unlikely(INTEL_DEBUG & DEBUG_REEMIT) ? ~0ull : ice->state.dirty;
2330
2331 struct brw_wm_prog_data *wm_prog_data = (void *)
2332 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2333
2334 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
2335 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
2336 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
2337 ptr.CCViewportPointer =
2338 emit_state(batch, ice->state.dynamic_uploader,
2339 &ice->state.last_res.cc_vp,
2340 cso->cc_vp, sizeof(cso->cc_vp), 32);
2341 }
2342 }
2343
2344 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
2345 struct iris_viewport_state *cso = ice->state.cso_vp;
2346 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2347 ptr.SFClipViewportPointer =
2348 emit_state(batch, ice->state.dynamic_uploader,
2349 &ice->state.last_res.sf_cl_vp,
2350 cso->sf_cl_vp, 4 * GENX(SF_CLIP_VIEWPORT_length) *
2351 ice->state.num_viewports, 64);
2352 }
2353 }
2354
2355 /* XXX: L3 State */
2356
2357 if (dirty & IRIS_DIRTY_URB) {
2358 iris_upload_urb_config(ice, batch);
2359 }
2360
2361 if (dirty & IRIS_DIRTY_BLEND_STATE) {
2362 struct iris_blend_state *cso_blend = ice->state.cso_blend;
2363 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2364 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
2365 const int num_dwords = 4 * (GENX(BLEND_STATE_length) +
2366 cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length));
2367 uint32_t blend_offset;
2368 uint32_t *blend_map =
2369 stream_state(batch, ice->state.dynamic_uploader,
2370 &ice->state.last_res.blend,
2371 4 * num_dwords, 64, &blend_offset);
2372
2373 uint32_t blend_state_header;
2374 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
2375 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
2376 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
2377 }
2378
2379 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
2380 memcpy(&blend_map[1], &cso_blend->blend_state[1],
2381 sizeof(cso_blend->blend_state) - sizeof(uint32_t));
2382
2383 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
2384 ptr.BlendStatePointer = blend_offset;
2385 ptr.BlendStatePointerValid = true;
2386 }
2387 }
2388
2389 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
2390 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
2391 uint32_t cc_offset;
2392 void *cc_map =
2393 stream_state(batch, ice->state.dynamic_uploader,
2394 &ice->state.last_res.color_calc,
2395 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
2396 64, &cc_offset);
2397 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
2398 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
2399 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
2400 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
2401 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
2402 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
2403 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
2404 }
2405 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
2406 ptr.ColorCalcStatePointer = cc_offset;
2407 ptr.ColorCalcStatePointerValid = true;
2408 }
2409 }
2410
2411 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2412 // XXX: wrong dirty tracking...
2413 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
2414 continue;
2415
2416 struct iris_shader_state *shs = &ice->shaders.state[stage];
2417 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2418
2419 if (!shader)
2420 continue;
2421
2422 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
2423
2424 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
2425 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
2426 if (prog_data) {
2427 /* The Skylake PRM contains the following restriction:
2428 *
2429 * "The driver must ensure The following case does not occur
2430 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2431 * buffer 3 read length equal to zero committed followed by a
2432 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2433 * zero committed."
2434 *
2435 * To avoid this, we program the buffers in the highest slots.
2436 * This way, slot 0 is only used if slot 3 is also used.
2437 */
2438 int n = 3;
2439
2440 for (int i = 3; i >= 0; i--) {
2441 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2442
2443 if (range->length == 0)
2444 continue;
2445
2446 // XXX: is range->block a constbuf index? it would be nice
2447 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
2448 struct iris_resource *res = (void *) cbuf->resource;
2449
2450 assert(cbuf->offset % 32 == 0);
2451
2452 pkt.ConstantBody.ReadLength[n] = range->length;
2453 pkt.ConstantBody.Buffer[n] =
2454 ro_bo(res->bo, range->start * 32 + cbuf->offset);
2455 n--;
2456 }
2457 }
2458 }
2459 }
2460
2461 if (1) { // XXX: DIRTY BINDINGS
2462 const struct iris_binder *binder = &batch->binder;
2463
2464 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2465 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
2466 ptr._3DCommandSubOpcode = 38 + stage;
2467 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
2468 }
2469 }
2470
2471 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2472 iris_populate_binding_table(ice, batch, stage);
2473 }
2474 }
2475
2476 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2477 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
2478 !ice->shaders.prog[stage])
2479 continue;
2480
2481 struct pipe_resource *res = ice->state.sampler_table_resource[stage];
2482 if (res)
2483 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
2484
2485 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
2486 ptr._3DCommandSubOpcode = 43 + stage;
2487 ptr.PointertoVSSamplerState = ice->state.sampler_table_offset[stage];
2488 }
2489 }
2490
2491 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
2492 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
2493 ms.PixelLocation =
2494 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
2495 if (ice->state.framebuffer.samples > 0)
2496 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
2497 }
2498 }
2499
2500 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
2501 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
2502 ms.SampleMask = MAX2(ice->state.sample_mask, 1);
2503 }
2504 }
2505
2506 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
2507 if (!(dirty & (IRIS_DIRTY_VS << stage)))
2508 continue;
2509
2510 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2511
2512 if (shader) {
2513 struct iris_resource *cache = (void *) shader->buffer;
2514 iris_use_pinned_bo(batch, cache->bo, false);
2515 iris_batch_emit(batch, shader->derived_data,
2516 iris_derived_program_state_size(stage));
2517 } else {
2518 if (stage == MESA_SHADER_TESS_EVAL) {
2519 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
2520 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
2521 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
2522 } else if (stage == MESA_SHADER_GEOMETRY) {
2523 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
2524 }
2525 }
2526 }
2527
2528 // XXX: SOL:
2529 // 3DSTATE_STREAMOUT
2530 // 3DSTATE_SO_BUFFER
2531 // 3DSTATE_SO_DECL_LIST
2532
2533 if (dirty & IRIS_DIRTY_CLIP) {
2534 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2535 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2536
2537 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
2538 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
2539 if (wm_prog_data->barycentric_interp_modes &
2540 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
2541 cl.NonPerspectiveBarycentricEnable = true;
2542
2543 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
2544 }
2545 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
2546 ARRAY_SIZE(cso_rast->clip));
2547 }
2548
2549 if (dirty & IRIS_DIRTY_RASTER) {
2550 struct iris_rasterizer_state *cso = ice->state.cso_rast;
2551 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
2552 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
2553
2554 }
2555
2556 /* XXX: FS program updates needs to flag IRIS_DIRTY_WM */
2557 if (dirty & IRIS_DIRTY_WM) {
2558 struct iris_rasterizer_state *cso = ice->state.cso_rast;
2559 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
2560
2561 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
2562 wm.BarycentricInterpolationMode =
2563 wm_prog_data->barycentric_interp_modes;
2564
2565 if (wm_prog_data->early_fragment_tests)
2566 wm.EarlyDepthStencilControl = EDSC_PREPS;
2567 else if (wm_prog_data->has_side_effects)
2568 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
2569 }
2570 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
2571 }
2572
2573 if (1) {
2574 // XXX: 3DSTATE_SBE, 3DSTATE_SBE_SWIZ
2575 // -> iris_raster_state (point sprite texture coordinate origin)
2576 // -> bunch of shader state...
2577 iris_emit_sbe(batch, ice);
2578 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbe) {
2579 }
2580 }
2581
2582 if (dirty & IRIS_DIRTY_PS_BLEND) {
2583 struct iris_blend_state *cso_blend = ice->state.cso_blend;
2584 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
2585 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
2586 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
2587 pb.HasWriteableRT = true; // XXX: comes from somewhere :(
2588 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
2589 }
2590
2591 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
2592 ARRAY_SIZE(cso_blend->ps_blend));
2593 }
2594
2595 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
2596 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
2597 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
2598
2599 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
2600 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
2601 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
2602 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
2603 }
2604 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
2605 }
2606
2607 if (dirty & IRIS_DIRTY_SCISSOR) {
2608 // XXX: allocate at set_scissor time?
2609 uint32_t scissor_offset = ice->state.num_scissors == 0 ? 0 :
2610 emit_state(batch, ice->state.dynamic_uploader,
2611 &ice->state.last_res.scissor,
2612 ice->state.scissors,
2613 sizeof(struct pipe_scissor_state) *
2614 ice->state.num_scissors, 32);
2615
2616 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
2617 ptr.ScissorRectPointer = scissor_offset;
2618 }
2619 }
2620
2621 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
2622 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2623 struct iris_depth_buffer_state *cso_z = ice->state.cso_depthbuffer;
2624
2625 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
2626
2627 if (cso_fb->zsbuf) {
2628 struct iris_resource *zres = (void *) cso_fb->zsbuf->texture;
2629 // XXX: depth might not be writable...
2630 iris_use_pinned_bo(batch, zres->bo, true);
2631 }
2632 }
2633
2634 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
2635 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
2636 for (int i = 0; i < 32; i++) {
2637 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
2638 }
2639 }
2640 }
2641
2642 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
2643 struct iris_rasterizer_state *cso = ice->state.cso_rast;
2644 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
2645 }
2646
2647 if (1) {
2648 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
2649 topo.PrimitiveTopologyType =
2650 translate_prim_type(draw->mode, draw->vertices_per_patch);
2651 }
2652 }
2653
2654 if (draw->index_size > 0) {
2655 struct iris_resource *res = NULL;
2656 unsigned offset;
2657
2658 if (draw->has_user_indices) {
2659 u_upload_data(ice->ctx.stream_uploader, 0,
2660 draw->count * draw->index_size, 4, draw->index.user,
2661 &offset, (struct pipe_resource **) &res);
2662 } else {
2663 res = (struct iris_resource *) draw->index.resource;
2664 offset = 0;
2665 }
2666
2667 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
2668 ib.IndexFormat = draw->index_size >> 1;
2669 ib.MOCS = MOCS_WB;
2670 ib.BufferSize = res->bo->size;
2671 ib.BufferStartingAddress = ro_bo(res->bo, offset);
2672 }
2673 }
2674
2675 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
2676 struct iris_vertex_buffer_state *cso = ice->state.cso_vertex_buffers;
2677 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
2678
2679 iris_batch_emit(batch, cso->vertex_buffers,
2680 sizeof(uint32_t) * (1 + vb_dwords * cso->num_buffers));
2681
2682 for (unsigned i = 0; i < cso->num_buffers; i++) {
2683 iris_use_pinned_bo(batch, cso->bos[i], false);
2684 }
2685 }
2686
2687 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
2688 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
2689 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
2690 (1 + cso->count * GENX(VERTEX_ELEMENT_STATE_length)));
2691 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
2692 cso->count * GENX(3DSTATE_VF_INSTANCING_length));
2693 for (int i = 0; i < cso->count; i++) {
2694 /* TODO: vertexid, instanceid support */
2695 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgvs);
2696 }
2697 }
2698
2699 if (1) {
2700 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
2701 if (draw->primitive_restart) {
2702 vf.IndexedDrawCutIndexEnable = true;
2703 vf.CutIndex = draw->restart_index;
2704 }
2705 }
2706 }
2707
2708 // XXX: Gen8 - PMA fix
2709
2710 assert(!draw->indirect); // XXX: indirect support
2711
2712 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
2713 prim.StartInstanceLocation = draw->start_instance;
2714 prim.InstanceCount = draw->instance_count;
2715 prim.VertexCountPerInstance = draw->count;
2716 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
2717
2718 // XXX: this is probably bonkers.
2719 prim.StartVertexLocation = draw->start;
2720
2721 if (draw->index_size) {
2722 prim.BaseVertexLocation += draw->index_bias;
2723 } else {
2724 prim.StartVertexLocation += draw->index_bias;
2725 }
2726
2727 //prim.BaseVertexLocation = ...;
2728 }
2729
2730 if (!batch->contains_draw) {
2731 iris_restore_context_saved_bos(ice, batch, draw);
2732 batch->contains_draw = true;
2733 }
2734 }
2735
2736 static void
2737 iris_destroy_state(struct iris_context *ice)
2738 {
2739 // XXX: unreference resources/surfaces.
2740 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
2741 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
2742 }
2743 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
2744 }
2745
2746 static unsigned
2747 flags_to_post_sync_op(uint32_t flags)
2748 {
2749 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
2750 return WriteImmediateData;
2751
2752 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
2753 return WritePSDepthCount;
2754
2755 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
2756 return WriteTimestamp;
2757
2758 return 0;
2759 }
2760
2761 /**
2762 * Do the given flags have a Post Sync or LRI Post Sync operation?
2763 */
2764 static enum pipe_control_flags
2765 get_post_sync_flags(enum pipe_control_flags flags)
2766 {
2767 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
2768 PIPE_CONTROL_WRITE_DEPTH_COUNT |
2769 PIPE_CONTROL_WRITE_TIMESTAMP |
2770 PIPE_CONTROL_LRI_POST_SYNC_OP;
2771
2772 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
2773 * "LRI Post Sync Operation". So more than one bit set would be illegal.
2774 */
2775 assert(util_bitcount(flags) <= 1);
2776
2777 return flags;
2778 }
2779
2780 // XXX: compute support
2781 #define IS_COMPUTE_PIPELINE(batch) (batch->ring != I915_EXEC_RENDER)
2782
2783 /**
2784 * Emit a series of PIPE_CONTROL commands, taking into account any
2785 * workarounds necessary to actually accomplish the caller's request.
2786 *
2787 * Unless otherwise noted, spec quotations in this function come from:
2788 *
2789 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
2790 * Restrictions for PIPE_CONTROL.
2791 */
2792 static void
2793 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
2794 struct iris_bo *bo, uint32_t offset, uint64_t imm)
2795 {
2796 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
2797 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
2798 enum pipe_control_flags non_lri_post_sync_flags =
2799 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
2800
2801 /* Recursive PIPE_CONTROL workarounds --------------------------------
2802 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
2803 *
2804 * We do these first because we want to look at the original operation,
2805 * rather than any workarounds we set.
2806 */
2807 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
2808 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
2809 * lists several workarounds:
2810 *
2811 * "Project: SKL, KBL, BXT
2812 *
2813 * If the VF Cache Invalidation Enable is set to a 1 in a
2814 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
2815 * sets to 0, with the VF Cache Invalidation Enable set to 0
2816 * needs to be sent prior to the PIPE_CONTROL with VF Cache
2817 * Invalidation Enable set to a 1."
2818 */
2819 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
2820 }
2821
2822 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
2823 /* Project: SKL / Argument: LRI Post Sync Operation [23]
2824 *
2825 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
2826 * programmed prior to programming a PIPECONTROL command with "LRI
2827 * Post Sync Operation" in GPGPU mode of operation (i.e when
2828 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
2829 *
2830 * The same text exists a few rows below for Post Sync Op.
2831 */
2832 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
2833 }
2834
2835 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
2836 /* Cannonlake:
2837 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
2838 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
2839 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
2840 */
2841 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
2842 offset, imm);
2843 }
2844
2845 /* "Flush Types" workarounds ---------------------------------------------
2846 * We do these now because they may add post-sync operations or CS stalls.
2847 */
2848
2849 if (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
2850 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
2851 *
2852 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
2853 * 'Write PS Depth Count' or 'Write Timestamp'."
2854 */
2855 if (!bo) {
2856 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
2857 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
2858 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
2859 bo = batch->screen->workaround_bo;
2860 }
2861 }
2862
2863 /* #1130 from Gen10 workarounds page:
2864 *
2865 * "Enable Depth Stall on every Post Sync Op if Render target Cache
2866 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
2867 * board stall if Render target cache flush is enabled."
2868 *
2869 * Applicable to CNL B0 and C0 steppings only.
2870 *
2871 * The wording here is unclear, and this workaround doesn't look anything
2872 * like the internal bug report recommendations, but leave it be for now...
2873 */
2874 if (GEN_GEN == 10) {
2875 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
2876 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
2877 } else if (flags & non_lri_post_sync_flags) {
2878 flags |= PIPE_CONTROL_DEPTH_STALL;
2879 }
2880 }
2881
2882 if (flags & PIPE_CONTROL_DEPTH_STALL) {
2883 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
2884 *
2885 * "This bit must be DISABLED for operations other than writing
2886 * PS_DEPTH_COUNT."
2887 *
2888 * This seems like nonsense. An Ivybridge workaround requires us to
2889 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
2890 * operation. Gen8+ requires us to emit depth stalls and depth cache
2891 * flushes together. So, it's hard to imagine this means anything other
2892 * than "we originally intended this to be used for PS_DEPTH_COUNT".
2893 *
2894 * We ignore the supposed restriction and do nothing.
2895 */
2896 }
2897
2898 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
2899 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
2900 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
2901 *
2902 * "This bit must be DISABLED for End-of-pipe (Read) fences,
2903 * PS_DEPTH_COUNT or TIMESTAMP queries."
2904 *
2905 * TODO: Implement end-of-pipe checking.
2906 */
2907 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
2908 PIPE_CONTROL_WRITE_TIMESTAMP)));
2909 }
2910
2911 if (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) {
2912 /* From the PIPE_CONTROL instruction table, bit 1:
2913 *
2914 * "This bit is ignored if Depth Stall Enable is set.
2915 * Further, the render cache is not flushed even if Write Cache
2916 * Flush Enable bit is set."
2917 *
2918 * We assert that the caller doesn't do this combination, to try and
2919 * prevent mistakes. It shouldn't hurt the GPU, though.
2920 */
2921 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
2922 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
2923 }
2924
2925 /* PIPE_CONTROL page workarounds ------------------------------------- */
2926
2927 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
2928 /* From the PIPE_CONTROL page itself:
2929 *
2930 * "IVB, HSW, BDW
2931 * Restriction: Pipe_control with CS-stall bit set must be issued
2932 * before a pipe-control command that has the State Cache
2933 * Invalidate bit set."
2934 */
2935 flags |= PIPE_CONTROL_CS_STALL;
2936 }
2937
2938 if (flags & PIPE_CONTROL_FLUSH_LLC) {
2939 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
2940 *
2941 * "Project: ALL
2942 * SW must always program Post-Sync Operation to "Write Immediate
2943 * Data" when Flush LLC is set."
2944 *
2945 * For now, we just require the caller to do it.
2946 */
2947 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
2948 }
2949
2950 /* "Post-Sync Operation" workarounds -------------------------------- */
2951
2952 /* Project: All / Argument: Global Snapshot Count Reset [19]
2953 *
2954 * "This bit must not be exercised on any product.
2955 * Requires stall bit ([20] of DW1) set."
2956 *
2957 * We don't use this, so we just assert that it isn't used. The
2958 * PIPE_CONTROL instruction page indicates that they intended this
2959 * as a debug feature and don't think it is useful in production,
2960 * but it may actually be usable, should we ever want to.
2961 */
2962 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
2963
2964 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
2965 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
2966 /* Project: All / Arguments:
2967 *
2968 * - Generic Media State Clear [16]
2969 * - Indirect State Pointers Disable [16]
2970 *
2971 * "Requires stall bit ([20] of DW1) set."
2972 *
2973 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
2974 * State Clear) says:
2975 *
2976 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
2977 * programmed prior to programming a PIPECONTROL command with "Media
2978 * State Clear" set in GPGPU mode of operation"
2979 *
2980 * This is a subset of the earlier rule, so there's nothing to do.
2981 */
2982 flags |= PIPE_CONTROL_CS_STALL;
2983 }
2984
2985 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
2986 /* Project: All / Argument: Store Data Index
2987 *
2988 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
2989 * than '0'."
2990 *
2991 * For now, we just assert that the caller does this. We might want to
2992 * automatically add a write to the workaround BO...
2993 */
2994 assert(non_lri_post_sync_flags != 0);
2995 }
2996
2997 if (flags & PIPE_CONTROL_SYNC_GFDT) {
2998 /* Project: All / Argument: Sync GFDT
2999 *
3000 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
3001 * than '0' or 0x2520[13] must be set."
3002 *
3003 * For now, we just assert that the caller does this.
3004 */
3005 assert(non_lri_post_sync_flags != 0);
3006 }
3007
3008 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
3009 /* Project: IVB+ / Argument: TLB inv
3010 *
3011 * "Requires stall bit ([20] of DW1) set."
3012 *
3013 * Also, from the PIPE_CONTROL instruction table:
3014 *
3015 * "Project: SKL+
3016 * Post Sync Operation or CS stall must be set to ensure a TLB
3017 * invalidation occurs. Otherwise no cycle will occur to the TLB
3018 * cache to invalidate."
3019 *
3020 * This is not a subset of the earlier rule, so there's nothing to do.
3021 */
3022 flags |= PIPE_CONTROL_CS_STALL;
3023 }
3024
3025 if (GEN_GEN == 9 && devinfo->gt == 4) {
3026 /* TODO: The big Skylake GT4 post sync op workaround */
3027 }
3028
3029 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
3030
3031 if (IS_COMPUTE_PIPELINE(batch)) {
3032 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
3033 /* Project: SKL+ / Argument: Tex Invalidate
3034 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
3035 */
3036 flags |= PIPE_CONTROL_CS_STALL;
3037 }
3038
3039 if (GEN_GEN == 8 && (post_sync_flags ||
3040 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
3041 PIPE_CONTROL_DEPTH_STALL |
3042 PIPE_CONTROL_RENDER_TARGET_FLUSH |
3043 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
3044 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
3045 /* Project: BDW / Arguments:
3046 *
3047 * - LRI Post Sync Operation [23]
3048 * - Post Sync Op [15:14]
3049 * - Notify En [8]
3050 * - Depth Stall [13]
3051 * - Render Target Cache Flush [12]
3052 * - Depth Cache Flush [0]
3053 * - DC Flush Enable [5]
3054 *
3055 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
3056 * Workloads."
3057 */
3058 flags |= PIPE_CONTROL_CS_STALL;
3059
3060 /* Also, from the PIPE_CONTROL instruction table, bit 20:
3061 *
3062 * "Project: BDW
3063 * This bit must be always set when PIPE_CONTROL command is
3064 * programmed by GPGPU and MEDIA workloads, except for the cases
3065 * when only Read Only Cache Invalidation bits are set (State
3066 * Cache Invalidation Enable, Instruction cache Invalidation
3067 * Enable, Texture Cache Invalidation Enable, Constant Cache
3068 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
3069 * need not implemented when FF_DOP_CG is disable via "Fixed
3070 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
3071 *
3072 * It sounds like we could avoid CS stalls in some cases, but we
3073 * don't currently bother. This list isn't exactly the list above,
3074 * either...
3075 */
3076 }
3077 }
3078
3079 /* "Stall" workarounds ----------------------------------------------
3080 * These have to come after the earlier ones because we may have added
3081 * some additional CS stalls above.
3082 */
3083
3084 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
3085 /* Project: PRE-SKL, VLV, CHV
3086 *
3087 * "[All Stepping][All SKUs]:
3088 *
3089 * One of the following must also be set:
3090 *
3091 * - Render Target Cache Flush Enable ([12] of DW1)
3092 * - Depth Cache Flush Enable ([0] of DW1)
3093 * - Stall at Pixel Scoreboard ([1] of DW1)
3094 * - Depth Stall ([13] of DW1)
3095 * - Post-Sync Operation ([13] of DW1)
3096 * - DC Flush Enable ([5] of DW1)"
3097 *
3098 * If we don't already have one of those bits set, we choose to add
3099 * "Stall at Pixel Scoreboard". Some of the other bits require a
3100 * CS stall as a workaround (see above), which would send us into
3101 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
3102 * appears to be safe, so we choose that.
3103 */
3104 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
3105 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
3106 PIPE_CONTROL_WRITE_IMMEDIATE |
3107 PIPE_CONTROL_WRITE_DEPTH_COUNT |
3108 PIPE_CONTROL_WRITE_TIMESTAMP |
3109 PIPE_CONTROL_STALL_AT_SCOREBOARD |
3110 PIPE_CONTROL_DEPTH_STALL |
3111 PIPE_CONTROL_DATA_CACHE_FLUSH;
3112 if (!(flags & wa_bits))
3113 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
3114 }
3115
3116 /* Emit --------------------------------------------------------------- */
3117
3118 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
3119 pc.LRIPostSyncOperation = NoLRIOperation;
3120 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
3121 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
3122 pc.StoreDataIndex = 0;
3123 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
3124 pc.GlobalSnapshotCountReset =
3125 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
3126 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
3127 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
3128 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
3129 pc.RenderTargetCacheFlushEnable =
3130 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
3131 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
3132 pc.StateCacheInvalidationEnable =
3133 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
3134 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
3135 pc.ConstantCacheInvalidationEnable =
3136 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
3137 pc.PostSyncOperation = flags_to_post_sync_op(flags);
3138 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
3139 pc.InstructionCacheInvalidateEnable =
3140 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
3141 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
3142 pc.IndirectStatePointersDisable =
3143 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
3144 pc.TextureCacheInvalidationEnable =
3145 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
3146 pc.Address = ro_bo(bo, offset);
3147 pc.ImmediateData = imm;
3148 }
3149 }
3150
3151 void
3152 genX(init_state)(struct iris_context *ice)
3153 {
3154 struct pipe_context *ctx = &ice->ctx;
3155
3156 ctx->create_blend_state = iris_create_blend_state;
3157 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
3158 ctx->create_rasterizer_state = iris_create_rasterizer_state;
3159 ctx->create_sampler_state = iris_create_sampler_state;
3160 ctx->create_sampler_view = iris_create_sampler_view;
3161 ctx->create_surface = iris_create_surface;
3162 ctx->create_vertex_elements_state = iris_create_vertex_elements;
3163 ctx->create_compute_state = iris_create_compute_state;
3164 ctx->bind_blend_state = iris_bind_blend_state;
3165 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
3166 ctx->bind_sampler_states = iris_bind_sampler_states;
3167 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
3168 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
3169 ctx->bind_compute_state = iris_bind_compute_state;
3170 ctx->delete_blend_state = iris_delete_state;
3171 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
3172 ctx->delete_fs_state = iris_delete_state;
3173 ctx->delete_rasterizer_state = iris_delete_state;
3174 ctx->delete_sampler_state = iris_delete_state;
3175 ctx->delete_vertex_elements_state = iris_delete_state;
3176 ctx->delete_compute_state = iris_delete_state;
3177 ctx->delete_tcs_state = iris_delete_state;
3178 ctx->delete_tes_state = iris_delete_state;
3179 ctx->delete_gs_state = iris_delete_state;
3180 ctx->delete_vs_state = iris_delete_state;
3181 ctx->set_blend_color = iris_set_blend_color;
3182 ctx->set_clip_state = iris_set_clip_state;
3183 ctx->set_constant_buffer = iris_set_constant_buffer;
3184 ctx->set_sampler_views = iris_set_sampler_views;
3185 ctx->set_framebuffer_state = iris_set_framebuffer_state;
3186 ctx->set_polygon_stipple = iris_set_polygon_stipple;
3187 ctx->set_sample_mask = iris_set_sample_mask;
3188 ctx->set_scissor_states = iris_set_scissor_states;
3189 ctx->set_stencil_ref = iris_set_stencil_ref;
3190 ctx->set_vertex_buffers = iris_set_vertex_buffers;
3191 ctx->set_viewport_states = iris_set_viewport_states;
3192 ctx->sampler_view_destroy = iris_sampler_view_destroy;
3193 ctx->surface_destroy = iris_surface_destroy;
3194 ctx->draw_vbo = iris_draw_vbo;
3195 ctx->launch_grid = iris_launch_grid;
3196 ctx->create_stream_output_target = iris_create_stream_output_target;
3197 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
3198 ctx->set_stream_output_targets = iris_set_stream_output_targets;
3199
3200 ice->vtbl.destroy_state = iris_destroy_state;
3201 ice->vtbl.init_render_context = iris_init_render_context;
3202 ice->vtbl.upload_render_state = iris_upload_render_state;
3203 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
3204 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
3205 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
3206 ice->vtbl.populate_vs_key = iris_populate_vs_key;
3207 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
3208 ice->vtbl.populate_tes_key = iris_populate_tes_key;
3209 ice->vtbl.populate_gs_key = iris_populate_gs_key;
3210 ice->vtbl.populate_fs_key = iris_populate_fs_key;
3211
3212 ice->state.dirty = ~0ull;
3213 }