iris: Fill out brw_image_params for storage images on Broadwell
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_defines.h"
105 #include "iris_pipe.h"
106 #include "iris_resource.h"
107
108 #define __gen_address_type struct iris_address
109 #define __gen_user_data struct iris_batch
110
111 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
112
113 static uint64_t
114 __gen_combine_address(struct iris_batch *batch, void *location,
115 struct iris_address addr, uint32_t delta)
116 {
117 uint64_t result = addr.offset + delta;
118
119 if (addr.bo) {
120 iris_use_pinned_bo(batch, addr.bo, addr.write);
121 /* Assume this is a general address, not relative to a base. */
122 result += addr.bo->gtt_offset;
123 }
124
125 return result;
126 }
127
128 #define __genxml_cmd_length(cmd) cmd ## _length
129 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
130 #define __genxml_cmd_header(cmd) cmd ## _header
131 #define __genxml_cmd_pack(cmd) cmd ## _pack
132
133 #define _iris_pack_command(batch, cmd, dst, name) \
134 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
135 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
136 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
137 _dst = NULL; \
138 }))
139
140 #define iris_pack_command(cmd, dst, name) \
141 _iris_pack_command(NULL, cmd, dst, name)
142
143 #define iris_pack_state(cmd, dst, name) \
144 for (struct cmd name = {}, \
145 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
146 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
147 _dst = NULL)
148
149 #define iris_emit_cmd(batch, cmd, name) \
150 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
151
152 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
153 do { \
154 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
155 for (uint32_t i = 0; i < num_dwords; i++) \
156 dw[i] = (dwords0)[i] | (dwords1)[i]; \
157 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
158 } while (0)
159
160 #include "genxml/genX_pack.h"
161 #include "genxml/gen_macros.h"
162 #include "genxml/genX_bits.h"
163
164 #if GEN_GEN == 8
165 #define MOCS_PTE 0x18
166 #define MOCS_WB 0x78
167 #else
168 #define MOCS_PTE (1 << 1)
169 #define MOCS_WB (2 << 1)
170 #endif
171
172 static uint32_t
173 mocs(struct iris_bo *bo)
174 {
175 return bo && bo->external ? MOCS_PTE : MOCS_WB;
176 }
177
178 /**
179 * Statically assert that PIPE_* enums match the hardware packets.
180 * (As long as they match, we don't need to translate them.)
181 */
182 UNUSED static void pipe_asserts()
183 {
184 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
185
186 /* pipe_logicop happens to match the hardware. */
187 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
188 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
189 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
190 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
191 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
192 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
193 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
194 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
195 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
196 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
197 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
198 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
199 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
200 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
201 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
202 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
203
204 /* pipe_blend_func happens to match the hardware. */
205 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
212 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
213 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
214 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
215 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
216 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
217 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
218 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
219 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
220 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
221 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
222 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
223 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
224
225 /* pipe_blend_func happens to match the hardware. */
226 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
227 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
228 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
229 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
230 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
231
232 /* pipe_stencil_op happens to match the hardware. */
233 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
234 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
235 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
236 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
237 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
238 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
239 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
240 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
241
242 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
243 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
244 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
245 #undef PIPE_ASSERT
246 }
247
248 static unsigned
249 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
250 {
251 static const unsigned map[] = {
252 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
253 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
254 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
255 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
256 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
257 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
258 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
259 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
260 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
261 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
262 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
263 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
264 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
265 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
266 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
267 };
268
269 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
270 }
271
272 static unsigned
273 translate_compare_func(enum pipe_compare_func pipe_func)
274 {
275 static const unsigned map[] = {
276 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
277 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
278 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
279 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
280 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
281 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
282 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
283 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
284 };
285 return map[pipe_func];
286 }
287
288 static unsigned
289 translate_shadow_func(enum pipe_compare_func pipe_func)
290 {
291 /* Gallium specifies the result of shadow comparisons as:
292 *
293 * 1 if ref <op> texel,
294 * 0 otherwise.
295 *
296 * The hardware does:
297 *
298 * 0 if texel <op> ref,
299 * 1 otherwise.
300 *
301 * So we need to flip the operator and also negate.
302 */
303 static const unsigned map[] = {
304 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
305 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
306 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
307 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
308 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
309 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
310 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
311 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
312 };
313 return map[pipe_func];
314 }
315
316 static unsigned
317 translate_cull_mode(unsigned pipe_face)
318 {
319 static const unsigned map[4] = {
320 [PIPE_FACE_NONE] = CULLMODE_NONE,
321 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
322 [PIPE_FACE_BACK] = CULLMODE_BACK,
323 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
324 };
325 return map[pipe_face];
326 }
327
328 static unsigned
329 translate_fill_mode(unsigned pipe_polymode)
330 {
331 static const unsigned map[4] = {
332 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
333 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
334 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
335 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
336 };
337 return map[pipe_polymode];
338 }
339
340 static unsigned
341 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
342 {
343 static const unsigned map[] = {
344 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
345 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
346 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
347 };
348 return map[pipe_mip];
349 }
350
351 static uint32_t
352 translate_wrap(unsigned pipe_wrap)
353 {
354 static const unsigned map[] = {
355 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
356 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
357 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
358 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
359 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
360 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
361
362 /* These are unsupported. */
363 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
364 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
365 };
366 return map[pipe_wrap];
367 }
368
369 static struct iris_address
370 ro_bo(struct iris_bo *bo, uint64_t offset)
371 {
372 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
373 * validation list at CSO creation time, instead of draw time.
374 */
375 return (struct iris_address) { .bo = bo, .offset = offset };
376 }
377
378 static struct iris_address
379 rw_bo(struct iris_bo *bo, uint64_t offset)
380 {
381 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
382 * validation list at CSO creation time, instead of draw time.
383 */
384 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
385 }
386
387 /**
388 * Allocate space for some indirect state.
389 *
390 * Return a pointer to the map (to fill it out) and a state ref (for
391 * referring to the state in GPU commands).
392 */
393 static void *
394 upload_state(struct u_upload_mgr *uploader,
395 struct iris_state_ref *ref,
396 unsigned size,
397 unsigned alignment)
398 {
399 void *p = NULL;
400 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
401 return p;
402 }
403
404 /**
405 * Stream out temporary/short-lived state.
406 *
407 * This allocates space, pins the BO, and includes the BO address in the
408 * returned offset (which works because all state lives in 32-bit memory
409 * zones).
410 */
411 static uint32_t *
412 stream_state(struct iris_batch *batch,
413 struct u_upload_mgr *uploader,
414 struct pipe_resource **out_res,
415 unsigned size,
416 unsigned alignment,
417 uint32_t *out_offset)
418 {
419 void *ptr = NULL;
420
421 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
422
423 struct iris_bo *bo = iris_resource_bo(*out_res);
424 iris_use_pinned_bo(batch, bo, false);
425
426 *out_offset += iris_bo_offset_from_base_address(bo);
427
428 return ptr;
429 }
430
431 /**
432 * stream_state() + memcpy.
433 */
434 static uint32_t
435 emit_state(struct iris_batch *batch,
436 struct u_upload_mgr *uploader,
437 struct pipe_resource **out_res,
438 const void *data,
439 unsigned size,
440 unsigned alignment)
441 {
442 unsigned offset = 0;
443 uint32_t *map =
444 stream_state(batch, uploader, out_res, size, alignment, &offset);
445
446 if (map)
447 memcpy(map, data, size);
448
449 return offset;
450 }
451
452 /**
453 * Did field 'x' change between 'old_cso' and 'new_cso'?
454 *
455 * (If so, we may want to set some dirty flags.)
456 */
457 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
458 #define cso_changed_memcmp(x) \
459 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
460
461 static void
462 flush_for_state_base_change(struct iris_batch *batch)
463 {
464 /* Flush before emitting STATE_BASE_ADDRESS.
465 *
466 * This isn't documented anywhere in the PRM. However, it seems to be
467 * necessary prior to changing the surface state base adress. We've
468 * seen issues in Vulkan where we get GPU hangs when using multi-level
469 * command buffers which clear depth, reset state base address, and then
470 * go render stuff.
471 *
472 * Normally, in GL, we would trust the kernel to do sufficient stalls
473 * and flushes prior to executing our batch. However, it doesn't seem
474 * as if the kernel's flushing is always sufficient and we don't want to
475 * rely on it.
476 *
477 * We make this an end-of-pipe sync instead of a normal flush because we
478 * do not know the current status of the GPU. On Haswell at least,
479 * having a fast-clear operation in flight at the same time as a normal
480 * rendering operation can cause hangs. Since the kernel's flushing is
481 * insufficient, we need to ensure that any rendering operations from
482 * other processes are definitely complete before we try to do our own
483 * rendering. It's a bit of a big hammer but it appears to work.
484 */
485 iris_emit_end_of_pipe_sync(batch,
486 PIPE_CONTROL_RENDER_TARGET_FLUSH |
487 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
488 PIPE_CONTROL_DATA_CACHE_FLUSH);
489 }
490
491 static void
492 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
493 {
494 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
495 lri.RegisterOffset = reg;
496 lri.DataDWord = val;
497 }
498 }
499 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
500
501 static void
502 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
503 {
504 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
505 lrr.SourceRegisterAddress = src;
506 lrr.DestinationRegisterAddress = dst;
507 }
508 }
509
510 static void
511 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
512 {
513 #if GEN_GEN >= 8 && GEN_GEN < 10
514 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
515 *
516 * Software must clear the COLOR_CALC_STATE Valid field in
517 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
518 * with Pipeline Select set to GPGPU.
519 *
520 * The internal hardware docs recommend the same workaround for Gen9
521 * hardware too.
522 */
523 if (pipeline == GPGPU)
524 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
525 #endif
526
527
528 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
529 * PIPELINE_SELECT [DevBWR+]":
530 *
531 * "Project: DEVSNB+
532 *
533 * Software must ensure all the write caches are flushed through a
534 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
535 * command to invalidate read only caches prior to programming
536 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
537 */
538 iris_emit_pipe_control_flush(batch,
539 PIPE_CONTROL_RENDER_TARGET_FLUSH |
540 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
541 PIPE_CONTROL_DATA_CACHE_FLUSH |
542 PIPE_CONTROL_CS_STALL);
543
544 iris_emit_pipe_control_flush(batch,
545 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
546 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
547 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
548 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
549
550 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
551 #if GEN_GEN >= 9
552 sel.MaskBits = 3;
553 #endif
554 sel.PipelineSelection = pipeline;
555 }
556 }
557
558 UNUSED static void
559 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
560 {
561 #if GEN_GEN == 9
562 /* Project: DevGLK
563 *
564 * "This chicken bit works around a hardware issue with barrier
565 * logic encountered when switching between GPGPU and 3D pipelines.
566 * To workaround the issue, this mode bit should be set after a
567 * pipeline is selected."
568 */
569 uint32_t reg_val;
570 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
571 reg.GLKBarrierMode = value;
572 reg.GLKBarrierModeMask = 1;
573 }
574 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
575 #endif
576 }
577
578 static void
579 init_state_base_address(struct iris_batch *batch)
580 {
581 flush_for_state_base_change(batch);
582
583 /* We program most base addresses once at context initialization time.
584 * Each base address points at a 4GB memory zone, and never needs to
585 * change. See iris_bufmgr.h for a description of the memory zones.
586 *
587 * The one exception is Surface State Base Address, which needs to be
588 * updated occasionally. See iris_binder.c for the details there.
589 */
590 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
591 sba.GeneralStateMOCS = MOCS_WB;
592 sba.StatelessDataPortAccessMOCS = MOCS_WB;
593 sba.DynamicStateMOCS = MOCS_WB;
594 sba.IndirectObjectMOCS = MOCS_WB;
595 sba.InstructionMOCS = MOCS_WB;
596
597 sba.GeneralStateBaseAddressModifyEnable = true;
598 sba.DynamicStateBaseAddressModifyEnable = true;
599 sba.IndirectObjectBaseAddressModifyEnable = true;
600 sba.InstructionBaseAddressModifyEnable = true;
601 sba.GeneralStateBufferSizeModifyEnable = true;
602 sba.DynamicStateBufferSizeModifyEnable = true;
603 #if (GEN_GEN >= 9)
604 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
605 sba.BindlessSurfaceStateMOCS = MOCS_WB;
606 #endif
607 sba.IndirectObjectBufferSizeModifyEnable = true;
608 sba.InstructionBuffersizeModifyEnable = true;
609
610 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
611 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
612
613 sba.GeneralStateBufferSize = 0xfffff;
614 sba.IndirectObjectBufferSize = 0xfffff;
615 sba.InstructionBufferSize = 0xfffff;
616 sba.DynamicStateBufferSize = 0xfffff;
617 }
618 }
619
620 /**
621 * Upload the initial GPU state for a render context.
622 *
623 * This sets some invariant state that needs to be programmed a particular
624 * way, but we never actually change.
625 */
626 static void
627 iris_init_render_context(struct iris_screen *screen,
628 struct iris_batch *batch,
629 struct iris_vtable *vtbl,
630 struct pipe_debug_callback *dbg)
631 {
632 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
633 uint32_t reg_val;
634
635 emit_pipeline_select(batch, _3D);
636
637 init_state_base_address(batch);
638
639 #if GEN_GEN >= 9
640 // XXX: INSTPM on Gen8
641 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
642 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
643 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
644 }
645 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
646 #else
647 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
648 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
649 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
650 }
651 iris_emit_lri(batch, INSTPM, reg_val);
652 #endif
653
654 #if GEN_GEN == 9
655 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
656 reg.FloatBlendOptimizationEnable = true;
657 reg.FloatBlendOptimizationEnableMask = true;
658 reg.PartialResolveDisableInVC = true;
659 reg.PartialResolveDisableInVCMask = true;
660 }
661 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
662
663 if (devinfo->is_geminilake)
664 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
665 #endif
666
667 #if GEN_GEN == 11
668 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
669 reg.HeaderlessMessageforPreemptableContexts = 1;
670 reg.HeaderlessMessageforPreemptableContextsMask = 1;
671 }
672 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
673
674 // XXX: 3D_MODE?
675 #endif
676
677 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
678 * changing it dynamically. We set it to the maximum size here, and
679 * instead include the render target dimensions in the viewport, so
680 * viewport extents clipping takes care of pruning stray geometry.
681 */
682 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
683 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
684 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
685 }
686
687 /* Set the initial MSAA sample positions. */
688 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
689 GEN_SAMPLE_POS_1X(pat._1xSample);
690 GEN_SAMPLE_POS_2X(pat._2xSample);
691 GEN_SAMPLE_POS_4X(pat._4xSample);
692 GEN_SAMPLE_POS_8X(pat._8xSample);
693 #if GEN_GEN >= 9
694 GEN_SAMPLE_POS_16X(pat._16xSample);
695 #endif
696 }
697
698 /* Use the legacy AA line coverage computation. */
699 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
700
701 /* Disable chromakeying (it's for media) */
702 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
703
704 /* We want regular rendering, not special HiZ operations. */
705 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
706
707 /* No polygon stippling offsets are necessary. */
708 // XXX: may need to set an offset for origin-UL framebuffers
709 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
710
711 /* Set a static partitioning of the push constant area. */
712 // XXX: this may be a bad idea...could starve the push ringbuffers...
713 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
714 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
715 alloc._3DCommandSubOpcode = 18 + i;
716 alloc.ConstantBufferOffset = 6 * i;
717 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
718 }
719 }
720 }
721
722 static void
723 iris_init_compute_context(struct iris_screen *screen,
724 struct iris_batch *batch,
725 struct iris_vtable *vtbl,
726 struct pipe_debug_callback *dbg)
727 {
728 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
729
730 emit_pipeline_select(batch, GPGPU);
731
732 const bool has_slm = true;
733 const bool wants_dc_cache = true;
734
735 const struct gen_l3_weights w =
736 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
737 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
738
739 uint32_t reg_val;
740 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
741 reg.SLMEnable = has_slm;
742 #if GEN_GEN == 11
743 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
744 * in L3CNTLREG register. The default setting of the bit is not the
745 * desirable behavior.
746 */
747 reg.ErrorDetectionBehaviorControl = true;
748 #endif
749 reg.URBAllocation = cfg->n[GEN_L3P_URB];
750 reg.ROAllocation = cfg->n[GEN_L3P_RO];
751 reg.DCAllocation = cfg->n[GEN_L3P_DC];
752 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
753 }
754 iris_emit_lri(batch, L3CNTLREG, reg_val);
755
756 init_state_base_address(batch);
757
758 #if GEN_GEN == 9
759 if (devinfo->is_geminilake)
760 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
761 #endif
762 }
763
764 struct iris_vertex_buffer_state {
765 /** The VERTEX_BUFFER_STATE hardware structure. */
766 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
767
768 /** The resource to source vertex data from. */
769 struct pipe_resource *resource;
770 };
771
772 struct iris_depth_buffer_state {
773 /* Depth/HiZ/Stencil related hardware packets. */
774 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
775 GENX(3DSTATE_STENCIL_BUFFER_length) +
776 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
777 GENX(3DSTATE_CLEAR_PARAMS_length)];
778 };
779
780 /**
781 * Generation-specific context state (ice->state.genx->...).
782 *
783 * Most state can go in iris_context directly, but these encode hardware
784 * packets which vary by generation.
785 */
786 struct iris_genx_state {
787 struct iris_vertex_buffer_state vertex_buffers[33];
788
789 /** The number of bound vertex buffers. */
790 uint64_t bound_vertex_buffers;
791
792 struct iris_depth_buffer_state depth_buffer;
793
794 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
795 };
796
797 /**
798 * The pipe->set_blend_color() driver hook.
799 *
800 * This corresponds to our COLOR_CALC_STATE.
801 */
802 static void
803 iris_set_blend_color(struct pipe_context *ctx,
804 const struct pipe_blend_color *state)
805 {
806 struct iris_context *ice = (struct iris_context *) ctx;
807
808 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
809 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
810 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
811 }
812
813 /**
814 * Gallium CSO for blend state (see pipe_blend_state).
815 */
816 struct iris_blend_state {
817 /** Partial 3DSTATE_PS_BLEND */
818 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
819
820 /** Partial BLEND_STATE */
821 uint32_t blend_state[GENX(BLEND_STATE_length) +
822 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
823
824 bool alpha_to_coverage; /* for shader key */
825
826 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
827 uint8_t blend_enables;
828 };
829
830 static enum pipe_blendfactor
831 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
832 {
833 if (alpha_to_one) {
834 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
835 return PIPE_BLENDFACTOR_ONE;
836
837 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
838 return PIPE_BLENDFACTOR_ZERO;
839 }
840
841 return f;
842 }
843
844 /**
845 * The pipe->create_blend_state() driver hook.
846 *
847 * Translates a pipe_blend_state into iris_blend_state.
848 */
849 static void *
850 iris_create_blend_state(struct pipe_context *ctx,
851 const struct pipe_blend_state *state)
852 {
853 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
854 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
855
856 cso->blend_enables = 0;
857 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
858
859 cso->alpha_to_coverage = state->alpha_to_coverage;
860
861 bool indep_alpha_blend = false;
862
863 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
864 const struct pipe_rt_blend_state *rt =
865 &state->rt[state->independent_blend_enable ? i : 0];
866
867 enum pipe_blendfactor src_rgb =
868 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
869 enum pipe_blendfactor src_alpha =
870 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
871 enum pipe_blendfactor dst_rgb =
872 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
873 enum pipe_blendfactor dst_alpha =
874 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
875
876 if (rt->rgb_func != rt->alpha_func ||
877 src_rgb != src_alpha || dst_rgb != dst_alpha)
878 indep_alpha_blend = true;
879
880 if (rt->blend_enable)
881 cso->blend_enables |= 1u << i;
882
883 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
884 be.LogicOpEnable = state->logicop_enable;
885 be.LogicOpFunction = state->logicop_func;
886
887 be.PreBlendSourceOnlyClampEnable = false;
888 be.ColorClampRange = COLORCLAMP_RTFORMAT;
889 be.PreBlendColorClampEnable = true;
890 be.PostBlendColorClampEnable = true;
891
892 be.ColorBufferBlendEnable = rt->blend_enable;
893
894 be.ColorBlendFunction = rt->rgb_func;
895 be.AlphaBlendFunction = rt->alpha_func;
896 be.SourceBlendFactor = src_rgb;
897 be.SourceAlphaBlendFactor = src_alpha;
898 be.DestinationBlendFactor = dst_rgb;
899 be.DestinationAlphaBlendFactor = dst_alpha;
900
901 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
902 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
903 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
904 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
905 }
906 blend_entry += GENX(BLEND_STATE_ENTRY_length);
907 }
908
909 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
910 /* pb.HasWriteableRT is filled in at draw time. */
911 /* pb.AlphaTestEnable is filled in at draw time. */
912 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
913 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
914
915 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
916
917 pb.SourceBlendFactor =
918 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
919 pb.SourceAlphaBlendFactor =
920 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
921 pb.DestinationBlendFactor =
922 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
923 pb.DestinationAlphaBlendFactor =
924 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
925 }
926
927 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
928 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
929 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
930 bs.AlphaToOneEnable = state->alpha_to_one;
931 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
932 bs.ColorDitherEnable = state->dither;
933 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
934 }
935
936
937 return cso;
938 }
939
940 /**
941 * The pipe->bind_blend_state() driver hook.
942 *
943 * Bind a blending CSO and flag related dirty bits.
944 */
945 static void
946 iris_bind_blend_state(struct pipe_context *ctx, void *state)
947 {
948 struct iris_context *ice = (struct iris_context *) ctx;
949 struct iris_blend_state *cso = state;
950
951 ice->state.cso_blend = cso;
952 ice->state.blend_enables = cso ? cso->blend_enables : 0;
953
954 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
955 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
956 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
957 }
958
959 /**
960 * Gallium CSO for depth, stencil, and alpha testing state.
961 */
962 struct iris_depth_stencil_alpha_state {
963 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
964 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
965
966 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
967 struct pipe_alpha_state alpha;
968
969 /** Outbound to resolve and cache set tracking. */
970 bool depth_writes_enabled;
971 bool stencil_writes_enabled;
972 };
973
974 /**
975 * The pipe->create_depth_stencil_alpha_state() driver hook.
976 *
977 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
978 * testing state since we need pieces of it in a variety of places.
979 */
980 static void *
981 iris_create_zsa_state(struct pipe_context *ctx,
982 const struct pipe_depth_stencil_alpha_state *state)
983 {
984 struct iris_depth_stencil_alpha_state *cso =
985 malloc(sizeof(struct iris_depth_stencil_alpha_state));
986
987 bool two_sided_stencil = state->stencil[1].enabled;
988
989 cso->alpha = state->alpha;
990 cso->depth_writes_enabled = state->depth.writemask;
991 cso->stencil_writes_enabled =
992 state->stencil[0].writemask != 0 ||
993 (two_sided_stencil && state->stencil[1].writemask != 1);
994
995 /* The state tracker needs to optimize away EQUAL writes for us. */
996 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
997
998 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
999 wmds.StencilFailOp = state->stencil[0].fail_op;
1000 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1001 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1002 wmds.StencilTestFunction =
1003 translate_compare_func(state->stencil[0].func);
1004 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1005 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1006 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1007 wmds.BackfaceStencilTestFunction =
1008 translate_compare_func(state->stencil[1].func);
1009 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1010 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1011 wmds.StencilTestEnable = state->stencil[0].enabled;
1012 wmds.StencilBufferWriteEnable =
1013 state->stencil[0].writemask != 0 ||
1014 (two_sided_stencil && state->stencil[1].writemask != 0);
1015 wmds.DepthTestEnable = state->depth.enabled;
1016 wmds.DepthBufferWriteEnable = state->depth.writemask;
1017 wmds.StencilTestMask = state->stencil[0].valuemask;
1018 wmds.StencilWriteMask = state->stencil[0].writemask;
1019 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1020 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1021 /* wmds.[Backface]StencilReferenceValue are merged later */
1022 }
1023
1024 return cso;
1025 }
1026
1027 /**
1028 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1029 *
1030 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1031 */
1032 static void
1033 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1034 {
1035 struct iris_context *ice = (struct iris_context *) ctx;
1036 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1037 struct iris_depth_stencil_alpha_state *new_cso = state;
1038
1039 if (new_cso) {
1040 if (cso_changed(alpha.ref_value))
1041 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1042
1043 if (cso_changed(alpha.enabled))
1044 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1045
1046 if (cso_changed(alpha.func))
1047 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1048
1049 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1050 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1051 }
1052
1053 ice->state.cso_zsa = new_cso;
1054 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1055 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1056 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1057 }
1058
1059 /**
1060 * Gallium CSO for rasterizer state.
1061 */
1062 struct iris_rasterizer_state {
1063 uint32_t sf[GENX(3DSTATE_SF_length)];
1064 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1065 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1066 uint32_t wm[GENX(3DSTATE_WM_length)];
1067 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1068
1069 uint8_t num_clip_plane_consts;
1070 bool clip_halfz; /* for CC_VIEWPORT */
1071 bool depth_clip_near; /* for CC_VIEWPORT */
1072 bool depth_clip_far; /* for CC_VIEWPORT */
1073 bool flatshade; /* for shader state */
1074 bool flatshade_first; /* for stream output */
1075 bool clamp_fragment_color; /* for shader state */
1076 bool light_twoside; /* for shader state */
1077 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1078 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1079 bool line_stipple_enable;
1080 bool poly_stipple_enable;
1081 bool multisample;
1082 bool force_persample_interp;
1083 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1084 uint16_t sprite_coord_enable;
1085 };
1086
1087 static float
1088 get_line_width(const struct pipe_rasterizer_state *state)
1089 {
1090 float line_width = state->line_width;
1091
1092 /* From the OpenGL 4.4 spec:
1093 *
1094 * "The actual width of non-antialiased lines is determined by rounding
1095 * the supplied width to the nearest integer, then clamping it to the
1096 * implementation-dependent maximum non-antialiased line width."
1097 */
1098 if (!state->multisample && !state->line_smooth)
1099 line_width = roundf(state->line_width);
1100
1101 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1102 /* For 1 pixel line thickness or less, the general anti-aliasing
1103 * algorithm gives up, and a garbage line is generated. Setting a
1104 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1105 * (one-pixel-wide), non-antialiased lines.
1106 *
1107 * Lines rendered with zero Line Width are rasterized using the
1108 * "Grid Intersection Quantization" rules as specified by the
1109 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1110 */
1111 line_width = 0.0f;
1112 }
1113
1114 return line_width;
1115 }
1116
1117 /**
1118 * The pipe->create_rasterizer_state() driver hook.
1119 */
1120 static void *
1121 iris_create_rasterizer_state(struct pipe_context *ctx,
1122 const struct pipe_rasterizer_state *state)
1123 {
1124 struct iris_rasterizer_state *cso =
1125 malloc(sizeof(struct iris_rasterizer_state));
1126
1127 #if 0
1128 point_quad_rasterization -> SBE?
1129
1130 not necessary?
1131 {
1132 poly_smooth
1133 bottom_edge_rule
1134
1135 offset_units_unscaled - cap not exposed
1136 }
1137 #endif
1138
1139 // XXX: it may make more sense just to store the pipe_rasterizer_state,
1140 // we're copying a lot of booleans here. But we don't need all of them...
1141
1142 cso->multisample = state->multisample;
1143 cso->force_persample_interp = state->force_persample_interp;
1144 cso->clip_halfz = state->clip_halfz;
1145 cso->depth_clip_near = state->depth_clip_near;
1146 cso->depth_clip_far = state->depth_clip_far;
1147 cso->flatshade = state->flatshade;
1148 cso->flatshade_first = state->flatshade_first;
1149 cso->clamp_fragment_color = state->clamp_fragment_color;
1150 cso->light_twoside = state->light_twoside;
1151 cso->rasterizer_discard = state->rasterizer_discard;
1152 cso->half_pixel_center = state->half_pixel_center;
1153 cso->sprite_coord_mode = state->sprite_coord_mode;
1154 cso->sprite_coord_enable = state->sprite_coord_enable;
1155 cso->line_stipple_enable = state->line_stipple_enable;
1156 cso->poly_stipple_enable = state->poly_stipple_enable;
1157
1158 if (state->clip_plane_enable != 0)
1159 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1160 else
1161 cso->num_clip_plane_consts = 0;
1162
1163 float line_width = get_line_width(state);
1164
1165 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1166 sf.StatisticsEnable = true;
1167 sf.ViewportTransformEnable = true;
1168 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1169 sf.LineEndCapAntialiasingRegionWidth =
1170 state->line_smooth ? _10pixels : _05pixels;
1171 sf.LastPixelEnable = state->line_last_pixel;
1172 sf.LineWidth = line_width;
1173 sf.SmoothPointEnable = state->point_smooth || state->multisample;
1174 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1175 sf.PointWidth = state->point_size;
1176
1177 if (state->flatshade_first) {
1178 sf.TriangleFanProvokingVertexSelect = 1;
1179 } else {
1180 sf.TriangleStripListProvokingVertexSelect = 2;
1181 sf.TriangleFanProvokingVertexSelect = 2;
1182 sf.LineStripListProvokingVertexSelect = 1;
1183 }
1184 }
1185
1186 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1187 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1188 rr.CullMode = translate_cull_mode(state->cull_face);
1189 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1190 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1191 rr.DXMultisampleRasterizationEnable = state->multisample;
1192 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1193 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1194 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1195 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1196 rr.GlobalDepthOffsetScale = state->offset_scale;
1197 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1198 rr.SmoothPointEnable = state->point_smooth || state->multisample;
1199 rr.AntialiasingEnable = state->line_smooth;
1200 rr.ScissorRectangleEnable = state->scissor;
1201 #if GEN_GEN >= 9
1202 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1203 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1204 #else
1205 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1206 #endif
1207 //rr.ConservativeRasterizationEnable = not yet supported by Gallium...
1208 }
1209
1210 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1211 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1212 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1213 */
1214 cl.EarlyCullEnable = true;
1215 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1216 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1217 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1218 cl.GuardbandClipTestEnable = true;
1219 cl.ClipEnable = true;
1220 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1221 cl.MinimumPointWidth = 0.125;
1222 cl.MaximumPointWidth = 255.875;
1223
1224 if (state->flatshade_first) {
1225 cl.TriangleFanProvokingVertexSelect = 1;
1226 } else {
1227 cl.TriangleStripListProvokingVertexSelect = 2;
1228 cl.TriangleFanProvokingVertexSelect = 2;
1229 cl.LineStripListProvokingVertexSelect = 1;
1230 }
1231 }
1232
1233 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1234 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1235 * filled in at draw time from the FS program.
1236 */
1237 wm.LineAntialiasingRegionWidth = _10pixels;
1238 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1239 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1240 wm.LineStippleEnable = state->line_stipple_enable;
1241 wm.PolygonStippleEnable = state->poly_stipple_enable;
1242 }
1243
1244 /* Remap from 0..255 back to 1..256 */
1245 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1246
1247 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1248 line.LineStipplePattern = state->line_stipple_pattern;
1249 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1250 line.LineStippleRepeatCount = line_stipple_factor;
1251 }
1252
1253 return cso;
1254 }
1255
1256 /**
1257 * The pipe->bind_rasterizer_state() driver hook.
1258 *
1259 * Bind a rasterizer CSO and flag related dirty bits.
1260 */
1261 static void
1262 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1263 {
1264 struct iris_context *ice = (struct iris_context *) ctx;
1265 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1266 struct iris_rasterizer_state *new_cso = state;
1267
1268 if (new_cso) {
1269 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1270 if (cso_changed_memcmp(line_stipple))
1271 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1272
1273 if (cso_changed(half_pixel_center))
1274 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1275
1276 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1277 ice->state.dirty |= IRIS_DIRTY_WM;
1278
1279 if (cso_changed(rasterizer_discard))
1280 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1281
1282 if (cso_changed(flatshade_first))
1283 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1284
1285 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1286 cso_changed(clip_halfz))
1287 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1288
1289 if (cso_changed(sprite_coord_enable) ||
1290 cso_changed(sprite_coord_mode) ||
1291 cso_changed(light_twoside))
1292 ice->state.dirty |= IRIS_DIRTY_SBE;
1293 }
1294
1295 ice->state.cso_rast = new_cso;
1296 ice->state.dirty |= IRIS_DIRTY_RASTER;
1297 ice->state.dirty |= IRIS_DIRTY_CLIP;
1298 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1299 }
1300
1301 /**
1302 * Return true if the given wrap mode requires the border color to exist.
1303 *
1304 * (We can skip uploading it if the sampler isn't going to use it.)
1305 */
1306 static bool
1307 wrap_mode_needs_border_color(unsigned wrap_mode)
1308 {
1309 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1310 }
1311
1312 /**
1313 * Gallium CSO for sampler state.
1314 */
1315 struct iris_sampler_state {
1316 union pipe_color_union border_color;
1317 bool needs_border_color;
1318
1319 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1320 };
1321
1322 /**
1323 * The pipe->create_sampler_state() driver hook.
1324 *
1325 * We fill out SAMPLER_STATE (except for the border color pointer), and
1326 * store that on the CPU. It doesn't make sense to upload it to a GPU
1327 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1328 * all bound sampler states to be in contiguous memor.
1329 */
1330 static void *
1331 iris_create_sampler_state(struct pipe_context *ctx,
1332 const struct pipe_sampler_state *state)
1333 {
1334 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1335
1336 if (!cso)
1337 return NULL;
1338
1339 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1340 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1341
1342 unsigned wrap_s = translate_wrap(state->wrap_s);
1343 unsigned wrap_t = translate_wrap(state->wrap_t);
1344 unsigned wrap_r = translate_wrap(state->wrap_r);
1345
1346 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1347
1348 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1349 wrap_mode_needs_border_color(wrap_t) ||
1350 wrap_mode_needs_border_color(wrap_r);
1351
1352 float min_lod = state->min_lod;
1353 unsigned mag_img_filter = state->mag_img_filter;
1354
1355 // XXX: explain this code ported from ilo...I don't get it at all...
1356 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1357 state->min_lod > 0.0f) {
1358 min_lod = 0.0f;
1359 mag_img_filter = state->min_img_filter;
1360 }
1361
1362 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1363 samp.TCXAddressControlMode = wrap_s;
1364 samp.TCYAddressControlMode = wrap_t;
1365 samp.TCZAddressControlMode = wrap_r;
1366 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1367 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1368 samp.MinModeFilter = state->min_img_filter;
1369 samp.MagModeFilter = mag_img_filter;
1370 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1371 samp.MaximumAnisotropy = RATIO21;
1372
1373 if (state->max_anisotropy >= 2) {
1374 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1375 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1376 samp.AnisotropicAlgorithm = EWAApproximation;
1377 }
1378
1379 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1380 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1381
1382 samp.MaximumAnisotropy =
1383 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1384 }
1385
1386 /* Set address rounding bits if not using nearest filtering. */
1387 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1388 samp.UAddressMinFilterRoundingEnable = true;
1389 samp.VAddressMinFilterRoundingEnable = true;
1390 samp.RAddressMinFilterRoundingEnable = true;
1391 }
1392
1393 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1394 samp.UAddressMagFilterRoundingEnable = true;
1395 samp.VAddressMagFilterRoundingEnable = true;
1396 samp.RAddressMagFilterRoundingEnable = true;
1397 }
1398
1399 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1400 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1401
1402 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1403
1404 samp.LODPreClampMode = CLAMP_MODE_OGL;
1405 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1406 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1407 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1408
1409 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1410 }
1411
1412 return cso;
1413 }
1414
1415 /**
1416 * The pipe->bind_sampler_states() driver hook.
1417 *
1418 * Now that we know all the sampler states, we upload them all into a
1419 * contiguous area of GPU memory, for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1420 * We also fill out the border color state pointers at this point.
1421 *
1422 * We could defer this work to draw time, but we assume that binding
1423 * will be less frequent than drawing.
1424 */
1425 // XXX: this may be a bad idea, need to make sure that st/mesa calls us
1426 // XXX: with the complete set of shaders. If it makes multiple calls to
1427 // XXX: things one at a time, we could waste a lot of time assembling things.
1428 // XXX: it doesn't even BUY us anything to do it here, because we only flag
1429 // XXX: IRIS_DIRTY_SAMPLER_STATE when this is called...
1430 static void
1431 iris_bind_sampler_states(struct pipe_context *ctx,
1432 enum pipe_shader_type p_stage,
1433 unsigned start, unsigned count,
1434 void **states)
1435 {
1436 struct iris_context *ice = (struct iris_context *) ctx;
1437 gl_shader_stage stage = stage_from_pipe(p_stage);
1438 struct iris_shader_state *shs = &ice->state.shaders[stage];
1439
1440 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1441
1442 for (int i = 0; i < count; i++) {
1443 shs->samplers[start + i] = states[i];
1444 }
1445
1446 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1447 * in the dynamic state memory zone, so we can point to it via the
1448 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1449 */
1450 uint32_t *map =
1451 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1452 count * 4 * GENX(SAMPLER_STATE_length), 32);
1453 if (unlikely(!map))
1454 return;
1455
1456 struct pipe_resource *res = shs->sampler_table.res;
1457 shs->sampler_table.offset +=
1458 iris_bo_offset_from_base_address(iris_resource_bo(res));
1459
1460 /* Make sure all land in the same BO */
1461 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1462
1463 for (int i = 0; i < count; i++) {
1464 struct iris_sampler_state *state = shs->samplers[i];
1465
1466 if (!state) {
1467 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1468 } else if (!state->needs_border_color) {
1469 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1470 } else {
1471 ice->state.need_border_colors = true;
1472
1473 /* Stream out the border color and merge the pointer. */
1474 uint32_t offset =
1475 iris_upload_border_color(ice, &state->border_color);
1476
1477 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1478 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1479 dyns.BorderColorPointer = offset;
1480 }
1481
1482 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1483 map[j] = state->sampler_state[j] | dynamic[j];
1484 }
1485
1486 map += GENX(SAMPLER_STATE_length);
1487 }
1488
1489 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1490 }
1491
1492 static enum isl_channel_select
1493 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1494 {
1495 switch (swz) {
1496 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1497 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1498 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1499 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1500 case PIPE_SWIZZLE_1: return SCS_ONE;
1501 case PIPE_SWIZZLE_0: return SCS_ZERO;
1502 default: unreachable("invalid swizzle");
1503 }
1504 }
1505
1506 static void
1507 fill_buffer_surface_state(struct isl_device *isl_dev,
1508 struct iris_bo *bo,
1509 void *map,
1510 enum isl_format format,
1511 unsigned offset,
1512 unsigned size)
1513 {
1514 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1515 const unsigned cpp = fmtl->bpb / 8;
1516
1517 /* The ARB_texture_buffer_specification says:
1518 *
1519 * "The number of texels in the buffer texture's texel array is given by
1520 *
1521 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1522 *
1523 * where <buffer_size> is the size of the buffer object, in basic
1524 * machine units and <components> and <base_type> are the element count
1525 * and base data type for elements, as specified in Table X.1. The
1526 * number of texels in the texel array is then clamped to the
1527 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1528 *
1529 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1530 * so that when ISL divides by stride to obtain the number of texels, that
1531 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1532 */
1533 unsigned final_size =
1534 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1535
1536 isl_buffer_fill_state(isl_dev, map,
1537 .address = bo->gtt_offset + offset,
1538 .size_B = final_size,
1539 .format = format,
1540 .stride_B = cpp,
1541 .mocs = mocs(bo));
1542 }
1543
1544 /**
1545 * Allocate a SURFACE_STATE structure.
1546 */
1547 static void *
1548 alloc_surface_states(struct u_upload_mgr *mgr,
1549 struct iris_state_ref *ref)
1550 {
1551 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1552
1553 void *map = upload_state(mgr, ref, surf_size, 64);
1554
1555 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1556
1557 return map;
1558 }
1559
1560 static void
1561 fill_surface_state(struct isl_device *isl_dev,
1562 void *map,
1563 struct iris_resource *res,
1564 struct isl_view *view)
1565 {
1566 struct isl_surf_fill_state_info f = {
1567 .surf = &res->surf,
1568 .view = view,
1569 .mocs = mocs(res->bo),
1570 .address = res->bo->gtt_offset,
1571 };
1572
1573 isl_surf_fill_state_s(isl_dev, map, &f);
1574 }
1575
1576 /**
1577 * The pipe->create_sampler_view() driver hook.
1578 */
1579 static struct pipe_sampler_view *
1580 iris_create_sampler_view(struct pipe_context *ctx,
1581 struct pipe_resource *tex,
1582 const struct pipe_sampler_view *tmpl)
1583 {
1584 struct iris_context *ice = (struct iris_context *) ctx;
1585 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1586 const struct gen_device_info *devinfo = &screen->devinfo;
1587 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1588
1589 if (!isv)
1590 return NULL;
1591
1592 /* initialize base object */
1593 isv->base = *tmpl;
1594 isv->base.context = ctx;
1595 isv->base.texture = NULL;
1596 pipe_reference_init(&isv->base.reference, 1);
1597 pipe_resource_reference(&isv->base.texture, tex);
1598
1599 void *map = alloc_surface_states(ice->state.surface_uploader,
1600 &isv->surface_state);
1601 if (!unlikely(map))
1602 return NULL;
1603
1604 if (util_format_is_depth_or_stencil(tmpl->format)) {
1605 struct iris_resource *zres, *sres;
1606 const struct util_format_description *desc =
1607 util_format_description(tmpl->format);
1608
1609 iris_get_depth_stencil_resources(tex, &zres, &sres);
1610
1611 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1612 }
1613
1614 isv->res = (struct iris_resource *) tex;
1615
1616 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1617
1618 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1619 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1620 usage |= ISL_SURF_USAGE_CUBE_BIT;
1621
1622 const struct iris_format_info fmt =
1623 iris_format_for_usage(devinfo, tmpl->format, usage);
1624
1625 isv->view = (struct isl_view) {
1626 .format = fmt.fmt,
1627 .swizzle = (struct isl_swizzle) {
1628 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1629 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1630 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1631 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1632 },
1633 .usage = usage,
1634 };
1635
1636 /* Fill out SURFACE_STATE for this view. */
1637 if (tmpl->target != PIPE_BUFFER) {
1638 isv->view.base_level = tmpl->u.tex.first_level;
1639 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1640 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1641 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1642 isv->view.array_len =
1643 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1644
1645 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view);
1646 } else {
1647 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1648 isv->view.format, tmpl->u.buf.offset,
1649 tmpl->u.buf.size);
1650 }
1651
1652 return &isv->base;
1653 }
1654
1655 static void
1656 iris_sampler_view_destroy(struct pipe_context *ctx,
1657 struct pipe_sampler_view *state)
1658 {
1659 struct iris_sampler_view *isv = (void *) state;
1660 pipe_resource_reference(&state->texture, NULL);
1661 pipe_resource_reference(&isv->surface_state.res, NULL);
1662 free(isv);
1663 }
1664
1665 /**
1666 * The pipe->create_surface() driver hook.
1667 *
1668 * In Gallium nomenclature, "surfaces" are a view of a resource that
1669 * can be bound as a render target or depth/stencil buffer.
1670 */
1671 static struct pipe_surface *
1672 iris_create_surface(struct pipe_context *ctx,
1673 struct pipe_resource *tex,
1674 const struct pipe_surface *tmpl)
1675 {
1676 struct iris_context *ice = (struct iris_context *) ctx;
1677 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1678 const struct gen_device_info *devinfo = &screen->devinfo;
1679 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1680 struct pipe_surface *psurf = &surf->base;
1681 struct iris_resource *res = (struct iris_resource *) tex;
1682
1683 if (!surf)
1684 return NULL;
1685
1686 pipe_reference_init(&psurf->reference, 1);
1687 pipe_resource_reference(&psurf->texture, tex);
1688 psurf->context = ctx;
1689 psurf->format = tmpl->format;
1690 psurf->width = tex->width0;
1691 psurf->height = tex->height0;
1692 psurf->texture = tex;
1693 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1694 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1695 psurf->u.tex.level = tmpl->u.tex.level;
1696
1697 isl_surf_usage_flags_t usage = 0;
1698 if (tmpl->writable)
1699 usage = ISL_SURF_USAGE_STORAGE_BIT;
1700 else if (util_format_is_depth_or_stencil(tmpl->format))
1701 usage = ISL_SURF_USAGE_DEPTH_BIT;
1702 else
1703 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1704
1705 const struct iris_format_info fmt =
1706 iris_format_for_usage(devinfo, psurf->format, usage);
1707
1708 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1709 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1710 /* Framebuffer validation will reject this invalid case, but it
1711 * hasn't had the opportunity yet. In the meantime, we need to
1712 * avoid hitting ISL asserts about unsupported formats below.
1713 */
1714 free(surf);
1715 return NULL;
1716 }
1717
1718 surf->view = (struct isl_view) {
1719 .format = fmt.fmt,
1720 .base_level = tmpl->u.tex.level,
1721 .levels = 1,
1722 .base_array_layer = tmpl->u.tex.first_layer,
1723 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1724 .swizzle = ISL_SWIZZLE_IDENTITY,
1725 .usage = usage,
1726 };
1727
1728 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1729 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1730 ISL_SURF_USAGE_STENCIL_BIT))
1731 return psurf;
1732
1733
1734 void *map = alloc_surface_states(ice->state.surface_uploader,
1735 &surf->surface_state);
1736 if (!unlikely(map))
1737 return NULL;
1738
1739 fill_surface_state(&screen->isl_dev, map, res, &surf->view);
1740
1741 return psurf;
1742 }
1743
1744 #if GEN_GEN < 9
1745 static void
1746 fill_default_image_param(struct brw_image_param *param)
1747 {
1748 memset(param, 0, sizeof(*param));
1749 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
1750 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
1751 * detailed explanation of these parameters.
1752 */
1753 param->swizzling[0] = 0xff;
1754 param->swizzling[1] = 0xff;
1755 }
1756
1757 static void
1758 fill_buffer_image_param(struct brw_image_param *param,
1759 enum pipe_format pfmt,
1760 unsigned size)
1761 {
1762 const unsigned cpp = util_format_get_blocksize(pfmt);
1763
1764 fill_default_image_param(param);
1765 param->size[0] = size / cpp;
1766 param->stride[0] = cpp;
1767 }
1768 #else
1769 #define isl_surf_fill_image_param(x, ...)
1770 #define fill_default_image_param(x, ...)
1771 #define fill_buffer_image_param(x, ...)
1772 #endif
1773
1774 /**
1775 * The pipe->set_shader_images() driver hook.
1776 */
1777 static void
1778 iris_set_shader_images(struct pipe_context *ctx,
1779 enum pipe_shader_type p_stage,
1780 unsigned start_slot, unsigned count,
1781 const struct pipe_image_view *p_images)
1782 {
1783 struct iris_context *ice = (struct iris_context *) ctx;
1784 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1785 const struct gen_device_info *devinfo = &screen->devinfo;
1786 gl_shader_stage stage = stage_from_pipe(p_stage);
1787 struct iris_shader_state *shs = &ice->state.shaders[stage];
1788
1789 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
1790
1791 for (unsigned i = 0; i < count; i++) {
1792 if (p_images && p_images[i].resource) {
1793 const struct pipe_image_view *img = &p_images[i];
1794 struct iris_resource *res = (void *) img->resource;
1795 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1796
1797 shs->bound_image_views |= 1 << (start_slot + i);
1798
1799 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1800
1801 // XXX: these are not retained forever, use a separate uploader?
1802 void *map =
1803 alloc_surface_states(ice->state.surface_uploader,
1804 &shs->image[start_slot + i].surface_state);
1805 if (!unlikely(map)) {
1806 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1807 return;
1808 }
1809
1810 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1811 enum isl_format isl_format =
1812 iris_format_for_usage(devinfo, img->format, usage).fmt;
1813
1814 if (img->shader_access & PIPE_IMAGE_ACCESS_READ)
1815 isl_format = isl_lower_storage_image_format(devinfo, isl_format);
1816
1817 shs->image[start_slot + i].access = img->shader_access;
1818
1819 if (res->base.target != PIPE_BUFFER) {
1820 struct isl_view view = {
1821 .format = isl_format,
1822 .base_level = img->u.tex.level,
1823 .levels = 1,
1824 .base_array_layer = img->u.tex.first_layer,
1825 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1826 .swizzle = ISL_SWIZZLE_IDENTITY,
1827 .usage = usage,
1828 };
1829
1830 fill_surface_state(&screen->isl_dev, map, res, &view);
1831 isl_surf_fill_image_param(&screen->isl_dev,
1832 &shs->image[start_slot + i].param,
1833 &res->surf, &view);
1834 } else {
1835 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1836 isl_format, img->u.buf.offset,
1837 img->u.buf.size);
1838 fill_buffer_image_param(&shs->image[start_slot + i].param,
1839 img->format, img->u.buf.size);
1840 }
1841 } else {
1842 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1843 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1844 NULL);
1845 fill_default_image_param(&shs->image[start_slot + i].param);
1846 }
1847 }
1848
1849 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1850
1851 /* Broadwell also needs brw_image_params re-uploaded */
1852 if (GEN_GEN < 9) {
1853 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
1854 shs->cbuf0_needs_upload = true;
1855 }
1856 }
1857
1858
1859 /**
1860 * The pipe->set_sampler_views() driver hook.
1861 */
1862 static void
1863 iris_set_sampler_views(struct pipe_context *ctx,
1864 enum pipe_shader_type p_stage,
1865 unsigned start, unsigned count,
1866 struct pipe_sampler_view **views)
1867 {
1868 struct iris_context *ice = (struct iris_context *) ctx;
1869 gl_shader_stage stage = stage_from_pipe(p_stage);
1870 struct iris_shader_state *shs = &ice->state.shaders[stage];
1871
1872 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
1873
1874 for (unsigned i = 0; i < count; i++) {
1875 pipe_sampler_view_reference((struct pipe_sampler_view **)
1876 &shs->textures[start + i], views[i]);
1877 struct iris_sampler_view *view = (void *) views[i];
1878 if (view) {
1879 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
1880 shs->bound_sampler_views |= 1 << (start + i);
1881 }
1882 }
1883
1884 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1885 }
1886
1887 /**
1888 * The pipe->set_tess_state() driver hook.
1889 */
1890 static void
1891 iris_set_tess_state(struct pipe_context *ctx,
1892 const float default_outer_level[4],
1893 const float default_inner_level[2])
1894 {
1895 struct iris_context *ice = (struct iris_context *) ctx;
1896
1897 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
1898 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
1899
1900 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
1901 }
1902
1903 static void
1904 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1905 {
1906 struct iris_surface *surf = (void *) p_surf;
1907 pipe_resource_reference(&p_surf->texture, NULL);
1908 pipe_resource_reference(&surf->surface_state.res, NULL);
1909 free(surf);
1910 }
1911
1912 static void
1913 iris_set_clip_state(struct pipe_context *ctx,
1914 const struct pipe_clip_state *state)
1915 {
1916 struct iris_context *ice = (struct iris_context *) ctx;
1917 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
1918
1919 memcpy(&ice->state.clip_planes, state, sizeof(*state));
1920
1921 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
1922 shs->cbuf0_needs_upload = true;
1923 }
1924
1925 /**
1926 * The pipe->set_polygon_stipple() driver hook.
1927 */
1928 static void
1929 iris_set_polygon_stipple(struct pipe_context *ctx,
1930 const struct pipe_poly_stipple *state)
1931 {
1932 struct iris_context *ice = (struct iris_context *) ctx;
1933 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
1934 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
1935 }
1936
1937 /**
1938 * The pipe->set_sample_mask() driver hook.
1939 */
1940 static void
1941 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
1942 {
1943 struct iris_context *ice = (struct iris_context *) ctx;
1944
1945 /* We only support 16x MSAA, so we have 16 bits of sample maks.
1946 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
1947 */
1948 ice->state.sample_mask = sample_mask & 0xffff;
1949 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
1950 }
1951
1952 /**
1953 * The pipe->set_scissor_states() driver hook.
1954 *
1955 * This corresponds to our SCISSOR_RECT state structures. It's an
1956 * exact match, so we just store them, and memcpy them out later.
1957 */
1958 static void
1959 iris_set_scissor_states(struct pipe_context *ctx,
1960 unsigned start_slot,
1961 unsigned num_scissors,
1962 const struct pipe_scissor_state *rects)
1963 {
1964 struct iris_context *ice = (struct iris_context *) ctx;
1965
1966 for (unsigned i = 0; i < num_scissors; i++) {
1967 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
1968 /* If the scissor was out of bounds and got clamped to 0 width/height
1969 * at the bounds, the subtraction of 1 from maximums could produce a
1970 * negative number and thus not clip anything. Instead, just provide
1971 * a min > max scissor inside the bounds, which produces the expected
1972 * no rendering.
1973 */
1974 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1975 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
1976 };
1977 } else {
1978 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
1979 .minx = rects[i].minx, .miny = rects[i].miny,
1980 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
1981 };
1982 }
1983 }
1984
1985 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
1986 }
1987
1988 /**
1989 * The pipe->set_stencil_ref() driver hook.
1990 *
1991 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
1992 */
1993 static void
1994 iris_set_stencil_ref(struct pipe_context *ctx,
1995 const struct pipe_stencil_ref *state)
1996 {
1997 struct iris_context *ice = (struct iris_context *) ctx;
1998 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
1999 if (GEN_GEN == 8)
2000 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2001 else
2002 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2003 }
2004
2005 static float
2006 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2007 {
2008 return copysignf(state->scale[axis], sign) + state->translate[axis];
2009 }
2010
2011 static void
2012 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2013 float m00, float m11, float m30, float m31,
2014 float *xmin, float *xmax,
2015 float *ymin, float *ymax)
2016 {
2017 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2018 * Strips and Fans documentation:
2019 *
2020 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2021 * fixed-point "guardband" range supported by the rasterization hardware"
2022 *
2023 * and
2024 *
2025 * "In almost all circumstances, if an object’s vertices are actually
2026 * modified by this clamping (i.e., had X or Y coordinates outside of
2027 * the guardband extent the rendered object will not match the intended
2028 * result. Therefore software should take steps to ensure that this does
2029 * not happen - e.g., by clipping objects such that they do not exceed
2030 * these limits after the Drawing Rectangle is applied."
2031 *
2032 * I believe the fundamental restriction is that the rasterizer (in
2033 * the SF/WM stages) have a limit on the number of pixels that can be
2034 * rasterized. We need to ensure any coordinates beyond the rasterizer
2035 * limit are handled by the clipper. So effectively that limit becomes
2036 * the clipper's guardband size.
2037 *
2038 * It goes on to say:
2039 *
2040 * "In addition, in order to be correctly rendered, objects must have a
2041 * screenspace bounding box not exceeding 8K in the X or Y direction.
2042 * This additional restriction must also be comprehended by software,
2043 * i.e., enforced by use of clipping."
2044 *
2045 * This makes no sense. Gen7+ hardware supports 16K render targets,
2046 * and you definitely need to be able to draw polygons that fill the
2047 * surface. Our assumption is that the rasterizer was limited to 8K
2048 * on Sandybridge, which only supports 8K surfaces, and it was actually
2049 * increased to 16K on Ivybridge and later.
2050 *
2051 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2052 */
2053 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2054
2055 if (m00 != 0 && m11 != 0) {
2056 /* First, we compute the screen-space render area */
2057 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2058 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2059 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2060 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2061
2062 /* We want the guardband to be centered on that */
2063 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2064 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2065 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2066 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2067
2068 /* Now we need it in native device coordinates */
2069 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2070 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2071 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2072 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2073
2074 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2075 * flipped upside-down. X should be fine though.
2076 */
2077 assert(ndc_gb_xmin <= ndc_gb_xmax);
2078 *xmin = ndc_gb_xmin;
2079 *xmax = ndc_gb_xmax;
2080 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2081 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2082 } else {
2083 /* The viewport scales to 0, so nothing will be rendered. */
2084 *xmin = 0.0f;
2085 *xmax = 0.0f;
2086 *ymin = 0.0f;
2087 *ymax = 0.0f;
2088 }
2089 }
2090
2091 /**
2092 * The pipe->set_viewport_states() driver hook.
2093 *
2094 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2095 * the guardband yet, as we need the framebuffer dimensions, but we can
2096 * at least fill out the rest.
2097 */
2098 static void
2099 iris_set_viewport_states(struct pipe_context *ctx,
2100 unsigned start_slot,
2101 unsigned count,
2102 const struct pipe_viewport_state *states)
2103 {
2104 struct iris_context *ice = (struct iris_context *) ctx;
2105
2106 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2107
2108 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2109
2110 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2111 !ice->state.cso_rast->depth_clip_far))
2112 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2113 }
2114
2115 /**
2116 * The pipe->set_framebuffer_state() driver hook.
2117 *
2118 * Sets the current draw FBO, including color render targets, depth,
2119 * and stencil buffers.
2120 */
2121 static void
2122 iris_set_framebuffer_state(struct pipe_context *ctx,
2123 const struct pipe_framebuffer_state *state)
2124 {
2125 struct iris_context *ice = (struct iris_context *) ctx;
2126 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2127 struct isl_device *isl_dev = &screen->isl_dev;
2128 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2129 struct iris_resource *zres;
2130 struct iris_resource *stencil_res;
2131
2132 unsigned samples = util_framebuffer_get_num_samples(state);
2133 unsigned layers = util_framebuffer_get_num_layers(state);
2134
2135 if (cso->samples != samples) {
2136 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2137 }
2138
2139 if (cso->nr_cbufs != state->nr_cbufs) {
2140 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2141 }
2142
2143 if ((cso->layers == 0) != (layers == 0)) {
2144 ice->state.dirty |= IRIS_DIRTY_CLIP;
2145 }
2146
2147 if (cso->width != state->width || cso->height != state->height) {
2148 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2149 }
2150
2151 util_copy_framebuffer_state(cso, state);
2152 cso->samples = samples;
2153 cso->layers = layers;
2154
2155 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2156
2157 struct isl_view view = {
2158 .base_level = 0,
2159 .levels = 1,
2160 .base_array_layer = 0,
2161 .array_len = 1,
2162 .swizzle = ISL_SWIZZLE_IDENTITY,
2163 };
2164
2165 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2166
2167 if (cso->zsbuf) {
2168 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2169 &stencil_res);
2170
2171 view.base_level = cso->zsbuf->u.tex.level;
2172 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2173 view.array_len =
2174 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2175
2176 if (zres) {
2177 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2178
2179 info.depth_surf = &zres->surf;
2180 info.depth_address = zres->bo->gtt_offset;
2181 info.mocs = mocs(zres->bo);
2182
2183 view.format = zres->surf.format;
2184 }
2185
2186 if (stencil_res) {
2187 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2188 info.stencil_surf = &stencil_res->surf;
2189 info.stencil_address = stencil_res->bo->gtt_offset;
2190 if (!zres) {
2191 view.format = stencil_res->surf.format;
2192 info.mocs = mocs(stencil_res->bo);
2193 }
2194 }
2195 }
2196
2197 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2198
2199 /* Make a null surface for unbound buffers */
2200 void *null_surf_map =
2201 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2202 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2203 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2204 isl_extent3d(MAX2(cso->width, 1),
2205 MAX2(cso->height, 1),
2206 cso->layers ? cso->layers : 1));
2207 ice->state.null_fb.offset +=
2208 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2209
2210 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2211
2212 /* Render target change */
2213 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2214
2215 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2216
2217 #if GEN_GEN == 11
2218 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2219 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2220
2221 /* The PIPE_CONTROL command description says:
2222 *
2223 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2224 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2225 * Target Cache Flush by enabling this bit. When render target flush
2226 * is set due to new association of BTI, PS Scoreboard Stall bit must
2227 * be set in this packet."
2228 */
2229 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2230 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2231 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2232 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2233 #endif
2234 }
2235
2236 static void
2237 upload_ubo_surf_state(struct iris_context *ice,
2238 struct iris_const_buffer *cbuf,
2239 unsigned buffer_size)
2240 {
2241 struct pipe_context *ctx = &ice->ctx;
2242 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2243
2244 // XXX: these are not retained forever, use a separate uploader?
2245 void *map =
2246 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2247 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2248 if (!unlikely(map)) {
2249 pipe_resource_reference(&cbuf->data.res, NULL);
2250 return;
2251 }
2252
2253 struct iris_resource *res = (void *) cbuf->data.res;
2254 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2255 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2256
2257 isl_buffer_fill_state(&screen->isl_dev, map,
2258 .address = res->bo->gtt_offset + cbuf->data.offset,
2259 .size_B = MIN2(buffer_size,
2260 res->bo->size - cbuf->data.offset),
2261 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2262 .stride_B = 1,
2263 .mocs = mocs(res->bo))
2264 }
2265
2266 /**
2267 * The pipe->set_constant_buffer() driver hook.
2268 *
2269 * This uploads any constant data in user buffers, and references
2270 * any UBO resources containing constant data.
2271 */
2272 static void
2273 iris_set_constant_buffer(struct pipe_context *ctx,
2274 enum pipe_shader_type p_stage, unsigned index,
2275 const struct pipe_constant_buffer *input)
2276 {
2277 struct iris_context *ice = (struct iris_context *) ctx;
2278 gl_shader_stage stage = stage_from_pipe(p_stage);
2279 struct iris_shader_state *shs = &ice->state.shaders[stage];
2280 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2281
2282 if (input && input->buffer) {
2283 assert(index > 0);
2284
2285 pipe_resource_reference(&cbuf->data.res, input->buffer);
2286 cbuf->data.offset = input->buffer_offset;
2287
2288 struct iris_resource *res = (void *) cbuf->data.res;
2289 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2290
2291 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2292 } else {
2293 pipe_resource_reference(&cbuf->data.res, NULL);
2294 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2295 }
2296
2297 if (index == 0) {
2298 if (input)
2299 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2300 else
2301 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2302
2303 shs->cbuf0_needs_upload = true;
2304 }
2305
2306 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2307 // XXX: maybe not necessary all the time...?
2308 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2309 // XXX: pull model we may need actual new bindings...
2310 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2311 }
2312
2313 static void
2314 upload_uniforms(struct iris_context *ice,
2315 gl_shader_stage stage)
2316 {
2317 struct iris_shader_state *shs = &ice->state.shaders[stage];
2318 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2319 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2320
2321 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2322 shs->cbuf0.buffer_size;
2323
2324 if (upload_size == 0)
2325 return;
2326
2327 uint32_t *map =
2328 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2329
2330 for (int i = 0; i < shader->num_system_values; i++) {
2331 uint32_t sysval = shader->system_values[i];
2332 uint32_t value = 0;
2333
2334 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2335 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2336 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2337 struct brw_image_param *param = &shs->image[img].param;
2338
2339 assert(offset < sizeof(struct brw_image_param));
2340 value = ((uint32_t *) param)[offset];
2341 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2342 value = 0;
2343 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2344 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2345 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2346 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2347 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2348 if (stage == MESA_SHADER_TESS_CTRL) {
2349 value = ice->state.vertices_per_patch;
2350 } else {
2351 assert(stage == MESA_SHADER_TESS_EVAL);
2352 const struct shader_info *tcs_info =
2353 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2354 assert(tcs_info);
2355
2356 value = tcs_info->tess.tcs_vertices_out;
2357 }
2358 } else {
2359 assert(!"unhandled system value");
2360 }
2361
2362 *map++ = value;
2363 }
2364
2365 if (shs->cbuf0.user_buffer) {
2366 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2367 }
2368
2369 upload_ubo_surf_state(ice, cbuf, upload_size);
2370 }
2371
2372 /**
2373 * The pipe->set_shader_buffers() driver hook.
2374 *
2375 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2376 * SURFACE_STATE here, as the buffer offset may change each time.
2377 */
2378 static void
2379 iris_set_shader_buffers(struct pipe_context *ctx,
2380 enum pipe_shader_type p_stage,
2381 unsigned start_slot, unsigned count,
2382 const struct pipe_shader_buffer *buffers)
2383 {
2384 struct iris_context *ice = (struct iris_context *) ctx;
2385 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2386 gl_shader_stage stage = stage_from_pipe(p_stage);
2387 struct iris_shader_state *shs = &ice->state.shaders[stage];
2388
2389 for (unsigned i = 0; i < count; i++) {
2390 if (buffers && buffers[i].buffer) {
2391 const struct pipe_shader_buffer *buffer = &buffers[i];
2392 struct iris_resource *res = (void *) buffer->buffer;
2393 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2394
2395 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2396
2397 // XXX: these are not retained forever, use a separate uploader?
2398 void *map =
2399 upload_state(ice->state.surface_uploader,
2400 &shs->ssbo_surface_state[start_slot + i],
2401 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2402 if (!unlikely(map)) {
2403 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2404 return;
2405 }
2406
2407 struct iris_bo *surf_state_bo =
2408 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2409 shs->ssbo_surface_state[start_slot + i].offset +=
2410 iris_bo_offset_from_base_address(surf_state_bo);
2411
2412 isl_buffer_fill_state(&screen->isl_dev, map,
2413 .address =
2414 res->bo->gtt_offset + buffer->buffer_offset,
2415 .size_B =
2416 MIN2(buffer->buffer_size,
2417 res->bo->size - buffer->buffer_offset),
2418 .format = ISL_FORMAT_RAW,
2419 .stride_B = 1,
2420 .mocs = mocs(res->bo));
2421 } else {
2422 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2423 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2424 NULL);
2425 }
2426 }
2427
2428 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2429 }
2430
2431 static void
2432 iris_delete_state(struct pipe_context *ctx, void *state)
2433 {
2434 free(state);
2435 }
2436
2437 /**
2438 * The pipe->set_vertex_buffers() driver hook.
2439 *
2440 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2441 */
2442 static void
2443 iris_set_vertex_buffers(struct pipe_context *ctx,
2444 unsigned start_slot, unsigned count,
2445 const struct pipe_vertex_buffer *buffers)
2446 {
2447 struct iris_context *ice = (struct iris_context *) ctx;
2448 struct iris_genx_state *genx = ice->state.genx;
2449
2450 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2451
2452 for (unsigned i = 0; i < count; i++) {
2453 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2454 struct iris_vertex_buffer_state *state =
2455 &genx->vertex_buffers[start_slot + i];
2456
2457 if (!buffer) {
2458 pipe_resource_reference(&state->resource, NULL);
2459 continue;
2460 }
2461
2462 assert(!buffer->is_user_buffer);
2463
2464 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2465
2466 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2467 struct iris_resource *res = (void *) state->resource;
2468
2469 if (res)
2470 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2471
2472 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2473 vb.VertexBufferIndex = start_slot + i;
2474 vb.AddressModifyEnable = true;
2475 vb.BufferPitch = buffer->stride;
2476 if (res) {
2477 vb.BufferSize = res->bo->size;
2478 vb.BufferStartingAddress =
2479 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2480 vb.MOCS = mocs(res->bo);
2481 } else {
2482 vb.NullVertexBuffer = true;
2483 }
2484 }
2485 }
2486
2487 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2488 }
2489
2490 /**
2491 * Gallium CSO for vertex elements.
2492 */
2493 struct iris_vertex_element_state {
2494 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2495 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2496 unsigned count;
2497 };
2498
2499 /**
2500 * The pipe->create_vertex_elements() driver hook.
2501 *
2502 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2503 * and 3DSTATE_VF_INSTANCING commands. SGVs are handled at draw time.
2504 */
2505 static void *
2506 iris_create_vertex_elements(struct pipe_context *ctx,
2507 unsigned count,
2508 const struct pipe_vertex_element *state)
2509 {
2510 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2511 const struct gen_device_info *devinfo = &screen->devinfo;
2512 struct iris_vertex_element_state *cso =
2513 malloc(sizeof(struct iris_vertex_element_state));
2514
2515 cso->count = count;
2516
2517 /* TODO:
2518 * - create edge flag one
2519 * - create SGV ones
2520 * - if those are necessary, use count + 1/2/3... OR in the length
2521 */
2522 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2523 ve.DWordLength =
2524 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2525 }
2526
2527 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2528 uint32_t *vfi_pack_dest = cso->vf_instancing;
2529
2530 if (count == 0) {
2531 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2532 ve.Valid = true;
2533 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2534 ve.Component0Control = VFCOMP_STORE_0;
2535 ve.Component1Control = VFCOMP_STORE_0;
2536 ve.Component2Control = VFCOMP_STORE_0;
2537 ve.Component3Control = VFCOMP_STORE_1_FP;
2538 }
2539
2540 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2541 }
2542 }
2543
2544 for (int i = 0; i < count; i++) {
2545 const struct iris_format_info fmt =
2546 iris_format_for_usage(devinfo, state[i].src_format, 0);
2547 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2548 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2549
2550 switch (isl_format_get_num_channels(fmt.fmt)) {
2551 case 0: comp[0] = VFCOMP_STORE_0;
2552 case 1: comp[1] = VFCOMP_STORE_0;
2553 case 2: comp[2] = VFCOMP_STORE_0;
2554 case 3:
2555 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2556 : VFCOMP_STORE_1_FP;
2557 break;
2558 }
2559 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2560 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2561 ve.Valid = true;
2562 ve.SourceElementOffset = state[i].src_offset;
2563 ve.SourceElementFormat = fmt.fmt;
2564 ve.Component0Control = comp[0];
2565 ve.Component1Control = comp[1];
2566 ve.Component2Control = comp[2];
2567 ve.Component3Control = comp[3];
2568 }
2569
2570 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2571 vi.VertexElementIndex = i;
2572 vi.InstancingEnable = state[i].instance_divisor > 0;
2573 vi.InstanceDataStepRate = state[i].instance_divisor;
2574 }
2575
2576 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2577 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2578 }
2579
2580 return cso;
2581 }
2582
2583 /**
2584 * The pipe->bind_vertex_elements_state() driver hook.
2585 */
2586 static void
2587 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2588 {
2589 struct iris_context *ice = (struct iris_context *) ctx;
2590 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2591 struct iris_vertex_element_state *new_cso = state;
2592
2593 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2594 * we need to re-emit it to ensure we're overriding the right one.
2595 */
2596 if (new_cso && cso_changed(count))
2597 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2598
2599 ice->state.cso_vertex_elements = state;
2600 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2601 }
2602
2603 /**
2604 * The pipe->create_stream_output_target() driver hook.
2605 *
2606 * "Target" here refers to a destination buffer. We translate this into
2607 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2608 * know which buffer this represents, or whether we ought to zero the
2609 * write-offsets, or append. Those are handled in the set() hook.
2610 */
2611 static struct pipe_stream_output_target *
2612 iris_create_stream_output_target(struct pipe_context *ctx,
2613 struct pipe_resource *p_res,
2614 unsigned buffer_offset,
2615 unsigned buffer_size)
2616 {
2617 struct iris_resource *res = (void *) p_res;
2618 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2619 if (!cso)
2620 return NULL;
2621
2622 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2623
2624 pipe_reference_init(&cso->base.reference, 1);
2625 pipe_resource_reference(&cso->base.buffer, p_res);
2626 cso->base.buffer_offset = buffer_offset;
2627 cso->base.buffer_size = buffer_size;
2628 cso->base.context = ctx;
2629
2630 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2631
2632 return &cso->base;
2633 }
2634
2635 static void
2636 iris_stream_output_target_destroy(struct pipe_context *ctx,
2637 struct pipe_stream_output_target *state)
2638 {
2639 struct iris_stream_output_target *cso = (void *) state;
2640
2641 pipe_resource_reference(&cso->base.buffer, NULL);
2642 pipe_resource_reference(&cso->offset.res, NULL);
2643
2644 free(cso);
2645 }
2646
2647 /**
2648 * The pipe->set_stream_output_targets() driver hook.
2649 *
2650 * At this point, we know which targets are bound to a particular index,
2651 * and also whether we want to append or start over. We can finish the
2652 * 3DSTATE_SO_BUFFER packets we started earlier.
2653 */
2654 static void
2655 iris_set_stream_output_targets(struct pipe_context *ctx,
2656 unsigned num_targets,
2657 struct pipe_stream_output_target **targets,
2658 const unsigned *offsets)
2659 {
2660 struct iris_context *ice = (struct iris_context *) ctx;
2661 struct iris_genx_state *genx = ice->state.genx;
2662 uint32_t *so_buffers = genx->so_buffers;
2663
2664 const bool active = num_targets > 0;
2665 if (ice->state.streamout_active != active) {
2666 ice->state.streamout_active = active;
2667 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2668
2669 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2670 * it's a non-pipelined command. If we're switching streamout on, we
2671 * may have missed emitting it earlier, so do so now. (We're already
2672 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2673 */
2674 if (active)
2675 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2676 }
2677
2678 for (int i = 0; i < 4; i++) {
2679 pipe_so_target_reference(&ice->state.so_target[i],
2680 i < num_targets ? targets[i] : NULL);
2681 }
2682
2683 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2684 if (!active)
2685 return;
2686
2687 for (unsigned i = 0; i < 4; i++,
2688 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2689
2690 if (i >= num_targets || !targets[i]) {
2691 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2692 sob.SOBufferIndex = i;
2693 continue;
2694 }
2695
2696 struct iris_stream_output_target *tgt = (void *) targets[i];
2697 struct iris_resource *res = (void *) tgt->base.buffer;
2698
2699 /* Note that offsets[i] will either be 0, causing us to zero
2700 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2701 * "continue appending at the existing offset."
2702 */
2703 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2704
2705 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2706 sob.SurfaceBaseAddress =
2707 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2708 sob.SOBufferEnable = true;
2709 sob.StreamOffsetWriteEnable = true;
2710 sob.StreamOutputBufferOffsetAddressEnable = true;
2711 sob.MOCS = mocs(res->bo);
2712
2713 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2714
2715 sob.SOBufferIndex = i;
2716 sob.StreamOffset = offsets[i];
2717 sob.StreamOutputBufferOffsetAddress =
2718 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2719 tgt->offset.offset);
2720 }
2721 }
2722
2723 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2724 }
2725
2726 /**
2727 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2728 * 3DSTATE_STREAMOUT packets.
2729 *
2730 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2731 * hardware to record. We can create it entirely based on the shader, with
2732 * no dynamic state dependencies.
2733 *
2734 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2735 * state-based settings. We capture the shader-related ones here, and merge
2736 * the rest in at draw time.
2737 */
2738 static uint32_t *
2739 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2740 const struct brw_vue_map *vue_map)
2741 {
2742 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2743 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2744 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2745 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2746 int max_decls = 0;
2747 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2748
2749 memset(so_decl, 0, sizeof(so_decl));
2750
2751 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2752 * command feels strange -- each dword pair contains a SO_DECL per stream.
2753 */
2754 for (unsigned i = 0; i < info->num_outputs; i++) {
2755 const struct pipe_stream_output *output = &info->output[i];
2756 const int buffer = output->output_buffer;
2757 const int varying = output->register_index;
2758 const unsigned stream_id = output->stream;
2759 assert(stream_id < MAX_VERTEX_STREAMS);
2760
2761 buffer_mask[stream_id] |= 1 << buffer;
2762
2763 assert(vue_map->varying_to_slot[varying] >= 0);
2764
2765 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2766 * array. Instead, it simply increments DstOffset for the following
2767 * input by the number of components that should be skipped.
2768 *
2769 * Our hardware is unusual in that it requires us to program SO_DECLs
2770 * for fake "hole" components, rather than simply taking the offset
2771 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2772 * program as many size = 4 holes as we can, then a final hole to
2773 * accommodate the final 1, 2, or 3 remaining.
2774 */
2775 int skip_components = output->dst_offset - next_offset[buffer];
2776
2777 while (skip_components > 0) {
2778 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2779 .HoleFlag = 1,
2780 .OutputBufferSlot = output->output_buffer,
2781 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2782 };
2783 skip_components -= 4;
2784 }
2785
2786 next_offset[buffer] = output->dst_offset + output->num_components;
2787
2788 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2789 .OutputBufferSlot = output->output_buffer,
2790 .RegisterIndex = vue_map->varying_to_slot[varying],
2791 .ComponentMask =
2792 ((1 << output->num_components) - 1) << output->start_component,
2793 };
2794
2795 if (decls[stream_id] > max_decls)
2796 max_decls = decls[stream_id];
2797 }
2798
2799 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2800 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2801 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2802
2803 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2804 int urb_entry_read_offset = 0;
2805 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2806 urb_entry_read_offset;
2807
2808 /* We always read the whole vertex. This could be reduced at some
2809 * point by reading less and offsetting the register index in the
2810 * SO_DECLs.
2811 */
2812 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2813 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2814 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2815 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2816 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2817 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2818 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2819 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2820
2821 /* Set buffer pitches; 0 means unbound. */
2822 sol.Buffer0SurfacePitch = 4 * info->stride[0];
2823 sol.Buffer1SurfacePitch = 4 * info->stride[1];
2824 sol.Buffer2SurfacePitch = 4 * info->stride[2];
2825 sol.Buffer3SurfacePitch = 4 * info->stride[3];
2826 }
2827
2828 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2829 list.DWordLength = 3 + 2 * max_decls - 2;
2830 list.StreamtoBufferSelects0 = buffer_mask[0];
2831 list.StreamtoBufferSelects1 = buffer_mask[1];
2832 list.StreamtoBufferSelects2 = buffer_mask[2];
2833 list.StreamtoBufferSelects3 = buffer_mask[3];
2834 list.NumEntries0 = decls[0];
2835 list.NumEntries1 = decls[1];
2836 list.NumEntries2 = decls[2];
2837 list.NumEntries3 = decls[3];
2838 }
2839
2840 for (int i = 0; i < max_decls; i++) {
2841 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
2842 entry.Stream0Decl = so_decl[0][i];
2843 entry.Stream1Decl = so_decl[1][i];
2844 entry.Stream2Decl = so_decl[2][i];
2845 entry.Stream3Decl = so_decl[3][i];
2846 }
2847 }
2848
2849 return map;
2850 }
2851
2852 static void
2853 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
2854 const struct brw_vue_map *last_vue_map,
2855 bool two_sided_color,
2856 unsigned *out_offset,
2857 unsigned *out_length)
2858 {
2859 /* The compiler computes the first URB slot without considering COL/BFC
2860 * swizzling (because it doesn't know whether it's enabled), so we need
2861 * to do that here too. This may result in a smaller offset, which
2862 * should be safe.
2863 */
2864 const unsigned first_slot =
2865 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
2866
2867 /* This becomes the URB read offset (counted in pairs of slots). */
2868 assert(first_slot % 2 == 0);
2869 *out_offset = first_slot / 2;
2870
2871 /* We need to adjust the inputs read to account for front/back color
2872 * swizzling, as it can make the URB length longer.
2873 */
2874 for (int c = 0; c <= 1; c++) {
2875 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
2876 /* If two sided color is enabled, the fragment shader's gl_Color
2877 * (COL0) input comes from either the gl_FrontColor (COL0) or
2878 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
2879 */
2880 if (two_sided_color)
2881 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2882
2883 /* If front color isn't written, we opt to give them back color
2884 * instead of an undefined value. Switch from COL to BFC.
2885 */
2886 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
2887 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
2888 fs_input_slots |= (VARYING_BIT_BFC0 << c);
2889 }
2890 }
2891 }
2892
2893 /* Compute the minimum URB Read Length necessary for the FS inputs.
2894 *
2895 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
2896 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
2897 *
2898 * "This field should be set to the minimum length required to read the
2899 * maximum source attribute. The maximum source attribute is indicated
2900 * by the maximum value of the enabled Attribute # Source Attribute if
2901 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
2902 * enable is not set.
2903 * read_length = ceiling((max_source_attr + 1) / 2)
2904 *
2905 * [errata] Corruption/Hang possible if length programmed larger than
2906 * recommended"
2907 *
2908 * Similar text exists for Ivy Bridge.
2909 *
2910 * We find the last URB slot that's actually read by the FS.
2911 */
2912 unsigned last_read_slot = last_vue_map->num_slots - 1;
2913 while (last_read_slot > first_slot && !(fs_input_slots &
2914 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
2915 --last_read_slot;
2916
2917 /* The URB read length is the difference of the two, counted in pairs. */
2918 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
2919 }
2920
2921 static void
2922 iris_emit_sbe_swiz(struct iris_batch *batch,
2923 const struct iris_context *ice,
2924 unsigned urb_read_offset,
2925 unsigned sprite_coord_enables)
2926 {
2927 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
2928 const struct brw_wm_prog_data *wm_prog_data = (void *)
2929 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
2930 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
2931 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
2932
2933 /* XXX: this should be generated when putting programs in place */
2934
2935 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
2936 const int input_index = wm_prog_data->urb_setup[fs_attr];
2937 if (input_index < 0 || input_index >= 16)
2938 continue;
2939
2940 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
2941 &attr_overrides[input_index];
2942 int slot = vue_map->varying_to_slot[fs_attr];
2943
2944 /* Viewport and Layer are stored in the VUE header. We need to override
2945 * them to zero if earlier stages didn't write them, as GL requires that
2946 * they read back as zero when not explicitly set.
2947 */
2948 switch (fs_attr) {
2949 case VARYING_SLOT_VIEWPORT:
2950 case VARYING_SLOT_LAYER:
2951 attr->ComponentOverrideX = true;
2952 attr->ComponentOverrideW = true;
2953 attr->ConstantSource = CONST_0000;
2954
2955 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
2956 attr->ComponentOverrideY = true;
2957 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
2958 attr->ComponentOverrideZ = true;
2959 continue;
2960
2961 case VARYING_SLOT_PRIMITIVE_ID:
2962 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
2963 if (slot == -1) {
2964 attr->ComponentOverrideX = true;
2965 attr->ComponentOverrideY = true;
2966 attr->ComponentOverrideZ = true;
2967 attr->ComponentOverrideW = true;
2968 attr->ConstantSource = PRIM_ID;
2969 continue;
2970 }
2971
2972 default:
2973 break;
2974 }
2975
2976 if (sprite_coord_enables & (1 << input_index))
2977 continue;
2978
2979 /* If there was only a back color written but not front, use back
2980 * as the color instead of undefined.
2981 */
2982 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
2983 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
2984 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
2985 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
2986
2987 /* Not written by the previous stage - undefined. */
2988 if (slot == -1) {
2989 attr->ComponentOverrideX = true;
2990 attr->ComponentOverrideY = true;
2991 attr->ComponentOverrideZ = true;
2992 attr->ComponentOverrideW = true;
2993 attr->ConstantSource = CONST_0001_FLOAT;
2994 continue;
2995 }
2996
2997 /* Compute the location of the attribute relative to the read offset,
2998 * which is counted in 256-bit increments (two 128-bit VUE slots).
2999 */
3000 const int source_attr = slot - 2 * urb_read_offset;
3001 assert(source_attr >= 0 && source_attr <= 32);
3002 attr->SourceAttribute = source_attr;
3003
3004 /* If we are doing two-sided color, and the VUE slot following this one
3005 * represents a back-facing color, then we need to instruct the SF unit
3006 * to do back-facing swizzling.
3007 */
3008 if (cso_rast->light_twoside &&
3009 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3010 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3011 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3012 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3013 attr->SwizzleSelect = INPUTATTR_FACING;
3014 }
3015
3016 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3017 for (int i = 0; i < 16; i++)
3018 sbes.Attribute[i] = attr_overrides[i];
3019 }
3020 }
3021
3022 static unsigned
3023 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3024 const struct iris_rasterizer_state *cso)
3025 {
3026 unsigned overrides = 0;
3027
3028 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3029 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3030
3031 for (int i = 0; i < 8; i++) {
3032 if ((cso->sprite_coord_enable & (1 << i)) &&
3033 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3034 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3035 }
3036
3037 return overrides;
3038 }
3039
3040 static void
3041 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3042 {
3043 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3044 const struct brw_wm_prog_data *wm_prog_data = (void *)
3045 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3046 const struct shader_info *fs_info =
3047 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3048
3049 unsigned urb_read_offset, urb_read_length;
3050 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3051 ice->shaders.last_vue_map,
3052 cso_rast->light_twoside,
3053 &urb_read_offset, &urb_read_length);
3054
3055 unsigned sprite_coord_overrides =
3056 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3057
3058 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3059 sbe.AttributeSwizzleEnable = true;
3060 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3061 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3062 sbe.VertexURBEntryReadOffset = urb_read_offset;
3063 sbe.VertexURBEntryReadLength = urb_read_length;
3064 sbe.ForceVertexURBEntryReadOffset = true;
3065 sbe.ForceVertexURBEntryReadLength = true;
3066 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3067 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3068 #if GEN_GEN >= 9
3069 for (int i = 0; i < 32; i++) {
3070 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3071 }
3072 #endif
3073 }
3074
3075 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3076 }
3077
3078 /* ------------------------------------------------------------------- */
3079
3080 /**
3081 * Populate VS program key fields based on the current state.
3082 */
3083 static void
3084 iris_populate_vs_key(const struct iris_context *ice,
3085 const struct shader_info *info,
3086 struct brw_vs_prog_key *key)
3087 {
3088 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3089
3090 if (info->clip_distance_array_size == 0 &&
3091 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3092 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3093 }
3094
3095 /**
3096 * Populate TCS program key fields based on the current state.
3097 */
3098 static void
3099 iris_populate_tcs_key(const struct iris_context *ice,
3100 struct brw_tcs_prog_key *key)
3101 {
3102 }
3103
3104 /**
3105 * Populate TES program key fields based on the current state.
3106 */
3107 static void
3108 iris_populate_tes_key(const struct iris_context *ice,
3109 struct brw_tes_prog_key *key)
3110 {
3111 }
3112
3113 /**
3114 * Populate GS program key fields based on the current state.
3115 */
3116 static void
3117 iris_populate_gs_key(const struct iris_context *ice,
3118 struct brw_gs_prog_key *key)
3119 {
3120 }
3121
3122 /**
3123 * Populate FS program key fields based on the current state.
3124 */
3125 static void
3126 iris_populate_fs_key(const struct iris_context *ice,
3127 struct brw_wm_prog_key *key)
3128 {
3129 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3130 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3131 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3132 const struct iris_blend_state *blend = ice->state.cso_blend;
3133
3134 key->nr_color_regions = fb->nr_cbufs;
3135
3136 key->clamp_fragment_color = rast->clamp_fragment_color;
3137
3138 key->replicate_alpha = fb->nr_cbufs > 1 &&
3139 (zsa->alpha.enabled || blend->alpha_to_coverage);
3140
3141 /* XXX: only bother if COL0/1 are read */
3142 key->flat_shade = rast->flatshade;
3143
3144 key->persample_interp = rast->force_persample_interp;
3145 key->multisample_fbo = rast->multisample && fb->samples > 1;
3146
3147 key->coherent_fb_fetch = true;
3148
3149 // XXX: key->force_dual_color_blend for unigine
3150 // XXX: respect hint for high_quality_derivatives:1;
3151 }
3152
3153 static void
3154 iris_populate_cs_key(const struct iris_context *ice,
3155 struct brw_cs_prog_key *key)
3156 {
3157 }
3158
3159 #if 0
3160 // XXX: these need to go in INIT_THREAD_DISPATCH_FIELDS
3161 pkt.SamplerCount = \
3162 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
3163
3164 #endif
3165
3166 static uint64_t
3167 KSP(const struct iris_compiled_shader *shader)
3168 {
3169 struct iris_resource *res = (void *) shader->assembly.res;
3170 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3171 }
3172
3173 // Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3174 // prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3175 // this WA on C0 stepping.
3176
3177 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3178 pkt.KernelStartPointer = KSP(shader); \
3179 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3180 prog_data->binding_table.size_bytes / 4; \
3181 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3182 \
3183 pkt.DispatchGRFStartRegisterForURBData = \
3184 prog_data->dispatch_grf_start_reg; \
3185 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3186 pkt.prefix##URBEntryReadOffset = 0; \
3187 \
3188 pkt.StatisticsEnable = true; \
3189 pkt.Enable = true; \
3190 \
3191 if (prog_data->total_scratch) { \
3192 struct iris_bo *bo = \
3193 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3194 uint32_t scratch_addr = bo->gtt_offset; \
3195 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3196 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3197 }
3198
3199 /**
3200 * Encode most of 3DSTATE_VS based on the compiled shader.
3201 */
3202 static void
3203 iris_store_vs_state(struct iris_context *ice,
3204 const struct gen_device_info *devinfo,
3205 struct iris_compiled_shader *shader)
3206 {
3207 struct brw_stage_prog_data *prog_data = shader->prog_data;
3208 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3209
3210 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3211 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3212 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3213 vs.SIMD8DispatchEnable = true;
3214 vs.UserClipDistanceCullTestEnableBitmask =
3215 vue_prog_data->cull_distance_mask;
3216 }
3217 }
3218
3219 /**
3220 * Encode most of 3DSTATE_HS based on the compiled shader.
3221 */
3222 static void
3223 iris_store_tcs_state(struct iris_context *ice,
3224 const struct gen_device_info *devinfo,
3225 struct iris_compiled_shader *shader)
3226 {
3227 struct brw_stage_prog_data *prog_data = shader->prog_data;
3228 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3229 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3230
3231 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3232 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3233
3234 hs.InstanceCount = tcs_prog_data->instances - 1;
3235 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3236 hs.IncludeVertexHandles = true;
3237 }
3238 }
3239
3240 /**
3241 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3242 */
3243 static void
3244 iris_store_tes_state(struct iris_context *ice,
3245 const struct gen_device_info *devinfo,
3246 struct iris_compiled_shader *shader)
3247 {
3248 struct brw_stage_prog_data *prog_data = shader->prog_data;
3249 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3250 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3251
3252 uint32_t *te_state = (void *) shader->derived_data;
3253 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3254
3255 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3256 te.Partitioning = tes_prog_data->partitioning;
3257 te.OutputTopology = tes_prog_data->output_topology;
3258 te.TEDomain = tes_prog_data->domain;
3259 te.TEEnable = true;
3260 te.MaximumTessellationFactorOdd = 63.0;
3261 te.MaximumTessellationFactorNotOdd = 64.0;
3262 }
3263
3264 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3265 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3266
3267 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3268 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3269 ds.ComputeWCoordinateEnable =
3270 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3271
3272 ds.UserClipDistanceCullTestEnableBitmask =
3273 vue_prog_data->cull_distance_mask;
3274 }
3275
3276 }
3277
3278 /**
3279 * Encode most of 3DSTATE_GS based on the compiled shader.
3280 */
3281 static void
3282 iris_store_gs_state(struct iris_context *ice,
3283 const struct gen_device_info *devinfo,
3284 struct iris_compiled_shader *shader)
3285 {
3286 struct brw_stage_prog_data *prog_data = shader->prog_data;
3287 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3288 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3289
3290 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3291 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3292
3293 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3294 gs.OutputTopology = gs_prog_data->output_topology;
3295 gs.ControlDataHeaderSize =
3296 gs_prog_data->control_data_header_size_hwords;
3297 gs.InstanceControl = gs_prog_data->invocations - 1;
3298 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3299 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3300 gs.ControlDataFormat = gs_prog_data->control_data_format;
3301 gs.ReorderMode = TRAILING;
3302 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3303 gs.MaximumNumberofThreads =
3304 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3305 : (devinfo->max_gs_threads - 1);
3306
3307 if (gs_prog_data->static_vertex_count != -1) {
3308 gs.StaticOutput = true;
3309 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3310 }
3311 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3312
3313 gs.UserClipDistanceCullTestEnableBitmask =
3314 vue_prog_data->cull_distance_mask;
3315
3316 const int urb_entry_write_offset = 1;
3317 const uint32_t urb_entry_output_length =
3318 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3319 urb_entry_write_offset;
3320
3321 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3322 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3323 }
3324 }
3325
3326 /**
3327 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3328 */
3329 static void
3330 iris_store_fs_state(struct iris_context *ice,
3331 const struct gen_device_info *devinfo,
3332 struct iris_compiled_shader *shader)
3333 {
3334 struct brw_stage_prog_data *prog_data = shader->prog_data;
3335 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3336
3337 uint32_t *ps_state = (void *) shader->derived_data;
3338 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3339
3340 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3341 ps.VectorMaskEnable = true;
3342 //ps.SamplerCount = ...
3343 // XXX: WABTPPrefetchDisable, see above, drop at C0
3344 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3345 prog_data->binding_table.size_bytes / 4;
3346 ps.FloatingPointMode = prog_data->use_alt_mode;
3347 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3348
3349 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3350
3351 /* From the documentation for this packet:
3352 * "If the PS kernel does not need the Position XY Offsets to
3353 * compute a Position Value, then this field should be programmed
3354 * to POSOFFSET_NONE."
3355 *
3356 * "SW Recommendation: If the PS kernel needs the Position Offsets
3357 * to compute a Position XY value, this field should match Position
3358 * ZW Interpolation Mode to ensure a consistent position.xyzw
3359 * computation."
3360 *
3361 * We only require XY sample offsets. So, this recommendation doesn't
3362 * look useful at the moment. We might need this in future.
3363 */
3364 ps.PositionXYOffsetSelect =
3365 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3366 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3367 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3368 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3369
3370 // XXX: Disable SIMD32 with 16x MSAA
3371
3372 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3373 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3374 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3375 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3376 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3377 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3378
3379 ps.KernelStartPointer0 =
3380 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3381 ps.KernelStartPointer1 =
3382 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3383 ps.KernelStartPointer2 =
3384 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3385
3386 if (prog_data->total_scratch) {
3387 struct iris_bo *bo =
3388 iris_get_scratch_space(ice, prog_data->total_scratch,
3389 MESA_SHADER_FRAGMENT);
3390 uint32_t scratch_addr = bo->gtt_offset;
3391 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3392 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3393 }
3394 }
3395
3396 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3397 psx.PixelShaderValid = true;
3398 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3399 // XXX: alpha test / alpha to coverage :/
3400 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill ||
3401 wm_prog_data->uses_omask;
3402 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3403 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3404 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3405 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3406 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3407
3408 #if GEN_GEN >= 9
3409 if (wm_prog_data->uses_sample_mask) {
3410 /* TODO: conservative rasterization */
3411 if (wm_prog_data->post_depth_coverage)
3412 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3413 else
3414 psx.InputCoverageMaskState = ICMS_NORMAL;
3415 }
3416
3417 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3418 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3419 #else
3420 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3421 #endif
3422 // XXX: UAV bit
3423 }
3424 }
3425
3426 /**
3427 * Compute the size of the derived data (shader command packets).
3428 *
3429 * This must match the data written by the iris_store_xs_state() functions.
3430 */
3431 static void
3432 iris_store_cs_state(struct iris_context *ice,
3433 const struct gen_device_info *devinfo,
3434 struct iris_compiled_shader *shader)
3435 {
3436 struct brw_stage_prog_data *prog_data = shader->prog_data;
3437 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3438 void *map = shader->derived_data;
3439
3440 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3441 desc.KernelStartPointer = KSP(shader);
3442 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3443 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3444 desc.SharedLocalMemorySize =
3445 encode_slm_size(GEN_GEN, prog_data->total_shared);
3446 desc.BarrierEnable = cs_prog_data->uses_barrier;
3447 desc.CrossThreadConstantDataReadLength =
3448 cs_prog_data->push.cross_thread.regs;
3449 }
3450 }
3451
3452 static unsigned
3453 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3454 {
3455 assert(cache_id <= IRIS_CACHE_BLORP);
3456
3457 static const unsigned dwords[] = {
3458 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3459 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3460 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3461 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3462 [IRIS_CACHE_FS] =
3463 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3464 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3465 [IRIS_CACHE_BLORP] = 0,
3466 };
3467
3468 return sizeof(uint32_t) * dwords[cache_id];
3469 }
3470
3471 /**
3472 * Create any state packets corresponding to the given shader stage
3473 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3474 * This means that we can look up a program in the in-memory cache and
3475 * get most of the state packet without having to reconstruct it.
3476 */
3477 static void
3478 iris_store_derived_program_state(struct iris_context *ice,
3479 enum iris_program_cache_id cache_id,
3480 struct iris_compiled_shader *shader)
3481 {
3482 struct iris_screen *screen = (void *) ice->ctx.screen;
3483 const struct gen_device_info *devinfo = &screen->devinfo;
3484
3485 switch (cache_id) {
3486 case IRIS_CACHE_VS:
3487 iris_store_vs_state(ice, devinfo, shader);
3488 break;
3489 case IRIS_CACHE_TCS:
3490 iris_store_tcs_state(ice, devinfo, shader);
3491 break;
3492 case IRIS_CACHE_TES:
3493 iris_store_tes_state(ice, devinfo, shader);
3494 break;
3495 case IRIS_CACHE_GS:
3496 iris_store_gs_state(ice, devinfo, shader);
3497 break;
3498 case IRIS_CACHE_FS:
3499 iris_store_fs_state(ice, devinfo, shader);
3500 break;
3501 case IRIS_CACHE_CS:
3502 iris_store_cs_state(ice, devinfo, shader);
3503 case IRIS_CACHE_BLORP:
3504 break;
3505 default:
3506 break;
3507 }
3508 }
3509
3510 /* ------------------------------------------------------------------- */
3511
3512 /**
3513 * Configure the URB.
3514 *
3515 * XXX: write a real comment.
3516 */
3517 static void
3518 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
3519 {
3520 const struct gen_device_info *devinfo = &batch->screen->devinfo;
3521 const unsigned push_size_kB = 32;
3522 unsigned entries[4];
3523 unsigned start[4];
3524 unsigned size[4];
3525
3526 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3527 if (!ice->shaders.prog[i]) {
3528 size[i] = 1;
3529 } else {
3530 struct brw_vue_prog_data *vue_prog_data =
3531 (void *) ice->shaders.prog[i]->prog_data;
3532 size[i] = vue_prog_data->urb_entry_size;
3533 }
3534 assert(size[i] != 0);
3535 }
3536
3537 gen_get_urb_config(devinfo, 1024 * push_size_kB,
3538 1024 * ice->shaders.urb_size,
3539 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
3540 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
3541 size, entries, start);
3542
3543 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3544 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
3545 urb._3DCommandSubOpcode += i;
3546 urb.VSURBStartingAddress = start[i];
3547 urb.VSURBEntryAllocationSize = size[i] - 1;
3548 urb.VSNumberofURBEntries = entries[i];
3549 }
3550 }
3551 }
3552
3553 static const uint32_t push_constant_opcodes[] = {
3554 [MESA_SHADER_VERTEX] = 21,
3555 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3556 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3557 [MESA_SHADER_GEOMETRY] = 22,
3558 [MESA_SHADER_FRAGMENT] = 23,
3559 [MESA_SHADER_COMPUTE] = 0,
3560 };
3561
3562 static uint32_t
3563 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3564 {
3565 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3566
3567 iris_use_pinned_bo(batch, state_bo, false);
3568
3569 return ice->state.unbound_tex.offset;
3570 }
3571
3572 static uint32_t
3573 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3574 {
3575 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3576 if (!ice->state.null_fb.res)
3577 return use_null_surface(batch, ice);
3578
3579 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3580
3581 iris_use_pinned_bo(batch, state_bo, false);
3582
3583 return ice->state.null_fb.offset;
3584 }
3585
3586 /**
3587 * Add a surface to the validation list, as well as the buffer containing
3588 * the corresponding SURFACE_STATE.
3589 *
3590 * Returns the binding table entry (offset to SURFACE_STATE).
3591 */
3592 static uint32_t
3593 use_surface(struct iris_batch *batch,
3594 struct pipe_surface *p_surf,
3595 bool writeable)
3596 {
3597 struct iris_surface *surf = (void *) p_surf;
3598
3599 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3600 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3601
3602 return surf->surface_state.offset;
3603 }
3604
3605 static uint32_t
3606 use_sampler_view(struct iris_batch *batch, struct iris_sampler_view *isv)
3607 {
3608 iris_use_pinned_bo(batch, isv->res->bo, false);
3609 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3610
3611 return isv->surface_state.offset;
3612 }
3613
3614 static uint32_t
3615 use_const_buffer(struct iris_batch *batch,
3616 struct iris_context *ice,
3617 struct iris_const_buffer *cbuf)
3618 {
3619 if (!cbuf->surface_state.res)
3620 return use_null_surface(batch, ice);
3621
3622 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3623 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3624
3625 return cbuf->surface_state.offset;
3626 }
3627
3628 static uint32_t
3629 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3630 struct iris_shader_state *shs, int i)
3631 {
3632 if (!shs->ssbo[i])
3633 return use_null_surface(batch, ice);
3634
3635 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3636
3637 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3638 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3639
3640 return surf_state->offset;
3641 }
3642
3643 static uint32_t
3644 use_image(struct iris_batch *batch, struct iris_context *ice,
3645 struct iris_shader_state *shs, int i)
3646 {
3647 if (!shs->image[i].res)
3648 return use_null_surface(batch, ice);
3649
3650 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3651
3652 iris_use_pinned_bo(batch, iris_resource_bo(shs->image[i].res),
3653 shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE);
3654 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3655
3656 return surf_state->offset;
3657 }
3658
3659 #define push_bt_entry(addr) \
3660 assert(addr >= binder_addr); \
3661 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3662 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3663
3664 #define bt_assert(section, exists) \
3665 if (!pin_only) assert(prog_data->binding_table.section == \
3666 (exists) ? s : 0xd0d0d0d0)
3667
3668 /**
3669 * Populate the binding table for a given shader stage.
3670 *
3671 * This fills out the table of pointers to surfaces required by the shader,
3672 * and also adds those buffers to the validation list so the kernel can make
3673 * resident before running our batch.
3674 */
3675 static void
3676 iris_populate_binding_table(struct iris_context *ice,
3677 struct iris_batch *batch,
3678 gl_shader_stage stage,
3679 bool pin_only)
3680 {
3681 const struct iris_binder *binder = &ice->state.binder;
3682 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3683 if (!shader)
3684 return;
3685
3686 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3687 struct iris_shader_state *shs = &ice->state.shaders[stage];
3688 uint32_t binder_addr = binder->bo->gtt_offset;
3689
3690 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3691 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3692 int s = 0;
3693
3694 const struct shader_info *info = iris_get_shader_info(ice, stage);
3695 if (!info) {
3696 /* TCS passthrough doesn't need a binding table. */
3697 assert(stage == MESA_SHADER_TESS_CTRL);
3698 return;
3699 }
3700
3701 if (stage == MESA_SHADER_COMPUTE) {
3702 /* surface for gl_NumWorkGroups */
3703 struct iris_state_ref *grid_data = &ice->state.grid_size;
3704 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3705 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3706 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3707 push_bt_entry(grid_state->offset);
3708 }
3709
3710 if (stage == MESA_SHADER_FRAGMENT) {
3711 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3712 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3713 if (cso_fb->nr_cbufs) {
3714 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3715 uint32_t addr =
3716 cso_fb->cbufs[i] ? use_surface(batch, cso_fb->cbufs[i], true)
3717 : use_null_fb_surface(batch, ice);
3718 push_bt_entry(addr);
3719 }
3720 } else {
3721 uint32_t addr = use_null_fb_surface(batch, ice);
3722 push_bt_entry(addr);
3723 }
3724 }
3725
3726 bt_assert(texture_start, info->num_textures > 0);
3727
3728 for (int i = 0; i < info->num_textures; i++) {
3729 struct iris_sampler_view *view = shs->textures[i];
3730 uint32_t addr = view ? use_sampler_view(batch, view)
3731 : use_null_surface(batch, ice);
3732 push_bt_entry(addr);
3733 }
3734
3735 bt_assert(image_start, info->num_images > 0);
3736
3737 for (int i = 0; i < info->num_images; i++) {
3738 uint32_t addr = use_image(batch, ice, shs, i);
3739 push_bt_entry(addr);
3740 }
3741
3742 const int num_ubos = iris_get_shader_num_ubos(ice, stage);
3743
3744 bt_assert(ubo_start, num_ubos > 0);
3745
3746 for (int i = 0; i < num_ubos; i++) {
3747 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3748 push_bt_entry(addr);
3749 }
3750
3751 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
3752
3753 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3754 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3755 * in st_atom_storagebuf.c so it'll compact them into one range, with
3756 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3757 */
3758 if (info->num_abos + info->num_ssbos > 0) {
3759 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3760 uint32_t addr = use_ssbo(batch, ice, shs, i);
3761 push_bt_entry(addr);
3762 }
3763 }
3764
3765 #if 0
3766 // XXX: not implemented yet
3767 bt_assert(plane_start[1], ...);
3768 bt_assert(plane_start[2], ...);
3769 #endif
3770 }
3771
3772 static void
3773 iris_use_optional_res(struct iris_batch *batch,
3774 struct pipe_resource *res,
3775 bool writeable)
3776 {
3777 if (res) {
3778 struct iris_bo *bo = iris_resource_bo(res);
3779 iris_use_pinned_bo(batch, bo, writeable);
3780 }
3781 }
3782
3783 /* ------------------------------------------------------------------- */
3784
3785 /**
3786 * Pin any BOs which were installed by a previous batch, and restored
3787 * via the hardware logical context mechanism.
3788 *
3789 * We don't need to re-emit all state every batch - the hardware context
3790 * mechanism will save and restore it for us. This includes pointers to
3791 * various BOs...which won't exist unless we ask the kernel to pin them
3792 * by adding them to the validation list.
3793 *
3794 * We can skip buffers if we've re-emitted those packets, as we're
3795 * overwriting those stale pointers with new ones, and don't actually
3796 * refer to the old BOs.
3797 */
3798 static void
3799 iris_restore_render_saved_bos(struct iris_context *ice,
3800 struct iris_batch *batch,
3801 const struct pipe_draw_info *draw)
3802 {
3803 struct iris_genx_state *genx = ice->state.genx;
3804
3805 const uint64_t clean = ~ice->state.dirty;
3806
3807 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3808 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3809 }
3810
3811 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3812 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3813 }
3814
3815 if (clean & IRIS_DIRTY_BLEND_STATE) {
3816 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3817 }
3818
3819 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3820 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3821 }
3822
3823 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3824 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3825 }
3826
3827 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
3828 for (int i = 0; i < 4; i++) {
3829 struct iris_stream_output_target *tgt =
3830 (void *) ice->state.so_target[i];
3831 if (tgt) {
3832 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
3833 true);
3834 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
3835 true);
3836 }
3837 }
3838 }
3839
3840 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3841 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3842 continue;
3843
3844 struct iris_shader_state *shs = &ice->state.shaders[stage];
3845 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3846
3847 if (!shader)
3848 continue;
3849
3850 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3851
3852 for (int i = 0; i < 4; i++) {
3853 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
3854
3855 if (range->length == 0)
3856 continue;
3857
3858 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3859 struct iris_resource *res = (void *) cbuf->data.res;
3860
3861 if (res)
3862 iris_use_pinned_bo(batch, res->bo, false);
3863 else
3864 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3865 }
3866 }
3867
3868 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3869 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
3870 /* Re-pin any buffers referred to by the binding table. */
3871 iris_populate_binding_table(ice, batch, stage, true);
3872 }
3873 }
3874
3875 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3876 struct iris_shader_state *shs = &ice->state.shaders[stage];
3877 struct pipe_resource *res = shs->sampler_table.res;
3878 if (res)
3879 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3880 }
3881
3882 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3883 if (clean & (IRIS_DIRTY_VS << stage)) {
3884 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3885
3886 if (shader) {
3887 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3888 iris_use_pinned_bo(batch, bo, false);
3889
3890 struct brw_stage_prog_data *prog_data = shader->prog_data;
3891
3892 if (prog_data->total_scratch > 0) {
3893 struct iris_bo *bo =
3894 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
3895 iris_use_pinned_bo(batch, bo, true);
3896 }
3897 }
3898 }
3899 }
3900
3901 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
3902 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3903
3904 if (cso_fb->zsbuf) {
3905 struct iris_resource *zres, *sres;
3906 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
3907 &zres, &sres);
3908 if (zres) {
3909 iris_use_pinned_bo(batch, zres->bo,
3910 ice->state.depth_writes_enabled);
3911 }
3912 if (sres) {
3913 iris_use_pinned_bo(batch, sres->bo,
3914 ice->state.stencil_writes_enabled);
3915 }
3916 }
3917 }
3918
3919 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
3920 /* This draw didn't emit a new index buffer, so we are inheriting the
3921 * older index buffer. This draw didn't need it, but future ones may.
3922 */
3923 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
3924 iris_use_pinned_bo(batch, bo, false);
3925 }
3926
3927 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
3928 uint64_t bound = ice->state.bound_vertex_buffers;
3929 while (bound) {
3930 const int i = u_bit_scan64(&bound);
3931 struct pipe_resource *res = genx->vertex_buffers[i].resource;
3932 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
3933 }
3934 }
3935 }
3936
3937 static void
3938 iris_restore_compute_saved_bos(struct iris_context *ice,
3939 struct iris_batch *batch,
3940 const struct pipe_grid_info *grid)
3941 {
3942 const uint64_t clean = ~ice->state.dirty;
3943
3944 const int stage = MESA_SHADER_COMPUTE;
3945 struct iris_shader_state *shs = &ice->state.shaders[stage];
3946
3947 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
3948 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3949
3950 if (shader) {
3951 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3952 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
3953
3954 if (range->length > 0) {
3955 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
3956 struct iris_resource *res = (void *) cbuf->data.res;
3957
3958 if (res)
3959 iris_use_pinned_bo(batch, res->bo, false);
3960 else
3961 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
3962 }
3963 }
3964 }
3965
3966 if (clean & IRIS_DIRTY_BINDINGS_CS) {
3967 /* Re-pin any buffers referred to by the binding table. */
3968 iris_populate_binding_table(ice, batch, stage, true);
3969 }
3970
3971 struct pipe_resource *sampler_res = shs->sampler_table.res;
3972 if (sampler_res)
3973 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
3974
3975 if (clean & IRIS_DIRTY_CS) {
3976 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3977
3978 if (shader) {
3979 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
3980 iris_use_pinned_bo(batch, bo, false);
3981
3982 struct brw_stage_prog_data *prog_data = shader->prog_data;
3983
3984 if (prog_data->total_scratch > 0) {
3985 struct iris_bo *bo =
3986 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
3987 iris_use_pinned_bo(batch, bo, true);
3988 }
3989 }
3990 }
3991 }
3992
3993 /**
3994 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
3995 */
3996 static void
3997 iris_update_surface_base_address(struct iris_batch *batch,
3998 struct iris_binder *binder)
3999 {
4000 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4001 return;
4002
4003 flush_for_state_base_change(batch);
4004
4005 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4006 sba.SurfaceStateMOCS = MOCS_WB;
4007 sba.SurfaceStateBaseAddressModifyEnable = true;
4008 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4009 }
4010
4011 batch->last_surface_base_address = binder->bo->gtt_offset;
4012 }
4013
4014 static void
4015 iris_upload_dirty_render_state(struct iris_context *ice,
4016 struct iris_batch *batch,
4017 const struct pipe_draw_info *draw)
4018 {
4019 const uint64_t dirty = ice->state.dirty;
4020
4021 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4022 return;
4023
4024 struct iris_genx_state *genx = ice->state.genx;
4025 struct iris_binder *binder = &ice->state.binder;
4026 struct brw_wm_prog_data *wm_prog_data = (void *)
4027 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4028
4029 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4030 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4031 uint32_t cc_vp_address;
4032
4033 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4034 uint32_t *cc_vp_map =
4035 stream_state(batch, ice->state.dynamic_uploader,
4036 &ice->state.last_res.cc_vp,
4037 4 * ice->state.num_viewports *
4038 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4039 for (int i = 0; i < ice->state.num_viewports; i++) {
4040 float zmin, zmax;
4041 util_viewport_zmin_zmax(&ice->state.viewports[i],
4042 cso_rast->clip_halfz, &zmin, &zmax);
4043 if (cso_rast->depth_clip_near)
4044 zmin = 0.0;
4045 if (cso_rast->depth_clip_far)
4046 zmax = 1.0;
4047
4048 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4049 ccv.MinimumDepth = zmin;
4050 ccv.MaximumDepth = zmax;
4051 }
4052
4053 cc_vp_map += GENX(CC_VIEWPORT_length);
4054 }
4055
4056 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4057 ptr.CCViewportPointer = cc_vp_address;
4058 }
4059 }
4060
4061 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4062 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4063 uint32_t sf_cl_vp_address;
4064 uint32_t *vp_map =
4065 stream_state(batch, ice->state.dynamic_uploader,
4066 &ice->state.last_res.sf_cl_vp,
4067 4 * ice->state.num_viewports *
4068 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4069
4070 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4071 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4072 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4073
4074 float vp_xmin = viewport_extent(state, 0, -1.0f);
4075 float vp_xmax = viewport_extent(state, 0, 1.0f);
4076 float vp_ymin = viewport_extent(state, 1, -1.0f);
4077 float vp_ymax = viewport_extent(state, 1, 1.0f);
4078
4079 calculate_guardband_size(cso_fb->width, cso_fb->height,
4080 state->scale[0], state->scale[1],
4081 state->translate[0], state->translate[1],
4082 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4083
4084 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4085 vp.ViewportMatrixElementm00 = state->scale[0];
4086 vp.ViewportMatrixElementm11 = state->scale[1];
4087 vp.ViewportMatrixElementm22 = state->scale[2];
4088 vp.ViewportMatrixElementm30 = state->translate[0];
4089 vp.ViewportMatrixElementm31 = state->translate[1];
4090 vp.ViewportMatrixElementm32 = state->translate[2];
4091 vp.XMinClipGuardband = gb_xmin;
4092 vp.XMaxClipGuardband = gb_xmax;
4093 vp.YMinClipGuardband = gb_ymin;
4094 vp.YMaxClipGuardband = gb_ymax;
4095 vp.XMinViewPort = MAX2(vp_xmin, 0);
4096 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4097 vp.YMinViewPort = MAX2(vp_ymin, 0);
4098 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4099 }
4100
4101 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4102 }
4103
4104 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4105 ptr.SFClipViewportPointer = sf_cl_vp_address;
4106 }
4107 }
4108
4109 if (dirty & IRIS_DIRTY_URB) {
4110 iris_upload_urb_config(ice, batch);
4111 }
4112
4113 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4114 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4115 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4116 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4117 const int header_dwords = GENX(BLEND_STATE_length);
4118 const int rt_dwords = cso_fb->nr_cbufs * GENX(BLEND_STATE_ENTRY_length);
4119 uint32_t blend_offset;
4120 uint32_t *blend_map =
4121 stream_state(batch, ice->state.dynamic_uploader,
4122 &ice->state.last_res.blend,
4123 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4124
4125 uint32_t blend_state_header;
4126 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4127 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4128 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4129 }
4130
4131 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4132 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4133
4134 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4135 ptr.BlendStatePointer = blend_offset;
4136 ptr.BlendStatePointerValid = true;
4137 }
4138 }
4139
4140 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4141 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4142 #if GEN_GEN == 8
4143 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4144 #endif
4145 uint32_t cc_offset;
4146 void *cc_map =
4147 stream_state(batch, ice->state.dynamic_uploader,
4148 &ice->state.last_res.color_calc,
4149 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4150 64, &cc_offset);
4151 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4152 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4153 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4154 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4155 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4156 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4157 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4158 #if GEN_GEN == 8
4159 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4160 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4161 #endif
4162 }
4163 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4164 ptr.ColorCalcStatePointer = cc_offset;
4165 ptr.ColorCalcStatePointerValid = true;
4166 }
4167 }
4168
4169 /* Upload constants for TCS passthrough. */
4170 if ((dirty & IRIS_DIRTY_CONSTANTS_TCS) &&
4171 ice->shaders.prog[MESA_SHADER_TESS_CTRL] &&
4172 !ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]) {
4173 struct iris_compiled_shader *tes_shader = ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4174 assert(tes_shader);
4175
4176 /* Passthrough always copies 2 vec4s, so when uploading data we ensure
4177 * it is in the right layout for TES.
4178 */
4179 float hdr[8] = {};
4180 struct brw_tes_prog_data *tes_prog_data = (void *) tes_shader->prog_data;
4181 switch (tes_prog_data->domain) {
4182 case BRW_TESS_DOMAIN_QUAD:
4183 for (int i = 0; i < 4; i++)
4184 hdr[7 - i] = ice->state.default_outer_level[i];
4185 hdr[3] = ice->state.default_inner_level[0];
4186 hdr[2] = ice->state.default_inner_level[1];
4187 break;
4188 case BRW_TESS_DOMAIN_TRI:
4189 for (int i = 0; i < 3; i++)
4190 hdr[7 - i] = ice->state.default_outer_level[i];
4191 hdr[4] = ice->state.default_inner_level[0];
4192 break;
4193 case BRW_TESS_DOMAIN_ISOLINE:
4194 hdr[7] = ice->state.default_outer_level[1];
4195 hdr[6] = ice->state.default_outer_level[0];
4196 break;
4197 }
4198
4199 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
4200 struct iris_const_buffer *cbuf = &shs->constbuf[0];
4201 u_upload_data(ice->ctx.const_uploader, 0, sizeof(hdr), 32,
4202 &hdr[0], &cbuf->data.offset,
4203 &cbuf->data.res);
4204 }
4205
4206 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4207 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4208 continue;
4209
4210 struct iris_shader_state *shs = &ice->state.shaders[stage];
4211 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4212
4213 if (!shader)
4214 continue;
4215
4216 if (shs->cbuf0_needs_upload)
4217 upload_uniforms(ice, stage);
4218
4219 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4220
4221 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4222 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4223 if (prog_data) {
4224 /* The Skylake PRM contains the following restriction:
4225 *
4226 * "The driver must ensure The following case does not occur
4227 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4228 * buffer 3 read length equal to zero committed followed by a
4229 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4230 * zero committed."
4231 *
4232 * To avoid this, we program the buffers in the highest slots.
4233 * This way, slot 0 is only used if slot 3 is also used.
4234 */
4235 int n = 3;
4236
4237 for (int i = 3; i >= 0; i--) {
4238 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4239
4240 if (range->length == 0)
4241 continue;
4242
4243 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4244 struct iris_resource *res = (void *) cbuf->data.res;
4245
4246 assert(cbuf->data.offset % 32 == 0);
4247
4248 pkt.ConstantBody.ReadLength[n] = range->length;
4249 pkt.ConstantBody.Buffer[n] =
4250 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4251 : ro_bo(batch->screen->workaround_bo, 0);
4252 n--;
4253 }
4254 }
4255 }
4256 }
4257
4258 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4259 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4260 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4261 ptr._3DCommandSubOpcode = 38 + stage;
4262 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4263 }
4264 }
4265 }
4266
4267 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4268 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4269 iris_populate_binding_table(ice, batch, stage, false);
4270 }
4271 }
4272
4273 if (ice->state.need_border_colors)
4274 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4275
4276 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4277 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4278 !ice->shaders.prog[stage])
4279 continue;
4280
4281 struct iris_shader_state *shs = &ice->state.shaders[stage];
4282 struct pipe_resource *res = shs->sampler_table.res;
4283 if (res)
4284 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4285
4286 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4287 ptr._3DCommandSubOpcode = 43 + stage;
4288 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4289 }
4290 }
4291
4292 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4293 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4294 ms.PixelLocation =
4295 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4296 if (ice->state.framebuffer.samples > 0)
4297 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4298 }
4299 }
4300
4301 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4302 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4303 ms.SampleMask = MAX2(ice->state.sample_mask, 1);
4304 }
4305 }
4306
4307 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4308 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4309 continue;
4310
4311 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4312
4313 if (shader) {
4314 struct iris_resource *cache = (void *) shader->assembly.res;
4315 iris_use_pinned_bo(batch, cache->bo, false);
4316 iris_batch_emit(batch, shader->derived_data,
4317 iris_derived_program_state_size(stage));
4318 } else {
4319 if (stage == MESA_SHADER_TESS_EVAL) {
4320 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4321 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4322 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4323 } else if (stage == MESA_SHADER_GEOMETRY) {
4324 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4325 }
4326 }
4327 }
4328
4329 if (ice->state.streamout_active) {
4330 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4331 iris_batch_emit(batch, genx->so_buffers,
4332 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4333 for (int i = 0; i < 4; i++) {
4334 struct iris_stream_output_target *tgt =
4335 (void *) ice->state.so_target[i];
4336 if (tgt) {
4337 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4338 true);
4339 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4340 true);
4341 }
4342 }
4343 }
4344
4345 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4346 uint32_t *decl_list =
4347 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4348 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4349 }
4350
4351 if (dirty & IRIS_DIRTY_STREAMOUT) {
4352 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4353
4354 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4355 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4356 sol.SOFunctionEnable = true;
4357 sol.SOStatisticsEnable = true;
4358
4359 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4360 !ice->state.prims_generated_query_active;
4361 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4362 }
4363
4364 assert(ice->state.streamout);
4365
4366 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4367 GENX(3DSTATE_STREAMOUT_length));
4368 }
4369 } else {
4370 if (dirty & IRIS_DIRTY_STREAMOUT) {
4371 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4372 }
4373 }
4374
4375 if (dirty & IRIS_DIRTY_CLIP) {
4376 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4377 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4378
4379 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4380 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4381 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4382 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4383 : CLIPMODE_NORMAL;
4384 if (wm_prog_data->barycentric_interp_modes &
4385 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4386 cl.NonPerspectiveBarycentricEnable = true;
4387
4388 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4389 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4390 }
4391 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4392 ARRAY_SIZE(cso_rast->clip));
4393 }
4394
4395 if (dirty & IRIS_DIRTY_RASTER) {
4396 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4397 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4398 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4399
4400 }
4401
4402 if (dirty & IRIS_DIRTY_WM) {
4403 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4404 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4405
4406 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4407 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4408
4409 wm.BarycentricInterpolationMode =
4410 wm_prog_data->barycentric_interp_modes;
4411
4412 if (wm_prog_data->early_fragment_tests)
4413 wm.EarlyDepthStencilControl = EDSC_PREPS;
4414 else if (wm_prog_data->has_side_effects)
4415 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4416 }
4417 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4418 }
4419
4420 if (dirty & IRIS_DIRTY_SBE) {
4421 iris_emit_sbe(batch, ice);
4422 }
4423
4424 if (dirty & IRIS_DIRTY_PS_BLEND) {
4425 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4426 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4427 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4428 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4429 pb.HasWriteableRT = true; // XXX: comes from somewhere :(
4430 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4431 }
4432
4433 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4434 ARRAY_SIZE(cso_blend->ps_blend));
4435 }
4436
4437 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4438 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4439 #if GEN_GEN >= 9
4440 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4441 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4442 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4443 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4444 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4445 }
4446 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4447 #else
4448 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4449 #endif
4450 }
4451
4452 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4453 uint32_t scissor_offset =
4454 emit_state(batch, ice->state.dynamic_uploader,
4455 &ice->state.last_res.scissor,
4456 ice->state.scissors,
4457 sizeof(struct pipe_scissor_state) *
4458 ice->state.num_viewports, 32);
4459
4460 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4461 ptr.ScissorRectPointer = scissor_offset;
4462 }
4463 }
4464
4465 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4466 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4467 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4468
4469 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4470
4471 if (cso_fb->zsbuf) {
4472 struct iris_resource *zres, *sres;
4473 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4474 &zres, &sres);
4475 if (zres) {
4476 iris_use_pinned_bo(batch, zres->bo,
4477 ice->state.depth_writes_enabled);
4478 }
4479
4480 if (sres) {
4481 iris_use_pinned_bo(batch, sres->bo,
4482 ice->state.stencil_writes_enabled);
4483 }
4484 }
4485 }
4486
4487 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4488 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4489 for (int i = 0; i < 32; i++) {
4490 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4491 }
4492 }
4493 }
4494
4495 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4496 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4497 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4498 }
4499
4500 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4501 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4502 topo.PrimitiveTopologyType =
4503 translate_prim_type(draw->mode, draw->vertices_per_patch);
4504 }
4505 }
4506
4507 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4508 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4509
4510 if (count) {
4511 /* The VF cache designers cut corners, and made the cache key's
4512 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4513 * 32 bits of the address. If you have two vertex buffers which get
4514 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4515 * you can get collisions (even within a single batch).
4516 *
4517 * So, we need to do a VF cache invalidate if the buffer for a VB
4518 * slot slot changes [48:32] address bits from the previous time.
4519 */
4520 unsigned flush_flags = 0;
4521
4522 uint64_t bound = ice->state.bound_vertex_buffers;
4523 while (bound) {
4524 const int i = u_bit_scan64(&bound);
4525 uint16_t high_bits = 0;
4526
4527 struct iris_resource *res =
4528 (void *) genx->vertex_buffers[i].resource;
4529 if (res) {
4530 iris_use_pinned_bo(batch, res->bo, false);
4531
4532 high_bits = res->bo->gtt_offset >> 32ull;
4533 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4534 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
4535 ice->state.last_vbo_high_bits[i] = high_bits;
4536 }
4537
4538 /* If the buffer was written to by streamout, we may need
4539 * to stall so those writes land and become visible to the
4540 * vertex fetcher.
4541 *
4542 * TODO: This may stall more than necessary.
4543 */
4544 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
4545 flush_flags |= PIPE_CONTROL_CS_STALL;
4546 }
4547 }
4548
4549 if (flush_flags)
4550 iris_emit_pipe_control_flush(batch, flush_flags);
4551
4552 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4553
4554 uint32_t *map =
4555 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
4556 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
4557 vb.DWordLength = (vb_dwords * count + 1) - 2;
4558 }
4559 map += 1;
4560
4561 bound = ice->state.bound_vertex_buffers;
4562 while (bound) {
4563 const int i = u_bit_scan64(&bound);
4564 memcpy(map, genx->vertex_buffers[i].state,
4565 sizeof(uint32_t) * vb_dwords);
4566 map += vb_dwords;
4567 }
4568 }
4569 }
4570
4571 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4572 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4573 const unsigned entries = MAX2(cso->count, 1);
4574 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4575 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4576 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4577 entries * GENX(3DSTATE_VF_INSTANCING_length));
4578 }
4579
4580 if (dirty & IRIS_DIRTY_VF_SGVS) {
4581 const struct brw_vs_prog_data *vs_prog_data = (void *)
4582 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4583 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4584
4585 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4586 if (vs_prog_data->uses_vertexid) {
4587 sgv.VertexIDEnable = true;
4588 sgv.VertexIDComponentNumber = 2;
4589 sgv.VertexIDElementOffset = cso->count;
4590 }
4591
4592 if (vs_prog_data->uses_instanceid) {
4593 sgv.InstanceIDEnable = true;
4594 sgv.InstanceIDComponentNumber = 3;
4595 sgv.InstanceIDElementOffset = cso->count;
4596 }
4597 }
4598 }
4599
4600 if (dirty & IRIS_DIRTY_VF) {
4601 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4602 if (draw->primitive_restart) {
4603 vf.IndexedDrawCutIndexEnable = true;
4604 vf.CutIndex = draw->restart_index;
4605 }
4606 }
4607 }
4608
4609 // XXX: Gen8 - PMA fix
4610 }
4611
4612 static void
4613 iris_upload_render_state(struct iris_context *ice,
4614 struct iris_batch *batch,
4615 const struct pipe_draw_info *draw)
4616 {
4617 /* Always pin the binder. If we're emitting new binding table pointers,
4618 * we need it. If not, we're probably inheriting old tables via the
4619 * context, and need it anyway. Since true zero-bindings cases are
4620 * practically non-existent, just pin it and avoid last_res tracking.
4621 */
4622 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4623
4624 if (!batch->contains_draw) {
4625 iris_restore_render_saved_bos(ice, batch, draw);
4626 batch->contains_draw = true;
4627 }
4628
4629 iris_upload_dirty_render_state(ice, batch, draw);
4630
4631 if (draw->index_size > 0) {
4632 unsigned offset;
4633
4634 if (draw->has_user_indices) {
4635 u_upload_data(ice->ctx.stream_uploader, 0,
4636 draw->count * draw->index_size, 4, draw->index.user,
4637 &offset, &ice->state.last_res.index_buffer);
4638 } else {
4639 struct iris_resource *res = (void *) draw->index.resource;
4640 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
4641
4642 pipe_resource_reference(&ice->state.last_res.index_buffer,
4643 draw->index.resource);
4644 offset = 0;
4645 }
4646
4647 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4648
4649 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4650 ib.IndexFormat = draw->index_size >> 1;
4651 ib.MOCS = mocs(bo);
4652 ib.BufferSize = bo->size;
4653 ib.BufferStartingAddress = ro_bo(bo, offset);
4654 }
4655
4656 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
4657 uint16_t high_bits = bo->gtt_offset >> 32ull;
4658 if (high_bits != ice->state.last_index_bo_high_bits) {
4659 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE);
4660 ice->state.last_index_bo_high_bits = high_bits;
4661 }
4662 }
4663
4664 #define _3DPRIM_END_OFFSET 0x2420
4665 #define _3DPRIM_START_VERTEX 0x2430
4666 #define _3DPRIM_VERTEX_COUNT 0x2434
4667 #define _3DPRIM_INSTANCE_COUNT 0x2438
4668 #define _3DPRIM_START_INSTANCE 0x243C
4669 #define _3DPRIM_BASE_VERTEX 0x2440
4670
4671 if (draw->indirect) {
4672 /* We don't support this MultidrawIndirect. */
4673 assert(!draw->indirect->indirect_draw_count);
4674
4675 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4676 assert(bo);
4677
4678 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4679 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
4680 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
4681 }
4682 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4683 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
4684 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
4685 }
4686 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4687 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
4688 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
4689 }
4690 if (draw->index_size) {
4691 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4692 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
4693 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4694 }
4695 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4696 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4697 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
4698 }
4699 } else {
4700 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4701 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
4702 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
4703 }
4704 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4705 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
4706 lri.DataDWord = 0;
4707 }
4708 }
4709 } else if (draw->count_from_stream_output) {
4710 struct iris_stream_output_target *so =
4711 (void *) draw->count_from_stream_output;
4712
4713 // XXX: avoid if possible
4714 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4715
4716 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4717 lrm.RegisterAddress = CS_GPR(0);
4718 lrm.MemoryAddress =
4719 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
4720 }
4721 iris_math_div32_gpr0(ice, batch, so->stride);
4722 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
4723
4724 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
4725 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
4726 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
4727 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
4728 }
4729
4730 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
4731 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
4732 prim.PredicateEnable =
4733 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
4734
4735 if (draw->indirect || draw->count_from_stream_output) {
4736 prim.IndirectParameterEnable = true;
4737 } else {
4738 prim.StartInstanceLocation = draw->start_instance;
4739 prim.InstanceCount = draw->instance_count;
4740 prim.VertexCountPerInstance = draw->count;
4741
4742 // XXX: this is probably bonkers.
4743 prim.StartVertexLocation = draw->start;
4744
4745 if (draw->index_size) {
4746 prim.BaseVertexLocation += draw->index_bias;
4747 } else {
4748 prim.StartVertexLocation += draw->index_bias;
4749 }
4750
4751 //prim.BaseVertexLocation = ...;
4752 }
4753 }
4754 }
4755
4756 static void
4757 iris_upload_compute_state(struct iris_context *ice,
4758 struct iris_batch *batch,
4759 const struct pipe_grid_info *grid)
4760 {
4761 const uint64_t dirty = ice->state.dirty;
4762 struct iris_screen *screen = batch->screen;
4763 const struct gen_device_info *devinfo = &screen->devinfo;
4764 struct iris_binder *binder = &ice->state.binder;
4765 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
4766 struct iris_compiled_shader *shader =
4767 ice->shaders.prog[MESA_SHADER_COMPUTE];
4768 struct brw_stage_prog_data *prog_data = shader->prog_data;
4769 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
4770
4771 /* Always pin the binder. If we're emitting new binding table pointers,
4772 * we need it. If not, we're probably inheriting old tables via the
4773 * context, and need it anyway. Since true zero-bindings cases are
4774 * practically non-existent, just pin it and avoid last_res tracking.
4775 */
4776 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4777
4778 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
4779 upload_uniforms(ice, MESA_SHADER_COMPUTE);
4780
4781 if (dirty & IRIS_DIRTY_BINDINGS_CS)
4782 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
4783
4784 iris_use_optional_res(batch, shs->sampler_table.res, false);
4785 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
4786
4787 if (ice->state.need_border_colors)
4788 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4789
4790 if (dirty & IRIS_DIRTY_CS) {
4791 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4792 *
4793 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4794 * the only bits that are changed are scoreboard related: Scoreboard
4795 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
4796 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4797 * sufficient."
4798 */
4799 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
4800
4801 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
4802 if (prog_data->total_scratch) {
4803 struct iris_bo *bo =
4804 iris_get_scratch_space(ice, prog_data->total_scratch,
4805 MESA_SHADER_COMPUTE);
4806 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
4807 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
4808 }
4809
4810 vfe.MaximumNumberofThreads =
4811 devinfo->max_cs_threads * screen->subslice_total - 1;
4812 #if GEN_GEN < 11
4813 vfe.ResetGatewayTimer =
4814 Resettingrelativetimerandlatchingtheglobaltimestamp;
4815 #endif
4816 #if GEN_GEN == 8
4817 vfe.BypassGatewayControl = true;
4818 #endif
4819 vfe.NumberofURBEntries = 2;
4820 vfe.URBEntryAllocationSize = 2;
4821
4822 // XXX: Use Indirect Payload Storage?
4823 vfe.CURBEAllocationSize =
4824 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
4825 cs_prog_data->push.cross_thread.regs, 2);
4826 }
4827 }
4828
4829 // XXX: hack iris_set_constant_buffers to upload these thread counts
4830 // XXX: along with regular uniforms for compute shaders, somehow.
4831
4832 uint32_t curbe_data_offset = 0;
4833 // TODO: Move subgroup-id into uniforms ubo so we can push uniforms
4834 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
4835 cs_prog_data->push.per_thread.dwords == 1 &&
4836 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
4837 struct pipe_resource *curbe_data_res = NULL;
4838 uint32_t *curbe_data_map =
4839 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
4840 ALIGN(cs_prog_data->push.total.size, 64), 64,
4841 &curbe_data_offset);
4842 assert(curbe_data_map);
4843 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
4844 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
4845
4846 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
4847 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4848 curbe.CURBETotalDataLength =
4849 ALIGN(cs_prog_data->push.total.size, 64);
4850 curbe.CURBEDataStartAddress = curbe_data_offset;
4851 }
4852 }
4853
4854 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
4855 IRIS_DIRTY_BINDINGS_CS |
4856 IRIS_DIRTY_CONSTANTS_CS |
4857 IRIS_DIRTY_CS)) {
4858 struct pipe_resource *desc_res = NULL;
4859 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4860
4861 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
4862 idd.SamplerStatePointer = shs->sampler_table.offset;
4863 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
4864 }
4865
4866 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
4867 desc[i] |= ((uint32_t *) shader->derived_data)[i];
4868
4869 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4870 load.InterfaceDescriptorTotalLength =
4871 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4872 load.InterfaceDescriptorDataStartAddress =
4873 emit_state(batch, ice->state.dynamic_uploader,
4874 &desc_res, desc, sizeof(desc), 32);
4875 }
4876
4877 pipe_resource_reference(&desc_res, NULL);
4878 }
4879
4880 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
4881 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
4882 uint32_t right_mask;
4883
4884 if (remainder > 0)
4885 right_mask = ~0u >> (32 - remainder);
4886 else
4887 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
4888
4889 #define GPGPU_DISPATCHDIMX 0x2500
4890 #define GPGPU_DISPATCHDIMY 0x2504
4891 #define GPGPU_DISPATCHDIMZ 0x2508
4892
4893 if (grid->indirect) {
4894 struct iris_state_ref *grid_size = &ice->state.grid_size;
4895 struct iris_bo *bo = iris_resource_bo(grid_size->res);
4896 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4897 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
4898 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
4899 }
4900 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4901 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
4902 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
4903 }
4904 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4905 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
4906 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
4907 }
4908 }
4909
4910 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
4911 ggw.IndirectParameterEnable = grid->indirect != NULL;
4912 ggw.SIMDSize = cs_prog_data->simd_size / 16;
4913 ggw.ThreadDepthCounterMaximum = 0;
4914 ggw.ThreadHeightCounterMaximum = 0;
4915 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
4916 ggw.ThreadGroupIDXDimension = grid->grid[0];
4917 ggw.ThreadGroupIDYDimension = grid->grid[1];
4918 ggw.ThreadGroupIDZDimension = grid->grid[2];
4919 ggw.RightExecutionMask = right_mask;
4920 ggw.BottomExecutionMask = 0xffffffff;
4921 }
4922
4923 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
4924
4925 if (!batch->contains_draw) {
4926 iris_restore_compute_saved_bos(ice, batch, grid);
4927 batch->contains_draw = true;
4928 }
4929 }
4930
4931 /**
4932 * State module teardown.
4933 */
4934 static void
4935 iris_destroy_state(struct iris_context *ice)
4936 {
4937 struct iris_genx_state *genx = ice->state.genx;
4938
4939 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
4940 while (bound_vbs) {
4941 const int i = u_bit_scan64(&bound_vbs);
4942 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
4943 }
4944
4945 // XXX: unreference resources/surfaces.
4946 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
4947 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
4948 }
4949 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
4950
4951 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4952 struct iris_shader_state *shs = &ice->state.shaders[stage];
4953 pipe_resource_reference(&shs->sampler_table.res, NULL);
4954 }
4955 free(ice->state.genx);
4956
4957 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
4958
4959 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
4960 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
4961 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
4962 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
4963 pipe_resource_reference(&ice->state.last_res.blend, NULL);
4964 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
4965 }
4966
4967 /* ------------------------------------------------------------------- */
4968
4969 static void
4970 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
4971 uint32_t src)
4972 {
4973 _iris_emit_lrr(batch, dst, src);
4974 }
4975
4976 static void
4977 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
4978 uint32_t src)
4979 {
4980 _iris_emit_lrr(batch, dst, src);
4981 _iris_emit_lrr(batch, dst + 4, src + 4);
4982 }
4983
4984 static void
4985 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
4986 uint32_t val)
4987 {
4988 _iris_emit_lri(batch, reg, val);
4989 }
4990
4991 static void
4992 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
4993 uint64_t val)
4994 {
4995 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
4996 _iris_emit_lri(batch, reg + 4, val >> 32);
4997 }
4998
4999 /**
5000 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5001 */
5002 static void
5003 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5004 struct iris_bo *bo, uint32_t offset)
5005 {
5006 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5007 lrm.RegisterAddress = reg;
5008 lrm.MemoryAddress = ro_bo(bo, offset);
5009 }
5010 }
5011
5012 /**
5013 * Load a 64-bit value from a buffer into a MMIO register via
5014 * two MI_LOAD_REGISTER_MEM commands.
5015 */
5016 static void
5017 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5018 struct iris_bo *bo, uint32_t offset)
5019 {
5020 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5021 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5022 }
5023
5024 static void
5025 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5026 struct iris_bo *bo, uint32_t offset,
5027 bool predicated)
5028 {
5029 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5030 srm.RegisterAddress = reg;
5031 srm.MemoryAddress = rw_bo(bo, offset);
5032 srm.PredicateEnable = predicated;
5033 }
5034 }
5035
5036 static void
5037 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5038 struct iris_bo *bo, uint32_t offset,
5039 bool predicated)
5040 {
5041 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5042 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5043 }
5044
5045 static void
5046 iris_store_data_imm32(struct iris_batch *batch,
5047 struct iris_bo *bo, uint32_t offset,
5048 uint32_t imm)
5049 {
5050 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5051 sdi.Address = rw_bo(bo, offset);
5052 sdi.ImmediateData = imm;
5053 }
5054 }
5055
5056 static void
5057 iris_store_data_imm64(struct iris_batch *batch,
5058 struct iris_bo *bo, uint32_t offset,
5059 uint64_t imm)
5060 {
5061 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5062 * 2 in genxml but it's actually variable length and we need 5 DWords.
5063 */
5064 void *map = iris_get_command_space(batch, 4 * 5);
5065 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5066 sdi.DWordLength = 5 - 2;
5067 sdi.Address = rw_bo(bo, offset);
5068 sdi.ImmediateData = imm;
5069 }
5070 }
5071
5072 static void
5073 iris_copy_mem_mem(struct iris_batch *batch,
5074 struct iris_bo *dst_bo, uint32_t dst_offset,
5075 struct iris_bo *src_bo, uint32_t src_offset,
5076 unsigned bytes)
5077 {
5078 /* MI_COPY_MEM_MEM operates on DWords. */
5079 assert(bytes % 4 == 0);
5080 assert(dst_offset % 4 == 0);
5081 assert(src_offset % 4 == 0);
5082
5083 for (unsigned i = 0; i < bytes; i += 4) {
5084 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5085 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5086 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5087 }
5088 }
5089 }
5090
5091 /* ------------------------------------------------------------------- */
5092
5093 static unsigned
5094 flags_to_post_sync_op(uint32_t flags)
5095 {
5096 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5097 return WriteImmediateData;
5098
5099 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5100 return WritePSDepthCount;
5101
5102 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5103 return WriteTimestamp;
5104
5105 return 0;
5106 }
5107
5108 /**
5109 * Do the given flags have a Post Sync or LRI Post Sync operation?
5110 */
5111 static enum pipe_control_flags
5112 get_post_sync_flags(enum pipe_control_flags flags)
5113 {
5114 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5115 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5116 PIPE_CONTROL_WRITE_TIMESTAMP |
5117 PIPE_CONTROL_LRI_POST_SYNC_OP;
5118
5119 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5120 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5121 */
5122 assert(util_bitcount(flags) <= 1);
5123
5124 return flags;
5125 }
5126
5127 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5128
5129 /**
5130 * Emit a series of PIPE_CONTROL commands, taking into account any
5131 * workarounds necessary to actually accomplish the caller's request.
5132 *
5133 * Unless otherwise noted, spec quotations in this function come from:
5134 *
5135 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5136 * Restrictions for PIPE_CONTROL.
5137 *
5138 * You should not use this function directly. Use the helpers in
5139 * iris_pipe_control.c instead, which may split the pipe control further.
5140 */
5141 static void
5142 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
5143 struct iris_bo *bo, uint32_t offset, uint64_t imm)
5144 {
5145 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5146 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5147 enum pipe_control_flags non_lri_post_sync_flags =
5148 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5149
5150 /* Recursive PIPE_CONTROL workarounds --------------------------------
5151 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5152 *
5153 * We do these first because we want to look at the original operation,
5154 * rather than any workarounds we set.
5155 */
5156 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5157 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5158 * lists several workarounds:
5159 *
5160 * "Project: SKL, KBL, BXT
5161 *
5162 * If the VF Cache Invalidation Enable is set to a 1 in a
5163 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5164 * sets to 0, with the VF Cache Invalidation Enable set to 0
5165 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5166 * Invalidation Enable set to a 1."
5167 */
5168 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
5169 }
5170
5171 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5172 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5173 *
5174 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5175 * programmed prior to programming a PIPECONTROL command with "LRI
5176 * Post Sync Operation" in GPGPU mode of operation (i.e when
5177 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5178 *
5179 * The same text exists a few rows below for Post Sync Op.
5180 */
5181 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
5182 }
5183
5184 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5185 /* Cannonlake:
5186 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5187 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5188 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5189 */
5190 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
5191 offset, imm);
5192 }
5193
5194 /* "Flush Types" workarounds ---------------------------------------------
5195 * We do these now because they may add post-sync operations or CS stalls.
5196 */
5197
5198 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5199 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5200 *
5201 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5202 * 'Write PS Depth Count' or 'Write Timestamp'."
5203 */
5204 if (!bo) {
5205 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5206 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5207 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5208 bo = batch->screen->workaround_bo;
5209 }
5210 }
5211
5212 /* #1130 from Gen10 workarounds page:
5213 *
5214 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5215 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5216 * board stall if Render target cache flush is enabled."
5217 *
5218 * Applicable to CNL B0 and C0 steppings only.
5219 *
5220 * The wording here is unclear, and this workaround doesn't look anything
5221 * like the internal bug report recommendations, but leave it be for now...
5222 */
5223 if (GEN_GEN == 10) {
5224 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5225 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5226 } else if (flags & non_lri_post_sync_flags) {
5227 flags |= PIPE_CONTROL_DEPTH_STALL;
5228 }
5229 }
5230
5231 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5232 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5233 *
5234 * "This bit must be DISABLED for operations other than writing
5235 * PS_DEPTH_COUNT."
5236 *
5237 * This seems like nonsense. An Ivybridge workaround requires us to
5238 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5239 * operation. Gen8+ requires us to emit depth stalls and depth cache
5240 * flushes together. So, it's hard to imagine this means anything other
5241 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5242 *
5243 * We ignore the supposed restriction and do nothing.
5244 */
5245 }
5246
5247 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5248 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5249 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5250 *
5251 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5252 * PS_DEPTH_COUNT or TIMESTAMP queries."
5253 *
5254 * TODO: Implement end-of-pipe checking.
5255 */
5256 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5257 PIPE_CONTROL_WRITE_TIMESTAMP)));
5258 }
5259
5260 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5261 /* From the PIPE_CONTROL instruction table, bit 1:
5262 *
5263 * "This bit is ignored if Depth Stall Enable is set.
5264 * Further, the render cache is not flushed even if Write Cache
5265 * Flush Enable bit is set."
5266 *
5267 * We assert that the caller doesn't do this combination, to try and
5268 * prevent mistakes. It shouldn't hurt the GPU, though.
5269 *
5270 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5271 * and "Render Target Flush" combo is explicitly required for BTI
5272 * update workarounds.
5273 */
5274 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5275 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5276 }
5277
5278 /* PIPE_CONTROL page workarounds ------------------------------------- */
5279
5280 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5281 /* From the PIPE_CONTROL page itself:
5282 *
5283 * "IVB, HSW, BDW
5284 * Restriction: Pipe_control with CS-stall bit set must be issued
5285 * before a pipe-control command that has the State Cache
5286 * Invalidate bit set."
5287 */
5288 flags |= PIPE_CONTROL_CS_STALL;
5289 }
5290
5291 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5292 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5293 *
5294 * "Project: ALL
5295 * SW must always program Post-Sync Operation to "Write Immediate
5296 * Data" when Flush LLC is set."
5297 *
5298 * For now, we just require the caller to do it.
5299 */
5300 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5301 }
5302
5303 /* "Post-Sync Operation" workarounds -------------------------------- */
5304
5305 /* Project: All / Argument: Global Snapshot Count Reset [19]
5306 *
5307 * "This bit must not be exercised on any product.
5308 * Requires stall bit ([20] of DW1) set."
5309 *
5310 * We don't use this, so we just assert that it isn't used. The
5311 * PIPE_CONTROL instruction page indicates that they intended this
5312 * as a debug feature and don't think it is useful in production,
5313 * but it may actually be usable, should we ever want to.
5314 */
5315 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5316
5317 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5318 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5319 /* Project: All / Arguments:
5320 *
5321 * - Generic Media State Clear [16]
5322 * - Indirect State Pointers Disable [16]
5323 *
5324 * "Requires stall bit ([20] of DW1) set."
5325 *
5326 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5327 * State Clear) says:
5328 *
5329 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5330 * programmed prior to programming a PIPECONTROL command with "Media
5331 * State Clear" set in GPGPU mode of operation"
5332 *
5333 * This is a subset of the earlier rule, so there's nothing to do.
5334 */
5335 flags |= PIPE_CONTROL_CS_STALL;
5336 }
5337
5338 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5339 /* Project: All / Argument: Store Data Index
5340 *
5341 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5342 * than '0'."
5343 *
5344 * For now, we just assert that the caller does this. We might want to
5345 * automatically add a write to the workaround BO...
5346 */
5347 assert(non_lri_post_sync_flags != 0);
5348 }
5349
5350 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5351 /* Project: All / Argument: Sync GFDT
5352 *
5353 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5354 * than '0' or 0x2520[13] must be set."
5355 *
5356 * For now, we just assert that the caller does this.
5357 */
5358 assert(non_lri_post_sync_flags != 0);
5359 }
5360
5361 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5362 /* Project: IVB+ / Argument: TLB inv
5363 *
5364 * "Requires stall bit ([20] of DW1) set."
5365 *
5366 * Also, from the PIPE_CONTROL instruction table:
5367 *
5368 * "Project: SKL+
5369 * Post Sync Operation or CS stall must be set to ensure a TLB
5370 * invalidation occurs. Otherwise no cycle will occur to the TLB
5371 * cache to invalidate."
5372 *
5373 * This is not a subset of the earlier rule, so there's nothing to do.
5374 */
5375 flags |= PIPE_CONTROL_CS_STALL;
5376 }
5377
5378 if (GEN_GEN == 9 && devinfo->gt == 4) {
5379 /* TODO: The big Skylake GT4 post sync op workaround */
5380 }
5381
5382 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5383
5384 if (IS_COMPUTE_PIPELINE(batch)) {
5385 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5386 /* Project: SKL+ / Argument: Tex Invalidate
5387 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5388 */
5389 flags |= PIPE_CONTROL_CS_STALL;
5390 }
5391
5392 if (GEN_GEN == 8 && (post_sync_flags ||
5393 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5394 PIPE_CONTROL_DEPTH_STALL |
5395 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5396 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5397 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5398 /* Project: BDW / Arguments:
5399 *
5400 * - LRI Post Sync Operation [23]
5401 * - Post Sync Op [15:14]
5402 * - Notify En [8]
5403 * - Depth Stall [13]
5404 * - Render Target Cache Flush [12]
5405 * - Depth Cache Flush [0]
5406 * - DC Flush Enable [5]
5407 *
5408 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5409 * Workloads."
5410 */
5411 flags |= PIPE_CONTROL_CS_STALL;
5412
5413 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5414 *
5415 * "Project: BDW
5416 * This bit must be always set when PIPE_CONTROL command is
5417 * programmed by GPGPU and MEDIA workloads, except for the cases
5418 * when only Read Only Cache Invalidation bits are set (State
5419 * Cache Invalidation Enable, Instruction cache Invalidation
5420 * Enable, Texture Cache Invalidation Enable, Constant Cache
5421 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5422 * need not implemented when FF_DOP_CG is disable via "Fixed
5423 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5424 *
5425 * It sounds like we could avoid CS stalls in some cases, but we
5426 * don't currently bother. This list isn't exactly the list above,
5427 * either...
5428 */
5429 }
5430 }
5431
5432 /* "Stall" workarounds ----------------------------------------------
5433 * These have to come after the earlier ones because we may have added
5434 * some additional CS stalls above.
5435 */
5436
5437 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5438 /* Project: PRE-SKL, VLV, CHV
5439 *
5440 * "[All Stepping][All SKUs]:
5441 *
5442 * One of the following must also be set:
5443 *
5444 * - Render Target Cache Flush Enable ([12] of DW1)
5445 * - Depth Cache Flush Enable ([0] of DW1)
5446 * - Stall at Pixel Scoreboard ([1] of DW1)
5447 * - Depth Stall ([13] of DW1)
5448 * - Post-Sync Operation ([13] of DW1)
5449 * - DC Flush Enable ([5] of DW1)"
5450 *
5451 * If we don't already have one of those bits set, we choose to add
5452 * "Stall at Pixel Scoreboard". Some of the other bits require a
5453 * CS stall as a workaround (see above), which would send us into
5454 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5455 * appears to be safe, so we choose that.
5456 */
5457 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5458 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5459 PIPE_CONTROL_WRITE_IMMEDIATE |
5460 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5461 PIPE_CONTROL_WRITE_TIMESTAMP |
5462 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5463 PIPE_CONTROL_DEPTH_STALL |
5464 PIPE_CONTROL_DATA_CACHE_FLUSH;
5465 if (!(flags & wa_bits))
5466 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5467 }
5468
5469 /* Emit --------------------------------------------------------------- */
5470
5471 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5472 pc.LRIPostSyncOperation = NoLRIOperation;
5473 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5474 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5475 pc.StoreDataIndex = 0;
5476 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5477 pc.GlobalSnapshotCountReset =
5478 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5479 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5480 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5481 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5482 pc.RenderTargetCacheFlushEnable =
5483 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5484 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5485 pc.StateCacheInvalidationEnable =
5486 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5487 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5488 pc.ConstantCacheInvalidationEnable =
5489 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5490 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5491 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5492 pc.InstructionCacheInvalidateEnable =
5493 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5494 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5495 pc.IndirectStatePointersDisable =
5496 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5497 pc.TextureCacheInvalidationEnable =
5498 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5499 pc.Address = rw_bo(bo, offset);
5500 pc.ImmediateData = imm;
5501 }
5502 }
5503
5504 void
5505 genX(init_state)(struct iris_context *ice)
5506 {
5507 struct pipe_context *ctx = &ice->ctx;
5508 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5509
5510 ctx->create_blend_state = iris_create_blend_state;
5511 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5512 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5513 ctx->create_sampler_state = iris_create_sampler_state;
5514 ctx->create_sampler_view = iris_create_sampler_view;
5515 ctx->create_surface = iris_create_surface;
5516 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5517 ctx->bind_blend_state = iris_bind_blend_state;
5518 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5519 ctx->bind_sampler_states = iris_bind_sampler_states;
5520 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5521 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5522 ctx->delete_blend_state = iris_delete_state;
5523 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5524 ctx->delete_rasterizer_state = iris_delete_state;
5525 ctx->delete_sampler_state = iris_delete_state;
5526 ctx->delete_vertex_elements_state = iris_delete_state;
5527 ctx->set_blend_color = iris_set_blend_color;
5528 ctx->set_clip_state = iris_set_clip_state;
5529 ctx->set_constant_buffer = iris_set_constant_buffer;
5530 ctx->set_shader_buffers = iris_set_shader_buffers;
5531 ctx->set_shader_images = iris_set_shader_images;
5532 ctx->set_sampler_views = iris_set_sampler_views;
5533 ctx->set_tess_state = iris_set_tess_state;
5534 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5535 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5536 ctx->set_sample_mask = iris_set_sample_mask;
5537 ctx->set_scissor_states = iris_set_scissor_states;
5538 ctx->set_stencil_ref = iris_set_stencil_ref;
5539 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5540 ctx->set_viewport_states = iris_set_viewport_states;
5541 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5542 ctx->surface_destroy = iris_surface_destroy;
5543 ctx->draw_vbo = iris_draw_vbo;
5544 ctx->launch_grid = iris_launch_grid;
5545 ctx->create_stream_output_target = iris_create_stream_output_target;
5546 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5547 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5548
5549 ice->vtbl.destroy_state = iris_destroy_state;
5550 ice->vtbl.init_render_context = iris_init_render_context;
5551 ice->vtbl.init_compute_context = iris_init_compute_context;
5552 ice->vtbl.upload_render_state = iris_upload_render_state;
5553 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5554 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5555 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5556 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
5557 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
5558 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5559 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5560 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5561 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5562 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5563 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5564 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5565 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5566 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5567 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5568 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5569 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5570 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5571 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5572 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5573 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5574 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5575 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5576
5577 ice->state.dirty = ~0ull;
5578
5579 ice->state.statistics_counters_enabled = true;
5580
5581 ice->state.sample_mask = 0xffff;
5582 ice->state.num_viewports = 1;
5583 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5584
5585 /* Make a 1x1x1 null surface for unbound textures */
5586 void *null_surf_map =
5587 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5588 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5589 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5590 ice->state.unbound_tex.offset +=
5591 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5592
5593 /* Default all scissor rectangles to be empty regions. */
5594 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5595 ice->state.scissors[i] = (struct pipe_scissor_state) {
5596 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5597 };
5598 }
5599 }