isl: Add a swizzle parameter to isl_buffer_fill_state()
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifndef NDEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_inlines.h"
92 #include "util/u_format.h"
93 #include "util/u_framebuffer.h"
94 #include "util/u_transfer.h"
95 #include "util/u_upload_mgr.h"
96 #include "util/u_viewport.h"
97 #include "drm-uapi/i915_drm.h"
98 #include "nir.h"
99 #include "intel/compiler/brw_compiler.h"
100 #include "intel/common/gen_l3_config.h"
101 #include "intel/common/gen_sample_positions.h"
102 #include "iris_batch.h"
103 #include "iris_context.h"
104 #include "iris_defines.h"
105 #include "iris_pipe.h"
106 #include "iris_resource.h"
107
108 #define __gen_address_type struct iris_address
109 #define __gen_user_data struct iris_batch
110
111 #define ARRAY_BYTES(x) (sizeof(uint32_t) * ARRAY_SIZE(x))
112
113 static uint64_t
114 __gen_combine_address(struct iris_batch *batch, void *location,
115 struct iris_address addr, uint32_t delta)
116 {
117 uint64_t result = addr.offset + delta;
118
119 if (addr.bo) {
120 iris_use_pinned_bo(batch, addr.bo, addr.write);
121 /* Assume this is a general address, not relative to a base. */
122 result += addr.bo->gtt_offset;
123 }
124
125 return result;
126 }
127
128 #define __genxml_cmd_length(cmd) cmd ## _length
129 #define __genxml_cmd_length_bias(cmd) cmd ## _length_bias
130 #define __genxml_cmd_header(cmd) cmd ## _header
131 #define __genxml_cmd_pack(cmd) cmd ## _pack
132
133 #define _iris_pack_command(batch, cmd, dst, name) \
134 for (struct cmd name = { __genxml_cmd_header(cmd) }, \
135 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
136 ({ __genxml_cmd_pack(cmd)(batch, (void *)_dst, &name); \
137 _dst = NULL; \
138 }))
139
140 #define iris_pack_command(cmd, dst, name) \
141 _iris_pack_command(NULL, cmd, dst, name)
142
143 #define iris_pack_state(cmd, dst, name) \
144 for (struct cmd name = {}, \
145 *_dst = (void *)(dst); __builtin_expect(_dst != NULL, 1); \
146 __genxml_cmd_pack(cmd)(NULL, (void *)_dst, &name), \
147 _dst = NULL)
148
149 #define iris_emit_cmd(batch, cmd, name) \
150 _iris_pack_command(batch, cmd, iris_get_command_space(batch, 4 * __genxml_cmd_length(cmd)), name)
151
152 #define iris_emit_merge(batch, dwords0, dwords1, num_dwords) \
153 do { \
154 uint32_t *dw = iris_get_command_space(batch, 4 * num_dwords); \
155 for (uint32_t i = 0; i < num_dwords; i++) \
156 dw[i] = (dwords0)[i] | (dwords1)[i]; \
157 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, num_dwords)); \
158 } while (0)
159
160 #include "genxml/genX_pack.h"
161 #include "genxml/gen_macros.h"
162 #include "genxml/genX_bits.h"
163
164 #if GEN_GEN == 8
165 #define MOCS_PTE 0x18
166 #define MOCS_WB 0x78
167 #else
168 #define MOCS_PTE (1 << 1)
169 #define MOCS_WB (2 << 1)
170 #endif
171
172 static uint32_t
173 mocs(const struct iris_bo *bo)
174 {
175 return bo && bo->external ? MOCS_PTE : MOCS_WB;
176 }
177
178 /**
179 * Statically assert that PIPE_* enums match the hardware packets.
180 * (As long as they match, we don't need to translate them.)
181 */
182 UNUSED static void pipe_asserts()
183 {
184 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
185
186 /* pipe_logicop happens to match the hardware. */
187 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
188 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
189 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
190 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
191 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
192 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
193 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
194 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
195 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
196 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
197 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
198 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
199 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
200 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
201 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
202 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
203
204 /* pipe_blend_func happens to match the hardware. */
205 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
206 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
207 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
208 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
209 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
210 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
211 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
212 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
213 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
214 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
215 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
216 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
217 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
218 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
219 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
220 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
221 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
222 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
223 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
224
225 /* pipe_blend_func happens to match the hardware. */
226 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
227 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
228 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
229 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
230 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
231
232 /* pipe_stencil_op happens to match the hardware. */
233 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
234 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
235 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
236 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
237 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
238 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
239 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
240 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
241
242 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
243 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
244 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
245 #undef PIPE_ASSERT
246 }
247
248 static unsigned
249 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
250 {
251 static const unsigned map[] = {
252 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
253 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
254 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
255 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
256 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
257 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
258 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
259 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
260 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
261 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
262 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
263 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
264 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
265 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
266 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
267 };
268
269 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
270 }
271
272 static unsigned
273 translate_compare_func(enum pipe_compare_func pipe_func)
274 {
275 static const unsigned map[] = {
276 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
277 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
278 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
279 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
280 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
281 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
282 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
283 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
284 };
285 return map[pipe_func];
286 }
287
288 static unsigned
289 translate_shadow_func(enum pipe_compare_func pipe_func)
290 {
291 /* Gallium specifies the result of shadow comparisons as:
292 *
293 * 1 if ref <op> texel,
294 * 0 otherwise.
295 *
296 * The hardware does:
297 *
298 * 0 if texel <op> ref,
299 * 1 otherwise.
300 *
301 * So we need to flip the operator and also negate.
302 */
303 static const unsigned map[] = {
304 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
305 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
306 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
307 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
308 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
309 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
310 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
311 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
312 };
313 return map[pipe_func];
314 }
315
316 static unsigned
317 translate_cull_mode(unsigned pipe_face)
318 {
319 static const unsigned map[4] = {
320 [PIPE_FACE_NONE] = CULLMODE_NONE,
321 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
322 [PIPE_FACE_BACK] = CULLMODE_BACK,
323 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
324 };
325 return map[pipe_face];
326 }
327
328 static unsigned
329 translate_fill_mode(unsigned pipe_polymode)
330 {
331 static const unsigned map[4] = {
332 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
333 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
334 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
335 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
336 };
337 return map[pipe_polymode];
338 }
339
340 static unsigned
341 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
342 {
343 static const unsigned map[] = {
344 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
345 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
346 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
347 };
348 return map[pipe_mip];
349 }
350
351 static uint32_t
352 translate_wrap(unsigned pipe_wrap)
353 {
354 static const unsigned map[] = {
355 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
356 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
357 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
358 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
359 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
360 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
361
362 /* These are unsupported. */
363 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
364 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
365 };
366 return map[pipe_wrap];
367 }
368
369 static struct iris_address
370 ro_bo(struct iris_bo *bo, uint64_t offset)
371 {
372 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
373 * validation list at CSO creation time, instead of draw time.
374 */
375 return (struct iris_address) { .bo = bo, .offset = offset };
376 }
377
378 static struct iris_address
379 rw_bo(struct iris_bo *bo, uint64_t offset)
380 {
381 /* CSOs must pass NULL for bo! Otherwise it will add the BO to the
382 * validation list at CSO creation time, instead of draw time.
383 */
384 return (struct iris_address) { .bo = bo, .offset = offset, .write = true };
385 }
386
387 /**
388 * Allocate space for some indirect state.
389 *
390 * Return a pointer to the map (to fill it out) and a state ref (for
391 * referring to the state in GPU commands).
392 */
393 static void *
394 upload_state(struct u_upload_mgr *uploader,
395 struct iris_state_ref *ref,
396 unsigned size,
397 unsigned alignment)
398 {
399 void *p = NULL;
400 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
401 return p;
402 }
403
404 /**
405 * Stream out temporary/short-lived state.
406 *
407 * This allocates space, pins the BO, and includes the BO address in the
408 * returned offset (which works because all state lives in 32-bit memory
409 * zones).
410 */
411 static uint32_t *
412 stream_state(struct iris_batch *batch,
413 struct u_upload_mgr *uploader,
414 struct pipe_resource **out_res,
415 unsigned size,
416 unsigned alignment,
417 uint32_t *out_offset)
418 {
419 void *ptr = NULL;
420
421 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
422
423 struct iris_bo *bo = iris_resource_bo(*out_res);
424 iris_use_pinned_bo(batch, bo, false);
425
426 *out_offset += iris_bo_offset_from_base_address(bo);
427
428 return ptr;
429 }
430
431 /**
432 * stream_state() + memcpy.
433 */
434 static uint32_t
435 emit_state(struct iris_batch *batch,
436 struct u_upload_mgr *uploader,
437 struct pipe_resource **out_res,
438 const void *data,
439 unsigned size,
440 unsigned alignment)
441 {
442 unsigned offset = 0;
443 uint32_t *map =
444 stream_state(batch, uploader, out_res, size, alignment, &offset);
445
446 if (map)
447 memcpy(map, data, size);
448
449 return offset;
450 }
451
452 /**
453 * Did field 'x' change between 'old_cso' and 'new_cso'?
454 *
455 * (If so, we may want to set some dirty flags.)
456 */
457 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
458 #define cso_changed_memcmp(x) \
459 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
460
461 static void
462 flush_for_state_base_change(struct iris_batch *batch)
463 {
464 /* Flush before emitting STATE_BASE_ADDRESS.
465 *
466 * This isn't documented anywhere in the PRM. However, it seems to be
467 * necessary prior to changing the surface state base adress. We've
468 * seen issues in Vulkan where we get GPU hangs when using multi-level
469 * command buffers which clear depth, reset state base address, and then
470 * go render stuff.
471 *
472 * Normally, in GL, we would trust the kernel to do sufficient stalls
473 * and flushes prior to executing our batch. However, it doesn't seem
474 * as if the kernel's flushing is always sufficient and we don't want to
475 * rely on it.
476 *
477 * We make this an end-of-pipe sync instead of a normal flush because we
478 * do not know the current status of the GPU. On Haswell at least,
479 * having a fast-clear operation in flight at the same time as a normal
480 * rendering operation can cause hangs. Since the kernel's flushing is
481 * insufficient, we need to ensure that any rendering operations from
482 * other processes are definitely complete before we try to do our own
483 * rendering. It's a bit of a big hammer but it appears to work.
484 */
485 iris_emit_end_of_pipe_sync(batch,
486 PIPE_CONTROL_RENDER_TARGET_FLUSH |
487 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
488 PIPE_CONTROL_DATA_CACHE_FLUSH);
489 }
490
491 static void
492 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
493 {
494 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
495 lri.RegisterOffset = reg;
496 lri.DataDWord = val;
497 }
498 }
499 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
500
501 static void
502 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
503 {
504 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
505 lrr.SourceRegisterAddress = src;
506 lrr.DestinationRegisterAddress = dst;
507 }
508 }
509
510 static void
511 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
512 {
513 #if GEN_GEN >= 8 && GEN_GEN < 10
514 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
515 *
516 * Software must clear the COLOR_CALC_STATE Valid field in
517 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
518 * with Pipeline Select set to GPGPU.
519 *
520 * The internal hardware docs recommend the same workaround for Gen9
521 * hardware too.
522 */
523 if (pipeline == GPGPU)
524 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
525 #endif
526
527
528 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
529 * PIPELINE_SELECT [DevBWR+]":
530 *
531 * "Project: DEVSNB+
532 *
533 * Software must ensure all the write caches are flushed through a
534 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
535 * command to invalidate read only caches prior to programming
536 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
537 */
538 iris_emit_pipe_control_flush(batch,
539 PIPE_CONTROL_RENDER_TARGET_FLUSH |
540 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
541 PIPE_CONTROL_DATA_CACHE_FLUSH |
542 PIPE_CONTROL_CS_STALL);
543
544 iris_emit_pipe_control_flush(batch,
545 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
546 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
547 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
548 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
549
550 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
551 #if GEN_GEN >= 9
552 sel.MaskBits = 3;
553 #endif
554 sel.PipelineSelection = pipeline;
555 }
556 }
557
558 UNUSED static void
559 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
560 {
561 #if GEN_GEN == 9
562 /* Project: DevGLK
563 *
564 * "This chicken bit works around a hardware issue with barrier
565 * logic encountered when switching between GPGPU and 3D pipelines.
566 * To workaround the issue, this mode bit should be set after a
567 * pipeline is selected."
568 */
569 uint32_t reg_val;
570 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
571 reg.GLKBarrierMode = value;
572 reg.GLKBarrierModeMask = 1;
573 }
574 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
575 #endif
576 }
577
578 static void
579 init_state_base_address(struct iris_batch *batch)
580 {
581 flush_for_state_base_change(batch);
582
583 /* We program most base addresses once at context initialization time.
584 * Each base address points at a 4GB memory zone, and never needs to
585 * change. See iris_bufmgr.h for a description of the memory zones.
586 *
587 * The one exception is Surface State Base Address, which needs to be
588 * updated occasionally. See iris_binder.c for the details there.
589 */
590 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
591 sba.GeneralStateMOCS = MOCS_WB;
592 sba.StatelessDataPortAccessMOCS = MOCS_WB;
593 sba.DynamicStateMOCS = MOCS_WB;
594 sba.IndirectObjectMOCS = MOCS_WB;
595 sba.InstructionMOCS = MOCS_WB;
596
597 sba.GeneralStateBaseAddressModifyEnable = true;
598 sba.DynamicStateBaseAddressModifyEnable = true;
599 sba.IndirectObjectBaseAddressModifyEnable = true;
600 sba.InstructionBaseAddressModifyEnable = true;
601 sba.GeneralStateBufferSizeModifyEnable = true;
602 sba.DynamicStateBufferSizeModifyEnable = true;
603 #if (GEN_GEN >= 9)
604 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
605 sba.BindlessSurfaceStateMOCS = MOCS_WB;
606 #endif
607 sba.IndirectObjectBufferSizeModifyEnable = true;
608 sba.InstructionBuffersizeModifyEnable = true;
609
610 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
611 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
612
613 sba.GeneralStateBufferSize = 0xfffff;
614 sba.IndirectObjectBufferSize = 0xfffff;
615 sba.InstructionBufferSize = 0xfffff;
616 sba.DynamicStateBufferSize = 0xfffff;
617 }
618 }
619
620 static void
621 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
622 bool has_slm, bool wants_dc_cache)
623 {
624 uint32_t reg_val;
625 iris_pack_state(GENX(L3CNTLREG), &reg_val, reg) {
626 reg.SLMEnable = has_slm;
627 #if GEN_GEN == 11
628 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
629 * in L3CNTLREG register. The default setting of the bit is not the
630 * desirable behavior.
631 */
632 reg.ErrorDetectionBehaviorControl = true;
633 #endif
634 reg.URBAllocation = cfg->n[GEN_L3P_URB];
635 reg.ROAllocation = cfg->n[GEN_L3P_RO];
636 reg.DCAllocation = cfg->n[GEN_L3P_DC];
637 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
638 }
639 iris_emit_lri(batch, L3CNTLREG, reg_val);
640 }
641
642 static void
643 iris_emit_default_l3_config(struct iris_batch *batch,
644 const struct gen_device_info *devinfo,
645 bool compute)
646 {
647 bool wants_dc_cache = true;
648 bool has_slm = compute;
649 const struct gen_l3_weights w =
650 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
651 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
652 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
653 }
654
655 /**
656 * Upload the initial GPU state for a render context.
657 *
658 * This sets some invariant state that needs to be programmed a particular
659 * way, but we never actually change.
660 */
661 static void
662 iris_init_render_context(struct iris_screen *screen,
663 struct iris_batch *batch,
664 struct iris_vtable *vtbl,
665 struct pipe_debug_callback *dbg)
666 {
667 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
668 uint32_t reg_val;
669
670 emit_pipeline_select(batch, _3D);
671
672 iris_emit_default_l3_config(batch, devinfo, false);
673
674 init_state_base_address(batch);
675
676 #if GEN_GEN >= 9
677 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
678 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
679 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
680 }
681 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
682 #else
683 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
684 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
685 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
686 }
687 iris_emit_lri(batch, INSTPM, reg_val);
688 #endif
689
690 #if GEN_GEN == 9
691 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
692 reg.FloatBlendOptimizationEnable = true;
693 reg.FloatBlendOptimizationEnableMask = true;
694 reg.PartialResolveDisableInVC = true;
695 reg.PartialResolveDisableInVCMask = true;
696 }
697 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
698
699 if (devinfo->is_geminilake)
700 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
701 #endif
702
703 #if GEN_GEN == 11
704 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
705 reg.HeaderlessMessageforPreemptableContexts = 1;
706 reg.HeaderlessMessageforPreemptableContextsMask = 1;
707 }
708 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
709
710 // XXX: 3D_MODE?
711 #endif
712
713 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
714 * changing it dynamically. We set it to the maximum size here, and
715 * instead include the render target dimensions in the viewport, so
716 * viewport extents clipping takes care of pruning stray geometry.
717 */
718 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
719 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
720 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
721 }
722
723 /* Set the initial MSAA sample positions. */
724 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
725 GEN_SAMPLE_POS_1X(pat._1xSample);
726 GEN_SAMPLE_POS_2X(pat._2xSample);
727 GEN_SAMPLE_POS_4X(pat._4xSample);
728 GEN_SAMPLE_POS_8X(pat._8xSample);
729 #if GEN_GEN >= 9
730 GEN_SAMPLE_POS_16X(pat._16xSample);
731 #endif
732 }
733
734 /* Use the legacy AA line coverage computation. */
735 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
736
737 /* Disable chromakeying (it's for media) */
738 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
739
740 /* We want regular rendering, not special HiZ operations. */
741 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
742
743 /* No polygon stippling offsets are necessary. */
744 /* TODO: may need to set an offset for origin-UL framebuffers */
745 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
746
747 /* Set a static partitioning of the push constant area. */
748 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
749 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
750 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
751 alloc._3DCommandSubOpcode = 18 + i;
752 alloc.ConstantBufferOffset = 6 * i;
753 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
754 }
755 }
756 }
757
758 static void
759 iris_init_compute_context(struct iris_screen *screen,
760 struct iris_batch *batch,
761 struct iris_vtable *vtbl,
762 struct pipe_debug_callback *dbg)
763 {
764 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
765
766 emit_pipeline_select(batch, GPGPU);
767
768 iris_emit_default_l3_config(batch, devinfo, true);
769
770 init_state_base_address(batch);
771
772 #if GEN_GEN == 9
773 if (devinfo->is_geminilake)
774 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
775 #endif
776 }
777
778 struct iris_vertex_buffer_state {
779 /** The VERTEX_BUFFER_STATE hardware structure. */
780 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
781
782 /** The resource to source vertex data from. */
783 struct pipe_resource *resource;
784 };
785
786 struct iris_depth_buffer_state {
787 /* Depth/HiZ/Stencil related hardware packets. */
788 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
789 GENX(3DSTATE_STENCIL_BUFFER_length) +
790 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
791 GENX(3DSTATE_CLEAR_PARAMS_length)];
792 };
793
794 /**
795 * Generation-specific context state (ice->state.genx->...).
796 *
797 * Most state can go in iris_context directly, but these encode hardware
798 * packets which vary by generation.
799 */
800 struct iris_genx_state {
801 struct iris_vertex_buffer_state vertex_buffers[33];
802
803 struct iris_depth_buffer_state depth_buffer;
804
805 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
806 };
807
808 /**
809 * The pipe->set_blend_color() driver hook.
810 *
811 * This corresponds to our COLOR_CALC_STATE.
812 */
813 static void
814 iris_set_blend_color(struct pipe_context *ctx,
815 const struct pipe_blend_color *state)
816 {
817 struct iris_context *ice = (struct iris_context *) ctx;
818
819 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
820 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
821 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
822 }
823
824 /**
825 * Gallium CSO for blend state (see pipe_blend_state).
826 */
827 struct iris_blend_state {
828 /** Partial 3DSTATE_PS_BLEND */
829 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
830
831 /** Partial BLEND_STATE */
832 uint32_t blend_state[GENX(BLEND_STATE_length) +
833 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
834
835 bool alpha_to_coverage; /* for shader key */
836
837 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
838 uint8_t blend_enables;
839
840 /** Bitfield of whether color writes are enabled for RT[i] */
841 uint8_t color_write_enables;
842 };
843
844 static enum pipe_blendfactor
845 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
846 {
847 if (alpha_to_one) {
848 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
849 return PIPE_BLENDFACTOR_ONE;
850
851 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
852 return PIPE_BLENDFACTOR_ZERO;
853 }
854
855 return f;
856 }
857
858 /**
859 * The pipe->create_blend_state() driver hook.
860 *
861 * Translates a pipe_blend_state into iris_blend_state.
862 */
863 static void *
864 iris_create_blend_state(struct pipe_context *ctx,
865 const struct pipe_blend_state *state)
866 {
867 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
868 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
869
870 cso->blend_enables = 0;
871 cso->color_write_enables = 0;
872 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
873
874 cso->alpha_to_coverage = state->alpha_to_coverage;
875
876 bool indep_alpha_blend = false;
877
878 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
879 const struct pipe_rt_blend_state *rt =
880 &state->rt[state->independent_blend_enable ? i : 0];
881
882 enum pipe_blendfactor src_rgb =
883 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
884 enum pipe_blendfactor src_alpha =
885 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
886 enum pipe_blendfactor dst_rgb =
887 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
888 enum pipe_blendfactor dst_alpha =
889 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
890
891 if (rt->rgb_func != rt->alpha_func ||
892 src_rgb != src_alpha || dst_rgb != dst_alpha)
893 indep_alpha_blend = true;
894
895 if (rt->blend_enable)
896 cso->blend_enables |= 1u << i;
897
898 if (rt->colormask)
899 cso->color_write_enables |= 1u << i;
900
901 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
902 be.LogicOpEnable = state->logicop_enable;
903 be.LogicOpFunction = state->logicop_func;
904
905 be.PreBlendSourceOnlyClampEnable = false;
906 be.ColorClampRange = COLORCLAMP_RTFORMAT;
907 be.PreBlendColorClampEnable = true;
908 be.PostBlendColorClampEnable = true;
909
910 be.ColorBufferBlendEnable = rt->blend_enable;
911
912 be.ColorBlendFunction = rt->rgb_func;
913 be.AlphaBlendFunction = rt->alpha_func;
914 be.SourceBlendFactor = src_rgb;
915 be.SourceAlphaBlendFactor = src_alpha;
916 be.DestinationBlendFactor = dst_rgb;
917 be.DestinationAlphaBlendFactor = dst_alpha;
918
919 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
920 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
921 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
922 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
923 }
924 blend_entry += GENX(BLEND_STATE_ENTRY_length);
925 }
926
927 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
928 /* pb.HasWriteableRT is filled in at draw time. */
929 /* pb.AlphaTestEnable is filled in at draw time. */
930 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
931 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
932
933 pb.ColorBufferBlendEnable = state->rt[0].blend_enable;
934
935 pb.SourceBlendFactor =
936 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
937 pb.SourceAlphaBlendFactor =
938 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
939 pb.DestinationBlendFactor =
940 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
941 pb.DestinationAlphaBlendFactor =
942 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
943 }
944
945 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
946 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
947 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
948 bs.AlphaToOneEnable = state->alpha_to_one;
949 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
950 bs.ColorDitherEnable = state->dither;
951 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
952 }
953
954
955 return cso;
956 }
957
958 /**
959 * The pipe->bind_blend_state() driver hook.
960 *
961 * Bind a blending CSO and flag related dirty bits.
962 */
963 static void
964 iris_bind_blend_state(struct pipe_context *ctx, void *state)
965 {
966 struct iris_context *ice = (struct iris_context *) ctx;
967 struct iris_blend_state *cso = state;
968
969 ice->state.cso_blend = cso;
970 ice->state.blend_enables = cso ? cso->blend_enables : 0;
971
972 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
973 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
974 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
975 }
976
977 /**
978 * Return true if the FS writes to any color outputs which are not disabled
979 * via color masking.
980 */
981 static bool
982 has_writeable_rt(const struct iris_blend_state *cso_blend,
983 const struct shader_info *fs_info)
984 {
985 if (!fs_info)
986 return false;
987
988 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
989
990 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
991 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
992
993 return cso_blend->color_write_enables & rt_outputs;
994 }
995
996 /**
997 * Gallium CSO for depth, stencil, and alpha testing state.
998 */
999 struct iris_depth_stencil_alpha_state {
1000 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1001 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1002
1003 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1004 struct pipe_alpha_state alpha;
1005
1006 /** Outbound to resolve and cache set tracking. */
1007 bool depth_writes_enabled;
1008 bool stencil_writes_enabled;
1009 };
1010
1011 /**
1012 * The pipe->create_depth_stencil_alpha_state() driver hook.
1013 *
1014 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1015 * testing state since we need pieces of it in a variety of places.
1016 */
1017 static void *
1018 iris_create_zsa_state(struct pipe_context *ctx,
1019 const struct pipe_depth_stencil_alpha_state *state)
1020 {
1021 struct iris_depth_stencil_alpha_state *cso =
1022 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1023
1024 bool two_sided_stencil = state->stencil[1].enabled;
1025
1026 cso->alpha = state->alpha;
1027 cso->depth_writes_enabled = state->depth.writemask;
1028 cso->stencil_writes_enabled =
1029 state->stencil[0].writemask != 0 ||
1030 (two_sided_stencil && state->stencil[1].writemask != 1);
1031
1032 /* The state tracker needs to optimize away EQUAL writes for us. */
1033 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1034
1035 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1036 wmds.StencilFailOp = state->stencil[0].fail_op;
1037 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1038 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1039 wmds.StencilTestFunction =
1040 translate_compare_func(state->stencil[0].func);
1041 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1042 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1043 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1044 wmds.BackfaceStencilTestFunction =
1045 translate_compare_func(state->stencil[1].func);
1046 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1047 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1048 wmds.StencilTestEnable = state->stencil[0].enabled;
1049 wmds.StencilBufferWriteEnable =
1050 state->stencil[0].writemask != 0 ||
1051 (two_sided_stencil && state->stencil[1].writemask != 0);
1052 wmds.DepthTestEnable = state->depth.enabled;
1053 wmds.DepthBufferWriteEnable = state->depth.writemask;
1054 wmds.StencilTestMask = state->stencil[0].valuemask;
1055 wmds.StencilWriteMask = state->stencil[0].writemask;
1056 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1057 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1058 /* wmds.[Backface]StencilReferenceValue are merged later */
1059 }
1060
1061 return cso;
1062 }
1063
1064 /**
1065 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1066 *
1067 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1068 */
1069 static void
1070 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1071 {
1072 struct iris_context *ice = (struct iris_context *) ctx;
1073 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1074 struct iris_depth_stencil_alpha_state *new_cso = state;
1075
1076 if (new_cso) {
1077 if (cso_changed(alpha.ref_value))
1078 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1079
1080 if (cso_changed(alpha.enabled))
1081 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1082
1083 if (cso_changed(alpha.func))
1084 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1085
1086 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1087 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1088 }
1089
1090 ice->state.cso_zsa = new_cso;
1091 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1092 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1093 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1094 }
1095
1096 /**
1097 * Gallium CSO for rasterizer state.
1098 */
1099 struct iris_rasterizer_state {
1100 uint32_t sf[GENX(3DSTATE_SF_length)];
1101 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1102 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1103 uint32_t wm[GENX(3DSTATE_WM_length)];
1104 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1105
1106 uint8_t num_clip_plane_consts;
1107 bool clip_halfz; /* for CC_VIEWPORT */
1108 bool depth_clip_near; /* for CC_VIEWPORT */
1109 bool depth_clip_far; /* for CC_VIEWPORT */
1110 bool flatshade; /* for shader state */
1111 bool flatshade_first; /* for stream output */
1112 bool clamp_fragment_color; /* for shader state */
1113 bool light_twoside; /* for shader state */
1114 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1115 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1116 bool line_stipple_enable;
1117 bool poly_stipple_enable;
1118 bool multisample;
1119 bool force_persample_interp;
1120 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1121 uint16_t sprite_coord_enable;
1122 };
1123
1124 static float
1125 get_line_width(const struct pipe_rasterizer_state *state)
1126 {
1127 float line_width = state->line_width;
1128
1129 /* From the OpenGL 4.4 spec:
1130 *
1131 * "The actual width of non-antialiased lines is determined by rounding
1132 * the supplied width to the nearest integer, then clamping it to the
1133 * implementation-dependent maximum non-antialiased line width."
1134 */
1135 if (!state->multisample && !state->line_smooth)
1136 line_width = roundf(state->line_width);
1137
1138 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1139 /* For 1 pixel line thickness or less, the general anti-aliasing
1140 * algorithm gives up, and a garbage line is generated. Setting a
1141 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1142 * (one-pixel-wide), non-antialiased lines.
1143 *
1144 * Lines rendered with zero Line Width are rasterized using the
1145 * "Grid Intersection Quantization" rules as specified by the
1146 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1147 */
1148 line_width = 0.0f;
1149 }
1150
1151 return line_width;
1152 }
1153
1154 /**
1155 * The pipe->create_rasterizer_state() driver hook.
1156 */
1157 static void *
1158 iris_create_rasterizer_state(struct pipe_context *ctx,
1159 const struct pipe_rasterizer_state *state)
1160 {
1161 struct iris_rasterizer_state *cso =
1162 malloc(sizeof(struct iris_rasterizer_state));
1163
1164 cso->multisample = state->multisample;
1165 cso->force_persample_interp = state->force_persample_interp;
1166 cso->clip_halfz = state->clip_halfz;
1167 cso->depth_clip_near = state->depth_clip_near;
1168 cso->depth_clip_far = state->depth_clip_far;
1169 cso->flatshade = state->flatshade;
1170 cso->flatshade_first = state->flatshade_first;
1171 cso->clamp_fragment_color = state->clamp_fragment_color;
1172 cso->light_twoside = state->light_twoside;
1173 cso->rasterizer_discard = state->rasterizer_discard;
1174 cso->half_pixel_center = state->half_pixel_center;
1175 cso->sprite_coord_mode = state->sprite_coord_mode;
1176 cso->sprite_coord_enable = state->sprite_coord_enable;
1177 cso->line_stipple_enable = state->line_stipple_enable;
1178 cso->poly_stipple_enable = state->poly_stipple_enable;
1179
1180 if (state->clip_plane_enable != 0)
1181 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1182 else
1183 cso->num_clip_plane_consts = 0;
1184
1185 float line_width = get_line_width(state);
1186
1187 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1188 sf.StatisticsEnable = true;
1189 sf.ViewportTransformEnable = true;
1190 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1191 sf.LineEndCapAntialiasingRegionWidth =
1192 state->line_smooth ? _10pixels : _05pixels;
1193 sf.LastPixelEnable = state->line_last_pixel;
1194 sf.LineWidth = line_width;
1195 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1196 !state->point_quad_rasterization;
1197 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1198 sf.PointWidth = state->point_size;
1199
1200 if (state->flatshade_first) {
1201 sf.TriangleFanProvokingVertexSelect = 1;
1202 } else {
1203 sf.TriangleStripListProvokingVertexSelect = 2;
1204 sf.TriangleFanProvokingVertexSelect = 2;
1205 sf.LineStripListProvokingVertexSelect = 1;
1206 }
1207 }
1208
1209 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1210 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1211 rr.CullMode = translate_cull_mode(state->cull_face);
1212 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1213 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1214 rr.DXMultisampleRasterizationEnable = state->multisample;
1215 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1216 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1217 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1218 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1219 rr.GlobalDepthOffsetScale = state->offset_scale;
1220 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1221 rr.SmoothPointEnable = state->point_smooth;
1222 rr.AntialiasingEnable = state->line_smooth;
1223 rr.ScissorRectangleEnable = state->scissor;
1224 #if GEN_GEN >= 9
1225 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1226 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1227 #else
1228 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1229 #endif
1230 /* TODO: ConservativeRasterizationEnable */
1231 }
1232
1233 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1234 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1235 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1236 */
1237 cl.EarlyCullEnable = true;
1238 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1239 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1240 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1241 cl.GuardbandClipTestEnable = true;
1242 cl.ClipEnable = true;
1243 cl.ViewportXYClipTestEnable = state->point_tri_clip;
1244 cl.MinimumPointWidth = 0.125;
1245 cl.MaximumPointWidth = 255.875;
1246
1247 if (state->flatshade_first) {
1248 cl.TriangleFanProvokingVertexSelect = 1;
1249 } else {
1250 cl.TriangleStripListProvokingVertexSelect = 2;
1251 cl.TriangleFanProvokingVertexSelect = 2;
1252 cl.LineStripListProvokingVertexSelect = 1;
1253 }
1254 }
1255
1256 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1257 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1258 * filled in at draw time from the FS program.
1259 */
1260 wm.LineAntialiasingRegionWidth = _10pixels;
1261 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1262 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1263 wm.LineStippleEnable = state->line_stipple_enable;
1264 wm.PolygonStippleEnable = state->poly_stipple_enable;
1265 }
1266
1267 /* Remap from 0..255 back to 1..256 */
1268 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1269
1270 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1271 line.LineStipplePattern = state->line_stipple_pattern;
1272 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1273 line.LineStippleRepeatCount = line_stipple_factor;
1274 }
1275
1276 return cso;
1277 }
1278
1279 /**
1280 * The pipe->bind_rasterizer_state() driver hook.
1281 *
1282 * Bind a rasterizer CSO and flag related dirty bits.
1283 */
1284 static void
1285 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1286 {
1287 struct iris_context *ice = (struct iris_context *) ctx;
1288 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1289 struct iris_rasterizer_state *new_cso = state;
1290
1291 if (new_cso) {
1292 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1293 if (cso_changed_memcmp(line_stipple))
1294 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1295
1296 if (cso_changed(half_pixel_center))
1297 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1298
1299 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1300 ice->state.dirty |= IRIS_DIRTY_WM;
1301
1302 if (cso_changed(rasterizer_discard))
1303 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1304
1305 if (cso_changed(flatshade_first))
1306 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1307
1308 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1309 cso_changed(clip_halfz))
1310 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1311
1312 if (cso_changed(sprite_coord_enable) ||
1313 cso_changed(sprite_coord_mode) ||
1314 cso_changed(light_twoside))
1315 ice->state.dirty |= IRIS_DIRTY_SBE;
1316 }
1317
1318 ice->state.cso_rast = new_cso;
1319 ice->state.dirty |= IRIS_DIRTY_RASTER;
1320 ice->state.dirty |= IRIS_DIRTY_CLIP;
1321 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1322 }
1323
1324 /**
1325 * Return true if the given wrap mode requires the border color to exist.
1326 *
1327 * (We can skip uploading it if the sampler isn't going to use it.)
1328 */
1329 static bool
1330 wrap_mode_needs_border_color(unsigned wrap_mode)
1331 {
1332 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1333 }
1334
1335 /**
1336 * Gallium CSO for sampler state.
1337 */
1338 struct iris_sampler_state {
1339 union pipe_color_union border_color;
1340 bool needs_border_color;
1341
1342 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1343 };
1344
1345 /**
1346 * The pipe->create_sampler_state() driver hook.
1347 *
1348 * We fill out SAMPLER_STATE (except for the border color pointer), and
1349 * store that on the CPU. It doesn't make sense to upload it to a GPU
1350 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1351 * all bound sampler states to be in contiguous memor.
1352 */
1353 static void *
1354 iris_create_sampler_state(struct pipe_context *ctx,
1355 const struct pipe_sampler_state *state)
1356 {
1357 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1358
1359 if (!cso)
1360 return NULL;
1361
1362 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1363 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1364
1365 unsigned wrap_s = translate_wrap(state->wrap_s);
1366 unsigned wrap_t = translate_wrap(state->wrap_t);
1367 unsigned wrap_r = translate_wrap(state->wrap_r);
1368
1369 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1370
1371 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1372 wrap_mode_needs_border_color(wrap_t) ||
1373 wrap_mode_needs_border_color(wrap_r);
1374
1375 float min_lod = state->min_lod;
1376 unsigned mag_img_filter = state->mag_img_filter;
1377
1378 // XXX: explain this code ported from ilo...I don't get it at all...
1379 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1380 state->min_lod > 0.0f) {
1381 min_lod = 0.0f;
1382 mag_img_filter = state->min_img_filter;
1383 }
1384
1385 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1386 samp.TCXAddressControlMode = wrap_s;
1387 samp.TCYAddressControlMode = wrap_t;
1388 samp.TCZAddressControlMode = wrap_r;
1389 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1390 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1391 samp.MinModeFilter = state->min_img_filter;
1392 samp.MagModeFilter = mag_img_filter;
1393 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1394 samp.MaximumAnisotropy = RATIO21;
1395
1396 if (state->max_anisotropy >= 2) {
1397 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1398 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1399 samp.AnisotropicAlgorithm = EWAApproximation;
1400 }
1401
1402 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1403 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1404
1405 samp.MaximumAnisotropy =
1406 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1407 }
1408
1409 /* Set address rounding bits if not using nearest filtering. */
1410 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1411 samp.UAddressMinFilterRoundingEnable = true;
1412 samp.VAddressMinFilterRoundingEnable = true;
1413 samp.RAddressMinFilterRoundingEnable = true;
1414 }
1415
1416 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1417 samp.UAddressMagFilterRoundingEnable = true;
1418 samp.VAddressMagFilterRoundingEnable = true;
1419 samp.RAddressMagFilterRoundingEnable = true;
1420 }
1421
1422 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1423 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1424
1425 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1426
1427 samp.LODPreClampMode = CLAMP_MODE_OGL;
1428 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1429 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1430 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1431
1432 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1433 }
1434
1435 return cso;
1436 }
1437
1438 /**
1439 * The pipe->bind_sampler_states() driver hook.
1440 *
1441 * Now that we know all the sampler states, we upload them all into a
1442 * contiguous area of GPU memory, for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1443 * We also fill out the border color state pointers at this point.
1444 *
1445 * We could defer this work to draw time, but we assume that binding
1446 * will be less frequent than drawing.
1447 */
1448 // XXX: this may be a bad idea, need to make sure that st/mesa calls us
1449 // XXX: with the complete set of shaders. If it makes multiple calls to
1450 // XXX: things one at a time, we could waste a lot of time assembling things.
1451 // XXX: it doesn't even BUY us anything to do it here, because we only flag
1452 // XXX: IRIS_DIRTY_SAMPLER_STATE when this is called...
1453 static void
1454 iris_bind_sampler_states(struct pipe_context *ctx,
1455 enum pipe_shader_type p_stage,
1456 unsigned start, unsigned count,
1457 void **states)
1458 {
1459 struct iris_context *ice = (struct iris_context *) ctx;
1460 gl_shader_stage stage = stage_from_pipe(p_stage);
1461 struct iris_shader_state *shs = &ice->state.shaders[stage];
1462
1463 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1464
1465 for (int i = 0; i < count; i++) {
1466 shs->samplers[start + i] = states[i];
1467 }
1468
1469 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1470 * in the dynamic state memory zone, so we can point to it via the
1471 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1472 */
1473 uint32_t *map =
1474 upload_state(ice->state.dynamic_uploader, &shs->sampler_table,
1475 count * 4 * GENX(SAMPLER_STATE_length), 32);
1476 if (unlikely(!map))
1477 return;
1478
1479 struct pipe_resource *res = shs->sampler_table.res;
1480 shs->sampler_table.offset +=
1481 iris_bo_offset_from_base_address(iris_resource_bo(res));
1482
1483 /* Make sure all land in the same BO */
1484 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1485
1486 for (int i = 0; i < count; i++) {
1487 struct iris_sampler_state *state = shs->samplers[i];
1488
1489 if (!state) {
1490 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1491 } else if (!state->needs_border_color) {
1492 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1493 } else {
1494 ice->state.need_border_colors = true;
1495
1496 /* Stream out the border color and merge the pointer. */
1497 uint32_t offset =
1498 iris_upload_border_color(ice, &state->border_color);
1499
1500 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1501 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1502 dyns.BorderColorPointer = offset;
1503 }
1504
1505 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1506 map[j] = state->sampler_state[j] | dynamic[j];
1507 }
1508
1509 map += GENX(SAMPLER_STATE_length);
1510 }
1511
1512 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1513 }
1514
1515 static enum isl_channel_select
1516 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1517 {
1518 switch (swz) {
1519 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1520 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1521 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1522 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1523 case PIPE_SWIZZLE_1: return SCS_ONE;
1524 case PIPE_SWIZZLE_0: return SCS_ZERO;
1525 default: unreachable("invalid swizzle");
1526 }
1527 }
1528
1529 static void
1530 fill_buffer_surface_state(struct isl_device *isl_dev,
1531 struct iris_bo *bo,
1532 void *map,
1533 enum isl_format format,
1534 unsigned offset,
1535 unsigned size)
1536 {
1537 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1538 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1539
1540 /* The ARB_texture_buffer_specification says:
1541 *
1542 * "The number of texels in the buffer texture's texel array is given by
1543 *
1544 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1545 *
1546 * where <buffer_size> is the size of the buffer object, in basic
1547 * machine units and <components> and <base_type> are the element count
1548 * and base data type for elements, as specified in Table X.1. The
1549 * number of texels in the texel array is then clamped to the
1550 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1551 *
1552 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1553 * so that when ISL divides by stride to obtain the number of texels, that
1554 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1555 */
1556 unsigned final_size =
1557 MIN3(size, bo->size - offset, IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1558
1559 isl_buffer_fill_state(isl_dev, map,
1560 .address = bo->gtt_offset + offset,
1561 .size_B = final_size,
1562 .format = format,
1563 .swizzle = ISL_SWIZZLE_IDENTITY,
1564 .stride_B = cpp,
1565 .mocs = mocs(bo));
1566 }
1567
1568 #define SURFACE_STATE_ALIGNMENT 64
1569
1570 /**
1571 * Allocate several contiguous SURFACE_STATE structures, one for each
1572 * supported auxiliary surface mode.
1573 */
1574 static void *
1575 alloc_surface_states(struct u_upload_mgr *mgr,
1576 struct iris_state_ref *ref,
1577 unsigned aux_usages)
1578 {
1579 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1580
1581 /* If this changes, update this to explicitly align pointers */
1582 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1583
1584 assert(aux_usages != 0);
1585
1586 void *map =
1587 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1588 SURFACE_STATE_ALIGNMENT);
1589
1590 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1591
1592 return map;
1593 }
1594
1595 static void
1596 fill_surface_state(struct isl_device *isl_dev,
1597 void *map,
1598 struct iris_resource *res,
1599 struct isl_view *view,
1600 unsigned aux_usage)
1601 {
1602 struct isl_surf_fill_state_info f = {
1603 .surf = &res->surf,
1604 .view = view,
1605 .mocs = mocs(res->bo),
1606 .address = res->bo->gtt_offset,
1607 };
1608
1609 if (aux_usage != ISL_AUX_USAGE_NONE) {
1610 f.aux_surf = &res->aux.surf;
1611 f.aux_usage = aux_usage;
1612 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1613 // XXX: clear color
1614 }
1615
1616 isl_surf_fill_state_s(isl_dev, map, &f);
1617 }
1618
1619 /**
1620 * The pipe->create_sampler_view() driver hook.
1621 */
1622 static struct pipe_sampler_view *
1623 iris_create_sampler_view(struct pipe_context *ctx,
1624 struct pipe_resource *tex,
1625 const struct pipe_sampler_view *tmpl)
1626 {
1627 struct iris_context *ice = (struct iris_context *) ctx;
1628 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1629 const struct gen_device_info *devinfo = &screen->devinfo;
1630 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1631
1632 if (!isv)
1633 return NULL;
1634
1635 /* initialize base object */
1636 isv->base = *tmpl;
1637 isv->base.context = ctx;
1638 isv->base.texture = NULL;
1639 pipe_reference_init(&isv->base.reference, 1);
1640 pipe_resource_reference(&isv->base.texture, tex);
1641
1642 if (util_format_is_depth_or_stencil(tmpl->format)) {
1643 struct iris_resource *zres, *sres;
1644 const struct util_format_description *desc =
1645 util_format_description(tmpl->format);
1646
1647 iris_get_depth_stencil_resources(tex, &zres, &sres);
1648
1649 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1650 }
1651
1652 isv->res = (struct iris_resource *) tex;
1653
1654 void *map = alloc_surface_states(ice->state.surface_uploader,
1655 &isv->surface_state,
1656 isv->res->aux.possible_usages);
1657 if (!unlikely(map))
1658 return NULL;
1659
1660 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1661
1662 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1663 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1664 usage |= ISL_SURF_USAGE_CUBE_BIT;
1665
1666 const struct iris_format_info fmt =
1667 iris_format_for_usage(devinfo, tmpl->format, usage);
1668
1669 isv->view = (struct isl_view) {
1670 .format = fmt.fmt,
1671 .swizzle = (struct isl_swizzle) {
1672 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1673 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1674 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1675 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1676 },
1677 .usage = usage,
1678 };
1679
1680 /* Fill out SURFACE_STATE for this view. */
1681 if (tmpl->target != PIPE_BUFFER) {
1682 isv->view.base_level = tmpl->u.tex.first_level;
1683 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1684 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1685 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1686 isv->view.array_len =
1687 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1688
1689 unsigned aux_modes = isv->res->aux.possible_usages;
1690 while (aux_modes) {
1691 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1692
1693 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->view,
1694 aux_usage);
1695
1696 map += SURFACE_STATE_ALIGNMENT;
1697 }
1698 } else {
1699 fill_buffer_surface_state(&screen->isl_dev, isv->res->bo, map,
1700 isv->view.format, tmpl->u.buf.offset,
1701 tmpl->u.buf.size);
1702 }
1703
1704 return &isv->base;
1705 }
1706
1707 static void
1708 iris_sampler_view_destroy(struct pipe_context *ctx,
1709 struct pipe_sampler_view *state)
1710 {
1711 struct iris_sampler_view *isv = (void *) state;
1712 pipe_resource_reference(&state->texture, NULL);
1713 pipe_resource_reference(&isv->surface_state.res, NULL);
1714 free(isv);
1715 }
1716
1717 /**
1718 * The pipe->create_surface() driver hook.
1719 *
1720 * In Gallium nomenclature, "surfaces" are a view of a resource that
1721 * can be bound as a render target or depth/stencil buffer.
1722 */
1723 static struct pipe_surface *
1724 iris_create_surface(struct pipe_context *ctx,
1725 struct pipe_resource *tex,
1726 const struct pipe_surface *tmpl)
1727 {
1728 struct iris_context *ice = (struct iris_context *) ctx;
1729 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1730 const struct gen_device_info *devinfo = &screen->devinfo;
1731 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
1732 struct pipe_surface *psurf = &surf->base;
1733 struct iris_resource *res = (struct iris_resource *) tex;
1734
1735 if (!surf)
1736 return NULL;
1737
1738 pipe_reference_init(&psurf->reference, 1);
1739 pipe_resource_reference(&psurf->texture, tex);
1740 psurf->context = ctx;
1741 psurf->format = tmpl->format;
1742 psurf->width = tex->width0;
1743 psurf->height = tex->height0;
1744 psurf->texture = tex;
1745 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
1746 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
1747 psurf->u.tex.level = tmpl->u.tex.level;
1748
1749 isl_surf_usage_flags_t usage = 0;
1750 if (tmpl->writable)
1751 usage = ISL_SURF_USAGE_STORAGE_BIT;
1752 else if (util_format_is_depth_or_stencil(tmpl->format))
1753 usage = ISL_SURF_USAGE_DEPTH_BIT;
1754 else
1755 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
1756
1757 const struct iris_format_info fmt =
1758 iris_format_for_usage(devinfo, psurf->format, usage);
1759
1760 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
1761 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
1762 /* Framebuffer validation will reject this invalid case, but it
1763 * hasn't had the opportunity yet. In the meantime, we need to
1764 * avoid hitting ISL asserts about unsupported formats below.
1765 */
1766 free(surf);
1767 return NULL;
1768 }
1769
1770 surf->view = (struct isl_view) {
1771 .format = fmt.fmt,
1772 .base_level = tmpl->u.tex.level,
1773 .levels = 1,
1774 .base_array_layer = tmpl->u.tex.first_layer,
1775 .array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1,
1776 .swizzle = ISL_SWIZZLE_IDENTITY,
1777 .usage = usage,
1778 };
1779
1780 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
1781 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
1782 ISL_SURF_USAGE_STENCIL_BIT))
1783 return psurf;
1784
1785
1786 void *map = alloc_surface_states(ice->state.surface_uploader,
1787 &surf->surface_state,
1788 res->aux.possible_usages);
1789 if (!unlikely(map))
1790 return NULL;
1791
1792 unsigned aux_modes = res->aux.possible_usages;
1793 while (aux_modes) {
1794 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1795
1796 fill_surface_state(&screen->isl_dev, map, res, &surf->view, aux_usage);
1797
1798 map += SURFACE_STATE_ALIGNMENT;
1799 }
1800
1801 return psurf;
1802 }
1803
1804 #if GEN_GEN < 9
1805 static void
1806 fill_default_image_param(struct brw_image_param *param)
1807 {
1808 memset(param, 0, sizeof(*param));
1809 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
1810 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
1811 * detailed explanation of these parameters.
1812 */
1813 param->swizzling[0] = 0xff;
1814 param->swizzling[1] = 0xff;
1815 }
1816
1817 static void
1818 fill_buffer_image_param(struct brw_image_param *param,
1819 enum pipe_format pfmt,
1820 unsigned size)
1821 {
1822 const unsigned cpp = util_format_get_blocksize(pfmt);
1823
1824 fill_default_image_param(param);
1825 param->size[0] = size / cpp;
1826 param->stride[0] = cpp;
1827 }
1828 #else
1829 #define isl_surf_fill_image_param(x, ...)
1830 #define fill_default_image_param(x, ...)
1831 #define fill_buffer_image_param(x, ...)
1832 #endif
1833
1834 /**
1835 * The pipe->set_shader_images() driver hook.
1836 */
1837 static void
1838 iris_set_shader_images(struct pipe_context *ctx,
1839 enum pipe_shader_type p_stage,
1840 unsigned start_slot, unsigned count,
1841 const struct pipe_image_view *p_images)
1842 {
1843 struct iris_context *ice = (struct iris_context *) ctx;
1844 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1845 const struct gen_device_info *devinfo = &screen->devinfo;
1846 gl_shader_stage stage = stage_from_pipe(p_stage);
1847 struct iris_shader_state *shs = &ice->state.shaders[stage];
1848
1849 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
1850
1851 for (unsigned i = 0; i < count; i++) {
1852 if (p_images && p_images[i].resource) {
1853 const struct pipe_image_view *img = &p_images[i];
1854 struct iris_resource *res = (void *) img->resource;
1855 pipe_resource_reference(&shs->image[start_slot + i].res, &res->base);
1856
1857 shs->bound_image_views |= 1 << (start_slot + i);
1858
1859 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
1860
1861 // XXX: these are not retained forever, use a separate uploader?
1862 void *map =
1863 alloc_surface_states(ice->state.surface_uploader,
1864 &shs->image[start_slot + i].surface_state,
1865 1 << ISL_AUX_USAGE_NONE);
1866 if (!unlikely(map)) {
1867 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1868 return;
1869 }
1870
1871 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
1872 enum isl_format isl_fmt =
1873 iris_format_for_usage(devinfo, img->format, usage).fmt;
1874
1875 bool untyped_fallback = false;
1876
1877 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
1878 /* On Gen8, try to use typed surfaces reads (which support a
1879 * limited number of formats), and if not possible, fall back
1880 * to untyped reads.
1881 */
1882 untyped_fallback = GEN_GEN == 8 &&
1883 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
1884
1885 if (untyped_fallback)
1886 isl_fmt = ISL_FORMAT_RAW;
1887 else
1888 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
1889 }
1890
1891 shs->image[start_slot + i].access = img->shader_access;
1892
1893 if (res->base.target != PIPE_BUFFER) {
1894 struct isl_view view = {
1895 .format = isl_fmt,
1896 .base_level = img->u.tex.level,
1897 .levels = 1,
1898 .base_array_layer = img->u.tex.first_layer,
1899 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
1900 .swizzle = ISL_SWIZZLE_IDENTITY,
1901 .usage = usage,
1902 };
1903
1904 if (untyped_fallback) {
1905 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1906 isl_fmt, 0, res->bo->size);
1907 } else {
1908 /* Images don't support compression */
1909 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
1910 while (aux_modes) {
1911 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
1912
1913 fill_surface_state(&screen->isl_dev, map, res, &view, usage);
1914
1915 map += SURFACE_STATE_ALIGNMENT;
1916 }
1917 }
1918
1919 isl_surf_fill_image_param(&screen->isl_dev,
1920 &shs->image[start_slot + i].param,
1921 &res->surf, &view);
1922 } else {
1923 fill_buffer_surface_state(&screen->isl_dev, res->bo, map,
1924 isl_fmt, img->u.buf.offset,
1925 img->u.buf.size);
1926 fill_buffer_image_param(&shs->image[start_slot + i].param,
1927 img->format, img->u.buf.size);
1928 }
1929 } else {
1930 pipe_resource_reference(&shs->image[start_slot + i].res, NULL);
1931 pipe_resource_reference(&shs->image[start_slot + i].surface_state.res,
1932 NULL);
1933 fill_default_image_param(&shs->image[start_slot + i].param);
1934 }
1935 }
1936
1937 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
1938
1939 /* Broadwell also needs brw_image_params re-uploaded */
1940 if (GEN_GEN < 9) {
1941 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
1942 shs->cbuf0_needs_upload = true;
1943 }
1944 }
1945
1946
1947 /**
1948 * The pipe->set_sampler_views() driver hook.
1949 */
1950 static void
1951 iris_set_sampler_views(struct pipe_context *ctx,
1952 enum pipe_shader_type p_stage,
1953 unsigned start, unsigned count,
1954 struct pipe_sampler_view **views)
1955 {
1956 struct iris_context *ice = (struct iris_context *) ctx;
1957 gl_shader_stage stage = stage_from_pipe(p_stage);
1958 struct iris_shader_state *shs = &ice->state.shaders[stage];
1959
1960 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
1961
1962 for (unsigned i = 0; i < count; i++) {
1963 pipe_sampler_view_reference((struct pipe_sampler_view **)
1964 &shs->textures[start + i], views[i]);
1965 struct iris_sampler_view *view = (void *) views[i];
1966 if (view) {
1967 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
1968 shs->bound_sampler_views |= 1 << (start + i);
1969 }
1970 }
1971
1972 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
1973 }
1974
1975 /**
1976 * The pipe->set_tess_state() driver hook.
1977 */
1978 static void
1979 iris_set_tess_state(struct pipe_context *ctx,
1980 const float default_outer_level[4],
1981 const float default_inner_level[2])
1982 {
1983 struct iris_context *ice = (struct iris_context *) ctx;
1984
1985 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
1986 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
1987
1988 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
1989 }
1990
1991 static void
1992 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
1993 {
1994 struct iris_surface *surf = (void *) p_surf;
1995 pipe_resource_reference(&p_surf->texture, NULL);
1996 pipe_resource_reference(&surf->surface_state.res, NULL);
1997 free(surf);
1998 }
1999
2000 static void
2001 iris_set_clip_state(struct pipe_context *ctx,
2002 const struct pipe_clip_state *state)
2003 {
2004 struct iris_context *ice = (struct iris_context *) ctx;
2005 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2006
2007 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2008
2009 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS;
2010 shs->cbuf0_needs_upload = true;
2011 }
2012
2013 /**
2014 * The pipe->set_polygon_stipple() driver hook.
2015 */
2016 static void
2017 iris_set_polygon_stipple(struct pipe_context *ctx,
2018 const struct pipe_poly_stipple *state)
2019 {
2020 struct iris_context *ice = (struct iris_context *) ctx;
2021 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2022 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2023 }
2024
2025 /**
2026 * The pipe->set_sample_mask() driver hook.
2027 */
2028 static void
2029 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2030 {
2031 struct iris_context *ice = (struct iris_context *) ctx;
2032
2033 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2034 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2035 */
2036 ice->state.sample_mask = sample_mask & 0xffff;
2037 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2038 }
2039
2040 /**
2041 * The pipe->set_scissor_states() driver hook.
2042 *
2043 * This corresponds to our SCISSOR_RECT state structures. It's an
2044 * exact match, so we just store them, and memcpy them out later.
2045 */
2046 static void
2047 iris_set_scissor_states(struct pipe_context *ctx,
2048 unsigned start_slot,
2049 unsigned num_scissors,
2050 const struct pipe_scissor_state *rects)
2051 {
2052 struct iris_context *ice = (struct iris_context *) ctx;
2053
2054 for (unsigned i = 0; i < num_scissors; i++) {
2055 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2056 /* If the scissor was out of bounds and got clamped to 0 width/height
2057 * at the bounds, the subtraction of 1 from maximums could produce a
2058 * negative number and thus not clip anything. Instead, just provide
2059 * a min > max scissor inside the bounds, which produces the expected
2060 * no rendering.
2061 */
2062 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2063 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2064 };
2065 } else {
2066 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2067 .minx = rects[i].minx, .miny = rects[i].miny,
2068 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2069 };
2070 }
2071 }
2072
2073 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2074 }
2075
2076 /**
2077 * The pipe->set_stencil_ref() driver hook.
2078 *
2079 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2080 */
2081 static void
2082 iris_set_stencil_ref(struct pipe_context *ctx,
2083 const struct pipe_stencil_ref *state)
2084 {
2085 struct iris_context *ice = (struct iris_context *) ctx;
2086 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2087 if (GEN_GEN == 8)
2088 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2089 else
2090 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2091 }
2092
2093 static float
2094 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2095 {
2096 return copysignf(state->scale[axis], sign) + state->translate[axis];
2097 }
2098
2099 static void
2100 calculate_guardband_size(uint32_t fb_width, uint32_t fb_height,
2101 float m00, float m11, float m30, float m31,
2102 float *xmin, float *xmax,
2103 float *ymin, float *ymax)
2104 {
2105 /* According to the "Vertex X,Y Clamping and Quantization" section of the
2106 * Strips and Fans documentation:
2107 *
2108 * "The vertex X and Y screen-space coordinates are also /clamped/ to the
2109 * fixed-point "guardband" range supported by the rasterization hardware"
2110 *
2111 * and
2112 *
2113 * "In almost all circumstances, if an object’s vertices are actually
2114 * modified by this clamping (i.e., had X or Y coordinates outside of
2115 * the guardband extent the rendered object will not match the intended
2116 * result. Therefore software should take steps to ensure that this does
2117 * not happen - e.g., by clipping objects such that they do not exceed
2118 * these limits after the Drawing Rectangle is applied."
2119 *
2120 * I believe the fundamental restriction is that the rasterizer (in
2121 * the SF/WM stages) have a limit on the number of pixels that can be
2122 * rasterized. We need to ensure any coordinates beyond the rasterizer
2123 * limit are handled by the clipper. So effectively that limit becomes
2124 * the clipper's guardband size.
2125 *
2126 * It goes on to say:
2127 *
2128 * "In addition, in order to be correctly rendered, objects must have a
2129 * screenspace bounding box not exceeding 8K in the X or Y direction.
2130 * This additional restriction must also be comprehended by software,
2131 * i.e., enforced by use of clipping."
2132 *
2133 * This makes no sense. Gen7+ hardware supports 16K render targets,
2134 * and you definitely need to be able to draw polygons that fill the
2135 * surface. Our assumption is that the rasterizer was limited to 8K
2136 * on Sandybridge, which only supports 8K surfaces, and it was actually
2137 * increased to 16K on Ivybridge and later.
2138 *
2139 * So, limit the guardband to 16K on Gen7+ and 8K on Sandybridge.
2140 */
2141 const float gb_size = GEN_GEN >= 7 ? 16384.0f : 8192.0f;
2142
2143 if (m00 != 0 && m11 != 0) {
2144 /* First, we compute the screen-space render area */
2145 const float ss_ra_xmin = MIN3( 0, m30 + m00, m30 - m00);
2146 const float ss_ra_xmax = MAX3( fb_width, m30 + m00, m30 - m00);
2147 const float ss_ra_ymin = MIN3( 0, m31 + m11, m31 - m11);
2148 const float ss_ra_ymax = MAX3(fb_height, m31 + m11, m31 - m11);
2149
2150 /* We want the guardband to be centered on that */
2151 const float ss_gb_xmin = (ss_ra_xmin + ss_ra_xmax) / 2 - gb_size;
2152 const float ss_gb_xmax = (ss_ra_xmin + ss_ra_xmax) / 2 + gb_size;
2153 const float ss_gb_ymin = (ss_ra_ymin + ss_ra_ymax) / 2 - gb_size;
2154 const float ss_gb_ymax = (ss_ra_ymin + ss_ra_ymax) / 2 + gb_size;
2155
2156 /* Now we need it in native device coordinates */
2157 const float ndc_gb_xmin = (ss_gb_xmin - m30) / m00;
2158 const float ndc_gb_xmax = (ss_gb_xmax - m30) / m00;
2159 const float ndc_gb_ymin = (ss_gb_ymin - m31) / m11;
2160 const float ndc_gb_ymax = (ss_gb_ymax - m31) / m11;
2161
2162 /* Thanks to Y-flipping and ORIGIN_UPPER_LEFT, the Y coordinates may be
2163 * flipped upside-down. X should be fine though.
2164 */
2165 assert(ndc_gb_xmin <= ndc_gb_xmax);
2166 *xmin = ndc_gb_xmin;
2167 *xmax = ndc_gb_xmax;
2168 *ymin = MIN2(ndc_gb_ymin, ndc_gb_ymax);
2169 *ymax = MAX2(ndc_gb_ymin, ndc_gb_ymax);
2170 } else {
2171 /* The viewport scales to 0, so nothing will be rendered. */
2172 *xmin = 0.0f;
2173 *xmax = 0.0f;
2174 *ymin = 0.0f;
2175 *ymax = 0.0f;
2176 }
2177 }
2178
2179 /**
2180 * The pipe->set_viewport_states() driver hook.
2181 *
2182 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2183 * the guardband yet, as we need the framebuffer dimensions, but we can
2184 * at least fill out the rest.
2185 */
2186 static void
2187 iris_set_viewport_states(struct pipe_context *ctx,
2188 unsigned start_slot,
2189 unsigned count,
2190 const struct pipe_viewport_state *states)
2191 {
2192 struct iris_context *ice = (struct iris_context *) ctx;
2193
2194 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2195
2196 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2197
2198 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2199 !ice->state.cso_rast->depth_clip_far))
2200 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2201 }
2202
2203 /**
2204 * The pipe->set_framebuffer_state() driver hook.
2205 *
2206 * Sets the current draw FBO, including color render targets, depth,
2207 * and stencil buffers.
2208 */
2209 static void
2210 iris_set_framebuffer_state(struct pipe_context *ctx,
2211 const struct pipe_framebuffer_state *state)
2212 {
2213 struct iris_context *ice = (struct iris_context *) ctx;
2214 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2215 struct isl_device *isl_dev = &screen->isl_dev;
2216 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2217 struct iris_resource *zres;
2218 struct iris_resource *stencil_res;
2219
2220 unsigned samples = util_framebuffer_get_num_samples(state);
2221 unsigned layers = util_framebuffer_get_num_layers(state);
2222
2223 if (cso->samples != samples) {
2224 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2225 }
2226
2227 if (cso->nr_cbufs != state->nr_cbufs) {
2228 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2229 }
2230
2231 if ((cso->layers == 0) != (layers == 0)) {
2232 ice->state.dirty |= IRIS_DIRTY_CLIP;
2233 }
2234
2235 if (cso->width != state->width || cso->height != state->height) {
2236 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2237 }
2238
2239 util_copy_framebuffer_state(cso, state);
2240 cso->samples = samples;
2241 cso->layers = layers;
2242
2243 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2244
2245 struct isl_view view = {
2246 .base_level = 0,
2247 .levels = 1,
2248 .base_array_layer = 0,
2249 .array_len = 1,
2250 .swizzle = ISL_SWIZZLE_IDENTITY,
2251 };
2252
2253 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2254
2255 if (cso->zsbuf) {
2256 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2257 &stencil_res);
2258
2259 view.base_level = cso->zsbuf->u.tex.level;
2260 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2261 view.array_len =
2262 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2263
2264 if (zres) {
2265 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2266
2267 info.depth_surf = &zres->surf;
2268 info.depth_address = zres->bo->gtt_offset;
2269 info.mocs = mocs(zres->bo);
2270
2271 view.format = zres->surf.format;
2272
2273 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2274 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2275 info.hiz_surf = &zres->aux.surf;
2276 info.hiz_address = zres->aux.bo->gtt_offset;
2277 }
2278 }
2279
2280 if (stencil_res) {
2281 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2282 info.stencil_surf = &stencil_res->surf;
2283 info.stencil_address = stencil_res->bo->gtt_offset;
2284 if (!zres) {
2285 view.format = stencil_res->surf.format;
2286 info.mocs = mocs(stencil_res->bo);
2287 }
2288 }
2289 }
2290
2291 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2292
2293 /* Make a null surface for unbound buffers */
2294 void *null_surf_map =
2295 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2296 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2297 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2298 isl_extent3d(MAX2(cso->width, 1),
2299 MAX2(cso->height, 1),
2300 cso->layers ? cso->layers : 1));
2301 ice->state.null_fb.offset +=
2302 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2303
2304 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2305
2306 /* Render target change */
2307 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2308
2309 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2310
2311 #if GEN_GEN == 11
2312 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2313 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2314
2315 /* The PIPE_CONTROL command description says:
2316 *
2317 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2318 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2319 * Target Cache Flush by enabling this bit. When render target flush
2320 * is set due to new association of BTI, PS Scoreboard Stall bit must
2321 * be set in this packet."
2322 */
2323 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2324 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2325 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2326 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2327 #endif
2328 }
2329
2330 static void
2331 upload_ubo_surf_state(struct iris_context *ice,
2332 struct iris_const_buffer *cbuf,
2333 unsigned buffer_size)
2334 {
2335 struct pipe_context *ctx = &ice->ctx;
2336 struct iris_screen *screen = (struct iris_screen *) ctx->screen;
2337
2338 // XXX: these are not retained forever, use a separate uploader?
2339 void *map =
2340 upload_state(ice->state.surface_uploader, &cbuf->surface_state,
2341 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2342 if (!unlikely(map)) {
2343 pipe_resource_reference(&cbuf->data.res, NULL);
2344 return;
2345 }
2346
2347 struct iris_resource *res = (void *) cbuf->data.res;
2348 struct iris_bo *surf_bo = iris_resource_bo(cbuf->surface_state.res);
2349 cbuf->surface_state.offset += iris_bo_offset_from_base_address(surf_bo);
2350
2351 isl_buffer_fill_state(&screen->isl_dev, map,
2352 .address = res->bo->gtt_offset + cbuf->data.offset,
2353 .size_B = MIN2(buffer_size,
2354 res->bo->size - cbuf->data.offset),
2355 .format = ISL_FORMAT_R32G32B32A32_FLOAT,
2356 .swizzle = ISL_SWIZZLE_IDENTITY,
2357 .stride_B = 1,
2358 .mocs = mocs(res->bo))
2359 }
2360
2361 /**
2362 * The pipe->set_constant_buffer() driver hook.
2363 *
2364 * This uploads any constant data in user buffers, and references
2365 * any UBO resources containing constant data.
2366 */
2367 static void
2368 iris_set_constant_buffer(struct pipe_context *ctx,
2369 enum pipe_shader_type p_stage, unsigned index,
2370 const struct pipe_constant_buffer *input)
2371 {
2372 struct iris_context *ice = (struct iris_context *) ctx;
2373 gl_shader_stage stage = stage_from_pipe(p_stage);
2374 struct iris_shader_state *shs = &ice->state.shaders[stage];
2375 struct iris_const_buffer *cbuf = &shs->constbuf[index];
2376
2377 if (input && input->buffer) {
2378 assert(index > 0);
2379
2380 pipe_resource_reference(&cbuf->data.res, input->buffer);
2381 cbuf->data.offset = input->buffer_offset;
2382
2383 struct iris_resource *res = (void *) cbuf->data.res;
2384 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2385
2386 upload_ubo_surf_state(ice, cbuf, input->buffer_size);
2387 } else {
2388 pipe_resource_reference(&cbuf->data.res, NULL);
2389 pipe_resource_reference(&cbuf->surface_state.res, NULL);
2390 }
2391
2392 if (index == 0) {
2393 if (input)
2394 memcpy(&shs->cbuf0, input, sizeof(shs->cbuf0));
2395 else
2396 memset(&shs->cbuf0, 0, sizeof(shs->cbuf0));
2397
2398 shs->cbuf0_needs_upload = true;
2399 }
2400
2401 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2402 // XXX: maybe not necessary all the time...?
2403 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2404 // XXX: pull model we may need actual new bindings...
2405 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2406 }
2407
2408 static void
2409 upload_uniforms(struct iris_context *ice,
2410 gl_shader_stage stage)
2411 {
2412 struct iris_shader_state *shs = &ice->state.shaders[stage];
2413 struct iris_const_buffer *cbuf = &shs->constbuf[0];
2414 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2415
2416 unsigned upload_size = shader->num_system_values * sizeof(uint32_t) +
2417 shs->cbuf0.buffer_size;
2418
2419 if (upload_size == 0)
2420 return;
2421
2422 uint32_t *map =
2423 upload_state(ice->ctx.const_uploader, &cbuf->data, upload_size, 64);
2424
2425 for (int i = 0; i < shader->num_system_values; i++) {
2426 uint32_t sysval = shader->system_values[i];
2427 uint32_t value = 0;
2428
2429 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2430 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2431 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2432 struct brw_image_param *param = &shs->image[img].param;
2433
2434 assert(offset < sizeof(struct brw_image_param));
2435 value = ((uint32_t *) param)[offset];
2436 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2437 value = 0;
2438 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2439 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2440 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2441 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2442 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2443 if (stage == MESA_SHADER_TESS_CTRL) {
2444 value = ice->state.vertices_per_patch;
2445 } else {
2446 assert(stage == MESA_SHADER_TESS_EVAL);
2447 const struct shader_info *tcs_info =
2448 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2449 assert(tcs_info);
2450
2451 value = tcs_info->tess.tcs_vertices_out;
2452 }
2453 } else {
2454 assert(!"unhandled system value");
2455 }
2456
2457 *map++ = value;
2458 }
2459
2460 if (shs->cbuf0.user_buffer) {
2461 memcpy(map, shs->cbuf0.user_buffer, shs->cbuf0.buffer_size);
2462 }
2463
2464 upload_ubo_surf_state(ice, cbuf, upload_size);
2465 }
2466
2467 /**
2468 * The pipe->set_shader_buffers() driver hook.
2469 *
2470 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2471 * SURFACE_STATE here, as the buffer offset may change each time.
2472 */
2473 static void
2474 iris_set_shader_buffers(struct pipe_context *ctx,
2475 enum pipe_shader_type p_stage,
2476 unsigned start_slot, unsigned count,
2477 const struct pipe_shader_buffer *buffers)
2478 {
2479 struct iris_context *ice = (struct iris_context *) ctx;
2480 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2481 gl_shader_stage stage = stage_from_pipe(p_stage);
2482 struct iris_shader_state *shs = &ice->state.shaders[stage];
2483
2484 for (unsigned i = 0; i < count; i++) {
2485 if (buffers && buffers[i].buffer) {
2486 const struct pipe_shader_buffer *buffer = &buffers[i];
2487 struct iris_resource *res = (void *) buffer->buffer;
2488 pipe_resource_reference(&shs->ssbo[start_slot + i], &res->base);
2489
2490 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2491
2492 // XXX: these are not retained forever, use a separate uploader?
2493 void *map =
2494 upload_state(ice->state.surface_uploader,
2495 &shs->ssbo_surface_state[start_slot + i],
2496 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2497 if (!unlikely(map)) {
2498 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2499 return;
2500 }
2501
2502 struct iris_bo *surf_state_bo =
2503 iris_resource_bo(shs->ssbo_surface_state[start_slot + i].res);
2504 shs->ssbo_surface_state[start_slot + i].offset +=
2505 iris_bo_offset_from_base_address(surf_state_bo);
2506
2507 isl_buffer_fill_state(&screen->isl_dev, map,
2508 .address =
2509 res->bo->gtt_offset + buffer->buffer_offset,
2510 .size_B =
2511 MIN2(buffer->buffer_size,
2512 res->bo->size - buffer->buffer_offset),
2513 .format = ISL_FORMAT_RAW,
2514 .swizzle = ISL_SWIZZLE_IDENTITY,
2515 .stride_B = 1,
2516 .mocs = mocs(res->bo));
2517 } else {
2518 pipe_resource_reference(&shs->ssbo[start_slot + i], NULL);
2519 pipe_resource_reference(&shs->ssbo_surface_state[start_slot + i].res,
2520 NULL);
2521 }
2522 }
2523
2524 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2525 }
2526
2527 static void
2528 iris_delete_state(struct pipe_context *ctx, void *state)
2529 {
2530 free(state);
2531 }
2532
2533 /**
2534 * The pipe->set_vertex_buffers() driver hook.
2535 *
2536 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2537 */
2538 static void
2539 iris_set_vertex_buffers(struct pipe_context *ctx,
2540 unsigned start_slot, unsigned count,
2541 const struct pipe_vertex_buffer *buffers)
2542 {
2543 struct iris_context *ice = (struct iris_context *) ctx;
2544 struct iris_genx_state *genx = ice->state.genx;
2545
2546 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2547
2548 for (unsigned i = 0; i < count; i++) {
2549 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2550 struct iris_vertex_buffer_state *state =
2551 &genx->vertex_buffers[start_slot + i];
2552
2553 if (!buffer) {
2554 pipe_resource_reference(&state->resource, NULL);
2555 continue;
2556 }
2557
2558 assert(!buffer->is_user_buffer);
2559
2560 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2561 struct iris_resource *res = (void *) state->resource;
2562
2563 if (res) {
2564 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2565 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2566 }
2567
2568 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2569 vb.VertexBufferIndex = start_slot + i;
2570 vb.AddressModifyEnable = true;
2571 vb.BufferPitch = buffer->stride;
2572 if (res) {
2573 vb.BufferSize = res->bo->size;
2574 vb.BufferStartingAddress =
2575 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2576 vb.MOCS = mocs(res->bo);
2577 } else {
2578 vb.NullVertexBuffer = true;
2579 }
2580 }
2581 }
2582
2583 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2584 }
2585
2586 /**
2587 * Gallium CSO for vertex elements.
2588 */
2589 struct iris_vertex_element_state {
2590 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2591 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2592 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2593 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2594 unsigned count;
2595 };
2596
2597 /**
2598 * The pipe->create_vertex_elements() driver hook.
2599 *
2600 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2601 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2602 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2603 * needed. In these cases we will need information available at draw time.
2604 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2605 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2606 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2607 */
2608 static void *
2609 iris_create_vertex_elements(struct pipe_context *ctx,
2610 unsigned count,
2611 const struct pipe_vertex_element *state)
2612 {
2613 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2614 const struct gen_device_info *devinfo = &screen->devinfo;
2615 struct iris_vertex_element_state *cso =
2616 malloc(sizeof(struct iris_vertex_element_state));
2617
2618 cso->count = count;
2619
2620 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2621 ve.DWordLength =
2622 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
2623 }
2624
2625 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
2626 uint32_t *vfi_pack_dest = cso->vf_instancing;
2627
2628 if (count == 0) {
2629 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2630 ve.Valid = true;
2631 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
2632 ve.Component0Control = VFCOMP_STORE_0;
2633 ve.Component1Control = VFCOMP_STORE_0;
2634 ve.Component2Control = VFCOMP_STORE_0;
2635 ve.Component3Control = VFCOMP_STORE_1_FP;
2636 }
2637
2638 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2639 }
2640 }
2641
2642 for (int i = 0; i < count; i++) {
2643 const struct iris_format_info fmt =
2644 iris_format_for_usage(devinfo, state[i].src_format, 0);
2645 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
2646 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
2647
2648 switch (isl_format_get_num_channels(fmt.fmt)) {
2649 case 0: comp[0] = VFCOMP_STORE_0;
2650 case 1: comp[1] = VFCOMP_STORE_0;
2651 case 2: comp[2] = VFCOMP_STORE_0;
2652 case 3:
2653 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
2654 : VFCOMP_STORE_1_FP;
2655 break;
2656 }
2657 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
2658 ve.EdgeFlagEnable = false;
2659 ve.VertexBufferIndex = state[i].vertex_buffer_index;
2660 ve.Valid = true;
2661 ve.SourceElementOffset = state[i].src_offset;
2662 ve.SourceElementFormat = fmt.fmt;
2663 ve.Component0Control = comp[0];
2664 ve.Component1Control = comp[1];
2665 ve.Component2Control = comp[2];
2666 ve.Component3Control = comp[3];
2667 }
2668
2669 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
2670 vi.VertexElementIndex = i;
2671 vi.InstancingEnable = state[i].instance_divisor > 0;
2672 vi.InstanceDataStepRate = state[i].instance_divisor;
2673 }
2674
2675 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
2676 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
2677 }
2678
2679 /* An alternative version of the last VE and VFI is stored so it
2680 * can be used at draw time in case Vertex Shader uses EdgeFlag
2681 */
2682 if (count) {
2683 const unsigned edgeflag_index = count - 1;
2684 const struct iris_format_info fmt =
2685 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
2686 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
2687 ve.EdgeFlagEnable = true ;
2688 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
2689 ve.Valid = true;
2690 ve.SourceElementOffset = state[edgeflag_index].src_offset;
2691 ve.SourceElementFormat = fmt.fmt;
2692 ve.Component0Control = VFCOMP_STORE_SRC;
2693 ve.Component1Control = VFCOMP_STORE_0;
2694 ve.Component2Control = VFCOMP_STORE_0;
2695 ve.Component3Control = VFCOMP_STORE_0;
2696 }
2697 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
2698 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
2699 * at draw time, as it should change if SGVs are emitted.
2700 */
2701 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
2702 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
2703 }
2704 }
2705
2706 return cso;
2707 }
2708
2709 /**
2710 * The pipe->bind_vertex_elements_state() driver hook.
2711 */
2712 static void
2713 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
2714 {
2715 struct iris_context *ice = (struct iris_context *) ctx;
2716 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
2717 struct iris_vertex_element_state *new_cso = state;
2718
2719 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
2720 * we need to re-emit it to ensure we're overriding the right one.
2721 */
2722 if (new_cso && cso_changed(count))
2723 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
2724
2725 ice->state.cso_vertex_elements = state;
2726 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
2727 }
2728
2729 /**
2730 * The pipe->create_stream_output_target() driver hook.
2731 *
2732 * "Target" here refers to a destination buffer. We translate this into
2733 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
2734 * know which buffer this represents, or whether we ought to zero the
2735 * write-offsets, or append. Those are handled in the set() hook.
2736 */
2737 static struct pipe_stream_output_target *
2738 iris_create_stream_output_target(struct pipe_context *ctx,
2739 struct pipe_resource *p_res,
2740 unsigned buffer_offset,
2741 unsigned buffer_size)
2742 {
2743 struct iris_resource *res = (void *) p_res;
2744 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
2745 if (!cso)
2746 return NULL;
2747
2748 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
2749
2750 pipe_reference_init(&cso->base.reference, 1);
2751 pipe_resource_reference(&cso->base.buffer, p_res);
2752 cso->base.buffer_offset = buffer_offset;
2753 cso->base.buffer_size = buffer_size;
2754 cso->base.context = ctx;
2755
2756 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
2757
2758 return &cso->base;
2759 }
2760
2761 static void
2762 iris_stream_output_target_destroy(struct pipe_context *ctx,
2763 struct pipe_stream_output_target *state)
2764 {
2765 struct iris_stream_output_target *cso = (void *) state;
2766
2767 pipe_resource_reference(&cso->base.buffer, NULL);
2768 pipe_resource_reference(&cso->offset.res, NULL);
2769
2770 free(cso);
2771 }
2772
2773 /**
2774 * The pipe->set_stream_output_targets() driver hook.
2775 *
2776 * At this point, we know which targets are bound to a particular index,
2777 * and also whether we want to append or start over. We can finish the
2778 * 3DSTATE_SO_BUFFER packets we started earlier.
2779 */
2780 static void
2781 iris_set_stream_output_targets(struct pipe_context *ctx,
2782 unsigned num_targets,
2783 struct pipe_stream_output_target **targets,
2784 const unsigned *offsets)
2785 {
2786 struct iris_context *ice = (struct iris_context *) ctx;
2787 struct iris_genx_state *genx = ice->state.genx;
2788 uint32_t *so_buffers = genx->so_buffers;
2789
2790 const bool active = num_targets > 0;
2791 if (ice->state.streamout_active != active) {
2792 ice->state.streamout_active = active;
2793 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2794
2795 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
2796 * it's a non-pipelined command. If we're switching streamout on, we
2797 * may have missed emitting it earlier, so do so now. (We're already
2798 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
2799 */
2800 if (active)
2801 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
2802 }
2803
2804 for (int i = 0; i < 4; i++) {
2805 pipe_so_target_reference(&ice->state.so_target[i],
2806 i < num_targets ? targets[i] : NULL);
2807 }
2808
2809 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
2810 if (!active)
2811 return;
2812
2813 for (unsigned i = 0; i < 4; i++,
2814 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
2815
2816 if (i >= num_targets || !targets[i]) {
2817 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
2818 sob.SOBufferIndex = i;
2819 continue;
2820 }
2821
2822 struct iris_stream_output_target *tgt = (void *) targets[i];
2823 struct iris_resource *res = (void *) tgt->base.buffer;
2824
2825 /* Note that offsets[i] will either be 0, causing us to zero
2826 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
2827 * "continue appending at the existing offset."
2828 */
2829 assert(offsets[i] == 0 || offsets[i] == 0xFFFFFFFF);
2830
2831 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
2832 sob.SurfaceBaseAddress =
2833 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
2834 sob.SOBufferEnable = true;
2835 sob.StreamOffsetWriteEnable = true;
2836 sob.StreamOutputBufferOffsetAddressEnable = true;
2837 sob.MOCS = mocs(res->bo);
2838
2839 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
2840
2841 sob.SOBufferIndex = i;
2842 sob.StreamOffset = offsets[i];
2843 sob.StreamOutputBufferOffsetAddress =
2844 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
2845 tgt->offset.offset);
2846 }
2847 }
2848
2849 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
2850 }
2851
2852 /**
2853 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
2854 * 3DSTATE_STREAMOUT packets.
2855 *
2856 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
2857 * hardware to record. We can create it entirely based on the shader, with
2858 * no dynamic state dependencies.
2859 *
2860 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
2861 * state-based settings. We capture the shader-related ones here, and merge
2862 * the rest in at draw time.
2863 */
2864 static uint32_t *
2865 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
2866 const struct brw_vue_map *vue_map)
2867 {
2868 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
2869 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2870 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2871 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
2872 int max_decls = 0;
2873 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
2874
2875 memset(so_decl, 0, sizeof(so_decl));
2876
2877 /* Construct the list of SO_DECLs to be emitted. The formatting of the
2878 * command feels strange -- each dword pair contains a SO_DECL per stream.
2879 */
2880 for (unsigned i = 0; i < info->num_outputs; i++) {
2881 const struct pipe_stream_output *output = &info->output[i];
2882 const int buffer = output->output_buffer;
2883 const int varying = output->register_index;
2884 const unsigned stream_id = output->stream;
2885 assert(stream_id < MAX_VERTEX_STREAMS);
2886
2887 buffer_mask[stream_id] |= 1 << buffer;
2888
2889 assert(vue_map->varying_to_slot[varying] >= 0);
2890
2891 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
2892 * array. Instead, it simply increments DstOffset for the following
2893 * input by the number of components that should be skipped.
2894 *
2895 * Our hardware is unusual in that it requires us to program SO_DECLs
2896 * for fake "hole" components, rather than simply taking the offset
2897 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
2898 * program as many size = 4 holes as we can, then a final hole to
2899 * accommodate the final 1, 2, or 3 remaining.
2900 */
2901 int skip_components = output->dst_offset - next_offset[buffer];
2902
2903 while (skip_components > 0) {
2904 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2905 .HoleFlag = 1,
2906 .OutputBufferSlot = output->output_buffer,
2907 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
2908 };
2909 skip_components -= 4;
2910 }
2911
2912 next_offset[buffer] = output->dst_offset + output->num_components;
2913
2914 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
2915 .OutputBufferSlot = output->output_buffer,
2916 .RegisterIndex = vue_map->varying_to_slot[varying],
2917 .ComponentMask =
2918 ((1 << output->num_components) - 1) << output->start_component,
2919 };
2920
2921 if (decls[stream_id] > max_decls)
2922 max_decls = decls[stream_id];
2923 }
2924
2925 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
2926 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
2927 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
2928
2929 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
2930 int urb_entry_read_offset = 0;
2931 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
2932 urb_entry_read_offset;
2933
2934 /* We always read the whole vertex. This could be reduced at some
2935 * point by reading less and offsetting the register index in the
2936 * SO_DECLs.
2937 */
2938 sol.Stream0VertexReadOffset = urb_entry_read_offset;
2939 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
2940 sol.Stream1VertexReadOffset = urb_entry_read_offset;
2941 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
2942 sol.Stream2VertexReadOffset = urb_entry_read_offset;
2943 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
2944 sol.Stream3VertexReadOffset = urb_entry_read_offset;
2945 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
2946
2947 /* Set buffer pitches; 0 means unbound. */
2948 sol.Buffer0SurfacePitch = 4 * info->stride[0];
2949 sol.Buffer1SurfacePitch = 4 * info->stride[1];
2950 sol.Buffer2SurfacePitch = 4 * info->stride[2];
2951 sol.Buffer3SurfacePitch = 4 * info->stride[3];
2952 }
2953
2954 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
2955 list.DWordLength = 3 + 2 * max_decls - 2;
2956 list.StreamtoBufferSelects0 = buffer_mask[0];
2957 list.StreamtoBufferSelects1 = buffer_mask[1];
2958 list.StreamtoBufferSelects2 = buffer_mask[2];
2959 list.StreamtoBufferSelects3 = buffer_mask[3];
2960 list.NumEntries0 = decls[0];
2961 list.NumEntries1 = decls[1];
2962 list.NumEntries2 = decls[2];
2963 list.NumEntries3 = decls[3];
2964 }
2965
2966 for (int i = 0; i < max_decls; i++) {
2967 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
2968 entry.Stream0Decl = so_decl[0][i];
2969 entry.Stream1Decl = so_decl[1][i];
2970 entry.Stream2Decl = so_decl[2][i];
2971 entry.Stream3Decl = so_decl[3][i];
2972 }
2973 }
2974
2975 return map;
2976 }
2977
2978 static void
2979 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
2980 const struct brw_vue_map *last_vue_map,
2981 bool two_sided_color,
2982 unsigned *out_offset,
2983 unsigned *out_length)
2984 {
2985 /* The compiler computes the first URB slot without considering COL/BFC
2986 * swizzling (because it doesn't know whether it's enabled), so we need
2987 * to do that here too. This may result in a smaller offset, which
2988 * should be safe.
2989 */
2990 const unsigned first_slot =
2991 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
2992
2993 /* This becomes the URB read offset (counted in pairs of slots). */
2994 assert(first_slot % 2 == 0);
2995 *out_offset = first_slot / 2;
2996
2997 /* We need to adjust the inputs read to account for front/back color
2998 * swizzling, as it can make the URB length longer.
2999 */
3000 for (int c = 0; c <= 1; c++) {
3001 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3002 /* If two sided color is enabled, the fragment shader's gl_Color
3003 * (COL0) input comes from either the gl_FrontColor (COL0) or
3004 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3005 */
3006 if (two_sided_color)
3007 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3008
3009 /* If front color isn't written, we opt to give them back color
3010 * instead of an undefined value. Switch from COL to BFC.
3011 */
3012 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3013 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3014 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3015 }
3016 }
3017 }
3018
3019 /* Compute the minimum URB Read Length necessary for the FS inputs.
3020 *
3021 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3022 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3023 *
3024 * "This field should be set to the minimum length required to read the
3025 * maximum source attribute. The maximum source attribute is indicated
3026 * by the maximum value of the enabled Attribute # Source Attribute if
3027 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3028 * enable is not set.
3029 * read_length = ceiling((max_source_attr + 1) / 2)
3030 *
3031 * [errata] Corruption/Hang possible if length programmed larger than
3032 * recommended"
3033 *
3034 * Similar text exists for Ivy Bridge.
3035 *
3036 * We find the last URB slot that's actually read by the FS.
3037 */
3038 unsigned last_read_slot = last_vue_map->num_slots - 1;
3039 while (last_read_slot > first_slot && !(fs_input_slots &
3040 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3041 --last_read_slot;
3042
3043 /* The URB read length is the difference of the two, counted in pairs. */
3044 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3045 }
3046
3047 static void
3048 iris_emit_sbe_swiz(struct iris_batch *batch,
3049 const struct iris_context *ice,
3050 unsigned urb_read_offset,
3051 unsigned sprite_coord_enables)
3052 {
3053 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3054 const struct brw_wm_prog_data *wm_prog_data = (void *)
3055 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3056 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3057 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3058
3059 /* XXX: this should be generated when putting programs in place */
3060
3061 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3062 const int input_index = wm_prog_data->urb_setup[fs_attr];
3063 if (input_index < 0 || input_index >= 16)
3064 continue;
3065
3066 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3067 &attr_overrides[input_index];
3068 int slot = vue_map->varying_to_slot[fs_attr];
3069
3070 /* Viewport and Layer are stored in the VUE header. We need to override
3071 * them to zero if earlier stages didn't write them, as GL requires that
3072 * they read back as zero when not explicitly set.
3073 */
3074 switch (fs_attr) {
3075 case VARYING_SLOT_VIEWPORT:
3076 case VARYING_SLOT_LAYER:
3077 attr->ComponentOverrideX = true;
3078 attr->ComponentOverrideW = true;
3079 attr->ConstantSource = CONST_0000;
3080
3081 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3082 attr->ComponentOverrideY = true;
3083 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3084 attr->ComponentOverrideZ = true;
3085 continue;
3086
3087 case VARYING_SLOT_PRIMITIVE_ID:
3088 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3089 if (slot == -1) {
3090 attr->ComponentOverrideX = true;
3091 attr->ComponentOverrideY = true;
3092 attr->ComponentOverrideZ = true;
3093 attr->ComponentOverrideW = true;
3094 attr->ConstantSource = PRIM_ID;
3095 continue;
3096 }
3097
3098 default:
3099 break;
3100 }
3101
3102 if (sprite_coord_enables & (1 << input_index))
3103 continue;
3104
3105 /* If there was only a back color written but not front, use back
3106 * as the color instead of undefined.
3107 */
3108 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3109 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3110 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3111 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3112
3113 /* Not written by the previous stage - undefined. */
3114 if (slot == -1) {
3115 attr->ComponentOverrideX = true;
3116 attr->ComponentOverrideY = true;
3117 attr->ComponentOverrideZ = true;
3118 attr->ComponentOverrideW = true;
3119 attr->ConstantSource = CONST_0001_FLOAT;
3120 continue;
3121 }
3122
3123 /* Compute the location of the attribute relative to the read offset,
3124 * which is counted in 256-bit increments (two 128-bit VUE slots).
3125 */
3126 const int source_attr = slot - 2 * urb_read_offset;
3127 assert(source_attr >= 0 && source_attr <= 32);
3128 attr->SourceAttribute = source_attr;
3129
3130 /* If we are doing two-sided color, and the VUE slot following this one
3131 * represents a back-facing color, then we need to instruct the SF unit
3132 * to do back-facing swizzling.
3133 */
3134 if (cso_rast->light_twoside &&
3135 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3136 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3137 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3138 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3139 attr->SwizzleSelect = INPUTATTR_FACING;
3140 }
3141
3142 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3143 for (int i = 0; i < 16; i++)
3144 sbes.Attribute[i] = attr_overrides[i];
3145 }
3146 }
3147
3148 static unsigned
3149 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3150 const struct iris_rasterizer_state *cso)
3151 {
3152 unsigned overrides = 0;
3153
3154 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3155 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3156
3157 for (int i = 0; i < 8; i++) {
3158 if ((cso->sprite_coord_enable & (1 << i)) &&
3159 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3160 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3161 }
3162
3163 return overrides;
3164 }
3165
3166 static void
3167 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3168 {
3169 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3170 const struct brw_wm_prog_data *wm_prog_data = (void *)
3171 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3172 const struct shader_info *fs_info =
3173 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3174
3175 unsigned urb_read_offset, urb_read_length;
3176 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3177 ice->shaders.last_vue_map,
3178 cso_rast->light_twoside,
3179 &urb_read_offset, &urb_read_length);
3180
3181 unsigned sprite_coord_overrides =
3182 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3183
3184 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3185 sbe.AttributeSwizzleEnable = true;
3186 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3187 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3188 sbe.VertexURBEntryReadOffset = urb_read_offset;
3189 sbe.VertexURBEntryReadLength = urb_read_length;
3190 sbe.ForceVertexURBEntryReadOffset = true;
3191 sbe.ForceVertexURBEntryReadLength = true;
3192 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3193 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3194 #if GEN_GEN >= 9
3195 for (int i = 0; i < 32; i++) {
3196 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3197 }
3198 #endif
3199 }
3200
3201 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3202 }
3203
3204 /* ------------------------------------------------------------------- */
3205
3206 /**
3207 * Populate VS program key fields based on the current state.
3208 */
3209 static void
3210 iris_populate_vs_key(const struct iris_context *ice,
3211 const struct shader_info *info,
3212 struct brw_vs_prog_key *key)
3213 {
3214 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3215
3216 if (info->clip_distance_array_size == 0 &&
3217 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)))
3218 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3219 }
3220
3221 /**
3222 * Populate TCS program key fields based on the current state.
3223 */
3224 static void
3225 iris_populate_tcs_key(const struct iris_context *ice,
3226 struct brw_tcs_prog_key *key)
3227 {
3228 }
3229
3230 /**
3231 * Populate TES program key fields based on the current state.
3232 */
3233 static void
3234 iris_populate_tes_key(const struct iris_context *ice,
3235 struct brw_tes_prog_key *key)
3236 {
3237 }
3238
3239 /**
3240 * Populate GS program key fields based on the current state.
3241 */
3242 static void
3243 iris_populate_gs_key(const struct iris_context *ice,
3244 struct brw_gs_prog_key *key)
3245 {
3246 }
3247
3248 /**
3249 * Populate FS program key fields based on the current state.
3250 */
3251 static void
3252 iris_populate_fs_key(const struct iris_context *ice,
3253 struct brw_wm_prog_key *key)
3254 {
3255 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3256 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3257 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3258 const struct iris_blend_state *blend = ice->state.cso_blend;
3259
3260 key->nr_color_regions = fb->nr_cbufs;
3261
3262 key->clamp_fragment_color = rast->clamp_fragment_color;
3263
3264 key->replicate_alpha = fb->nr_cbufs > 1 &&
3265 (zsa->alpha.enabled || blend->alpha_to_coverage);
3266
3267 /* XXX: only bother if COL0/1 are read */
3268 key->flat_shade = rast->flatshade;
3269
3270 key->persample_interp = rast->force_persample_interp;
3271 key->multisample_fbo = rast->multisample && fb->samples > 1;
3272
3273 key->coherent_fb_fetch = true;
3274
3275 /* TODO: support key->force_dual_color_blend for Unigine */
3276 /* TODO: Respect glHint for key->high_quality_derivatives */
3277 }
3278
3279 static void
3280 iris_populate_cs_key(const struct iris_context *ice,
3281 struct brw_cs_prog_key *key)
3282 {
3283 }
3284
3285 static uint64_t
3286 KSP(const struct iris_compiled_shader *shader)
3287 {
3288 struct iris_resource *res = (void *) shader->assembly.res;
3289 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3290 }
3291
3292 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3293 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3294 * this WA on C0 stepping.
3295 *
3296 * TODO: Fill out SamplerCount for prefetching?
3297 */
3298
3299 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3300 pkt.KernelStartPointer = KSP(shader); \
3301 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3302 prog_data->binding_table.size_bytes / 4; \
3303 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3304 \
3305 pkt.DispatchGRFStartRegisterForURBData = \
3306 prog_data->dispatch_grf_start_reg; \
3307 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3308 pkt.prefix##URBEntryReadOffset = 0; \
3309 \
3310 pkt.StatisticsEnable = true; \
3311 pkt.Enable = true; \
3312 \
3313 if (prog_data->total_scratch) { \
3314 struct iris_bo *bo = \
3315 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3316 uint32_t scratch_addr = bo->gtt_offset; \
3317 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3318 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3319 }
3320
3321 /**
3322 * Encode most of 3DSTATE_VS based on the compiled shader.
3323 */
3324 static void
3325 iris_store_vs_state(struct iris_context *ice,
3326 const struct gen_device_info *devinfo,
3327 struct iris_compiled_shader *shader)
3328 {
3329 struct brw_stage_prog_data *prog_data = shader->prog_data;
3330 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3331
3332 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3333 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3334 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3335 vs.SIMD8DispatchEnable = true;
3336 vs.UserClipDistanceCullTestEnableBitmask =
3337 vue_prog_data->cull_distance_mask;
3338 }
3339 }
3340
3341 /**
3342 * Encode most of 3DSTATE_HS based on the compiled shader.
3343 */
3344 static void
3345 iris_store_tcs_state(struct iris_context *ice,
3346 const struct gen_device_info *devinfo,
3347 struct iris_compiled_shader *shader)
3348 {
3349 struct brw_stage_prog_data *prog_data = shader->prog_data;
3350 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3351 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3352
3353 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3354 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3355
3356 hs.InstanceCount = tcs_prog_data->instances - 1;
3357 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3358 hs.IncludeVertexHandles = true;
3359 }
3360 }
3361
3362 /**
3363 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3364 */
3365 static void
3366 iris_store_tes_state(struct iris_context *ice,
3367 const struct gen_device_info *devinfo,
3368 struct iris_compiled_shader *shader)
3369 {
3370 struct brw_stage_prog_data *prog_data = shader->prog_data;
3371 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3372 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3373
3374 uint32_t *te_state = (void *) shader->derived_data;
3375 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3376
3377 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3378 te.Partitioning = tes_prog_data->partitioning;
3379 te.OutputTopology = tes_prog_data->output_topology;
3380 te.TEDomain = tes_prog_data->domain;
3381 te.TEEnable = true;
3382 te.MaximumTessellationFactorOdd = 63.0;
3383 te.MaximumTessellationFactorNotOdd = 64.0;
3384 }
3385
3386 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3387 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3388
3389 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3390 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3391 ds.ComputeWCoordinateEnable =
3392 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3393
3394 ds.UserClipDistanceCullTestEnableBitmask =
3395 vue_prog_data->cull_distance_mask;
3396 }
3397
3398 }
3399
3400 /**
3401 * Encode most of 3DSTATE_GS based on the compiled shader.
3402 */
3403 static void
3404 iris_store_gs_state(struct iris_context *ice,
3405 const struct gen_device_info *devinfo,
3406 struct iris_compiled_shader *shader)
3407 {
3408 struct brw_stage_prog_data *prog_data = shader->prog_data;
3409 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3410 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3411
3412 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3413 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3414
3415 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3416 gs.OutputTopology = gs_prog_data->output_topology;
3417 gs.ControlDataHeaderSize =
3418 gs_prog_data->control_data_header_size_hwords;
3419 gs.InstanceControl = gs_prog_data->invocations - 1;
3420 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3421 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3422 gs.ControlDataFormat = gs_prog_data->control_data_format;
3423 gs.ReorderMode = TRAILING;
3424 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3425 gs.MaximumNumberofThreads =
3426 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3427 : (devinfo->max_gs_threads - 1);
3428
3429 if (gs_prog_data->static_vertex_count != -1) {
3430 gs.StaticOutput = true;
3431 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3432 }
3433 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3434
3435 gs.UserClipDistanceCullTestEnableBitmask =
3436 vue_prog_data->cull_distance_mask;
3437
3438 const int urb_entry_write_offset = 1;
3439 const uint32_t urb_entry_output_length =
3440 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3441 urb_entry_write_offset;
3442
3443 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3444 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3445 }
3446 }
3447
3448 /**
3449 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3450 */
3451 static void
3452 iris_store_fs_state(struct iris_context *ice,
3453 const struct gen_device_info *devinfo,
3454 struct iris_compiled_shader *shader)
3455 {
3456 struct brw_stage_prog_data *prog_data = shader->prog_data;
3457 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3458
3459 uint32_t *ps_state = (void *) shader->derived_data;
3460 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3461
3462 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3463 ps.VectorMaskEnable = true;
3464 // XXX: WABTPPrefetchDisable, see above, drop at C0
3465 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3466 prog_data->binding_table.size_bytes / 4;
3467 ps.FloatingPointMode = prog_data->use_alt_mode;
3468 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3469
3470 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3471
3472 /* From the documentation for this packet:
3473 * "If the PS kernel does not need the Position XY Offsets to
3474 * compute a Position Value, then this field should be programmed
3475 * to POSOFFSET_NONE."
3476 *
3477 * "SW Recommendation: If the PS kernel needs the Position Offsets
3478 * to compute a Position XY value, this field should match Position
3479 * ZW Interpolation Mode to ensure a consistent position.xyzw
3480 * computation."
3481 *
3482 * We only require XY sample offsets. So, this recommendation doesn't
3483 * look useful at the moment. We might need this in future.
3484 */
3485 ps.PositionXYOffsetSelect =
3486 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3487 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
3488 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
3489 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
3490
3491 // XXX: Disable SIMD32 with 16x MSAA
3492
3493 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3494 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
3495 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3496 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
3497 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3498 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
3499
3500 ps.KernelStartPointer0 =
3501 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
3502 ps.KernelStartPointer1 =
3503 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
3504 ps.KernelStartPointer2 =
3505 KSP(shader) + brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
3506
3507 if (prog_data->total_scratch) {
3508 struct iris_bo *bo =
3509 iris_get_scratch_space(ice, prog_data->total_scratch,
3510 MESA_SHADER_FRAGMENT);
3511 uint32_t scratch_addr = bo->gtt_offset;
3512 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3513 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3514 }
3515 }
3516
3517 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3518 psx.PixelShaderValid = true;
3519 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3520 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3521 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3522 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3523 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3524 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3525 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3526
3527 #if GEN_GEN >= 9
3528 if (wm_prog_data->uses_sample_mask) {
3529 /* TODO: conservative rasterization */
3530 if (wm_prog_data->post_depth_coverage)
3531 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
3532 else
3533 psx.InputCoverageMaskState = ICMS_NORMAL;
3534 }
3535
3536 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3537 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3538 #else
3539 psx.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
3540 #endif
3541 // XXX: UAV bit
3542 }
3543 }
3544
3545 /**
3546 * Compute the size of the derived data (shader command packets).
3547 *
3548 * This must match the data written by the iris_store_xs_state() functions.
3549 */
3550 static void
3551 iris_store_cs_state(struct iris_context *ice,
3552 const struct gen_device_info *devinfo,
3553 struct iris_compiled_shader *shader)
3554 {
3555 struct brw_stage_prog_data *prog_data = shader->prog_data;
3556 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3557 void *map = shader->derived_data;
3558
3559 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3560 desc.KernelStartPointer = KSP(shader);
3561 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3562 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3563 desc.SharedLocalMemorySize =
3564 encode_slm_size(GEN_GEN, prog_data->total_shared);
3565 desc.BarrierEnable = cs_prog_data->uses_barrier;
3566 desc.CrossThreadConstantDataReadLength =
3567 cs_prog_data->push.cross_thread.regs;
3568 }
3569 }
3570
3571 static unsigned
3572 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3573 {
3574 assert(cache_id <= IRIS_CACHE_BLORP);
3575
3576 static const unsigned dwords[] = {
3577 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3578 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3579 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3580 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3581 [IRIS_CACHE_FS] =
3582 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3583 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3584 [IRIS_CACHE_BLORP] = 0,
3585 };
3586
3587 return sizeof(uint32_t) * dwords[cache_id];
3588 }
3589
3590 /**
3591 * Create any state packets corresponding to the given shader stage
3592 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3593 * This means that we can look up a program in the in-memory cache and
3594 * get most of the state packet without having to reconstruct it.
3595 */
3596 static void
3597 iris_store_derived_program_state(struct iris_context *ice,
3598 enum iris_program_cache_id cache_id,
3599 struct iris_compiled_shader *shader)
3600 {
3601 struct iris_screen *screen = (void *) ice->ctx.screen;
3602 const struct gen_device_info *devinfo = &screen->devinfo;
3603
3604 switch (cache_id) {
3605 case IRIS_CACHE_VS:
3606 iris_store_vs_state(ice, devinfo, shader);
3607 break;
3608 case IRIS_CACHE_TCS:
3609 iris_store_tcs_state(ice, devinfo, shader);
3610 break;
3611 case IRIS_CACHE_TES:
3612 iris_store_tes_state(ice, devinfo, shader);
3613 break;
3614 case IRIS_CACHE_GS:
3615 iris_store_gs_state(ice, devinfo, shader);
3616 break;
3617 case IRIS_CACHE_FS:
3618 iris_store_fs_state(ice, devinfo, shader);
3619 break;
3620 case IRIS_CACHE_CS:
3621 iris_store_cs_state(ice, devinfo, shader);
3622 case IRIS_CACHE_BLORP:
3623 break;
3624 default:
3625 break;
3626 }
3627 }
3628
3629 /* ------------------------------------------------------------------- */
3630
3631 /**
3632 * Configure the URB.
3633 *
3634 * XXX: write a real comment.
3635 */
3636 static void
3637 iris_upload_urb_config(struct iris_context *ice, struct iris_batch *batch)
3638 {
3639 const struct gen_device_info *devinfo = &batch->screen->devinfo;
3640 const unsigned push_size_kB = 32;
3641 unsigned entries[4];
3642 unsigned start[4];
3643 unsigned size[4];
3644
3645 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3646 if (!ice->shaders.prog[i]) {
3647 size[i] = 1;
3648 } else {
3649 struct brw_vue_prog_data *vue_prog_data =
3650 (void *) ice->shaders.prog[i]->prog_data;
3651 size[i] = vue_prog_data->urb_entry_size;
3652 }
3653 assert(size[i] != 0);
3654 }
3655
3656 gen_get_urb_config(devinfo, 1024 * push_size_kB,
3657 1024 * ice->shaders.urb_size,
3658 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
3659 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL,
3660 size, entries, start);
3661
3662 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
3663 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
3664 urb._3DCommandSubOpcode += i;
3665 urb.VSURBStartingAddress = start[i];
3666 urb.VSURBEntryAllocationSize = size[i] - 1;
3667 urb.VSNumberofURBEntries = entries[i];
3668 }
3669 }
3670 }
3671
3672 static const uint32_t push_constant_opcodes[] = {
3673 [MESA_SHADER_VERTEX] = 21,
3674 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3675 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3676 [MESA_SHADER_GEOMETRY] = 22,
3677 [MESA_SHADER_FRAGMENT] = 23,
3678 [MESA_SHADER_COMPUTE] = 0,
3679 };
3680
3681 static uint32_t
3682 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
3683 {
3684 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
3685
3686 iris_use_pinned_bo(batch, state_bo, false);
3687
3688 return ice->state.unbound_tex.offset;
3689 }
3690
3691 static uint32_t
3692 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
3693 {
3694 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
3695 if (!ice->state.null_fb.res)
3696 return use_null_surface(batch, ice);
3697
3698 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
3699
3700 iris_use_pinned_bo(batch, state_bo, false);
3701
3702 return ice->state.null_fb.offset;
3703 }
3704
3705 static uint32_t
3706 surf_state_offset_for_aux(struct iris_resource *res,
3707 enum isl_aux_usage aux_usage)
3708 {
3709 return SURFACE_STATE_ALIGNMENT *
3710 util_bitcount(res->aux.possible_usages & ((1 << aux_usage) - 1));
3711 }
3712
3713 /**
3714 * Add a surface to the validation list, as well as the buffer containing
3715 * the corresponding SURFACE_STATE.
3716 *
3717 * Returns the binding table entry (offset to SURFACE_STATE).
3718 */
3719 static uint32_t
3720 use_surface(struct iris_batch *batch,
3721 struct pipe_surface *p_surf,
3722 bool writeable,
3723 enum isl_aux_usage aux_usage)
3724 {
3725 struct iris_surface *surf = (void *) p_surf;
3726 struct iris_resource *res = (void *) p_surf->texture;
3727
3728 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
3729 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
3730
3731 if (res->aux.bo)
3732 iris_use_pinned_bo(batch, res->aux.bo, writeable);
3733
3734 return surf->surface_state.offset +
3735 surf_state_offset_for_aux(res, aux_usage);
3736 }
3737
3738 static uint32_t
3739 use_sampler_view(struct iris_context *ice,
3740 struct iris_batch *batch,
3741 struct iris_sampler_view *isv)
3742 {
3743 // XXX: ASTC hacks
3744 enum isl_aux_usage aux_usage =
3745 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
3746
3747 iris_use_pinned_bo(batch, isv->res->bo, false);
3748 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
3749
3750 if (isv->res->aux.bo)
3751 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
3752
3753 return isv->surface_state.offset +
3754 surf_state_offset_for_aux(isv->res, aux_usage);
3755 }
3756
3757 static uint32_t
3758 use_const_buffer(struct iris_batch *batch,
3759 struct iris_context *ice,
3760 struct iris_const_buffer *cbuf)
3761 {
3762 if (!cbuf->surface_state.res)
3763 return use_null_surface(batch, ice);
3764
3765 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->data.res), false);
3766 iris_use_pinned_bo(batch, iris_resource_bo(cbuf->surface_state.res), false);
3767
3768 return cbuf->surface_state.offset;
3769 }
3770
3771 static uint32_t
3772 use_ssbo(struct iris_batch *batch, struct iris_context *ice,
3773 struct iris_shader_state *shs, int i)
3774 {
3775 if (!shs->ssbo[i])
3776 return use_null_surface(batch, ice);
3777
3778 struct iris_state_ref *surf_state = &shs->ssbo_surface_state[i];
3779
3780 iris_use_pinned_bo(batch, iris_resource_bo(shs->ssbo[i]), true);
3781 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3782
3783 return surf_state->offset;
3784 }
3785
3786 static uint32_t
3787 use_image(struct iris_batch *batch, struct iris_context *ice,
3788 struct iris_shader_state *shs, int i)
3789 {
3790 if (!shs->image[i].res)
3791 return use_null_surface(batch, ice);
3792
3793 struct iris_resource *res = (void *) shs->image[i].res;
3794 struct iris_state_ref *surf_state = &shs->image[i].surface_state;
3795 bool write = shs->image[i].access & PIPE_IMAGE_ACCESS_WRITE;
3796
3797 iris_use_pinned_bo(batch, res->bo, write);
3798 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
3799
3800 if (res->aux.bo)
3801 iris_use_pinned_bo(batch, res->aux.bo, write);
3802
3803 return surf_state->offset;
3804 }
3805
3806 #define push_bt_entry(addr) \
3807 assert(addr >= binder_addr); \
3808 assert(s < prog_data->binding_table.size_bytes / sizeof(uint32_t)); \
3809 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
3810
3811 #define bt_assert(section, exists) \
3812 if (!pin_only) assert(prog_data->binding_table.section == \
3813 (exists) ? s : 0xd0d0d0d0)
3814
3815 /**
3816 * Populate the binding table for a given shader stage.
3817 *
3818 * This fills out the table of pointers to surfaces required by the shader,
3819 * and also adds those buffers to the validation list so the kernel can make
3820 * resident before running our batch.
3821 */
3822 static void
3823 iris_populate_binding_table(struct iris_context *ice,
3824 struct iris_batch *batch,
3825 gl_shader_stage stage,
3826 bool pin_only)
3827 {
3828 const struct iris_binder *binder = &ice->state.binder;
3829 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3830 if (!shader)
3831 return;
3832
3833 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
3834 struct iris_shader_state *shs = &ice->state.shaders[stage];
3835 uint32_t binder_addr = binder->bo->gtt_offset;
3836
3837 //struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
3838 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
3839 int s = 0;
3840
3841 const struct shader_info *info = iris_get_shader_info(ice, stage);
3842 if (!info) {
3843 /* TCS passthrough doesn't need a binding table. */
3844 assert(stage == MESA_SHADER_TESS_CTRL);
3845 return;
3846 }
3847
3848 if (stage == MESA_SHADER_COMPUTE) {
3849 /* surface for gl_NumWorkGroups */
3850 struct iris_state_ref *grid_data = &ice->state.grid_size;
3851 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
3852 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
3853 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
3854 push_bt_entry(grid_state->offset);
3855 }
3856
3857 if (stage == MESA_SHADER_FRAGMENT) {
3858 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
3859 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
3860 if (cso_fb->nr_cbufs) {
3861 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
3862 uint32_t addr;
3863 if (cso_fb->cbufs[i]) {
3864 addr = use_surface(batch, cso_fb->cbufs[i], true,
3865 ice->state.draw_aux_usage[i]);
3866 } else {
3867 addr = use_null_fb_surface(batch, ice);
3868 }
3869 push_bt_entry(addr);
3870 }
3871 } else {
3872 uint32_t addr = use_null_fb_surface(batch, ice);
3873 push_bt_entry(addr);
3874 }
3875 }
3876
3877 unsigned num_textures = util_last_bit(info->textures_used);
3878
3879 bt_assert(texture_start, num_textures > 0);
3880
3881 for (int i = 0; i < num_textures; i++) {
3882 struct iris_sampler_view *view = shs->textures[i];
3883 uint32_t addr = view ? use_sampler_view(ice, batch, view)
3884 : use_null_surface(batch, ice);
3885 push_bt_entry(addr);
3886 }
3887
3888 bt_assert(image_start, info->num_images > 0);
3889
3890 for (int i = 0; i < info->num_images; i++) {
3891 uint32_t addr = use_image(batch, ice, shs, i);
3892 push_bt_entry(addr);
3893 }
3894
3895 bt_assert(ubo_start, shader->num_cbufs > 0);
3896
3897 for (int i = 0; i < shader->num_cbufs; i++) {
3898 uint32_t addr = use_const_buffer(batch, ice, &shs->constbuf[i]);
3899 push_bt_entry(addr);
3900 }
3901
3902 bt_assert(ssbo_start, info->num_abos + info->num_ssbos > 0);
3903
3904 /* XXX: st is wasting 16 binding table slots for ABOs. Should add a cap
3905 * for changing nir_lower_atomics_to_ssbos setting and buffer_base offset
3906 * in st_atom_storagebuf.c so it'll compact them into one range, with
3907 * SSBOs starting at info->num_abos. Ideally it'd reset num_abos to 0 too
3908 */
3909 if (info->num_abos + info->num_ssbos > 0) {
3910 for (int i = 0; i < IRIS_MAX_ABOS + info->num_ssbos; i++) {
3911 uint32_t addr = use_ssbo(batch, ice, shs, i);
3912 push_bt_entry(addr);
3913 }
3914 }
3915
3916 #if 0
3917 /* XXX: YUV surfaces not implemented yet */
3918 bt_assert(plane_start[1], ...);
3919 bt_assert(plane_start[2], ...);
3920 #endif
3921 }
3922
3923 static void
3924 iris_use_optional_res(struct iris_batch *batch,
3925 struct pipe_resource *res,
3926 bool writeable)
3927 {
3928 if (res) {
3929 struct iris_bo *bo = iris_resource_bo(res);
3930 iris_use_pinned_bo(batch, bo, writeable);
3931 }
3932 }
3933
3934 /* ------------------------------------------------------------------- */
3935
3936 /**
3937 * Pin any BOs which were installed by a previous batch, and restored
3938 * via the hardware logical context mechanism.
3939 *
3940 * We don't need to re-emit all state every batch - the hardware context
3941 * mechanism will save and restore it for us. This includes pointers to
3942 * various BOs...which won't exist unless we ask the kernel to pin them
3943 * by adding them to the validation list.
3944 *
3945 * We can skip buffers if we've re-emitted those packets, as we're
3946 * overwriting those stale pointers with new ones, and don't actually
3947 * refer to the old BOs.
3948 */
3949 static void
3950 iris_restore_render_saved_bos(struct iris_context *ice,
3951 struct iris_batch *batch,
3952 const struct pipe_draw_info *draw)
3953 {
3954 struct iris_genx_state *genx = ice->state.genx;
3955
3956 const uint64_t clean = ~ice->state.dirty;
3957
3958 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
3959 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
3960 }
3961
3962 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
3963 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
3964 }
3965
3966 if (clean & IRIS_DIRTY_BLEND_STATE) {
3967 iris_use_optional_res(batch, ice->state.last_res.blend, false);
3968 }
3969
3970 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
3971 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
3972 }
3973
3974 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
3975 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
3976 }
3977
3978 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
3979 for (int i = 0; i < 4; i++) {
3980 struct iris_stream_output_target *tgt =
3981 (void *) ice->state.so_target[i];
3982 if (tgt) {
3983 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
3984 true);
3985 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
3986 true);
3987 }
3988 }
3989 }
3990
3991 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3992 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
3993 continue;
3994
3995 struct iris_shader_state *shs = &ice->state.shaders[stage];
3996 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
3997
3998 if (!shader)
3999 continue;
4000
4001 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4002
4003 for (int i = 0; i < 4; i++) {
4004 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4005
4006 if (range->length == 0)
4007 continue;
4008
4009 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4010 struct iris_resource *res = (void *) cbuf->data.res;
4011
4012 if (res)
4013 iris_use_pinned_bo(batch, res->bo, false);
4014 else
4015 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4016 }
4017 }
4018
4019 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4020 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4021 /* Re-pin any buffers referred to by the binding table. */
4022 iris_populate_binding_table(ice, batch, stage, true);
4023 }
4024 }
4025
4026 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4027 struct iris_shader_state *shs = &ice->state.shaders[stage];
4028 struct pipe_resource *res = shs->sampler_table.res;
4029 if (res)
4030 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4031 }
4032
4033 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4034 if (clean & (IRIS_DIRTY_VS << stage)) {
4035 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4036
4037 if (shader) {
4038 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4039 iris_use_pinned_bo(batch, bo, false);
4040
4041 struct brw_stage_prog_data *prog_data = shader->prog_data;
4042
4043 if (prog_data->total_scratch > 0) {
4044 struct iris_bo *bo =
4045 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4046 iris_use_pinned_bo(batch, bo, true);
4047 }
4048 }
4049 }
4050 }
4051
4052 if (clean & IRIS_DIRTY_DEPTH_BUFFER) {
4053 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4054
4055 if (cso_fb->zsbuf) {
4056 struct iris_resource *zres, *sres;
4057 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4058 &zres, &sres);
4059 if (zres) {
4060 iris_cache_flush_for_depth(batch, zres->bo);
4061
4062 iris_use_pinned_bo(batch, zres->bo,
4063 ice->state.depth_writes_enabled);
4064 if (zres->aux.bo) {
4065 iris_use_pinned_bo(batch, zres->aux.bo,
4066 ice->state.depth_writes_enabled);
4067 }
4068 }
4069
4070 if (sres) {
4071 iris_cache_flush_for_depth(batch, sres->bo);
4072
4073 iris_use_pinned_bo(batch, sres->bo,
4074 ice->state.stencil_writes_enabled);
4075 }
4076 }
4077 }
4078
4079 if (draw->index_size == 0 && ice->state.last_res.index_buffer) {
4080 /* This draw didn't emit a new index buffer, so we are inheriting the
4081 * older index buffer. This draw didn't need it, but future ones may.
4082 */
4083 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4084 iris_use_pinned_bo(batch, bo, false);
4085 }
4086
4087 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4088 uint64_t bound = ice->state.bound_vertex_buffers;
4089 while (bound) {
4090 const int i = u_bit_scan64(&bound);
4091 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4092 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4093 }
4094 }
4095 }
4096
4097 static void
4098 iris_restore_compute_saved_bos(struct iris_context *ice,
4099 struct iris_batch *batch,
4100 const struct pipe_grid_info *grid)
4101 {
4102 const uint64_t clean = ~ice->state.dirty;
4103
4104 const int stage = MESA_SHADER_COMPUTE;
4105 struct iris_shader_state *shs = &ice->state.shaders[stage];
4106
4107 if (clean & IRIS_DIRTY_CONSTANTS_CS) {
4108 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4109
4110 if (shader) {
4111 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4112 const struct brw_ubo_range *range = &prog_data->ubo_ranges[0];
4113
4114 if (range->length > 0) {
4115 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4116 struct iris_resource *res = (void *) cbuf->data.res;
4117
4118 if (res)
4119 iris_use_pinned_bo(batch, res->bo, false);
4120 else
4121 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4122 }
4123 }
4124 }
4125
4126 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4127 /* Re-pin any buffers referred to by the binding table. */
4128 iris_populate_binding_table(ice, batch, stage, true);
4129 }
4130
4131 struct pipe_resource *sampler_res = shs->sampler_table.res;
4132 if (sampler_res)
4133 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4134
4135 if (clean & IRIS_DIRTY_CS) {
4136 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4137
4138 if (shader) {
4139 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4140 iris_use_pinned_bo(batch, bo, false);
4141
4142 struct brw_stage_prog_data *prog_data = shader->prog_data;
4143
4144 if (prog_data->total_scratch > 0) {
4145 struct iris_bo *bo =
4146 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4147 iris_use_pinned_bo(batch, bo, true);
4148 }
4149 }
4150 }
4151 }
4152
4153 /**
4154 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4155 */
4156 static void
4157 iris_update_surface_base_address(struct iris_batch *batch,
4158 struct iris_binder *binder)
4159 {
4160 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4161 return;
4162
4163 flush_for_state_base_change(batch);
4164
4165 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4166 sba.SurfaceStateMOCS = MOCS_WB;
4167 sba.SurfaceStateBaseAddressModifyEnable = true;
4168 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4169 }
4170
4171 batch->last_surface_base_address = binder->bo->gtt_offset;
4172 }
4173
4174 static void
4175 iris_upload_dirty_render_state(struct iris_context *ice,
4176 struct iris_batch *batch,
4177 const struct pipe_draw_info *draw)
4178 {
4179 const uint64_t dirty = ice->state.dirty;
4180
4181 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4182 return;
4183
4184 struct iris_genx_state *genx = ice->state.genx;
4185 struct iris_binder *binder = &ice->state.binder;
4186 struct brw_wm_prog_data *wm_prog_data = (void *)
4187 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4188
4189 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4190 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4191 uint32_t cc_vp_address;
4192
4193 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4194 uint32_t *cc_vp_map =
4195 stream_state(batch, ice->state.dynamic_uploader,
4196 &ice->state.last_res.cc_vp,
4197 4 * ice->state.num_viewports *
4198 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4199 for (int i = 0; i < ice->state.num_viewports; i++) {
4200 float zmin, zmax;
4201 util_viewport_zmin_zmax(&ice->state.viewports[i],
4202 cso_rast->clip_halfz, &zmin, &zmax);
4203 if (cso_rast->depth_clip_near)
4204 zmin = 0.0;
4205 if (cso_rast->depth_clip_far)
4206 zmax = 1.0;
4207
4208 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4209 ccv.MinimumDepth = zmin;
4210 ccv.MaximumDepth = zmax;
4211 }
4212
4213 cc_vp_map += GENX(CC_VIEWPORT_length);
4214 }
4215
4216 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4217 ptr.CCViewportPointer = cc_vp_address;
4218 }
4219 }
4220
4221 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4222 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4223 uint32_t sf_cl_vp_address;
4224 uint32_t *vp_map =
4225 stream_state(batch, ice->state.dynamic_uploader,
4226 &ice->state.last_res.sf_cl_vp,
4227 4 * ice->state.num_viewports *
4228 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4229
4230 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4231 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4232 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4233
4234 float vp_xmin = viewport_extent(state, 0, -1.0f);
4235 float vp_xmax = viewport_extent(state, 0, 1.0f);
4236 float vp_ymin = viewport_extent(state, 1, -1.0f);
4237 float vp_ymax = viewport_extent(state, 1, 1.0f);
4238
4239 calculate_guardband_size(cso_fb->width, cso_fb->height,
4240 state->scale[0], state->scale[1],
4241 state->translate[0], state->translate[1],
4242 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4243
4244 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4245 vp.ViewportMatrixElementm00 = state->scale[0];
4246 vp.ViewportMatrixElementm11 = state->scale[1];
4247 vp.ViewportMatrixElementm22 = state->scale[2];
4248 vp.ViewportMatrixElementm30 = state->translate[0];
4249 vp.ViewportMatrixElementm31 = state->translate[1];
4250 vp.ViewportMatrixElementm32 = state->translate[2];
4251 vp.XMinClipGuardband = gb_xmin;
4252 vp.XMaxClipGuardband = gb_xmax;
4253 vp.YMinClipGuardband = gb_ymin;
4254 vp.YMaxClipGuardband = gb_ymax;
4255 vp.XMinViewPort = MAX2(vp_xmin, 0);
4256 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4257 vp.YMinViewPort = MAX2(vp_ymin, 0);
4258 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4259 }
4260
4261 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4262 }
4263
4264 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4265 ptr.SFClipViewportPointer = sf_cl_vp_address;
4266 }
4267 }
4268
4269 if (dirty & IRIS_DIRTY_URB) {
4270 iris_upload_urb_config(ice, batch);
4271 }
4272
4273 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4274 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4275 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4276 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4277 const int header_dwords = GENX(BLEND_STATE_length);
4278
4279 /* Always write at least one BLEND_STATE - the final RT message will
4280 * reference BLEND_STATE[0] even if there aren't color writes. There
4281 * may still be alpha testing, computed depth, and so on.
4282 */
4283 const int rt_dwords =
4284 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4285
4286 uint32_t blend_offset;
4287 uint32_t *blend_map =
4288 stream_state(batch, ice->state.dynamic_uploader,
4289 &ice->state.last_res.blend,
4290 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4291
4292 uint32_t blend_state_header;
4293 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4294 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4295 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4296 }
4297
4298 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4299 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4300
4301 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4302 ptr.BlendStatePointer = blend_offset;
4303 ptr.BlendStatePointerValid = true;
4304 }
4305 }
4306
4307 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4308 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4309 #if GEN_GEN == 8
4310 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4311 #endif
4312 uint32_t cc_offset;
4313 void *cc_map =
4314 stream_state(batch, ice->state.dynamic_uploader,
4315 &ice->state.last_res.color_calc,
4316 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4317 64, &cc_offset);
4318 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4319 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4320 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4321 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4322 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4323 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4324 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4325 #if GEN_GEN == 8
4326 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4327 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4328 #endif
4329 }
4330 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4331 ptr.ColorCalcStatePointer = cc_offset;
4332 ptr.ColorCalcStatePointerValid = true;
4333 }
4334 }
4335
4336 /* Upload constants for TCS passthrough. */
4337 if ((dirty & IRIS_DIRTY_CONSTANTS_TCS) &&
4338 ice->shaders.prog[MESA_SHADER_TESS_CTRL] &&
4339 !ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL]) {
4340 struct iris_compiled_shader *tes_shader = ice->shaders.prog[MESA_SHADER_TESS_EVAL];
4341 assert(tes_shader);
4342
4343 /* Passthrough always copies 2 vec4s, so when uploading data we ensure
4344 * it is in the right layout for TES.
4345 */
4346 float hdr[8] = {};
4347 struct brw_tes_prog_data *tes_prog_data = (void *) tes_shader->prog_data;
4348 switch (tes_prog_data->domain) {
4349 case BRW_TESS_DOMAIN_QUAD:
4350 for (int i = 0; i < 4; i++)
4351 hdr[7 - i] = ice->state.default_outer_level[i];
4352 hdr[3] = ice->state.default_inner_level[0];
4353 hdr[2] = ice->state.default_inner_level[1];
4354 break;
4355 case BRW_TESS_DOMAIN_TRI:
4356 for (int i = 0; i < 3; i++)
4357 hdr[7 - i] = ice->state.default_outer_level[i];
4358 hdr[4] = ice->state.default_inner_level[0];
4359 break;
4360 case BRW_TESS_DOMAIN_ISOLINE:
4361 hdr[7] = ice->state.default_outer_level[1];
4362 hdr[6] = ice->state.default_outer_level[0];
4363 break;
4364 }
4365
4366 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
4367 struct iris_const_buffer *cbuf = &shs->constbuf[0];
4368 u_upload_data(ice->ctx.const_uploader, 0, sizeof(hdr), 32,
4369 &hdr[0], &cbuf->data.offset,
4370 &cbuf->data.res);
4371 }
4372
4373 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4374 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4375 continue;
4376
4377 struct iris_shader_state *shs = &ice->state.shaders[stage];
4378 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4379
4380 if (!shader)
4381 continue;
4382
4383 if (shs->cbuf0_needs_upload)
4384 upload_uniforms(ice, stage);
4385
4386 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4387
4388 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4389 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4390 if (prog_data) {
4391 /* The Skylake PRM contains the following restriction:
4392 *
4393 * "The driver must ensure The following case does not occur
4394 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4395 * buffer 3 read length equal to zero committed followed by a
4396 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4397 * zero committed."
4398 *
4399 * To avoid this, we program the buffers in the highest slots.
4400 * This way, slot 0 is only used if slot 3 is also used.
4401 */
4402 int n = 3;
4403
4404 for (int i = 3; i >= 0; i--) {
4405 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4406
4407 if (range->length == 0)
4408 continue;
4409
4410 struct iris_const_buffer *cbuf = &shs->constbuf[range->block];
4411 struct iris_resource *res = (void *) cbuf->data.res;
4412
4413 assert(cbuf->data.offset % 32 == 0);
4414
4415 pkt.ConstantBody.ReadLength[n] = range->length;
4416 pkt.ConstantBody.Buffer[n] =
4417 res ? ro_bo(res->bo, range->start * 32 + cbuf->data.offset)
4418 : ro_bo(batch->screen->workaround_bo, 0);
4419 n--;
4420 }
4421 }
4422 }
4423 }
4424
4425 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4426 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4427 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4428 ptr._3DCommandSubOpcode = 38 + stage;
4429 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4430 }
4431 }
4432 }
4433
4434 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4435 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4436 iris_populate_binding_table(ice, batch, stage, false);
4437 }
4438 }
4439
4440 if (ice->state.need_border_colors)
4441 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4442
4443 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4444 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4445 !ice->shaders.prog[stage])
4446 continue;
4447
4448 struct iris_shader_state *shs = &ice->state.shaders[stage];
4449 struct pipe_resource *res = shs->sampler_table.res;
4450 if (res)
4451 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4452
4453 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4454 ptr._3DCommandSubOpcode = 43 + stage;
4455 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4456 }
4457 }
4458
4459 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4460 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4461 ms.PixelLocation =
4462 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4463 if (ice->state.framebuffer.samples > 0)
4464 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4465 }
4466 }
4467
4468 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4469 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4470 ms.SampleMask = ice->state.sample_mask;
4471 }
4472 }
4473
4474 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4475 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4476 continue;
4477
4478 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4479
4480 if (shader) {
4481 struct iris_resource *cache = (void *) shader->assembly.res;
4482 iris_use_pinned_bo(batch, cache->bo, false);
4483 iris_batch_emit(batch, shader->derived_data,
4484 iris_derived_program_state_size(stage));
4485 } else {
4486 if (stage == MESA_SHADER_TESS_EVAL) {
4487 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
4488 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
4489 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
4490 } else if (stage == MESA_SHADER_GEOMETRY) {
4491 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
4492 }
4493 }
4494 }
4495
4496 if (ice->state.streamout_active) {
4497 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
4498 iris_batch_emit(batch, genx->so_buffers,
4499 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
4500 for (int i = 0; i < 4; i++) {
4501 struct iris_stream_output_target *tgt =
4502 (void *) ice->state.so_target[i];
4503 if (tgt) {
4504 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4505 true);
4506 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4507 true);
4508 }
4509 }
4510 }
4511
4512 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
4513 uint32_t *decl_list =
4514 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
4515 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
4516 }
4517
4518 if (dirty & IRIS_DIRTY_STREAMOUT) {
4519 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4520
4521 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
4522 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
4523 sol.SOFunctionEnable = true;
4524 sol.SOStatisticsEnable = true;
4525
4526 sol.RenderingDisable = cso_rast->rasterizer_discard &&
4527 !ice->state.prims_generated_query_active;
4528 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
4529 }
4530
4531 assert(ice->state.streamout);
4532
4533 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
4534 GENX(3DSTATE_STREAMOUT_length));
4535 }
4536 } else {
4537 if (dirty & IRIS_DIRTY_STREAMOUT) {
4538 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
4539 }
4540 }
4541
4542 if (dirty & IRIS_DIRTY_CLIP) {
4543 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4544 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4545
4546 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
4547 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
4548 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
4549 cl.ClipMode = cso_rast->rasterizer_discard ? CLIPMODE_REJECT_ALL
4550 : CLIPMODE_NORMAL;
4551 if (wm_prog_data->barycentric_interp_modes &
4552 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
4553 cl.NonPerspectiveBarycentricEnable = true;
4554
4555 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
4556 cl.MaximumVPIndex = ice->state.num_viewports - 1;
4557 }
4558 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
4559 ARRAY_SIZE(cso_rast->clip));
4560 }
4561
4562 if (dirty & IRIS_DIRTY_RASTER) {
4563 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4564 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
4565 iris_batch_emit(batch, cso->sf, sizeof(cso->sf));
4566
4567 }
4568
4569 if (dirty & IRIS_DIRTY_WM) {
4570 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4571 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
4572
4573 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
4574 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
4575
4576 wm.BarycentricInterpolationMode =
4577 wm_prog_data->barycentric_interp_modes;
4578
4579 if (wm_prog_data->early_fragment_tests)
4580 wm.EarlyDepthStencilControl = EDSC_PREPS;
4581 else if (wm_prog_data->has_side_effects)
4582 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
4583
4584 /* We could skip this bit if color writes are enabled. */
4585 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
4586 wm.ForceThreadDispatchEnable = ForceON;
4587 }
4588 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
4589 }
4590
4591 if (dirty & IRIS_DIRTY_SBE) {
4592 iris_emit_sbe(batch, ice);
4593 }
4594
4595 if (dirty & IRIS_DIRTY_PS_BLEND) {
4596 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4597 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4598 const struct shader_info *fs_info =
4599 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
4600
4601 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
4602 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
4603 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
4604 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
4605 }
4606
4607 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
4608 ARRAY_SIZE(cso_blend->ps_blend));
4609 }
4610
4611 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
4612 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4613 #if GEN_GEN >= 9
4614 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4615 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
4616 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
4617 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
4618 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4619 }
4620 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
4621 #else
4622 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
4623 #endif
4624 }
4625
4626 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
4627 uint32_t scissor_offset =
4628 emit_state(batch, ice->state.dynamic_uploader,
4629 &ice->state.last_res.scissor,
4630 ice->state.scissors,
4631 sizeof(struct pipe_scissor_state) *
4632 ice->state.num_viewports, 32);
4633
4634 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
4635 ptr.ScissorRectPointer = scissor_offset;
4636 }
4637 }
4638
4639 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
4640 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4641 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
4642
4643 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
4644
4645 if (cso_fb->zsbuf) {
4646 struct iris_resource *zres, *sres;
4647 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
4648 &zres, &sres);
4649 if (zres) {
4650 iris_use_pinned_bo(batch, zres->bo,
4651 ice->state.depth_writes_enabled);
4652 if (zres->aux.bo) {
4653 iris_use_pinned_bo(batch, zres->aux.bo,
4654 ice->state.depth_writes_enabled);
4655 }
4656 }
4657
4658 if (sres) {
4659 iris_use_pinned_bo(batch, sres->bo,
4660 ice->state.stencil_writes_enabled);
4661 }
4662 }
4663 }
4664
4665 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
4666 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
4667 for (int i = 0; i < 32; i++) {
4668 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
4669 }
4670 }
4671 }
4672
4673 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
4674 struct iris_rasterizer_state *cso = ice->state.cso_rast;
4675 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
4676 }
4677
4678 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
4679 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
4680 topo.PrimitiveTopologyType =
4681 translate_prim_type(draw->mode, draw->vertices_per_patch);
4682 }
4683 }
4684
4685 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
4686 int count = util_bitcount64(ice->state.bound_vertex_buffers);
4687 int dynamic_bound = ice->state.bound_vertex_buffers;
4688
4689 if (ice->state.vs_uses_draw_params) {
4690 if (ice->draw.draw_params_offset == 0) {
4691 u_upload_data(ice->state.dynamic_uploader, 0, sizeof(ice->draw.params),
4692 4, &ice->draw.params, &ice->draw.draw_params_offset,
4693 &ice->draw.draw_params_res);
4694 }
4695 assert(ice->draw.draw_params_res);
4696
4697 struct iris_vertex_buffer_state *state =
4698 &(ice->state.genx->vertex_buffers[count]);
4699 pipe_resource_reference(&state->resource, ice->draw.draw_params_res);
4700 struct iris_resource *res = (void *) state->resource;
4701
4702 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4703 vb.VertexBufferIndex = count;
4704 vb.AddressModifyEnable = true;
4705 vb.BufferPitch = 0;
4706 vb.BufferSize = res->bo->size - ice->draw.draw_params_offset;
4707 vb.BufferStartingAddress =
4708 ro_bo(NULL, res->bo->gtt_offset +
4709 (int) ice->draw.draw_params_offset);
4710 vb.MOCS = mocs(res->bo);
4711 }
4712 dynamic_bound |= 1ull << count;
4713 count++;
4714 }
4715
4716 if (ice->state.vs_uses_derived_draw_params) {
4717 u_upload_data(ice->state.dynamic_uploader, 0,
4718 sizeof(ice->draw.derived_params), 4,
4719 &ice->draw.derived_params,
4720 &ice->draw.derived_draw_params_offset,
4721 &ice->draw.derived_draw_params_res);
4722
4723 struct iris_vertex_buffer_state *state =
4724 &(ice->state.genx->vertex_buffers[count]);
4725 pipe_resource_reference(&state->resource,
4726 ice->draw.derived_draw_params_res);
4727 struct iris_resource *res = (void *) ice->draw.derived_draw_params_res;
4728
4729 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4730 vb.VertexBufferIndex = count;
4731 vb.AddressModifyEnable = true;
4732 vb.BufferPitch = 0;
4733 vb.BufferSize =
4734 res->bo->size - ice->draw.derived_draw_params_offset;
4735 vb.BufferStartingAddress =
4736 ro_bo(NULL, res->bo->gtt_offset +
4737 (int) ice->draw.derived_draw_params_offset);
4738 vb.MOCS = mocs(res->bo);
4739 }
4740 dynamic_bound |= 1ull << count;
4741 count++;
4742 }
4743
4744 if (count) {
4745 /* The VF cache designers cut corners, and made the cache key's
4746 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
4747 * 32 bits of the address. If you have two vertex buffers which get
4748 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
4749 * you can get collisions (even within a single batch).
4750 *
4751 * So, we need to do a VF cache invalidate if the buffer for a VB
4752 * slot slot changes [48:32] address bits from the previous time.
4753 */
4754 unsigned flush_flags = 0;
4755
4756 uint64_t bound = dynamic_bound;
4757 while (bound) {
4758 const int i = u_bit_scan64(&bound);
4759 uint16_t high_bits = 0;
4760
4761 struct iris_resource *res =
4762 (void *) genx->vertex_buffers[i].resource;
4763 if (res) {
4764 iris_use_pinned_bo(batch, res->bo, false);
4765
4766 high_bits = res->bo->gtt_offset >> 32ull;
4767 if (high_bits != ice->state.last_vbo_high_bits[i]) {
4768 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
4769 PIPE_CONTROL_CS_STALL;
4770 ice->state.last_vbo_high_bits[i] = high_bits;
4771 }
4772
4773 /* If the buffer was written to by streamout, we may need
4774 * to stall so those writes land and become visible to the
4775 * vertex fetcher.
4776 *
4777 * TODO: This may stall more than necessary.
4778 */
4779 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT)
4780 flush_flags |= PIPE_CONTROL_CS_STALL;
4781 }
4782 }
4783
4784 if (flush_flags)
4785 iris_emit_pipe_control_flush(batch, flush_flags);
4786
4787 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
4788
4789 uint32_t *map =
4790 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
4791 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
4792 vb.DWordLength = (vb_dwords * count + 1) - 2;
4793 }
4794 map += 1;
4795
4796 bound = dynamic_bound;
4797 while (bound) {
4798 const int i = u_bit_scan64(&bound);
4799 memcpy(map, genx->vertex_buffers[i].state,
4800 sizeof(uint32_t) * vb_dwords);
4801 map += vb_dwords;
4802 }
4803 }
4804 }
4805
4806 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
4807 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4808 const unsigned entries = MAX2(cso->count, 1);
4809 if (!(ice->state.vs_needs_sgvs_element ||
4810 ice->state.vs_uses_derived_draw_params ||
4811 ice->state.vs_needs_edge_flag)) {
4812 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
4813 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
4814 } else {
4815 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
4816 const unsigned dyn_count = cso->count +
4817 ice->state.vs_needs_sgvs_element +
4818 ice->state.vs_uses_derived_draw_params;
4819
4820 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
4821 &dynamic_ves, ve) {
4822 ve.DWordLength =
4823 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
4824 }
4825 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
4826 (cso->count - ice->state.vs_needs_edge_flag) *
4827 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
4828 uint32_t *ve_pack_dest =
4829 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
4830 GENX(VERTEX_ELEMENT_STATE_length)];
4831
4832 if (ice->state.vs_needs_sgvs_element) {
4833 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
4834 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
4835 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
4836 ve.Valid = true;
4837 ve.VertexBufferIndex =
4838 util_bitcount64(ice->state.bound_vertex_buffers);
4839 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
4840 ve.Component0Control = base_ctrl;
4841 ve.Component1Control = base_ctrl;
4842 ve.Component2Control = VFCOMP_STORE_0;
4843 ve.Component3Control = VFCOMP_STORE_0;
4844 }
4845 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
4846 }
4847 if (ice->state.vs_uses_derived_draw_params) {
4848 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
4849 ve.Valid = true;
4850 ve.VertexBufferIndex =
4851 util_bitcount64(ice->state.bound_vertex_buffers) +
4852 ice->state.vs_uses_draw_params;
4853 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
4854 ve.Component0Control = VFCOMP_STORE_SRC;
4855 ve.Component1Control = VFCOMP_STORE_SRC;
4856 ve.Component2Control = VFCOMP_STORE_0;
4857 ve.Component3Control = VFCOMP_STORE_0;
4858 }
4859 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
4860 }
4861 if (ice->state.vs_needs_edge_flag) {
4862 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
4863 ve_pack_dest[i] = cso->edgeflag_ve[i];
4864 }
4865
4866 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
4867 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
4868 }
4869
4870 if (!ice->state.vs_needs_edge_flag) {
4871 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
4872 entries * GENX(3DSTATE_VF_INSTANCING_length));
4873 } else {
4874 assert(cso->count > 0);
4875 const unsigned edgeflag_index = cso->count - 1;
4876 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
4877 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
4878 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
4879
4880 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
4881 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
4882 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
4883 vi.VertexElementIndex = edgeflag_index +
4884 ice->state.vs_needs_sgvs_element +
4885 ice->state.vs_uses_derived_draw_params;
4886 }
4887 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
4888 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
4889
4890 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
4891 entries * GENX(3DSTATE_VF_INSTANCING_length));
4892 }
4893 }
4894
4895 if (dirty & IRIS_DIRTY_VF_SGVS) {
4896 const struct brw_vs_prog_data *vs_prog_data = (void *)
4897 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
4898 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
4899
4900 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
4901 if (vs_prog_data->uses_vertexid) {
4902 sgv.VertexIDEnable = true;
4903 sgv.VertexIDComponentNumber = 2;
4904 sgv.VertexIDElementOffset =
4905 cso->count - ice->state.vs_needs_edge_flag;
4906 }
4907
4908 if (vs_prog_data->uses_instanceid) {
4909 sgv.InstanceIDEnable = true;
4910 sgv.InstanceIDComponentNumber = 3;
4911 sgv.InstanceIDElementOffset =
4912 cso->count - ice->state.vs_needs_edge_flag;
4913 }
4914 }
4915 }
4916
4917 if (dirty & IRIS_DIRTY_VF) {
4918 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
4919 if (draw->primitive_restart) {
4920 vf.IndexedDrawCutIndexEnable = true;
4921 vf.CutIndex = draw->restart_index;
4922 }
4923 }
4924 }
4925
4926 /* TODO: Gen8 PMA fix */
4927 }
4928
4929 static void
4930 iris_upload_render_state(struct iris_context *ice,
4931 struct iris_batch *batch,
4932 const struct pipe_draw_info *draw)
4933 {
4934 /* Always pin the binder. If we're emitting new binding table pointers,
4935 * we need it. If not, we're probably inheriting old tables via the
4936 * context, and need it anyway. Since true zero-bindings cases are
4937 * practically non-existent, just pin it and avoid last_res tracking.
4938 */
4939 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
4940
4941 if (!batch->contains_draw) {
4942 iris_restore_render_saved_bos(ice, batch, draw);
4943 batch->contains_draw = true;
4944 }
4945
4946 iris_upload_dirty_render_state(ice, batch, draw);
4947
4948 if (draw->index_size > 0) {
4949 unsigned offset;
4950
4951 if (draw->has_user_indices) {
4952 u_upload_data(ice->ctx.stream_uploader, 0,
4953 draw->count * draw->index_size, 4, draw->index.user,
4954 &offset, &ice->state.last_res.index_buffer);
4955 } else {
4956 struct iris_resource *res = (void *) draw->index.resource;
4957 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
4958
4959 pipe_resource_reference(&ice->state.last_res.index_buffer,
4960 draw->index.resource);
4961 offset = 0;
4962 }
4963
4964 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
4965
4966 iris_emit_cmd(batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
4967 ib.IndexFormat = draw->index_size >> 1;
4968 ib.MOCS = mocs(bo);
4969 ib.BufferSize = bo->size;
4970 ib.BufferStartingAddress = ro_bo(bo, offset);
4971 }
4972
4973 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
4974 uint16_t high_bits = bo->gtt_offset >> 32ull;
4975 if (high_bits != ice->state.last_index_bo_high_bits) {
4976 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_VF_CACHE_INVALIDATE |
4977 PIPE_CONTROL_CS_STALL);
4978 ice->state.last_index_bo_high_bits = high_bits;
4979 }
4980 }
4981
4982 #define _3DPRIM_END_OFFSET 0x2420
4983 #define _3DPRIM_START_VERTEX 0x2430
4984 #define _3DPRIM_VERTEX_COUNT 0x2434
4985 #define _3DPRIM_INSTANCE_COUNT 0x2438
4986 #define _3DPRIM_START_INSTANCE 0x243C
4987 #define _3DPRIM_BASE_VERTEX 0x2440
4988
4989 if (draw->indirect) {
4990 /* We don't support this MultidrawIndirect. */
4991 assert(!draw->indirect->indirect_draw_count);
4992
4993 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
4994 assert(bo);
4995
4996 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4997 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
4998 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
4999 }
5000 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5001 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
5002 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
5003 }
5004 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5005 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
5006 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
5007 }
5008 if (draw->index_size) {
5009 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5010 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5011 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5012 }
5013 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5014 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5015 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5016 }
5017 } else {
5018 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5019 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5020 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5021 }
5022 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5023 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5024 lri.DataDWord = 0;
5025 }
5026 }
5027 } else if (draw->count_from_stream_output) {
5028 struct iris_stream_output_target *so =
5029 (void *) draw->count_from_stream_output;
5030
5031 /* XXX: Replace with actual cache tracking */
5032 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
5033
5034 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5035 lrm.RegisterAddress = CS_GPR(0);
5036 lrm.MemoryAddress =
5037 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5038 }
5039 iris_math_div32_gpr0(ice, batch, so->stride);
5040 _iris_emit_lrr(batch, _3DPRIM_VERTEX_COUNT, CS_GPR(0));
5041
5042 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5043 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5044 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5045 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5046 }
5047
5048 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5049 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5050 prim.PredicateEnable =
5051 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5052
5053 if (draw->indirect || draw->count_from_stream_output) {
5054 prim.IndirectParameterEnable = true;
5055 } else {
5056 prim.StartInstanceLocation = draw->start_instance;
5057 prim.InstanceCount = draw->instance_count;
5058 prim.VertexCountPerInstance = draw->count;
5059
5060 // XXX: this is probably bonkers.
5061 prim.StartVertexLocation = draw->start;
5062
5063 if (draw->index_size) {
5064 prim.BaseVertexLocation += draw->index_bias;
5065 } else {
5066 prim.StartVertexLocation += draw->index_bias;
5067 }
5068
5069 //prim.BaseVertexLocation = ...;
5070 }
5071 }
5072 }
5073
5074 static void
5075 iris_upload_compute_state(struct iris_context *ice,
5076 struct iris_batch *batch,
5077 const struct pipe_grid_info *grid)
5078 {
5079 const uint64_t dirty = ice->state.dirty;
5080 struct iris_screen *screen = batch->screen;
5081 const struct gen_device_info *devinfo = &screen->devinfo;
5082 struct iris_binder *binder = &ice->state.binder;
5083 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5084 struct iris_compiled_shader *shader =
5085 ice->shaders.prog[MESA_SHADER_COMPUTE];
5086 struct brw_stage_prog_data *prog_data = shader->prog_data;
5087 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5088
5089 /* Always pin the binder. If we're emitting new binding table pointers,
5090 * we need it. If not, we're probably inheriting old tables via the
5091 * context, and need it anyway. Since true zero-bindings cases are
5092 * practically non-existent, just pin it and avoid last_res tracking.
5093 */
5094 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5095
5096 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->cbuf0_needs_upload)
5097 upload_uniforms(ice, MESA_SHADER_COMPUTE);
5098
5099 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5100 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5101
5102 iris_use_optional_res(batch, shs->sampler_table.res, false);
5103 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5104
5105 if (ice->state.need_border_colors)
5106 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5107
5108 if (dirty & IRIS_DIRTY_CS) {
5109 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5110 *
5111 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5112 * the only bits that are changed are scoreboard related: Scoreboard
5113 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5114 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5115 * sufficient."
5116 */
5117 iris_emit_pipe_control_flush(batch, PIPE_CONTROL_CS_STALL);
5118
5119 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5120 if (prog_data->total_scratch) {
5121 struct iris_bo *bo =
5122 iris_get_scratch_space(ice, prog_data->total_scratch,
5123 MESA_SHADER_COMPUTE);
5124 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5125 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5126 }
5127
5128 vfe.MaximumNumberofThreads =
5129 devinfo->max_cs_threads * screen->subslice_total - 1;
5130 #if GEN_GEN < 11
5131 vfe.ResetGatewayTimer =
5132 Resettingrelativetimerandlatchingtheglobaltimestamp;
5133 #endif
5134 #if GEN_GEN == 8
5135 vfe.BypassGatewayControl = true;
5136 #endif
5137 vfe.NumberofURBEntries = 2;
5138 vfe.URBEntryAllocationSize = 2;
5139
5140 vfe.CURBEAllocationSize =
5141 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5142 cs_prog_data->push.cross_thread.regs, 2);
5143 }
5144 }
5145
5146 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5147 uint32_t curbe_data_offset = 0;
5148 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5149 cs_prog_data->push.per_thread.dwords == 1 &&
5150 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5151 struct pipe_resource *curbe_data_res = NULL;
5152 uint32_t *curbe_data_map =
5153 stream_state(batch, ice->state.dynamic_uploader, &curbe_data_res,
5154 ALIGN(cs_prog_data->push.total.size, 64), 64,
5155 &curbe_data_offset);
5156 assert(curbe_data_map);
5157 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5158 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5159
5160 if (dirty & IRIS_DIRTY_CONSTANTS_CS) {
5161 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5162 curbe.CURBETotalDataLength =
5163 ALIGN(cs_prog_data->push.total.size, 64);
5164 curbe.CURBEDataStartAddress = curbe_data_offset;
5165 }
5166 }
5167
5168 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5169 IRIS_DIRTY_BINDINGS_CS |
5170 IRIS_DIRTY_CONSTANTS_CS |
5171 IRIS_DIRTY_CS)) {
5172 struct pipe_resource *desc_res = NULL;
5173 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5174
5175 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5176 idd.SamplerStatePointer = shs->sampler_table.offset;
5177 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5178 }
5179
5180 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5181 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5182
5183 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5184 load.InterfaceDescriptorTotalLength =
5185 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5186 load.InterfaceDescriptorDataStartAddress =
5187 emit_state(batch, ice->state.dynamic_uploader,
5188 &desc_res, desc, sizeof(desc), 32);
5189 }
5190
5191 pipe_resource_reference(&desc_res, NULL);
5192 }
5193
5194 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5195 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5196 uint32_t right_mask;
5197
5198 if (remainder > 0)
5199 right_mask = ~0u >> (32 - remainder);
5200 else
5201 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5202
5203 #define GPGPU_DISPATCHDIMX 0x2500
5204 #define GPGPU_DISPATCHDIMY 0x2504
5205 #define GPGPU_DISPATCHDIMZ 0x2508
5206
5207 if (grid->indirect) {
5208 struct iris_state_ref *grid_size = &ice->state.grid_size;
5209 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5210 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5211 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5212 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5213 }
5214 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5215 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5216 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5217 }
5218 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5219 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5220 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5221 }
5222 }
5223
5224 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5225 ggw.IndirectParameterEnable = grid->indirect != NULL;
5226 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5227 ggw.ThreadDepthCounterMaximum = 0;
5228 ggw.ThreadHeightCounterMaximum = 0;
5229 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5230 ggw.ThreadGroupIDXDimension = grid->grid[0];
5231 ggw.ThreadGroupIDYDimension = grid->grid[1];
5232 ggw.ThreadGroupIDZDimension = grid->grid[2];
5233 ggw.RightExecutionMask = right_mask;
5234 ggw.BottomExecutionMask = 0xffffffff;
5235 }
5236
5237 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5238
5239 if (!batch->contains_draw) {
5240 iris_restore_compute_saved_bos(ice, batch, grid);
5241 batch->contains_draw = true;
5242 }
5243 }
5244
5245 /**
5246 * State module teardown.
5247 */
5248 static void
5249 iris_destroy_state(struct iris_context *ice)
5250 {
5251 struct iris_genx_state *genx = ice->state.genx;
5252
5253 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5254 while (bound_vbs) {
5255 const int i = u_bit_scan64(&bound_vbs);
5256 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5257 }
5258 free(ice->state.genx);
5259
5260 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5261 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5262 }
5263 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5264
5265 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5266 struct iris_shader_state *shs = &ice->state.shaders[stage];
5267 pipe_resource_reference(&shs->sampler_table.res, NULL);
5268 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5269 pipe_resource_reference(&shs->constbuf[i].data.res, NULL);
5270 pipe_resource_reference(&shs->constbuf[i].surface_state.res, NULL);
5271 }
5272 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5273 pipe_resource_reference(&shs->image[i].res, NULL);
5274 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5275 }
5276 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5277 pipe_resource_reference(&shs->ssbo[i], NULL);
5278 pipe_resource_reference(&shs->ssbo_surface_state[i].res, NULL);
5279 }
5280 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5281 pipe_sampler_view_reference((struct pipe_sampler_view **)
5282 &shs->textures[i], NULL);
5283 }
5284 }
5285
5286 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5287 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5288
5289 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5290 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5291
5292 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5293 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5294 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5295 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5296 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5297 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5298 }
5299
5300 /* ------------------------------------------------------------------- */
5301
5302 static void
5303 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
5304 uint32_t src)
5305 {
5306 _iris_emit_lrr(batch, dst, src);
5307 }
5308
5309 static void
5310 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
5311 uint32_t src)
5312 {
5313 _iris_emit_lrr(batch, dst, src);
5314 _iris_emit_lrr(batch, dst + 4, src + 4);
5315 }
5316
5317 static void
5318 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
5319 uint32_t val)
5320 {
5321 _iris_emit_lri(batch, reg, val);
5322 }
5323
5324 static void
5325 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
5326 uint64_t val)
5327 {
5328 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
5329 _iris_emit_lri(batch, reg + 4, val >> 32);
5330 }
5331
5332 /**
5333 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
5334 */
5335 static void
5336 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
5337 struct iris_bo *bo, uint32_t offset)
5338 {
5339 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5340 lrm.RegisterAddress = reg;
5341 lrm.MemoryAddress = ro_bo(bo, offset);
5342 }
5343 }
5344
5345 /**
5346 * Load a 64-bit value from a buffer into a MMIO register via
5347 * two MI_LOAD_REGISTER_MEM commands.
5348 */
5349 static void
5350 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
5351 struct iris_bo *bo, uint32_t offset)
5352 {
5353 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
5354 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
5355 }
5356
5357 static void
5358 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
5359 struct iris_bo *bo, uint32_t offset,
5360 bool predicated)
5361 {
5362 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
5363 srm.RegisterAddress = reg;
5364 srm.MemoryAddress = rw_bo(bo, offset);
5365 srm.PredicateEnable = predicated;
5366 }
5367 }
5368
5369 static void
5370 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
5371 struct iris_bo *bo, uint32_t offset,
5372 bool predicated)
5373 {
5374 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
5375 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
5376 }
5377
5378 static void
5379 iris_store_data_imm32(struct iris_batch *batch,
5380 struct iris_bo *bo, uint32_t offset,
5381 uint32_t imm)
5382 {
5383 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
5384 sdi.Address = rw_bo(bo, offset);
5385 sdi.ImmediateData = imm;
5386 }
5387 }
5388
5389 static void
5390 iris_store_data_imm64(struct iris_batch *batch,
5391 struct iris_bo *bo, uint32_t offset,
5392 uint64_t imm)
5393 {
5394 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
5395 * 2 in genxml but it's actually variable length and we need 5 DWords.
5396 */
5397 void *map = iris_get_command_space(batch, 4 * 5);
5398 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
5399 sdi.DWordLength = 5 - 2;
5400 sdi.Address = rw_bo(bo, offset);
5401 sdi.ImmediateData = imm;
5402 }
5403 }
5404
5405 static void
5406 iris_copy_mem_mem(struct iris_batch *batch,
5407 struct iris_bo *dst_bo, uint32_t dst_offset,
5408 struct iris_bo *src_bo, uint32_t src_offset,
5409 unsigned bytes)
5410 {
5411 /* MI_COPY_MEM_MEM operates on DWords. */
5412 assert(bytes % 4 == 0);
5413 assert(dst_offset % 4 == 0);
5414 assert(src_offset % 4 == 0);
5415
5416 for (unsigned i = 0; i < bytes; i += 4) {
5417 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
5418 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
5419 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
5420 }
5421 }
5422 }
5423
5424 /* ------------------------------------------------------------------- */
5425
5426 static unsigned
5427 flags_to_post_sync_op(uint32_t flags)
5428 {
5429 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
5430 return WriteImmediateData;
5431
5432 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
5433 return WritePSDepthCount;
5434
5435 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
5436 return WriteTimestamp;
5437
5438 return 0;
5439 }
5440
5441 /**
5442 * Do the given flags have a Post Sync or LRI Post Sync operation?
5443 */
5444 static enum pipe_control_flags
5445 get_post_sync_flags(enum pipe_control_flags flags)
5446 {
5447 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
5448 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5449 PIPE_CONTROL_WRITE_TIMESTAMP |
5450 PIPE_CONTROL_LRI_POST_SYNC_OP;
5451
5452 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
5453 * "LRI Post Sync Operation". So more than one bit set would be illegal.
5454 */
5455 assert(util_bitcount(flags) <= 1);
5456
5457 return flags;
5458 }
5459
5460 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
5461
5462 /**
5463 * Emit a series of PIPE_CONTROL commands, taking into account any
5464 * workarounds necessary to actually accomplish the caller's request.
5465 *
5466 * Unless otherwise noted, spec quotations in this function come from:
5467 *
5468 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
5469 * Restrictions for PIPE_CONTROL.
5470 *
5471 * You should not use this function directly. Use the helpers in
5472 * iris_pipe_control.c instead, which may split the pipe control further.
5473 */
5474 static void
5475 iris_emit_raw_pipe_control(struct iris_batch *batch, uint32_t flags,
5476 struct iris_bo *bo, uint32_t offset, uint64_t imm)
5477 {
5478 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
5479 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
5480 enum pipe_control_flags non_lri_post_sync_flags =
5481 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
5482
5483 /* Recursive PIPE_CONTROL workarounds --------------------------------
5484 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
5485 *
5486 * We do these first because we want to look at the original operation,
5487 * rather than any workarounds we set.
5488 */
5489 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
5490 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
5491 * lists several workarounds:
5492 *
5493 * "Project: SKL, KBL, BXT
5494 *
5495 * If the VF Cache Invalidation Enable is set to a 1 in a
5496 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
5497 * sets to 0, with the VF Cache Invalidation Enable set to 0
5498 * needs to be sent prior to the PIPE_CONTROL with VF Cache
5499 * Invalidation Enable set to a 1."
5500 */
5501 iris_emit_raw_pipe_control(batch, 0, NULL, 0, 0);
5502 }
5503
5504 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
5505 /* Project: SKL / Argument: LRI Post Sync Operation [23]
5506 *
5507 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5508 * programmed prior to programming a PIPECONTROL command with "LRI
5509 * Post Sync Operation" in GPGPU mode of operation (i.e when
5510 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
5511 *
5512 * The same text exists a few rows below for Post Sync Op.
5513 */
5514 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_CS_STALL, bo, offset, imm);
5515 }
5516
5517 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
5518 /* Cannonlake:
5519 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
5520 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
5521 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
5522 */
5523 iris_emit_raw_pipe_control(batch, PIPE_CONTROL_FLUSH_ENABLE, bo,
5524 offset, imm);
5525 }
5526
5527 /* "Flush Types" workarounds ---------------------------------------------
5528 * We do these now because they may add post-sync operations or CS stalls.
5529 */
5530
5531 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
5532 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
5533 *
5534 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
5535 * 'Write PS Depth Count' or 'Write Timestamp'."
5536 */
5537 if (!bo) {
5538 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5539 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5540 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
5541 bo = batch->screen->workaround_bo;
5542 }
5543 }
5544
5545 /* #1130 from Gen10 workarounds page:
5546 *
5547 * "Enable Depth Stall on every Post Sync Op if Render target Cache
5548 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
5549 * board stall if Render target cache flush is enabled."
5550 *
5551 * Applicable to CNL B0 and C0 steppings only.
5552 *
5553 * The wording here is unclear, and this workaround doesn't look anything
5554 * like the internal bug report recommendations, but leave it be for now...
5555 */
5556 if (GEN_GEN == 10) {
5557 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
5558 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5559 } else if (flags & non_lri_post_sync_flags) {
5560 flags |= PIPE_CONTROL_DEPTH_STALL;
5561 }
5562 }
5563
5564 if (flags & PIPE_CONTROL_DEPTH_STALL) {
5565 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
5566 *
5567 * "This bit must be DISABLED for operations other than writing
5568 * PS_DEPTH_COUNT."
5569 *
5570 * This seems like nonsense. An Ivybridge workaround requires us to
5571 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
5572 * operation. Gen8+ requires us to emit depth stalls and depth cache
5573 * flushes together. So, it's hard to imagine this means anything other
5574 * than "we originally intended this to be used for PS_DEPTH_COUNT".
5575 *
5576 * We ignore the supposed restriction and do nothing.
5577 */
5578 }
5579
5580 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
5581 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5582 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
5583 *
5584 * "This bit must be DISABLED for End-of-pipe (Read) fences,
5585 * PS_DEPTH_COUNT or TIMESTAMP queries."
5586 *
5587 * TODO: Implement end-of-pipe checking.
5588 */
5589 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
5590 PIPE_CONTROL_WRITE_TIMESTAMP)));
5591 }
5592
5593 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
5594 /* From the PIPE_CONTROL instruction table, bit 1:
5595 *
5596 * "This bit is ignored if Depth Stall Enable is set.
5597 * Further, the render cache is not flushed even if Write Cache
5598 * Flush Enable bit is set."
5599 *
5600 * We assert that the caller doesn't do this combination, to try and
5601 * prevent mistakes. It shouldn't hurt the GPU, though.
5602 *
5603 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
5604 * and "Render Target Flush" combo is explicitly required for BTI
5605 * update workarounds.
5606 */
5607 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
5608 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
5609 }
5610
5611 /* PIPE_CONTROL page workarounds ------------------------------------- */
5612
5613 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
5614 /* From the PIPE_CONTROL page itself:
5615 *
5616 * "IVB, HSW, BDW
5617 * Restriction: Pipe_control with CS-stall bit set must be issued
5618 * before a pipe-control command that has the State Cache
5619 * Invalidate bit set."
5620 */
5621 flags |= PIPE_CONTROL_CS_STALL;
5622 }
5623
5624 if (flags & PIPE_CONTROL_FLUSH_LLC) {
5625 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
5626 *
5627 * "Project: ALL
5628 * SW must always program Post-Sync Operation to "Write Immediate
5629 * Data" when Flush LLC is set."
5630 *
5631 * For now, we just require the caller to do it.
5632 */
5633 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
5634 }
5635
5636 /* "Post-Sync Operation" workarounds -------------------------------- */
5637
5638 /* Project: All / Argument: Global Snapshot Count Reset [19]
5639 *
5640 * "This bit must not be exercised on any product.
5641 * Requires stall bit ([20] of DW1) set."
5642 *
5643 * We don't use this, so we just assert that it isn't used. The
5644 * PIPE_CONTROL instruction page indicates that they intended this
5645 * as a debug feature and don't think it is useful in production,
5646 * but it may actually be usable, should we ever want to.
5647 */
5648 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
5649
5650 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
5651 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
5652 /* Project: All / Arguments:
5653 *
5654 * - Generic Media State Clear [16]
5655 * - Indirect State Pointers Disable [16]
5656 *
5657 * "Requires stall bit ([20] of DW1) set."
5658 *
5659 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
5660 * State Clear) says:
5661 *
5662 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
5663 * programmed prior to programming a PIPECONTROL command with "Media
5664 * State Clear" set in GPGPU mode of operation"
5665 *
5666 * This is a subset of the earlier rule, so there's nothing to do.
5667 */
5668 flags |= PIPE_CONTROL_CS_STALL;
5669 }
5670
5671 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
5672 /* Project: All / Argument: Store Data Index
5673 *
5674 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5675 * than '0'."
5676 *
5677 * For now, we just assert that the caller does this. We might want to
5678 * automatically add a write to the workaround BO...
5679 */
5680 assert(non_lri_post_sync_flags != 0);
5681 }
5682
5683 if (flags & PIPE_CONTROL_SYNC_GFDT) {
5684 /* Project: All / Argument: Sync GFDT
5685 *
5686 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
5687 * than '0' or 0x2520[13] must be set."
5688 *
5689 * For now, we just assert that the caller does this.
5690 */
5691 assert(non_lri_post_sync_flags != 0);
5692 }
5693
5694 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
5695 /* Project: IVB+ / Argument: TLB inv
5696 *
5697 * "Requires stall bit ([20] of DW1) set."
5698 *
5699 * Also, from the PIPE_CONTROL instruction table:
5700 *
5701 * "Project: SKL+
5702 * Post Sync Operation or CS stall must be set to ensure a TLB
5703 * invalidation occurs. Otherwise no cycle will occur to the TLB
5704 * cache to invalidate."
5705 *
5706 * This is not a subset of the earlier rule, so there's nothing to do.
5707 */
5708 flags |= PIPE_CONTROL_CS_STALL;
5709 }
5710
5711 if (GEN_GEN == 9 && devinfo->gt == 4) {
5712 /* TODO: The big Skylake GT4 post sync op workaround */
5713 }
5714
5715 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
5716
5717 if (IS_COMPUTE_PIPELINE(batch)) {
5718 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
5719 /* Project: SKL+ / Argument: Tex Invalidate
5720 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
5721 */
5722 flags |= PIPE_CONTROL_CS_STALL;
5723 }
5724
5725 if (GEN_GEN == 8 && (post_sync_flags ||
5726 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
5727 PIPE_CONTROL_DEPTH_STALL |
5728 PIPE_CONTROL_RENDER_TARGET_FLUSH |
5729 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5730 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
5731 /* Project: BDW / Arguments:
5732 *
5733 * - LRI Post Sync Operation [23]
5734 * - Post Sync Op [15:14]
5735 * - Notify En [8]
5736 * - Depth Stall [13]
5737 * - Render Target Cache Flush [12]
5738 * - Depth Cache Flush [0]
5739 * - DC Flush Enable [5]
5740 *
5741 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
5742 * Workloads."
5743 */
5744 flags |= PIPE_CONTROL_CS_STALL;
5745
5746 /* Also, from the PIPE_CONTROL instruction table, bit 20:
5747 *
5748 * "Project: BDW
5749 * This bit must be always set when PIPE_CONTROL command is
5750 * programmed by GPGPU and MEDIA workloads, except for the cases
5751 * when only Read Only Cache Invalidation bits are set (State
5752 * Cache Invalidation Enable, Instruction cache Invalidation
5753 * Enable, Texture Cache Invalidation Enable, Constant Cache
5754 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
5755 * need not implemented when FF_DOP_CG is disable via "Fixed
5756 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
5757 *
5758 * It sounds like we could avoid CS stalls in some cases, but we
5759 * don't currently bother. This list isn't exactly the list above,
5760 * either...
5761 */
5762 }
5763 }
5764
5765 /* "Stall" workarounds ----------------------------------------------
5766 * These have to come after the earlier ones because we may have added
5767 * some additional CS stalls above.
5768 */
5769
5770 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
5771 /* Project: PRE-SKL, VLV, CHV
5772 *
5773 * "[All Stepping][All SKUs]:
5774 *
5775 * One of the following must also be set:
5776 *
5777 * - Render Target Cache Flush Enable ([12] of DW1)
5778 * - Depth Cache Flush Enable ([0] of DW1)
5779 * - Stall at Pixel Scoreboard ([1] of DW1)
5780 * - Depth Stall ([13] of DW1)
5781 * - Post-Sync Operation ([13] of DW1)
5782 * - DC Flush Enable ([5] of DW1)"
5783 *
5784 * If we don't already have one of those bits set, we choose to add
5785 * "Stall at Pixel Scoreboard". Some of the other bits require a
5786 * CS stall as a workaround (see above), which would send us into
5787 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
5788 * appears to be safe, so we choose that.
5789 */
5790 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
5791 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
5792 PIPE_CONTROL_WRITE_IMMEDIATE |
5793 PIPE_CONTROL_WRITE_DEPTH_COUNT |
5794 PIPE_CONTROL_WRITE_TIMESTAMP |
5795 PIPE_CONTROL_STALL_AT_SCOREBOARD |
5796 PIPE_CONTROL_DEPTH_STALL |
5797 PIPE_CONTROL_DATA_CACHE_FLUSH;
5798 if (!(flags & wa_bits))
5799 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
5800 }
5801
5802 /* Emit --------------------------------------------------------------- */
5803
5804 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
5805 pc.LRIPostSyncOperation = NoLRIOperation;
5806 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
5807 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
5808 pc.StoreDataIndex = 0;
5809 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
5810 pc.GlobalSnapshotCountReset =
5811 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
5812 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
5813 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
5814 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
5815 pc.RenderTargetCacheFlushEnable =
5816 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
5817 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
5818 pc.StateCacheInvalidationEnable =
5819 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
5820 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
5821 pc.ConstantCacheInvalidationEnable =
5822 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
5823 pc.PostSyncOperation = flags_to_post_sync_op(flags);
5824 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
5825 pc.InstructionCacheInvalidateEnable =
5826 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
5827 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
5828 pc.IndirectStatePointersDisable =
5829 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
5830 pc.TextureCacheInvalidationEnable =
5831 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
5832 pc.Address = rw_bo(bo, offset);
5833 pc.ImmediateData = imm;
5834 }
5835 }
5836
5837 void
5838 genX(init_state)(struct iris_context *ice)
5839 {
5840 struct pipe_context *ctx = &ice->ctx;
5841 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
5842
5843 ctx->create_blend_state = iris_create_blend_state;
5844 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
5845 ctx->create_rasterizer_state = iris_create_rasterizer_state;
5846 ctx->create_sampler_state = iris_create_sampler_state;
5847 ctx->create_sampler_view = iris_create_sampler_view;
5848 ctx->create_surface = iris_create_surface;
5849 ctx->create_vertex_elements_state = iris_create_vertex_elements;
5850 ctx->bind_blend_state = iris_bind_blend_state;
5851 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
5852 ctx->bind_sampler_states = iris_bind_sampler_states;
5853 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
5854 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
5855 ctx->delete_blend_state = iris_delete_state;
5856 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
5857 ctx->delete_rasterizer_state = iris_delete_state;
5858 ctx->delete_sampler_state = iris_delete_state;
5859 ctx->delete_vertex_elements_state = iris_delete_state;
5860 ctx->set_blend_color = iris_set_blend_color;
5861 ctx->set_clip_state = iris_set_clip_state;
5862 ctx->set_constant_buffer = iris_set_constant_buffer;
5863 ctx->set_shader_buffers = iris_set_shader_buffers;
5864 ctx->set_shader_images = iris_set_shader_images;
5865 ctx->set_sampler_views = iris_set_sampler_views;
5866 ctx->set_tess_state = iris_set_tess_state;
5867 ctx->set_framebuffer_state = iris_set_framebuffer_state;
5868 ctx->set_polygon_stipple = iris_set_polygon_stipple;
5869 ctx->set_sample_mask = iris_set_sample_mask;
5870 ctx->set_scissor_states = iris_set_scissor_states;
5871 ctx->set_stencil_ref = iris_set_stencil_ref;
5872 ctx->set_vertex_buffers = iris_set_vertex_buffers;
5873 ctx->set_viewport_states = iris_set_viewport_states;
5874 ctx->sampler_view_destroy = iris_sampler_view_destroy;
5875 ctx->surface_destroy = iris_surface_destroy;
5876 ctx->draw_vbo = iris_draw_vbo;
5877 ctx->launch_grid = iris_launch_grid;
5878 ctx->create_stream_output_target = iris_create_stream_output_target;
5879 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
5880 ctx->set_stream_output_targets = iris_set_stream_output_targets;
5881
5882 ice->vtbl.destroy_state = iris_destroy_state;
5883 ice->vtbl.init_render_context = iris_init_render_context;
5884 ice->vtbl.init_compute_context = iris_init_compute_context;
5885 ice->vtbl.upload_render_state = iris_upload_render_state;
5886 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
5887 ice->vtbl.upload_compute_state = iris_upload_compute_state;
5888 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
5889 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
5890 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
5891 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
5892 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
5893 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
5894 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
5895 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
5896 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
5897 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
5898 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
5899 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
5900 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
5901 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
5902 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
5903 ice->vtbl.populate_vs_key = iris_populate_vs_key;
5904 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
5905 ice->vtbl.populate_tes_key = iris_populate_tes_key;
5906 ice->vtbl.populate_gs_key = iris_populate_gs_key;
5907 ice->vtbl.populate_fs_key = iris_populate_fs_key;
5908 ice->vtbl.populate_cs_key = iris_populate_cs_key;
5909 ice->vtbl.mocs = mocs;
5910
5911 ice->state.dirty = ~0ull;
5912
5913 ice->state.statistics_counters_enabled = true;
5914
5915 ice->state.sample_mask = 0xffff;
5916 ice->state.num_viewports = 1;
5917 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
5918
5919 /* Make a 1x1x1 null surface for unbound textures */
5920 void *null_surf_map =
5921 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
5922 4 * GENX(RENDER_SURFACE_STATE_length), 64);
5923 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
5924 ice->state.unbound_tex.offset +=
5925 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
5926
5927 /* Default all scissor rectangles to be empty regions. */
5928 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
5929 ice->state.scissors[i] = (struct pipe_scissor_state) {
5930 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
5931 };
5932 }
5933 }